entry_point
stringlengths
1
65
original_triton_code
stringlengths
4.5k
619k
python_code
stringlengths
208
60.9k
triton_code
stringlengths
1.15k
275k
repo_name
stringlengths
7
115
module_name
stringlengths
1
65
synthetic
bool
1 class
uuid
int64
0
18.5k
licenses
listlengths
1
6
stars
int64
0
19.8k
sha
stringlengths
40
40
repo_link
stringlengths
72
180
MatrixArgMax
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/k6/ck6ig4fnkzmnzaa7ehp4fd35pjsoret467vqmzjnlgfdgtrke4sd.py # Topologically Sorted Source Nodes: [z], Original ATen: [aten.argmax] # Source node to ATen node mapping: # z => argmax # Graph fragment: # %argmax : [num_users=1] = call_function[target=torch.ops.aten.argmax.default](args = (%arg0_1,), kwargs = {}) triton_red_fused_argmax_0 = async_compile.triton('triton_red_fused_argmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.reduction( size_hints=[1, 256], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_argmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_red_fused_argmax_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr): xnumel = 1 rnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rbase = tl.arange(0, RBLOCK)[None, :] _tmp2 = tl.full([XBLOCK, RBLOCK], float("-inf"), tl.float32) _tmp2_index = tl.full([XBLOCK, RBLOCK], 9223372036854775807, tl.int64) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), rmask, eviction_policy='evict_first', other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) _tmp2_next, _tmp2_index_next = triton_helpers.maximum_with_index( _tmp2, _tmp2_index, tmp1, rindex ) _tmp2 = tl.where(rmask, _tmp2_next, _tmp2) _tmp2_index = tl.where(rmask, _tmp2_index_next, _tmp2_index) _, tmp2_tmp = triton_helpers.max_with_index(_tmp2, _tmp2_index, 1) tmp2 = tmp2_tmp[:, None] tl.store(out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp2, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.int64) # Topologically Sorted Source Nodes: [z], Original ATen: [aten.argmax] stream0 = get_raw_stream(0) triton_red_fused_argmax_0.run(arg0_1, buf0, 1, 256, grid=grid(1), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.autograd class MatrixArgMax(nn.Module): def __init__(self): super(MatrixArgMax, self).__init__() def forward(self, x): z = torch.argmax(x) return z def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.autograd assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_red_fused_argmax_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl .constexpr, RBLOCK: tl.constexpr): rnumel = 256 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rbase = tl.arange(0, RBLOCK)[None, :] _tmp2 = tl.full([XBLOCK, RBLOCK], float('-inf'), tl.float32) _tmp2_index = tl.full([XBLOCK, RBLOCK], 9223372036854775807, tl.int64) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r0 = rindex tmp0 = tl.load(in_ptr0 + r0, rmask, eviction_policy='evict_first', other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) _tmp2_next, _tmp2_index_next = triton_helpers.maximum_with_index(_tmp2, _tmp2_index, tmp1, rindex) _tmp2 = tl.where(rmask, _tmp2_next, _tmp2) _tmp2_index = tl.where(rmask, _tmp2_index_next, _tmp2_index) _, tmp2_tmp = triton_helpers.max_with_index(_tmp2, _tmp2_index, 1) tmp2 = tmp2_tmp[:, None] tl.store(out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp2, None) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.int64) get_raw_stream(0) triton_red_fused_argmax_0[grid(1)](arg0_1, buf0, 1, 256, XBLOCK=1, RBLOCK=256, num_warps=2, num_stages=1) del arg0_1 return buf0, class MatrixArgMaxNew(nn.Module): def __init__(self): super(MatrixArgMaxNew, self).__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
RyusukeYamano/nngen
MatrixArgMax
false
14,341
[ "Apache-2.0" ]
207
9ed1f7fb83908794aa94d70287d89545d45fe875
https://github.com/RyusukeYamano/nngen/tree/9ed1f7fb83908794aa94d70287d89545d45fe875
FeedForwardLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/hp/chpdwpegv6lvistek2wqgimtufecqvfp6grp5rpblk5yjicjzqd2.py # Topologically Sorted Source Nodes: [src], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # src => add, rsqrt, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_3, [3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) triton_poi_fused_native_layer_norm_0 = async_compile.triton('triton_poi_fused_native_layer_norm_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + (x0), tmp8, xmask) tl.store(out_ptr1 + (x0), tmp23, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/lh/clhh73owbiuj4adasmetdqsot2nlmw2ljupnw2q4yt3du76mikww.py # Topologically Sorted Source Nodes: [src], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # src => add, add_1, mul, mul_1, rsqrt, sub, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_3, [3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_3, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_1), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_2), kwargs = {}) triton_poi_fused_native_layer_norm_1 = async_compile.triton('triton_poi_fused_native_layer_norm_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ig/cig6yc5hpyitr7adzjplxwvujeokez6gcz74on3pqwjndtemkzkb.py # Topologically Sorted Source Nodes: [relu_], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # relu_ => relu # Graph fragment: # %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%view_3, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_relu_threshold_backward_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + (x4), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x4), tmp4, xmask) tl.store(out_ptr0 + (x4), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/6y/c6yu4qpvxjf7m27lcd5q75hm4darugexooomlout6l26dosgfkos.py # Topologically Sorted Source Nodes: [src_1], Original ATen: [aten.view] # Source node to ATen node mapping: # src_1 => view_5 # Graph fragment: # %view_5 : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%view_3, [64, 16]), kwargs = {}) triton_poi_fused_view_3 = async_compile.triton('triton_poi_fused_view_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_view_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_view_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (16*x1) + (64*((x1 % 4) // 4)) + (256*(((4*((x1 // 4) % 4)) + (x1 % 4)) // 16))), xmask) tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, ), (1, )) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (16, 4), (4, 1)) assert_size_stride(primals_5, (16, ), (1, )) assert_size_stride(primals_6, (4, 16), (16, 1)) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) # Topologically Sorted Source Nodes: [src], Original ATen: [aten.native_layer_norm] stream0 = get_raw_stream(0) triton_poi_fused_native_layer_norm_0.run(primals_3, buf0, buf1, 64, grid=grid(64), stream=stream0) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [src], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_1.run(primals_3, buf0, buf1, primals_1, primals_2, buf2, 256, grid=grid(256), stream=stream0) del buf0 del buf1 del primals_1 del primals_2 buf3 = empty_strided_cuda((64, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 16), (1, 4), 0), out=buf3) buf4 = reinterpret_tensor(buf3, (4, 4, 4, 16), (256, 64, 16, 1), 0); del buf3 # reuse buf7 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.bool) # Topologically Sorted Source Nodes: [relu_], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_2.run(buf4, primals_5, buf7, 1024, grid=grid(1024), stream=stream0) del primals_5 buf5 = empty_strided_cuda((64, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [src_1], Original ATen: [aten.view] triton_poi_fused_view_3.run(buf4, buf5, 1024, grid=grid(1024), stream=stream0) del buf4 buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [src_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, buf5, reinterpret_tensor(primals_6, (16, 4), (1, 16), 0), alpha=1, beta=1, out=buf6) del primals_7 return (reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0), primals_3, reinterpret_tensor(buf2, (64, 4), (4, 1), 0), buf5, primals_6, buf7, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 16), (16, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint class FeedForwardLayer(nn.Module): def __init__(self, d_model, r_ff, p_drop=0.1): super(FeedForwardLayer, self).__init__() self.norm = nn.LayerNorm(d_model) self.linear1 = nn.Linear(d_model, d_model * r_ff) self.dropout = nn.Dropout(p_drop) self.linear2 = nn.Linear(d_model * r_ff, d_model) self.reset_parameter() def reset_parameter(self): nn.init.kaiming_normal_(self.linear1.weight, nonlinearity='relu') nn.init.zeros_(self.linear1.bias) nn.init.zeros_(self.linear2.weight) nn.init.zeros_(self.linear2.bias) def forward(self, src): src = self.norm(src) src = self.linear2(self.dropout(F.relu_(self.linear1(src)))) return src def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'d_model': 4, 'r_ff': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn import torch.utils.checkpoint assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + x0, tmp8, xmask) tl.store(out_ptr1 + x0, tmp23, xmask) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + x4, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x4, tmp4, xmask) tl.store(out_ptr0 + x4, tmp6, xmask) @triton.jit def triton_poi_fused_view_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 16 * x1 + 64 * (x1 % 4 // 4) + 256 * ((4 * (x1 // 4 % 4) + x1 % 4) // 16)), xmask) tl.store(out_ptr0 + x2, tmp0, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4,), (1,)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (16, 4), (4, 1)) assert_size_stride(primals_5, (16,), (1,)) assert_size_stride(primals_6, (4, 16), (16, 1)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) get_raw_stream(0) triton_poi_fused_native_layer_norm_0[grid(64)](primals_3, buf0, buf1, 64, XBLOCK=64, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_native_layer_norm_1[grid(256)](primals_3, buf0, buf1, primals_1, primals_2, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf0 del buf1 del primals_1 del primals_2 buf3 = empty_strided_cuda((64, 16), (16, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 16), (1, 4), 0), out=buf3) buf4 = reinterpret_tensor(buf3, (4, 4, 4, 16), (256, 64, 16, 1), 0) del buf3 buf7 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.bool) triton_poi_fused_relu_threshold_backward_2[grid(1024)](buf4, primals_5, buf7, 1024, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 buf5 = empty_strided_cuda((64, 16), (16, 1), torch.float32) triton_poi_fused_view_3[grid(1024)](buf4, buf5, 1024, XBLOCK=256, num_warps=4, num_stages=1) del buf4 buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_7, buf5, reinterpret_tensor(primals_6, (16, 4), (1, 16), 0), alpha=1, beta=1, out=buf6) del primals_7 return reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), primals_3, reinterpret_tensor(buf2, (64, 4), (4, 1), 0 ), buf5, primals_6, buf7, primals_4 class FeedForwardLayerNew(nn.Module): def __init__(self, d_model, r_ff, p_drop=0.1): super(FeedForwardLayerNew, self).__init__() self.norm = nn.LayerNorm(d_model) self.linear1 = nn.Linear(d_model, d_model * r_ff) self.dropout = nn.Dropout(p_drop) self.linear2 = nn.Linear(d_model * r_ff, d_model) self.reset_parameter() def reset_parameter(self): nn.init.kaiming_normal_(self.linear1.weight, nonlinearity='relu') nn.init.zeros_(self.linear1.bias) nn.init.zeros_(self.linear2.weight) nn.init.zeros_(self.linear2.bias) def forward(self, input_0): primals_1 = self.norm.weight primals_2 = self.norm.bias primals_4 = self.linear1.weight primals_5 = self.linear1.bias primals_6 = self.linear2.weight primals_7 = self.linear2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
RosettaCommons/RFDesign
FeedForwardLayer
false
14,342
[ "MIT" ]
45
b404b8b2c57f89c047529c30259aeeb8f6012b61
https://github.com/RosettaCommons/RFDesign/tree/b404b8b2c57f89c047529c30259aeeb8f6012b61
MeanSquared
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/qz/cqza6p5fjiie2hfiu5dfjqqugrnzziwuwxzlhzy2aa7khopxjbym.py # Topologically Sorted Source Nodes: [y], Original ATen: [aten._softmax] # Source node to ATen node mapping: # y => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg1_1, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x3), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ei/ceiruixn47fspb7tiubttnqlnweqczn5pu4itu2bas5hf3ys3ume.py # Topologically Sorted Source Nodes: [y, mse_loss, loss, mean_1], Original ATen: [aten._softmax, aten.mse_loss, aten.mean] # Source node to ATen node mapping: # loss => mean # mean_1 => mean_1 # mse_loss => pow_1, sub_1 # y => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%div, %arg0_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_1, 2), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%pow_1, [1]), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%mean,), kwargs = {}) triton_per_fused__softmax_mean_mse_loss_1 = async_compile.triton('triton_per_fused__softmax_mean_mse_loss_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_mean_mse_loss_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__softmax_mean_mse_loss_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 16 r1 = (rindex // 16) tmp0 = tl.load(in_ptr0 + (r0 + (64*r1)), None) tmp1 = tl.load(in_ptr0 + (16 + r0 + (64*r1)), None) tmp3 = tl.load(in_ptr0 + (32 + r0 + (64*r1)), None) tmp5 = tl.load(in_ptr0 + (48 + r0 + (64*r1)), None) tmp8 = tl.load(in_ptr1 + (r0 + (64*r1)), None) tmp12 = tl.load(in_ptr1 + (16 + r0 + (64*r1)), None) tmp17 = tl.load(in_ptr1 + (32 + r0 + (64*r1)), None) tmp22 = tl.load(in_ptr1 + (48 + r0 + (64*r1)), None) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = tmp0 / tmp6 tmp9 = tmp7 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 / tmp6 tmp13 = tmp11 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tmp10 + tmp14 tmp16 = tmp3 / tmp6 tmp18 = tmp16 - tmp17 tmp19 = tmp18 * tmp18 tmp20 = tmp15 + tmp19 tmp21 = tmp5 / tmp6 tmp23 = tmp21 - tmp22 tmp24 = tmp23 * tmp23 tmp25 = tmp20 + tmp24 tmp26 = 4.0 tmp27 = tmp25 / tmp26 tmp28 = tl.broadcast_to(tmp27, [XBLOCK, RBLOCK]) tmp30 = tl.sum(tmp28, 1)[:, None] tmp31 = 64.0 tmp32 = tmp30 / tmp31 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp32, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [y], Original ATen: [aten._softmax] stream0 = get_raw_stream(0) triton_poi_fused__softmax_0.run(arg1_1, buf0, 256, grid=grid(256), stream=stream0) del arg1_1 buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [y, mse_loss, loss, mean_1], Original ATen: [aten._softmax, aten.mse_loss, aten.mean] triton_per_fused__softmax_mean_mse_loss_1.run(buf2, buf0, arg0_1, 1, 64, grid=grid(1), stream=stream0) del arg0_1 del buf0 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F import torch.nn as nn import torch.nn.parallel def mean_squared(y, target, mask=None): y = y.softmax(1) loss = F.mse_loss(y, target, reduction='none').mean(1) if mask is not None: loss = mask * loss return loss.mean() class MeanSquared(nn.Module): def __init__(self, use_onehot=False, num_classes=10): super(MeanSquared, self).__init__() self.use_onehot = use_onehot self.num_classes = num_classes def _make_one_hot(self, y): return torch.eye(self.num_classes)[y] def forward(self, y, target, mask=None, *args, **kwargs): if self.use_onehot: target = self._make_one_hot(target) return mean_squared(y, target.detach(), mask) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn.functional as F import torch.nn as nn import torch.nn.parallel assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x3, tmp9, xmask) @triton.jit def triton_per_fused__softmax_mean_mse_loss_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 16 r1 = rindex // 16 tmp0 = tl.load(in_ptr0 + (r0 + 64 * r1), None) tmp1 = tl.load(in_ptr0 + (16 + r0 + 64 * r1), None) tmp3 = tl.load(in_ptr0 + (32 + r0 + 64 * r1), None) tmp5 = tl.load(in_ptr0 + (48 + r0 + 64 * r1), None) tmp8 = tl.load(in_ptr1 + (r0 + 64 * r1), None) tmp12 = tl.load(in_ptr1 + (16 + r0 + 64 * r1), None) tmp17 = tl.load(in_ptr1 + (32 + r0 + 64 * r1), None) tmp22 = tl.load(in_ptr1 + (48 + r0 + 64 * r1), None) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = tmp0 / tmp6 tmp9 = tmp7 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 / tmp6 tmp13 = tmp11 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tmp10 + tmp14 tmp16 = tmp3 / tmp6 tmp18 = tmp16 - tmp17 tmp19 = tmp18 * tmp18 tmp20 = tmp15 + tmp19 tmp21 = tmp5 / tmp6 tmp23 = tmp21 - tmp22 tmp24 = tmp23 * tmp23 tmp25 = tmp20 + tmp24 tmp26 = 4.0 tmp27 = tmp25 / tmp26 tmp28 = tl.broadcast_to(tmp27, [XBLOCK, RBLOCK]) tmp30 = tl.sum(tmp28, 1)[:, None] tmp31 = 64.0 tmp32 = tmp30 / tmp31 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp32, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__softmax_0[grid(256)](arg1_1, buf0, 256, XBLOCK= 256, num_warps=4, num_stages=1) del arg1_1 buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1 del buf1 triton_per_fused__softmax_mean_mse_loss_1[grid(1)](buf2, buf0, arg0_1, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del buf0 return buf2, def mean_squared(y, target, mask=None): y = y.softmax(1) loss = F.mse_loss(y, target, reduction='none').mean(1) if mask is not None: loss = mask * loss return loss.mean() class MeanSquaredNew(nn.Module): def __init__(self, use_onehot=False, num_classes=10): super(MeanSquaredNew, self).__init__() self.use_onehot = use_onehot self.num_classes = num_classes def _make_one_hot(self, y): return torch.eye(self.num_classes)[y] def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
SHI-Labs/Semi-Supervised-Transfer-Learning
MeanSquared
false
14,343
[ "MIT" ]
81
f206750824ffe10f88a2b418b2b671da61b999f6
https://github.com/SHI-Labs/Semi-Supervised-Transfer-Learning/tree/f206750824ffe10f88a2b418b2b671da61b999f6
MatrixReduceMin
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/te/ctexuvw2isx52fs5zjgy6llp776ozripe67nlu2ms33aorhwliok.py # Topologically Sorted Source Nodes: [z], Original ATen: [aten.min] # Source node to ATen node mapping: # z => min_1 # Graph fragment: # %min_1 : [num_users=1] = call_function[target=torch.ops.aten.min.default](args = (%arg0_1,), kwargs = {}) triton_per_fused_min_0 = async_compile.triton('triton_per_fused_min_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_min_0', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_min_0(in_ptr0, out_ptr0, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.broadcast_to(tmp0, [RBLOCK]) tmp3 = triton_helpers.promote_to_tensor(triton_helpers.min2(tmp1, 0)) tl.store(out_ptr0 + (tl.full([1], 0, tl.int32)), tmp3, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) # Topologically Sorted Source Nodes: [z], Original ATen: [aten.min] stream0 = get_raw_stream(0) triton_per_fused_min_0.run(arg0_1, buf0, 1, 256, grid=grid(1), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.autograd class MatrixReduceMin(nn.Module): def __init__(self): super(MatrixReduceMin, self).__init__() def forward(self, x): z = torch.min(x) return z def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.autograd assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_min_0(in_ptr0, out_ptr0, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.broadcast_to(tmp0, [RBLOCK]) tmp3 = triton_helpers.promote_to_tensor(triton_helpers.min2(tmp1, 0)) tl.store(out_ptr0 + tl.full([1], 0, tl.int32), tmp3, None) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) get_raw_stream(0) triton_per_fused_min_0[grid(1)](arg0_1, buf0, 1, 256, num_warps=2, num_stages=1) del arg0_1 return buf0, class MatrixReduceMinNew(nn.Module): def __init__(self): super(MatrixReduceMinNew, self).__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
RyusukeYamano/nngen
MatrixReduceMin
false
14,344
[ "Apache-2.0" ]
207
9ed1f7fb83908794aa94d70287d89545d45fe875
https://github.com/RyusukeYamano/nngen/tree/9ed1f7fb83908794aa94d70287d89545d45fe875
Upsampler
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/3a/c3ahpcqb72o7gdbgt53cgnedr7p2tje6sfperji7zazze5egjmmz.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten._prelu_kernel] # Source node to ATen node mapping: # out => gt, mul, where # Graph fragment: # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%primals_1, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %primals_1), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %primals_1, %mul), kwargs = {}) triton_poi_fused__prelu_kernel_0 = async_compile.triton('triton_poi_fused__prelu_kernel_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__prelu_kernel_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__prelu_kernel_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp3 = tl.load(in_ptr1 + (0)) tmp4 = tl.broadcast_to(tmp3, [XBLOCK]) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp5 = tmp4 * tmp0 tmp6 = tl.where(tmp2, tmp0, tmp5) tl.store(out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten._prelu_kernel] stream0 = get_raw_stream(0) triton_poi_fused__prelu_kernel_0.run(primals_1, primals_2, buf0, 256, grid=grid(256), stream=stream0) del primals_2 return (buf0, primals_1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.utils.data from torchvision.transforms import * class ConvBlock(torch.nn.Module): def __init__(self, input_size, output_size, kernel_size=3, stride=1, padding=1, bias=True, activation='prelu', norm=None): super(ConvBlock, self).__init__() self.conv = torch.nn.Conv2d(input_size, output_size, kernel_size, stride, padding, bias=bias) self.norm = norm if self.norm == 'batch': self.bn = torch.nn.BatchNorm2d(output_size) elif self.norm == 'instance': self.bn = torch.nn.InstanceNorm2d(output_size) self.activation = activation if self.activation == 'relu': self.act = torch.nn.ReLU(True) elif self.activation == 'prelu': self.act = torch.nn.PReLU() elif self.activation == 'lrelu': self.act = torch.nn.LeakyReLU(0.2, True) elif self.activation == 'tanh': self.act = torch.nn.Tanh() elif self.activation == 'sigmoid': self.act = torch.nn.Sigmoid() def forward(self, x): if self.norm is not None: out = self.bn(self.conv(x)) else: out = self.conv(x) if self.activation is not None: return self.act(out) else: return out class Upsampler(torch.nn.Module): def __init__(self, scale, n_feat, bn=False, act='prelu', bias=True): super(Upsampler, self).__init__() modules = [] for _ in range(int(math.log(scale, 2))): modules.append(ConvBlock(n_feat, 4 * n_feat, 3, 1, 1, bias, activation=None, norm=None)) modules.append(torch.nn.PixelShuffle(2)) if bn: modules.append(torch.nn.BatchNorm2d(n_feat)) self.up = torch.nn.Sequential(*modules) self.activation = act if self.activation == 'relu': self.act = torch.nn.ReLU(True) elif self.activation == 'prelu': self.act = torch.nn.PReLU() elif self.activation == 'lrelu': self.act = torch.nn.LeakyReLU(0.2, True) elif self.activation == 'tanh': self.act = torch.nn.Tanh() elif self.activation == 'sigmoid': self.act = torch.nn.Sigmoid() def forward(self, x): out = self.up(x) if self.activation is not None: out = self.act(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'scale': 1.0, 'n_feat': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import math import torch.utils.data from torchvision.transforms import * assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__prelu_kernel_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp3 = tl.load(in_ptr1 + 0) tmp4 = tl.broadcast_to(tmp3, [XBLOCK]) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp5 = tmp4 * tmp0 tmp6 = tl.where(tmp2, tmp0, tmp5) tl.store(out_ptr0 + x0, tmp6, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__prelu_kernel_0[grid(256)](primals_1, primals_2, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 return buf0, primals_1 class ConvBlock(torch.nn.Module): def __init__(self, input_size, output_size, kernel_size=3, stride=1, padding=1, bias=True, activation='prelu', norm=None): super(ConvBlock, self).__init__() self.conv = torch.nn.Conv2d(input_size, output_size, kernel_size, stride, padding, bias=bias) self.norm = norm if self.norm == 'batch': self.bn = torch.nn.BatchNorm2d(output_size) elif self.norm == 'instance': self.bn = torch.nn.InstanceNorm2d(output_size) self.activation = activation if self.activation == 'relu': self.act = torch.nn.ReLU(True) elif self.activation == 'prelu': self.act = torch.nn.PReLU() elif self.activation == 'lrelu': self.act = torch.nn.LeakyReLU(0.2, True) elif self.activation == 'tanh': self.act = torch.nn.Tanh() elif self.activation == 'sigmoid': self.act = torch.nn.Sigmoid() def forward(self, x): if self.norm is not None: out = self.bn(self.conv(x)) else: out = self.conv(x) if self.activation is not None: return self.act(out) else: return out class UpsamplerNew(torch.nn.Module): def __init__(self, scale, n_feat, bn=False, act='prelu', bias=True): super(UpsamplerNew, self).__init__() modules = [] for _ in range(int(math.log(scale, 2))): modules.append(ConvBlock(n_feat, 4 * n_feat, 3, 1, 1, bias, activation=None, norm=None)) modules.append(torch.nn.PixelShuffle(2)) if bn: modules.append(torch.nn.BatchNorm2d(n_feat)) self.up = torch.nn.Sequential(*modules) self.activation = act if self.activation == 'relu': self.act = torch.nn.ReLU(True) elif self.activation == 'prelu': self.act = torch.nn.PReLU() elif self.activation == 'lrelu': self.act = torch.nn.LeakyReLU(0.2, True) elif self.activation == 'tanh': self.act = torch.nn.Tanh() elif self.activation == 'sigmoid': self.act = torch.nn.Sigmoid() def forward(self, input_0): primals_2 = self.act.weight primals_1 = input_0 output = call([primals_1, primals_2]) return output[0]
RyanMoussouni/iSeeBetter
Upsampler
false
14,345
[ "MIT" ]
327
af193ae0852f8e477fcd6875dce874eb5092a24a
https://github.com/RyanMoussouni/iSeeBetter/tree/af193ae0852f8e477fcd6875dce874eb5092a24a
UpBlock
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/ta/cta3qfkas5srst7l4ccnpj7oz7hel5h53n7tjqwjnpk4uswjkepy.py # Topologically Sorted Source Nodes: [out, h0], Original ATen: [aten.convolution, aten._prelu_kernel] # Source node to ATen node mapping: # h0 => gt, mul, where # out => convolution # Graph fragment: # %convolution : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [4, 4], [2, 2], [1, 1], True, [0, 0], 1), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %convolution), kwargs = {}) # %where : [num_users=3] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul), kwargs = {}) triton_poi_fused__prelu_kernel_convolution_0 = async_compile.triton('triton_poi_fused__prelu_kernel_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__prelu_kernel_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__prelu_kernel_convolution_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 256) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (0)) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp7 = tmp6 * tmp2 tmp8 = tl.where(tmp4, tmp2, tmp7) tl.store(in_out_ptr0 + (x3), tmp2, None) tl.store(out_ptr0 + (x3), tmp8, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/v2/cv2gefdciotml3zwtkzv4ghtu2a4dbeoas7q3ue7dcfa4f2mizfk.py # Topologically Sorted Source Nodes: [out_1, l0, sub], Original ATen: [aten.convolution, aten._prelu_kernel, aten.sub] # Source node to ATen node mapping: # l0 => gt_1, mul_1, where_1 # out_1 => convolution_1 # sub => sub # Graph fragment: # %convolution_1 : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%where, %primals_5, %primals_6, [4, 4], [2, 2], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_1, 0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %convolution_1), kwargs = {}) # %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %convolution_1, %mul_1), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_1, %primals_3), kwargs = {}) triton_poi_fused__prelu_kernel_convolution_sub_1 = async_compile.triton('triton_poi_fused__prelu_kernel_convolution_sub_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__prelu_kernel_convolution_sub_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__prelu_kernel_convolution_sub_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (0)) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp9 = tl.load(in_ptr2 + (x3), xmask) tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp7 = tmp6 * tmp2 tmp8 = tl.where(tmp4, tmp2, tmp7) tmp10 = tmp8 - tmp9 tl.store(in_out_ptr0 + (x3), tmp2, xmask) tl.store(out_ptr0 + (x3), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/vz/cvznbzzyrmqjqwdtg4sdvku7chdpvxprj52fd6jpud4fhhmvo2pr.py # Topologically Sorted Source Nodes: [out_2, h1, add], Original ATen: [aten.convolution, aten._prelu_kernel, aten.add] # Source node to ATen node mapping: # add => add # h1 => gt_2, mul_2, where_2 # out_2 => convolution_2 # Graph fragment: # %convolution_2 : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%sub, %primals_8, %primals_9, [4, 4], [2, 2], [1, 1], True, [0, 0], 1), kwargs = {}) # %gt_2 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_2, 0), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_2, %convolution_2), kwargs = {}) # %where_2 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %convolution_2, %mul_2), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%where_2, %where), kwargs = {}) triton_poi_fused__prelu_kernel_add_convolution_2 = async_compile.triton('triton_poi_fused__prelu_kernel_add_convolution_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__prelu_kernel_add_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__prelu_kernel_add_convolution_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 256) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (0)) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp9 = tl.load(in_ptr2 + (x3), None) tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp7 = tmp6 * tmp2 tmp8 = tl.where(tmp4, tmp2, tmp7) tmp10 = tmp8 + tmp9 tl.store(in_out_ptr0 + (x3), tmp2, None) tl.store(out_ptr0 + (x3), tmp10, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10 = args args.clear() assert_size_stride(primals_1, (4, 4, 8, 8), (256, 64, 8, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (1, ), (1, )) assert_size_stride(primals_5, (4, 4, 8, 8), (256, 64, 8, 1)) assert_size_stride(primals_6, (4, ), (1, )) assert_size_stride(primals_7, (1, ), (1, )) assert_size_stride(primals_8, (4, 4, 8, 8), (256, 64, 8, 1)) assert_size_stride(primals_9, (4, ), (1, )) assert_size_stride(primals_10, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(4, 4), padding=(2, 2), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 16, 16), (1024, 256, 16, 1)) buf1 = buf0; del buf0 # reuse buf2 = empty_strided_cuda((4, 4, 16, 16), (1024, 256, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [out, h0], Original ATen: [aten.convolution, aten._prelu_kernel] stream0 = get_raw_stream(0) triton_poi_fused__prelu_kernel_convolution_0.run(buf1, primals_2, primals_4, buf2, 4096, grid=grid(4096), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf2, primals_5, stride=(4, 4), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1)) buf4 = buf3; del buf3 # reuse buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [out_1, l0, sub], Original ATen: [aten.convolution, aten._prelu_kernel, aten.sub] triton_poi_fused__prelu_kernel_convolution_sub_1.run(buf4, primals_6, primals_7, primals_3, buf5, 256, grid=grid(256), stream=stream0) del primals_6 # Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf5, primals_8, stride=(4, 4), padding=(2, 2), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 4, 16, 16), (1024, 256, 16, 1)) buf7 = buf6; del buf6 # reuse buf8 = empty_strided_cuda((4, 4, 16, 16), (1024, 256, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [out_2, h1, add], Original ATen: [aten.convolution, aten._prelu_kernel, aten.add] triton_poi_fused__prelu_kernel_add_convolution_2.run(buf7, primals_9, primals_10, buf2, buf8, 4096, grid=grid(4096), stream=stream0) del primals_9 return (buf8, primals_1, primals_3, primals_4, primals_5, primals_7, primals_8, primals_10, buf1, buf2, buf4, buf5, buf7, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 8, 8), (256, 64, 8, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4, 8, 8), (256, 64, 8, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 4, 8, 8), (256, 64, 8, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data from torchvision.transforms import * class ConvBlock(torch.nn.Module): def __init__(self, input_size, output_size, kernel_size=3, stride=1, padding=1, bias=True, activation='prelu', norm=None): super(ConvBlock, self).__init__() self.conv = torch.nn.Conv2d(input_size, output_size, kernel_size, stride, padding, bias=bias) self.norm = norm if self.norm == 'batch': self.bn = torch.nn.BatchNorm2d(output_size) elif self.norm == 'instance': self.bn = torch.nn.InstanceNorm2d(output_size) self.activation = activation if self.activation == 'relu': self.act = torch.nn.ReLU(True) elif self.activation == 'prelu': self.act = torch.nn.PReLU() elif self.activation == 'lrelu': self.act = torch.nn.LeakyReLU(0.2, True) elif self.activation == 'tanh': self.act = torch.nn.Tanh() elif self.activation == 'sigmoid': self.act = torch.nn.Sigmoid() def forward(self, x): if self.norm is not None: out = self.bn(self.conv(x)) else: out = self.conv(x) if self.activation is not None: return self.act(out) else: return out class DeconvBlock(torch.nn.Module): def __init__(self, input_size, output_size, kernel_size=4, stride=2, padding=1, bias=True, activation='prelu', norm=None): super(DeconvBlock, self).__init__() self.deconv = torch.nn.ConvTranspose2d(input_size, output_size, kernel_size, stride, padding, bias=bias) self.norm = norm if self.norm == 'batch': self.bn = torch.nn.BatchNorm2d(output_size) elif self.norm == 'instance': self.bn = torch.nn.InstanceNorm2d(output_size) self.activation = activation if self.activation == 'relu': self.act = torch.nn.ReLU(True) elif self.activation == 'prelu': self.act = torch.nn.PReLU() elif self.activation == 'lrelu': self.act = torch.nn.LeakyReLU(0.2, True) elif self.activation == 'tanh': self.act = torch.nn.Tanh() elif self.activation == 'sigmoid': self.act = torch.nn.Sigmoid() def forward(self, x): if self.norm is not None: out = self.bn(self.deconv(x)) else: out = self.deconv(x) if self.activation is not None: return self.act(out) else: return out class UpBlock(torch.nn.Module): def __init__(self, num_filter, kernel_size=8, stride=4, padding=2, bias =True, activation='prelu', norm=None): super(UpBlock, self).__init__() self.up_conv1 = DeconvBlock(num_filter, num_filter, kernel_size, stride, padding, activation, norm=None) self.up_conv2 = ConvBlock(num_filter, num_filter, kernel_size, stride, padding, activation, norm=None) self.up_conv3 = DeconvBlock(num_filter, num_filter, kernel_size, stride, padding, activation, norm=None) def forward(self, x): h0 = self.up_conv1(x) l0 = self.up_conv2(h0) h1 = self.up_conv3(l0 - x) return h1 + h0 def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_filter': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.utils.data from torchvision.transforms import * assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__prelu_kernel_convolution_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 256 % 4 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + 0) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp7 = tmp6 * tmp2 tmp8 = tl.where(tmp4, tmp2, tmp7) tl.store(in_out_ptr0 + x3, tmp2, None) tl.store(out_ptr0 + x3, tmp8, None) @triton.jit def triton_poi_fused__prelu_kernel_convolution_sub_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + 0) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp9 = tl.load(in_ptr2 + x3, xmask) tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp7 = tmp6 * tmp2 tmp8 = tl.where(tmp4, tmp2, tmp7) tmp10 = tmp8 - tmp9 tl.store(in_out_ptr0 + x3, tmp2, xmask) tl.store(out_ptr0 + x3, tmp10, xmask) @triton.jit def triton_poi_fused__prelu_kernel_add_convolution_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 256 % 4 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + 0) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp9 = tl.load(in_ptr2 + x3, None) tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp7 = tmp6 * tmp2 tmp8 = tl.where(tmp4, tmp2, tmp7) tmp10 = tmp8 + tmp9 tl.store(in_out_ptr0 + x3, tmp2, None) tl.store(out_ptr0 + x3, tmp10, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10) = args args.clear() assert_size_stride(primals_1, (4, 4, 8, 8), (256, 64, 8, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (1,), (1,)) assert_size_stride(primals_5, (4, 4, 8, 8), (256, 64, 8, 1)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (1,), (1,)) assert_size_stride(primals_8, (4, 4, 8, 8), (256, 64, 8, 1)) assert_size_stride(primals_9, (4,), (1,)) assert_size_stride(primals_10, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(4, 4), padding=(2, 2), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 16, 16), (1024, 256, 16, 1)) buf1 = buf0 del buf0 buf2 = empty_strided_cuda((4, 4, 16, 16), (1024, 256, 16, 1), torch .float32) get_raw_stream(0) triton_poi_fused__prelu_kernel_convolution_0[grid(4096)](buf1, primals_2, primals_4, buf2, 4096, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf3 = extern_kernels.convolution(buf2, primals_5, stride=(4, 4), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1)) buf4 = buf3 del buf3 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__prelu_kernel_convolution_sub_1[grid(256)](buf4, primals_6, primals_7, primals_3, buf5, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_6 buf6 = extern_kernels.convolution(buf5, primals_8, stride=(4, 4), padding=(2, 2), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 4, 16, 16), (1024, 256, 16, 1)) buf7 = buf6 del buf6 buf8 = empty_strided_cuda((4, 4, 16, 16), (1024, 256, 16, 1), torch .float32) triton_poi_fused__prelu_kernel_add_convolution_2[grid(4096)](buf7, primals_9, primals_10, buf2, buf8, 4096, XBLOCK=256, num_warps= 4, num_stages=1) del primals_9 return (buf8, primals_1, primals_3, primals_4, primals_5, primals_7, primals_8, primals_10, buf1, buf2, buf4, buf5, buf7) class ConvBlock(torch.nn.Module): def __init__(self, input_size, output_size, kernel_size=3, stride=1, padding=1, bias=True, activation='prelu', norm=None): super(ConvBlock, self).__init__() self.conv = torch.nn.Conv2d(input_size, output_size, kernel_size, stride, padding, bias=bias) self.norm = norm if self.norm == 'batch': self.bn = torch.nn.BatchNorm2d(output_size) elif self.norm == 'instance': self.bn = torch.nn.InstanceNorm2d(output_size) self.activation = activation if self.activation == 'relu': self.act = torch.nn.ReLU(True) elif self.activation == 'prelu': self.act = torch.nn.PReLU() elif self.activation == 'lrelu': self.act = torch.nn.LeakyReLU(0.2, True) elif self.activation == 'tanh': self.act = torch.nn.Tanh() elif self.activation == 'sigmoid': self.act = torch.nn.Sigmoid() def forward(self, x): if self.norm is not None: out = self.bn(self.conv(x)) else: out = self.conv(x) if self.activation is not None: return self.act(out) else: return out class DeconvBlock(torch.nn.Module): def __init__(self, input_size, output_size, kernel_size=4, stride=2, padding=1, bias=True, activation='prelu', norm=None): super(DeconvBlock, self).__init__() self.deconv = torch.nn.ConvTranspose2d(input_size, output_size, kernel_size, stride, padding, bias=bias) self.norm = norm if self.norm == 'batch': self.bn = torch.nn.BatchNorm2d(output_size) elif self.norm == 'instance': self.bn = torch.nn.InstanceNorm2d(output_size) self.activation = activation if self.activation == 'relu': self.act = torch.nn.ReLU(True) elif self.activation == 'prelu': self.act = torch.nn.PReLU() elif self.activation == 'lrelu': self.act = torch.nn.LeakyReLU(0.2, True) elif self.activation == 'tanh': self.act = torch.nn.Tanh() elif self.activation == 'sigmoid': self.act = torch.nn.Sigmoid() def forward(self, x): if self.norm is not None: out = self.bn(self.deconv(x)) else: out = self.deconv(x) if self.activation is not None: return self.act(out) else: return out class UpBlockNew(torch.nn.Module): def __init__(self, num_filter, kernel_size=8, stride=4, padding=2, bias =True, activation='prelu', norm=None): super(UpBlockNew, self).__init__() self.up_conv1 = DeconvBlock(num_filter, num_filter, kernel_size, stride, padding, activation, norm=None) self.up_conv2 = ConvBlock(num_filter, num_filter, kernel_size, stride, padding, activation, norm=None) self.up_conv3 = DeconvBlock(num_filter, num_filter, kernel_size, stride, padding, activation, norm=None) def forward(self, input_0): primals_1 = self.up_conv1.deconv.weight primals_2 = self.up_conv1.deconv.bias primals_4 = self.up_conv1.act.weight primals_5 = self.up_conv2.conv.weight primals_6 = self.up_conv2.conv.bias primals_7 = self.up_conv2.act.weight primals_8 = self.up_conv3.deconv.weight primals_9 = self.up_conv3.deconv.bias primals_10 = self.up_conv3.act.weight primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10]) return output[0]
RyanMoussouni/iSeeBetter
UpBlock
false
14,346
[ "MIT" ]
327
af193ae0852f8e477fcd6875dce874eb5092a24a
https://github.com/RyanMoussouni/iSeeBetter/tree/af193ae0852f8e477fcd6875dce874eb5092a24a
AmdimNCELoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/lo/clogbilbksb5pe5z7x7zzgxgebeyhflxrjymvbwjeoos6el7ofav.py # Topologically Sorted Source Nodes: [raw_scores_2, mul_1, tanh, x_clip, max_1, mul_3, pos_scores, pos_shiftexp, sub_3, exp_1, sub_2, exp, mul_6, neg_sumexp, add, all_logsumexp, nce_scores, mean_1, nce_scores_1], Original ATen: [aten.div, aten.mul, aten.tanh, aten.max, aten.sum, aten.sub, aten.exp, aten.add, aten.log, aten.mean, aten.neg] # Source node to ATen node mapping: # add => add # all_logsumexp => log # exp => exp # exp_1 => exp_1 # max_1 => max_1 # mean_1 => mean_1 # mul_1 => mul_1 # mul_3 => mul_3 # mul_6 => mul_6 # nce_scores => sub_5 # nce_scores_1 => neg # neg_sumexp => sum_2 # pos_scores => sum_1 # pos_shiftexp => sub_4 # raw_scores_2 => div # sub_2 => sub_2 # sub_3 => sub_3 # tanh => tanh # x_clip => mul_2 # Graph fragment: # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%view, 2.0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, 0.25), kwargs = {}) # %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%mul_1,), kwargs = {}) # %mul_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%tanh, 4), kwargs = {}) # %max_1 : [num_users=1] = call_function[target=torch.ops.aten.max.dim](args = (%view_1, 1, True), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expand, %mul_2), kwargs = {}) # %sum_1 : [num_users=2] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_3, [1]), kwargs = {}) # %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sum_1, %getitem), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sum_1, %getitem), kwargs = {}) # %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub_3,), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, %getitem), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub_2,), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_2, %exp), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_6, [1], True), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%exp_1, %sum_2), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add,), kwargs = {}) # %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub_4, %log), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub_5,), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%mean_1,), kwargs = {}) triton_per_fused_add_div_exp_log_max_mean_mul_neg_sub_sum_tanh_0 = async_compile.triton('triton_per_fused_add_div_exp_log_max_mean_mul_neg_sub_sum_tanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 4], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_exp_log_max_mean_mul_neg_sub_sum_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_exp_log_max_mean_mul_neg_sub_sum_tanh_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (4*r0), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (4*r0), None, eviction_policy='evict_last') tmp14 = tl.load(in_ptr0 + (1 + (4*r0)), None, eviction_policy='evict_last') tmp16 = tl.load(in_ptr1 + (1 + (4*r0)), None, eviction_policy='evict_last') tmp25 = tl.load(in_ptr0 + (2 + (4*r0)), None, eviction_policy='evict_last') tmp27 = tl.load(in_ptr1 + (2 + (4*r0)), None, eviction_policy='evict_last') tmp36 = tl.load(in_ptr0 + (3 + (4*r0)), None, eviction_policy='evict_last') tmp38 = tl.load(in_ptr1 + (3 + (4*r0)), None, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp1 - tmp0 tmp4 = 0.5 tmp5 = tmp3 * tmp4 tmp6 = 0.25 tmp7 = tmp5 * tmp6 tmp8 = libdevice.tanh(tmp7) tmp9 = 4.0 tmp10 = tmp8 * tmp9 tmp11 = tmp2 * tmp10 tmp12 = tmp0 * tmp9 tmp13 = tmp11 - tmp12 tmp15 = tmp1 - tmp14 tmp17 = tmp16 * tmp4 tmp18 = tmp17 * tmp6 tmp19 = libdevice.tanh(tmp18) tmp20 = tmp19 * tmp9 tmp21 = tmp15 * tmp20 tmp22 = tmp14 * tmp9 tmp23 = tmp21 - tmp22 tmp24 = triton_helpers.maximum(tmp13, tmp23) tmp26 = tmp1 - tmp25 tmp28 = tmp27 * tmp4 tmp29 = tmp28 * tmp6 tmp30 = libdevice.tanh(tmp29) tmp31 = tmp30 * tmp9 tmp32 = tmp26 * tmp31 tmp33 = tmp25 * tmp9 tmp34 = tmp32 - tmp33 tmp35 = triton_helpers.maximum(tmp24, tmp34) tmp37 = tmp1 - tmp36 tmp39 = tmp38 * tmp4 tmp40 = tmp39 * tmp6 tmp41 = libdevice.tanh(tmp40) tmp42 = tmp41 * tmp9 tmp43 = tmp37 * tmp42 tmp44 = tmp36 * tmp9 tmp45 = tmp43 - tmp44 tmp46 = triton_helpers.maximum(tmp35, tmp45) tmp47 = tmp13 - tmp46 tmp48 = tl_math.exp(tmp47) tmp49 = tmp2 * tmp48 tmp50 = tmp23 - tmp46 tmp51 = tl_math.exp(tmp50) tmp52 = tmp15 * tmp51 tmp53 = tmp49 + tmp52 tmp54 = tmp34 - tmp46 tmp55 = tl_math.exp(tmp54) tmp56 = tmp26 * tmp55 tmp57 = tmp53 + tmp56 tmp58 = tmp45 - tmp46 tmp59 = tl_math.exp(tmp58) tmp60 = tmp37 * tmp59 tmp61 = tmp57 + tmp60 tmp62 = tmp0 * tmp10 tmp63 = tmp14 * tmp20 tmp64 = tmp62 + tmp63 tmp65 = tmp25 * tmp31 tmp66 = tmp64 + tmp65 tmp67 = tmp36 * tmp42 tmp68 = tmp66 + tmp67 tmp69 = tmp68 - tmp46 tmp70 = tl_math.exp(tmp69) tmp71 = tmp70 + tmp61 tmp72 = tl_math.log(tmp71) tmp73 = tmp69 - tmp72 tmp74 = tl.broadcast_to(tmp73, [XBLOCK, RBLOCK]) tmp76 = tl.sum(tmp74, 1)[:, None] tmp77 = tmp76 / tmp9 tmp78 = -tmp77 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp78, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/i7/ci7wfxaextt4cz2wvuqp24v6te3ikcbwiocamjs25ysoohh6nywz.py # Topologically Sorted Source Nodes: [raw_scores_2, pow_1, mean, lgt_reg], Original ATen: [aten.div, aten.pow, aten.mean, aten.mul] # Source node to ATen node mapping: # lgt_reg => mul # mean => mean # pow_1 => pow_1 # raw_scores_2 => div # Graph fragment: # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%view, 2.0), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%div, 2.0), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 0.05), kwargs = {}) triton_per_fused_div_mean_mul_pow_1 = async_compile.triton('triton_per_fused_div_mean_mul_pow_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_mean_mul_pow_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_div_mean_mul_pow_1(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp3 = tmp2 * tmp2 tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp6 = tl.sum(tmp4, 1)[:, None] tmp7 = 16.0 tmp8 = tmp6 / tmp7 tmp9 = 0.05 tmp10 = tmp8 * tmp9 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp10, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) assert_size_stride(arg1_1, (4, 4), (4, 1)) assert_size_stride(arg2_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [mm], Original ATen: [aten.mm] extern_kernels.mm(arg0_1, arg1_1, out=buf0) del arg0_1 del arg1_1 buf4 = empty_strided_cuda((), (), torch.float32) buf6 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [raw_scores_2, mul_1, tanh, x_clip, max_1, mul_3, pos_scores, pos_shiftexp, sub_3, exp_1, sub_2, exp, mul_6, neg_sumexp, add, all_logsumexp, nce_scores, mean_1, nce_scores_1], Original ATen: [aten.div, aten.mul, aten.tanh, aten.max, aten.sum, aten.sub, aten.exp, aten.add, aten.log, aten.mean, aten.neg] stream0 = get_raw_stream(0) triton_per_fused_add_div_exp_log_max_mean_mul_neg_sub_sum_tanh_0.run(buf6, arg2_1, buf0, 1, 4, grid=grid(1), stream=stream0) del arg2_1 buf5 = empty_strided_cuda((), (), torch.float32) buf7 = buf5; del buf5 # reuse # Topologically Sorted Source Nodes: [raw_scores_2, pow_1, mean, lgt_reg], Original ATen: [aten.div, aten.pow, aten.mean, aten.mul] triton_per_fused_div_mean_mul_pow_1.run(buf7, buf0, 1, 16, grid=grid(1), stream=stream0) del buf0 return (buf6, buf7, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn as nn from torch import optim as optim from math import * def tanh_clip(x, clip_val=10.0): """ soft clip values to the range [-clip_val, +clip_val] """ if clip_val is not None: x_clip = clip_val * torch.tanh(1.0 / clip_val * x) else: x_clip = x return x_clip class AmdimNCELoss(nn.Module): """ Compute the NCE scores for predicting r_src->r_trg. """ def __init__(self, tclip): super().__init__() self.tclip = tclip def forward(self, anchor_representations, positive_representations, mask_mat): """ Args: anchor_representations: (batch_size, emb_dim) positive_representations: (emb_dim, n_batch * w* h) (ie: nb_feat_vectors x embedding_dim) mask_mat: (n_batch_gpu, n_batch) Output: raw_scores: (n_batch_gpu, n_locs) nce_scores: (n_batch_gpu, n_locs) lgt_reg : scalar """ r_src = anchor_representations r_trg = positive_representations batch_size, emb_dim = r_src.size() nb_feat_vectors = r_trg.size(1) // batch_size mask_pos = mask_mat.unsqueeze(dim=2).expand(-1, -1, nb_feat_vectors ).float() mask_neg = 1.0 - mask_pos raw_scores = torch.mm(r_src, r_trg).float() raw_scores = raw_scores.reshape(batch_size, batch_size, nb_feat_vectors ) raw_scores = raw_scores / emb_dim ** 0.5 lgt_reg = 0.05 * (raw_scores ** 2.0).mean() raw_scores = tanh_clip(raw_scores, clip_val=self.tclip) """ pos_scores includes scores for all the positive samples neg_scores includes scores for all the negative samples, with scores for positive samples set to the min score (-self.tclip here) """ pos_scores = (mask_pos * raw_scores).sum(dim=1) neg_scores = mask_neg * raw_scores - self.tclip * mask_pos neg_scores = neg_scores.reshape(batch_size, -1) mask_neg = mask_neg.reshape(batch_size, -1) neg_maxes = torch.max(neg_scores, dim=1, keepdim=True)[0] neg_sumexp = (mask_neg * torch.exp(neg_scores - neg_maxes)).sum(dim =1, keepdim=True) all_logsumexp = torch.log(torch.exp(pos_scores - neg_maxes) + neg_sumexp) pos_shiftexp = pos_scores - neg_maxes nce_scores = pos_shiftexp - all_logsumexp nce_scores = -nce_scores.mean() return nce_scores, lgt_reg def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'tclip': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch import nn as nn from torch import optim as optim from math import * assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_div_exp_log_max_mean_mul_neg_sub_sum_tanh_0( in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + 4 * r0, None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + 4 * r0, None, eviction_policy='evict_last') tmp14 = tl.load(in_ptr0 + (1 + 4 * r0), None, eviction_policy='evict_last') tmp16 = tl.load(in_ptr1 + (1 + 4 * r0), None, eviction_policy='evict_last') tmp25 = tl.load(in_ptr0 + (2 + 4 * r0), None, eviction_policy='evict_last') tmp27 = tl.load(in_ptr1 + (2 + 4 * r0), None, eviction_policy='evict_last') tmp36 = tl.load(in_ptr0 + (3 + 4 * r0), None, eviction_policy='evict_last') tmp38 = tl.load(in_ptr1 + (3 + 4 * r0), None, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp1 - tmp0 tmp4 = 0.5 tmp5 = tmp3 * tmp4 tmp6 = 0.25 tmp7 = tmp5 * tmp6 tmp8 = libdevice.tanh(tmp7) tmp9 = 4.0 tmp10 = tmp8 * tmp9 tmp11 = tmp2 * tmp10 tmp12 = tmp0 * tmp9 tmp13 = tmp11 - tmp12 tmp15 = tmp1 - tmp14 tmp17 = tmp16 * tmp4 tmp18 = tmp17 * tmp6 tmp19 = libdevice.tanh(tmp18) tmp20 = tmp19 * tmp9 tmp21 = tmp15 * tmp20 tmp22 = tmp14 * tmp9 tmp23 = tmp21 - tmp22 tmp24 = triton_helpers.maximum(tmp13, tmp23) tmp26 = tmp1 - tmp25 tmp28 = tmp27 * tmp4 tmp29 = tmp28 * tmp6 tmp30 = libdevice.tanh(tmp29) tmp31 = tmp30 * tmp9 tmp32 = tmp26 * tmp31 tmp33 = tmp25 * tmp9 tmp34 = tmp32 - tmp33 tmp35 = triton_helpers.maximum(tmp24, tmp34) tmp37 = tmp1 - tmp36 tmp39 = tmp38 * tmp4 tmp40 = tmp39 * tmp6 tmp41 = libdevice.tanh(tmp40) tmp42 = tmp41 * tmp9 tmp43 = tmp37 * tmp42 tmp44 = tmp36 * tmp9 tmp45 = tmp43 - tmp44 tmp46 = triton_helpers.maximum(tmp35, tmp45) tmp47 = tmp13 - tmp46 tmp48 = tl_math.exp(tmp47) tmp49 = tmp2 * tmp48 tmp50 = tmp23 - tmp46 tmp51 = tl_math.exp(tmp50) tmp52 = tmp15 * tmp51 tmp53 = tmp49 + tmp52 tmp54 = tmp34 - tmp46 tmp55 = tl_math.exp(tmp54) tmp56 = tmp26 * tmp55 tmp57 = tmp53 + tmp56 tmp58 = tmp45 - tmp46 tmp59 = tl_math.exp(tmp58) tmp60 = tmp37 * tmp59 tmp61 = tmp57 + tmp60 tmp62 = tmp0 * tmp10 tmp63 = tmp14 * tmp20 tmp64 = tmp62 + tmp63 tmp65 = tmp25 * tmp31 tmp66 = tmp64 + tmp65 tmp67 = tmp36 * tmp42 tmp68 = tmp66 + tmp67 tmp69 = tmp68 - tmp46 tmp70 = tl_math.exp(tmp69) tmp71 = tmp70 + tmp61 tmp72 = tl_math.log(tmp71) tmp73 = tmp69 - tmp72 tmp74 = tl.broadcast_to(tmp73, [XBLOCK, RBLOCK]) tmp76 = tl.sum(tmp74, 1)[:, None] tmp77 = tmp76 / tmp9 tmp78 = -tmp77 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp78, None) @triton.jit def triton_per_fused_div_mean_mul_pow_1(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp3 = tmp2 * tmp2 tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp6 = tl.sum(tmp4, 1)[:, None] tmp7 = 16.0 tmp8 = tmp6 / tmp7 tmp9 = 0.05 tmp10 = tmp8 * tmp9 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp10, None) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) assert_size_stride(arg1_1, (4, 4), (4, 1)) assert_size_stride(arg2_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(arg0_1, arg1_1, out=buf0) del arg0_1 del arg1_1 buf4 = empty_strided_cuda((), (), torch.float32) buf6 = buf4 del buf4 get_raw_stream(0) triton_per_fused_add_div_exp_log_max_mean_mul_neg_sub_sum_tanh_0[grid (1)](buf6, arg2_1, buf0, 1, 4, XBLOCK=1, num_warps=2, num_stages=1) del arg2_1 buf5 = empty_strided_cuda((), (), torch.float32) buf7 = buf5 del buf5 triton_per_fused_div_mean_mul_pow_1[grid(1)](buf7, buf0, 1, 16, XBLOCK=1, num_warps=2, num_stages=1) del buf0 return buf6, buf7 def tanh_clip(x, clip_val=10.0): """ soft clip values to the range [-clip_val, +clip_val] """ if clip_val is not None: x_clip = clip_val * torch.tanh(1.0 / clip_val * x) else: x_clip = x return x_clip class AmdimNCELossNew(nn.Module): """ Compute the NCE scores for predicting r_src->r_trg. """ def __init__(self, tclip): super().__init__() self.tclip = tclip def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0], output[1]
SNUHDR2018/ConSSL
AmdimNCELoss
false
14,347
[ "MIT" ]
78
c7d406d0224e38895986c8fb7281a189e493c982
https://github.com/SNUHDR2018/ConSSL/tree/c7d406d0224e38895986c8fb7281a189e493c982
GELayerv2
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/v6/cv6jm5ccat5iyyeiznjq3dg4mcqgsogvq76lbbux7xlva2afcsi3.py # Topologically Sorted Source Nodes: [y, y_1, z, add], Original ATen: [aten.mean, aten.sigmoid, aten.mul, aten.add] # Source node to ATen node mapping: # add => add # y => mean # y_1 => sigmoid # z => mul # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%arg0_1, [-1, -2], True), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%mean,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %sigmoid), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %mul), kwargs = {}) triton_per_fused_add_mean_mul_sigmoid_0 = async_compile.triton('triton_per_fused_add_mean_mul_sigmoid_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mean_mul_sigmoid_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_mean_mul_sigmoid_0(in_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tmp7 = tl.sigmoid(tmp6) tmp8 = tmp0 * tmp7 tmp9 = tmp0 + tmp8 tl.store(out_ptr1 + (r1 + (16*x0)), tmp9, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [y, y_1, z, add], Original ATen: [aten.mean, aten.sigmoid, aten.mul, aten.add] stream0 = get_raw_stream(0) triton_per_fused_add_mean_mul_sigmoid_0.run(arg0_1, buf1, 16, 16, grid=grid(16), stream=stream0) del arg0_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.parallel import torch.utils.data.distributed class GELayerv2(nn.Module): def __init__(self): super(GELayerv2, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.sigmod = nn.Sigmoid() def forward(self, x): _b, _c, _, _ = x.size() res = x y = self.avg_pool(x) y = self.sigmod(y) z = x * y return res + z def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.nn.parallel import torch.utils.data.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_mean_mul_sigmoid_0(in_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tmp7 = tl.sigmoid(tmp6) tmp8 = tmp0 * tmp7 tmp9 = tmp0 + tmp8 tl.store(out_ptr1 + (r1 + 16 * x0), tmp9, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_per_fused_add_mean_mul_sigmoid_0[grid(16)](arg0_1, buf1, 16, 16, XBLOCK=8, num_warps=2, num_stages=1) del arg0_1 return buf1, class GELayerv2New(nn.Module): def __init__(self): super(GELayerv2New, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.sigmod = nn.Sigmoid() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
SSusantAchary/OctaveConv_pytorch
GELayerv2
false
14,348
[ "MIT" ]
633
079f7da29d55c2eeed8985d33f0b2f765d7a469e
https://github.com/SSusantAchary/OctaveConv_pytorch/tree/079f7da29d55c2eeed8985d33f0b2f765d7a469e
CrossEntropy
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/td/ctdj5kazgiki6gdaadhqtp2x7tq2ee5ey5hqqdcoqmp54jyhf74f.py # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # log_softmax => amax, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg1_1, [1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %amax), kwargs = {}) triton_poi_fused__log_softmax_0 = async_compile.triton('triton_poi_fused__log_softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/uo/cuouspzum46a7n7yubeozlw7mmoblg5cwz44s47nvshmhwqsvhi7.py # Topologically Sorted Source Nodes: [log_softmax, mul, sum_1, loss, mean], Original ATen: [aten._log_softmax, aten.mul, aten.sum, aten.neg, aten.mean] # Source node to ATen node mapping: # log_softmax => exp, log, sub_1, sum_1 # loss => neg # mean => mean # mul => mul # sum_1 => sum_2 # Graph fragment: # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %sub_1), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sum_2,), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%neg,), kwargs = {}) triton_per_fused__log_softmax_mean_mul_neg_sum_1 = async_compile.triton('triton_per_fused__log_softmax_mean_mul_neg_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax_mean_mul_neg_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__log_softmax_mean_mul_neg_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 16 r1 = (rindex // 16) tmp0 = tl.load(in_ptr0 + (r0 + (64*r1)), None) tmp1 = tl.load(in_ptr1 + (r0 + (64*r1)), None) tmp3 = tl.load(in_ptr1 + (16 + r0 + (64*r1)), None) tmp6 = tl.load(in_ptr1 + (32 + r0 + (64*r1)), None) tmp9 = tl.load(in_ptr1 + (48 + r0 + (64*r1)), None) tmp15 = tl.load(in_ptr0 + (16 + r0 + (64*r1)), None) tmp19 = tl.load(in_ptr0 + (32 + r0 + (64*r1)), None) tmp23 = tl.load(in_ptr0 + (48 + r0 + (64*r1)), None) tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp1 - tmp12 tmp14 = tmp0 * tmp13 tmp16 = tmp3 - tmp12 tmp17 = tmp15 * tmp16 tmp18 = tmp14 + tmp17 tmp20 = tmp6 - tmp12 tmp21 = tmp19 * tmp20 tmp22 = tmp18 + tmp21 tmp24 = tmp9 - tmp12 tmp25 = tmp23 * tmp24 tmp26 = tmp22 + tmp25 tmp27 = -tmp26 tmp28 = tl.broadcast_to(tmp27, [XBLOCK, RBLOCK]) tmp30 = tl.sum(tmp28, 1)[:, None] tmp31 = 64.0 tmp32 = tmp30 / tmp31 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp32, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] stream0 = get_raw_stream(0) triton_poi_fused__log_softmax_0.run(arg1_1, buf0, 256, grid=grid(256), stream=stream0) del arg1_1 buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [log_softmax, mul, sum_1, loss, mean], Original ATen: [aten._log_softmax, aten.mul, aten.sum, aten.neg, aten.mean] triton_per_fused__log_softmax_mean_mul_neg_sum_1.run(buf2, arg0_1, buf0, 1, 64, grid=grid(1), stream=stream0) del arg0_1 del buf0 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F import torch.nn as nn import torch.nn.parallel def cross_entropy(y, target, mask=None): if len(target.shape) < 2: loss = F.cross_entropy(y, target, reduction='none') else: loss = -(target * F.log_softmax(y, 1)).sum(1) if mask is not None: loss = loss * mask return loss.mean() class CrossEntropy(nn.Module): def forward(self, y, target, mask=None, *args, **kwargs): return cross_entropy(y, target.detach(), mask) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn.functional as F import torch.nn as nn import torch.nn.parallel assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + x3, tmp8, xmask) @triton.jit def triton_per_fused__log_softmax_mean_mul_neg_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 16 r1 = rindex // 16 tmp0 = tl.load(in_ptr0 + (r0 + 64 * r1), None) tmp1 = tl.load(in_ptr1 + (r0 + 64 * r1), None) tmp3 = tl.load(in_ptr1 + (16 + r0 + 64 * r1), None) tmp6 = tl.load(in_ptr1 + (32 + r0 + 64 * r1), None) tmp9 = tl.load(in_ptr1 + (48 + r0 + 64 * r1), None) tmp15 = tl.load(in_ptr0 + (16 + r0 + 64 * r1), None) tmp19 = tl.load(in_ptr0 + (32 + r0 + 64 * r1), None) tmp23 = tl.load(in_ptr0 + (48 + r0 + 64 * r1), None) tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp1 - tmp12 tmp14 = tmp0 * tmp13 tmp16 = tmp3 - tmp12 tmp17 = tmp15 * tmp16 tmp18 = tmp14 + tmp17 tmp20 = tmp6 - tmp12 tmp21 = tmp19 * tmp20 tmp22 = tmp18 + tmp21 tmp24 = tmp9 - tmp12 tmp25 = tmp23 * tmp24 tmp26 = tmp22 + tmp25 tmp27 = -tmp26 tmp28 = tl.broadcast_to(tmp27, [XBLOCK, RBLOCK]) tmp30 = tl.sum(tmp28, 1)[:, None] tmp31 = 64.0 tmp32 = tmp30 / tmp31 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp32, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__log_softmax_0[grid(256)](arg1_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg1_1 buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1 del buf1 triton_per_fused__log_softmax_mean_mul_neg_sum_1[grid(1)](buf2, arg0_1, buf0, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del buf0 return buf2, def cross_entropy(y, target, mask=None): if len(target.shape) < 2: loss = F.cross_entropy(y, target, reduction='none') else: loss = -(target * F.log_softmax(y, 1)).sum(1) if mask is not None: loss = loss * mask return loss.mean() class CrossEntropyNew(nn.Module): def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
SHI-Labs/Semi-Supervised-Transfer-Learning
CrossEntropy
false
14,349
[ "MIT" ]
81
f206750824ffe10f88a2b418b2b671da61b999f6
https://github.com/SHI-Labs/Semi-Supervised-Transfer-Learning/tree/f206750824ffe10f88a2b418b2b671da61b999f6
MatrixConv2dMultiResblock
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/6h/c6hz6rxowd6hjnz4nqou5ggwumyescczcmbtf5xtm2rj6yxnirvj.py # Topologically Sorted Source Nodes: [y, y_1, y_2], Original ATen: [aten.convolution, aten.relu, aten.add] # Source node to ATen node mapping: # y => convolution # y_1 => relu # y_2 => add # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) # %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_3, %relu), kwargs = {}) triton_poi_fused_add_convolution_relu_0 = async_compile.triton('triton_poi_fused_add_convolution_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_relu_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x4 = (xindex // 16) x1 = (xindex // 16) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x4), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tl.full([1], 0, tl.int32) tmp5 = triton_helpers.maximum(tmp4, tmp3) tmp6 = tmp0 + tmp5 tl.store(out_ptr0 + (x3), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/oa/coalfhjuf4ubqfrykcivy6snaps3jupcrwastny2kgw34pliglw6.py # Topologically Sorted Source Nodes: [y_3, y_4], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # y_3 => convolution_1 # y_4 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%add, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [y], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1)) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [y, y_1, y_2], Original ATen: [aten.convolution, aten.relu, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_convolution_relu_0.run(primals_3, buf0, primals_2, buf1, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [y_3], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 1, 1), (4, 1, 1, 1)) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [y_3, y_4, y_5], Original ATen: [aten.convolution, aten.relu, aten.add] triton_poi_fused_add_convolution_relu_0.run(buf1, buf2, primals_5, buf3, 256, grid=grid(256), stream=stream0) buf4 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.bool) # Topologically Sorted Source Nodes: [y_3, y_4], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_1.run(buf2, primals_5, buf4, 16, grid=grid(16), stream=stream0) del buf2 del primals_5 buf5 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.bool) # Topologically Sorted Source Nodes: [y, y_1], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_1.run(buf0, primals_2, buf5, 16, grid=grid(16), stream=stream0) del buf0 del primals_2 return (buf3, primals_1, primals_3, primals_4, buf1, buf4, buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.autograd class MatrixConv2dMultiResblock(nn.Module): def __init__(self, weight_shape, stride=1, padding=0, with_batchnorm= False, act_func='ReLU'): super(MatrixConv2dMultiResblock, self).__init__() self.conv1 = nn.Conv2d(weight_shape[3], weight_shape[0], weight_shape[1], stride=stride, padding=padding, bias=not with_batchnorm) if with_batchnorm: self.bn1 = nn.BatchNorm2d(weight_shape[0]) else: self.bn1 = None if act_func is not None: self.f1 = getattr(nn, act_func)() else: self.f1 = None self.conv2 = nn.Conv2d(weight_shape[3], weight_shape[0], weight_shape[1], stride=stride, padding=padding, bias=not with_batchnorm) if with_batchnorm: self.bn2 = nn.BatchNorm2d(weight_shape[0]) else: self.bn2 = None if act_func is not None: self.f2 = getattr(nn, act_func)() else: self.f2 = None def forward(self, x): y = self.conv1(x) if self.bn1 is not None: y = self.bn1(y) if self.f1 is not None: y = self.f1(y) y = torch.add(x, y) x = y y = self.conv2(y) if self.bn2 is not None: y = self.bn2(y) if self.f2 is not None: y = self.f2(y) y = torch.add(x, y) return y def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'weight_shape': [4, 4, 4, 4]}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.autograd assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_convolution_relu_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x4 = xindex // 16 x1 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x4, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tl.full([1], 0, tl.int32) tmp5 = triton_helpers.maximum(tmp4, tmp3) tmp6 = tmp0 + tmp5 tl.store(out_ptr0 + x3, tmp6, xmask) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1)) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_convolution_relu_0[grid(256)](primals_3, buf0, primals_2, buf1, 256, XBLOCK=256, num_warps=4, num_stages=1) buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 1, 1), (4, 1, 1, 1)) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_convolution_relu_0[grid(256)](buf1, buf2, primals_5, buf3, 256, XBLOCK=256, num_warps=4, num_stages=1) buf4 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_1[grid(16)](buf2, primals_5, buf4, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf2 del primals_5 buf5 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_1[grid(16)](buf0, primals_2, buf5, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf0 del primals_2 return buf3, primals_1, primals_3, primals_4, buf1, buf4, buf5 class MatrixConv2dMultiResblockNew(nn.Module): def __init__(self, weight_shape, stride=1, padding=0, with_batchnorm= False, act_func='ReLU'): super(MatrixConv2dMultiResblockNew, self).__init__() self.conv1 = nn.Conv2d(weight_shape[3], weight_shape[0], weight_shape[1], stride=stride, padding=padding, bias=not with_batchnorm) if with_batchnorm: self.bn1 = nn.BatchNorm2d(weight_shape[0]) else: self.bn1 = None if act_func is not None: self.f1 = getattr(nn, act_func)() else: self.f1 = None self.conv2 = nn.Conv2d(weight_shape[3], weight_shape[0], weight_shape[1], stride=stride, padding=padding, bias=not with_batchnorm) if with_batchnorm: self.bn2 = nn.BatchNorm2d(weight_shape[0]) else: self.bn2 = None if act_func is not None: self.f2 = getattr(nn, act_func)() else: self.f2 = None def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_3 = self.conv2.weight primals_5 = self.conv2.bias primals_4 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
RyusukeYamano/nngen
MatrixConv2dMultiResblock
false
14,350
[ "Apache-2.0" ]
207
9ed1f7fb83908794aa94d70287d89545d45fe875
https://github.com/RyusukeYamano/nngen/tree/9ed1f7fb83908794aa94d70287d89545d45fe875
L1GradientLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/7g/c7gpnaa76kr65vahzryjxcg3mfyxvig5jcja3ssqewqlqwknemed.py # Topologically Sorted Source Nodes: [x, x_1, loss], Original ATen: [aten.cat, aten.sub, aten.abs, aten.mean] # Source node to ATen node mapping: # loss => abs_1, mean, sub # x => cat # x_1 => cat_1 # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%sqrt, %sqrt_1, %sqrt_2], 1), kwargs = {}) # %cat_1 : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%sqrt_3, %sqrt_4, %sqrt_5], 1), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%cat, %cat_1), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_1,), kwargs = {}) triton_per_fused_abs_cat_mean_sub_0 = async_compile.triton('triton_per_fused_abs_cat_mean_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 512], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: '*fp32', 11: '*fp32', 12: '*fp32', 13: 'i32', 14: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {13: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14), equal_to_1=(13,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_cat_mean_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 12, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_abs_cat_mean_sub_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 432 RBLOCK: tl.constexpr = 512 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = rindex < rnumel r1 = (rindex // 36) % 3 r0 = rindex % 36 r2 = (rindex // 108) r3 = rindex tmp0 = r1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (tl.broadcast_to(r0 + (36*r2), [RBLOCK])), rmask & tmp4, eviction_policy='evict_last', other=0.0) tmp6 = tmp5 * tmp5 tmp7 = tl.load(in_ptr1 + (tl.broadcast_to(r0 + (36*r2), [RBLOCK])), rmask & tmp4, eviction_policy='evict_last', other=0.0) tmp8 = tmp7 * tmp7 tmp9 = tmp6 + tmp8 tmp10 = 1e-06 tmp11 = tmp9 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = tl.full(tmp12.shape, 0.0, tmp12.dtype) tmp14 = tl.where(tmp4, tmp12, tmp13) tmp15 = tmp0 >= tmp3 tmp16 = tl.full([1], 2, tl.int64) tmp17 = tmp0 < tmp16 tmp18 = tmp15 & tmp17 tmp19 = tl.load(in_ptr2 + (tl.broadcast_to(r0 + (36*r2), [RBLOCK])), rmask & tmp18, eviction_policy='evict_last', other=0.0) tmp20 = tmp19 * tmp19 tmp21 = tl.load(in_ptr3 + (tl.broadcast_to(r0 + (36*r2), [RBLOCK])), rmask & tmp18, eviction_policy='evict_last', other=0.0) tmp22 = tmp21 * tmp21 tmp23 = tmp20 + tmp22 tmp24 = tmp23 + tmp10 tmp25 = libdevice.sqrt(tmp24) tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype) tmp27 = tl.where(tmp18, tmp25, tmp26) tmp28 = tmp0 >= tmp16 tmp29 = tl.full([1], 3, tl.int64) tmp30 = tmp0 < tmp29 tmp31 = tl.load(in_ptr4 + (tl.broadcast_to(r0 + (36*r2), [RBLOCK])), rmask & tmp28, eviction_policy='evict_last', other=0.0) tmp32 = tmp31 * tmp31 tmp33 = tl.load(in_ptr5 + (tl.broadcast_to(r0 + (36*r2), [RBLOCK])), rmask & tmp28, eviction_policy='evict_last', other=0.0) tmp34 = tmp33 * tmp33 tmp35 = tmp32 + tmp34 tmp36 = tmp35 + tmp10 tmp37 = libdevice.sqrt(tmp36) tmp38 = tl.full(tmp37.shape, 0.0, tmp37.dtype) tmp39 = tl.where(tmp28, tmp37, tmp38) tmp40 = tl.where(tmp18, tmp27, tmp39) tmp41 = tl.where(tmp4, tmp14, tmp40) tmp42 = tl.load(in_ptr6 + (tl.broadcast_to(r0 + (36*r2), [RBLOCK])), rmask & tmp4, eviction_policy='evict_last', other=0.0) tmp43 = tmp42 * tmp42 tmp44 = tl.load(in_ptr7 + (tl.broadcast_to(r0 + (36*r2), [RBLOCK])), rmask & tmp4, eviction_policy='evict_last', other=0.0) tmp45 = tmp44 * tmp44 tmp46 = tmp43 + tmp45 tmp47 = tmp46 + tmp10 tmp48 = libdevice.sqrt(tmp47) tmp49 = tl.full(tmp48.shape, 0.0, tmp48.dtype) tmp50 = tl.where(tmp4, tmp48, tmp49) tmp51 = tl.load(in_ptr8 + (tl.broadcast_to(r0 + (36*r2), [RBLOCK])), rmask & tmp18, eviction_policy='evict_last', other=0.0) tmp52 = tmp51 * tmp51 tmp53 = tl.load(in_ptr9 + (tl.broadcast_to(r0 + (36*r2), [RBLOCK])), rmask & tmp18, eviction_policy='evict_last', other=0.0) tmp54 = tmp53 * tmp53 tmp55 = tmp52 + tmp54 tmp56 = tmp55 + tmp10 tmp57 = libdevice.sqrt(tmp56) tmp58 = tl.full(tmp57.shape, 0.0, tmp57.dtype) tmp59 = tl.where(tmp18, tmp57, tmp58) tmp60 = tl.load(in_ptr10 + (tl.broadcast_to(r0 + (36*r2), [RBLOCK])), rmask & tmp28, eviction_policy='evict_last', other=0.0) tmp61 = tmp60 * tmp60 tmp62 = tl.load(in_ptr11 + (tl.broadcast_to(r0 + (36*r2), [RBLOCK])), rmask & tmp28, eviction_policy='evict_last', other=0.0) tmp63 = tmp62 * tmp62 tmp64 = tmp61 + tmp63 tmp65 = tmp64 + tmp10 tmp66 = libdevice.sqrt(tmp65) tmp67 = tl.full(tmp66.shape, 0.0, tmp66.dtype) tmp68 = tl.where(tmp28, tmp66, tmp67) tmp69 = tl.where(tmp18, tmp59, tmp68) tmp70 = tl.where(tmp4, tmp50, tmp69) tmp71 = tmp41 - tmp70 tmp72 = tl_math.abs(tmp71) tmp73 = tl.broadcast_to(tmp72, [RBLOCK]) tmp75 = tl.where(rmask, tmp73, 0) tmp76 = triton_helpers.promote_to_tensor(tl.sum(tmp75, 0)) tmp77 = 432.0 tmp78 = tmp76 / tmp77 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp78, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1, arg3_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (1, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(arg2_1, (1, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x0_v], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(reinterpret_tensor(arg0_1, (4, 1, 4, 4), (64, 0, 4, 1), 0), arg1_1, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 1, 6, 6), (36, 36, 6, 1)) # Topologically Sorted Source Nodes: [x0_h], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(reinterpret_tensor(arg0_1, (4, 1, 4, 4), (64, 0, 4, 1), 0), arg2_1, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 1, 6, 6), (36, 36, 6, 1)) # Topologically Sorted Source Nodes: [x1_v], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(reinterpret_tensor(arg0_1, (4, 1, 4, 4), (64, 0, 4, 1), 16), arg1_1, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 1, 6, 6), (36, 36, 6, 1)) # Topologically Sorted Source Nodes: [x1_h], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(reinterpret_tensor(arg0_1, (4, 1, 4, 4), (64, 0, 4, 1), 16), arg2_1, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 1, 6, 6), (36, 36, 6, 1)) # Topologically Sorted Source Nodes: [x2_v], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(reinterpret_tensor(arg0_1, (4, 1, 4, 4), (64, 0, 4, 1), 32), arg1_1, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 1, 6, 6), (36, 36, 6, 1)) # Topologically Sorted Source Nodes: [x2_h], Original ATen: [aten.convolution] buf5 = extern_kernels.convolution(reinterpret_tensor(arg0_1, (4, 1, 4, 4), (64, 0, 4, 1), 32), arg2_1, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 1, 6, 6), (36, 36, 6, 1)) del arg0_1 # Topologically Sorted Source Nodes: [x1_h_1], Original ATen: [aten.convolution] buf10 = extern_kernels.convolution(reinterpret_tensor(arg3_1, (4, 1, 4, 4), (64, 0, 4, 1), 16), arg2_1, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 1, 6, 6), (36, 36, 6, 1)) # Topologically Sorted Source Nodes: [x2_v_1], Original ATen: [aten.convolution] buf11 = extern_kernels.convolution(reinterpret_tensor(arg3_1, (4, 1, 4, 4), (64, 0, 4, 1), 32), arg1_1, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf11, (4, 1, 6, 6), (36, 36, 6, 1)) # Topologically Sorted Source Nodes: [x2_h_1], Original ATen: [aten.convolution] buf12 = extern_kernels.convolution(reinterpret_tensor(arg3_1, (4, 1, 4, 4), (64, 0, 4, 1), 32), arg2_1, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 1, 6, 6), (36, 36, 6, 1)) # Topologically Sorted Source Nodes: [x0_v_1], Original ATen: [aten.convolution] buf7 = extern_kernels.convolution(reinterpret_tensor(arg3_1, (4, 1, 4, 4), (64, 0, 4, 1), 0), arg1_1, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 1, 6, 6), (36, 36, 6, 1)) # Topologically Sorted Source Nodes: [x0_h_1], Original ATen: [aten.convolution] buf8 = extern_kernels.convolution(reinterpret_tensor(arg3_1, (4, 1, 4, 4), (64, 0, 4, 1), 0), arg2_1, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 1, 6, 6), (36, 36, 6, 1)) del arg2_1 # Topologically Sorted Source Nodes: [x1_v_1], Original ATen: [aten.convolution] buf9 = extern_kernels.convolution(reinterpret_tensor(arg3_1, (4, 1, 4, 4), (64, 0, 4, 1), 16), arg1_1, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 1, 6, 6), (36, 36, 6, 1)) del arg1_1 del arg3_1 buf14 = empty_strided_cuda((), (), torch.float32) buf15 = buf14; del buf14 # reuse # Topologically Sorted Source Nodes: [x, x_1, loss], Original ATen: [aten.cat, aten.sub, aten.abs, aten.mean] stream0 = get_raw_stream(0) triton_per_fused_abs_cat_mean_sub_0.run(buf15, buf0, buf1, buf2, buf3, buf4, buf5, buf7, buf8, buf9, buf10, buf11, buf12, 1, 432, grid=grid(1), stream=stream0) del buf0 del buf1 del buf10 del buf11 del buf12 del buf2 del buf3 del buf4 del buf5 del buf7 del buf8 del buf9 return (buf15, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((1, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((1, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32) arg3_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1, arg3_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import init as init from torch.nn.modules.loss import _Loss class Gradient(nn.Module): def __init__(self): super(Gradient, self).__init__() kernel_v = [[0, -1, 0], [0, 0, 0], [0, 1, 0]] kernel_h = [[0, 0, 0], [-1, 0, 1], [0, 0, 0]] kernel_h = torch.FloatTensor(kernel_h).unsqueeze(0).unsqueeze(0) kernel_v = torch.FloatTensor(kernel_v).unsqueeze(0).unsqueeze(0) self.weight_h = nn.Parameter(data=kernel_h, requires_grad=False) self.weight_v = nn.Parameter(data=kernel_v, requires_grad=False) def forward(self, x): x0 = x[:, 0] x1 = x[:, 1] x2 = x[:, 2] x0_v = F.conv2d(x0.unsqueeze(1), self.weight_v, padding=2) x0_h = F.conv2d(x0.unsqueeze(1), self.weight_h, padding=2) x1_v = F.conv2d(x1.unsqueeze(1), self.weight_v, padding=2) x1_h = F.conv2d(x1.unsqueeze(1), self.weight_h, padding=2) x2_v = F.conv2d(x2.unsqueeze(1), self.weight_v, padding=2) x2_h = F.conv2d(x2.unsqueeze(1), self.weight_h, padding=2) x0 = torch.sqrt(torch.pow(x0_v, 2) + torch.pow(x0_h, 2) + 1e-06) x1 = torch.sqrt(torch.pow(x1_v, 2) + torch.pow(x1_h, 2) + 1e-06) x2 = torch.sqrt(torch.pow(x2_v, 2) + torch.pow(x2_h, 2) + 1e-06) x = torch.cat([x0, x1, x2], dim=1) return x class L1GradientLoss(_Loss): """ Gradient loss """ def __init__(self, para): super(L1GradientLoss, self).__init__() self.get_grad = Gradient() self.L1 = nn.L1Loss() def forward(self, x, y): grad_x = self.get_grad(x) grad_y = self.get_grad(y) loss = self.L1(grad_x, grad_y) return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'para': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn import torch.nn.functional as F from torch.nn import init as init from torch.nn.modules.loss import _Loss assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_abs_cat_mean_sub_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, xnumel, rnumel): XBLOCK: tl.constexpr = 1 rnumel = 432 RBLOCK: tl.constexpr = 512 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] rmask = rindex < rnumel r1 = rindex // 36 % 3 r0 = rindex % 36 r2 = rindex // 108 tmp0 = r1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + tl.broadcast_to(r0 + 36 * r2, [RBLOCK]), rmask & tmp4, eviction_policy='evict_last', other=0.0) tmp6 = tmp5 * tmp5 tmp7 = tl.load(in_ptr1 + tl.broadcast_to(r0 + 36 * r2, [RBLOCK]), rmask & tmp4, eviction_policy='evict_last', other=0.0) tmp8 = tmp7 * tmp7 tmp9 = tmp6 + tmp8 tmp10 = 1e-06 tmp11 = tmp9 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = tl.full(tmp12.shape, 0.0, tmp12.dtype) tmp14 = tl.where(tmp4, tmp12, tmp13) tmp15 = tmp0 >= tmp3 tmp16 = tl.full([1], 2, tl.int64) tmp17 = tmp0 < tmp16 tmp18 = tmp15 & tmp17 tmp19 = tl.load(in_ptr2 + tl.broadcast_to(r0 + 36 * r2, [RBLOCK]), rmask & tmp18, eviction_policy='evict_last', other=0.0) tmp20 = tmp19 * tmp19 tmp21 = tl.load(in_ptr3 + tl.broadcast_to(r0 + 36 * r2, [RBLOCK]), rmask & tmp18, eviction_policy='evict_last', other=0.0) tmp22 = tmp21 * tmp21 tmp23 = tmp20 + tmp22 tmp24 = tmp23 + tmp10 tmp25 = libdevice.sqrt(tmp24) tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype) tmp27 = tl.where(tmp18, tmp25, tmp26) tmp28 = tmp0 >= tmp16 tl.full([1], 3, tl.int64) tmp31 = tl.load(in_ptr4 + tl.broadcast_to(r0 + 36 * r2, [RBLOCK]), rmask & tmp28, eviction_policy='evict_last', other=0.0) tmp32 = tmp31 * tmp31 tmp33 = tl.load(in_ptr5 + tl.broadcast_to(r0 + 36 * r2, [RBLOCK]), rmask & tmp28, eviction_policy='evict_last', other=0.0) tmp34 = tmp33 * tmp33 tmp35 = tmp32 + tmp34 tmp36 = tmp35 + tmp10 tmp37 = libdevice.sqrt(tmp36) tmp38 = tl.full(tmp37.shape, 0.0, tmp37.dtype) tmp39 = tl.where(tmp28, tmp37, tmp38) tmp40 = tl.where(tmp18, tmp27, tmp39) tmp41 = tl.where(tmp4, tmp14, tmp40) tmp42 = tl.load(in_ptr6 + tl.broadcast_to(r0 + 36 * r2, [RBLOCK]), rmask & tmp4, eviction_policy='evict_last', other=0.0) tmp43 = tmp42 * tmp42 tmp44 = tl.load(in_ptr7 + tl.broadcast_to(r0 + 36 * r2, [RBLOCK]), rmask & tmp4, eviction_policy='evict_last', other=0.0) tmp45 = tmp44 * tmp44 tmp46 = tmp43 + tmp45 tmp47 = tmp46 + tmp10 tmp48 = libdevice.sqrt(tmp47) tmp49 = tl.full(tmp48.shape, 0.0, tmp48.dtype) tmp50 = tl.where(tmp4, tmp48, tmp49) tmp51 = tl.load(in_ptr8 + tl.broadcast_to(r0 + 36 * r2, [RBLOCK]), rmask & tmp18, eviction_policy='evict_last', other=0.0) tmp52 = tmp51 * tmp51 tmp53 = tl.load(in_ptr9 + tl.broadcast_to(r0 + 36 * r2, [RBLOCK]), rmask & tmp18, eviction_policy='evict_last', other=0.0) tmp54 = tmp53 * tmp53 tmp55 = tmp52 + tmp54 tmp56 = tmp55 + tmp10 tmp57 = libdevice.sqrt(tmp56) tmp58 = tl.full(tmp57.shape, 0.0, tmp57.dtype) tmp59 = tl.where(tmp18, tmp57, tmp58) tmp60 = tl.load(in_ptr10 + tl.broadcast_to(r0 + 36 * r2, [RBLOCK]), rmask & tmp28, eviction_policy='evict_last', other=0.0) tmp61 = tmp60 * tmp60 tmp62 = tl.load(in_ptr11 + tl.broadcast_to(r0 + 36 * r2, [RBLOCK]), rmask & tmp28, eviction_policy='evict_last', other=0.0) tmp63 = tmp62 * tmp62 tmp64 = tmp61 + tmp63 tmp65 = tmp64 + tmp10 tmp66 = libdevice.sqrt(tmp65) tmp67 = tl.full(tmp66.shape, 0.0, tmp66.dtype) tmp68 = tl.where(tmp28, tmp66, tmp67) tmp69 = tl.where(tmp18, tmp59, tmp68) tmp70 = tl.where(tmp4, tmp50, tmp69) tmp71 = tmp41 - tmp70 tmp72 = tl_math.abs(tmp71) tmp73 = tl.broadcast_to(tmp72, [RBLOCK]) tmp75 = tl.where(rmask, tmp73, 0) tmp76 = triton_helpers.promote_to_tensor(tl.sum(tmp75, 0)) tmp77 = 432.0 tmp78 = tmp76 / tmp77 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp78, None) def call(args): arg0_1, arg1_1, arg2_1, arg3_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (1, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(arg2_1, (1, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(reinterpret_tensor(arg0_1, (4, 1, 4, 4), (64, 0, 4, 1), 0), arg1_1, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 1, 6, 6), (36, 36, 6, 1)) buf1 = extern_kernels.convolution(reinterpret_tensor(arg0_1, (4, 1, 4, 4), (64, 0, 4, 1), 0), arg2_1, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 1, 6, 6), (36, 36, 6, 1)) buf2 = extern_kernels.convolution(reinterpret_tensor(arg0_1, (4, 1, 4, 4), (64, 0, 4, 1), 16), arg1_1, stride=(1, 1), padding=(2, 2 ), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 1, 6, 6), (36, 36, 6, 1)) buf3 = extern_kernels.convolution(reinterpret_tensor(arg0_1, (4, 1, 4, 4), (64, 0, 4, 1), 16), arg2_1, stride=(1, 1), padding=(2, 2 ), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 1, 6, 6), (36, 36, 6, 1)) buf4 = extern_kernels.convolution(reinterpret_tensor(arg0_1, (4, 1, 4, 4), (64, 0, 4, 1), 32), arg1_1, stride=(1, 1), padding=(2, 2 ), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 1, 6, 6), (36, 36, 6, 1)) buf5 = extern_kernels.convolution(reinterpret_tensor(arg0_1, (4, 1, 4, 4), (64, 0, 4, 1), 32), arg2_1, stride=(1, 1), padding=(2, 2 ), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 1, 6, 6), (36, 36, 6, 1)) del arg0_1 buf10 = extern_kernels.convolution(reinterpret_tensor(arg3_1, (4, 1, 4, 4), (64, 0, 4, 1), 16), arg2_1, stride=(1, 1), padding=(2, 2 ), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 1, 6, 6), (36, 36, 6, 1)) buf11 = extern_kernels.convolution(reinterpret_tensor(arg3_1, (4, 1, 4, 4), (64, 0, 4, 1), 32), arg1_1, stride=(1, 1), padding=(2, 2 ), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf11, (4, 1, 6, 6), (36, 36, 6, 1)) buf12 = extern_kernels.convolution(reinterpret_tensor(arg3_1, (4, 1, 4, 4), (64, 0, 4, 1), 32), arg2_1, stride=(1, 1), padding=(2, 2 ), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 1, 6, 6), (36, 36, 6, 1)) buf7 = extern_kernels.convolution(reinterpret_tensor(arg3_1, (4, 1, 4, 4), (64, 0, 4, 1), 0), arg1_1, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 1, 6, 6), (36, 36, 6, 1)) buf8 = extern_kernels.convolution(reinterpret_tensor(arg3_1, (4, 1, 4, 4), (64, 0, 4, 1), 0), arg2_1, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 1, 6, 6), (36, 36, 6, 1)) del arg2_1 buf9 = extern_kernels.convolution(reinterpret_tensor(arg3_1, (4, 1, 4, 4), (64, 0, 4, 1), 16), arg1_1, stride=(1, 1), padding=(2, 2 ), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 1, 6, 6), (36, 36, 6, 1)) del arg1_1 del arg3_1 buf14 = empty_strided_cuda((), (), torch.float32) buf15 = buf14 del buf14 get_raw_stream(0) triton_per_fused_abs_cat_mean_sub_0[grid(1)](buf15, buf0, buf1, buf2, buf3, buf4, buf5, buf7, buf8, buf9, buf10, buf11, buf12, 1, 432, num_warps=4, num_stages=1) del buf0 del buf1 del buf10 del buf11 del buf12 del buf2 del buf3 del buf4 del buf5 del buf7 del buf8 del buf9 return buf15, class Gradient(nn.Module): def __init__(self): super(Gradient, self).__init__() kernel_v = [[0, -1, 0], [0, 0, 0], [0, 1, 0]] kernel_h = [[0, 0, 0], [-1, 0, 1], [0, 0, 0]] kernel_h = torch.FloatTensor(kernel_h).unsqueeze(0).unsqueeze(0) kernel_v = torch.FloatTensor(kernel_v).unsqueeze(0).unsqueeze(0) self.weight_h = nn.Parameter(data=kernel_h, requires_grad=False) self.weight_v = nn.Parameter(data=kernel_v, requires_grad=False) def forward(self, x): x0 = x[:, 0] x1 = x[:, 1] x2 = x[:, 2] x0_v = F.conv2d(x0.unsqueeze(1), self.weight_v, padding=2) x0_h = F.conv2d(x0.unsqueeze(1), self.weight_h, padding=2) x1_v = F.conv2d(x1.unsqueeze(1), self.weight_v, padding=2) x1_h = F.conv2d(x1.unsqueeze(1), self.weight_h, padding=2) x2_v = F.conv2d(x2.unsqueeze(1), self.weight_v, padding=2) x2_h = F.conv2d(x2.unsqueeze(1), self.weight_h, padding=2) x0 = torch.sqrt(torch.pow(x0_v, 2) + torch.pow(x0_h, 2) + 1e-06) x1 = torch.sqrt(torch.pow(x1_v, 2) + torch.pow(x1_h, 2) + 1e-06) x2 = torch.sqrt(torch.pow(x2_v, 2) + torch.pow(x2_h, 2) + 1e-06) x = torch.cat([x0, x1, x2], dim=1) return x class L1GradientLossNew(_Loss): """ Gradient loss """ def __init__(self, para): super(L1GradientLossNew, self).__init__() self.get_grad = Gradient() self.L1 = nn.L1Loss() def forward(self, input_0, input_1): arg1_1 = self.get_grad.weight_h arg2_1 = self.get_grad.weight_v arg0_1 = input_0 arg3_1 = input_1 output = call([arg0_1, arg1_1, arg2_1, arg3_1]) return output[0]
RunqiuBao/Event_ESTRNN
L1GradientLoss
false
14,351
[ "MIT" ]
180
6d156cc42a3a33bd0b4b7c4c4be98f943ff53acb
https://github.com/RunqiuBao/Event_ESTRNN/tree/6d156cc42a3a33bd0b4b7c4c4be98f943ff53acb
MatrixConv2dResblock
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/6h/c6hz6rxowd6hjnz4nqou5ggwumyescczcmbtf5xtm2rj6yxnirvj.py # Topologically Sorted Source Nodes: [y, y_1, y_2], Original ATen: [aten.convolution, aten.relu, aten.add] # Source node to ATen node mapping: # y => convolution # y_1 => relu # y_2 => add # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_3, %relu), kwargs = {}) triton_poi_fused_add_convolution_relu_0 = async_compile.triton('triton_poi_fused_add_convolution_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_relu_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x4 = (xindex // 16) x1 = (xindex // 16) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x4), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tl.full([1], 0, tl.int32) tmp5 = triton_helpers.maximum(tmp4, tmp3) tmp6 = tmp0 + tmp5 tl.store(out_ptr0 + (x3), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/oa/coalfhjuf4ubqfrykcivy6snaps3jupcrwastny2kgw34pliglw6.py # Topologically Sorted Source Nodes: [y, y_1], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # y => convolution # y_1 => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [y], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1)) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [y, y_1, y_2], Original ATen: [aten.convolution, aten.relu, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_convolution_relu_0.run(primals_3, buf0, primals_2, buf1, 256, grid=grid(256), stream=stream0) buf2 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.bool) # Topologically Sorted Source Nodes: [y, y_1], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_1.run(buf0, primals_2, buf2, 16, grid=grid(16), stream=stream0) del buf0 del primals_2 return (buf1, primals_1, primals_3, buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.autograd class MatrixConv2dResblock(nn.Module): def __init__(self, weight_shape, stride=1, padding=0, with_batchnorm= False, act_func='ReLU'): super(MatrixConv2dResblock, self).__init__() self.conv = nn.Conv2d(weight_shape[3], weight_shape[0], weight_shape[1], stride=stride, padding=padding, bias=not with_batchnorm) if with_batchnorm: self.bn = nn.BatchNorm2d(weight_shape[0]) else: self.bn = None if act_func is not None: self.f = getattr(nn, act_func)() else: self.f = None def forward(self, x): y = self.conv(x) if self.bn is not None: y = self.bn(y) if self.f is not None: y = self.f(y) y = torch.add(x, y) return y def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'weight_shape': [4, 4, 4, 4]}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.autograd assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_convolution_relu_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x4 = xindex // 16 x1 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x4, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tl.full([1], 0, tl.int32) tmp5 = triton_helpers.maximum(tmp4, tmp3) tmp6 = tmp0 + tmp5 tl.store(out_ptr0 + x3, tmp6, xmask) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1)) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_convolution_relu_0[grid(256)](primals_3, buf0, primals_2, buf1, 256, XBLOCK=256, num_warps=4, num_stages=1) buf2 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_1[grid(16)](buf0, primals_2, buf2, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf0 del primals_2 return buf1, primals_1, primals_3, buf2 class MatrixConv2dResblockNew(nn.Module): def __init__(self, weight_shape, stride=1, padding=0, with_batchnorm= False, act_func='ReLU'): super(MatrixConv2dResblockNew, self).__init__() self.conv = nn.Conv2d(weight_shape[3], weight_shape[0], weight_shape[1], stride=stride, padding=padding, bias=not with_batchnorm) if with_batchnorm: self.bn = nn.BatchNorm2d(weight_shape[0]) else: self.bn = None if act_func is not None: self.f = getattr(nn, act_func)() else: self.f = None def forward(self, input_0): primals_1 = self.conv.weight primals_2 = self.conv.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
RyusukeYamano/nngen
MatrixConv2dResblock
false
14,352
[ "Apache-2.0" ]
207
9ed1f7fb83908794aa94d70287d89545d45fe875
https://github.com/RyusukeYamano/nngen/tree/9ed1f7fb83908794aa94d70287d89545d45fe875
MatrixReduceSum
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/nc/cnc3hun37uugdoohqi3fxky2dy24evetrjus72n5qbjgvwiqu2cc.py # Topologically Sorted Source Nodes: [z], Original ATen: [aten.sum] # Source node to ATen node mapping: # z => sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%arg0_1,), kwargs = {}) triton_per_fused_sum_0 = async_compile.triton('triton_per_fused_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_sum_0', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_sum_0(in_ptr0, out_ptr0, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.broadcast_to(tmp0, [RBLOCK]) tmp3 = triton_helpers.promote_to_tensor(tl.sum(tmp1, 0)) tl.store(out_ptr0 + (tl.full([1], 0, tl.int32)), tmp3, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) # Topologically Sorted Source Nodes: [z], Original ATen: [aten.sum] stream0 = get_raw_stream(0) triton_per_fused_sum_0.run(arg0_1, buf0, 1, 256, grid=grid(1), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.autograd class MatrixReduceSum(nn.Module): def __init__(self): super(MatrixReduceSum, self).__init__() def forward(self, x): z = torch.sum(x) return z def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.autograd assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_sum_0(in_ptr0, out_ptr0, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.broadcast_to(tmp0, [RBLOCK]) tmp3 = triton_helpers.promote_to_tensor(tl.sum(tmp1, 0)) tl.store(out_ptr0 + tl.full([1], 0, tl.int32), tmp3, None) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) get_raw_stream(0) triton_per_fused_sum_0[grid(1)](arg0_1, buf0, 1, 256, num_warps=2, num_stages=1) del arg0_1 return buf0, class MatrixReduceSumNew(nn.Module): def __init__(self): super(MatrixReduceSumNew, self).__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
RyusukeYamano/nngen
MatrixReduceSum
false
14,353
[ "Apache-2.0" ]
207
9ed1f7fb83908794aa94d70287d89545d45fe875
https://github.com/RyusukeYamano/nngen/tree/9ed1f7fb83908794aa94d70287d89545d45fe875
GroupedGRUMS
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/2w/c2wi5pwsyprwa67h5tcqdgn7ksw4jdp7s4itstekxely7hd652lu.py # Topologically Sorted Source Nodes: [h], Original ATen: [aten.stack] # Source node to ATen node mapping: # h => full_default # Graph fragment: # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([1, 4, 1, 16], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) triton_poi_fused_stack_0 = async_compile.triton('triton_poi_fused_stack_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_stack_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_stack_0(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = 0.0 tl.store(out_ptr0 + (x0), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ri/cricgdtr5c24l63g746gjtdd45qor3pkzmi7qmyygyd24ejrijb7.py # Topologically Sorted Source Nodes: [input_1], Original ATen: [aten.clone] # Source node to ATen node mapping: # input_1 => clone_1 # Graph fragment: # %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%view_1,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 16 y1 = (yindex // 16) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (16*x2) + (64*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/2x/c2xsdwlv4bv6z37z53sqmvrxepzfrcvqb5fm4cozlvzlniak3p7e.py # Topologically Sorted Source Nodes: [hh_1], Original ATen: [aten.add] # Source node to ATen node mapping: # hh_1 => add_1 # Graph fragment: # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_10, %primals_5), kwargs = {}) triton_poi_fused_add_2 = async_compile.triton('triton_poi_fused_add_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 48 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ta/ctauxzlopqggloh3cu4o53ft7dm2isn6gde3vy3blad36b2bhf6c.py # Topologically Sorted Source Nodes: [add_2, r, add_3, z, mul, add_4, n, sub, mul_1, mul_2, h_1], Original ATen: [aten.add, aten.sigmoid, aten.mul, aten.tanh, aten.rsub] # Source node to ATen node mapping: # add_2 => add_2 # add_3 => add_3 # add_4 => add_4 # h_1 => add_5 # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # n => tanh # r => sigmoid # sub => sub # z => sigmoid_1 # Graph fragment: # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, %getitem_3), kwargs = {}) # %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add_2,), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_1, %getitem_4), kwargs = {}) # %sigmoid_1 : [num_users=3] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add_3,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %getitem_5), kwargs = {}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, %mul), kwargs = {}) # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%add_4,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid_1), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %tanh), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid_1, %select), kwargs = {}) # %add_5 : [num_users=4] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %mul_2), kwargs = {}) triton_poi_fused_add_mul_rsub_sigmoid_tanh_3 = async_compile.triton('triton_poi_fused_add_mul_rsub_sigmoid_tanh_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_rsub_sigmoid_tanh_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 10, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_rsub_sigmoid_tanh_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + (16 + x0 + (192*x1)), xmask) tmp1 = tl.load(in_ptr1 + (16 + x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (16 + x0 + (48*x1)), xmask) tmp6 = tl.load(in_ptr0 + (x0 + (192*x1)), xmask) tmp7 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr2 + (x0 + (48*x1)), xmask) tmp12 = tl.load(in_ptr0 + (32 + x0 + (192*x1)), xmask) tmp13 = tl.load(in_ptr1 + (32 + x0), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr2 + (32 + x0 + (48*x1)), xmask) tmp22 = tl.load(in_ptr3 + (x2), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp5 = tl.sigmoid(tmp4) tmp8 = tmp6 + tmp7 tmp10 = tmp8 + tmp9 tmp11 = tl.sigmoid(tmp10) tmp14 = tmp12 + tmp13 tmp16 = tmp11 * tmp15 tmp17 = tmp14 + tmp16 tmp18 = libdevice.tanh(tmp17) tmp19 = 1.0 tmp20 = tmp19 - tmp5 tmp21 = tmp20 * tmp18 tmp23 = tmp5 * tmp22 tmp24 = tmp21 + tmp23 tl.store(out_ptr0 + (x2), tmp5, xmask) tl.store(out_ptr1 + (x2), tmp11, xmask) tl.store(out_ptr2 + (x2), tmp18, xmask) tl.store(out_ptr3 + (x2), tmp24, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/on/confjkhmacyimkzy24uknbau2fspsbca4enpre5tvlrus72fb5ld.py # Topologically Sorted Source Nodes: [add_7, r_1, add_8, z_1, mul_3, add_9, n_1, sub_1, mul_4, mul_5, h_2], Original ATen: [aten.add, aten.sigmoid, aten.mul, aten.tanh, aten.rsub] # Source node to ATen node mapping: # add_7 => add_7 # add_8 => add_8 # add_9 => add_9 # h_2 => add_10 # mul_3 => mul_3 # mul_4 => mul_4 # mul_5 => mul_5 # n_1 => tanh_1 # r_1 => sigmoid_2 # sub_1 => sub_1 # z_1 => sigmoid_3 # Graph fragment: # %add_7 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_6, %getitem_9), kwargs = {}) # %sigmoid_2 : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add_7,), kwargs = {}) # %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_7, %getitem_10), kwargs = {}) # %sigmoid_3 : [num_users=3] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add_8,), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid_2, %getitem_11), kwargs = {}) # %add_9 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_8, %mul_3), kwargs = {}) # %tanh_1 : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%add_9,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid_3), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %tanh_1), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid_3, %add_5), kwargs = {}) # %add_10 : [num_users=4] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, %mul_5), kwargs = {}) triton_poi_fused_add_mul_rsub_sigmoid_tanh_4 = async_compile.triton('triton_poi_fused_add_mul_rsub_sigmoid_tanh_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_rsub_sigmoid_tanh_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 10, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_rsub_sigmoid_tanh_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + (64 + x0 + (192*x1)), xmask) tmp1 = tl.load(in_ptr1 + (16 + x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (16 + x0 + (48*x1)), xmask) tmp6 = tl.load(in_ptr0 + (48 + x0 + (192*x1)), xmask) tmp7 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr2 + (x0 + (48*x1)), xmask) tmp12 = tl.load(in_ptr0 + (80 + x0 + (192*x1)), xmask) tmp13 = tl.load(in_ptr1 + (32 + x0), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr2 + (32 + x0 + (48*x1)), xmask) tmp22 = tl.load(in_ptr3 + (x2), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp5 = tl.sigmoid(tmp4) tmp8 = tmp6 + tmp7 tmp10 = tmp8 + tmp9 tmp11 = tl.sigmoid(tmp10) tmp14 = tmp12 + tmp13 tmp16 = tmp11 * tmp15 tmp17 = tmp14 + tmp16 tmp18 = libdevice.tanh(tmp17) tmp19 = 1.0 tmp20 = tmp19 - tmp5 tmp21 = tmp20 * tmp18 tmp23 = tmp5 * tmp22 tmp24 = tmp21 + tmp23 tl.store(out_ptr0 + (x2), tmp5, xmask) tl.store(out_ptr1 + (x2), tmp11, xmask) tl.store(out_ptr2 + (x2), tmp18, xmask) tl.store(out_ptr3 + (x2), tmp24, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/b6/cb6zbwdddxtta2hd4plbtth7xbl3onps6ymv23tgalfoqz7hao3e.py # Topologically Sorted Source Nodes: [add_12, r_2, add_13, z_2, mul_6, add_14, n_2, sub_2, mul_7, mul_8, h_3], Original ATen: [aten.add, aten.sigmoid, aten.mul, aten.tanh, aten.rsub] # Source node to ATen node mapping: # add_12 => add_12 # add_13 => add_13 # add_14 => add_14 # h_3 => add_15 # mul_6 => mul_6 # mul_7 => mul_7 # mul_8 => mul_8 # n_2 => tanh_2 # r_2 => sigmoid_4 # sub_2 => sub_2 # z_2 => sigmoid_5 # Graph fragment: # %add_12 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_12, %getitem_15), kwargs = {}) # %sigmoid_4 : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add_12,), kwargs = {}) # %add_13 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_13, %getitem_16), kwargs = {}) # %sigmoid_5 : [num_users=3] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add_13,), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid_4, %getitem_17), kwargs = {}) # %add_14 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_14, %mul_6), kwargs = {}) # %tanh_2 : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%add_14,), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid_5), kwargs = {}) # %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %tanh_2), kwargs = {}) # %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid_5, %add_10), kwargs = {}) # %add_15 : [num_users=4] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_7, %mul_8), kwargs = {}) triton_poi_fused_add_mul_rsub_sigmoid_tanh_5 = async_compile.triton('triton_poi_fused_add_mul_rsub_sigmoid_tanh_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_rsub_sigmoid_tanh_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 10, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_rsub_sigmoid_tanh_5(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + (112 + x0 + (192*x1)), xmask) tmp1 = tl.load(in_ptr1 + (16 + x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (16 + x0 + (48*x1)), xmask) tmp6 = tl.load(in_ptr0 + (96 + x0 + (192*x1)), xmask) tmp7 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr2 + (x0 + (48*x1)), xmask) tmp12 = tl.load(in_ptr0 + (128 + x0 + (192*x1)), xmask) tmp13 = tl.load(in_ptr1 + (32 + x0), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr2 + (32 + x0 + (48*x1)), xmask) tmp22 = tl.load(in_ptr3 + (x2), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp5 = tl.sigmoid(tmp4) tmp8 = tmp6 + tmp7 tmp10 = tmp8 + tmp9 tmp11 = tl.sigmoid(tmp10) tmp14 = tmp12 + tmp13 tmp16 = tmp11 * tmp15 tmp17 = tmp14 + tmp16 tmp18 = libdevice.tanh(tmp17) tmp19 = 1.0 tmp20 = tmp19 - tmp5 tmp21 = tmp20 * tmp18 tmp23 = tmp5 * tmp22 tmp24 = tmp21 + tmp23 tl.store(out_ptr0 + (x2), tmp5, xmask) tl.store(out_ptr1 + (x2), tmp11, xmask) tl.store(out_ptr2 + (x2), tmp18, xmask) tl.store(out_ptr3 + (x2), tmp24, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/iv/civjink5eeujni4jhvs3c44b6eg2zhmkjfqoyk3e74tdvv6rew3a.py # Topologically Sorted Source Nodes: [add_17, r_3, add_18, z_3, mul_9, add_19, n_3, sub_3, mul_10, mul_11, h_4], Original ATen: [aten.add, aten.sigmoid, aten.mul, aten.tanh, aten.rsub] # Source node to ATen node mapping: # add_17 => add_17 # add_18 => add_18 # add_19 => add_19 # h_4 => add_20 # mul_10 => mul_10 # mul_11 => mul_11 # mul_9 => mul_9 # n_3 => tanh_3 # r_3 => sigmoid_6 # sub_3 => sub_3 # z_3 => sigmoid_7 # Graph fragment: # %add_17 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_18, %getitem_21), kwargs = {}) # %sigmoid_6 : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add_17,), kwargs = {}) # %add_18 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_19, %getitem_22), kwargs = {}) # %sigmoid_7 : [num_users=3] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add_18,), kwargs = {}) # %mul_9 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid_6, %getitem_23), kwargs = {}) # %add_19 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_20, %mul_9), kwargs = {}) # %tanh_3 : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%add_19,), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid_7), kwargs = {}) # %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, %tanh_3), kwargs = {}) # %mul_11 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid_7, %add_15), kwargs = {}) # %add_20 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_10, %mul_11), kwargs = {}) triton_poi_fused_add_mul_rsub_sigmoid_tanh_6 = async_compile.triton('triton_poi_fused_add_mul_rsub_sigmoid_tanh_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_rsub_sigmoid_tanh_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 10, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_rsub_sigmoid_tanh_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + (160 + x0 + (192*x1)), xmask) tmp1 = tl.load(in_ptr1 + (16 + x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (16 + x0 + (48*x1)), xmask) tmp6 = tl.load(in_ptr0 + (144 + x0 + (192*x1)), xmask) tmp7 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr2 + (x0 + (48*x1)), xmask) tmp12 = tl.load(in_ptr0 + (176 + x0 + (192*x1)), xmask) tmp13 = tl.load(in_ptr1 + (32 + x0), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr2 + (32 + x0 + (48*x1)), xmask) tmp22 = tl.load(in_ptr3 + (x2), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp5 = tl.sigmoid(tmp4) tmp8 = tmp6 + tmp7 tmp10 = tmp8 + tmp9 tmp11 = tl.sigmoid(tmp10) tmp14 = tmp12 + tmp13 tmp16 = tmp11 * tmp15 tmp17 = tmp14 + tmp16 tmp18 = libdevice.tanh(tmp17) tmp19 = 1.0 tmp20 = tmp19 - tmp5 tmp21 = tmp20 * tmp18 tmp23 = tmp5 * tmp22 tmp24 = tmp21 + tmp23 tl.store(out_ptr0 + (x2), tmp5, xmask) tl.store(out_ptr1 + (x2), tmp11, xmask) tl.store(out_ptr2 + (x2), tmp18, xmask) tl.store(out_ptr3 + (x2), tmp24, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/3f/c3fkenagzpmg62dkv2lfikrzucj7wi55kjc3zlks5peignx6gasc.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.stack] # Source node to ATen node mapping: # out => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%add_5, %add_10, %add_15, %add_20], 1), kwargs = {}) triton_poi_fused_stack_7 = async_compile.triton('triton_poi_fused_stack_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_stack_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_stack_7(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 16) % 4 x0 = xindex % 16 x2 = (xindex // 64) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (16*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 2, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + (x0 + (16*x2)), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 3, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr2 + (x0 + (16*x2)), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tmp0 >= tmp12 tmp17 = tl.full([1], 4, tl.int64) tmp18 = tmp0 < tmp17 tmp19 = tl.load(in_ptr3 + (x0 + (16*x2)), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = 1.0 tmp21 = tmp20 - tmp19 tmp22 = tl.load(in_ptr4 + (x0 + (16*x2)), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp23 = tmp21 * tmp22 tmp24 = tl.load(in_ptr2 + (x0 + (16*x2)), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp25 = tmp19 * tmp24 tmp26 = tmp23 + tmp25 tmp27 = tl.full(tmp26.shape, 0.0, tmp26.dtype) tmp28 = tl.where(tmp16, tmp26, tmp27) tmp29 = tl.where(tmp14, tmp15, tmp28) tmp30 = tl.where(tmp9, tmp10, tmp29) tmp31 = tl.where(tmp4, tmp5, tmp30) tl.store(out_ptr0 + (x3), tmp31, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 48, 16), (768, 16, 1)) assert_size_stride(primals_3, (1, 48), (48, 1)) assert_size_stride(primals_4, (1, 48, 16), (768, 16, 1)) assert_size_stride(primals_5, (1, 48), (48, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1, 4, 1, 16), (64, 16, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [h], Original ATen: [aten.stack] stream0 = get_raw_stream(0) triton_poi_fused_stack_0.run(buf0, 64, grid=grid(64), stream=stream0) buf1 = empty_strided_cuda((4, 4, 1, 4, 4), (64, 16, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [input_1], Original ATen: [aten.clone] triton_poi_fused_clone_1.run(primals_1, buf1, 64, 4, grid=grid(64, 4), stream=stream0) del primals_1 buf2 = empty_strided_cuda((1, 16, 48), (768, 48, 1), torch.float32) # Topologically Sorted Source Nodes: [input_2], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf1, (1, 16, 16), (0, 16, 1), 0), reinterpret_tensor(primals_2, (1, 16, 48), (0, 1, 16), 0), out=buf2) del primals_2 buf3 = empty_strided_cuda((1, 4, 48), (192, 48, 1), torch.float32) # Topologically Sorted Source Nodes: [hh], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf0, (1, 4, 16), (64, 16, 1), 0), reinterpret_tensor(primals_4, (1, 16, 48), (0, 1, 16), 0), out=buf3) buf4 = reinterpret_tensor(buf3, (4, 1, 48), (48, 48, 1), 0); del buf3 # reuse # Topologically Sorted Source Nodes: [hh_1], Original ATen: [aten.add] triton_poi_fused_add_2.run(buf4, primals_5, 192, grid=grid(192), stream=stream0) buf6 = empty_strided_cuda((4, 1, 16), (16, 16, 1), torch.float32) buf5 = empty_strided_cuda((4, 1, 16), (16, 16, 1), torch.float32) buf7 = empty_strided_cuda((4, 1, 16), (16, 16, 1), torch.float32) buf8 = empty_strided_cuda((4, 1, 16), (16, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [add_2, r, add_3, z, mul, add_4, n, sub, mul_1, mul_2, h_1], Original ATen: [aten.add, aten.sigmoid, aten.mul, aten.tanh, aten.rsub] triton_poi_fused_add_mul_rsub_sigmoid_tanh_3.run(buf2, primals_3, buf4, buf0, buf6, buf5, buf7, buf8, 64, grid=grid(64), stream=stream0) buf9 = empty_strided_cuda((1, 4, 48), (192, 48, 1), torch.float32) # Topologically Sorted Source Nodes: [hh_2], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf8, (1, 4, 16), (64, 16, 1), 0), reinterpret_tensor(primals_4, (1, 16, 48), (0, 1, 16), 0), out=buf9) buf10 = reinterpret_tensor(buf9, (4, 1, 48), (48, 48, 1), 0); del buf9 # reuse # Topologically Sorted Source Nodes: [hh_3], Original ATen: [aten.add] triton_poi_fused_add_2.run(buf10, primals_5, 192, grid=grid(192), stream=stream0) buf12 = empty_strided_cuda((4, 1, 16), (16, 16, 1), torch.float32) buf11 = empty_strided_cuda((4, 1, 16), (16, 16, 1), torch.float32) buf13 = empty_strided_cuda((4, 1, 16), (16, 16, 1), torch.float32) buf14 = empty_strided_cuda((4, 1, 16), (16, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [add_7, r_1, add_8, z_1, mul_3, add_9, n_1, sub_1, mul_4, mul_5, h_2], Original ATen: [aten.add, aten.sigmoid, aten.mul, aten.tanh, aten.rsub] triton_poi_fused_add_mul_rsub_sigmoid_tanh_4.run(buf2, primals_3, buf10, buf8, buf12, buf11, buf13, buf14, 64, grid=grid(64), stream=stream0) buf15 = empty_strided_cuda((1, 4, 48), (192, 48, 1), torch.float32) # Topologically Sorted Source Nodes: [hh_4], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf14, (1, 4, 16), (64, 16, 1), 0), reinterpret_tensor(primals_4, (1, 16, 48), (0, 1, 16), 0), out=buf15) buf16 = reinterpret_tensor(buf15, (4, 1, 48), (48, 48, 1), 0); del buf15 # reuse # Topologically Sorted Source Nodes: [hh_5], Original ATen: [aten.add] triton_poi_fused_add_2.run(buf16, primals_5, 192, grid=grid(192), stream=stream0) buf18 = empty_strided_cuda((4, 1, 16), (16, 16, 1), torch.float32) buf17 = empty_strided_cuda((4, 1, 16), (16, 16, 1), torch.float32) buf19 = empty_strided_cuda((4, 1, 16), (16, 16, 1), torch.float32) buf20 = empty_strided_cuda((4, 1, 16), (16, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [add_12, r_2, add_13, z_2, mul_6, add_14, n_2, sub_2, mul_7, mul_8, h_3], Original ATen: [aten.add, aten.sigmoid, aten.mul, aten.tanh, aten.rsub] triton_poi_fused_add_mul_rsub_sigmoid_tanh_5.run(buf2, primals_3, buf16, buf14, buf18, buf17, buf19, buf20, 64, grid=grid(64), stream=stream0) buf21 = empty_strided_cuda((1, 4, 48), (192, 48, 1), torch.float32) # Topologically Sorted Source Nodes: [hh_6], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf20, (1, 4, 16), (64, 16, 1), 0), reinterpret_tensor(primals_4, (1, 16, 48), (0, 1, 16), 0), out=buf21) buf22 = reinterpret_tensor(buf21, (4, 1, 48), (48, 48, 1), 0); del buf21 # reuse # Topologically Sorted Source Nodes: [hh_7], Original ATen: [aten.add] triton_poi_fused_add_2.run(buf22, primals_5, 192, grid=grid(192), stream=stream0) del primals_5 buf24 = empty_strided_cuda((4, 1, 16), (16, 16, 1), torch.float32) buf23 = empty_strided_cuda((4, 1, 16), (16, 16, 1), torch.float32) buf25 = empty_strided_cuda((4, 1, 16), (16, 16, 1), torch.float32) buf27 = empty_strided_cuda((4, 1, 16), (16, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [add_17, r_3, add_18, z_3, mul_9, add_19, n_3, sub_3, mul_10, mul_11, h_4], Original ATen: [aten.add, aten.sigmoid, aten.mul, aten.tanh, aten.rsub] triton_poi_fused_add_mul_rsub_sigmoid_tanh_6.run(buf2, primals_3, buf22, buf20, buf24, buf23, buf25, buf27, 64, grid=grid(64), stream=stream0) del buf2 del primals_3 buf26 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.stack] triton_poi_fused_stack_7.run(buf8, buf14, buf20, buf24, buf25, buf26, 256, grid=grid(256), stream=stream0) return (reinterpret_tensor(buf26, (4, 4, 4, 4), (64, 1, 16, 4), 0), reinterpret_tensor(buf27, (1, 4, 1, 16), (64, 16, 16, 1), 0), reinterpret_tensor(buf0, (4, 1, 16), (16, 16, 1), 0), reinterpret_tensor(buf4, (4, 1, 16), (48, 48, 1), 32), buf5, buf6, buf7, buf8, reinterpret_tensor(buf10, (4, 1, 16), (48, 48, 1), 32), buf11, buf12, buf13, buf14, reinterpret_tensor(buf16, (4, 1, 16), (48, 48, 1), 32), buf17, buf18, buf19, buf20, reinterpret_tensor(buf22, (4, 1, 16), (48, 48, 1), 32), buf23, buf24, buf25, reinterpret_tensor(primals_4, (1, 48, 16), (16, 16, 1), 0), reinterpret_tensor(buf1, (1, 16, 16), (256, 1, 16), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 48, 16), (768, 16, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, 48), (48, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1, 48, 16), (768, 16, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((1, 48), (48, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import Tensor from typing import List from typing import Tuple from torch import nn from functools import partial from torch.nn.parameter import Parameter class GroupedGRULayerMS(nn.Module): def __init__(self, in_ch: 'int', out_ch: 'int', n_freqs: 'int', n_groups: 'int', bias: 'bool'=True): super().__init__() assert n_freqs % n_groups == 0 self.n_freqs = n_freqs self.g_freqs = n_freqs // n_groups self.n_groups = n_groups self.out_ch = self.g_freqs * out_ch self._in_ch = in_ch self.input_size = self.g_freqs * in_ch self.register_parameter('weight_ih_l', Parameter(torch.zeros( n_groups, 3 * self.out_ch, self.input_size), requires_grad=True)) self.register_parameter('weight_hh_l', Parameter(torch.zeros( n_groups, 3 * self.out_ch, self.out_ch), requires_grad=True)) if bias: self.register_parameter('bias_ih_l', Parameter(torch.zeros( n_groups, 3 * self.out_ch), requires_grad=True)) self.register_parameter('bias_hh_l', Parameter(torch.zeros( n_groups, 3 * self.out_ch), requires_grad=True)) else: self.bias_ih_l = None self.bias_hh_l = None def init_hidden(self, batch_size: 'int', device: 'torch.device'=torch. device('cpu')) ->Tensor: return torch.zeros(batch_size, self.n_groups, self.out_ch, device= device) def forward(self, input: 'Tensor', h=None) ->Tuple[Tensor, Tensor]: assert self.n_freqs == input.shape[-1] assert self._in_ch == input.shape[1] if h is None: h = self.init_hidden(input.shape[0]) input = input.permute(0, 2, 3, 1).unflatten(2, (self.n_groups, self .g_freqs)).flatten(3) input = torch.einsum('btgi,goi->btgo', input, self.weight_ih_l) if self.bias_ih_l is not None: input = input + self.bias_ih_l h_out: 'List[Tensor]' = [] for t in range(input.shape[1]): hh = torch.einsum('bgo,gpo->bgp', h, self.weight_hh_l) if self.bias_hh_l is not None: hh = hh + self.bias_hh_l ri, zi, ni = input[:, t].split(self.out_ch, dim=2) rh, zh, nh = hh.split(self.out_ch, dim=2) r = torch.sigmoid(ri + rh) z = torch.sigmoid(zi + zh) n = torch.tanh(ni + r * nh) h = (1 - z) * n + z * h h_out.append(h) out = torch.stack(h_out, dim=1) out = out.unflatten(3, (self.g_freqs, -1)).flatten(2, 3) out = out.permute(0, 3, 1, 2) return out, h class GroupedGRUMS(nn.Module): def __init__(self, in_ch: 'int', out_ch: 'int', n_freqs: 'int', n_groups: 'int', n_layers: 'int'=1, bias: 'bool'=True, add_outputs: 'bool'=False): super().__init__() self.n_layers = n_layers self.grus: 'List[GroupedGRULayerMS]' = nn.ModuleList() gru_layer = partial(GroupedGRULayerMS, out_ch=out_ch, n_freqs= n_freqs, n_groups=n_groups, bias=bias) self.gru0 = gru_layer(in_ch=in_ch) for _ in range(1, n_layers): self.grus.append(gru_layer(in_ch=out_ch)) self.add_outputs = add_outputs def init_hidden(self, batch_size: 'int', device: 'torch.device'=torch. device('cpu')) ->Tensor: return torch.stack(tuple(self.gru0.init_hidden(batch_size, device) for _ in range(self.n_layers))) def forward(self, input: 'Tensor', h=None) ->Tuple[Tensor, Tensor]: if h is None: h = self.init_hidden(input.shape[0], input.device) h_out = [] input, hl = self.gru0(input, h[0]) h_out.append(hl) output = input for i, gru in enumerate(self.grus, 1): input, hl = gru(input, h[i]) h_out.append(hl) if self.add_outputs: output = output + input if not self.add_outputs: output = input return output, torch.stack(h_out) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_ch': 4, 'out_ch': 4, 'n_freqs': 4, 'n_groups': 1}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch import Tensor from typing import List from typing import Tuple from torch import nn from functools import partial from torch.nn.parameter import Parameter assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_stack_0(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = 0.0 tl.store(out_ptr0 + x0, tmp0, xmask) @triton.jit def triton_poi_fused_clone_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 16 y1 = yindex // 16 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 16 * x2 + 64 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_add_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 48 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) @triton.jit def triton_poi_fused_add_mul_rsub_sigmoid_tanh_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (16 + x0 + 192 * x1), xmask) tmp1 = tl.load(in_ptr1 + (16 + x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (16 + x0 + 48 * x1), xmask) tmp6 = tl.load(in_ptr0 + (x0 + 192 * x1), xmask) tmp7 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr2 + (x0 + 48 * x1), xmask) tmp12 = tl.load(in_ptr0 + (32 + x0 + 192 * x1), xmask) tmp13 = tl.load(in_ptr1 + (32 + x0), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr2 + (32 + x0 + 48 * x1), xmask) tmp22 = tl.load(in_ptr3 + x2, xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp5 = tl.sigmoid(tmp4) tmp8 = tmp6 + tmp7 tmp10 = tmp8 + tmp9 tmp11 = tl.sigmoid(tmp10) tmp14 = tmp12 + tmp13 tmp16 = tmp11 * tmp15 tmp17 = tmp14 + tmp16 tmp18 = libdevice.tanh(tmp17) tmp19 = 1.0 tmp20 = tmp19 - tmp5 tmp21 = tmp20 * tmp18 tmp23 = tmp5 * tmp22 tmp24 = tmp21 + tmp23 tl.store(out_ptr0 + x2, tmp5, xmask) tl.store(out_ptr1 + x2, tmp11, xmask) tl.store(out_ptr2 + x2, tmp18, xmask) tl.store(out_ptr3 + x2, tmp24, xmask) @triton.jit def triton_poi_fused_add_mul_rsub_sigmoid_tanh_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (64 + x0 + 192 * x1), xmask) tmp1 = tl.load(in_ptr1 + (16 + x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (16 + x0 + 48 * x1), xmask) tmp6 = tl.load(in_ptr0 + (48 + x0 + 192 * x1), xmask) tmp7 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr2 + (x0 + 48 * x1), xmask) tmp12 = tl.load(in_ptr0 + (80 + x0 + 192 * x1), xmask) tmp13 = tl.load(in_ptr1 + (32 + x0), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr2 + (32 + x0 + 48 * x1), xmask) tmp22 = tl.load(in_ptr3 + x2, xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp5 = tl.sigmoid(tmp4) tmp8 = tmp6 + tmp7 tmp10 = tmp8 + tmp9 tmp11 = tl.sigmoid(tmp10) tmp14 = tmp12 + tmp13 tmp16 = tmp11 * tmp15 tmp17 = tmp14 + tmp16 tmp18 = libdevice.tanh(tmp17) tmp19 = 1.0 tmp20 = tmp19 - tmp5 tmp21 = tmp20 * tmp18 tmp23 = tmp5 * tmp22 tmp24 = tmp21 + tmp23 tl.store(out_ptr0 + x2, tmp5, xmask) tl.store(out_ptr1 + x2, tmp11, xmask) tl.store(out_ptr2 + x2, tmp18, xmask) tl.store(out_ptr3 + x2, tmp24, xmask) @triton.jit def triton_poi_fused_add_mul_rsub_sigmoid_tanh_5(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (112 + x0 + 192 * x1), xmask) tmp1 = tl.load(in_ptr1 + (16 + x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (16 + x0 + 48 * x1), xmask) tmp6 = tl.load(in_ptr0 + (96 + x0 + 192 * x1), xmask) tmp7 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr2 + (x0 + 48 * x1), xmask) tmp12 = tl.load(in_ptr0 + (128 + x0 + 192 * x1), xmask) tmp13 = tl.load(in_ptr1 + (32 + x0), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr2 + (32 + x0 + 48 * x1), xmask) tmp22 = tl.load(in_ptr3 + x2, xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp5 = tl.sigmoid(tmp4) tmp8 = tmp6 + tmp7 tmp10 = tmp8 + tmp9 tmp11 = tl.sigmoid(tmp10) tmp14 = tmp12 + tmp13 tmp16 = tmp11 * tmp15 tmp17 = tmp14 + tmp16 tmp18 = libdevice.tanh(tmp17) tmp19 = 1.0 tmp20 = tmp19 - tmp5 tmp21 = tmp20 * tmp18 tmp23 = tmp5 * tmp22 tmp24 = tmp21 + tmp23 tl.store(out_ptr0 + x2, tmp5, xmask) tl.store(out_ptr1 + x2, tmp11, xmask) tl.store(out_ptr2 + x2, tmp18, xmask) tl.store(out_ptr3 + x2, tmp24, xmask) @triton.jit def triton_poi_fused_add_mul_rsub_sigmoid_tanh_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (160 + x0 + 192 * x1), xmask) tmp1 = tl.load(in_ptr1 + (16 + x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (16 + x0 + 48 * x1), xmask) tmp6 = tl.load(in_ptr0 + (144 + x0 + 192 * x1), xmask) tmp7 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr2 + (x0 + 48 * x1), xmask) tmp12 = tl.load(in_ptr0 + (176 + x0 + 192 * x1), xmask) tmp13 = tl.load(in_ptr1 + (32 + x0), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr2 + (32 + x0 + 48 * x1), xmask) tmp22 = tl.load(in_ptr3 + x2, xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp5 = tl.sigmoid(tmp4) tmp8 = tmp6 + tmp7 tmp10 = tmp8 + tmp9 tmp11 = tl.sigmoid(tmp10) tmp14 = tmp12 + tmp13 tmp16 = tmp11 * tmp15 tmp17 = tmp14 + tmp16 tmp18 = libdevice.tanh(tmp17) tmp19 = 1.0 tmp20 = tmp19 - tmp5 tmp21 = tmp20 * tmp18 tmp23 = tmp5 * tmp22 tmp24 = tmp21 + tmp23 tl.store(out_ptr0 + x2, tmp5, xmask) tl.store(out_ptr1 + x2, tmp11, xmask) tl.store(out_ptr2 + x2, tmp18, xmask) tl.store(out_ptr3 + x2, tmp24, xmask) @triton.jit def triton_poi_fused_stack_7(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 16 % 4 x0 = xindex % 16 x2 = xindex // 64 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 16 * x2), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 2, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + (x0 + 16 * x2), tmp9 & xmask, eviction_policy ='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 3, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr2 + (x0 + 16 * x2), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tmp0 >= tmp12 tl.full([1], 4, tl.int64) tmp19 = tl.load(in_ptr3 + (x0 + 16 * x2), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = 1.0 tmp21 = tmp20 - tmp19 tmp22 = tl.load(in_ptr4 + (x0 + 16 * x2), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp23 = tmp21 * tmp22 tmp24 = tl.load(in_ptr2 + (x0 + 16 * x2), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp25 = tmp19 * tmp24 tmp26 = tmp23 + tmp25 tmp27 = tl.full(tmp26.shape, 0.0, tmp26.dtype) tmp28 = tl.where(tmp16, tmp26, tmp27) tmp29 = tl.where(tmp14, tmp15, tmp28) tmp30 = tl.where(tmp9, tmp10, tmp29) tmp31 = tl.where(tmp4, tmp5, tmp30) tl.store(out_ptr0 + x3, tmp31, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 48, 16), (768, 16, 1)) assert_size_stride(primals_3, (1, 48), (48, 1)) assert_size_stride(primals_4, (1, 48, 16), (768, 16, 1)) assert_size_stride(primals_5, (1, 48), (48, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1, 4, 1, 16), (64, 16, 16, 1), torch.float32 ) get_raw_stream(0) triton_poi_fused_stack_0[grid(64)](buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((4, 4, 1, 4, 4), (64, 16, 16, 4, 1), torch.float32) triton_poi_fused_clone_1[grid(64, 4)](primals_1, buf1, 64, 4, XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1) del primals_1 buf2 = empty_strided_cuda((1, 16, 48), (768, 48, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf1, (1, 16, 16), (0, 16, 1), 0), reinterpret_tensor(primals_2, (1, 16, 48), (0, 1, 16), 0), out=buf2) del primals_2 buf3 = empty_strided_cuda((1, 4, 48), (192, 48, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf0, (1, 4, 16), (64, 16, 1), 0), reinterpret_tensor(primals_4, (1, 16, 48), (0, 1, 16), 0), out=buf3) buf4 = reinterpret_tensor(buf3, (4, 1, 48), (48, 48, 1), 0) del buf3 triton_poi_fused_add_2[grid(192)](buf4, primals_5, 192, XBLOCK=128, num_warps=4, num_stages=1) buf6 = empty_strided_cuda((4, 1, 16), (16, 16, 1), torch.float32) buf5 = empty_strided_cuda((4, 1, 16), (16, 16, 1), torch.float32) buf7 = empty_strided_cuda((4, 1, 16), (16, 16, 1), torch.float32) buf8 = empty_strided_cuda((4, 1, 16), (16, 16, 1), torch.float32) triton_poi_fused_add_mul_rsub_sigmoid_tanh_3[grid(64)](buf2, primals_3, buf4, buf0, buf6, buf5, buf7, buf8, 64, XBLOCK=64, num_warps=1, num_stages=1) buf9 = empty_strided_cuda((1, 4, 48), (192, 48, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf8, (1, 4, 16), (64, 16, 1), 0), reinterpret_tensor(primals_4, (1, 16, 48), (0, 1, 16), 0), out=buf9) buf10 = reinterpret_tensor(buf9, (4, 1, 48), (48, 48, 1), 0) del buf9 triton_poi_fused_add_2[grid(192)](buf10, primals_5, 192, XBLOCK=128, num_warps=4, num_stages=1) buf12 = empty_strided_cuda((4, 1, 16), (16, 16, 1), torch.float32) buf11 = empty_strided_cuda((4, 1, 16), (16, 16, 1), torch.float32) buf13 = empty_strided_cuda((4, 1, 16), (16, 16, 1), torch.float32) buf14 = empty_strided_cuda((4, 1, 16), (16, 16, 1), torch.float32) triton_poi_fused_add_mul_rsub_sigmoid_tanh_4[grid(64)](buf2, primals_3, buf10, buf8, buf12, buf11, buf13, buf14, 64, XBLOCK= 64, num_warps=1, num_stages=1) buf15 = empty_strided_cuda((1, 4, 48), (192, 48, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf14, (1, 4, 16), (64, 16, 1 ), 0), reinterpret_tensor(primals_4, (1, 16, 48), (0, 1, 16), 0 ), out=buf15) buf16 = reinterpret_tensor(buf15, (4, 1, 48), (48, 48, 1), 0) del buf15 triton_poi_fused_add_2[grid(192)](buf16, primals_5, 192, XBLOCK=128, num_warps=4, num_stages=1) buf18 = empty_strided_cuda((4, 1, 16), (16, 16, 1), torch.float32) buf17 = empty_strided_cuda((4, 1, 16), (16, 16, 1), torch.float32) buf19 = empty_strided_cuda((4, 1, 16), (16, 16, 1), torch.float32) buf20 = empty_strided_cuda((4, 1, 16), (16, 16, 1), torch.float32) triton_poi_fused_add_mul_rsub_sigmoid_tanh_5[grid(64)](buf2, primals_3, buf16, buf14, buf18, buf17, buf19, buf20, 64, XBLOCK =64, num_warps=1, num_stages=1) buf21 = empty_strided_cuda((1, 4, 48), (192, 48, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf20, (1, 4, 16), (64, 16, 1 ), 0), reinterpret_tensor(primals_4, (1, 16, 48), (0, 1, 16), 0 ), out=buf21) buf22 = reinterpret_tensor(buf21, (4, 1, 48), (48, 48, 1), 0) del buf21 triton_poi_fused_add_2[grid(192)](buf22, primals_5, 192, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 buf24 = empty_strided_cuda((4, 1, 16), (16, 16, 1), torch.float32) buf23 = empty_strided_cuda((4, 1, 16), (16, 16, 1), torch.float32) buf25 = empty_strided_cuda((4, 1, 16), (16, 16, 1), torch.float32) buf27 = empty_strided_cuda((4, 1, 16), (16, 16, 1), torch.float32) triton_poi_fused_add_mul_rsub_sigmoid_tanh_6[grid(64)](buf2, primals_3, buf22, buf20, buf24, buf23, buf25, buf27, 64, XBLOCK =64, num_warps=1, num_stages=1) del buf2 del primals_3 buf26 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32) triton_poi_fused_stack_7[grid(256)](buf8, buf14, buf20, buf24, buf25, buf26, 256, XBLOCK=128, num_warps=4, num_stages=1) return reinterpret_tensor(buf26, (4, 4, 4, 4), (64, 1, 16, 4), 0 ), reinterpret_tensor(buf27, (1, 4, 1, 16), (64, 16, 16, 1), 0 ), reinterpret_tensor(buf0, (4, 1, 16), (16, 16, 1), 0 ), reinterpret_tensor(buf4, (4, 1, 16), (48, 48, 1), 32 ), buf5, buf6, buf7, buf8, reinterpret_tensor(buf10, (4, 1, 16), ( 48, 48, 1), 32), buf11, buf12, buf13, buf14, reinterpret_tensor(buf16, (4, 1, 16), (48, 48, 1), 32 ), buf17, buf18, buf19, buf20, reinterpret_tensor(buf22, (4, 1, 16), (48, 48, 1), 32), buf23, buf24, buf25, reinterpret_tensor(primals_4, (1, 48, 16), (16, 16, 1), 0), reinterpret_tensor(buf1, (1, 16, 16), (256, 1, 16), 0) class GroupedGRULayerMS(nn.Module): def __init__(self, in_ch: 'int', out_ch: 'int', n_freqs: 'int', n_groups: 'int', bias: 'bool'=True): super().__init__() assert n_freqs % n_groups == 0 self.n_freqs = n_freqs self.g_freqs = n_freqs // n_groups self.n_groups = n_groups self.out_ch = self.g_freqs * out_ch self._in_ch = in_ch self.input_size = self.g_freqs * in_ch self.register_parameter('weight_ih_l', Parameter(torch.zeros( n_groups, 3 * self.out_ch, self.input_size), requires_grad=True)) self.register_parameter('weight_hh_l', Parameter(torch.zeros( n_groups, 3 * self.out_ch, self.out_ch), requires_grad=True)) if bias: self.register_parameter('bias_ih_l', Parameter(torch.zeros( n_groups, 3 * self.out_ch), requires_grad=True)) self.register_parameter('bias_hh_l', Parameter(torch.zeros( n_groups, 3 * self.out_ch), requires_grad=True)) else: self.bias_ih_l = None self.bias_hh_l = None def init_hidden(self, batch_size: 'int', device: 'torch.device'=torch. device('cpu')) ->Tensor: return torch.zeros(batch_size, self.n_groups, self.out_ch, device= device) def forward(self, input: 'Tensor', h=None) ->Tuple[Tensor, Tensor]: assert self.n_freqs == input.shape[-1] assert self._in_ch == input.shape[1] if h is None: h = self.init_hidden(input.shape[0]) input = input.permute(0, 2, 3, 1).unflatten(2, (self.n_groups, self .g_freqs)).flatten(3) input = torch.einsum('btgi,goi->btgo', input, self.weight_ih_l) if self.bias_ih_l is not None: input = input + self.bias_ih_l h_out: 'List[Tensor]' = [] for t in range(input.shape[1]): hh = torch.einsum('bgo,gpo->bgp', h, self.weight_hh_l) if self.bias_hh_l is not None: hh = hh + self.bias_hh_l ri, zi, ni = input[:, t].split(self.out_ch, dim=2) rh, zh, nh = hh.split(self.out_ch, dim=2) r = torch.sigmoid(ri + rh) z = torch.sigmoid(zi + zh) n = torch.tanh(ni + r * nh) h = (1 - z) * n + z * h h_out.append(h) out = torch.stack(h_out, dim=1) out = out.unflatten(3, (self.g_freqs, -1)).flatten(2, 3) out = out.permute(0, 3, 1, 2) return out, h class GroupedGRUMSNew(nn.Module): def __init__(self, in_ch: 'int', out_ch: 'int', n_freqs: 'int', n_groups: 'int', n_layers: 'int'=1, bias: 'bool'=True, add_outputs: 'bool'=False): super().__init__() self.n_layers = n_layers self.grus: 'List[GroupedGRULayerMS]' = nn.ModuleList() gru_layer = partial(GroupedGRULayerMS, out_ch=out_ch, n_freqs= n_freqs, n_groups=n_groups, bias=bias) self.gru0 = gru_layer(in_ch=in_ch) for _ in range(1, n_layers): self.grus.append(gru_layer(in_ch=out_ch)) self.add_outputs = add_outputs def init_hidden(self, batch_size: 'int', device: 'torch.device'=torch. device('cpu')) ->Tensor: return torch.stack(tuple(self.gru0.init_hidden(batch_size, device) for _ in range(self.n_layers))) def forward(self, input_0): primals_2 = self.gru0.weight_ih_l primals_4 = self.gru0.weight_hh_l primals_3 = self.gru0.bias_ih_l primals_5 = self.gru0.bias_hh_l primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0], output[1]
Rikorose/DeepFilterNet
GroupedGRUMS
false
14,354
[ "ECL-2.0", "Apache-2.0", "MIT" ]
54
afe6bfb53efae70207e18df7ed372c2cfe337fee
https://github.com/Rikorose/DeepFilterNet/tree/afe6bfb53efae70207e18df7ed372c2cfe337fee
eca_layer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/l3/cl35tzbhrd24dhunkbb6gjs54aklpyr46oikqhoylcgmkcmhujil.py # Topologically Sorted Source Nodes: [y], Original ATen: [aten.mean] # Source node to ATen node mapping: # y => mean # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [-1, -2], True), kwargs = {}) triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/hx/chxvgixiwduvwuumo7j2hhpjfvzwfh7g2wp26wd4453y6egzxpmt.py # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %expand), kwargs = {}) triton_poi_fused_mul_1 = async_compile.triton('triton_poi_fused_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 16) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tl.store(out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 1, 3), (3, 3, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [y], Original ATen: [aten.mean] stream0 = get_raw_stream(0) triton_per_fused_mean_0.run(buf1, primals_1, 16, 16, grid=grid(16), stream=stream0) # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(reinterpret_tensor(buf1, (4, 1, 4), (4, 0, 1), 0), primals_2, stride=(1,), padding=(1,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf2, (4, 1, 4), (4, 4, 1)) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] triton_poi_fused_mul_1.run(primals_1, buf2, buf3, 256, grid=grid(256), stream=stream0) return (buf3, primals_1, primals_2, reinterpret_tensor(buf1, (4, 1, 4), (4, 1, 1), 0), buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 1, 3), (3, 3, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.parallel import torch.utils.data.distributed class eca_layer(nn.Module): """Constructs a ECA module. Args: channel: Number of channels of the input feature map k_size: Adaptive selection of kernel size """ def __init__(self, channel, k_size=3): super(eca_layer, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.conv = nn.Conv1d(1, 1, kernel_size=k_size, padding=(k_size - 1 ) // 2, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): _b, _c, _h, _w = x.size() y = self.avg_pool(x) y = self.conv(y.squeeze(-1).transpose(-1, -2)).transpose(-1, -2 ).unsqueeze(-1) y = self.sigmoid(y) return x * y.expand_as(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'channel': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.nn.parallel import torch.utils.data.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp6, xmask) @triton.jit def triton_poi_fused_mul_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 16 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tl.store(out_ptr0 + x2, tmp3, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 1, 3), (3, 3, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_mean_0[grid(16)](buf1, primals_1, 16, 16, XBLOCK=1, num_warps=2, num_stages=1) buf2 = extern_kernels.convolution(reinterpret_tensor(buf1, (4, 1, 4 ), (4, 0, 1), 0), primals_2, stride=(1,), padding=(1,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf2, (4, 1, 4), (4, 4, 1)) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_mul_1[grid(256)](primals_1, buf2, buf3, 256, XBLOCK=256, num_warps=4, num_stages=1) return buf3, primals_1, primals_2, reinterpret_tensor(buf1, (4, 1, 4), (4, 1, 1), 0), buf2 class eca_layerNew(nn.Module): """Constructs a ECA module. Args: channel: Number of channels of the input feature map k_size: Adaptive selection of kernel size """ def __init__(self, channel, k_size=3): super(eca_layerNew, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.conv = nn.Conv1d(1, 1, kernel_size=k_size, padding=(k_size - 1 ) // 2, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, input_0): primals_2 = self.conv.weight primals_1 = input_0 output = call([primals_1, primals_2]) return output[0]
SSusantAchary/OctaveConv_pytorch
eca_layer
false
14,355
[ "MIT" ]
633
079f7da29d55c2eeed8985d33f0b2f765d7a469e
https://github.com/SSusantAchary/OctaveConv_pytorch/tree/079f7da29d55c2eeed8985d33f0b2f765d7a469e
CustomLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/m5/cm5ywoknkqgpigfbgrcpv6522qfrzh6laaxlsgodxdryhw7br2wc.py # Topologically Sorted Source Nodes: [pow_1, pow_2, sub, pow_3, mean, pow_4, pow_5, sub_1, pow_6, mean_1, mul, add, sub_2, pow_7, sub_3, pow_8, sub_4, pow_9, mean_2, add_1], Original ATen: [aten.pow, aten.sub, aten.mean, aten.mul, aten.add, aten.rsub] # Source node to ATen node mapping: # add => add # add_1 => add_1 # mean => mean # mean_1 => mean_1 # mean_2 => mean_2 # mul => mul # pow_1 => pow_1 # pow_2 => pow_2 # pow_3 => pow_3 # pow_4 => pow_4 # pow_5 => pow_5 # pow_6 => pow_6 # pow_7 => pow_7 # pow_8 => pow_8 # pow_9 => pow_9 # sub => sub # sub_1 => sub_1 # sub_2 => sub_2 # sub_3 => sub_3 # sub_4 => sub_4 # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%slice_9, 0.5), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%slice_3, 0.5), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%pow_1, %pow_2), kwargs = {}) # %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_3,), kwargs = {}) # %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%slice_9, 0.5), kwargs = {}) # %pow_5 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%slice_3, 0.5), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%pow_4, %pow_5), kwargs = {}) # %pow_6 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_1, 4), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_6,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean_1, 10), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean, %mul), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %slice_12), kwargs = {}) # %pow_7 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_2, 0.5), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %slice_6), kwargs = {}) # %pow_8 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_3, 0.5), kwargs = {}) # %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%pow_7, %pow_8), kwargs = {}) # %pow_9 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_4, 2), kwargs = {}) # %mean_2 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_9,), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %mean_2), kwargs = {}) triton_per_fused_add_mean_mul_pow_rsub_sub_0 = async_compile.triton('triton_per_fused_add_mean_mul_pow_rsub_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mean_mul_pow_rsub_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_mean_mul_pow_rsub_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp2 = tl.load(in_ptr1 + (r0), None) tmp1 = libdevice.sqrt(tmp0) tmp3 = libdevice.sqrt(tmp2) tmp4 = tmp1 - tmp3 tmp5 = tmp4 * tmp4 tmp6 = tl.broadcast_to(tmp5, [RBLOCK]) tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0)) tmp9 = tmp5 * tmp5 tmp10 = tl.broadcast_to(tmp9, [RBLOCK]) tmp12 = triton_helpers.promote_to_tensor(tl.sum(tmp10, 0)) tmp13 = 256.0 tmp14 = tmp8 / tmp13 tmp15 = tmp12 / tmp13 tmp16 = 10.0 tmp17 = tmp15 * tmp16 tmp18 = tmp14 + tmp17 tmp19 = 0.0 tmp20 = tmp19 / tmp19 tmp21 = tmp18 + tmp20 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp21, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf2 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [pow_1, pow_2, sub, pow_3, mean, pow_4, pow_5, sub_1, pow_6, mean_1, mul, add, sub_2, pow_7, sub_3, pow_8, sub_4, pow_9, mean_2, add_1], Original ATen: [aten.pow, aten.sub, aten.mean, aten.mul, aten.add, aten.rsub] stream0 = get_raw_stream(0) triton_per_fused_add_mean_mul_pow_rsub_sub_0.run(buf2, arg1_1, arg0_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class CustomLoss(nn.Module): def __init__(self, weight=None, size_average=True): super(CustomLoss, self).__init__() def forward(self, outputs, targets): gamma = 0.5 C4 = 10 gb_hat = outputs[:, :, :34] rb_hat = outputs[:, :, 34:68] gb = targets[:, :, :34] rb = targets[:, :, 34:68] """ total_loss=0 for i in range(500): total_loss += (torch.sum(torch.pow((torch.pow(gb[:,i,:],gamma) - torch.pow(gb_hat[:,i,:],gamma)),2))) + C4*torch.sum(torch.pow(torch.pow(gb[:,i,:],gamma) - torch.pow(gb_hat[:,i,:],gamma),4)) + torch.sum(torch.pow(torch.pow((1-rb[:,i,:]),gamma)-torch.pow((1-rb_hat[:,i,:]),gamma),2)) return total_loss """ return torch.mean(torch.pow(torch.pow(gb, gamma) - torch.pow(gb_hat, gamma), 2)) + C4 * torch.mean(torch.pow(torch.pow(gb, gamma) - torch.pow(gb_hat, gamma), 4)) + torch.mean(torch.pow(torch.pow( 1 - rb, gamma) - torch.pow(1 - rb_hat, gamma), 2)) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_mean_mul_pow_rsub_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp2 = tl.load(in_ptr1 + r0, None) tmp1 = libdevice.sqrt(tmp0) tmp3 = libdevice.sqrt(tmp2) tmp4 = tmp1 - tmp3 tmp5 = tmp4 * tmp4 tmp6 = tl.broadcast_to(tmp5, [RBLOCK]) tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0)) tmp9 = tmp5 * tmp5 tmp10 = tl.broadcast_to(tmp9, [RBLOCK]) tmp12 = triton_helpers.promote_to_tensor(tl.sum(tmp10, 0)) tmp13 = 256.0 tmp14 = tmp8 / tmp13 tmp15 = tmp12 / tmp13 tmp16 = 10.0 tmp17 = tmp15 * tmp16 tmp18 = tmp14 + tmp17 tmp19 = 0.0 tmp20 = tmp19 / tmp19 tmp21 = tmp18 + tmp20 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp21, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf2 = buf0 del buf0 get_raw_stream(0) triton_per_fused_add_mean_mul_pow_rsub_sub_0[grid(1)](buf2, arg1_1, arg0_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf2, class CustomLossNew(nn.Module): def __init__(self, weight=None, size_average=True): super(CustomLossNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
Ryuk17/PercepNet
CustomLoss
false
14,356
[ "BSD-3-Clause" ]
170
94e91f1db242447593098afc1a844b822e154e09
https://github.com/Ryuk17/PercepNet/tree/94e91f1db242447593098afc1a844b822e154e09
Distribution_Loss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/ov/covbryzjnff2kb26c5gkcqbvct6kdwzanlx3iu6ee24itsit76o3.py # Topologically Sorted Source Nodes: [input_logits], Original ATen: [aten.mean] # Source node to ATen node mapping: # input_logits => mean # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%arg0_1, [-1, -2], True), kwargs = {}) triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mean_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/tc/ctc56mmeyrg54zhcosx5xflnc2f6yxxevsjt4vy4hkbnzhtunafa.py # Topologically Sorted Source Nodes: [input_softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # input_softmax => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp3 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp1 = 16.0 tmp2 = tmp0 / tmp1 tmp4 = tmp3 / tmp1 tmp6 = tmp5 / tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 / tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 / tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = tl_math.exp(tmp14) tl.store(out_ptr0 + (x2), tmp15, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/7a/c7a4tsepaxypdn7q55iqrz3guhzrd2vfw6dp2zd7yft47srawlbe.py # Topologically Sorted Source Nodes: [input_softmax, target_softmax, loss], Original ATen: [aten._softmax, aten.mse_loss] # Source node to ATen node mapping: # input_softmax => div, sum_1 # loss => mean_2, pow_1, sub_2 # target_softmax => div_1, sum_2 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_1, [1], True), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_1, %sum_2), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%div, %div_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_2, 2), kwargs = {}) # %mean_2 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_1,), kwargs = {}) triton_per_fused__softmax_mse_loss_2 = async_compile.triton('triton_per_fused__softmax_mse_loss_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 16], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_mse_loss_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 10, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__softmax_mse_loss_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex r1 = (rindex // 4) tmp0 = tl.load(in_ptr0 + (r2), None) tmp1 = tl.load(in_ptr0 + (4*r1), None, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*r1)), None, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*r1)), None, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*r1)), None, eviction_policy='evict_last') tmp9 = tl.load(in_ptr1 + (r2), None) tmp10 = tl.load(in_ptr1 + (4*r1), None, eviction_policy='evict_last') tmp11 = tl.load(in_ptr1 + (1 + (4*r1)), None, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (2 + (4*r1)), None, eviction_policy='evict_last') tmp15 = tl.load(in_ptr1 + (3 + (4*r1)), None, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tmp12 = tmp10 + tmp11 tmp14 = tmp12 + tmp13 tmp16 = tmp14 + tmp15 tmp17 = tmp9 / tmp16 tmp18 = tmp8 - tmp17 tmp19 = tmp18 * tmp18 tmp20 = tl.broadcast_to(tmp19, [XBLOCK, RBLOCK]) tmp22 = tl.sum(tmp20, 1)[:, None] tmp23 = 16.0 tmp24 = tmp22 / tmp23 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp24, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) # Topologically Sorted Source Nodes: [input_logits], Original ATen: [aten.mean] stream0 = get_raw_stream(0) triton_per_fused_mean_0.run(arg0_1, buf0, 16, 16, grid=grid(16), stream=stream0) del arg0_1 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [input_softmax], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf0, buf1, 16, grid=grid(16), stream=stream0) buf2 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [target_logits], Original ATen: [aten.mean] triton_per_fused_mean_0.run(arg1_1, buf2, 16, 16, grid=grid(16), stream=stream0) del arg1_1 buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [target_softmax], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf2, buf3, 16, grid=grid(16), stream=stream0) del buf2 buf5 = empty_strided_cuda((), (), torch.float32) buf6 = buf5; del buf5 # reuse # Topologically Sorted Source Nodes: [input_softmax, target_softmax, loss], Original ATen: [aten._softmax, aten.mse_loss] triton_per_fused__softmax_mse_loss_2.run(buf6, buf1, buf3, 1, 16, grid=grid(1), stream=stream0) del buf1 del buf3 return (buf6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F import torch.nn as nn import torch.nn.parallel def compute_kernel(x, y): x_size = x.size(0) y_size = y.size(0) dim = x.size(1) x = x.unsqueeze(1) y = y.unsqueeze(0) tiled_x = x.expand(x_size, y_size, dim) tiled_y = y.expand(x_size, y_size, dim) kernel_input = (tiled_x - tiled_y).pow(2).mean(2) return torch.exp(-kernel_input) def mmd_loss(x, y, reduction=None): x_kernel = compute_kernel(x, x) y_kernel = compute_kernel(y, y) xy_kernel = compute_kernel(x, y) mmd = x_kernel.mean() + y_kernel.mean() - 2 * xy_kernel.mean() return mmd def softmax_kl_loss(input_logits, target_logits, reduction='mean'): """Takes softmax on both sides and returns KL divergence Note: - Returns the sum over all examples. Divide by the batch size afterwards if you want the mean. - Sends gradients to inputs but not the targets. """ input_log_softmax = F.log_softmax(input_logits, dim=1) target_softmax = F.softmax(target_logits, dim=1) return F.kl_div(input_log_softmax, target_softmax, reduction=reduction) def softmax_mse_loss(input_logits, target_logits, reduction='mean'): """Takes softmax on both sides and returns MSE loss Note: - Returns the sum over all examples. Divide by the batch size afterwards if you want the mean. - Sends gradients to inputs but not the targets. """ input_softmax = F.softmax(input_logits, dim=1) target_softmax = F.softmax(target_logits, dim=1) return F.mse_loss(input_softmax, target_softmax, reduction=reduction) class Distribution_Loss(nn.Module): def __init__(self, loss='softmax_mse', reduction='mean'): super(Distribution_Loss, self).__init__() self.check_shape = True loss = loss.lower() if loss == 'mse': criterion = F.mse_loss elif loss == 'softmax_mse': criterion = softmax_mse_loss elif loss == 'kl': criterion = F.kl_div elif loss == 'softmax_kl': criterion = softmax_kl_loss elif loss == 'mmd': criterion = mmd_loss self.check_shape = False else: raise NotImplementedError self.loss_name = loss self.criterion = criterion self.reduction = reduction def forward(self, input_logits, target_logits, mask=None, reduction=None): if self.check_shape: assert input_logits.size() == target_logits.size() if reduction is None: reduction = self.reduction input_logits = F.adaptive_avg_pool2d(input_logits, (1, 1)) target_logits = F.adaptive_avg_pool2d(target_logits, (1, 1)) input_logits = input_logits.reshape((input_logits.shape[0], -1)) target_logits = target_logits.reshape((target_logits.shape[0], -1)) loss = self.criterion(input_logits, target_logits, reduction=reduction) if 'softmax' not in self.loss_name and 'mmd' not in self.loss_name: loss = loss / 10000 if len(loss.shape) > 1: loss = loss.sum(1) if mask is not None: loss = (loss * mask).sum() / (mask.sum() if mask.sum() > 0 else 1) else: loss = loss.mean() return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn.functional as F import torch.nn as nn import torch.nn.parallel assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_mean_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl. constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tl.store(out_ptr0 + x0, tmp4, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp1 = 16.0 tmp2 = tmp0 / tmp1 tmp4 = tmp3 / tmp1 tmp6 = tmp5 / tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 / tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 / tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = tl_math.exp(tmp14) tl.store(out_ptr0 + x2, tmp15, xmask) @triton.jit def triton_per_fused__softmax_mse_loss_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex r1 = rindex // 4 tmp0 = tl.load(in_ptr0 + r2, None) tmp1 = tl.load(in_ptr0 + 4 * r1, None, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * r1), None, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * r1), None, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * r1), None, eviction_policy='evict_last') tmp9 = tl.load(in_ptr1 + r2, None) tmp10 = tl.load(in_ptr1 + 4 * r1, None, eviction_policy='evict_last') tmp11 = tl.load(in_ptr1 + (1 + 4 * r1), None, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (2 + 4 * r1), None, eviction_policy='evict_last') tmp15 = tl.load(in_ptr1 + (3 + 4 * r1), None, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tmp12 = tmp10 + tmp11 tmp14 = tmp12 + tmp13 tmp16 = tmp14 + tmp15 tmp17 = tmp9 / tmp16 tmp18 = tmp8 - tmp17 tmp19 = tmp18 * tmp18 tmp20 = tl.broadcast_to(tmp19, [XBLOCK, RBLOCK]) tmp22 = tl.sum(tmp20, 1)[:, None] tmp23 = 16.0 tmp24 = tmp22 / tmp23 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp24, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) get_raw_stream(0) triton_per_fused_mean_0[grid(16)](arg0_1, buf0, 16, 16, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused__softmax_1[grid(16)](buf0, buf1, 16, XBLOCK=16, num_warps=1, num_stages=1) buf2 = buf0 del buf0 triton_per_fused_mean_0[grid(16)](arg1_1, buf2, 16, 16, XBLOCK=1, num_warps=2, num_stages=1) del arg1_1 buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused__softmax_1[grid(16)](buf2, buf3, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf2 buf5 = empty_strided_cuda((), (), torch.float32) buf6 = buf5 del buf5 triton_per_fused__softmax_mse_loss_2[grid(1)](buf6, buf1, buf3, 1, 16, XBLOCK=1, num_warps=2, num_stages=1) del buf1 del buf3 return buf6, def compute_kernel(x, y): x_size = x.size(0) y_size = y.size(0) dim = x.size(1) x = x.unsqueeze(1) y = y.unsqueeze(0) tiled_x = x.expand(x_size, y_size, dim) tiled_y = y.expand(x_size, y_size, dim) kernel_input = (tiled_x - tiled_y).pow(2).mean(2) return torch.exp(-kernel_input) def mmd_loss(x, y, reduction=None): x_kernel = compute_kernel(x, x) y_kernel = compute_kernel(y, y) xy_kernel = compute_kernel(x, y) mmd = x_kernel.mean() + y_kernel.mean() - 2 * xy_kernel.mean() return mmd def softmax_kl_loss(input_logits, target_logits, reduction='mean'): """Takes softmax on both sides and returns KL divergence Note: - Returns the sum over all examples. Divide by the batch size afterwards if you want the mean. - Sends gradients to inputs but not the targets. """ input_log_softmax = F.log_softmax(input_logits, dim=1) target_softmax = F.softmax(target_logits, dim=1) return F.kl_div(input_log_softmax, target_softmax, reduction=reduction) def softmax_mse_loss(input_logits, target_logits, reduction='mean'): """Takes softmax on both sides and returns MSE loss Note: - Returns the sum over all examples. Divide by the batch size afterwards if you want the mean. - Sends gradients to inputs but not the targets. """ input_softmax = F.softmax(input_logits, dim=1) target_softmax = F.softmax(target_logits, dim=1) return F.mse_loss(input_softmax, target_softmax, reduction=reduction) class Distribution_LossNew(nn.Module): def __init__(self, loss='softmax_mse', reduction='mean'): super(Distribution_LossNew, self).__init__() self.check_shape = True loss = loss.lower() if loss == 'mse': criterion = F.mse_loss elif loss == 'softmax_mse': criterion = softmax_mse_loss elif loss == 'kl': criterion = F.kl_div elif loss == 'softmax_kl': criterion = softmax_kl_loss elif loss == 'mmd': criterion = mmd_loss self.check_shape = False else: raise NotImplementedError self.loss_name = loss self.criterion = criterion self.reduction = reduction def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
SHI-Labs/Semi-Supervised-Transfer-Learning
Distribution_Loss
false
14,357
[ "MIT" ]
81
f206750824ffe10f88a2b418b2b671da61b999f6
https://github.com/SHI-Labs/Semi-Supervised-Transfer-Learning/tree/f206750824ffe10f88a2b418b2b671da61b999f6
D_DownBlock
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/la/clalnn5iz2syotwgvds5fjb6mtcklh5yizks6zdxu552jin7zbwe.py # Topologically Sorted Source Nodes: [out, x], Original ATen: [aten.convolution, aten._prelu_kernel] # Source node to ATen node mapping: # out => convolution # x => gt, mul, where # Graph fragment: # %convolution : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %convolution), kwargs = {}) # %where : [num_users=3] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul), kwargs = {}) triton_poi_fused__prelu_kernel_convolution_0 = async_compile.triton('triton_poi_fused__prelu_kernel_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__prelu_kernel_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__prelu_kernel_convolution_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (0)) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp7 = tmp6 * tmp2 tmp8 = tl.where(tmp4, tmp2, tmp7) tl.store(in_out_ptr0 + (x3), tmp2, xmask) tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/to/ctormmp3mvoa45b3jpoxsthvhtzozbyfczl4j5lyp2c4ucdvfjni.py # Topologically Sorted Source Nodes: [out_1, l0], Original ATen: [aten.convolution, aten._prelu_kernel] # Source node to ATen node mapping: # l0 => gt_1, mul_1, where_1 # out_1 => convolution_1 # Graph fragment: # %convolution_1 : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%where, %primals_5, %primals_6, [4, 4], [2, 2], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_1, 0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %convolution_1), kwargs = {}) # %where_1 : [num_users=3] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %convolution_1, %mul_1), kwargs = {}) triton_poi_fused__prelu_kernel_convolution_1 = async_compile.triton('triton_poi_fused__prelu_kernel_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__prelu_kernel_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__prelu_kernel_convolution_1(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (0)) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp7 = tmp6 * tmp2 tmp8 = tl.where(tmp4, tmp2, tmp7) tl.store(in_out_ptr0 + (x2), tmp2, xmask) tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/l2/cl26qlqbg4ashxwthfa7y7w2lu5hks2tixgyjr7r7uwzp4cso4h4.py # Topologically Sorted Source Nodes: [out_2, h0, sub], Original ATen: [aten.convolution, aten._prelu_kernel, aten.sub] # Source node to ATen node mapping: # h0 => gt_2, mul_2, where_2 # out_2 => convolution_2 # sub => sub # Graph fragment: # %convolution_2 : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%where_1, %primals_8, %primals_9, [4, 4], [2, 2], [1, 1], True, [0, 0], 1), kwargs = {}) # %gt_2 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_2, 0), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_2, %convolution_2), kwargs = {}) # %where_2 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %convolution_2, %mul_2), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_2, %where), kwargs = {}) triton_poi_fused__prelu_kernel_convolution_sub_2 = async_compile.triton('triton_poi_fused__prelu_kernel_convolution_sub_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__prelu_kernel_convolution_sub_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__prelu_kernel_convolution_sub_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (0)) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp9 = tl.load(in_ptr2 + (x3), xmask) tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp7 = tmp6 * tmp2 tmp8 = tl.where(tmp4, tmp2, tmp7) tmp10 = tmp8 - tmp9 tl.store(in_out_ptr0 + (x3), tmp2, xmask) tl.store(out_ptr0 + (x3), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/nc/cncqykvb427dkubfyrbktkpjhc4r2mzfu7qqqg67f5ayu2yrue6l.py # Topologically Sorted Source Nodes: [out_3, l1, add], Original ATen: [aten.convolution, aten._prelu_kernel, aten.add] # Source node to ATen node mapping: # add => add # l1 => gt_3, mul_3, where_3 # out_3 => convolution_3 # Graph fragment: # %convolution_3 : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%sub, %primals_11, %primals_12, [4, 4], [2, 2], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_3 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_3, 0), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_3, %convolution_3), kwargs = {}) # %where_3 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_3, %convolution_3, %mul_3), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%where_3, %where_1), kwargs = {}) triton_poi_fused__prelu_kernel_add_convolution_3 = async_compile.triton('triton_poi_fused__prelu_kernel_add_convolution_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__prelu_kernel_add_convolution_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__prelu_kernel_add_convolution_3(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (0)) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp9 = tl.load(in_ptr2 + (x2), xmask) tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp7 = tmp6 * tmp2 tmp8 = tl.where(tmp4, tmp2, tmp7) tmp10 = tmp8 + tmp9 tl.store(in_out_ptr0 + (x2), tmp2, xmask) tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13 = args args.clear() assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (1, ), (1, )) assert_size_stride(primals_5, (4, 4, 8, 8), (256, 64, 8, 1)) assert_size_stride(primals_6, (4, ), (1, )) assert_size_stride(primals_7, (1, ), (1, )) assert_size_stride(primals_8, (4, 4, 8, 8), (256, 64, 8, 1)) assert_size_stride(primals_9, (4, ), (1, )) assert_size_stride(primals_10, (1, ), (1, )) assert_size_stride(primals_11, (4, 4, 8, 8), (256, 64, 8, 1)) assert_size_stride(primals_12, (4, ), (1, )) assert_size_stride(primals_13, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0; del buf0 # reuse buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [out, x], Original ATen: [aten.convolution, aten._prelu_kernel] stream0 = get_raw_stream(0) triton_poi_fused__prelu_kernel_convolution_0.run(buf1, primals_2, primals_4, buf2, 256, grid=grid(256), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf2, primals_5, stride=(4, 4), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 1, 1), (4, 1, 1, 1)) buf4 = buf3; del buf3 # reuse buf5 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [out_1, l0], Original ATen: [aten.convolution, aten._prelu_kernel] triton_poi_fused__prelu_kernel_convolution_1.run(buf4, primals_6, primals_7, buf5, 16, grid=grid(16), stream=stream0) del primals_6 # Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf5, primals_8, stride=(4, 4), padding=(2, 2), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 4, 4, 4), (64, 16, 4, 1)) buf7 = buf6; del buf6 # reuse buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [out_2, h0, sub], Original ATen: [aten.convolution, aten._prelu_kernel, aten.sub] triton_poi_fused__prelu_kernel_convolution_sub_2.run(buf7, primals_9, primals_10, buf2, buf8, 256, grid=grid(256), stream=stream0) del primals_9 # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.convolution] buf9 = extern_kernels.convolution(buf8, primals_11, stride=(4, 4), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 4, 1, 1), (4, 1, 1, 1)) buf10 = buf9; del buf9 # reuse buf11 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [out_3, l1, add], Original ATen: [aten.convolution, aten._prelu_kernel, aten.add] triton_poi_fused__prelu_kernel_add_convolution_3.run(buf10, primals_12, primals_13, buf5, buf11, 16, grid=grid(16), stream=stream0) del primals_12 return (buf11, primals_1, primals_3, primals_4, primals_5, primals_7, primals_8, primals_10, primals_11, primals_13, buf1, buf2, buf4, buf5, buf7, buf8, buf10, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4, 8, 8), (256, 64, 8, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 4, 8, 8), (256, 64, 8, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, 4, 8, 8), (256, 64, 8, 1), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data from torchvision.transforms import * class ConvBlock(torch.nn.Module): def __init__(self, input_size, output_size, kernel_size=3, stride=1, padding=1, bias=True, activation='prelu', norm=None): super(ConvBlock, self).__init__() self.conv = torch.nn.Conv2d(input_size, output_size, kernel_size, stride, padding, bias=bias) self.norm = norm if self.norm == 'batch': self.bn = torch.nn.BatchNorm2d(output_size) elif self.norm == 'instance': self.bn = torch.nn.InstanceNorm2d(output_size) self.activation = activation if self.activation == 'relu': self.act = torch.nn.ReLU(True) elif self.activation == 'prelu': self.act = torch.nn.PReLU() elif self.activation == 'lrelu': self.act = torch.nn.LeakyReLU(0.2, True) elif self.activation == 'tanh': self.act = torch.nn.Tanh() elif self.activation == 'sigmoid': self.act = torch.nn.Sigmoid() def forward(self, x): if self.norm is not None: out = self.bn(self.conv(x)) else: out = self.conv(x) if self.activation is not None: return self.act(out) else: return out class DeconvBlock(torch.nn.Module): def __init__(self, input_size, output_size, kernel_size=4, stride=2, padding=1, bias=True, activation='prelu', norm=None): super(DeconvBlock, self).__init__() self.deconv = torch.nn.ConvTranspose2d(input_size, output_size, kernel_size, stride, padding, bias=bias) self.norm = norm if self.norm == 'batch': self.bn = torch.nn.BatchNorm2d(output_size) elif self.norm == 'instance': self.bn = torch.nn.InstanceNorm2d(output_size) self.activation = activation if self.activation == 'relu': self.act = torch.nn.ReLU(True) elif self.activation == 'prelu': self.act = torch.nn.PReLU() elif self.activation == 'lrelu': self.act = torch.nn.LeakyReLU(0.2, True) elif self.activation == 'tanh': self.act = torch.nn.Tanh() elif self.activation == 'sigmoid': self.act = torch.nn.Sigmoid() def forward(self, x): if self.norm is not None: out = self.bn(self.deconv(x)) else: out = self.deconv(x) if self.activation is not None: return self.act(out) else: return out class D_DownBlock(torch.nn.Module): def __init__(self, num_filter, kernel_size=8, stride=4, padding=2, num_stages=1, bias=True, activation='prelu', norm=None): super(D_DownBlock, self).__init__() self.conv = ConvBlock(num_filter * num_stages, num_filter, 1, 1, 0, activation, norm=None) self.down_conv1 = ConvBlock(num_filter, num_filter, kernel_size, stride, padding, activation, norm=None) self.down_conv2 = DeconvBlock(num_filter, num_filter, kernel_size, stride, padding, activation, norm=None) self.down_conv3 = ConvBlock(num_filter, num_filter, kernel_size, stride, padding, activation, norm=None) def forward(self, x): x = self.conv(x) l0 = self.down_conv1(x) h0 = self.down_conv2(l0) l1 = self.down_conv3(h0 - x) return l1 + l0 def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_filter': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.utils.data from torchvision.transforms import * assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__prelu_kernel_convolution_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + 0) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp7 = tmp6 * tmp2 tmp8 = tl.where(tmp4, tmp2, tmp7) tl.store(in_out_ptr0 + x3, tmp2, xmask) tl.store(out_ptr0 + x3, tmp8, xmask) @triton.jit def triton_poi_fused__prelu_kernel_convolution_1(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + 0) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp7 = tmp6 * tmp2 tmp8 = tl.where(tmp4, tmp2, tmp7) tl.store(in_out_ptr0 + x2, tmp2, xmask) tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused__prelu_kernel_convolution_sub_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + 0) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp9 = tl.load(in_ptr2 + x3, xmask) tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp7 = tmp6 * tmp2 tmp8 = tl.where(tmp4, tmp2, tmp7) tmp10 = tmp8 - tmp9 tl.store(in_out_ptr0 + x3, tmp2, xmask) tl.store(out_ptr0 + x3, tmp10, xmask) @triton.jit def triton_poi_fused__prelu_kernel_add_convolution_3(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + 0) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp9 = tl.load(in_ptr2 + x2, xmask) tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp7 = tmp6 * tmp2 tmp8 = tl.where(tmp4, tmp2, tmp7) tmp10 = tmp8 + tmp9 tl.store(in_out_ptr0 + x2, tmp2, xmask) tl.store(out_ptr0 + x2, tmp10, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13) = args args.clear() assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (1,), (1,)) assert_size_stride(primals_5, (4, 4, 8, 8), (256, 64, 8, 1)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (1,), (1,)) assert_size_stride(primals_8, (4, 4, 8, 8), (256, 64, 8, 1)) assert_size_stride(primals_9, (4,), (1,)) assert_size_stride(primals_10, (1,), (1,)) assert_size_stride(primals_11, (4, 4, 8, 8), (256, 64, 8, 1)) assert_size_stride(primals_12, (4,), (1,)) assert_size_stride(primals_13, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0 del buf0 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__prelu_kernel_convolution_0[grid(256)](buf1, primals_2, primals_4, buf2, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf3 = extern_kernels.convolution(buf2, primals_5, stride=(4, 4), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 1, 1), (4, 1, 1, 1)) buf4 = buf3 del buf3 buf5 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) triton_poi_fused__prelu_kernel_convolution_1[grid(16)](buf4, primals_6, primals_7, buf5, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_6 buf6 = extern_kernels.convolution(buf5, primals_8, stride=(4, 4), padding=(2, 2), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 4, 4, 4), (64, 16, 4, 1)) buf7 = buf6 del buf6 buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__prelu_kernel_convolution_sub_2[grid(256)](buf7, primals_9, primals_10, buf2, buf8, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_9 buf9 = extern_kernels.convolution(buf8, primals_11, stride=(4, 4), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 4, 1, 1), (4, 1, 1, 1)) buf10 = buf9 del buf9 buf11 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) triton_poi_fused__prelu_kernel_add_convolution_3[grid(16)](buf10, primals_12, primals_13, buf5, buf11, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_12 return (buf11, primals_1, primals_3, primals_4, primals_5, primals_7, primals_8, primals_10, primals_11, primals_13, buf1, buf2, buf4, buf5, buf7, buf8, buf10) class ConvBlock(torch.nn.Module): def __init__(self, input_size, output_size, kernel_size=3, stride=1, padding=1, bias=True, activation='prelu', norm=None): super(ConvBlock, self).__init__() self.conv = torch.nn.Conv2d(input_size, output_size, kernel_size, stride, padding, bias=bias) self.norm = norm if self.norm == 'batch': self.bn = torch.nn.BatchNorm2d(output_size) elif self.norm == 'instance': self.bn = torch.nn.InstanceNorm2d(output_size) self.activation = activation if self.activation == 'relu': self.act = torch.nn.ReLU(True) elif self.activation == 'prelu': self.act = torch.nn.PReLU() elif self.activation == 'lrelu': self.act = torch.nn.LeakyReLU(0.2, True) elif self.activation == 'tanh': self.act = torch.nn.Tanh() elif self.activation == 'sigmoid': self.act = torch.nn.Sigmoid() def forward(self, x): if self.norm is not None: out = self.bn(self.conv(x)) else: out = self.conv(x) if self.activation is not None: return self.act(out) else: return out class DeconvBlock(torch.nn.Module): def __init__(self, input_size, output_size, kernel_size=4, stride=2, padding=1, bias=True, activation='prelu', norm=None): super(DeconvBlock, self).__init__() self.deconv = torch.nn.ConvTranspose2d(input_size, output_size, kernel_size, stride, padding, bias=bias) self.norm = norm if self.norm == 'batch': self.bn = torch.nn.BatchNorm2d(output_size) elif self.norm == 'instance': self.bn = torch.nn.InstanceNorm2d(output_size) self.activation = activation if self.activation == 'relu': self.act = torch.nn.ReLU(True) elif self.activation == 'prelu': self.act = torch.nn.PReLU() elif self.activation == 'lrelu': self.act = torch.nn.LeakyReLU(0.2, True) elif self.activation == 'tanh': self.act = torch.nn.Tanh() elif self.activation == 'sigmoid': self.act = torch.nn.Sigmoid() def forward(self, x): if self.norm is not None: out = self.bn(self.deconv(x)) else: out = self.deconv(x) if self.activation is not None: return self.act(out) else: return out class D_DownBlockNew(torch.nn.Module): def __init__(self, num_filter, kernel_size=8, stride=4, padding=2, num_stages=1, bias=True, activation='prelu', norm=None): super(D_DownBlockNew, self).__init__() self.conv = ConvBlock(num_filter * num_stages, num_filter, 1, 1, 0, activation, norm=None) self.down_conv1 = ConvBlock(num_filter, num_filter, kernel_size, stride, padding, activation, norm=None) self.down_conv2 = DeconvBlock(num_filter, num_filter, kernel_size, stride, padding, activation, norm=None) self.down_conv3 = ConvBlock(num_filter, num_filter, kernel_size, stride, padding, activation, norm=None) def forward(self, input_0): primals_1 = self.conv.conv.weight primals_2 = self.conv.conv.bias primals_4 = self.conv.act.weight primals_5 = self.down_conv1.conv.weight primals_6 = self.down_conv1.conv.bias primals_7 = self.down_conv1.act.weight primals_8 = self.down_conv2.deconv.weight primals_9 = self.down_conv2.deconv.bias primals_10 = self.down_conv2.act.weight primals_11 = self.down_conv3.conv.weight primals_12 = self.down_conv3.conv.bias primals_13 = self.down_conv3.act.weight primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return output[0]
RyanMoussouni/iSeeBetter
D_DownBlock
false
14,358
[ "MIT" ]
327
af193ae0852f8e477fcd6875dce874eb5092a24a
https://github.com/RyanMoussouni/iSeeBetter/tree/af193ae0852f8e477fcd6875dce874eb5092a24a
FakeRKHSConvNet
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/yw/cywcz4pxnzyvlsoydzxcj5pzlu3i5g7qgj7guhgyvlrzkngzehmv.py # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu] # Source node to ATen node mapping: # relu => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_0(in_out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tl.store(in_out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/sb/csbfa4itjbflkqsfneo2c6mi3vnrum7dc2e7l2pstoa2kdz6gtd3.py # Topologically Sorted Source Nodes: [conv2d_2, add, x], Original ATen: [aten.convolution, aten.add, aten._native_batch_norm_legit_no_training, aten.native_batch_norm_backward] # Source node to ATen node mapping: # add => add # conv2d_2 => convolution_2 # x => add_2, mul_1, mul_2, sub # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_2, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_1, %convolution_2), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %unsqueeze_1), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %unsqueeze_3), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %unsqueeze_5), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %unsqueeze_7), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %unsqueeze_10), kwargs = {}) triton_poi_fused__native_batch_norm_legit_no_training_add_convolution_native_batch_norm_backward_1 = async_compile.triton('triton_poi_fused__native_batch_norm_legit_no_training_add_convolution_native_batch_norm_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__native_batch_norm_legit_no_training_add_convolution_native_batch_norm_backward_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__native_batch_norm_legit_no_training_add_convolution_native_batch_norm_backward_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x3), xmask) tmp2 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x1), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr5 + (x1), xmask, eviction_policy='evict_last') tmp18 = tl.load(in_ptr6 + (x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tmp6 = tmp4 - tmp5 tmp8 = 1e-05 tmp9 = tmp7 + tmp8 tmp10 = libdevice.sqrt(tmp9) tmp11 = tl.full([1], 1, tl.int32) tmp12 = tmp11 / tmp10 tmp13 = 1.0 tmp14 = tmp12 * tmp13 tmp15 = tmp6 * tmp14 tmp17 = tmp15 * tmp16 tmp19 = tmp17 + tmp18 tl.store(out_ptr0 + (x3), tmp19, xmask) tl.store(out_ptr1 + (x3), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, ), (1, )) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, ), (1, )) assert_size_stride(primals_9, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_relu_0.run(buf1, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [h_res], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1)) # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(primals_2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1)) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_2, add, x], Original ATen: [aten.convolution, aten.add, aten._native_batch_norm_legit_no_training, aten.native_batch_norm_backward] triton_poi_fused__native_batch_norm_legit_no_training_add_convolution_native_batch_norm_backward_1.run(buf2, buf3, primals_5, primals_6, primals_7, primals_8, primals_9, buf4, buf5, 256, grid=grid(256), stream=stream0) del buf2 del buf3 del primals_5 del primals_6 del primals_9 return (buf4, primals_1, primals_2, primals_3, primals_4, primals_7, primals_8, buf1, buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import numpy as np from torch import nn as nn from torch import optim as optim from math import * class MaybeBatchNorm2d(nn.Module): def __init__(self, n_ftr, affine, use_bn): super(MaybeBatchNorm2d, self).__init__() self.bn = nn.BatchNorm2d(n_ftr, affine=affine) self.use_bn = use_bn def forward(self, x): if self.use_bn: x = self.bn(x) return x class FakeRKHSConvNet(nn.Module): def __init__(self, n_input, n_output, use_bn=False): super(FakeRKHSConvNet, self).__init__() self.conv1 = nn.Conv2d(n_input, n_output, kernel_size=1, stride=1, padding=0, bias=False) self.bn1 = MaybeBatchNorm2d(n_output, True, use_bn) self.relu1 = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(n_output, n_output, kernel_size=1, stride=1, padding=0, bias=False) self.bn_out = MaybeBatchNorm2d(n_output, True, True) self.shortcut = nn.Conv2d(n_input, n_output, kernel_size=1, stride= 1, padding=0, bias=True) if n_output >= n_input: eye_mask = np.zeros((n_output, n_input, 1, 1), dtype=np.bool) for i in range(n_input): eye_mask[i, i, 0, 0] = 1 self.shortcut.weight.data.uniform_(-0.01, 0.01) self.shortcut.weight.data.masked_fill_(torch.tensor(eye_mask), 1.0) def init_weights(self, init_scale=1.0): nn.init.kaiming_uniform_(self.conv1.weight, a=math.sqrt(5)) self.conv1.weight.data.mul_(init_scale) nn.init.constant_(self.conv2.weight, 0.0) def forward(self, x): h_res = self.conv2(self.relu1(self.bn1(self.conv1(x)))) h = self.bn_out(h_res + self.shortcut(x)) return h def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'n_input': 4, 'n_output': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import math import numpy as np from torch import nn as nn from torch import optim as optim from math import * assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_relu_0(in_out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tl.store(in_out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused__native_batch_norm_legit_no_training_add_convolution_native_batch_norm_backward_1( in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x3, xmask) tmp2 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x1, xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr5 + x1, xmask, eviction_policy='evict_last') tmp18 = tl.load(in_ptr6 + x1, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tmp6 = tmp4 - tmp5 tmp8 = 1e-05 tmp9 = tmp7 + tmp8 tmp10 = libdevice.sqrt(tmp9) tmp11 = tl.full([1], 1, tl.int32) tmp12 = tmp11 / tmp10 tmp13 = 1.0 tmp14 = tmp12 * tmp13 tmp15 = tmp6 * tmp14 tmp17 = tmp15 * tmp16 tmp19 = tmp17 + tmp18 tl.store(out_ptr0 + x3, tmp19, xmask) tl.store(out_ptr1 + x3, tmp6, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4,), (1,)) assert_size_stride(primals_9, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_relu_0[grid(256)](buf1, 256, XBLOCK=128, num_warps =4, num_stages=1) buf2 = extern_kernels.convolution(buf1, primals_3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1)) buf3 = extern_kernels.convolution(primals_2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1)) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__native_batch_norm_legit_no_training_add_convolution_native_batch_norm_backward_1[ grid(256)](buf2, buf3, primals_5, primals_6, primals_7, primals_8, primals_9, buf4, buf5, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf2 del buf3 del primals_5 del primals_6 del primals_9 return (buf4, primals_1, primals_2, primals_3, primals_4, primals_7, primals_8, buf1, buf5) class MaybeBatchNorm2d(nn.Module): def __init__(self, n_ftr, affine, use_bn): super(MaybeBatchNorm2d, self).__init__() self.bn = nn.BatchNorm2d(n_ftr, affine=affine) self.use_bn = use_bn def forward(self, x): if self.use_bn: x = self.bn(x) return x class FakeRKHSConvNetNew(nn.Module): def __init__(self, n_input, n_output, use_bn=False): super(FakeRKHSConvNetNew, self).__init__() self.conv1 = nn.Conv2d(n_input, n_output, kernel_size=1, stride=1, padding=0, bias=False) self.bn1 = MaybeBatchNorm2d(n_output, True, use_bn) self.relu1 = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(n_output, n_output, kernel_size=1, stride=1, padding=0, bias=False) self.bn_out = MaybeBatchNorm2d(n_output, True, True) self.shortcut = nn.Conv2d(n_input, n_output, kernel_size=1, stride= 1, padding=0, bias=True) if n_output >= n_input: eye_mask = np.zeros((n_output, n_input, 1, 1), dtype=np.bool) for i in range(n_input): eye_mask[i, i, 0, 0] = 1 self.shortcut.weight.data.uniform_(-0.01, 0.01) self.shortcut.weight.data.masked_fill_(torch.tensor(eye_mask), 1.0) def init_weights(self, init_scale=1.0): nn.init.kaiming_uniform_(self.conv1.weight, a=math.sqrt(5)) self.conv1.weight.data.mul_(init_scale) nn.init.constant_(self.conv2.weight, 0.0) def forward(self, input_0): primals_1 = self.conv1.weight primals_5 = self.bn1.bn.weight primals_6 = self.bn1.bn.bias primals_3 = self.conv2.weight primals_7 = self.bn_out.bn.weight primals_8 = self.bn_out.bn.bias primals_4 = self.shortcut.weight primals_9 = self.shortcut.bias primals_2 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
SNUHDR2018/ConSSL
FakeRKHSConvNet
false
14,359
[ "MIT" ]
78
c7d406d0224e38895986c8fb7281a189e493c982
https://github.com/SNUHDR2018/ConSSL/tree/c7d406d0224e38895986c8fb7281a189e493c982
DownBlock
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/6z/c6zaho43pxjqk5eqidz3d5ckh3z6vlh34gcbntokha6jjsr4all2.py # Topologically Sorted Source Nodes: [out, l0], Original ATen: [aten.convolution, aten._prelu_kernel] # Source node to ATen node mapping: # l0 => gt, mul, where # out => convolution # Graph fragment: # %convolution : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [4, 4], [2, 2], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %convolution), kwargs = {}) # %where : [num_users=3] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul), kwargs = {}) triton_poi_fused__prelu_kernel_convolution_0 = async_compile.triton('triton_poi_fused__prelu_kernel_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__prelu_kernel_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__prelu_kernel_convolution_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (0)) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp7 = tmp6 * tmp2 tmp8 = tl.where(tmp4, tmp2, tmp7) tl.store(in_out_ptr0 + (x2), tmp2, xmask) tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/v2/cv2gefdciotml3zwtkzv4ghtu2a4dbeoas7q3ue7dcfa4f2mizfk.py # Topologically Sorted Source Nodes: [out_1, h0, sub], Original ATen: [aten.convolution, aten._prelu_kernel, aten.sub] # Source node to ATen node mapping: # h0 => gt_1, mul_1, where_1 # out_1 => convolution_1 # sub => sub # Graph fragment: # %convolution_1 : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%where, %primals_5, %primals_6, [4, 4], [2, 2], [1, 1], True, [0, 0], 1), kwargs = {}) # %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_1, 0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %convolution_1), kwargs = {}) # %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %convolution_1, %mul_1), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_1, %primals_3), kwargs = {}) triton_poi_fused__prelu_kernel_convolution_sub_1 = async_compile.triton('triton_poi_fused__prelu_kernel_convolution_sub_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__prelu_kernel_convolution_sub_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__prelu_kernel_convolution_sub_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (0)) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp9 = tl.load(in_ptr2 + (x3), xmask) tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp7 = tmp6 * tmp2 tmp8 = tl.where(tmp4, tmp2, tmp7) tmp10 = tmp8 - tmp9 tl.store(in_out_ptr0 + (x3), tmp2, xmask) tl.store(out_ptr0 + (x3), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/p4/cp477hx6wscm5qo2wzce4hwmhoeb74h5hefxsw2hibtz4mcbgjag.py # Topologically Sorted Source Nodes: [out_2, l1, add], Original ATen: [aten.convolution, aten._prelu_kernel, aten.add] # Source node to ATen node mapping: # add => add # l1 => gt_2, mul_2, where_2 # out_2 => convolution_2 # Graph fragment: # %convolution_2 : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%sub, %primals_8, %primals_9, [4, 4], [2, 2], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_2 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_2, 0), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_2, %convolution_2), kwargs = {}) # %where_2 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %convolution_2, %mul_2), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%where_2, %where), kwargs = {}) triton_poi_fused__prelu_kernel_add_convolution_2 = async_compile.triton('triton_poi_fused__prelu_kernel_add_convolution_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__prelu_kernel_add_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__prelu_kernel_add_convolution_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (0)) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp9 = tl.load(in_ptr2 + (x2), xmask) tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp7 = tmp6 * tmp2 tmp8 = tl.where(tmp4, tmp2, tmp7) tmp10 = tmp8 + tmp9 tl.store(in_out_ptr0 + (x2), tmp2, xmask) tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10 = args args.clear() assert_size_stride(primals_1, (4, 4, 8, 8), (256, 64, 8, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (1, ), (1, )) assert_size_stride(primals_5, (4, 4, 8, 8), (256, 64, 8, 1)) assert_size_stride(primals_6, (4, ), (1, )) assert_size_stride(primals_7, (1, ), (1, )) assert_size_stride(primals_8, (4, 4, 8, 8), (256, 64, 8, 1)) assert_size_stride(primals_9, (4, ), (1, )) assert_size_stride(primals_10, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(4, 4), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1)) buf1 = buf0; del buf0 # reuse buf2 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [out, l0], Original ATen: [aten.convolution, aten._prelu_kernel] stream0 = get_raw_stream(0) triton_poi_fused__prelu_kernel_convolution_0.run(buf1, primals_2, primals_4, buf2, 16, grid=grid(16), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf2, primals_5, stride=(4, 4), padding=(2, 2), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1)) buf4 = buf3; del buf3 # reuse buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [out_1, h0, sub], Original ATen: [aten.convolution, aten._prelu_kernel, aten.sub] triton_poi_fused__prelu_kernel_convolution_sub_1.run(buf4, primals_6, primals_7, primals_3, buf5, 256, grid=grid(256), stream=stream0) del primals_6 # Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf5, primals_8, stride=(4, 4), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 4, 1, 1), (4, 1, 1, 1)) buf7 = buf6; del buf6 # reuse buf8 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [out_2, l1, add], Original ATen: [aten.convolution, aten._prelu_kernel, aten.add] triton_poi_fused__prelu_kernel_add_convolution_2.run(buf7, primals_9, primals_10, buf2, buf8, 16, grid=grid(16), stream=stream0) del primals_9 return (buf8, primals_1, primals_3, primals_4, primals_5, primals_7, primals_8, primals_10, buf1, buf2, buf4, buf5, buf7, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 8, 8), (256, 64, 8, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4, 8, 8), (256, 64, 8, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 4, 8, 8), (256, 64, 8, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data from torchvision.transforms import * class ConvBlock(torch.nn.Module): def __init__(self, input_size, output_size, kernel_size=3, stride=1, padding=1, bias=True, activation='prelu', norm=None): super(ConvBlock, self).__init__() self.conv = torch.nn.Conv2d(input_size, output_size, kernel_size, stride, padding, bias=bias) self.norm = norm if self.norm == 'batch': self.bn = torch.nn.BatchNorm2d(output_size) elif self.norm == 'instance': self.bn = torch.nn.InstanceNorm2d(output_size) self.activation = activation if self.activation == 'relu': self.act = torch.nn.ReLU(True) elif self.activation == 'prelu': self.act = torch.nn.PReLU() elif self.activation == 'lrelu': self.act = torch.nn.LeakyReLU(0.2, True) elif self.activation == 'tanh': self.act = torch.nn.Tanh() elif self.activation == 'sigmoid': self.act = torch.nn.Sigmoid() def forward(self, x): if self.norm is not None: out = self.bn(self.conv(x)) else: out = self.conv(x) if self.activation is not None: return self.act(out) else: return out class DeconvBlock(torch.nn.Module): def __init__(self, input_size, output_size, kernel_size=4, stride=2, padding=1, bias=True, activation='prelu', norm=None): super(DeconvBlock, self).__init__() self.deconv = torch.nn.ConvTranspose2d(input_size, output_size, kernel_size, stride, padding, bias=bias) self.norm = norm if self.norm == 'batch': self.bn = torch.nn.BatchNorm2d(output_size) elif self.norm == 'instance': self.bn = torch.nn.InstanceNorm2d(output_size) self.activation = activation if self.activation == 'relu': self.act = torch.nn.ReLU(True) elif self.activation == 'prelu': self.act = torch.nn.PReLU() elif self.activation == 'lrelu': self.act = torch.nn.LeakyReLU(0.2, True) elif self.activation == 'tanh': self.act = torch.nn.Tanh() elif self.activation == 'sigmoid': self.act = torch.nn.Sigmoid() def forward(self, x): if self.norm is not None: out = self.bn(self.deconv(x)) else: out = self.deconv(x) if self.activation is not None: return self.act(out) else: return out class DownBlock(torch.nn.Module): def __init__(self, num_filter, kernel_size=8, stride=4, padding=2, bias =True, activation='prelu', norm=None): super(DownBlock, self).__init__() self.down_conv1 = ConvBlock(num_filter, num_filter, kernel_size, stride, padding, activation, norm=None) self.down_conv2 = DeconvBlock(num_filter, num_filter, kernel_size, stride, padding, activation, norm=None) self.down_conv3 = ConvBlock(num_filter, num_filter, kernel_size, stride, padding, activation, norm=None) def forward(self, x): l0 = self.down_conv1(x) h0 = self.down_conv2(l0) l1 = self.down_conv3(h0 - x) return l1 + l0 def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_filter': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.utils.data from torchvision.transforms import * assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__prelu_kernel_convolution_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + 0) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp7 = tmp6 * tmp2 tmp8 = tl.where(tmp4, tmp2, tmp7) tl.store(in_out_ptr0 + x2, tmp2, xmask) tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused__prelu_kernel_convolution_sub_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + 0) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp9 = tl.load(in_ptr2 + x3, xmask) tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp7 = tmp6 * tmp2 tmp8 = tl.where(tmp4, tmp2, tmp7) tmp10 = tmp8 - tmp9 tl.store(in_out_ptr0 + x3, tmp2, xmask) tl.store(out_ptr0 + x3, tmp10, xmask) @triton.jit def triton_poi_fused__prelu_kernel_add_convolution_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + 0) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp9 = tl.load(in_ptr2 + x2, xmask) tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp7 = tmp6 * tmp2 tmp8 = tl.where(tmp4, tmp2, tmp7) tmp10 = tmp8 + tmp9 tl.store(in_out_ptr0 + x2, tmp2, xmask) tl.store(out_ptr0 + x2, tmp10, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10) = args args.clear() assert_size_stride(primals_1, (4, 4, 8, 8), (256, 64, 8, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (1,), (1,)) assert_size_stride(primals_5, (4, 4, 8, 8), (256, 64, 8, 1)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (1,), (1,)) assert_size_stride(primals_8, (4, 4, 8, 8), (256, 64, 8, 1)) assert_size_stride(primals_9, (4,), (1,)) assert_size_stride(primals_10, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(4, 4), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1)) buf1 = buf0 del buf0 buf2 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused__prelu_kernel_convolution_0[grid(16)](buf1, primals_2, primals_4, buf2, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_2 buf3 = extern_kernels.convolution(buf2, primals_5, stride=(4, 4), padding=(2, 2), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1)) buf4 = buf3 del buf3 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__prelu_kernel_convolution_sub_1[grid(256)](buf4, primals_6, primals_7, primals_3, buf5, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_6 buf6 = extern_kernels.convolution(buf5, primals_8, stride=(4, 4), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 4, 1, 1), (4, 1, 1, 1)) buf7 = buf6 del buf6 buf8 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) triton_poi_fused__prelu_kernel_add_convolution_2[grid(16)](buf7, primals_9, primals_10, buf2, buf8, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_9 return (buf8, primals_1, primals_3, primals_4, primals_5, primals_7, primals_8, primals_10, buf1, buf2, buf4, buf5, buf7) class ConvBlock(torch.nn.Module): def __init__(self, input_size, output_size, kernel_size=3, stride=1, padding=1, bias=True, activation='prelu', norm=None): super(ConvBlock, self).__init__() self.conv = torch.nn.Conv2d(input_size, output_size, kernel_size, stride, padding, bias=bias) self.norm = norm if self.norm == 'batch': self.bn = torch.nn.BatchNorm2d(output_size) elif self.norm == 'instance': self.bn = torch.nn.InstanceNorm2d(output_size) self.activation = activation if self.activation == 'relu': self.act = torch.nn.ReLU(True) elif self.activation == 'prelu': self.act = torch.nn.PReLU() elif self.activation == 'lrelu': self.act = torch.nn.LeakyReLU(0.2, True) elif self.activation == 'tanh': self.act = torch.nn.Tanh() elif self.activation == 'sigmoid': self.act = torch.nn.Sigmoid() def forward(self, x): if self.norm is not None: out = self.bn(self.conv(x)) else: out = self.conv(x) if self.activation is not None: return self.act(out) else: return out class DeconvBlock(torch.nn.Module): def __init__(self, input_size, output_size, kernel_size=4, stride=2, padding=1, bias=True, activation='prelu', norm=None): super(DeconvBlock, self).__init__() self.deconv = torch.nn.ConvTranspose2d(input_size, output_size, kernel_size, stride, padding, bias=bias) self.norm = norm if self.norm == 'batch': self.bn = torch.nn.BatchNorm2d(output_size) elif self.norm == 'instance': self.bn = torch.nn.InstanceNorm2d(output_size) self.activation = activation if self.activation == 'relu': self.act = torch.nn.ReLU(True) elif self.activation == 'prelu': self.act = torch.nn.PReLU() elif self.activation == 'lrelu': self.act = torch.nn.LeakyReLU(0.2, True) elif self.activation == 'tanh': self.act = torch.nn.Tanh() elif self.activation == 'sigmoid': self.act = torch.nn.Sigmoid() def forward(self, x): if self.norm is not None: out = self.bn(self.deconv(x)) else: out = self.deconv(x) if self.activation is not None: return self.act(out) else: return out class DownBlockNew(torch.nn.Module): def __init__(self, num_filter, kernel_size=8, stride=4, padding=2, bias =True, activation='prelu', norm=None): super(DownBlockNew, self).__init__() self.down_conv1 = ConvBlock(num_filter, num_filter, kernel_size, stride, padding, activation, norm=None) self.down_conv2 = DeconvBlock(num_filter, num_filter, kernel_size, stride, padding, activation, norm=None) self.down_conv3 = ConvBlock(num_filter, num_filter, kernel_size, stride, padding, activation, norm=None) def forward(self, input_0): primals_1 = self.down_conv1.conv.weight primals_2 = self.down_conv1.conv.bias primals_4 = self.down_conv1.act.weight primals_5 = self.down_conv2.deconv.weight primals_6 = self.down_conv2.deconv.bias primals_7 = self.down_conv2.act.weight primals_8 = self.down_conv3.conv.weight primals_9 = self.down_conv3.conv.bias primals_10 = self.down_conv3.act.weight primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10]) return output[0]
RyanMoussouni/iSeeBetter
DownBlock
false
14,360
[ "MIT" ]
327
af193ae0852f8e477fcd6875dce874eb5092a24a
https://github.com/RyanMoussouni/iSeeBetter/tree/af193ae0852f8e477fcd6875dce874eb5092a24a
DecoderLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/wd/cwdz7kqs3uwyg53zsyekt77eye7yjl6v7vulow2q6ni534mkf6zw.py # Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # layer_norm => add, rsqrt, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_3, [2]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) triton_poi_fused_native_layer_norm_0 = async_compile.triton('triton_poi_fused_native_layer_norm_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + (x0), tmp8, xmask) tl.store(out_ptr1 + (x0), tmp23, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/vs/cvsfvbs4wlaqvwxm3svg65dnhcq336ptudvn6xetnbnrtzj7xssn.py # Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # layer_norm => add, add_1, mul, mul_1, rsqrt, sub, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_3, [2]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_3, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_1), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_2), kwargs = {}) triton_poi_fused_native_layer_norm_1 = async_compile.triton('triton_poi_fused_native_layer_norm_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/2u/c2ur4ld6wxazuhnoofijwd4nnsgia5w644mnuki5tiljdbn35ocr.py # Topologically Sorted Source Nodes: [k_1], Original ATen: [aten.add] # Source node to ATen node mapping: # k_1 => add_3 # Graph fragment: # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%select_6, %primals_5), kwargs = {}) # %select_scatter_default_1 : [num_users=1] = call_function[target=torch.ops.aten.select_scatter.default](args = (%permute_7, %add_3, 0, 1), kwargs = {}) triton_poi_fused_add_2 = async_compile.triton('triton_poi_fused_add_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 3 x0 = xindex % 4 x4 = (xindex // 12) x2 = (xindex // 12) % 4 x5 = xindex tmp5 = tl.load(in_ptr0 + (x0 + (12*x4)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr1 + (x2 + (4*x0)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (4 + x0 + (12*x4)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (x5), xmask) tmp0 = x1 tmp1 = tl.full([1], 1, tl.int32) tmp2 = tmp0 == tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = tmp1 == tmp3 tmp7 = tmp5 + tmp6 tmp9 = tl.where(tmp4, tmp7, tmp8) tmp10 = tmp9 + tmp6 tmp11 = tmp0 == tmp3 tmp13 = tl.where(tmp11, tmp7, tmp12) tmp14 = tl.where(tmp2, tmp10, tmp13) tl.store(out_ptr0 + (x5), tmp14, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/av/cav43r7e5cwolxynapl5dr4nqus4ttv7rsw7l4ierw56oanc6x27.py # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] # Source node to ATen node mapping: # matmul => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_1,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_3 = async_compile.triton('triton_poi_fused_clone_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (12*x2) + (48*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/mm/cmmu3ymlkl4lebtailau4uhz3akogdbdnttz7llt6secz2773ja2.py # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] # Source node to ATen node mapping: # matmul => clone_1 # Graph fragment: # %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_3,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (4 + y0 + (12*x2) + (48*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/qw/cqwyn534msi2llj22ubr2jqzuuvvtoiw7xzwcs6rzyjuu57bexdz.py # Topologically Sorted Source Nodes: [attn_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attn_1 => exp # Graph fragment: # %mul_tensor_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_32, 1), kwargs = {}) # %amax_default_1 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor_2, [-1], True), kwargs = {}) # %sub_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor_2, %amax_default_1), kwargs = {}) # %mul_tensor_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_tensor_1, 1.0), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%mul_tensor_3,), kwargs = {}) triton_poi_fused__softmax_5 = async_compile.triton('triton_poi_fused__softmax_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_5(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp3 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = tmp14 * tmp1 tmp16 = tl_math.exp(tmp15) tl.store(out_ptr0 + (x2), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/co/cco355ikkximaj4rynhrcqa6g3umezcckbxavjxxmocclhvxy25i.py # Topologically Sorted Source Nodes: [attn_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attn_1 => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_6 = async_compile.triton('triton_poi_fused__softmax_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_6(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/vm/cvmycaxtfjujrlivbube4arhcms3gazd5qzve4daz6zw7cjz2a66.py # Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.clone] # Source node to ATen node mapping: # matmul_1 => clone_3 # Graph fragment: # %clone_3 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_6,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_7 = async_compile.triton('triton_poi_fused_clone_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_7(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (8 + y0 + (12*x2) + (48*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/4x/c4xuqemc3e7fvsawl2h7hqgbe7vqwle5uwixxgravrfjc2sykqfn.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.clone] # Source node to ATen node mapping: # x_1 => clone_4 # Graph fragment: # %clone_4 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%view_40,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_8 = async_compile.triton('triton_poi_fused_clone_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_8(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/zg/czgsp3bxuatsuekblvftym7sjyrukqtixw2zus3tn5morejpvnck.py # Topologically Sorted Source Nodes: [x_1, x_3, layer_norm_1], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # layer_norm_1 => var_mean_1 # x_1 => add_4 # x_3 => add_5 # Graph fragment: # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_42, %primals_7), kwargs = {}) # %add_5 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_3, %add_4), kwargs = {}) # %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add_5, [2]), kwargs = {correction: 0, keepdim: True}) triton_poi_fused_add_native_layer_norm_9 = async_compile.triton('triton_poi_fused_add_native_layer_norm_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 12, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_9(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + (0)) tmp3 = tl.broadcast_to(tmp2, [XBLOCK]) tmp6 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr2 + (1)) tmp9 = tl.broadcast_to(tmp8, [XBLOCK]) tmp13 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr2 + (2)) tmp16 = tl.broadcast_to(tmp15, [XBLOCK]) tmp20 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp21 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp22 = tl.load(in_ptr2 + (3)) tmp23 = tl.broadcast_to(tmp22, [XBLOCK]) tmp4 = tmp1 + tmp3 tmp5 = tmp0 + tmp4 tmp10 = tmp7 + tmp9 tmp11 = tmp6 + tmp10 tmp12 = tmp5 + tmp11 tmp17 = tmp14 + tmp16 tmp18 = tmp13 + tmp17 tmp19 = tmp12 + tmp18 tmp24 = tmp21 + tmp23 tmp25 = tmp20 + tmp24 tmp26 = tmp19 + tmp25 tmp27 = 4.0 tmp28 = tmp26 / tmp27 tmp29 = tmp5 - tmp28 tmp30 = tmp29 * tmp29 tmp31 = tmp11 - tmp28 tmp32 = tmp31 * tmp31 tmp33 = tmp30 + tmp32 tmp34 = tmp18 - tmp28 tmp35 = tmp34 * tmp34 tmp36 = tmp33 + tmp35 tmp37 = tmp25 - tmp28 tmp38 = tmp37 * tmp37 tmp39 = tmp36 + tmp38 tmp40 = tmp39 / tmp27 tl.store(out_ptr0 + (x0), tmp28, xmask) tl.store(out_ptr1 + (x0), tmp40, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/oa/coakb7g745mp36y5aun2ep63gnn26xc7t7ex5c6tmbwahi6saufg.py # Topologically Sorted Source Nodes: [x_1, x_3, layer_norm_1], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # layer_norm_1 => add_6, add_7, mul_3, mul_4, rsqrt_1, sub_2 # x_1 => add_4 # x_3 => add_5 # Graph fragment: # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_42, %primals_7), kwargs = {}) # %add_5 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_3, %add_4), kwargs = {}) # %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {}) # %rsqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_6,), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_5, %getitem_3), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %rsqrt_1), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_3, %primals_8), kwargs = {}) # %add_7 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, %primals_9), kwargs = {}) triton_poi_fused_add_native_layer_norm_10 = async_compile.triton('triton_poi_fused_add_native_layer_norm_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_10(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp2 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x1), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr6 + (x0), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tmp6 = tmp4 - tmp5 tmp8 = 1e-05 tmp9 = tmp7 + tmp8 tmp10 = libdevice.rsqrt(tmp9) tmp11 = tmp6 * tmp10 tmp13 = tmp11 * tmp12 tmp15 = tmp13 + tmp14 tl.store(out_ptr0 + (x2), tmp15, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/6o/c6o55jg3nlwnuy5rdglrrbjd5bvdw2tlsdoyx7lctu5xzefj66xl.py # Topologically Sorted Source Nodes: [matmul_2, matmul_3], Original ATen: [aten.clone] # Source node to ATen node mapping: # matmul_2 => clone_6, clone_7 # matmul_3 => clone_9 # Graph fragment: # %clone_6 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_8,), kwargs = {memory_format: torch.contiguous_format}) # %clone_7 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_10,), kwargs = {memory_format: torch.contiguous_format}) # %clone_9 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_13,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_11 = async_compile.triton('triton_poi_fused_clone_11', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_11', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_11(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp2 = tl.load(in_ptr0 + (y0 + (12*x2) + (48*y1)), xmask & ymask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x2 + (4*y0)), xmask & ymask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (4 + y0 + (12*x2) + (48*y1)), xmask & ymask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (8 + y0 + (12*x2) + (48*y1)), xmask & ymask, eviction_policy='evict_last') tmp0 = tl.full([1, 1], 0, tl.int32) tmp1 = tmp0 == tmp0 tmp4 = tmp2 + tmp3 tmp5 = tl.where(tmp1, tmp4, tmp2) tmp6 = tl.full([1, 1], 1, tl.int32) tmp7 = tmp6 == tmp0 tmp9 = tl.where(tmp7, tmp4, tmp8) tmp10 = tl.full([1, 1], 2, tl.int32) tmp11 = tmp10 == tmp0 tmp13 = tl.where(tmp11, tmp4, tmp12) tl.store(out_ptr0 + (x2 + (4*y3)), tmp5, xmask & ymask) tl.store(out_ptr1 + (x2 + (4*y3)), tmp9, xmask & ymask) tl.store(out_ptr2 + (x2 + (4*y3)), tmp13, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/sh/cshbw2m2ssd5xhmy4sfmaxh42camngf63xnfe7bzgi3dfwapb645.py # Topologically Sorted Source Nodes: [x_1, x_3, x_5, x_7], Original ATen: [aten.add] # Source node to ATen node mapping: # x_1 => add_4 # x_3 => add_5 # x_5 => add_9 # x_7 => add_10 # Graph fragment: # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_42, %primals_7), kwargs = {}) # %add_5 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_3, %add_4), kwargs = {}) # %add_9 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_73, %primals_12), kwargs = {}) # %add_10 : [num_users=4] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_5, %add_9), kwargs = {}) triton_poi_fused_add_12 = async_compile.triton('triton_poi_fused_add_12', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_12', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_12(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp2 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_out_ptr0 + (x2), xmask) tmp6 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tmp7 = tmp5 + tmp6 tmp8 = tmp4 + tmp7 tl.store(in_out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/uo/cuom4r72pf5462sz76zikpkkj2eczvxbyp3mmhihq5bo4uyvipy4.py # Topologically Sorted Source Nodes: [x_9], Original ATen: [aten.gelu] # Source node to ATen node mapping: # x_9 => add_13, erf, mul_10, mul_8, mul_9 # Graph fragment: # %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_75, 0.5), kwargs = {}) # %mul_9 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_75, 0.7071067811865476), kwargs = {}) # %erf : [num_users=1] = call_function[target=torch.ops.aten.erf.default](args = (%mul_9,), kwargs = {}) # %add_13 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%erf, 1), kwargs = {}) # %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_8, %add_13), kwargs = {}) triton_poi_fused_gelu_13 = async_compile.triton('triton_poi_fused_gelu_13', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_gelu_13', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_gelu_13(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp3 = 0.7071067811865476 tmp4 = tmp0 * tmp3 tmp5 = libdevice.erf(tmp4) tmp6 = 1.0 tmp7 = tmp5 + tmp6 tmp8 = tmp2 * tmp7 tl.store(out_ptr0 + (x0), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/gx/cgx6hmbup27eybbec2zcxdffpzec6juduknnqubvydqdsdx7obn5.py # Topologically Sorted Source Nodes: [x_13], Original ATen: [aten.add] # Source node to ATen node mapping: # x_13 => add_14 # Graph fragment: # %add_14 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_10, %view_77), kwargs = {}) triton_poi_fused_add_14 = async_compile.triton('triton_poi_fused_add_14', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_14', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_14(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_out_ptr0 + (x2), xmask) tmp2 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18 = args args.clear() assert_size_stride(primals_1, (4, ), (1, )) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (12, 4), (4, 1)) assert_size_stride(primals_5, (1, 4, 4, 1), (16, 4, 1, 1)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, ), (1, )) assert_size_stride(primals_9, (4, ), (1, )) assert_size_stride(primals_10, (12, 4), (4, 1)) assert_size_stride(primals_11, (4, 4), (4, 1)) assert_size_stride(primals_12, (4, ), (1, )) assert_size_stride(primals_13, (4, ), (1, )) assert_size_stride(primals_14, (4, ), (1, )) assert_size_stride(primals_15, (16, 4), (4, 1)) assert_size_stride(primals_16, (16, ), (1, )) assert_size_stride(primals_17, (4, 16), (16, 1)) assert_size_stride(primals_18, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf1 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm] stream0 = get_raw_stream(0) triton_poi_fused_native_layer_norm_0.run(primals_3, buf0, buf1, 16, grid=grid(16), stream=stream0) buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_1.run(primals_3, buf0, buf1, primals_1, primals_2, buf2, 64, grid=grid(64), stream=stream0) del primals_1 del primals_2 buf3 = empty_strided_cuda((16, 12), (12, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 12), (1, 4), 0), out=buf3) buf4 = empty_strided_cuda((3, 4, 4, 4, 1), (4, 48, 1, 12, 192), torch.float32) # Topologically Sorted Source Nodes: [k_1], Original ATen: [aten.add] triton_poi_fused_add_2.run(buf3, primals_5, buf4, 192, grid=grid(192), stream=stream0) del buf3 buf5 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] triton_poi_fused_clone_3.run(buf4, buf5, 16, 4, grid=grid(16, 4), stream=stream0) buf6 = empty_strided_cuda((4, 4, 1, 4), (16, 4, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] triton_poi_fused_clone_4.run(buf4, buf6, 16, 4, grid=grid(16, 4), stream=stream0) buf7 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf5, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf6, (16, 1, 4), (4, 0, 1), 0), out=buf7) buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [attn_1], Original ATen: [aten._softmax] triton_poi_fused__softmax_5.run(buf7, buf8, 256, grid=grid(256), stream=stream0) buf9 = reinterpret_tensor(buf7, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf7 # reuse # Topologically Sorted Source Nodes: [attn_1], Original ATen: [aten._softmax] triton_poi_fused__softmax_6.run(buf8, buf9, 256, grid=grid(256), stream=stream0) buf10 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.clone] triton_poi_fused_clone_7.run(buf4, buf10, 16, 4, grid=grid(16, 4), stream=stream0) buf11 = empty_strided_cuda((16, 4, 1), (4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf9, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf10, (16, 4, 1), (4, 1, 0), 0), out=buf11) buf12 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.clone] triton_poi_fused_clone_8.run(buf11, buf12, 16, 4, grid=grid(16, 4), stream=stream0) buf13 = reinterpret_tensor(buf11, (16, 4), (4, 1), 0); del buf11 # reuse # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf12, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf13) buf14 = buf1; del buf1 # reuse buf15 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [x_1, x_3, layer_norm_1], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_9.run(primals_3, buf13, primals_7, buf14, buf15, 16, grid=grid(16), stream=stream0) buf16 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1, x_3, layer_norm_1], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_10.run(primals_3, buf13, primals_7, buf14, buf15, primals_8, primals_9, buf16, 64, grid=grid(64), stream=stream0) del primals_9 buf17 = reinterpret_tensor(buf4, (16, 12), (12, 1), 0); del buf4 # reuse # Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf16, (16, 4), (4, 1), 0), reinterpret_tensor(primals_10, (4, 12), (1, 4), 0), out=buf17) buf18 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) buf19 = empty_strided_cuda((4, 4, 1, 4), (16, 4, 4, 1), torch.float32) buf23 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_2, matmul_3], Original ATen: [aten.clone] triton_poi_fused_clone_11.run(buf17, primals_5, buf18, buf19, buf23, 16, 4, grid=grid(16, 4), stream=stream0) del buf17 del primals_5 buf20 = reinterpret_tensor(buf8, (16, 4, 4), (16, 4, 1), 0); del buf8 # reuse # Topologically Sorted Source Nodes: [matmul_2], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf18, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf19, (16, 1, 4), (4, 0, 1), 0), out=buf20) buf21 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [attn_4], Original ATen: [aten._softmax] triton_poi_fused__softmax_5.run(buf20, buf21, 256, grid=grid(256), stream=stream0) buf22 = reinterpret_tensor(buf20, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf20 # reuse # Topologically Sorted Source Nodes: [attn_4], Original ATen: [aten._softmax] triton_poi_fused__softmax_6.run(buf21, buf22, 256, grid=grid(256), stream=stream0) buf24 = empty_strided_cuda((16, 4, 1), (4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_3], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf22, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf23, (16, 4, 1), (4, 1, 0), 0), out=buf24) buf25 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.clone] triton_poi_fused_clone_8.run(buf24, buf25, 16, 4, grid=grid(16, 4), stream=stream0) buf26 = reinterpret_tensor(buf24, (16, 4), (4, 1), 0); del buf24 # reuse # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf25, (16, 4), (4, 1), 0), reinterpret_tensor(primals_11, (4, 4), (1, 4), 0), out=buf26) buf27 = reinterpret_tensor(buf26, (4, 4, 4), (16, 4, 1), 0); del buf26 # reuse # Topologically Sorted Source Nodes: [x_1, x_3, x_5, x_7], Original ATen: [aten.add] triton_poi_fused_add_12.run(buf27, primals_3, buf13, primals_7, primals_12, 64, grid=grid(64), stream=stream0) del primals_12 buf28 = buf15; del buf15 # reuse buf29 = buf14; del buf14 # reuse # Topologically Sorted Source Nodes: [layer_norm_2], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_0.run(buf27, buf28, buf29, 16, grid=grid(16), stream=stream0) buf30 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [layer_norm_2], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_1.run(buf27, buf28, buf29, primals_13, primals_14, buf30, 64, grid=grid(64), stream=stream0) del buf28 del buf29 del primals_14 buf31 = reinterpret_tensor(buf21, (16, 16), (16, 1), 0); del buf21 # reuse # Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.addmm] extern_kernels.addmm(primals_16, reinterpret_tensor(buf30, (16, 4), (4, 1), 0), reinterpret_tensor(primals_15, (4, 16), (1, 4), 0), alpha=1, beta=1, out=buf31) del primals_16 buf32 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [x_9], Original ATen: [aten.gelu] triton_poi_fused_gelu_13.run(buf31, buf32, 256, grid=grid(256), stream=stream0) buf33 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf32, (16, 16), (16, 1), 0), reinterpret_tensor(primals_17, (16, 4), (1, 16), 0), out=buf33) buf34 = reinterpret_tensor(buf33, (4, 4, 4), (16, 4, 1), 0); del buf33 # reuse # Topologically Sorted Source Nodes: [x_13], Original ATen: [aten.add] triton_poi_fused_add_14.run(buf34, buf27, primals_18, 64, grid=grid(64), stream=stream0) del primals_18 return (buf34, primals_3, primals_7, primals_8, primals_13, reinterpret_tensor(buf2, (16, 4), (4, 1), 0), buf9, reinterpret_tensor(buf12, (16, 4), (4, 1), 0), buf13, reinterpret_tensor(buf16, (16, 4), (4, 1), 0), buf22, reinterpret_tensor(buf25, (16, 4), (4, 1), 0), buf27, reinterpret_tensor(buf30, (16, 4), (4, 1), 0), buf31, reinterpret_tensor(buf32, (16, 16), (16, 1), 0), primals_17, primals_15, primals_11, reinterpret_tensor(buf23, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf18, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf19, (16, 4, 1), (4, 1, 4), 0), primals_10, primals_6, reinterpret_tensor(buf10, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf5, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf6, (16, 4, 1), (4, 1, 4), 0), primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((1, 4, 4, 1), (16, 4, 1, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((4, 16), (16, 1), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class Ffn(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class Attention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.0, proj_drop=0.0): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim ** -0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x, task_embed=None, level=0): N, L, D = x.shape qkv = self.qkv(x).reshape(N, L, 3, self.num_heads, D // self.num_heads ).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] if task_embed is not None: _N, _H, _L, _D = q.shape task_embed = task_embed.reshape(1, _H, _L, _D) if level == 1: q += task_embed k += task_embed if level == 2: q += task_embed attn = q @ k.transpose(-2, -1) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(N, L, D) x = self.proj(x) x = self.proj_drop(x) return x class DecoderLayer(nn.Module): def __init__(self, dim, num_heads, ffn_ratio=4.0, qkv_bias=False, qk_scale=None, drop=0.0, attn_drop=0.0, act_layer=nn.GELU, norm_layer=nn.LayerNorm): super().__init__() self.norm1 = norm_layer(dim) self.attn1 = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) self.norm2 = norm_layer(dim) self.attn2 = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) self.norm3 = norm_layer(dim) ffn_hidden_dim = int(dim * ffn_ratio) self.ffn = Ffn(in_features=dim, hidden_features=ffn_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, x, task_embed): x = x + self.attn1(self.norm1(x), task_embed=task_embed, level=1) x = x + self.attn2(self.norm2(x), task_embed=task_embed, level=2) x = x + self.ffn(self.norm3(x)) return x def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([1, 4, 4, 1])] def get_init_inputs(): return [[], {'dim': 4, 'num_heads': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + x0, tmp8, xmask) tl.store(out_ptr1 + x0, tmp23, xmask) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_add_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 3 x0 = xindex % 4 x4 = xindex // 12 x2 = xindex // 12 % 4 x5 = xindex tmp5 = tl.load(in_ptr0 + (x0 + 12 * x4), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr1 + (x2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp8 = tl.load(in_ptr0 + (4 + x0 + 12 * x4), xmask, eviction_policy= 'evict_last') tmp12 = tl.load(in_ptr0 + x5, xmask) tmp0 = x1 tmp1 = tl.full([1], 1, tl.int32) tmp2 = tmp0 == tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = tmp1 == tmp3 tmp7 = tmp5 + tmp6 tmp9 = tl.where(tmp4, tmp7, tmp8) tmp10 = tmp9 + tmp6 tmp11 = tmp0 == tmp3 tmp13 = tl.where(tmp11, tmp7, tmp12) tmp14 = tl.where(tmp2, tmp10, tmp13) tl.store(out_ptr0 + x5, tmp14, xmask) @triton.jit def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 12 * x2 + 48 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (4 + y0 + 12 * x2 + 48 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused__softmax_5(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = tmp14 * tmp1 tmp16 = tl_math.exp(tmp15) tl.store(out_ptr0 + x2, tmp16, xmask) @triton.jit def triton_poi_fused__softmax_6(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_clone_7(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (8 + y0 + 12 * x2 + 48 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_clone_8(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_add_native_layer_norm_9(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + 0) tmp3 = tl.broadcast_to(tmp2, [XBLOCK]) tmp6 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr2 + 1) tmp9 = tl.broadcast_to(tmp8, [XBLOCK]) tmp13 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp14 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp15 = tl.load(in_ptr2 + 2) tmp16 = tl.broadcast_to(tmp15, [XBLOCK]) tmp20 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp21 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp22 = tl.load(in_ptr2 + 3) tmp23 = tl.broadcast_to(tmp22, [XBLOCK]) tmp4 = tmp1 + tmp3 tmp5 = tmp0 + tmp4 tmp10 = tmp7 + tmp9 tmp11 = tmp6 + tmp10 tmp12 = tmp5 + tmp11 tmp17 = tmp14 + tmp16 tmp18 = tmp13 + tmp17 tmp19 = tmp12 + tmp18 tmp24 = tmp21 + tmp23 tmp25 = tmp20 + tmp24 tmp26 = tmp19 + tmp25 tmp27 = 4.0 tmp28 = tmp26 / tmp27 tmp29 = tmp5 - tmp28 tmp30 = tmp29 * tmp29 tmp31 = tmp11 - tmp28 tmp32 = tmp31 * tmp31 tmp33 = tmp30 + tmp32 tmp34 = tmp18 - tmp28 tmp35 = tmp34 * tmp34 tmp36 = tmp33 + tmp35 tmp37 = tmp25 - tmp28 tmp38 = tmp37 * tmp37 tmp39 = tmp36 + tmp38 tmp40 = tmp39 / tmp27 tl.store(out_ptr0 + x0, tmp28, xmask) tl.store(out_ptr1 + x0, tmp40, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_10(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x2, xmask) tmp2 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x1, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr6 + x0, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tmp6 = tmp4 - tmp5 tmp8 = 1e-05 tmp9 = tmp7 + tmp8 tmp10 = libdevice.rsqrt(tmp9) tmp11 = tmp6 * tmp10 tmp13 = tmp11 * tmp12 tmp15 = tmp13 + tmp14 tl.store(out_ptr0 + x2, tmp15, xmask) @triton.jit def triton_poi_fused_clone_11(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp2 = tl.load(in_ptr0 + (y0 + 12 * x2 + 48 * y1), xmask & ymask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x2 + 4 * y0), xmask & ymask, eviction_policy= 'evict_last') tmp8 = tl.load(in_ptr0 + (4 + y0 + 12 * x2 + 48 * y1), xmask & ymask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (8 + y0 + 12 * x2 + 48 * y1), xmask & ymask, eviction_policy='evict_last') tmp0 = tl.full([1, 1], 0, tl.int32) tmp1 = tmp0 == tmp0 tmp4 = tmp2 + tmp3 tmp5 = tl.where(tmp1, tmp4, tmp2) tmp6 = tl.full([1, 1], 1, tl.int32) tmp7 = tmp6 == tmp0 tmp9 = tl.where(tmp7, tmp4, tmp8) tmp10 = tl.full([1, 1], 2, tl.int32) tmp11 = tmp10 == tmp0 tmp13 = tl.where(tmp11, tmp4, tmp12) tl.store(out_ptr0 + (x2 + 4 * y3), tmp5, xmask & ymask) tl.store(out_ptr1 + (x2 + 4 * y3), tmp9, xmask & ymask) tl.store(out_ptr2 + (x2 + 4 * y3), tmp13, xmask & ymask) @triton.jit def triton_poi_fused_add_12(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x2, xmask) tmp2 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_out_ptr0 + x2, xmask) tmp6 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tmp7 = tmp5 + tmp6 tmp8 = tmp4 + tmp7 tl.store(in_out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_gelu_13(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp3 = 0.7071067811865476 tmp4 = tmp0 * tmp3 tmp5 = libdevice.erf(tmp4) tmp6 = 1.0 tmp7 = tmp5 + tmp6 tmp8 = tmp2 * tmp7 tl.store(out_ptr0 + x0, tmp8, xmask) @triton.jit def triton_poi_fused_add_14(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_out_ptr0 + x2, xmask) tmp2 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.store(in_out_ptr0 + x2, tmp4, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18 ) = args args.clear() assert_size_stride(primals_1, (4,), (1,)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (12, 4), (4, 1)) assert_size_stride(primals_5, (1, 4, 4, 1), (16, 4, 1, 1)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4,), (1,)) assert_size_stride(primals_9, (4,), (1,)) assert_size_stride(primals_10, (12, 4), (4, 1)) assert_size_stride(primals_11, (4, 4), (4, 1)) assert_size_stride(primals_12, (4,), (1,)) assert_size_stride(primals_13, (4,), (1,)) assert_size_stride(primals_14, (4,), (1,)) assert_size_stride(primals_15, (16, 4), (4, 1)) assert_size_stride(primals_16, (16,), (1,)) assert_size_stride(primals_17, (4, 16), (16, 1)) assert_size_stride(primals_18, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf1 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) get_raw_stream(0) triton_poi_fused_native_layer_norm_0[grid(16)](primals_3, buf0, buf1, 16, XBLOCK=16, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_native_layer_norm_1[grid(64)](primals_3, buf0, buf1, primals_1, primals_2, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_1 del primals_2 buf3 = empty_strided_cuda((16, 12), (12, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 12), (1, 4), 0), out=buf3) buf4 = empty_strided_cuda((3, 4, 4, 4, 1), (4, 48, 1, 12, 192), torch.float32) triton_poi_fused_add_2[grid(192)](buf3, primals_5, buf4, 192, XBLOCK=128, num_warps=4, num_stages=1) del buf3 buf5 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) triton_poi_fused_clone_3[grid(16, 4)](buf4, buf5, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf6 = empty_strided_cuda((4, 4, 1, 4), (16, 4, 4, 1), torch.float32) triton_poi_fused_clone_4[grid(16, 4)](buf4, buf6, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf7 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf5, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf6, (16, 1, 4), (4, 0, 1), 0), out=buf7) buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__softmax_5[grid(256)](buf7, buf8, 256, XBLOCK=256, num_warps=4, num_stages=1) buf9 = reinterpret_tensor(buf7, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf7 triton_poi_fused__softmax_6[grid(256)](buf8, buf9, 256, XBLOCK=128, num_warps=4, num_stages=1) buf10 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) triton_poi_fused_clone_7[grid(16, 4)](buf4, buf10, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf11 = empty_strided_cuda((16, 4, 1), (4, 1, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf9, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf10, (16, 4, 1), (4, 1, 0), 0), out=buf11) buf12 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_clone_8[grid(16, 4)](buf11, buf12, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf13 = reinterpret_tensor(buf11, (16, 4), (4, 1), 0) del buf11 extern_kernels.mm(reinterpret_tensor(buf12, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf13) buf14 = buf1 del buf1 buf15 = buf0 del buf0 triton_poi_fused_add_native_layer_norm_9[grid(16)](primals_3, buf13, primals_7, buf14, buf15, 16, XBLOCK=16, num_warps=1, num_stages=1) buf16 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_add_native_layer_norm_10[grid(64)](primals_3, buf13, primals_7, buf14, buf15, primals_8, primals_9, buf16, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_9 buf17 = reinterpret_tensor(buf4, (16, 12), (12, 1), 0) del buf4 extern_kernels.mm(reinterpret_tensor(buf16, (16, 4), (4, 1), 0), reinterpret_tensor(primals_10, (4, 12), (1, 4), 0), out=buf17) buf18 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) buf19 = empty_strided_cuda((4, 4, 1, 4), (16, 4, 4, 1), torch.float32) buf23 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) triton_poi_fused_clone_11[grid(16, 4)](buf17, primals_5, buf18, buf19, buf23, 16, 4, XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1 ) del buf17 del primals_5 buf20 = reinterpret_tensor(buf8, (16, 4, 4), (16, 4, 1), 0) del buf8 extern_kernels.bmm(reinterpret_tensor(buf18, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf19, (16, 1, 4), (4, 0, 1), 0), out=buf20) buf21 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__softmax_5[grid(256)](buf20, buf21, 256, XBLOCK= 256, num_warps=4, num_stages=1) buf22 = reinterpret_tensor(buf20, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf20 triton_poi_fused__softmax_6[grid(256)](buf21, buf22, 256, XBLOCK= 128, num_warps=4, num_stages=1) buf24 = empty_strided_cuda((16, 4, 1), (4, 1, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf22, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf23, (16, 4, 1), (4, 1, 0), 0), out=buf24) buf25 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_clone_8[grid(16, 4)](buf24, buf25, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf26 = reinterpret_tensor(buf24, (16, 4), (4, 1), 0) del buf24 extern_kernels.mm(reinterpret_tensor(buf25, (16, 4), (4, 1), 0), reinterpret_tensor(primals_11, (4, 4), (1, 4), 0), out=buf26) buf27 = reinterpret_tensor(buf26, (4, 4, 4), (16, 4, 1), 0) del buf26 triton_poi_fused_add_12[grid(64)](buf27, primals_3, buf13, primals_7, primals_12, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_12 buf28 = buf15 del buf15 buf29 = buf14 del buf14 triton_poi_fused_native_layer_norm_0[grid(16)](buf27, buf28, buf29, 16, XBLOCK=16, num_warps=1, num_stages=1) buf30 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_native_layer_norm_1[grid(64)](buf27, buf28, buf29, primals_13, primals_14, buf30, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf28 del buf29 del primals_14 buf31 = reinterpret_tensor(buf21, (16, 16), (16, 1), 0) del buf21 extern_kernels.addmm(primals_16, reinterpret_tensor(buf30, (16, 4), (4, 1), 0), reinterpret_tensor(primals_15, (4, 16), (1, 4), 0), alpha=1, beta=1, out=buf31) del primals_16 buf32 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32) triton_poi_fused_gelu_13[grid(256)](buf31, buf32, 256, XBLOCK=128, num_warps=4, num_stages=1) buf33 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf32, (16, 16), (16, 1), 0), reinterpret_tensor(primals_17, (16, 4), (1, 16), 0), out=buf33) buf34 = reinterpret_tensor(buf33, (4, 4, 4), (16, 4, 1), 0) del buf33 triton_poi_fused_add_14[grid(64)](buf34, buf27, primals_18, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_18 return (buf34, primals_3, primals_7, primals_8, primals_13, reinterpret_tensor(buf2, (16, 4), (4, 1), 0), buf9, reinterpret_tensor(buf12, (16, 4), (4, 1), 0), buf13, reinterpret_tensor(buf16, (16, 4), (4, 1), 0), buf22, reinterpret_tensor(buf25, (16, 4), (4, 1), 0), buf27, reinterpret_tensor(buf30, (16, 4), (4, 1), 0), buf31, reinterpret_tensor(buf32, (16, 16), (16, 1), 0), primals_17, primals_15, primals_11, reinterpret_tensor(buf23, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf18, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf19, (16, 4, 1), (4, 1, 4), 0), primals_10, primals_6, reinterpret_tensor(buf10, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf5, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf6, (16, 4, 1), (4, 1, 4), 0), primals_4) class Ffn(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class Attention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.0, proj_drop=0.0): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim ** -0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x, task_embed=None, level=0): N, L, D = x.shape qkv = self.qkv(x).reshape(N, L, 3, self.num_heads, D // self.num_heads ).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] if task_embed is not None: _N, _H, _L, _D = q.shape task_embed = task_embed.reshape(1, _H, _L, _D) if level == 1: q += task_embed k += task_embed if level == 2: q += task_embed attn = q @ k.transpose(-2, -1) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(N, L, D) x = self.proj(x) x = self.proj_drop(x) return x class DecoderLayerNew(nn.Module): def __init__(self, dim, num_heads, ffn_ratio=4.0, qkv_bias=False, qk_scale=None, drop=0.0, attn_drop=0.0, act_layer=nn.GELU, norm_layer=nn.LayerNorm): super().__init__() self.norm1 = norm_layer(dim) self.attn1 = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) self.norm2 = norm_layer(dim) self.attn2 = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) self.norm3 = norm_layer(dim) ffn_hidden_dim = int(dim * ffn_ratio) self.ffn = Ffn(in_features=dim, hidden_features=ffn_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, input_0, input_1): primals_1 = self.norm1.weight primals_2 = self.norm1.bias primals_4 = self.attn1.qkv.weight primals_6 = self.attn1.proj.weight primals_7 = self.attn1.proj.bias primals_8 = self.norm2.weight primals_9 = self.norm2.bias primals_10 = self.attn2.qkv.weight primals_11 = self.attn2.proj.weight primals_12 = self.attn2.proj.bias primals_13 = self.norm3.weight primals_14 = self.norm3.bias primals_15 = self.ffn.fc1.weight primals_16 = self.ffn.fc1.bias primals_17 = self.ffn.fc2.weight primals_18 = self.ffn.fc2.bias primals_3 = input_0 primals_5 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18]) return output[0]
Rming/DocTr
DecoderLayer
false
14,361
[ "MIT" ]
111
e61e3d34f65d1bd70997f2e2e583f640b8779a3c
https://github.com/Rming/DocTr/tree/e61e3d34f65d1bd70997f2e2e583f640b8779a3c
FirstOctaveConv
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/l3/cl3qgtljwm55hj7prrlq32vnxhqj5elf2qeptwkrprrhumnm7twn.py # Topologically Sorted Source Nodes: [X_h2l], Original ATen: [aten.avg_pool2d] # Source node to ATen node mapping: # X_h2l => avg_pool2d # Graph fragment: # %avg_pool2d : [num_users=2] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%primals_1, [2, 2], [2, 2]), kwargs = {}) triton_poi_fused_avg_pool2d_0 = async_compile.triton('triton_poi_fused_avg_pool2d_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = (xindex // 2) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (8*x1)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (8*x1)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (4 + (2*x0) + (8*x1)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (5 + (2*x0) + (8*x1)), xmask, eviction_policy='evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (2, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (2, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [X_h2l], Original ATen: [aten.avg_pool2d] stream0 = get_raw_stream(0) triton_poi_fused_avg_pool2d_0.run(primals_1, buf0, 64, grid=grid(64), stream=stream0) # Topologically Sorted Source Nodes: [X_h], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 2, 3, 3), (18, 9, 3, 1)) # Topologically Sorted Source Nodes: [X_l], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf0, primals_3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 2, 1, 1), (2, 1, 1, 1)) return (buf1, buf2, primals_1, primals_2, primals_3, buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((2, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((2, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.parallel import torch.utils.data.distributed class FirstOctaveConv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, alpha=0.5, stride=1, padding=1, dilation=1, groups=1, bias=False): super(FirstOctaveConv, self).__init__() self.stride = stride kernel_size = kernel_size[0] self.h2g_pool = nn.AvgPool2d(kernel_size=(2, 2), stride=2) self.h2l = torch.nn.Conv2d(in_channels, int(alpha * out_channels), kernel_size, 1, padding, dilation, groups, bias) self.h2h = torch.nn.Conv2d(in_channels, out_channels - int(alpha * out_channels), kernel_size, 1, padding, dilation, groups, bias) def forward(self, x): if self.stride == 2: x = self.h2g_pool(x) X_h2l = self.h2g_pool(x) X_h = x X_h = self.h2h(X_h) X_l = self.h2l(X_h2l) return X_h, X_l def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': [4, 4]}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.nn.parallel import torch.utils.data.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = xindex // 2 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 8 * x1), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 8 * x1), xmask, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (4 + 2 * x0 + 8 * x1), xmask, eviction_policy= 'evict_last') tmp5 = tl.load(in_ptr0 + (5 + 2 * x0 + 8 * x1), xmask, eviction_policy= 'evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (2, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (2, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) get_raw_stream(0) triton_poi_fused_avg_pool2d_0[grid(64)](primals_1, buf0, 64, XBLOCK =64, num_warps=1, num_stages=1) buf1 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 2, 3, 3), (18, 9, 3, 1)) buf2 = extern_kernels.convolution(buf0, primals_3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 2, 1, 1), (2, 1, 1, 1)) return buf1, buf2, primals_1, primals_2, primals_3, buf0 class FirstOctaveConvNew(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, alpha=0.5, stride=1, padding=1, dilation=1, groups=1, bias=False): super(FirstOctaveConvNew, self).__init__() self.stride = stride kernel_size = kernel_size[0] self.h2g_pool = nn.AvgPool2d(kernel_size=(2, 2), stride=2) self.h2l = torch.nn.Conv2d(in_channels, int(alpha * out_channels), kernel_size, 1, padding, dilation, groups, bias) self.h2h = torch.nn.Conv2d(in_channels, out_channels - int(alpha * out_channels), kernel_size, 1, padding, dilation, groups, bias) def forward(self, input_0): primals_2 = self.h2l.weight primals_3 = self.h2h.weight primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0], output[1]
SSusantAchary/OctaveConv_pytorch
FirstOctaveConv
false
14,362
[ "MIT" ]
633
079f7da29d55c2eeed8985d33f0b2f765d7a469e
https://github.com/SSusantAchary/OctaveConv_pytorch/tree/079f7da29d55c2eeed8985d33f0b2f765d7a469e
DeNormalize
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/va/cvago62ymbua5mr3wv6snij6tazdcbxvr3y72a3eobsslcm6uxtr.py # Topologically Sorted Source Nodes: [mul, add], Original ATen: [aten.mul, aten.add] # Source node to ATen node mapping: # add => add # mul => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 4), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 4), kwargs = {}) triton_poi_fused_add_mul_0 = async_compile.triton('triton_poi_fused_add_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 4.0 tmp2 = tmp0 * tmp1 tmp3 = tmp2 + tmp1 tl.store(out_ptr0 + (x0), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, add], Original ATen: [aten.mul, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.cpp_extension class DeNormalize(nn.Module): def __init__(self, mean, std): super().__init__() self.mean = mean self.std = std def forward(self, x): return x.mul(self.std).add(self.mean) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'mean': 4, 'std': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.utils.cpp_extension assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 4.0 tmp2 = tmp0 * tmp1 tmp3 = tmp2 + tmp1 tl.store(out_ptr0 + x0, tmp3, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class DeNormalizeNew(nn.Module): def __init__(self, mean, std): super().__init__() self.mean = mean self.std = std def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
STomoya/animeface
DeNormalize
false
14,363
[ "MIT" ]
61
37b3cd26097d7874559d4c152e41e5712b7a1a42
https://github.com/STomoya/animeface/tree/37b3cd26097d7874559d4c152e41e5712b7a1a42
AppendClsToken
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/ox/coxhmerhn6qwyjw5yfkiqtdczygktfgrgrddflvls7hohduyxc2h.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %expand], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 80 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 5 x0 = xindex % 4 x2 = (xindex // 20) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (4*x1) + (16*x2)), tmp4 & xmask, other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 5, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + (x0), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x3), tmp10, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (1, 1, 4), (4, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 5, 4), (20, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 80, grid=grid(80), stream=stream0) del primals_1 del primals_2 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from functools import partial import torch.utils.cpp_extension class AppendClsToken(nn.Module): def __init__(self, embed_dim, init_func=partial(nn.init.normal_, std=0.02) ): super().__init__() self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) init_func(self.cls_token) def forward(self, x): B = x.size(0) cls_token = self.cls_token.expand(B, -1, -1) return torch.cat([x, cls_token], dim=1) def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'embed_dim': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn from functools import partial import torch.utils.cpp_extension assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 80 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 5 x0 = xindex % 4 x2 = xindex // 20 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 4 * x1 + 16 * x2), tmp4 & xmask, other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 5, tl.int64) tmp9 = tl.load(in_ptr1 + x0, tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x3, tmp10, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (1, 1, 4), (4, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 5, 4), (20, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(80)](primals_1, primals_2, buf0, 80, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 del primals_2 return buf0, class AppendClsTokenNew(nn.Module): def __init__(self, embed_dim, init_func=partial(nn.init.normal_, std=0.02) ): super().__init__() self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) init_func(self.cls_token) def forward(self, input_0): primals_2 = self.cls_token primals_1 = input_0 output = call([primals_1, primals_2]) return output[0]
STomoya/animeface
AppendClsToken
false
14,364
[ "MIT" ]
61
37b3cd26097d7874559d4c152e41e5712b7a1a42
https://github.com/STomoya/animeface/tree/37b3cd26097d7874559d4c152e41e5712b7a1a42
UnBlock
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/j7/cj7wkarvrslua2bkuiqnr5k7asu2mdy5e5zrbexbpvimotaoflsu.py # Topologically Sorted Source Nodes: [tensor_1], Original ATen: [aten.clone] # Source node to ATen node mapping: # tensor_1 => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex % 2 x3 = (xindex // 2) % 2 x4 = (xindex // 4) % 2 x5 = (xindex // 8) y0 = yindex % 4 y1 = (yindex // 4) x7 = xindex y6 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x3) + (8*x5) + (16*x2) + (32*x4) + (64*y1)), xmask & ymask) tl.store(out_ptr0 + (x7 + (16*y6)), tmp0, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 2, 2, 2, 2), (64, 16, 8, 4, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [tensor_1], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(arg0_1, buf0, 16, 16, grid=grid(16, 16), stream=stream0) del arg0_1 return (reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.cpp_extension def unblock(tensor): """blocked tensor back to normal""" B, M, N, C = tensor.size() H = W = int(M ** 0.5) patch_size = int(N ** 0.5) tensor = tensor.reshape(B, H, W, patch_size, patch_size, C) tensor = tensor.permute(0, 5, 3, 1, 4, 2).reshape(B, C, H * patch_size, W * patch_size) return tensor class UnBlock(nn.Module): def forward(self, x): return unblock(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.utils.cpp_extension assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex % 2 x3 = xindex // 2 % 2 x4 = xindex // 4 % 2 x5 = xindex // 8 y0 = yindex % 4 y1 = yindex // 4 x7 = xindex y6 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x3 + 8 * x5 + 16 * x2 + 32 * x4 + 64 * y1), xmask & ymask) tl.store(out_ptr0 + (x7 + 16 * y6), tmp0, xmask & ymask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 2, 2, 2, 2), (64, 16, 8, 4, 2, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(16, 16)](arg0_1, buf0, 16, 16, XBLOCK =16, YBLOCK=16, num_warps=4, num_stages=1) del arg0_1 return reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0), def unblock(tensor): """blocked tensor back to normal""" B, M, N, C = tensor.size() H = W = int(M ** 0.5) patch_size = int(N ** 0.5) tensor = tensor.reshape(B, H, W, patch_size, patch_size, C) tensor = tensor.permute(0, 5, 3, 1, 4, 2).reshape(B, C, H * patch_size, W * patch_size) return tensor class UnBlockNew(nn.Module): def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
STomoya/animeface
UnBlock
false
14,365
[ "MIT" ]
61
37b3cd26097d7874559d4c152e41e5712b7a1a42
https://github.com/STomoya/animeface/tree/37b3cd26097d7874559d4c152e41e5712b7a1a42
MiniBatchStd
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/a2/ca2lh2zcvsu73ehcdrcwhrz6l5jj46ml3yyfgnrzbcrsloii4cq6.py # Topologically Sorted Source Nodes: [std, cat], Original ATen: [aten.std, aten.cat] # Source node to ATen node mapping: # cat => cat # std => var # Graph fragment: # %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%arg0_1,), kwargs = {correction: 1.0}) # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%arg0_1, %expand], 1), kwargs = {}) triton_per_fused_cat_std_0 = async_compile.triton('triton_per_fused_cat_std_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_cat_std_0', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 3, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_cat_std_0(in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex r1 = rindex % 64 r2 = (rindex // 64) tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.broadcast_to(tmp0, [RBLOCK]) tmp3 = tl.broadcast_to(tmp1, [RBLOCK]) tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0)) tmp6 = tl.full([1], 256, tl.int32) tmp7 = tmp6.to(tl.float32) tmp8 = tmp5 / tmp7 tmp9 = tmp1 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tl.broadcast_to(tmp10, [RBLOCK]) tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0)) tl.store(out_ptr1 + (tl.broadcast_to(r1 + (80*r2), [RBLOCK])), tmp0, None) tl.store(out_ptr0 + (tl.full([1], 0, tl.int32)), tmp13, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/mg/cmg7o5varxqlhxiab4ziooonbfcg5rakjkvdqge3762jdcleipnp.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%arg0_1, %expand], 1), kwargs = {}) triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) tmp0 = tl.load(in_ptr0 + (0)) tmp1 = tl.broadcast_to(tmp0, [XBLOCK]) tmp2 = 255.0 tmp3 = tmp1 / tmp2 tmp4 = libdevice.sqrt(tmp3) tl.store(out_ptr0 + (x0 + (80*x1)), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((), (), torch.float32) buf5 = empty_strided_cuda((4, 5, 4, 4), (80, 16, 4, 1), torch.float32) buf3 = reinterpret_tensor(buf5, (4, 4, 4, 4), (80, 16, 4, 1), 0) # alias # Topologically Sorted Source Nodes: [std, cat], Original ATen: [aten.std, aten.cat] stream0 = get_raw_stream(0) triton_per_fused_cat_std_0.run(arg0_1, buf1, buf3, 1, 256, grid=grid(1), stream=stream0) del arg0_1 buf4 = reinterpret_tensor(buf5, (4, 1, 4, 4), (80, 16, 4, 1), 64) # alias # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] triton_poi_fused_cat_1.run(buf1, buf4, 64, grid=grid(64), stream=stream0) del buf1 return (buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.cpp_extension class MiniBatchStd(nn.Module): """ minibatch standard deviation """ def forward(self, x): std = torch.std(x).expand(x.shape[0], 1, *x.shape[2:]) return torch.cat([x, std], dim=1) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn import torch.utils.cpp_extension assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_cat_std_0(in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex r1 = rindex % 64 r2 = rindex // 64 tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.broadcast_to(tmp0, [RBLOCK]) tmp3 = tl.broadcast_to(tmp1, [RBLOCK]) tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0)) tmp6 = tl.full([1], 256, tl.int32) tmp7 = tmp6.to(tl.float32) tmp8 = tmp5 / tmp7 tmp9 = tmp1 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tl.broadcast_to(tmp10, [RBLOCK]) tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0)) tl.store(out_ptr1 + tl.broadcast_to(r1 + 80 * r2, [RBLOCK]), tmp0, None) tl.store(out_ptr0 + tl.full([1], 0, tl.int32), tmp13, None) @triton.jit def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 tmp0 = tl.load(in_ptr0 + 0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK]) tmp2 = 255.0 tmp3 = tmp1 / tmp2 tmp4 = libdevice.sqrt(tmp3) tl.store(out_ptr0 + (x0 + 80 * x1), tmp4, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((), (), torch.float32) buf5 = empty_strided_cuda((4, 5, 4, 4), (80, 16, 4, 1), torch.float32) buf3 = reinterpret_tensor(buf5, (4, 4, 4, 4), (80, 16, 4, 1), 0) get_raw_stream(0) triton_per_fused_cat_std_0[grid(1)](arg0_1, buf1, buf3, 1, 256, num_warps=2, num_stages=1) del arg0_1 buf4 = reinterpret_tensor(buf5, (4, 1, 4, 4), (80, 16, 4, 1), 64) triton_poi_fused_cat_1[grid(64)](buf1, buf4, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf1 return buf5, class MiniBatchStdNew(nn.Module): """ minibatch standard deviation """ def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
STomoya/animeface
MiniBatchStd
false
14,366
[ "MIT" ]
61
37b3cd26097d7874559d4c152e41e5712b7a1a42
https://github.com/STomoya/animeface/tree/37b3cd26097d7874559d4c152e41e5712b7a1a42
AddPositionEmbed
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/uz/cuzdojeecdnp6sj6qer5und3uv6oxkzgk2365i55gch5mqyktk3i.py # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] # Source node to ATen node mapping: # add => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_2, %primals_1), kwargs = {}) triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, ), (1, )) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_0.run(primals_2, primals_1, buf0, 256, grid=grid(256), stream=stream0) del primals_1 del primals_2 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from functools import partial import torch.utils.cpp_extension class AddPositionEmbed(nn.Module): def __init__(self, size, init_func=partial(nn.init.normal_, std=0.02)): super().__init__() self.pe = nn.Parameter(torch.zeros(size)) init_func(self.pe) def forward(self, x): return x + self.pe def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'size': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn from functools import partial import torch.utils.cpp_extension assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4,), (1,)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_0[grid(256)](primals_2, primals_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_1 del primals_2 return buf0, class AddPositionEmbedNew(nn.Module): def __init__(self, size, init_func=partial(nn.init.normal_, std=0.02)): super().__init__() self.pe = nn.Parameter(torch.zeros(size)) init_func(self.pe) def forward(self, input_0): primals_1 = self.pe primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
STomoya/animeface
AddPositionEmbed
false
14,367
[ "MIT" ]
61
37b3cd26097d7874559d4c152e41e5712b7a1a42
https://github.com/STomoya/animeface/tree/37b3cd26097d7874559d4c152e41e5712b7a1a42
MiniBatchStdDev
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/53/c53eg3f7wm3nwguyrj22znwqgiulolaapzajtyx2n3ih3xpt2yah.py # Topologically Sorted Source Nodes: [mean, y_1, square, y_2, add_, y_3, y_4, y_5], Original ATen: [aten.mean, aten.sub, aten.pow, aten.add, aten.sqrt, aten.repeat] # Source node to ATen node mapping: # add_ => add # mean => mean # square => pow_1 # y_1 => sub # y_2 => mean_1 # y_3 => sqrt # y_4 => mean_2 # y_5 => repeat # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%view, [0], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %mean), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%pow_1, [0]), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean_1, 0.0001), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {}) # %mean_2 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%sqrt, [1, 2, 3], True), kwargs = {}) # %repeat : [num_users=1] = call_function[target=torch.ops.aten.repeat.default](args = (%mean_2, [4, 1, 4, 4]), kwargs = {}) triton_per_fused_add_mean_pow_repeat_sqrt_sub_0 = async_compile.triton('triton_per_fused_add_mean_pow_repeat_sqrt_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mean_pow_repeat_sqrt_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_mean_pow_repeat_sqrt_sub_0(in_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex r1 = rindex % 16 r2 = (rindex // 16) tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr0 + (64 + r0), None) tmp3 = tl.load(in_ptr0 + (128 + r0), None) tmp5 = tl.load(in_ptr0 + (192 + r0), None) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 0.0001 tmp22 = tmp20 + tmp21 tmp23 = libdevice.sqrt(tmp22) tmp24 = tl.broadcast_to(tmp23, [XBLOCK, RBLOCK]) tmp26 = tl.sum(tmp24, 1)[:, None] tmp27 = 64.0 tmp28 = tmp26 / tmp27 tl.store(out_ptr1 + (tl.broadcast_to(r1 + (80*r2), [XBLOCK, RBLOCK])), tmp28, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/yi/cyidf2yj3fms5jdxlfe7fdijzfj6p5a5q2qxo4llkuxnpqh6fj5o.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%arg0_1, %repeat], 1), kwargs = {}) triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 x1 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x2), xmask) tl.store(out_ptr0 + (x0 + (80*x1)), tmp0, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf3 = empty_strided_cuda((4, 5, 4, 4), (80, 16, 4, 1), torch.float32) buf2 = reinterpret_tensor(buf3, (4, 1, 4, 4), (80, 16, 4, 1), 64) # alias # Topologically Sorted Source Nodes: [mean, y_1, square, y_2, add_, y_3, y_4, y_5], Original ATen: [aten.mean, aten.sub, aten.pow, aten.add, aten.sqrt, aten.repeat] stream0 = get_raw_stream(0) triton_per_fused_add_mean_pow_repeat_sqrt_sub_0.run(arg0_1, buf2, 1, 64, grid=grid(1), stream=stream0) buf1 = reinterpret_tensor(buf3, (4, 4, 4, 4), (80, 16, 4, 1), 0) # alias # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] triton_poi_fused_cat_1.run(arg0_1, buf1, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.cpp_extension class MiniBatchStdDev(nn.Module): """Mini-Batch Standard Deviation""" def __init__(self, group_size: 'int'=4, eps: 'float'=0.0001) ->None: super().__init__() self.group_size = group_size self.eps = eps def forward(self, x: 'torch.Tensor') ->torch.Tensor: B, C, H, W = x.size() y = x groups = self._check_group_size(B) y = y.view(groups, -1, C, H, W) y = y - y.mean(0, keepdim=True) y = y.square().mean(0) y = y.add_(self.eps).sqrt() y = y.mean([1, 2, 3], keepdim=True) y = y.repeat(groups, 1, H, W) return torch.cat([x, y], dim=1) def _check_group_size(self, batch_size: 'int') ->int: if batch_size % self.group_size == 0: return self.group_size else: return batch_size def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn import torch.utils.cpp_extension assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_add_mean_pow_repeat_sqrt_sub_0(in_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex r1 = rindex % 16 r2 = rindex // 16 tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr0 + (64 + r0), None) tmp3 = tl.load(in_ptr0 + (128 + r0), None) tmp5 = tl.load(in_ptr0 + (192 + r0), None) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 0.0001 tmp22 = tmp20 + tmp21 tmp23 = libdevice.sqrt(tmp22) tmp24 = tl.broadcast_to(tmp23, [XBLOCK, RBLOCK]) tmp26 = tl.sum(tmp24, 1)[:, None] tmp27 = 64.0 tmp28 = tmp26 / tmp27 tl.store(out_ptr1 + tl.broadcast_to(r1 + 80 * r2, [XBLOCK, RBLOCK]), tmp28, None) @triton.jit def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 x1 = xindex // 64 tmp0 = tl.load(in_ptr0 + x2, xmask) tl.store(out_ptr0 + (x0 + 80 * x1), tmp0, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf3 = empty_strided_cuda((4, 5, 4, 4), (80, 16, 4, 1), torch.float32) buf2 = reinterpret_tensor(buf3, (4, 1, 4, 4), (80, 16, 4, 1), 64) get_raw_stream(0) triton_per_fused_add_mean_pow_repeat_sqrt_sub_0[grid(1)](arg0_1, buf2, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) buf1 = reinterpret_tensor(buf3, (4, 4, 4, 4), (80, 16, 4, 1), 0) triton_poi_fused_cat_1[grid(256)](arg0_1, buf1, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf3, class MiniBatchStdDevNew(nn.Module): """Mini-Batch Standard Deviation""" def __init__(self, group_size: 'int'=4, eps: 'float'=0.0001) ->None: super().__init__() self.group_size = group_size self.eps = eps def _check_group_size(self, batch_size: 'int') ->int: if batch_size % self.group_size == 0: return self.group_size else: return batch_size def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
STomoya/animeface
MiniBatchStdDev
false
14,368
[ "MIT" ]
61
37b3cd26097d7874559d4c152e41e5712b7a1a42
https://github.com/STomoya/animeface/tree/37b3cd26097d7874559d4c152e41e5712b7a1a42
Subspace
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/wc/cwc2v3v6zkzxmazkn55izrg2adrblzmerykbloolk5qiwavdxx3w.py # Topologically Sorted Source Nodes: [x_1, x_2, x_3], Original ATen: [aten.mul, aten.sum, aten.add] # Source node to ATen node mapping: # x_1 => mul_1 # x_2 => sum_1 # x_3 => add # Graph fragment: # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze_3, %unsqueeze_2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_1, [1]), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, %primals_4), kwargs = {}) triton_poi_fused_add_mul_sum_0 = async_compile.triton('triton_poi_fused_add_mul_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_sum_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x5 = xindex % 256 x0 = xindex % 4 x4 = (xindex // 256) x7 = xindex % 16 x9 = xindex % 64 x10 = xindex tmp0 = tl.load(in_ptr0 + (x5), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + (x7 + (64*x4)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr2 + (16 + x7 + (64*x4)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr2 + (32 + x7 + (64*x4)), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr2 + (48 + x7 + (64*x4)), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr3 + (x9), xmask, eviction_policy='evict_last') tmp3 = tmp1 * tmp2 tmp4 = tmp0 * tmp3 tmp6 = tmp1 * tmp5 tmp7 = tmp0 * tmp6 tmp8 = tmp4 + tmp7 tmp10 = tmp1 * tmp9 tmp11 = tmp0 * tmp10 tmp12 = tmp8 + tmp11 tmp14 = tmp1 * tmp13 tmp15 = tmp0 * tmp14 tmp16 = tmp12 + tmp15 tmp18 = tmp16 + tmp17 tl.store(out_ptr0 + (x10), tmp18, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (1, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (1, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 4, 4, 4, 4), (256, 256, 64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1, x_2, x_3], Original ATen: [aten.mul, aten.sum, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_sum_0.run(primals_3, primals_1, primals_2, primals_4, buf0, 1024, grid=grid(1024), stream=stream0) del primals_4 return (buf0, primals_1, primals_2, primals_3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.cpp_extension class Subspace(nn.Module): def __init__(self, latent_dim, channels, resolution): super().__init__() self.U = nn.Parameter(torch.empty(latent_dim, channels, resolution, resolution)) nn.init.orthogonal_(self.U) l_init = [[(3.0 * i) for i in range(latent_dim, 0, -1)]] self.L = nn.Parameter(torch.tensor(l_init)) self.mu = nn.Parameter(torch.zeros(1, channels, resolution, resolution) ) def forward(self, z): x = (self.L * z)[:, :, None, None, None] x = self.U[None, ...] * x x = x.sum(1) x = x + self.mu return x def gram_schimdt(self, vector): """this doesn't work. It stops by OOM. """ basis = vector[0:1] / vector[0:1].norm() for i in range(1, vector.size(0)): v = vector[i:i + 1] w = v - torch.mm(torch.mm(v, basis.T), basis) w = w / w.norm() basis = torch.cat([basis, w], dim=0) return basis def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'latent_dim': 4, 'channels': 4, 'resolution': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.utils.cpp_extension assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_mul_sum_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x5 = xindex % 256 x0 = xindex % 4 x4 = xindex // 256 x7 = xindex % 16 x9 = xindex % 64 x10 = xindex tmp0 = tl.load(in_ptr0 + x5, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + (x7 + 64 * x4), xmask, eviction_policy= 'evict_last') tmp5 = tl.load(in_ptr2 + (16 + x7 + 64 * x4), xmask, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr2 + (32 + x7 + 64 * x4), xmask, eviction_policy= 'evict_last') tmp13 = tl.load(in_ptr2 + (48 + x7 + 64 * x4), xmask, eviction_policy= 'evict_last') tmp17 = tl.load(in_ptr3 + x9, xmask, eviction_policy='evict_last') tmp3 = tmp1 * tmp2 tmp4 = tmp0 * tmp3 tmp6 = tmp1 * tmp5 tmp7 = tmp0 * tmp6 tmp8 = tmp4 + tmp7 tmp10 = tmp1 * tmp9 tmp11 = tmp0 * tmp10 tmp12 = tmp8 + tmp11 tmp14 = tmp1 * tmp13 tmp15 = tmp0 * tmp14 tmp16 = tmp12 + tmp15 tmp18 = tmp16 + tmp17 tl.store(out_ptr0 + x10, tmp18, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (1, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (1, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 4, 4, 4, 4), (256, 256, 64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_sum_0[grid(1024)](primals_3, primals_1, primals_2, primals_4, buf0, 1024, XBLOCK=256, num_warps=4, num_stages=1) del primals_4 return buf0, primals_1, primals_2, primals_3 class SubspaceNew(nn.Module): def __init__(self, latent_dim, channels, resolution): super().__init__() self.U = nn.Parameter(torch.empty(latent_dim, channels, resolution, resolution)) nn.init.orthogonal_(self.U) l_init = [[(3.0 * i) for i in range(latent_dim, 0, -1)]] self.L = nn.Parameter(torch.tensor(l_init)) self.mu = nn.Parameter(torch.zeros(1, channels, resolution, resolution) ) def gram_schimdt(self, vector): """this doesn't work. It stops by OOM. """ basis = vector[0:1] / vector[0:1].norm() for i in range(1, vector.size(0)): v = vector[i:i + 1] w = v - torch.mm(torch.mm(v, basis.T), basis) w = w / w.norm() basis = torch.cat([basis, w], dim=0) return basis def forward(self, input_0): primals_2 = self.U primals_1 = self.L primals_4 = self.mu primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
STomoya/animeface
Subspace
false
14,369
[ "MIT" ]
61
37b3cd26097d7874559d4c152e41e5712b7a1a42
https://github.com/STomoya/animeface/tree/37b3cd26097d7874559d4c152e41e5712b7a1a42
ChannelPool
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/ho/cho5v7kguhphknxbpj6hvgjp2wt46dz2yolqduinirfv24sjqmla.py # Topologically Sorted Source Nodes: [pooled], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # pooled => _low_memory_max_pool2d_with_offsets # Graph fragment: # %_low_memory_max_pool2d_with_offsets : [num_users=1] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%unsqueeze, [1, 4], [1, 1], [0, 0], [1, 1], False), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_0 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask) tmp1 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask) tmp3 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask) tmp5 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 16, 1, 1), (16, 1, 64, 64), torch.float32) # Topologically Sorted Source Nodes: [pooled], Original ATen: [aten.max_pool2d_with_indices] stream0 = get_raw_stream(0) triton_poi_fused_max_pool2d_with_indices_0.run(arg0_1, buf0, 64, grid=grid(64), stream=stream0) del arg0_1 return (reinterpret_tensor(buf0, (4, 1, 4, 4), (16, 1, 4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class ChannelPool(nn.MaxPool1d): def forward(self, x): n, c, w, h = x.size() x = x.view(n, c, w * h).permute(0, 2, 1) x = x.contiguous() pooled = F.max_pool1d(x, c, 1) _, _, c = pooled.size() pooled = pooled.permute(0, 2, 1) return pooled.view(n, c, w, h) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'kernel_size': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_max_pool2d_with_indices_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask) tmp1 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask) tmp3 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask) tmp5 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 16, 1, 1), (16, 1, 64, 64), torch.float32 ) get_raw_stream(0) triton_poi_fused_max_pool2d_with_indices_0[grid(64)](arg0_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg0_1 return reinterpret_tensor(buf0, (4, 1, 4, 4), (16, 1, 4, 1), 0), class ChannelPoolNew(nn.MaxPool1d): def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Sapio-S/Neural-SLAM
ChannelPool
false
14,370
[ "MIT" ]
171
3a1e429fc54fe5682833bfe541512c8d62c2e2f7
https://github.com/Sapio-S/Neural-SLAM/tree/3a1e429fc54fe5682833bfe541512c8d62c2e2f7
MultiQueryAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/yd/cydbtjoq352gcolmflbvu2nqkda7xg7q5hnvltb47jsg5dbmubym.py # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] # Source node to ATen node mapping: # matmul => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/4i/c4ifig7r6ck2y725hll5brbiwptsykocbfmp75m5zsqzc4zwa635.py # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] # Source node to ATen node mapping: # matmul => clone_1 # Graph fragment: # %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_1,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (8*x2) + (32*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/pq/cpqnfrogm4dnzim2vyszfmugd6fc43gfnmxicoezmiidejzudrdz.py # Topologically Sorted Source Nodes: [attn_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attn_1 => exp # Graph fragment: # %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_8, 1), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {}) # %mul_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_tensor, 1.0), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%mul_tensor_1,), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp3 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = tmp14 * tmp1 tmp16 = tl_math.exp(tmp15) tl.store(out_ptr0 + (x2), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ry/cryn7ntc2gpkbfzbre3xh7lffx7zkbskw6oihbzsekkgajmdbki6.py # Topologically Sorted Source Nodes: [attn_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attn_1 => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ra/crawzlrlefqew6hbeebyicdqrvbkup3ok24f4lbft23nndfraukx.py # Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.clone] # Source node to ATen node mapping: # matmul_1 => clone_2 # Graph fragment: # %clone_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_3,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (4 + y0 + (8*x2) + (32*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (8, 4), (4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf0) del primals_3 buf1 = empty_strided_cuda((16, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 8), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(buf0, buf2, 16, 4, grid=grid(16, 4), stream=stream0) buf3 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] triton_poi_fused_clone_1.run(buf1, buf3, 16, 4, grid=grid(16, 4), stream=stream0) buf4 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 0, 1), 0), out=buf4) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [attn_1], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf4, buf5, 256, grid=grid(256), stream=stream0) buf6 = reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf4 # reuse # Topologically Sorted Source Nodes: [attn_1], Original ATen: [aten._softmax] triton_poi_fused__softmax_3.run(buf5, buf6, 256, grid=grid(256), stream=stream0) del buf5 buf7 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.clone] triton_poi_fused_clone_4.run(buf1, buf7, 16, 4, grid=grid(16, 4), stream=stream0) del buf1 buf8 = empty_strided_cuda((16, 4, 1), (4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf6, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf7, (16, 4, 1), (4, 1, 0), 0), out=buf8) buf9 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [Z], Original ATen: [aten.clone] triton_poi_fused_clone_0.run(buf8, buf9, 16, 4, grid=grid(16, 4), stream=stream0) buf10 = reinterpret_tensor(buf8, (16, 4), (4, 1), 0); del buf8 # reuse # Topologically Sorted Source Nodes: [Z], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf9, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf10) return (reinterpret_tensor(buf10, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), buf6, reinterpret_tensor(buf9, (16, 4), (4, 1), 0), primals_5, reinterpret_tensor(buf7, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf2, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((8, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.cpp_extension class MultiQueryAttention(nn.Module): def __init__(self, dim, latent_dim, num_heads): super().__init__() self.dim = dim self.num_heads = num_heads self.q = nn.Linear(dim, dim, bias=False) self.kv = nn.Linear(latent_dim, dim * 2, bias=False) self.o = nn.Linear(dim, dim, bias=False) self.scale = (dim // self.num_heads) ** -0.5 def forward(self, x, z): B, xN, _ = x.size() _, zN, _ = z.size() Q = self.q(x).reshape(B, xN, self.num_heads, self.dim // self.num_heads ).transpose(1, 2) KV = self.kv(z).reshape(B, zN, 2, self.num_heads, self.dim // self. num_heads).permute(2, 0, 3, 1, 4) K, V = KV.unbind(dim=0) attn = Q @ K.transpose(-1, -2) * self.scale attn = attn.softmax(-1) O = (attn @ V).permute(0, 2, 1, 3).reshape(B, xN, self.dim) Z = self.o(O) return Z def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'dim': 4, 'latent_dim': 4, 'num_heads': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch.utils.cpp_extension assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_clone_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 8 * x2 + 32 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = tmp14 * tmp1 tmp16 = tl_math.exp(tmp15) tl.store(out_ptr0 + x2, tmp16, xmask) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (4 + y0 + 8 * x2 + 32 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (8, 4), (4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf0) del primals_3 buf1 = empty_strided_cuda((16, 8), (8, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 8), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(16, 4)](buf0, buf2, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf3 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0) del buf0 triton_poi_fused_clone_1[grid(16, 4)](buf1, buf3, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf4 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 0, 1), 0), out=buf4) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__softmax_2[grid(256)](buf4, buf5, 256, XBLOCK=128, num_warps=4, num_stages=1) buf6 = reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf4 triton_poi_fused__softmax_3[grid(256)](buf5, buf6, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf5 buf7 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) triton_poi_fused_clone_4[grid(16, 4)](buf1, buf7, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) del buf1 buf8 = empty_strided_cuda((16, 4, 1), (4, 1, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf6, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf7, (16, 4, 1), (4, 1, 0), 0), out=buf8) buf9 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_clone_0[grid(16, 4)](buf8, buf9, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf10 = reinterpret_tensor(buf8, (16, 4), (4, 1), 0) del buf8 extern_kernels.mm(reinterpret_tensor(buf9, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf10) return reinterpret_tensor(buf10, (4, 4, 4), (16, 4, 1), 0 ), reinterpret_tensor(primals_1, (16, 4), (4, 1), 0 ), reinterpret_tensor(primals_2, (16, 4), (4, 1), 0 ), buf6, reinterpret_tensor(buf9, (16, 4), (4, 1), 0 ), primals_5, reinterpret_tensor(buf7, (16, 1, 4), (4, 1, 1), 0 ), reinterpret_tensor(buf2, (16, 1, 4), (4, 1, 1), 0 ), reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 4), 0) class MultiQueryAttentionNew(nn.Module): def __init__(self, dim, latent_dim, num_heads): super().__init__() self.dim = dim self.num_heads = num_heads self.q = nn.Linear(dim, dim, bias=False) self.kv = nn.Linear(latent_dim, dim * 2, bias=False) self.o = nn.Linear(dim, dim, bias=False) self.scale = (dim // self.num_heads) ** -0.5 def forward(self, input_0, input_1): primals_3 = self.q.weight primals_4 = self.kv.weight primals_5 = self.o.weight primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
STomoya/animeface
MultiQueryAttention
false
14,371
[ "MIT" ]
61
37b3cd26097d7874559d4c152e41e5712b7a1a42
https://github.com/STomoya/animeface/tree/37b3cd26097d7874559d4c152e41e5712b7a1a42
PSNR
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/du/cdukfjxbk3gltkdefnds44xxup7qgipj5mczmse5kerplojh4icj.py # Topologically Sorted Source Nodes: [mse, truediv, log10, psnr], Original ATen: [aten.mse_loss, aten.reciprocal, aten.mul, aten.log10] # Source node to ATen node mapping: # log10 => log10 # mse => mean, pow_1, sub # psnr => mul_1 # truediv => mul, reciprocal # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_1,), kwargs = {}) # %reciprocal : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%mean,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal, 1.0), kwargs = {}) # %log10 : [num_users=1] = call_function[target=torch.ops.aten.log10.default](args = (%mul,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%log10, 10), kwargs = {}) triton_per_fused_log10_mse_loss_mul_reciprocal_0 = async_compile.triton('triton_per_fused_log10_mse_loss_mul_reciprocal_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_log10_mse_loss_mul_reciprocal_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_log10_mse_loss_mul_reciprocal_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tmp7 = 256.0 tmp8 = tmp6 / tmp7 tmp9 = tl.full([1], 1, tl.int32) tmp10 = tmp9 / tmp8 tmp11 = 1.0 tmp12 = tmp10 * tmp11 tmp13 = libdevice.log10(tmp12) tmp14 = 10.0 tmp15 = tmp13 * tmp14 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp15, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [mse, truediv, log10, psnr], Original ATen: [aten.mse_loss, aten.reciprocal, aten.mul, aten.log10] stream0 = get_raw_stream(0) triton_per_fused_log10_mse_loss_mul_reciprocal_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class PSNR(nn.Module): def __init__(self, max_val=1.0, mode='Y'): super(PSNR, self).__init__() self.max_val = max_val self.mode = mode def forward(self, x, y): if self.mode == 'Y' and x.shape[1] == 3 and y.shape[1] == 3: x = kornia.color.rgb_to_grayscale(x) y = kornia.color.rgb_to_grayscale(y) mse = F.mse_loss(x, y, reduction='mean') psnr = 10 * torch.log10(self.max_val ** 2 / mse) return psnr def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_log10_mse_loss_mul_reciprocal_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tmp7 = 256.0 tmp8 = tmp6 / tmp7 tmp9 = tl.full([1], 1, tl.int32) tmp10 = tmp9 / tmp8 tmp11 = 1.0 tmp12 = tmp10 * tmp11 tmp13 = libdevice.log10(tmp12) tmp14 = 10.0 tmp15 = tmp13 * tmp14 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp15, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_log10_mse_loss_mul_reciprocal_0[grid(1)](buf1, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf1, class PSNRNew(nn.Module): def __init__(self, max_val=1.0, mode='Y'): super(PSNRNew, self).__init__() self.max_val = max_val self.mode = mode def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
S-aiueo32/srntt-pytorch
PSNR
false
14,372
[ "Apache-2.0" ]
88
4ea0aa22a54a2d1b1f19c4a43596a693b9e7c067
https://github.com/S-aiueo32/srntt-pytorch/tree/4ea0aa22a54a2d1b1f19c4a43596a693b9e7c067
AdaptiveInstanceNorm
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/oy/coy4v6ev22tv33nc6asaz3obrskaw2f3vho4q3aj4yqpth7c2y2m.py # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul => mul_1 # Graph fragment: # %mul_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, 0.7071067811865476), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.7071067811865476 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/hm/chmh5xjifbfii7z6shmz6c4fc4wab4szbjudawyr5vrbesl24ch6.py # Topologically Sorted Source Nodes: [norm, mul_1, x_1], Original ATen: [aten._native_batch_norm_legit, aten.mul, aten.add] # Source node to ATen node mapping: # mul_1 => mul_2 # norm => add, rsqrt, var_mean # x_1 => add_1 # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [0, 2, 3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-08), kwargs = {}) # %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem_2, %view_1), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %getitem_3), kwargs = {}) triton_per_fused__native_batch_norm_legit_add_mul_1 = async_compile.triton('triton_per_fused__native_batch_norm_legit_add_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_add_mul_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__native_batch_norm_legit_add_mul_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex x2 = xindex % 4 x3 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp22 = tl.load(in_ptr1 + (x2 + (8*x3)), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr2 + (x2), xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr1 + (4 + x2 + (8*x3)), xmask, eviction_policy='evict_last') tmp29 = tl.load(in_ptr2 + (4 + x2), xmask, eviction_policy='evict_last') tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp6 = tl.where(xmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp8 = tl.full([XBLOCK, 1], 16, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp15 = tl.where(xmask, tmp13, 0) tmp16 = tl.sum(tmp15, 1)[:, None] tmp17 = 16.0 tmp18 = tmp16 / tmp17 tmp19 = 1e-08 tmp20 = tmp18 + tmp19 tmp21 = libdevice.rsqrt(tmp20) tmp24 = tmp22 + tmp23 tmp25 = tmp0 - tmp10 tmp26 = tmp25 * tmp21 tmp27 = tmp24 * tmp26 tmp30 = tmp28 + tmp29 tmp31 = tmp27 + tmp30 tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp21, xmask) tl.store(out_ptr1 + (r1 + (16*x0)), tmp31, xmask) tl.store(out_ptr0 + (x0), tmp10, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (8, 4), (4, 1)) assert_size_stride(primals_4, (8, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(primals_2, buf4, 16, grid=grid(16), stream=stream0) del primals_2 buf5 = empty_strided_cuda((4, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf4, reinterpret_tensor(primals_3, (4, 8), (1, 4), 0), out=buf5) del primals_3 buf0 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 1, 1), torch.float32) buf1 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32) buf3 = reinterpret_tensor(buf1, (1, 16, 1, 1), (16, 1, 1, 1), 0); del buf1 # reuse buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [norm, mul_1, x_1], Original ATen: [aten._native_batch_norm_legit, aten.mul, aten.add] triton_per_fused__native_batch_norm_legit_add_mul_1.run(buf3, primals_1, buf5, primals_4, buf0, buf6, 16, 16, grid=grid(16), stream=stream0) del buf5 del primals_4 return (buf6, primals_1, buf0, buf3, buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((8, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.nn as nn import torch.utils.cpp_extension @torch.no_grad() def scaling_init(tensor, scale=1, dist='u'): fan_in, fan_out = nn.init._calculate_fan_in_and_fan_out(tensor) scale /= (fan_in + fan_out) / 2 if dist == 'n': std = math.sqrt(scale) return tensor.normal_(0.0, std) elif dist == 'u': bound = math.sqrt(3 * scale) return tensor.uniform_(-bound, bound) def linear(in_features, out_features, scale=1.0): _linear = nn.Linear(in_features, out_features) scaling_init(_linear.weight, scale) nn.init.zeros_(_linear.bias) return _linear class EqualizedLR(nn.Module): """ equalized learning rate """ def __init__(self, layer, gain=2): super(EqualizedLR, self).__init__() self.wscale = (gain / layer.weight[0].numel()) ** 0.5 self.layer = layer def forward(self, x, gain=2): x = self.layer(x * self.wscale) return x class EqualizedLinear(nn.Module): """ equalized fully connected layer """ def __init__(self, in_channels, out_channels): super().__init__() linear = nn.Linear(in_channels, out_channels) linear.weight.data.normal_(0, 1) linear.bias.data.fill_(0) self.linear = EqualizedLR(linear) def forward(self, x): x = self.linear(x) return x class AdaptiveInstanceNorm(nn.Module): """ AdaIN """ def __init__(self, channels, style_dim): super().__init__() self.norm = nn.InstanceNorm2d(channels, eps=1e-08) self.linear = EqualizedLinear(style_dim, channels * 2) self.linear.linear.layer.bias.data[:channels] = 1.0 def forward(self, x, style): norm = self.norm(x) style = self.linear(style).unsqueeze(2).unsqueeze(3) ys, yb = style.chunk(2, 1) x = ys * norm + yb return x def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'channels': 4, 'style_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import math import torch.nn as nn import torch.utils.cpp_extension assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.7071067811865476 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_per_fused__native_batch_norm_legit_add_mul_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex x2 = xindex % 4 x3 = xindex // 4 tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp22 = tl.load(in_ptr1 + (x2 + 8 * x3), xmask, eviction_policy= 'evict_last') tmp23 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr1 + (4 + x2 + 8 * x3), xmask, eviction_policy= 'evict_last') tmp29 = tl.load(in_ptr2 + (4 + x2), xmask, eviction_policy='evict_last') tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tl.where(xmask, tmp1, 0) tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp6 = tl.where(xmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp8 = tl.full([XBLOCK, 1], 16, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp15 = tl.where(xmask, tmp13, 0) tmp16 = tl.sum(tmp15, 1)[:, None] tmp17 = 16.0 tmp18 = tmp16 / tmp17 tmp19 = 1e-08 tmp20 = tmp18 + tmp19 tmp21 = libdevice.rsqrt(tmp20) tmp24 = tmp22 + tmp23 tmp25 = tmp0 - tmp10 tmp26 = tmp25 * tmp21 tmp27 = tmp24 * tmp26 tmp30 = tmp28 + tmp29 tmp31 = tmp27 + tmp30 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp21, xmask) tl.store(out_ptr1 + (r1 + 16 * x0), tmp31, xmask) tl.store(out_ptr0 + x0, tmp10, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (8, 4), (4, 1)) assert_size_stride(primals_4, (8,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(16)](primals_2, buf4, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_2 buf5 = empty_strided_cuda((4, 8), (8, 1), torch.float32) extern_kernels.mm(buf4, reinterpret_tensor(primals_3, (4, 8), (1, 4 ), 0), out=buf5) del primals_3 buf0 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 1, 1), torch.float32) buf1 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32 ) buf3 = reinterpret_tensor(buf1, (1, 16, 1, 1), (16, 1, 1, 1), 0) del buf1 buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_per_fused__native_batch_norm_legit_add_mul_1[grid(16)](buf3, primals_1, buf5, primals_4, buf0, buf6, 16, 16, XBLOCK=8, num_warps=2, num_stages=1) del buf5 del primals_4 return buf6, primals_1, buf0, buf3, buf4 @torch.no_grad() def scaling_init(tensor, scale=1, dist='u'): fan_in, fan_out = nn.init._calculate_fan_in_and_fan_out(tensor) scale /= (fan_in + fan_out) / 2 if dist == 'n': std = math.sqrt(scale) return tensor.normal_(0.0, std) elif dist == 'u': bound = math.sqrt(3 * scale) return tensor.uniform_(-bound, bound) def linear(in_features, out_features, scale=1.0): _linear = nn.Linear(in_features, out_features) scaling_init(_linear.weight, scale) nn.init.zeros_(_linear.bias) return _linear class EqualizedLR(nn.Module): """ equalized learning rate """ def __init__(self, layer, gain=2): super(EqualizedLR, self).__init__() self.wscale = (gain / layer.weight[0].numel()) ** 0.5 self.layer = layer def forward(self, x, gain=2): x = self.layer(x * self.wscale) return x class EqualizedLinear(nn.Module): """ equalized fully connected layer """ def __init__(self, in_channels, out_channels): super().__init__() linear = nn.Linear(in_channels, out_channels) linear.weight.data.normal_(0, 1) linear.bias.data.fill_(0) self.linear = EqualizedLR(linear) def forward(self, x): x = self.linear(x) return x class AdaptiveInstanceNormNew(nn.Module): """ AdaIN """ def __init__(self, channels, style_dim): super().__init__() self.norm = nn.InstanceNorm2d(channels, eps=1e-08) self.linear = EqualizedLinear(style_dim, channels * 2) self.linear.linear.layer.bias.data[:channels] = 1.0 def forward(self, input_0, input_1): primals_3 = self.linear.linear.layer.weight primals_4 = self.linear.linear.layer.bias primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
STomoya/animeface
AdaptiveInstanceNorm
false
14,373
[ "MIT" ]
61
37b3cd26097d7874559d4c152e41e5712b7a1a42
https://github.com/STomoya/animeface/tree/37b3cd26097d7874559d4c152e41e5712b7a1a42
DBLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/th/cth2pr4okfjnftwp5nhsrwae2gu3elzsrtvssozk7g34br65f6iq.py # Topologically Sorted Source Nodes: [L1_loss], Original ATen: [aten.sub, aten.abs, aten.mean] # Source node to ATen node mapping: # L1_loss => abs_1, mean, sub_3 # Graph fragment: # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_1, %select_3), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_3,), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_1,), kwargs = {}) triton_per_fused_abs_mean_sub_0 = async_compile.triton('triton_per_fused_abs_mean_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_mean_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_abs_mean_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 16 r1 = (rindex // 16) tmp0 = tl.load(in_ptr0 + (16 + r0 + (64*r1)), None) tmp1 = tl.load(in_ptr1 + (16 + r0 + (64*r1)), None) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp6 = tl.sum(tmp4, 1)[:, None] tl.store(out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/oy/coydca7q6rspb63hmfzhtyecozz54jra3cck27mcezuvhxskxwd2.py # Topologically Sorted Source Nodes: [mul, mul_1, intersection, mul_4, mul_2, sum_2, mul_3, sum_3, add, union, truediv, loss, loss_prob, sub_1, mul_5, exp, add_2, bin_map, mul_6, mul_7, intersection_1, mul_10, mul_8, sum_5, mul_9, sum_6, add_3, union_1, truediv_2, loss_1, loss_bin, mul_12, add_5, L1_loss, loss_thres, loss_thres_1, mul_13, loss_all], Original ATen: [aten.mul, aten.sum, aten.add, aten.div, aten.rsub, aten.mean, aten.sub, aten.exp, aten.reciprocal, aten.abs] # Source node to ATen node mapping: # L1_loss => abs_1, mean, sub_3 # add => add # add_2 => add_2 # add_3 => add_3 # add_5 => add_5 # bin_map => mul_6, reciprocal # exp => exp # intersection => sum_1 # intersection_1 => sum_4 # loss => sub # loss_1 => sub_2 # loss_all => add_6 # loss_bin => mean_2 # loss_prob => mean_1 # loss_thres => mul_12 # loss_thres_1 => mean_3 # mul => mul # mul_1 => mul_1 # mul_10 => mul_11 # mul_12 => mul_13 # mul_13 => mul_14 # mul_2 => mul_2 # mul_3 => mul_3 # mul_4 => mul_4 # mul_5 => mul_5 # mul_6 => mul_7 # mul_7 => mul_8 # mul_8 => mul_9 # mul_9 => mul_10 # sub_1 => sub_1 # sum_2 => sum_2 # sum_3 => sum_3 # sum_5 => sum_5 # sum_6 => sum_6 # truediv => div # truediv_2 => div_1 # union => add_1 # union_1 => add_4 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_2, %select), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %arg3_1), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_1,), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, 2), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_2, %arg3_1), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_2,), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select, %arg3_1), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_3,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_2, %sum_3), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, 1e-05), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_4, %add_1), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %div), kwargs = {}) # %mean_1 : [num_users=2] = call_function[target=torch.ops.aten.mean.default](args = (%sub,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select, %select_1), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, -50), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%mul_5,), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%exp, 1), kwargs = {}) # %reciprocal : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%add_2,), kwargs = {}) # %mul_6 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal, 1.0), kwargs = {}) # %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_2, %mul_6), kwargs = {}) # %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_7, %arg3_1), kwargs = {}) # %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_8,), kwargs = {}) # %mul_11 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_4, 2), kwargs = {}) # %mul_9 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_2, %arg3_1), kwargs = {}) # %sum_5 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_9,), kwargs = {}) # %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_6, %arg3_1), kwargs = {}) # %sum_6 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_10,), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_5, %sum_6), kwargs = {}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_3, 1e-05), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_11, %add_4), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %div_1), kwargs = {}) # %mean_2 : [num_users=2] = call_function[target=torch.ops.aten.mean.default](args = (%sub_2,), kwargs = {}) # %mul_13 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean_2, 1.0), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean_1, %mul_13), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_1, %select_3), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_3,), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_1,), kwargs = {}) # %mul_12 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, %arg2_1), kwargs = {}) # %mean_3 : [num_users=2] = call_function[target=torch.ops.aten.mean.default](args = (%mul_12,), kwargs = {}) # %mul_14 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean_3, 10.0), kwargs = {}) # %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_5, %mul_14), kwargs = {}) triton_per_fused_abs_add_div_exp_mean_mul_reciprocal_rsub_sub_sum_1 = async_compile.triton('triton_per_fused_abs_add_div_exp_mean_mul_reciprocal_rsub_sub_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: 'i32', 9: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {8: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 9), equal_to_1=(8,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_add_div_exp_mean_mul_reciprocal_rsub_sub_sum_1', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1', 'in_out_ptr2'], 'no_x_dim': True, 'num_load': 6, 'num_reduction': 7, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_abs_add_div_exp_mean_mul_reciprocal_rsub_sub_sum_1(in_out_ptr0, in_out_ptr1, in_out_ptr2, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr4, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex r1 = rindex % 16 r2 = (rindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (0)) tmp1 = tl.broadcast_to(tmp0, [RBLOCK]) tmp4 = tl.load(in_ptr0 + (r0), None) tmp9 = tl.load(in_ptr1 + (r1 + (64*r2)), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + (r1 + (64*r2)), None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr3 + (r0), None) tmp17 = tl.load(in_ptr2 + (16 + r1 + (64*r2)), None, eviction_policy='evict_last') tmp2 = 64.0 tmp3 = tmp1 / tmp2 tmp5 = tmp3 * tmp4 tmp6 = tl.broadcast_to(tmp5, [RBLOCK]) tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0)) tmp11 = tmp9 * tmp10 tmp13 = tmp11 * tmp12 tmp14 = tl.broadcast_to(tmp13, [RBLOCK]) tmp16 = triton_helpers.promote_to_tensor(tl.sum(tmp14, 0)) tmp18 = tmp10 - tmp17 tmp19 = -50.0 tmp20 = tmp18 * tmp19 tmp21 = tl_math.exp(tmp20) tmp22 = 1.0 tmp23 = tmp21 + tmp22 tmp24 = tl.full([1], 1, tl.int32) tmp25 = tmp24 / tmp23 tmp26 = tmp25 * tmp22 tmp27 = tmp9 * tmp26 tmp28 = tmp27 * tmp12 tmp29 = tl.broadcast_to(tmp28, [RBLOCK]) tmp31 = triton_helpers.promote_to_tensor(tl.sum(tmp29, 0)) tmp32 = tmp26 * tmp12 tmp33 = tl.broadcast_to(tmp32, [RBLOCK]) tmp35 = triton_helpers.promote_to_tensor(tl.sum(tmp33, 0)) tmp36 = tmp9 * tmp12 tmp37 = tl.broadcast_to(tmp36, [RBLOCK]) tmp39 = triton_helpers.promote_to_tensor(tl.sum(tmp37, 0)) tmp40 = tmp10 * tmp12 tmp41 = tl.broadcast_to(tmp40, [RBLOCK]) tmp43 = triton_helpers.promote_to_tensor(tl.sum(tmp41, 0)) tmp44 = 2.0 tmp45 = tmp16 * tmp44 tmp46 = tmp39 + tmp43 tmp47 = 1e-05 tmp48 = tmp46 + tmp47 tmp49 = tmp45 / tmp48 tmp50 = tmp22 - tmp49 tmp51 = tmp50 / tmp22 tmp52 = tmp31 * tmp44 tmp53 = tmp39 + tmp35 tmp54 = tmp53 + tmp47 tmp55 = tmp52 / tmp54 tmp56 = tmp22 - tmp55 tmp57 = tmp56 / tmp22 tmp58 = 256.0 tmp59 = tmp8 / tmp58 tmp60 = tmp57 * tmp22 tmp61 = tmp51 + tmp60 tmp62 = 10.0 tmp63 = tmp59 * tmp62 tmp64 = tmp61 + tmp63 tl.debug_barrier() tl.store(in_out_ptr1 + (tl.full([1], 0, tl.int32)), tmp51, None) tl.debug_barrier() tl.store(in_out_ptr2 + (tl.full([1], 0, tl.int32)), tmp57, None) tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp59, None) tl.store(out_ptr4 + (tl.full([1], 0, tl.int32)), tmp64, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1, arg3_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf8 = empty_strided_cuda((), (), torch.float32) # Topologically Sorted Source Nodes: [L1_loss], Original ATen: [aten.sub, aten.abs, aten.mean] stream0 = get_raw_stream(0) triton_per_fused_abs_mean_sub_0.run(arg0_1, arg1_1, buf8, 1, 64, grid=grid(1), stream=stream0) buf9 = buf8; del buf8 # reuse buf0 = empty_strided_cuda((), (), torch.float32) buf4 = empty_strided_cuda((), (), torch.float32) buf3 = buf0; del buf0 # reuse buf7 = buf4; del buf4 # reuse buf10 = buf9; del buf9 # reuse buf11 = empty_strided_cuda((), (), torch.float32) # Topologically Sorted Source Nodes: [mul, mul_1, intersection, mul_4, mul_2, sum_2, mul_3, sum_3, add, union, truediv, loss, loss_prob, sub_1, mul_5, exp, add_2, bin_map, mul_6, mul_7, intersection_1, mul_10, mul_8, sum_5, mul_9, sum_6, add_3, union_1, truediv_2, loss_1, loss_bin, mul_12, add_5, L1_loss, loss_thres, loss_thres_1, mul_13, loss_all], Original ATen: [aten.mul, aten.sum, aten.add, aten.div, aten.rsub, aten.mean, aten.sub, aten.exp, aten.reciprocal, aten.abs] triton_per_fused_abs_add_div_exp_mean_mul_reciprocal_rsub_sub_sum_1.run(buf10, buf3, buf7, arg2_1, arg1_1, arg0_1, arg3_1, buf11, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 del arg2_1 del arg3_1 return (buf11, buf3, buf7, buf10, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg3_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1, arg3_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np from torch import nn class DBLoss(nn.Module): def __init__(self, alpha=1.0, beta=10.0, ohem_ratio=3): """ Implement DB Loss. :param alpha: loss binary_map 前面的系数 :param beta: loss threshold 前面的系数 :param ohem_ratio: OHEM的比例 """ super().__init__() self.alpha = alpha self.beta = beta self.ohem_ratio = ohem_ratio def forward(self, outputs, labels, training_masks, G_d): """ Implement DB Loss. :param outputs: N 2 H W :param labels: N 2 H W :param training_masks: """ prob_map = outputs[:, 0, :, :] thres_map = outputs[:, 1, :, :] gt_prob = labels[:, 0, :, :] gt_thres = labels[:, 1, :, :] G_d = G_d training_masks = training_masks loss_prob = self.dice_loss(prob_map, gt_prob, training_masks) bin_map = self.DB(prob_map, thres_map) loss_bin = self.dice_loss(bin_map, gt_prob, training_masks) loss_fn = torch.nn.L1Loss(reduction='mean') L1_loss = loss_fn(thres_map, gt_thres) loss_thres = L1_loss * G_d loss_prob = loss_prob.mean() loss_bin = loss_bin.mean() loss_thres = loss_thres.mean() loss_all = loss_prob + self.alpha * loss_bin + self.beta * loss_thres return loss_all, loss_prob, loss_bin, loss_thres def DB(self, prob_map, thres_map, k=50): """ Differentiable binarization another form: torch.sigmoid(k * (prob_map - thres_map)) """ return 1.0 / (torch.exp(-k * (prob_map - thres_map)) + 1) def dice_loss(self, pred_cls, gt_cls, training_mask): """ dice loss 此处默认真实值和预测值的格式均为 NCHW :param gt_cls: :param pred_cls: :param training_mask: :return: """ eps = 1e-05 intersection = torch.sum(gt_cls * pred_cls * training_mask) union = torch.sum(gt_cls * training_mask) + torch.sum(pred_cls * training_mask) + eps loss = 1.0 - 2 * intersection / union return loss def bce_loss(self, input, target, mask): if mask.sum() == 0: return torch.tensor(0.0, device=input.device, requires_grad=True) target[target <= 0.5] = 0 target[target > 0.5] = 1 input = input[mask.bool()] target = target[mask.bool()] loss = nn.BCELoss(reduction='mean')(input, target) return loss def ohem_single(self, score, gt_text): pos_num = int(np.sum(gt_text > 0.5)) if pos_num == 0: selected_mask = np.zeros_like(score) selected_mask = selected_mask.reshape(1, selected_mask.shape[0], selected_mask.shape[1]).astype('float32') return selected_mask neg_num = int(np.sum(gt_text <= 0.5)) neg_num = int(min(pos_num * self.ohem_ratio, neg_num)) if neg_num == 0: selected_mask = np.zeros_like(score) selected_mask = selected_mask.reshape(1, selected_mask.shape[0], selected_mask.shape[1]).astype('float32') return selected_mask neg_score = score[gt_text <= 0.5] neg_score_sorted = np.sort(-neg_score) threshold = -neg_score_sorted[neg_num - 1] selected_mask = (score >= threshold) | (gt_text > 0.5) selected_mask = selected_mask.reshape(1, selected_mask.shape[0], selected_mask.shape[1]).astype('float32') return selected_mask def ohem_batch(self, scores, gt_texts): scores = scores.data.cpu().numpy() gt_texts = gt_texts.data.cpu().numpy() selected_masks = [] for i in range(scores.shape[0]): selected_masks.append(self.ohem_single(scores[i, :, :], gt_texts[i, :, :])) selected_masks = np.concatenate(selected_masks, 0) selected_masks = torch.from_numpy(selected_masks).float() return selected_masks def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import numpy as np from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_abs_mean_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 16 r1 = rindex // 16 tmp0 = tl.load(in_ptr0 + (16 + r0 + 64 * r1), None) tmp1 = tl.load(in_ptr1 + (16 + r0 + 64 * r1), None) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp6 = tl.sum(tmp4, 1)[:, None] tl.store(out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp6, None) @triton.jit def triton_per_fused_abs_add_div_exp_mean_mul_reciprocal_rsub_sub_sum_1( in_out_ptr0, in_out_ptr1, in_out_ptr2, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr4, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex r1 = rindex % 16 r2 = rindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + 0) tmp1 = tl.broadcast_to(tmp0, [RBLOCK]) tmp4 = tl.load(in_ptr0 + r0, None) tmp9 = tl.load(in_ptr1 + (r1 + 64 * r2), None, eviction_policy='evict_last' ) tmp10 = tl.load(in_ptr2 + (r1 + 64 * r2), None, eviction_policy= 'evict_last') tmp12 = tl.load(in_ptr3 + r0, None) tmp17 = tl.load(in_ptr2 + (16 + r1 + 64 * r2), None, eviction_policy= 'evict_last') tmp2 = 64.0 tmp3 = tmp1 / tmp2 tmp5 = tmp3 * tmp4 tmp6 = tl.broadcast_to(tmp5, [RBLOCK]) tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0)) tmp11 = tmp9 * tmp10 tmp13 = tmp11 * tmp12 tmp14 = tl.broadcast_to(tmp13, [RBLOCK]) tmp16 = triton_helpers.promote_to_tensor(tl.sum(tmp14, 0)) tmp18 = tmp10 - tmp17 tmp19 = -50.0 tmp20 = tmp18 * tmp19 tmp21 = tl_math.exp(tmp20) tmp22 = 1.0 tmp23 = tmp21 + tmp22 tmp24 = tl.full([1], 1, tl.int32) tmp25 = tmp24 / tmp23 tmp26 = tmp25 * tmp22 tmp27 = tmp9 * tmp26 tmp28 = tmp27 * tmp12 tmp29 = tl.broadcast_to(tmp28, [RBLOCK]) tmp31 = triton_helpers.promote_to_tensor(tl.sum(tmp29, 0)) tmp32 = tmp26 * tmp12 tmp33 = tl.broadcast_to(tmp32, [RBLOCK]) tmp35 = triton_helpers.promote_to_tensor(tl.sum(tmp33, 0)) tmp36 = tmp9 * tmp12 tmp37 = tl.broadcast_to(tmp36, [RBLOCK]) tmp39 = triton_helpers.promote_to_tensor(tl.sum(tmp37, 0)) tmp40 = tmp10 * tmp12 tmp41 = tl.broadcast_to(tmp40, [RBLOCK]) tmp43 = triton_helpers.promote_to_tensor(tl.sum(tmp41, 0)) tmp44 = 2.0 tmp45 = tmp16 * tmp44 tmp46 = tmp39 + tmp43 tmp47 = 1e-05 tmp48 = tmp46 + tmp47 tmp49 = tmp45 / tmp48 tmp50 = tmp22 - tmp49 tmp51 = tmp50 / tmp22 tmp52 = tmp31 * tmp44 tmp53 = tmp39 + tmp35 tmp54 = tmp53 + tmp47 tmp55 = tmp52 / tmp54 tmp56 = tmp22 - tmp55 tmp57 = tmp56 / tmp22 tmp58 = 256.0 tmp59 = tmp8 / tmp58 tmp60 = tmp57 * tmp22 tmp61 = tmp51 + tmp60 tmp62 = 10.0 tmp63 = tmp59 * tmp62 tmp64 = tmp61 + tmp63 tl.debug_barrier() tl.store(in_out_ptr1 + tl.full([1], 0, tl.int32), tmp51, None) tl.debug_barrier() tl.store(in_out_ptr2 + tl.full([1], 0, tl.int32), tmp57, None) tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp59, None) tl.store(out_ptr4 + tl.full([1], 0, tl.int32), tmp64, None) def call(args): arg0_1, arg1_1, arg2_1, arg3_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf8 = empty_strided_cuda((), (), torch.float32) get_raw_stream(0) triton_per_fused_abs_mean_sub_0[grid(1)](arg0_1, arg1_1, buf8, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) buf9 = buf8 del buf8 buf0 = empty_strided_cuda((), (), torch.float32) buf4 = empty_strided_cuda((), (), torch.float32) buf3 = buf0 del buf0 buf7 = buf4 del buf4 buf10 = buf9 del buf9 buf11 = empty_strided_cuda((), (), torch.float32) triton_per_fused_abs_add_div_exp_mean_mul_reciprocal_rsub_sub_sum_1[ grid(1)](buf10, buf3, buf7, arg2_1, arg1_1, arg0_1, arg3_1, buf11, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 del arg2_1 del arg3_1 return buf11, buf3, buf7, buf10 class DBLossNew(nn.Module): def __init__(self, alpha=1.0, beta=10.0, ohem_ratio=3): """ Implement DB Loss. :param alpha: loss binary_map 前面的系数 :param beta: loss threshold 前面的系数 :param ohem_ratio: OHEM的比例 """ super().__init__() self.alpha = alpha self.beta = beta self.ohem_ratio = ohem_ratio def DB(self, prob_map, thres_map, k=50): """ Differentiable binarization another form: torch.sigmoid(k * (prob_map - thres_map)) """ return 1.0 / (torch.exp(-k * (prob_map - thres_map)) + 1) def dice_loss(self, pred_cls, gt_cls, training_mask): """ dice loss 此处默认真实值和预测值的格式均为 NCHW :param gt_cls: :param pred_cls: :param training_mask: :return: """ eps = 1e-05 intersection = torch.sum(gt_cls * pred_cls * training_mask) union = torch.sum(gt_cls * training_mask) + torch.sum(pred_cls * training_mask) + eps loss = 1.0 - 2 * intersection / union return loss def bce_loss(self, input, target, mask): if mask.sum() == 0: return torch.tensor(0.0, device=input.device, requires_grad=True) target[target <= 0.5] = 0 target[target > 0.5] = 1 input = input[mask.bool()] target = target[mask.bool()] loss = nn.BCELoss(reduction='mean')(input, target) return loss def ohem_single(self, score, gt_text): pos_num = int(np.sum(gt_text > 0.5)) if pos_num == 0: selected_mask = np.zeros_like(score) selected_mask = selected_mask.reshape(1, selected_mask.shape[0], selected_mask.shape[1]).astype('float32') return selected_mask neg_num = int(np.sum(gt_text <= 0.5)) neg_num = int(min(pos_num * self.ohem_ratio, neg_num)) if neg_num == 0: selected_mask = np.zeros_like(score) selected_mask = selected_mask.reshape(1, selected_mask.shape[0], selected_mask.shape[1]).astype('float32') return selected_mask neg_score = score[gt_text <= 0.5] neg_score_sorted = np.sort(-neg_score) threshold = -neg_score_sorted[neg_num - 1] selected_mask = (score >= threshold) | (gt_text > 0.5) selected_mask = selected_mask.reshape(1, selected_mask.shape[0], selected_mask.shape[1]).astype('float32') return selected_mask def ohem_batch(self, scores, gt_texts): scores = scores.data.cpu().numpy() gt_texts = gt_texts.data.cpu().numpy() selected_masks = [] for i in range(scores.shape[0]): selected_masks.append(self.ohem_single(scores[i, :, :], gt_texts[i, :, :])) selected_masks = np.concatenate(selected_masks, 0) selected_masks = torch.from_numpy(selected_masks).float() return selected_masks def forward(self, input_0, input_1, input_2, input_3): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 arg3_1 = input_3 output = call([arg0_1, arg1_1, arg2_1, arg3_1]) return output[0], output[1], output[2], output[3]
SURFZJY/Real-time-Text-Detection
DBLoss
false
14,374
[ "Apache-2.0" ]
65
b76ee8d840b1fcebf7b9545402907416c7daf24e
https://github.com/SURFZJY/Real-time-Text-Detection/tree/b76ee8d840b1fcebf7b9545402907416c7daf24e
GeM
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/w7/cw76edgx2byvy63fwff7anzlambkufz45h3okmkxmcgppfib77jc.py # Topologically Sorted Source Nodes: [clamp, pow_1], Original ATen: [aten.clamp, aten.pow] # Source node to ATen node mapping: # clamp => clamp_min # pow_1 => pow_1 # Graph fragment: # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%primals_2, 1e-06), kwargs = {}) # %pow_1 : [num_users=2] = call_function[target=torch.ops.aten.pow.Tensor_Tensor](args = (%clamp_min, %primals_1), kwargs = {}) triton_poi_fused_clamp_pow_0 = async_compile.triton('triton_poi_fused_clamp_pow_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_pow_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clamp_pow_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp3 = tl.load(in_ptr1 + (0)) tmp4 = tl.broadcast_to(tmp3, [XBLOCK]) tmp1 = 1e-06 tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp5 = libdevice.pow(tmp2, tmp4) tl.store(out_ptr0 + (x0), tmp5, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/bw/cbwgbppqaap3oywo4gn6wujtg6clpxlchs4m6kjxievrbuoqr6wh.py # Topologically Sorted Source Nodes: [avg_pool2d, truediv, pow_2], Original ATen: [aten.avg_pool2d, aten.reciprocal, aten.mul, aten.pow] # Source node to ATen node mapping: # avg_pool2d => avg_pool2d # pow_2 => pow_2 # truediv => mul, reciprocal # Graph fragment: # %avg_pool2d : [num_users=2] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%pow_1, [4, 4]), kwargs = {}) # %reciprocal : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%primals_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal, 1.0), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Tensor](args = (%avg_pool2d, %mul), kwargs = {}) triton_poi_fused_avg_pool2d_mul_pow_reciprocal_1 = async_compile.triton('triton_poi_fused_avg_pool2d_mul_pow_reciprocal_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_mul_pow_reciprocal_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 17, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool2d_mul_pow_reciprocal_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (16*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (16*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (16*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (16*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (4 + (16*x0)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (5 + (16*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (6 + (16*x0)), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr0 + (7 + (16*x0)), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr0 + (8 + (16*x0)), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr0 + (9 + (16*x0)), xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr0 + (10 + (16*x0)), xmask, eviction_policy='evict_last') tmp21 = tl.load(in_ptr0 + (11 + (16*x0)), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr0 + (12 + (16*x0)), xmask, eviction_policy='evict_last') tmp25 = tl.load(in_ptr0 + (13 + (16*x0)), xmask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr0 + (14 + (16*x0)), xmask, eviction_policy='evict_last') tmp29 = tl.load(in_ptr0 + (15 + (16*x0)), xmask, eviction_policy='evict_last') tmp33 = tl.load(in_ptr1 + (0)) tmp34 = tl.broadcast_to(tmp33, [XBLOCK]) tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp8 = tmp7 + tmp6 tmp10 = tmp9 + tmp8 tmp12 = tmp11 + tmp10 tmp14 = tmp13 + tmp12 tmp16 = tmp15 + tmp14 tmp18 = tmp17 + tmp16 tmp20 = tmp19 + tmp18 tmp22 = tmp21 + tmp20 tmp24 = tmp23 + tmp22 tmp26 = tmp25 + tmp24 tmp28 = tmp27 + tmp26 tmp30 = tmp29 + tmp28 tmp31 = 0.0625 tmp32 = tmp30 * tmp31 tmp35 = tl.full([1], 1, tl.int32) tmp36 = tmp35 / tmp34 tmp37 = 1.0 tmp38 = tmp36 * tmp37 tmp39 = libdevice.pow(tmp32, tmp38) tl.store(out_ptr0 + (x0), tmp32, xmask) tl.store(out_ptr1 + (x0), tmp39, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (1, ), (1, )) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [clamp, pow_1], Original ATen: [aten.clamp, aten.pow] stream0 = get_raw_stream(0) triton_poi_fused_clamp_pow_0.run(primals_2, primals_1, buf0, 256, grid=grid(256), stream=stream0) buf1 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) buf2 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [avg_pool2d, truediv, pow_2], Original ATen: [aten.avg_pool2d, aten.reciprocal, aten.mul, aten.pow] triton_poi_fused_avg_pool2d_mul_pow_reciprocal_1.run(buf0, primals_1, buf1, buf2, 16, grid=grid(16), stream=stream0) return (buf2, primals_1, primals_2, buf0, buf1, buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from torch.nn import functional as F from torch.nn.parameter import Parameter def gem(x, p=3, eps=1e-06): return F.avg_pool2d(x.clamp(min=eps).pow(p), (x.size(-2), x.size(-1))).pow( 1.0 / p) class GeM(nn.Module): def __init__(self, p=3, eps=1e-06, p_trainable=True): super(GeM, self).__init__() if p_trainable: self.p = Parameter(torch.ones(1) * p) else: self.p = p self.eps = eps def forward(self, x): return gem(x, p=self.p, eps=self.eps) def __repr__(self): return self.__class__.__name__ + '(' + 'p=' + '{:.4f}'.format(self. p.data.tolist()[0]) + ', ' + 'eps=' + str(self.eps) + ')' def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn from torch.nn import functional as F from torch.nn.parameter import Parameter assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_clamp_pow_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp3 = tl.load(in_ptr1 + 0) tmp4 = tl.broadcast_to(tmp3, [XBLOCK]) tmp1 = 1e-06 tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp5 = libdevice.pow(tmp2, tmp4) tl.store(out_ptr0 + x0, tmp5, xmask) @triton.jit def triton_poi_fused_avg_pool2d_mul_pow_reciprocal_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 16 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp3 = tl.load(in_ptr0 + (2 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp5 = tl.load(in_ptr0 + (3 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp7 = tl.load(in_ptr0 + (4 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp9 = tl.load(in_ptr0 + (5 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp11 = tl.load(in_ptr0 + (6 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp13 = tl.load(in_ptr0 + (7 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp15 = tl.load(in_ptr0 + (8 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp17 = tl.load(in_ptr0 + (9 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp19 = tl.load(in_ptr0 + (10 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp21 = tl.load(in_ptr0 + (11 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp23 = tl.load(in_ptr0 + (12 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp25 = tl.load(in_ptr0 + (13 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp27 = tl.load(in_ptr0 + (14 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp29 = tl.load(in_ptr0 + (15 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp33 = tl.load(in_ptr1 + 0) tmp34 = tl.broadcast_to(tmp33, [XBLOCK]) tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp8 = tmp7 + tmp6 tmp10 = tmp9 + tmp8 tmp12 = tmp11 + tmp10 tmp14 = tmp13 + tmp12 tmp16 = tmp15 + tmp14 tmp18 = tmp17 + tmp16 tmp20 = tmp19 + tmp18 tmp22 = tmp21 + tmp20 tmp24 = tmp23 + tmp22 tmp26 = tmp25 + tmp24 tmp28 = tmp27 + tmp26 tmp30 = tmp29 + tmp28 tmp31 = 0.0625 tmp32 = tmp30 * tmp31 tmp35 = tl.full([1], 1, tl.int32) tmp36 = tmp35 / tmp34 tmp37 = 1.0 tmp38 = tmp36 * tmp37 tmp39 = libdevice.pow(tmp32, tmp38) tl.store(out_ptr0 + x0, tmp32, xmask) tl.store(out_ptr1 + x0, tmp39, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (1,), (1,)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clamp_pow_0[grid(256)](primals_2, primals_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) buf1 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) buf2 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) triton_poi_fused_avg_pool2d_mul_pow_reciprocal_1[grid(16)](buf0, primals_1, buf1, buf2, 16, XBLOCK=16, num_warps=1, num_stages=1) return buf2, primals_1, primals_2, buf0, buf1, buf2 def gem(x, p=3, eps=1e-06): return F.avg_pool2d(x.clamp(min=eps).pow(p), (x.size(-2), x.size(-1))).pow( 1.0 / p) class GeMNew(nn.Module): def __init__(self, p=3, eps=1e-06, p_trainable=True): super(GeMNew, self).__init__() if p_trainable: self.p = Parameter(torch.ones(1) * p) else: self.p = p self.eps = eps def __repr__(self): return self.__class__.__name__ + '(' + 'p=' + '{:.4f}'.format(self. p.data.tolist()[0]) + ', ' + 'eps=' + str(self.eps) + ')' def forward(self, input_0): primals_1 = self.p primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
SamYuen101234/Masked_Face_Recognition
GeM
false
14,375
[ "MIT" ]
60
2dc572573ebd9ac208314690b529ed69addf0913
https://github.com/SamYuen101234/Masked_Face_Recognition/tree/2dc572573ebd9ac208314690b529ed69addf0913
AdaptiveConv
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/z4/cz4nirrj7ub3ijxu7wx6ssaf63wgg2io7uq5ktyc5khfa3ura46t.py # Topologically Sorted Source Nodes: [gap], Original ATen: [aten.mean] # Source node to ATen node mapping: # gap => mean # Graph fragment: # %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [-1, -2], True), kwargs = {}) triton_red_fused_mean_0 = async_compile.triton('triton_red_fused_mean_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.reduction( size_hints=[128, 8192], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_mean_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_red_fused_mean_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr): xnumel = 128 rnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rbase = tl.arange(0, RBLOCK)[None, :] x0 = xindex _tmp2 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r1 = rindex tmp0 = tl.load(in_ptr0 + (r1 + (8192*x0)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = _tmp2 + tmp1 _tmp2 = tl.where(rmask & xmask, tmp3, _tmp2) tmp2 = tl.sum(_tmp2, 1)[:, None] tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/7e/c7e6ujtzrtxphwd4h3isc5wjq42d4om4g45s565cbddt6f6bl5s3.py # Topologically Sorted Source Nodes: [gap], Original ATen: [aten.mean] # Source node to ATen node mapping: # gap => mean # Graph fragment: # %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [-1, -2], True), kwargs = {}) triton_per_fused_mean_1 = async_compile.triton('triton_per_fused_mean_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 8], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mean_1(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 8 RBLOCK: tl.constexpr = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (8*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 65536.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/im/cimcjtfuttafb3ug7kcz7uulg4j3holhpja5lm65mgx6arkohwuj.py # Topologically Sorted Source Nodes: [conv2d_2, gap_1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_2 => convolution_2 # gap_1 => relu # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%mean, %primals_5, %primals_6, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {}) triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/zo/czobqnracjs55cmjqeygrif3jj7gllqmo4znta76kmipfqk67o2l.py # Topologically Sorted Source Nodes: [gap_3], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] # Source node to ATen node mapping: # gap_3 => add, add_1, convert_element_type, convert_element_type_1, iota, mul, mul_1 # Graph fragment: # %iota : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (256,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%iota, 1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 0), kwargs = {}) # %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%add, torch.float32), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type, 0.0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_1, 0.00390625), kwargs = {}) # %convert_element_type_1 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%mul_1, torch.int64), kwargs = {}) triton_poi_fused__to_copy_add_arange_mul_3 = async_compile.triton('triton_poi_fused__to_copy_add_arange_mul_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_mul_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_3(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.00390625 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/3h/c3hgblhzptjyr6xpr75klbmzetf6fnwkfdk5y6zje6dhzvvey2ef.py # Topologically Sorted Source Nodes: [gap_2, gap_3, mul, mul_1, add, mul_2, x], Original ATen: [aten.convolution, aten._unsafe_index, aten.mul, aten.add] # Source node to ATen node mapping: # add => add_4 # gap_2 => convolution_3 # gap_3 => _unsafe_index # mul => mul_4 # mul_1 => mul_5 # mul_2 => mul_6 # x => add_5 # Graph fragment: # %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_7, %primals_8, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %_unsafe_index : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_3, [None, None, %unsqueeze, %convert_element_type_1]), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select, %convolution), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_1, %convolution_1), kwargs = {}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, %mul_5), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_2, %_unsafe_index), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_4, %mul_6), kwargs = {}) triton_poi_fused__unsafe_index_add_convolution_mul_4 = async_compile.triton('triton_poi_fused__unsafe_index_add_convolution_mul_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_add_convolution_mul_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_add_convolution_mul_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 1048576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 256) % 256 x0 = xindex % 256 x5 = (xindex // 65536) x2 = (xindex // 65536) % 4 x6 = xindex x4 = xindex % 65536 tmp0 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp9 = tl.load(in_ptr1 + (x5), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + (x2), None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr3 + (x4), None, eviction_policy='evict_last') tmp16 = tl.load(in_ptr4 + (x6), None) tmp18 = tl.load(in_ptr3 + (65536 + x4), None, eviction_policy='evict_last') tmp22 = tl.load(in_ptr5 + (x6), None) tmp25 = tl.load(in_ptr3 + (131072 + x4), None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 1, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp11 = tmp9 + tmp10 tmp13 = tmp12 - tmp12 tmp14 = tl_math.exp(tmp13) tmp15 = tmp14 / tmp14 tmp17 = tmp15 * tmp16 tmp19 = tmp18 - tmp18 tmp20 = tl_math.exp(tmp19) tmp21 = tmp20 / tmp20 tmp23 = tmp21 * tmp22 tmp24 = tmp17 + tmp23 tmp26 = tmp25 - tmp25 tmp27 = tl_math.exp(tmp26) tmp28 = tmp27 / tmp27 tmp29 = tmp28 * tmp11 tmp30 = tmp24 + tmp29 tl.store(out_ptr0 + (x6), tmp11, None) tl.store(out_ptr1 + (x6), tmp30, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args args.clear() assert_size_stride(primals_1, (4, 4, 256, 256), (262144, 65536, 256, 1)) assert_size_stride(primals_2, (3, 1, 256, 256), (65536, 65536, 256, 1)) assert_size_stride(primals_3, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_5, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_6, (4, ), (1, )) assert_size_stride(primals_7, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_8, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x1], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_1, primals_3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 256, 256), (262144, 65536, 256, 1)) # Topologically Sorted Source Nodes: [x2], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(primals_1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 256, 256), (262144, 65536, 256, 1)) buf2 = empty_strided_cuda((4, 4, 1, 1, 8), (32, 8, 128, 128, 1), torch.float32) # Topologically Sorted Source Nodes: [gap], Original ATen: [aten.mean] stream0 = get_raw_stream(0) triton_red_fused_mean_0.run(primals_1, buf2, 128, 8192, grid=grid(128), stream=stream0) buf3 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf4 = reinterpret_tensor(buf3, (4, 4, 1, 1), (4, 1, 1, 1), 0); del buf3 # reuse # Topologically Sorted Source Nodes: [gap], Original ATen: [aten.mean] triton_per_fused_mean_1.run(buf4, buf2, 16, 8, grid=grid(16), stream=stream0) del buf2 # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf5 = extern_kernels.convolution(buf4, primals_5, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 4, 1, 1), (4, 1, 1, 1)) buf6 = buf5; del buf5 # reuse # Topologically Sorted Source Nodes: [conv2d_2, gap_1], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_2.run(buf6, primals_6, 16, grid=grid(16), stream=stream0) del primals_6 # Topologically Sorted Source Nodes: [gap_2], Original ATen: [aten.convolution] buf7 = extern_kernels.convolution(buf6, primals_7, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 4, 1, 1), (4, 1, 1, 1)) buf8 = empty_strided_cuda((256, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [gap_3], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] triton_poi_fused__to_copy_add_arange_mul_3.run(buf8, 256, grid=grid(256), stream=stream0) buf9 = empty_strided_cuda((4, 4, 256, 256), (262144, 65536, 256, 1), torch.float32) buf10 = empty_strided_cuda((4, 4, 256, 256), (262144, 65536, 256, 1), torch.float32) # Topologically Sorted Source Nodes: [gap_2, gap_3, mul, mul_1, add, mul_2, x], Original ATen: [aten.convolution, aten._unsafe_index, aten.mul, aten.add] triton_poi_fused__unsafe_index_add_convolution_mul_4.run(buf8, buf7, primals_8, primals_2, buf0, buf1, buf9, buf10, 1048576, grid=grid(1048576), stream=stream0) del buf7 del primals_8 return (buf10, primals_1, primals_2, primals_3, primals_4, primals_5, primals_7, buf0, buf1, buf4, buf6, buf8, buf9, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 256, 256), (262144, 65536, 256, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((3, 1, 256, 256), (65536, 65536, 256, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F import torch.nn.parallel import torch.utils.data.distributed class AdaptiveConv(nn.Module): def __init__(self, in_channels, out_channels, stride=1, padding=1, dilation=1, groups=1, bias=False, size=(256, 256)): super(AdaptiveConv, self).__init__() self.conv3x3 = nn.Conv2d(in_channels, out_channels, 3, stride, padding=1, dilation=dilation, groups=groups, bias=bias) self.conv1x1 = nn.Conv2d(in_channels, out_channels, 1, stride, padding=0, dilation=dilation, groups=groups, bias=bias) self.gap = nn.AdaptiveAvgPool2d(1) self.fc1 = nn.Conv2d(in_channels, out_channels, kernel_size=1) self.fc2 = nn.Conv2d(out_channels, out_channels, kernel_size=1) self.size = size self.w = nn.Parameter(torch.ones(3, 1, self.size[0], self.size[1])) self.softmax = nn.Softmax() self.relu = nn.ReLU(inplace=True) def forward(self, x): _, _, _h, _w = x.size() weight = self.softmax(self.w) w1 = weight[0, :, :, :] w2 = weight[1, :, :, :] w3 = weight[2, :, :, :] x1 = self.conv3x3(x) x2 = self.conv1x1(x) size = x1.size()[2:] gap = self.gap(x) gap = self.relu(self.fc1(gap)) gap = self.fc2(gap) gap = F.upsample(gap, size=size, mode='nearest') x = w1 * x1 + w2 * x2 + w3 * gap return x def get_inputs(): return [torch.rand([4, 4, 256, 256])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch.nn.parallel import torch.utils.data.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_red_fused_mean_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl. constexpr, RBLOCK: tl.constexpr): xnumel = 128 rnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rbase = tl.arange(0, RBLOCK)[None, :] x0 = xindex _tmp2 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r1 = rindex tmp0 = tl.load(in_ptr0 + (r1 + 8192 * x0), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = _tmp2 + tmp1 _tmp2 = tl.where(rmask & xmask, tmp3, _tmp2) tmp2 = tl.sum(_tmp2, 1)[:, None] tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_per_fused_mean_1(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 8 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 65536.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp6, xmask) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_3(out_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.00390625 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + x0, tmp4, xmask) @triton.jit def triton_poi_fused__unsafe_index_add_convolution_mul_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 256 % 256 x0 = xindex % 256 x5 = xindex // 65536 x2 = xindex // 65536 % 4 x6 = xindex x4 = xindex % 65536 tmp0 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp9 = tl.load(in_ptr1 + x5, None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + x2, None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr3 + x4, None, eviction_policy='evict_last') tmp16 = tl.load(in_ptr4 + x6, None) tmp18 = tl.load(in_ptr3 + (65536 + x4), None, eviction_policy='evict_last') tmp22 = tl.load(in_ptr5 + x6, None) tmp25 = tl.load(in_ptr3 + (131072 + x4), None, eviction_policy='evict_last' ) tmp1 = tl.full([XBLOCK], 1, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tl.where(tmp7, tmp6, tmp5) tmp11 = tmp9 + tmp10 tmp13 = tmp12 - tmp12 tmp14 = tl_math.exp(tmp13) tmp15 = tmp14 / tmp14 tmp17 = tmp15 * tmp16 tmp19 = tmp18 - tmp18 tmp20 = tl_math.exp(tmp19) tmp21 = tmp20 / tmp20 tmp23 = tmp21 * tmp22 tmp24 = tmp17 + tmp23 tmp26 = tmp25 - tmp25 tmp27 = tl_math.exp(tmp26) tmp28 = tmp27 / tmp27 tmp29 = tmp28 * tmp11 tmp30 = tmp24 + tmp29 tl.store(out_ptr0 + x6, tmp11, None) tl.store(out_ptr1 + x6, tmp30, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8) = args args.clear() assert_size_stride(primals_1, (4, 4, 256, 256), (262144, 65536, 256, 1)) assert_size_stride(primals_2, (3, 1, 256, 256), (65536, 65536, 256, 1)) assert_size_stride(primals_3, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_5, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_8, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_1, primals_3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 256, 256), (262144, 65536, 256, 1)) buf1 = extern_kernels.convolution(primals_1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 256, 256), (262144, 65536, 256, 1)) buf2 = empty_strided_cuda((4, 4, 1, 1, 8), (32, 8, 128, 128, 1), torch.float32) get_raw_stream(0) triton_red_fused_mean_0[grid(128)](primals_1, buf2, 128, 8192, XBLOCK=1, RBLOCK=2048, num_warps=16, num_stages=1) buf3 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf4 = reinterpret_tensor(buf3, (4, 4, 1, 1), (4, 1, 1, 1), 0) del buf3 triton_per_fused_mean_1[grid(16)](buf4, buf2, 16, 8, XBLOCK=8, num_warps=2, num_stages=1) del buf2 buf5 = extern_kernels.convolution(buf4, primals_5, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 4, 1, 1), (4, 1, 1, 1)) buf6 = buf5 del buf5 triton_poi_fused_convolution_relu_2[grid(16)](buf6, primals_6, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_6 buf7 = extern_kernels.convolution(buf6, primals_7, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 4, 1, 1), (4, 1, 1, 1)) buf8 = empty_strided_cuda((256,), (1,), torch.int64) triton_poi_fused__to_copy_add_arange_mul_3[grid(256)](buf8, 256, XBLOCK=128, num_warps=4, num_stages=1) buf9 = empty_strided_cuda((4, 4, 256, 256), (262144, 65536, 256, 1), torch.float32) buf10 = empty_strided_cuda((4, 4, 256, 256), (262144, 65536, 256, 1 ), torch.float32) triton_poi_fused__unsafe_index_add_convolution_mul_4[grid(1048576)]( buf8, buf7, primals_8, primals_2, buf0, buf1, buf9, buf10, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del buf7 del primals_8 return (buf10, primals_1, primals_2, primals_3, primals_4, primals_5, primals_7, buf0, buf1, buf4, buf6, buf8, buf9) class AdaptiveConvNew(nn.Module): def __init__(self, in_channels, out_channels, stride=1, padding=1, dilation=1, groups=1, bias=False, size=(256, 256)): super(AdaptiveConvNew, self).__init__() self.conv3x3 = nn.Conv2d(in_channels, out_channels, 3, stride, padding=1, dilation=dilation, groups=groups, bias=bias) self.conv1x1 = nn.Conv2d(in_channels, out_channels, 1, stride, padding=0, dilation=dilation, groups=groups, bias=bias) self.gap = nn.AdaptiveAvgPool2d(1) self.fc1 = nn.Conv2d(in_channels, out_channels, kernel_size=1) self.fc2 = nn.Conv2d(out_channels, out_channels, kernel_size=1) self.size = size self.w = nn.Parameter(torch.ones(3, 1, self.size[0], self.size[1])) self.softmax = nn.Softmax() self.relu = nn.ReLU(inplace=True) def forward(self, input_0): primals_2 = self.w primals_3 = self.conv3x3.weight primals_4 = self.conv1x1.weight primals_5 = self.fc1.weight primals_6 = self.fc1.bias primals_7 = self.fc2.weight primals_8 = self.fc2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return output[0]
SSusantAchary/OctaveConv_pytorch
AdaptiveConv
false
14,376
[ "MIT" ]
633
079f7da29d55c2eeed8985d33f0b2f765d7a469e
https://github.com/SSusantAchary/OctaveConv_pytorch/tree/079f7da29d55c2eeed8985d33f0b2f765d7a469e
L1Loss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/5u/c5ugctirrdx7vwsb6vcdnsk3ju2zzivmjmo2w2s56lxqbfmgbhnh.py # Topologically Sorted Source Nodes: [l1_loss], Original ATen: [aten.sub, aten.abs, aten.mean] # Source node to ATen node mapping: # l1_loss => abs_1, mean, sub # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %arg0_1), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_1,), kwargs = {}) triton_per_fused_abs_mean_sub_0 = async_compile.triton('triton_per_fused_abs_mean_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_mean_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_abs_mean_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tmp7 = 256.0 tmp8 = tmp6 / tmp7 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp8, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [l1_loss], Original ATen: [aten.sub, aten.abs, aten.mean] stream0 = get_raw_stream(0) triton_per_fused_abs_mean_sub_0.run(buf1, arg1_1, arg0_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.data class L1Loss(nn.Module): """ A simple mean absolute error (MAE) implementation. """ def __init__(self, reduction='mean', **kwargs): super().__init__() self.reduction = reduction def forward(self, input, target, **kwargs): return F.l1_loss(input, target, reduction=self.reduction) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_abs_mean_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tmp7 = 256.0 tmp8 = tmp6 / tmp7 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp8, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_abs_mean_sub_0[grid(1)](buf1, arg1_1, arg0_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf1, class L1LossNew(nn.Module): """ A simple mean absolute error (MAE) implementation. """ def __init__(self, reduction='mean', **kwargs): super().__init__() self.reduction = reduction def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
SanghyukChun/rebias
L1Loss
false
14,377
[ "MIT" ]
129
6a4f6abdd68e080a08737d93a3c4b43e0f0ce055
https://github.com/SanghyukChun/rebias/tree/6a4f6abdd68e080a08737d93a3c4b43e0f0ce055
EqualizedLinear
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/fw/cfwvbe4gstgcn6dzjodlg3ivy5emtb773ndnmu54q3hlno3avnrq.py # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, 0.7071067811865476), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.7071067811865476 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.addmm] extern_kernels.addmm(primals_3, reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_2 del primals_3 return (reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf0, (64, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.nn as nn import torch.utils.cpp_extension @torch.no_grad() def scaling_init(tensor, scale=1, dist='u'): fan_in, fan_out = nn.init._calculate_fan_in_and_fan_out(tensor) scale /= (fan_in + fan_out) / 2 if dist == 'n': std = math.sqrt(scale) return tensor.normal_(0.0, std) elif dist == 'u': bound = math.sqrt(3 * scale) return tensor.uniform_(-bound, bound) def linear(in_features, out_features, scale=1.0): _linear = nn.Linear(in_features, out_features) scaling_init(_linear.weight, scale) nn.init.zeros_(_linear.bias) return _linear class EqualizedLR(nn.Module): """ equalized learning rate """ def __init__(self, layer, gain=2): super(EqualizedLR, self).__init__() self.wscale = (gain / layer.weight[0].numel()) ** 0.5 self.layer = layer def forward(self, x, gain=2): x = self.layer(x * self.wscale) return x class EqualizedLinear(nn.Module): """ equalized fully connected layer """ def __init__(self, in_channels, out_channels): super().__init__() linear = nn.Linear(in_channels, out_channels) linear.weight.data.normal_(0, 1) linear.bias.data.fill_(0) self.linear = EqualizedLR(linear) def forward(self, x): x = self.linear(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import math import torch.nn as nn import torch.utils.cpp_extension assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.7071067811865476 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(256)](primals_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_3, reinterpret_tensor(buf0, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_2 del primals_3 return reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(buf0, (64, 4), (4, 1), 0) @torch.no_grad() def scaling_init(tensor, scale=1, dist='u'): fan_in, fan_out = nn.init._calculate_fan_in_and_fan_out(tensor) scale /= (fan_in + fan_out) / 2 if dist == 'n': std = math.sqrt(scale) return tensor.normal_(0.0, std) elif dist == 'u': bound = math.sqrt(3 * scale) return tensor.uniform_(-bound, bound) def linear(in_features, out_features, scale=1.0): _linear = nn.Linear(in_features, out_features) scaling_init(_linear.weight, scale) nn.init.zeros_(_linear.bias) return _linear class EqualizedLR(nn.Module): """ equalized learning rate """ def __init__(self, layer, gain=2): super(EqualizedLR, self).__init__() self.wscale = (gain / layer.weight[0].numel()) ** 0.5 self.layer = layer def forward(self, x, gain=2): x = self.layer(x * self.wscale) return x class EqualizedLinearNew(nn.Module): """ equalized fully connected layer """ def __init__(self, in_channels, out_channels): super().__init__() linear = nn.Linear(in_channels, out_channels) linear.weight.data.normal_(0, 1) linear.bias.data.fill_(0) self.linear = EqualizedLR(linear) def forward(self, input_0): primals_2 = self.linear.layer.weight primals_3 = self.linear.layer.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
STomoya/animeface
EqualizedLinear
false
14,378
[ "MIT" ]
61
37b3cd26097d7874559d4c152e41e5712b7a1a42
https://github.com/STomoya/animeface/tree/37b3cd26097d7874559d4c152e41e5712b7a1a42
Critic
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/ms/cmsuzohbg5nq52jnvirovzkvykrzzko5xomu7zyu5e5u2lhegppw.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/y2/cy2lwgz7dq2q2z4ifepdde4l7vyyvrwcx4zjn2ezmtzcanvhv374.py # Topologically Sorted Source Nodes: [h], Original ATen: [aten.relu] # Source node to ATen node mapping: # h => relu # Graph fragment: # %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_4), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {}) triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (256, 8), (8, 1)) assert_size_stride(primals_4, (256, ), (1, )) assert_size_stride(primals_5, (256, 256), (256, 1)) assert_size_stride(primals_6, (256, ), (1, )) assert_size_stride(primals_7, (1, 256), (256, 1)) assert_size_stride(primals_8, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 32, grid=grid(32), stream=stream0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 256), (256, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf0, reinterpret_tensor(primals_3, (8, 256), (1, 8), 0), out=buf1) del primals_3 buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [h], Original ATen: [aten.relu] triton_poi_fused_relu_1.run(buf2, primals_4, 1024, grid=grid(1024), stream=stream0) del primals_4 buf3 = empty_strided_cuda((4, 256), (256, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf2, reinterpret_tensor(primals_5, (256, 256), (1, 256), 0), out=buf3) buf4 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [h_1], Original ATen: [aten.relu] triton_poi_fused_relu_1.run(buf4, primals_6, 1024, grid=grid(1024), stream=stream0) del primals_6 buf6 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_8, buf4, reinterpret_tensor(primals_7, (256, 1), (1, 256), 0), alpha=1, beta=1, out=buf6) del primals_8 return (buf6, buf0, buf2, buf4, primals_7, primals_5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((256, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((256, 256), (256, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((1, 256), (256, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Critic(nn.Module): def __init__(self, observation_size, action_size): super().__init__() self.fc1 = nn.Linear(observation_size + action_size, 256) self.fc2 = nn.Linear(256, 256) self.fc3 = nn.Linear(256, 1) def forward(self, x, action): h = torch.relu(self.fc1(torch.cat([x, action], dim=1))) h = torch.relu(self.fc2(h)) return self.fc3(h) def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'observation_size': 4, 'action_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x2, tmp10, xmask) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (256, 8), (8, 1)) assert_size_stride(primals_4, (256,), (1,)) assert_size_stride(primals_5, (256, 256), (256, 1)) assert_size_stride(primals_6, (256,), (1,)) assert_size_stride(primals_7, (1, 256), (256, 1)) assert_size_stride(primals_8, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(32)](primals_1, primals_2, buf0, 32, XBLOCK=32, num_warps=1, num_stages=1) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 256), (256, 1), torch.float32) extern_kernels.mm(buf0, reinterpret_tensor(primals_3, (8, 256), (1, 8), 0), out=buf1) del primals_3 buf2 = buf1 del buf1 triton_poi_fused_relu_1[grid(1024)](buf2, primals_4, 1024, XBLOCK= 256, num_warps=4, num_stages=1) del primals_4 buf3 = empty_strided_cuda((4, 256), (256, 1), torch.float32) extern_kernels.mm(buf2, reinterpret_tensor(primals_5, (256, 256), ( 1, 256), 0), out=buf3) buf4 = buf3 del buf3 triton_poi_fused_relu_1[grid(1024)](buf4, primals_6, 1024, XBLOCK= 256, num_warps=4, num_stages=1) del primals_6 buf6 = empty_strided_cuda((4, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_8, buf4, reinterpret_tensor(primals_7, (256, 1), (1, 256), 0), alpha=1, beta=1, out=buf6) del primals_8 return buf6, buf0, buf2, buf4, primals_7, primals_5 class CriticNew(nn.Module): def __init__(self, observation_size, action_size): super().__init__() self.fc1 = nn.Linear(observation_size + action_size, 256) self.fc2 = nn.Linear(256, 256) self.fc3 = nn.Linear(256, 1) def forward(self, input_0, input_1): primals_3 = self.fc1.weight primals_4 = self.fc1.bias primals_5 = self.fc2.weight primals_6 = self.fc2.bias primals_7 = self.fc3.weight primals_8 = self.fc3.bias primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return output[0]
SeanNobel/d4rl-pybullet
Critic
false
14,379
[ "MIT" ]
130
9f2f56c63bb7a80ebcbc4217cd7689e446aafd41
https://github.com/SeanNobel/d4rl-pybullet/tree/9f2f56c63bb7a80ebcbc4217cd7689e446aafd41
HardSwish
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/jj/cjjcpa4jfom3kmx4ufnxtda3bmq466cpemkegyhzep2ymmlsg35l.py # Topologically Sorted Source Nodes: [add, hardtanh, mul, truediv], Original ATen: [aten.add, aten.hardtanh, aten.mul, aten.div] # Source node to ATen node mapping: # add => add # hardtanh => clamp_max, clamp_min # mul => mul # truediv => div # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 3), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add, 0.0), kwargs = {}) # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 6.0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %clamp_max), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, 6), kwargs = {}) triton_poi_fused_add_div_hardtanh_mul_0 = async_compile.triton('triton_poi_fused_add_div_hardtanh_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_hardtanh_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_hardtanh_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 3.0 tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 6.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tmp7 = tmp0 * tmp6 tmp8 = 0.16666666666666666 tmp9 = tmp7 * tmp8 tl.store(out_ptr0 + (x0), tmp9, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add, hardtanh, mul, truediv], Original ATen: [aten.add, aten.hardtanh, aten.mul, aten.div] stream0 = get_raw_stream(0) triton_poi_fused_add_div_hardtanh_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class HardSwish(nn.Module): def __init__(self, inplace=False): super(HardSwish, self).__init__() self.act = nn.ReLU6(inplace) """forward""" def forward(self, x): return x * self.act(x + 3) / 6 def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_hardtanh_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 3.0 tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 6.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tmp7 = tmp0 * tmp6 tmp8 = 0.16666666666666666 tmp9 = tmp7 * tmp8 tl.store(out_ptr0 + x0, tmp9, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_hardtanh_mul_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class HardSwishNew(nn.Module): def __init__(self, inplace=False): super(HardSwishNew, self).__init__() self.act = nn.ReLU6(inplace) """forward""" def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
SegmentationBLWX/sssegmentation
HardSwish
false
14,380
[ "MIT" ]
411
0b2e3ff5abd7b97e15ac8daf63ea214688c26541
https://github.com/SegmentationBLWX/sssegmentation/tree/0b2e3ff5abd7b97e15ac8daf63ea214688c26541
EqualizedConv2d
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/mr/cmrzofxtfa5fe3ax4o3n5qvgpvhbgcrspjauzarmp4t443npav4h.py # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul => mul # Graph fragment: # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, 0.1767766952966369), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.1767766952966369 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/tc/ctcagp37ljugm52zu6ckorigrppqo67voefe2f2odg5r6hyllhyu.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%mul, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 1, 1), (4, 1, 1, 1)) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf2, primals_3, 16, grid=grid(16), stream=stream0) del primals_3 return (buf2, primals_2, buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.nn as nn import torch.utils.cpp_extension @torch.no_grad() def scaling_init(tensor, scale=1, dist='u'): fan_in, fan_out = nn.init._calculate_fan_in_and_fan_out(tensor) scale /= (fan_in + fan_out) / 2 if dist == 'n': std = math.sqrt(scale) return tensor.normal_(0.0, std) elif dist == 'u': bound = math.sqrt(3 * scale) return tensor.uniform_(-bound, bound) def conv(in_channels, out_channels, kernel_size, stride=1, padding=0, bias= True, scale=1.0): _conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, bias=bias) scaling_init(_conv.weight, scale) if _conv.bias is not None: nn.init.zeros_(_conv.bias) return _conv class EqualizedLR(nn.Module): """ equalized learning rate """ def __init__(self, layer, gain=2): super(EqualizedLR, self).__init__() self.wscale = (gain / layer.weight[0].numel()) ** 0.5 self.layer = layer def forward(self, x, gain=2): x = self.layer(x * self.wscale) return x class EqualizedConv2d(nn.Module): """ equalized convolutional layer """ def __init__(self, in_channels, out_channels, kernel_size, **kwargs): super().__init__() conv = nn.Conv2d(in_channels, out_channels, kernel_size, **kwargs) conv.weight.data.normal_(0, 1) conv.bias.data.fill_(0.0) self.conv = EqualizedLR(conv) def forward(self, x): x = self.conv(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import math import torch.nn as nn import torch.utils.cpp_extension assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.1767766952966369 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(256)](primals_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 1, 1), (4, 1, 1, 1)) buf2 = buf1 del buf1 triton_poi_fused_convolution_1[grid(16)](buf2, primals_3, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_3 return buf2, primals_2, buf0 @torch.no_grad() def scaling_init(tensor, scale=1, dist='u'): fan_in, fan_out = nn.init._calculate_fan_in_and_fan_out(tensor) scale /= (fan_in + fan_out) / 2 if dist == 'n': std = math.sqrt(scale) return tensor.normal_(0.0, std) elif dist == 'u': bound = math.sqrt(3 * scale) return tensor.uniform_(-bound, bound) def conv(in_channels, out_channels, kernel_size, stride=1, padding=0, bias= True, scale=1.0): _conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, bias=bias) scaling_init(_conv.weight, scale) if _conv.bias is not None: nn.init.zeros_(_conv.bias) return _conv class EqualizedLR(nn.Module): """ equalized learning rate """ def __init__(self, layer, gain=2): super(EqualizedLR, self).__init__() self.wscale = (gain / layer.weight[0].numel()) ** 0.5 self.layer = layer def forward(self, x, gain=2): x = self.layer(x * self.wscale) return x class EqualizedConv2dNew(nn.Module): """ equalized convolutional layer """ def __init__(self, in_channels, out_channels, kernel_size, **kwargs): super().__init__() conv = nn.Conv2d(in_channels, out_channels, kernel_size, **kwargs) conv.weight.data.normal_(0, 1) conv.bias.data.fill_(0.0) self.conv = EqualizedLR(conv) def forward(self, input_0): primals_1 = self.conv.layer.weight primals_3 = self.conv.layer.bias primals_2 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
STomoya/animeface
EqualizedConv2d
false
14,381
[ "MIT" ]
61
37b3cd26097d7874559d4c152e41e5712b7a1a42
https://github.com/STomoya/animeface/tree/37b3cd26097d7874559d4c152e41e5712b7a1a42
MinusRbfHSIC
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/ap/capgcrfp5emechuzxbqib3bmwq6oopknqyu7tj7yeqna5gisxy3r.py # Topologically Sorted Source Nodes: [mul, add, X_L2, mul_1, kernel_XX, diag_2, tK, sum_1], Original ATen: [aten.mul, aten.add, aten.exp, aten.diagonal_copy, aten.sub, aten.sum] # Source node to ATen node mapping: # X_L2 => add_1 # add => add # diag_2 => diagonal_copy_2 # kernel_XX => exp # mul => mul # mul_1 => mul_1 # sum_1 => sum_2 # tK => sub # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mm, -2), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %unsqueeze), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %unsqueeze_1), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_1, -0.03125), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%mul_1,), kwargs = {}) # %diagonal_copy_2 : [num_users=1] = call_function[target=torch.ops.aten.diagonal_copy.default](args = (%exp,), kwargs = {}) # %sub : [num_users=3] = call_function[target=torch.ops.aten.sub.Tensor](args = (%exp, %diagonal_copy_2), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%sub,), kwargs = {}) triton_per_fused_add_diagonal_copy_exp_mul_sub_sum_0 = async_compile.triton('triton_per_fused_add_diagonal_copy_exp_mul_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 16], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_diagonal_copy_exp_mul_sub_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_diagonal_copy_exp_mul_sub_sum_0(in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex r1 = (rindex // 4) r0 = rindex % 4 tmp0 = tl.load(in_ptr0 + (r2), None) tmp3 = tl.load(in_ptr0 + (5*r1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (5*r0), None, eviction_policy='evict_last') tmp1 = -2.0 tmp2 = tmp0 * tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = -0.03125 tmp8 = tmp6 * tmp7 tmp9 = tl_math.exp(tmp8) tmp10 = tmp5 * tmp1 tmp11 = tmp10 + tmp5 tmp12 = tmp11 + tmp5 tmp13 = tmp12 * tmp7 tmp14 = tl_math.exp(tmp13) tmp15 = tmp9 - tmp14 tmp16 = tl.broadcast_to(tmp15, [XBLOCK, RBLOCK]) tmp18 = tl.sum(tmp16, 1)[:, None] tl.store(out_ptr0 + (tl.broadcast_to(r2, [XBLOCK, RBLOCK])), tmp15, None) tl.store(out_ptr1 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp18, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/w3/cw34kl3phuif6ry2aneibc6ftjlhxybmbp6a67hhchth4m2lg3un.py # Topologically Sorted Source Nodes: [trace, mul_4, truediv, truediv_1, add_4, sum_3, sum_4, dot, mul_5, truediv_2, hsic, truediv_3, neg], Original ATen: [aten.trace, aten.mul, aten.div, aten.add, aten.sum, aten.dot, aten.sub, aten.neg] # Source node to ATen node mapping: # add_4 => add_4 # dot => mul_5, sum_6 # hsic => sub_2 # mul_4 => mul_4 # mul_5 => mul_6 # neg => neg # sum_3 => sum_4 # sum_4 => sum_5 # trace => diagonal_copy_4, sum_1 # truediv => div # truediv_1 => div_1 # truediv_2 => div_2 # truediv_3 => div_3 # Graph fragment: # %diagonal_copy_4 : [num_users=1] = call_function[target=torch.ops.aten.diagonal_copy.default](args = (%mm_2,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%diagonal_copy_4,), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_2, %sum_3), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_4, 3), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%div, 2), kwargs = {}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, %div_1), kwargs = {}) # %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%sub, [0]), kwargs = {}) # %sum_5 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%sub_1, [0]), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_4, %sum_5), kwargs = {}) # %sum_6 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_5,), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_6, 2), kwargs = {}) # %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_6, 2), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_4, %div_2), kwargs = {}) # %div_3 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_2, 4), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%div_3,), kwargs = {}) triton_per_fused_add_div_dot_mul_neg_sub_sum_trace_1 = async_compile.triton('triton_per_fused_add_div_dot_mul_neg_sub_sum_trace_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 4], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {6: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=(6,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_dot_mul_neg_sub_sum_trace_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 11, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_dot_mul_neg_sub_sum_trace_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (5*r0), None, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (r0), None) tmp5 = tl.load(in_ptr1 + (4 + r0), None) tmp7 = tl.load(in_ptr1 + (8 + r0), None) tmp9 = tl.load(in_ptr1 + (12 + r0), None) tmp11 = tl.load(in_ptr2 + (r0), None) tmp12 = tl.load(in_ptr2 + (4 + r0), None) tmp14 = tl.load(in_ptr2 + (8 + r0), None) tmp16 = tl.load(in_ptr2 + (12 + r0), None) tmp22 = tl.load(in_ptr3 + (0)) tmp23 = tl.broadcast_to(tmp22, [XBLOCK, 1]) tmp24 = tl.load(in_ptr4 + (0)) tmp25 = tl.broadcast_to(tmp24, [XBLOCK, 1]) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.sum(tmp1, 1)[:, None] tmp6 = tmp4 + tmp5 tmp8 = tmp6 + tmp7 tmp10 = tmp8 + tmp9 tmp13 = tmp11 + tmp12 tmp15 = tmp13 + tmp14 tmp17 = tmp15 + tmp16 tmp18 = tmp10 * tmp17 tmp19 = tl.broadcast_to(tmp18, [XBLOCK, RBLOCK]) tmp21 = tl.sum(tmp19, 1)[:, None] tmp26 = tmp23 * tmp25 tmp27 = 0.3333333333333333 tmp28 = tmp26 * tmp27 tmp29 = 0.5 tmp30 = tmp28 * tmp29 tmp31 = tmp3 + tmp30 tmp32 = 2.0 tmp33 = tmp21 * tmp32 tmp34 = tmp33 * tmp29 tmp35 = tmp31 - tmp34 tmp36 = 0.25 tmp37 = tmp35 * tmp36 tmp38 = -tmp37 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp38, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [XX], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(arg0_1, (4, 64), (64, 1), 0), reinterpret_tensor(arg0_1, (64, 4), (1, 64), 0), out=buf0) del arg0_1 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf6 = empty_strided_cuda((), (), torch.float32) # Topologically Sorted Source Nodes: [mul, add, X_L2, mul_1, kernel_XX, diag_2, tK, sum_1], Original ATen: [aten.mul, aten.add, aten.exp, aten.diagonal_copy, aten.sub, aten.sum] stream0 = get_raw_stream(0) triton_per_fused_add_diagonal_copy_exp_mul_sub_sum_0.run(buf0, buf1, buf6, 1, 16, grid=grid(1), stream=stream0) buf2 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [XX_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(arg1_1, (4, 64), (64, 1), 0), reinterpret_tensor(arg1_1, (64, 4), (1, 64), 0), out=buf2) del arg1_1 buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf7 = empty_strided_cuda((), (), torch.float32) # Topologically Sorted Source Nodes: [mul_2, add_2, X_L2_1, mul_3, kernel_XX_1, diag_3, tL, sum_2], Original ATen: [aten.mul, aten.add, aten.exp, aten.diagonal_copy, aten.sub, aten.sum] triton_per_fused_add_diagonal_copy_exp_mul_sub_sum_0.run(buf2, buf3, buf7, 1, 16, grid=grid(1), stream=stream0) buf4 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [matmul_2], Original ATen: [aten.mm] extern_kernels.mm(buf1, buf3, out=buf4) buf5 = empty_strided_cuda((), (), torch.float32) buf9 = buf5; del buf5 # reuse # Topologically Sorted Source Nodes: [trace, mul_4, truediv, truediv_1, add_4, sum_3, sum_4, dot, mul_5, truediv_2, hsic, truediv_3, neg], Original ATen: [aten.trace, aten.mul, aten.div, aten.add, aten.sum, aten.dot, aten.sub, aten.neg] triton_per_fused_add_div_dot_mul_neg_sub_sum_trace_1.run(buf9, buf4, buf1, buf3, buf6, buf7, 1, 4, grid=grid(1), stream=stream0) del buf1 del buf3 del buf4 del buf6 del buf7 return (buf9, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.data class HSIC(nn.Module): """Base class for the finite sample estimator of Hilbert-Schmidt Independence Criterion (HSIC) ..math:: HSIC (X, Y) := || C_{x, y} ||^2_{HS}, where HSIC (X, Y) = 0 iif X and Y are independent. Empirically, we use the finite sample estimator of HSIC (with m observations) by, (1) biased estimator (HSIC_0) Gretton, Arthur, et al. "Measuring statistical dependence with Hilbert-Schmidt norms." 2005. :math: (m - 1)^2 tr KHLH. where K_{ij} = kernel_x (x_i, x_j), L_{ij} = kernel_y (y_i, y_j), H = 1 - m^{-1} 1 1 (Hence, K, L, H are m by m matrices). (2) unbiased estimator (HSIC_1) Song, Le, et al. "Feature selection via dependence maximization." 2012. :math: rac{1}{m (m - 3)} igg[ tr ( ilde K ilde L) + rac{1^ op ilde K 1 1^ op ilde L 1}{(m-1)(m-2)} - rac{2}{m-2} 1^ op ilde K ilde L 1 igg]. where ilde K and ilde L are related to K and L by the diagonal entries of ilde K_{ij} and ilde L_{ij} are set to zero. Parameters ---------- sigma_x : float the kernel size of the kernel function for X. sigma_y : float the kernel size of the kernel function for Y. algorithm: str ('unbiased' / 'biased') the algorithm for the finite sample estimator. 'unbiased' is used for our paper. reduction: not used (for compatibility with other losses). """ def __init__(self, sigma_x, sigma_y=None, algorithm='unbiased', reduction=None): super(HSIC, self).__init__() if sigma_y is None: sigma_y = sigma_x self.sigma_x = sigma_x self.sigma_y = sigma_y if algorithm == 'biased': self.estimator = self.biased_estimator elif algorithm == 'unbiased': self.estimator = self.unbiased_estimator else: raise ValueError('invalid estimator: {}'.format(algorithm)) def _kernel_x(self, X): raise NotImplementedError def _kernel_y(self, Y): raise NotImplementedError def biased_estimator(self, input1, input2): """Biased estimator of Hilbert-Schmidt Independence Criterion Gretton, Arthur, et al. "Measuring statistical dependence with Hilbert-Schmidt norms." 2005. """ K = self._kernel_x(input1) L = self._kernel_y(input2) KH = K - K.mean(0, keepdim=True) LH = L - L.mean(0, keepdim=True) N = len(input1) return torch.trace(KH @ LH / (N - 1) ** 2) def unbiased_estimator(self, input1, input2): """Unbiased estimator of Hilbert-Schmidt Independence Criterion Song, Le, et al. "Feature selection via dependence maximization." 2012. """ kernel_XX = self._kernel_x(input1) kernel_YY = self._kernel_y(input2) tK = kernel_XX - torch.diag(kernel_XX) tL = kernel_YY - torch.diag(kernel_YY) N = len(input1) hsic = torch.trace(tK @ tL) + torch.sum(tK) * torch.sum(tL) / (N - 1 ) / (N - 2) - 2 * torch.sum(tK, 0).dot(torch.sum(tL, 0)) / (N - 2) return hsic / (N * (N - 3)) def forward(self, input1, input2, **kwargs): return self.estimator(input1, input2) class RbfHSIC(HSIC): """Radial Basis Function (RBF) kernel HSIC implementation. """ def _kernel(self, X, sigma): X = X.view(len(X), -1) XX = X @ X.t() X_sqnorms = torch.diag(XX) X_L2 = -2 * XX + X_sqnorms.unsqueeze(1) + X_sqnorms.unsqueeze(0) gamma = 1 / (2 * sigma ** 2) kernel_XX = torch.exp(-gamma * X_L2) return kernel_XX def _kernel_x(self, X): return self._kernel(X, self.sigma_x) def _kernel_y(self, Y): return self._kernel(Y, self.sigma_y) class MinusRbfHSIC(RbfHSIC): """``Minus'' RbfHSIC for the ``max'' optimization. """ def forward(self, input1, input2, **kwargs): return -self.estimator(input1, input2) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'sigma_x': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_add_diagonal_copy_exp_mul_sub_sum_0(in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex r1 = rindex // 4 r0 = rindex % 4 tmp0 = tl.load(in_ptr0 + r2, None) tmp3 = tl.load(in_ptr0 + 5 * r1, None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + 5 * r0, None, eviction_policy='evict_last') tmp1 = -2.0 tmp2 = tmp0 * tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = -0.03125 tmp8 = tmp6 * tmp7 tmp9 = tl_math.exp(tmp8) tmp10 = tmp5 * tmp1 tmp11 = tmp10 + tmp5 tmp12 = tmp11 + tmp5 tmp13 = tmp12 * tmp7 tmp14 = tl_math.exp(tmp13) tmp15 = tmp9 - tmp14 tmp16 = tl.broadcast_to(tmp15, [XBLOCK, RBLOCK]) tmp18 = tl.sum(tmp16, 1)[:, None] tl.store(out_ptr0 + tl.broadcast_to(r2, [XBLOCK, RBLOCK]), tmp15, None) tl.store(out_ptr1 + tl.full([XBLOCK, 1], 0, tl.int32), tmp18, None) @triton.jit def triton_per_fused_add_div_dot_mul_neg_sub_sum_trace_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, xnumel, rnumel, XBLOCK: tl .constexpr): RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + 5 * r0, None, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + r0, None) tmp5 = tl.load(in_ptr1 + (4 + r0), None) tmp7 = tl.load(in_ptr1 + (8 + r0), None) tmp9 = tl.load(in_ptr1 + (12 + r0), None) tmp11 = tl.load(in_ptr2 + r0, None) tmp12 = tl.load(in_ptr2 + (4 + r0), None) tmp14 = tl.load(in_ptr2 + (8 + r0), None) tmp16 = tl.load(in_ptr2 + (12 + r0), None) tmp22 = tl.load(in_ptr3 + 0) tmp23 = tl.broadcast_to(tmp22, [XBLOCK, 1]) tmp24 = tl.load(in_ptr4 + 0) tmp25 = tl.broadcast_to(tmp24, [XBLOCK, 1]) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.sum(tmp1, 1)[:, None] tmp6 = tmp4 + tmp5 tmp8 = tmp6 + tmp7 tmp10 = tmp8 + tmp9 tmp13 = tmp11 + tmp12 tmp15 = tmp13 + tmp14 tmp17 = tmp15 + tmp16 tmp18 = tmp10 * tmp17 tmp19 = tl.broadcast_to(tmp18, [XBLOCK, RBLOCK]) tmp21 = tl.sum(tmp19, 1)[:, None] tmp26 = tmp23 * tmp25 tmp27 = 0.3333333333333333 tmp28 = tmp26 * tmp27 tmp29 = 0.5 tmp30 = tmp28 * tmp29 tmp31 = tmp3 + tmp30 tmp32 = 2.0 tmp33 = tmp21 * tmp32 tmp34 = tmp33 * tmp29 tmp35 = tmp31 - tmp34 tmp36 = 0.25 tmp37 = tmp35 * tmp36 tmp38 = -tmp37 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp38, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(arg0_1, (4, 64), (64, 1), 0), reinterpret_tensor(arg0_1, (64, 4), (1, 64), 0), out=buf0) del arg0_1 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf6 = empty_strided_cuda((), (), torch.float32) get_raw_stream(0) triton_per_fused_add_diagonal_copy_exp_mul_sub_sum_0[grid(1)](buf0, buf1, buf6, 1, 16, XBLOCK=1, num_warps=2, num_stages=1) buf2 = buf0 del buf0 extern_kernels.mm(reinterpret_tensor(arg1_1, (4, 64), (64, 1), 0), reinterpret_tensor(arg1_1, (64, 4), (1, 64), 0), out=buf2) del arg1_1 buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf7 = empty_strided_cuda((), (), torch.float32) triton_per_fused_add_diagonal_copy_exp_mul_sub_sum_0[grid(1)](buf2, buf3, buf7, 1, 16, XBLOCK=1, num_warps=2, num_stages=1) buf4 = buf2 del buf2 extern_kernels.mm(buf1, buf3, out=buf4) buf5 = empty_strided_cuda((), (), torch.float32) buf9 = buf5 del buf5 triton_per_fused_add_div_dot_mul_neg_sub_sum_trace_1[grid(1)](buf9, buf4, buf1, buf3, buf6, buf7, 1, 4, XBLOCK=1, num_warps=2, num_stages=1) del buf1 del buf3 del buf4 del buf6 del buf7 return buf9, class HSIC(nn.Module): """Base class for the finite sample estimator of Hilbert-Schmidt Independence Criterion (HSIC) ..math:: HSIC (X, Y) := || C_{x, y} ||^2_{HS}, where HSIC (X, Y) = 0 iif X and Y are independent. Empirically, we use the finite sample estimator of HSIC (with m observations) by, (1) biased estimator (HSIC_0) Gretton, Arthur, et al. "Measuring statistical dependence with Hilbert-Schmidt norms." 2005. :math: (m - 1)^2 tr KHLH. where K_{ij} = kernel_x (x_i, x_j), L_{ij} = kernel_y (y_i, y_j), H = 1 - m^{-1} 1 1 (Hence, K, L, H are m by m matrices). (2) unbiased estimator (HSIC_1) Song, Le, et al. "Feature selection via dependence maximization." 2012. :math: rac{1}{m (m - 3)} igg[ tr ( ilde K ilde L) + rac{1^ op ilde K 1 1^ op ilde L 1}{(m-1)(m-2)} - rac{2}{m-2} 1^ op ilde K ilde L 1 igg]. where ilde K and ilde L are related to K and L by the diagonal entries of ilde K_{ij} and ilde L_{ij} are set to zero. Parameters ---------- sigma_x : float the kernel size of the kernel function for X. sigma_y : float the kernel size of the kernel function for Y. algorithm: str ('unbiased' / 'biased') the algorithm for the finite sample estimator. 'unbiased' is used for our paper. reduction: not used (for compatibility with other losses). """ def __init__(self, sigma_x, sigma_y=None, algorithm='unbiased', reduction=None): super(HSIC, self).__init__() if sigma_y is None: sigma_y = sigma_x self.sigma_x = sigma_x self.sigma_y = sigma_y if algorithm == 'biased': self.estimator = self.biased_estimator elif algorithm == 'unbiased': self.estimator = self.unbiased_estimator else: raise ValueError('invalid estimator: {}'.format(algorithm)) def _kernel_x(self, X): raise NotImplementedError def _kernel_y(self, Y): raise NotImplementedError def biased_estimator(self, input1, input2): """Biased estimator of Hilbert-Schmidt Independence Criterion Gretton, Arthur, et al. "Measuring statistical dependence with Hilbert-Schmidt norms." 2005. """ K = self._kernel_x(input1) L = self._kernel_y(input2) KH = K - K.mean(0, keepdim=True) LH = L - L.mean(0, keepdim=True) N = len(input1) return torch.trace(KH @ LH / (N - 1) ** 2) def unbiased_estimator(self, input1, input2): """Unbiased estimator of Hilbert-Schmidt Independence Criterion Song, Le, et al. "Feature selection via dependence maximization." 2012. """ kernel_XX = self._kernel_x(input1) kernel_YY = self._kernel_y(input2) tK = kernel_XX - torch.diag(kernel_XX) tL = kernel_YY - torch.diag(kernel_YY) N = len(input1) hsic = torch.trace(tK @ tL) + torch.sum(tK) * torch.sum(tL) / (N - 1 ) / (N - 2) - 2 * torch.sum(tK, 0).dot(torch.sum(tL, 0)) / (N - 2) return hsic / (N * (N - 3)) def forward(self, input1, input2, **kwargs): return self.estimator(input1, input2) class RbfHSIC(HSIC): """Radial Basis Function (RBF) kernel HSIC implementation. """ def _kernel(self, X, sigma): X = X.view(len(X), -1) XX = X @ X.t() X_sqnorms = torch.diag(XX) X_L2 = -2 * XX + X_sqnorms.unsqueeze(1) + X_sqnorms.unsqueeze(0) gamma = 1 / (2 * sigma ** 2) kernel_XX = torch.exp(-gamma * X_L2) return kernel_XX def _kernel_x(self, X): return self._kernel(X, self.sigma_x) def _kernel_y(self, Y): return self._kernel(Y, self.sigma_y) class MinusRbfHSICNew(RbfHSIC): """``Minus'' RbfHSIC for the ``max'' optimization. """ def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
SanghyukChun/rebias
MinusRbfHSIC
false
14,382
[ "MIT" ]
129
6a4f6abdd68e080a08737d93a3c4b43e0f0ce055
https://github.com/SanghyukChun/rebias/tree/6a4f6abdd68e080a08737d93a3c4b43e0f0ce055
HardSigmoid
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/px/cpxnjr3oxhvztr3xn7rc3hd3d7r7cisxrgkuuzatigaz3cuwbvn5.py # Topologically Sorted Source Nodes: [add, x, clamp_], Original ATen: [aten.add, aten.div, aten.clamp] # Source node to ATen node mapping: # add => add # clamp_ => clamp_max, clamp_min # x => div # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 1.0), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add, 2.0), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%div, 0.0), kwargs = {}) # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 1.0), kwargs = {}) triton_poi_fused_add_clamp_div_0 = async_compile.triton('triton_poi_fused_add_clamp_div_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_div_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_clamp_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 1.0 tmp2 = tmp0 + tmp1 tmp3 = 0.5 tmp4 = tmp2 * tmp3 tmp5 = 0.0 tmp6 = triton_helpers.maximum(tmp4, tmp5) tmp7 = triton_helpers.minimum(tmp6, tmp1) tl.store(out_ptr0 + (x0), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add, x, clamp_], Original ATen: [aten.add, aten.div, aten.clamp] stream0 = get_raw_stream(0) triton_poi_fused_add_clamp_div_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class HardSigmoid(nn.Module): def __init__(self, bias=1.0, divisor=2.0, min_value=0.0, max_value=1.0): super(HardSigmoid, self).__init__() assert divisor != 0, 'divisor is not allowed to be equal to zero' self.bias = bias self.divisor = divisor self.min_value = min_value self.max_value = max_value """forward""" def forward(self, x): x = (x + self.bias) / self.divisor return x.clamp_(self.min_value, self.max_value) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_clamp_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 1.0 tmp2 = tmp0 + tmp1 tmp3 = 0.5 tmp4 = tmp2 * tmp3 tmp5 = 0.0 tmp6 = triton_helpers.maximum(tmp4, tmp5) tmp7 = triton_helpers.minimum(tmp6, tmp1) tl.store(out_ptr0 + x0, tmp7, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_clamp_div_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, class HardSigmoidNew(nn.Module): def __init__(self, bias=1.0, divisor=2.0, min_value=0.0, max_value=1.0): super(HardSigmoidNew, self).__init__() assert divisor != 0, 'divisor is not allowed to be equal to zero' self.bias = bias self.divisor = divisor self.min_value = min_value self.max_value = max_value """forward""" def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
SegmentationBLWX/sssegmentation
HardSigmoid
false
14,383
[ "MIT" ]
411
0b2e3ff5abd7b97e15ac8daf63ea214688c26541
https://github.com/SegmentationBLWX/sssegmentation/tree/0b2e3ff5abd7b97e15ac8daf63ea214688c26541
FromRGB
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/lb/clbximl43nf33sdzliizfbzm3zvjpgxjl3alr54zo45jtcnigtyk.py # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul => mul # Graph fragment: # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, 0.816496580927726), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 49152 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), None) tmp1 = 0.816496580927726 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x0), tmp2, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/6z/c6zrkuhgkfkyvxhei4pwwxvwvogxml5geskw4y2qiy5xycvg4g3q.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%mul, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_2, (4, 3, 1, 1), (3, 1, 1, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 3, 64, 64), (12288, 4096, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(primals_1, buf0, 49152, grid=grid(49152), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 64, 64), (16384, 4096, 64, 1)) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf2, primals_3, 65536, grid=grid(65536), stream=stream0) del primals_3 return (buf2, primals_2, buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 3, 1, 1), (3, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.nn as nn import torch.utils.cpp_extension @torch.no_grad() def scaling_init(tensor, scale=1, dist='u'): fan_in, fan_out = nn.init._calculate_fan_in_and_fan_out(tensor) scale /= (fan_in + fan_out) / 2 if dist == 'n': std = math.sqrt(scale) return tensor.normal_(0.0, std) elif dist == 'u': bound = math.sqrt(3 * scale) return tensor.uniform_(-bound, bound) def conv(in_channels, out_channels, kernel_size, stride=1, padding=0, bias= True, scale=1.0): _conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, bias=bias) scaling_init(_conv.weight, scale) if _conv.bias is not None: nn.init.zeros_(_conv.bias) return _conv class EqualizedLR(nn.Module): """ equalized learning rate """ def __init__(self, layer, gain=2): super(EqualizedLR, self).__init__() self.wscale = (gain / layer.weight[0].numel()) ** 0.5 self.layer = layer def forward(self, x, gain=2): x = self.layer(x * self.wscale) return x class EqualizedConv2d(nn.Module): """ equalized convolutional layer """ def __init__(self, in_channels, out_channels, kernel_size, **kwargs): super().__init__() conv = nn.Conv2d(in_channels, out_channels, kernel_size, **kwargs) conv.weight.data.normal_(0, 1) conv.bias.data.fill_(0.0) self.conv = EqualizedLR(conv) def forward(self, x): x = self.conv(x) return x class FromRGB(nn.Module): """ from rgb """ def __init__(self, out_channels, in_channels=3): super(FromRGB, self).__init__() self.from_rgb = EqualizedConv2d(in_channels, out_channels, 1) def forward(self, x): x = self.from_rgb(x) return x def get_inputs(): return [torch.rand([4, 3, 64, 64])] def get_init_inputs(): return [[], {'out_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import math import torch.nn as nn import torch.utils.cpp_extension assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_ptr0 + x0, None) tmp1 = 0.816496580927726 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, None) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 4 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, None) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_2, (4, 3, 1, 1), (3, 1, 1, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 3, 64, 64), (12288, 4096, 64, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(49152)](primals_1, buf0, 49152, XBLOCK= 512, num_warps=4, num_stages=1) del primals_1 buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 64, 64), (16384, 4096, 64, 1)) buf2 = buf1 del buf1 triton_poi_fused_convolution_1[grid(65536)](buf2, primals_3, 65536, XBLOCK=512, num_warps=4, num_stages=1) del primals_3 return buf2, primals_2, buf0 @torch.no_grad() def scaling_init(tensor, scale=1, dist='u'): fan_in, fan_out = nn.init._calculate_fan_in_and_fan_out(tensor) scale /= (fan_in + fan_out) / 2 if dist == 'n': std = math.sqrt(scale) return tensor.normal_(0.0, std) elif dist == 'u': bound = math.sqrt(3 * scale) return tensor.uniform_(-bound, bound) def conv(in_channels, out_channels, kernel_size, stride=1, padding=0, bias= True, scale=1.0): _conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, bias=bias) scaling_init(_conv.weight, scale) if _conv.bias is not None: nn.init.zeros_(_conv.bias) return _conv class EqualizedLR(nn.Module): """ equalized learning rate """ def __init__(self, layer, gain=2): super(EqualizedLR, self).__init__() self.wscale = (gain / layer.weight[0].numel()) ** 0.5 self.layer = layer def forward(self, x, gain=2): x = self.layer(x * self.wscale) return x class EqualizedConv2d(nn.Module): """ equalized convolutional layer """ def __init__(self, in_channels, out_channels, kernel_size, **kwargs): super().__init__() conv = nn.Conv2d(in_channels, out_channels, kernel_size, **kwargs) conv.weight.data.normal_(0, 1) conv.bias.data.fill_(0.0) self.conv = EqualizedLR(conv) def forward(self, x): x = self.conv(x) return x class FromRGBNew(nn.Module): """ from rgb """ def __init__(self, out_channels, in_channels=3): super(FromRGBNew, self).__init__() self.from_rgb = EqualizedConv2d(in_channels, out_channels, 1) def forward(self, input_0): primals_2 = self.from_rgb.conv.layer.weight primals_3 = self.from_rgb.conv.layer.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
STomoya/animeface
FromRGB
false
14,384
[ "MIT" ]
61
37b3cd26097d7874559d4c152e41e5712b7a1a42
https://github.com/STomoya/animeface/tree/37b3cd26097d7874559d4c152e41e5712b7a1a42
Attention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/r6/cr6neze6yovkog6kjrk5k2db63h47ozkojywfys6karxe7dlumrz.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/kj/ckjtlefzavjukjsytvkak6ek26zmzexpcbnlwelx4k5kascjxlf3.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ip/cip3p4ibqio6uu76ccsemd7wjusq5ptlow3dt2zxzouyuz2sqywf.py # Topologically Sorted Source Nodes: [combined], Original ATen: [aten.cat] # Source node to ATen node mapping: # combined => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%bmm_1, %primals_1], 2), kwargs = {}) triton_poi_fused_cat_2 = async_compile.triton('triton_poi_fused_cat_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/wv/cwvmt6nnzgzdkojav65ufab2pt67hiopjj3li4lui5ebqbi6cj2e.py # Topologically Sorted Source Nodes: [tanh], Original ATen: [aten.tanh, aten.tanh_backward] # Source node to ATen node mapping: # tanh => tanh # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_4), kwargs = {}) # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%add_tensor,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%tanh, %tanh), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %mul), kwargs = {}) triton_poi_fused_tanh_tanh_backward_3 = async_compile.triton('triton_poi_fused_tanh_tanh_backward_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_tanh_backward_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_tanh_backward_3(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tmp4 = tmp3 * tmp3 tmp5 = 1.0 tmp6 = tmp5 - tmp4 tl.store(in_out_ptr0 + (x2), tmp3, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 8), (8, 1)) assert_size_stride(primals_4, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [attn], Original ATen: [aten.bmm] extern_kernels.bmm(primals_1, reinterpret_tensor(primals_2, (4, 4, 4), (16, 1, 4), 0), out=buf0) buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] stream0 = get_raw_stream(0) triton_poi_fused__softmax_0.run(buf0, buf1, 64, grid=grid(64), stream=stream0) buf2 = reinterpret_tensor(buf0, (16, 4), (4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf1, buf2, 64, grid=grid(64), stream=stream0) buf3 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [mix], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf2, (4, 4, 4), (16, 4, 1), 0), primals_2, out=buf3) del primals_2 buf4 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [combined], Original ATen: [aten.cat] triton_poi_fused_cat_2.run(buf3, primals_1, buf4, 128, grid=grid(128), stream=stream0) del primals_1 buf5 = reinterpret_tensor(buf3, (16, 4), (4, 1), 0); del buf3 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf4, (16, 8), (8, 1), 0), reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), out=buf5) del primals_3 buf6 = buf5; del buf5 # reuse buf7 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [tanh], Original ATen: [aten.tanh, aten.tanh_backward] triton_poi_fused_tanh_tanh_backward_3.run(buf6, primals_4, buf7, 64, grid=grid(64), stream=stream0) del primals_4 return (reinterpret_tensor(buf6, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf2, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf4, (16, 8), (8, 1), 0), buf7, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F import torch.nn as nn import torch.onnx import torch.nn.parallel class Attention(nn.Module): def __init__(self, dim): super(Attention, self).__init__() self.linear_out = nn.Linear(dim * 2, dim) self.mask = None def set_mask(self, mask): """ Sets indices to be masked Args: mask (torch.Tensor): tensor containing indices to be masked """ self.mask = mask def forward(self, output, context): batch_size = output.size(0) hidden_size = output.size(2) input_size = context.size(1) attn = torch.bmm(output, context.transpose(1, 2)) attn = F.softmax(attn.view(-1, input_size), dim=1).view(batch_size, -1, input_size) mix = torch.bmm(attn, context) combined = torch.cat((mix, output), dim=2) output = torch.tanh(self.linear_out(combined.view(-1, 2 * hidden_size)) ).view(batch_size, -1, hidden_size) return output, attn def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn import torch.onnx import torch.nn.parallel assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_cat_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x2, tmp10, xmask) @triton.jit def triton_poi_fused_tanh_tanh_backward_3(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tmp4 = tmp3 * tmp3 tmp5 = 1.0 tmp6 = tmp5 - tmp4 tl.store(in_out_ptr0 + x2, tmp3, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 8), (8, 1)) assert_size_stride(primals_4, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(primals_1, reinterpret_tensor(primals_2, (4, 4, 4), (16, 1, 4), 0), out=buf0) buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__softmax_0[grid(64)](buf0, buf1, 64, XBLOCK=64, num_warps=1, num_stages=1) buf2 = reinterpret_tensor(buf0, (16, 4), (4, 1), 0) del buf0 triton_poi_fused__softmax_1[grid(64)](buf1, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) buf3 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0) del buf1 extern_kernels.bmm(reinterpret_tensor(buf2, (4, 4, 4), (16, 4, 1), 0), primals_2, out=buf3) del primals_2 buf4 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) triton_poi_fused_cat_2[grid(128)](buf3, primals_1, buf4, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 buf5 = reinterpret_tensor(buf3, (16, 4), (4, 1), 0) del buf3 extern_kernels.mm(reinterpret_tensor(buf4, (16, 8), (8, 1), 0), reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), out=buf5) del primals_3 buf6 = buf5 del buf5 buf7 = empty_strided_cuda((16, 4), (4, 1), torch.float32) triton_poi_fused_tanh_tanh_backward_3[grid(64)](buf6, primals_4, buf7, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_4 return reinterpret_tensor(buf6, (4, 4, 4), (16, 4, 1), 0 ), reinterpret_tensor(buf2, (4, 4, 4), (16, 4, 1), 0 ), reinterpret_tensor(buf4, (16, 8), (8, 1), 0), buf7 class AttentionNew(nn.Module): def __init__(self, dim): super(AttentionNew, self).__init__() self.linear_out = nn.Linear(dim * 2, dim) self.mask = None def set_mask(self, mask): """ Sets indices to be masked Args: mask (torch.Tensor): tensor containing indices to be masked """ self.mask = mask def forward(self, input_0, input_1): primals_3 = self.linear_out.weight primals_4 = self.linear_out.bias primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0], output[1]
Samteymoori/pepper
Attention
false
14,385
[ "MIT" ]
155
734d226de47a855952e3b58145c1fcfbe221d3b4
https://github.com/Samteymoori/pepper/tree/734d226de47a855952e3b58145c1fcfbe221d3b4
Mnist_NN
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/w3/cw3egt7ajdde7mbqzrdxs4mdcaxj75b4l3brz5gbsf4yd73gbids.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_1 => relu # Graph fragment: # %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_3), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {}) triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2048 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 512 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/y2/cy2lwgz7dq2q2z4ifepdde4l7vyyvrwcx4zjn2ezmtzcanvhv374.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_2 => relu_1 # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_5), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 784), (784, 1)) assert_size_stride(primals_2, (512, 784), (784, 1)) assert_size_stride(primals_3, (512, ), (1, )) assert_size_stride(primals_4, (256, 512), (512, 1)) assert_size_stride(primals_5, (256, ), (1, )) assert_size_stride(primals_6, (10, 256), (256, 1)) assert_size_stride(primals_7, (10, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 512), (512, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (784, 512), (1, 784), 0), out=buf0) del primals_2 buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_relu_0.run(buf1, primals_3, 2048, grid=grid(2048), stream=stream0) del primals_3 buf2 = empty_strided_cuda((4, 256), (256, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf1, reinterpret_tensor(primals_4, (512, 256), (1, 512), 0), out=buf2) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu] triton_poi_fused_relu_1.run(buf3, primals_5, 1024, grid=grid(1024), stream=stream0) del primals_5 buf4 = empty_strided_cuda((4, 10), (10, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, buf3, reinterpret_tensor(primals_6, (256, 10), (1, 256), 0), alpha=1, beta=1, out=buf4) del primals_7 return (buf4, primals_1, buf1, buf3, primals_6, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 784), (784, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((512, 784), (784, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((256, 512), (512, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((10, 256), (256, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class Mnist_NN(nn.Module): def __init__(self): super().__init__() self.lin1 = nn.Linear(784, 512, bias=True) self.lin2 = nn.Linear(512, 256, bias=True) self.lin3 = nn.Linear(256, 10, bias=True) def forward(self, xb): x = xb.view(-1, 784) x = F.relu(self.lin1(x)) x = F.relu(self.lin2(x)) return self.lin3(x) def get_inputs(): return [torch.rand([4, 784])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 512 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 784), (784, 1)) assert_size_stride(primals_2, (512, 784), (784, 1)) assert_size_stride(primals_3, (512,), (1,)) assert_size_stride(primals_4, (256, 512), (512, 1)) assert_size_stride(primals_5, (256,), (1,)) assert_size_stride(primals_6, (10, 256), (256, 1)) assert_size_stride(primals_7, (10,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 512), (512, 1), torch.float32) extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (784, 512), (1, 784), 0), out=buf0) del primals_2 buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_relu_0[grid(2048)](buf1, primals_3, 2048, XBLOCK= 128, num_warps=4, num_stages=1) del primals_3 buf2 = empty_strided_cuda((4, 256), (256, 1), torch.float32) extern_kernels.mm(buf1, reinterpret_tensor(primals_4, (512, 256), ( 1, 512), 0), out=buf2) buf3 = buf2 del buf2 triton_poi_fused_relu_1[grid(1024)](buf3, primals_5, 1024, XBLOCK= 256, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((4, 10), (10, 1), torch.float32) extern_kernels.addmm(primals_7, buf3, reinterpret_tensor(primals_6, (256, 10), (1, 256), 0), alpha=1, beta=1, out=buf4) del primals_7 return buf4, primals_1, buf1, buf3, primals_6, primals_4 class Mnist_NNNew(nn.Module): def __init__(self): super().__init__() self.lin1 = nn.Linear(784, 512, bias=True) self.lin2 = nn.Linear(512, 256, bias=True) self.lin3 = nn.Linear(256, 10, bias=True) def forward(self, input_0): primals_2 = self.lin1.weight primals_3 = self.lin1.bias primals_4 = self.lin2.weight primals_5 = self.lin2.bias primals_6 = self.lin3.weight primals_7 = self.lin3.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
Sara-Rajaee/Deep_learning_explorations
Mnist_NN
false
14,386
[ "MIT" ]
154
d0c527f1cde61eea90bda01b073c5ac24565ebf1
https://github.com/Sara-Rajaee/Deep_learning_explorations/tree/d0c527f1cde61eea90bda01b073c5ac24565ebf1
ResNetBlock
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/4w/c4w3ab6nj2qw57qqmzaoatp4wlwryyrhn5czabkeax5yy3qug5h7.py # Topologically Sorted Source Nodes: [out, out_1], Original ATen: [aten.convolution, aten.add] # Source node to ATen node mapping: # out => convolution # out_1 => add # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_3, %convolution), kwargs = {}) triton_poi_fused_add_convolution_0 = async_compile.triton('triton_poi_fused_add_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_out_ptr0 + (x3), xmask) tmp2 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [out, out_1], Original ATen: [aten.convolution, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_convolution_0.run(buf1, primals_3, primals_2, 256, grid=grid(256), stream=stream0) del primals_2 return (buf1, primals_1, primals_3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.utils.data import torch.nn.parallel import torch.utils.data.distributed class ResNetBlock(nn.Module): def __init__(self, in_channel, out_channel, stride, downsample, pad, dilation): super(ResNetBlock, self).__init__() self.conv1 = nn.Conv2d(in_channel, out_channel, kernel_size=3, stride=1, padding=1) self.downsample = downsample self.stride = stride def forward(self, x): out = self.conv1(x) out = x + out return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channel': 4, 'out_channel': 4, 'stride': 1, 'downsample': 4, 'pad': 4, 'dilation': 1}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn import torch.utils.data import torch.nn.parallel import torch.utils.data.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride @triton.jit def triton_poi_fused_add_convolution_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_out_ptr0 + x3, xmask) tmp2 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.store(in_out_ptr0 + x3, tmp4, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_add_convolution_0[grid(256)](buf1, primals_3, primals_2, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 return buf1, primals_1, primals_3 class ResNetBlockNew(nn.Module): def __init__(self, in_channel, out_channel, stride, downsample, pad, dilation): super(ResNetBlockNew, self).__init__() self.conv1 = nn.Conv2d(in_channel, out_channel, kernel_size=3, stride=1, padding=1) self.downsample = downsample self.stride = stride def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
Sarah20187/X-StereoLab
ResNetBlock
false
14,387
[ "MIT" ]
192
9ae8c1413307e7df91b14a7f31e8a95f9e5754f9
https://github.com/Sarah20187/X-StereoLab/tree/9ae8c1413307e7df91b14a7f31e8a95f9e5754f9
SpatialGatherModule
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/iv/civr7hz7pwb7nd5q352sqsjvxezkx6m6jnyztaygkt2ugewh5ejx.py # Topologically Sorted Source Nodes: [probs_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # probs_1 => div, exp, sum_1 # Graph fragment: # %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, 1), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [2], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {}) # %mul_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_tensor, 1), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%mul_tensor_1,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [2], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_per_fused__softmax_0 = async_compile.triton('triton_per_fused__softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__softmax_0(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.where(xmask, tmp3, float("-inf")) tmp6 = triton_helpers.max2(tmp5, 1)[:, None] tmp7 = tmp2 - tmp6 tmp8 = tmp7 * tmp1 tmp9 = tl_math.exp(tmp8) tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK]) tmp12 = tl.where(xmask, tmp10, 0) tmp13 = tl.sum(tmp12, 1)[:, None] tmp14 = tmp9 / tmp13 tl.store(out_ptr2 + (r1 + (16*x0)), tmp14, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/vq/cvqpprnukykv7fb6t2uveui44qrapemorby5j3fnnfeymwpqwe63.py # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] # Source node to ATen node mapping: # contiguous => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_1,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [probs_1], Original ATen: [aten._softmax] stream0 = get_raw_stream(0) triton_per_fused__softmax_0.run(arg0_1, buf2, 16, 16, grid=grid(16), stream=stream0) del arg0_1 buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [probs_1, ocr_context], Original ATen: [aten._softmax, aten.bmm] extern_kernels.bmm(buf2, reinterpret_tensor(arg1_1, (4, 16, 4), (64, 1, 16), 0), out=buf3) del arg1_1 del buf2 buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] triton_poi_fused_clone_1.run(buf3, buf4, 16, 4, grid=grid(16, 4), stream=stream0) del buf3 return (reinterpret_tensor(buf4, (4, 4, 4, 1), (16, 4, 1, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F import torch.nn as nn class SpatialGatherModule(nn.Module): def __init__(self, scale=1, **kwargs): super(SpatialGatherModule, self).__init__() self.scale = scale """forward""" def forward(self, features, probs): batch_size, num_classes, _h, _w = probs.size() probs = probs.view(batch_size, num_classes, -1) features = features.view(batch_size, features.size(1), -1) features = features.permute(0, 2, 1) probs = F.softmax(self.scale * probs, dim=2) ocr_context = torch.matmul(probs, features) ocr_context = ocr_context.permute(0, 2, 1).contiguous().unsqueeze(3) return ocr_context def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused__softmax_0(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.where(xmask, tmp3, float('-inf')) tmp6 = triton_helpers.max2(tmp5, 1)[:, None] tmp7 = tmp2 - tmp6 tmp8 = tmp7 * tmp1 tmp9 = tl_math.exp(tmp8) tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK]) tmp12 = tl.where(xmask, tmp10, 0) tmp13 = tl.sum(tmp12, 1)[:, None] tmp14 = tmp9 / tmp13 tl.store(out_ptr2 + (r1 + 16 * x0), tmp14, xmask) @triton.jit def triton_poi_fused_clone_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32) get_raw_stream(0) triton_per_fused__softmax_0[grid(16)](arg0_1, buf2, 16, 16, XBLOCK= 8, num_warps=2, num_stages=1) del arg0_1 buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(buf2, reinterpret_tensor(arg1_1, (4, 16, 4), (64, 1, 16), 0), out=buf3) del arg1_1 del buf2 buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_clone_1[grid(16, 4)](buf3, buf4, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) del buf3 return reinterpret_tensor(buf4, (4, 4, 4, 1), (16, 4, 1, 1), 0), class SpatialGatherModuleNew(nn.Module): def __init__(self, scale=1, **kwargs): super(SpatialGatherModuleNew, self).__init__() self.scale = scale """forward""" def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
SegmentationBLWX/sssegmentation
SpatialGatherModule
false
14,388
[ "MIT" ]
411
0b2e3ff5abd7b97e15ac8daf63ea214688c26541
https://github.com/SegmentationBLWX/sssegmentation/tree/0b2e3ff5abd7b97e15ac8daf63ea214688c26541
HardSigmoid
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/mf/cmf6w37chb4mridntdlrpvtr2pniwredfqwdtpjxgfvftkaoqdvw.py # Topologically Sorted Source Nodes: [abs_1, add, truediv, mul, add_1], Original ATen: [aten.abs, aten.add, aten.div, aten.mul] # Source node to ATen node mapping: # abs_1 => abs_1 # add => add # add_1 => add_1 # mul => mul # truediv => div # Graph fragment: # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%arg0_1,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%abs_1, 1), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, %add), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, 0.5), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 0.5), kwargs = {}) triton_poi_fused_abs_add_div_mul_0 = async_compile.triton('triton_poi_fused_abs_add_div_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_abs_add_div_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_abs_add_div_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl_math.abs(tmp0) tmp2 = 1.0 tmp3 = tmp1 + tmp2 tmp4 = tmp0 / tmp3 tmp5 = 0.5 tmp6 = tmp4 * tmp5 tmp7 = tmp6 + tmp5 tl.store(out_ptr0 + (x0), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [abs_1, add, truediv, mul, add_1], Original ATen: [aten.abs, aten.add, aten.div, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_abs_add_div_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class HardSigmoid(nn.Module): """Implements the Had Mish activation module from `"H-Mish" <https://github.com/digantamisra98/H-Mish>`_ This activation is computed as follows: .. math:: f(x) = \\frac{x}{2} \\cdot \\min(2, \\max(0, x + 2)) """ def __init__(self, inplace: 'bool'=False) ->None: super().__init__() self.inplace = inplace def forward(self, x): return 0.5 * (x / (1 + torch.abs(x))) + 0.5 def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_abs_add_div_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl_math.abs(tmp0) tmp2 = 1.0 tmp3 = tmp1 + tmp2 tmp4 = tmp0 / tmp3 tmp5 = 0.5 tmp6 = tmp4 * tmp5 tmp7 = tmp6 + tmp5 tl.store(out_ptr0 + x0, tmp7, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_abs_add_div_mul_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class HardSigmoidNew(nn.Module): """Implements the Had Mish activation module from `"H-Mish" <https://github.com/digantamisra98/H-Mish>`_ This activation is computed as follows: .. math:: f(x) = \\frac{x}{2} \\cdot \\min(2, \\max(0, x + 2)) """ def __init__(self, inplace: 'bool'=False) ->None: super().__init__() self.inplace = inplace def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
SevenMoGod/movenet.pytorch
HardSigmoid
false
14,389
[ "MIT" ]
87
95ec8535245228aa4335243e68722810e50bcaf8
https://github.com/SevenMoGod/movenet.pytorch/tree/95ec8535245228aa4335243e68722810e50bcaf8
ChannelAttentionModule
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/3m/c3mxgkf4weymbmbgydi4j4i6eycdz2flzbf3jce3eapte2aqyfta.py # Topologically Sorted Source Nodes: [energy_new], Original ATen: [aten.sub] # Source node to ATen node mapping: # energy_new => sub # Graph fragment: # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%expand, %bmm), kwargs = {}) triton_poi_fused_sub_0 = async_compile.triton('triton_poi_fused_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (x2), xmask) tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp6 = triton_helpers.maximum(tmp4, tmp5) tmp8 = tmp6 - tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/hz/chzi3aam26mikdhljz5x7jlqazm7kpktzeptsf36thgfhsg7ub6a.py # Topologically Sorted Source Nodes: [attention], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attention => amax, exp, sub_1 # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%sub, [-1], True), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/em/cem6qbxwbiqnjqybzk5arf2obt5uggy4qs7otwwpovvnrhvdc6h4.py # Topologically Sorted Source Nodes: [attention], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attention => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ye/cye5imbugslp5zowdq76izohdzvmwgs3ihhyb5oxfswzd6dqhtnc.py # Topologically Sorted Source Nodes: [mul, out_2], Original ATen: [aten.mul, aten.add] # Source node to ATen node mapping: # mul => mul # out_2 => add # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_3, %primals_2), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %primals_1), kwargs = {}) triton_poi_fused_add_mul_3 = async_compile.triton('triton_poi_fused_add_mul_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_3(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp4 = tl.load(in_ptr2 + (x0), xmask) tmp3 = tmp0 * tmp2 tmp5 = tmp3 + tmp4 tl.store(out_ptr0 + (x0), tmp5, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (), ()) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [energy], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(primals_1, (4, 4, 16), (64, 16, 1), 0), reinterpret_tensor(primals_1, (4, 16, 4), (64, 1, 16), 0), out=buf0) buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [energy_new], Original ATen: [aten.sub] stream0 = get_raw_stream(0) triton_poi_fused_sub_0.run(buf0, buf1, 64, grid=grid(64), stream=stream0) buf2 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [attention], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf1, buf2, 64, grid=grid(64), stream=stream0) buf3 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [attention], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf2, buf3, 64, grid=grid(64), stream=stream0) del buf2 buf4 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [attention, out], Original ATen: [aten._softmax, aten.bmm] extern_kernels.bmm(buf3, reinterpret_tensor(primals_1, (4, 4, 16), (64, 16, 1), 0), out=buf4) del buf3 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, out_2], Original ATen: [aten.mul, aten.add] triton_poi_fused_add_mul_3.run(buf4, primals_2, primals_1, buf5, 256, grid=grid(256), stream=stream0) del primals_1 del primals_2 return (buf5, buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((), (), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F import torch.nn as nn class Scale(nn.Module): def __init__(self, scale=1.0): super(Scale, self).__init__() self.scale = nn.Parameter(torch.tensor(scale, dtype=torch.float)) """forward""" def forward(self, x): return x * self.scale class ChannelAttentionModule(nn.Module): def __init__(self): super(ChannelAttentionModule, self).__init__() self.gamma = Scale(scale=0) """forward""" def forward(self, x): batch_size, channels, height, width = x.size() proj_query = x.view(batch_size, channels, -1) proj_key = x.view(batch_size, channels, -1).permute(0, 2, 1) energy = torch.bmm(proj_query, proj_key) energy_new = torch.max(energy, -1, keepdim=True)[0].expand_as(energy ) - energy attention = F.softmax(energy_new, dim=-1) proj_value = x.view(batch_size, channels, -1) out = torch.bmm(attention, proj_value) out = out.view(batch_size, channels, height, width) out = self.gamma(out) + x return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + x2, xmask) tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp6 = triton_helpers.maximum(tmp4, tmp5) tmp8 = tmp6 - tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_add_mul_3(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp4 = tl.load(in_ptr2 + x0, xmask) tmp3 = tmp0 * tmp2 tmp5 = tmp3 + tmp4 tl.store(out_ptr0 + x0, tmp5, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (), ()) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(primals_1, (4, 4, 16), (64, 16, 1), 0), reinterpret_tensor(primals_1, (4, 16, 4), (64, 1, 16), 0), out=buf0) buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_sub_0[grid(64)](buf0, buf1, 64, XBLOCK=64, num_warps=1, num_stages=1) buf2 = buf0 del buf0 triton_poi_fused__softmax_1[grid(64)](buf1, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) buf3 = buf1 del buf1 triton_poi_fused__softmax_2[grid(64)](buf2, buf3, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf2 buf4 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32) extern_kernels.bmm(buf3, reinterpret_tensor(primals_1, (4, 4, 16), (64, 16, 1), 0), out=buf4) del buf3 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_mul_3[grid(256)](buf4, primals_2, primals_1, buf5, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 del primals_2 return buf5, buf4 class Scale(nn.Module): def __init__(self, scale=1.0): super(Scale, self).__init__() self.scale = nn.Parameter(torch.tensor(scale, dtype=torch.float)) """forward""" def forward(self, x): return x * self.scale class ChannelAttentionModuleNew(nn.Module): def __init__(self): super(ChannelAttentionModuleNew, self).__init__() self.gamma = Scale(scale=0) """forward""" def forward(self, input_0): primals_2 = self.gamma.scale primals_1 = input_0 output = call([primals_1, primals_2]) return output[0]
SegmentationBLWX/sssegmentation
ChannelAttentionModule
false
14,390
[ "MIT" ]
411
0b2e3ff5abd7b97e15ac8daf63ea214688c26541
https://github.com/SegmentationBLWX/sssegmentation/tree/0b2e3ff5abd7b97e15ac8daf63ea214688c26541
FeatureWiseAffine
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/vd/cvdopoziielrkt2t7tzyovmsaytzs4yqxbasy36krqzz5iwk2uvr.py # Topologically Sorted Source Nodes: [mul, outputs], Original ATen: [aten.mul, aten.add] # Source node to ATen node mapping: # mul => mul # outputs => add # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %arg2_1), kwargs = {}) triton_poi_fused_add_mul_0 = async_compile.triton('triton_poi_fused_add_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp3 = tl.load(in_ptr2 + (x0), xmask) tmp2 = tmp0 * tmp1 tmp4 = tmp2 + tmp3 tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, outputs], Original ATen: [aten.mul, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_0.run(arg0_1, arg1_1, arg2_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 del arg2_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class BaseModule(torch.nn.Module): def __init__(self): super(BaseModule, self).__init__() @property def nparams(self): return sum(p.numel() for p in self.parameters() if p.requires_grad) class FeatureWiseAffine(BaseModule): def __init__(self): super(FeatureWiseAffine, self).__init__() def forward(self, x, scale, shift): outputs = scale * x + shift return outputs def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_mul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp3 = tl.load(in_ptr2 + x0, xmask) tmp2 = tmp0 * tmp1 tmp4 = tmp2 + tmp3 tl.store(out_ptr0 + x0, tmp4, xmask) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_0[grid(256)](arg0_1, arg1_1, arg2_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 del arg1_1 del arg2_1 return buf0, class BaseModule(torch.nn.Module): def __init__(self): super(BaseModule, self).__init__() @property def nparams(self): return sum(p.numel() for p in self.parameters() if p.requires_grad) class FeatureWiseAffineNew(BaseModule): def __init__(self): super(FeatureWiseAffineNew, self).__init__() def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
Seungwoo0326/WaveGrad2-1
FeatureWiseAffine
false
14,391
[ "MIT" ]
45
3b202201348449b89353f28bce1596ca7939a810
https://github.com/Seungwoo0326/WaveGrad2-1/tree/3b202201348449b89353f28bce1596ca7939a810
MyLinear
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/v6/cv6odvhmmcyvquog4eo62pdliew53orxzwe2wfzampr64jy3ppa7.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.add] # Source node to ATen node mapping: # x => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %primals_3), kwargs = {}) triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [x], Original ATen: [aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_0.run(buf1, primals_3, 256, grid=grid(256), stream=stream0) del primals_3 return (buf1, reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class MyLinear(nn.Module): def __init__(self, inp, outp): super(MyLinear, self).__init__() self.w = nn.Parameter(torch.randn(outp, inp)) self.b = nn.Parameter(torch.randn(outp)) def forward(self, x): x = x @ self.w.t() + self.b return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'inp': 4, 'outp': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_add_0[grid(256)](buf1, primals_3, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_3 return buf1, reinterpret_tensor(primals_2, (64, 4), (4, 1), 0) class MyLinearNew(nn.Module): def __init__(self, inp, outp): super(MyLinearNew, self).__init__() self.w = nn.Parameter(torch.randn(outp, inp)) self.b = nn.Parameter(torch.randn(outp)) def forward(self, input_0): primals_1 = self.w primals_3 = self.b primals_2 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
Shadowalker1995/Tutorial-Resource
MyLinear
false
14,392
[ "Apache-2.0" ]
362
71fe3d521cf9971f708fa9978e9c685c0dda6ba6
https://github.com/Shadowalker1995/Tutorial-Resource/tree/71fe3d521cf9971f708fa9978e9c685c0dda6ba6
GLU
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/si/csi3q2lvu3kn5mel4tdzl2vtzommba4fd5qu3gyxcskc5f7bdxxu.py # Topologically Sorted Source Nodes: [sigmoid, mul], Original ATen: [aten.sigmoid, aten.mul] # Source node to ATen node mapping: # mul => mul # sigmoid => sigmoid # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%slice_4,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%slice_2, %sigmoid), kwargs = {}) triton_poi_fused_mul_sigmoid_0 = async_compile.triton('triton_poi_fused_mul_sigmoid_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_sigmoid_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 32 x1 = (xindex // 32) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask) tmp1 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask) tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tl.store(out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sigmoid, mul], Original ATen: [aten.sigmoid, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_sigmoid_0.run(arg0_1, buf0, 128, grid=grid(128), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class GLU(nn.Module): def __init__(self): super(GLU, self).__init__() def forward(self, x): nc = x.size(1) assert nc % 2 == 0, 'channels dont divide 2!' nc = int(nc / 2) return x[:, :nc] * torch.sigmoid(x[:, nc:]) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_sigmoid_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 32 x1 = xindex // 32 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask) tmp1 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask) tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tl.store(out_ptr0 + x2, tmp3, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_sigmoid_0[grid(128)](arg0_1, buf0, 128, XBLOCK =128, num_warps=4, num_stages=1) del arg0_1 return buf0, class GLUNew(nn.Module): def __init__(self): super(GLUNew, self).__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
SeungyounShin/c3-gan
GLU
false
14,393
[ "BSD-2-Clause" ]
105
1fae645674c896b4bcb93e910034519f470a6a96
https://github.com/SeungyounShin/c3-gan/tree/1fae645674c896b4bcb93e910034519f470a6a96
D_UpBlock
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/la/clalnn5iz2syotwgvds5fjb6mtcklh5yizks6zdxu552jin7zbwe.py # Topologically Sorted Source Nodes: [out, x], Original ATen: [aten.convolution, aten._prelu_kernel] # Source node to ATen node mapping: # out => convolution # x => gt, mul, where # Graph fragment: # %convolution : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %convolution), kwargs = {}) # %where : [num_users=3] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul), kwargs = {}) triton_poi_fused__prelu_kernel_convolution_0 = async_compile.triton('triton_poi_fused__prelu_kernel_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__prelu_kernel_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__prelu_kernel_convolution_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (0)) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp7 = tmp6 * tmp2 tmp8 = tl.where(tmp4, tmp2, tmp7) tl.store(in_out_ptr0 + (x3), tmp2, xmask) tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/kb/ckb2ha2s6bm7vj5h3g2phc6cf5zuuep3skupgjhxlqvjunyzo7uc.py # Topologically Sorted Source Nodes: [out_1, h0], Original ATen: [aten.convolution, aten._prelu_kernel] # Source node to ATen node mapping: # h0 => gt_1, mul_1, where_1 # out_1 => convolution_1 # Graph fragment: # %convolution_1 : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%where, %primals_5, %primals_6, [4, 4], [2, 2], [1, 1], True, [0, 0], 1), kwargs = {}) # %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_1, 0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %convolution_1), kwargs = {}) # %where_1 : [num_users=3] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %convolution_1, %mul_1), kwargs = {}) triton_poi_fused__prelu_kernel_convolution_1 = async_compile.triton('triton_poi_fused__prelu_kernel_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__prelu_kernel_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__prelu_kernel_convolution_1(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 256) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (0)) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp7 = tmp6 * tmp2 tmp8 = tl.where(tmp4, tmp2, tmp7) tl.store(in_out_ptr0 + (x3), tmp2, None) tl.store(out_ptr0 + (x3), tmp8, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/l2/cl26qlqbg4ashxwthfa7y7w2lu5hks2tixgyjr7r7uwzp4cso4h4.py # Topologically Sorted Source Nodes: [out_2, l0, sub], Original ATen: [aten.convolution, aten._prelu_kernel, aten.sub] # Source node to ATen node mapping: # l0 => gt_2, mul_2, where_2 # out_2 => convolution_2 # sub => sub # Graph fragment: # %convolution_2 : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%where_1, %primals_8, %primals_9, [4, 4], [2, 2], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_2 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_2, 0), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_2, %convolution_2), kwargs = {}) # %where_2 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %convolution_2, %mul_2), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_2, %where), kwargs = {}) triton_poi_fused__prelu_kernel_convolution_sub_2 = async_compile.triton('triton_poi_fused__prelu_kernel_convolution_sub_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__prelu_kernel_convolution_sub_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__prelu_kernel_convolution_sub_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (0)) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp9 = tl.load(in_ptr2 + (x3), xmask) tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp7 = tmp6 * tmp2 tmp8 = tl.where(tmp4, tmp2, tmp7) tmp10 = tmp8 - tmp9 tl.store(in_out_ptr0 + (x3), tmp2, xmask) tl.store(out_ptr0 + (x3), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/uo/cuoc3fbjcspgq6e2rakjntd5tnezthurywxtdatbmpjk4n5zmedx.py # Topologically Sorted Source Nodes: [out_3, h1, add], Original ATen: [aten.convolution, aten._prelu_kernel, aten.add] # Source node to ATen node mapping: # add => add # h1 => gt_3, mul_3, where_3 # out_3 => convolution_3 # Graph fragment: # %convolution_3 : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%sub, %primals_11, %primals_12, [4, 4], [2, 2], [1, 1], True, [0, 0], 1), kwargs = {}) # %gt_3 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_3, 0), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_3, %convolution_3), kwargs = {}) # %where_3 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_3, %convolution_3, %mul_3), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%where_3, %where_1), kwargs = {}) triton_poi_fused__prelu_kernel_add_convolution_3 = async_compile.triton('triton_poi_fused__prelu_kernel_add_convolution_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__prelu_kernel_add_convolution_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__prelu_kernel_add_convolution_3(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 256) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (0)) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp9 = tl.load(in_ptr2 + (x3), None) tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp7 = tmp6 * tmp2 tmp8 = tl.where(tmp4, tmp2, tmp7) tmp10 = tmp8 + tmp9 tl.store(in_out_ptr0 + (x3), tmp2, None) tl.store(out_ptr0 + (x3), tmp10, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13 = args args.clear() assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (1, ), (1, )) assert_size_stride(primals_5, (4, 4, 8, 8), (256, 64, 8, 1)) assert_size_stride(primals_6, (4, ), (1, )) assert_size_stride(primals_7, (1, ), (1, )) assert_size_stride(primals_8, (4, 4, 8, 8), (256, 64, 8, 1)) assert_size_stride(primals_9, (4, ), (1, )) assert_size_stride(primals_10, (1, ), (1, )) assert_size_stride(primals_11, (4, 4, 8, 8), (256, 64, 8, 1)) assert_size_stride(primals_12, (4, ), (1, )) assert_size_stride(primals_13, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0; del buf0 # reuse buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [out, x], Original ATen: [aten.convolution, aten._prelu_kernel] stream0 = get_raw_stream(0) triton_poi_fused__prelu_kernel_convolution_0.run(buf1, primals_2, primals_4, buf2, 256, grid=grid(256), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf2, primals_5, stride=(4, 4), padding=(2, 2), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 16, 16), (1024, 256, 16, 1)) buf4 = buf3; del buf3 # reuse buf5 = empty_strided_cuda((4, 4, 16, 16), (1024, 256, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [out_1, h0], Original ATen: [aten.convolution, aten._prelu_kernel] triton_poi_fused__prelu_kernel_convolution_1.run(buf4, primals_6, primals_7, buf5, 4096, grid=grid(4096), stream=stream0) del primals_6 # Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf5, primals_8, stride=(4, 4), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 4, 4, 4), (64, 16, 4, 1)) buf7 = buf6; del buf6 # reuse buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [out_2, l0, sub], Original ATen: [aten.convolution, aten._prelu_kernel, aten.sub] triton_poi_fused__prelu_kernel_convolution_sub_2.run(buf7, primals_9, primals_10, buf2, buf8, 256, grid=grid(256), stream=stream0) del primals_9 # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.convolution] buf9 = extern_kernels.convolution(buf8, primals_11, stride=(4, 4), padding=(2, 2), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 4, 16, 16), (1024, 256, 16, 1)) buf10 = buf9; del buf9 # reuse buf11 = empty_strided_cuda((4, 4, 16, 16), (1024, 256, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [out_3, h1, add], Original ATen: [aten.convolution, aten._prelu_kernel, aten.add] triton_poi_fused__prelu_kernel_add_convolution_3.run(buf10, primals_12, primals_13, buf5, buf11, 4096, grid=grid(4096), stream=stream0) del primals_12 return (buf11, primals_1, primals_3, primals_4, primals_5, primals_7, primals_8, primals_10, primals_11, primals_13, buf1, buf2, buf4, buf5, buf7, buf8, buf10, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4, 8, 8), (256, 64, 8, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 4, 8, 8), (256, 64, 8, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, 4, 8, 8), (256, 64, 8, 1), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data from torchvision.transforms import * class ConvBlock(torch.nn.Module): def __init__(self, input_size, output_size, kernel_size=3, stride=1, padding=1, bias=True, activation='prelu', norm=None): super(ConvBlock, self).__init__() self.conv = torch.nn.Conv2d(input_size, output_size, kernel_size, stride, padding, bias=bias) self.norm = norm if self.norm == 'batch': self.bn = torch.nn.BatchNorm2d(output_size) elif self.norm == 'instance': self.bn = torch.nn.InstanceNorm2d(output_size) self.activation = activation if self.activation == 'relu': self.act = torch.nn.ReLU(True) elif self.activation == 'prelu': self.act = torch.nn.PReLU() elif self.activation == 'lrelu': self.act = torch.nn.LeakyReLU(0.2, True) elif self.activation == 'tanh': self.act = torch.nn.Tanh() elif self.activation == 'sigmoid': self.act = torch.nn.Sigmoid() def forward(self, x): if self.norm is not None: out = self.bn(self.conv(x)) else: out = self.conv(x) if self.activation is not None: return self.act(out) else: return out class DeconvBlock(torch.nn.Module): def __init__(self, input_size, output_size, kernel_size=4, stride=2, padding=1, bias=True, activation='prelu', norm=None): super(DeconvBlock, self).__init__() self.deconv = torch.nn.ConvTranspose2d(input_size, output_size, kernel_size, stride, padding, bias=bias) self.norm = norm if self.norm == 'batch': self.bn = torch.nn.BatchNorm2d(output_size) elif self.norm == 'instance': self.bn = torch.nn.InstanceNorm2d(output_size) self.activation = activation if self.activation == 'relu': self.act = torch.nn.ReLU(True) elif self.activation == 'prelu': self.act = torch.nn.PReLU() elif self.activation == 'lrelu': self.act = torch.nn.LeakyReLU(0.2, True) elif self.activation == 'tanh': self.act = torch.nn.Tanh() elif self.activation == 'sigmoid': self.act = torch.nn.Sigmoid() def forward(self, x): if self.norm is not None: out = self.bn(self.deconv(x)) else: out = self.deconv(x) if self.activation is not None: return self.act(out) else: return out class D_UpBlock(torch.nn.Module): def __init__(self, num_filter, kernel_size=8, stride=4, padding=2, num_stages=1, bias=True, activation='prelu', norm=None): super(D_UpBlock, self).__init__() self.conv = ConvBlock(num_filter * num_stages, num_filter, 1, 1, 0, activation, norm=None) self.up_conv1 = DeconvBlock(num_filter, num_filter, kernel_size, stride, padding, activation, norm=None) self.up_conv2 = ConvBlock(num_filter, num_filter, kernel_size, stride, padding, activation, norm=None) self.up_conv3 = DeconvBlock(num_filter, num_filter, kernel_size, stride, padding, activation, norm=None) def forward(self, x): x = self.conv(x) h0 = self.up_conv1(x) l0 = self.up_conv2(h0) h1 = self.up_conv3(l0 - x) return h1 + h0 def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_filter': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.utils.data from torchvision.transforms import * assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__prelu_kernel_convolution_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + 0) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp7 = tmp6 * tmp2 tmp8 = tl.where(tmp4, tmp2, tmp7) tl.store(in_out_ptr0 + x3, tmp2, xmask) tl.store(out_ptr0 + x3, tmp8, xmask) @triton.jit def triton_poi_fused__prelu_kernel_convolution_1(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 256 % 4 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + 0) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp7 = tmp6 * tmp2 tmp8 = tl.where(tmp4, tmp2, tmp7) tl.store(in_out_ptr0 + x3, tmp2, None) tl.store(out_ptr0 + x3, tmp8, None) @triton.jit def triton_poi_fused__prelu_kernel_convolution_sub_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + 0) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp9 = tl.load(in_ptr2 + x3, xmask) tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp7 = tmp6 * tmp2 tmp8 = tl.where(tmp4, tmp2, tmp7) tmp10 = tmp8 - tmp9 tl.store(in_out_ptr0 + x3, tmp2, xmask) tl.store(out_ptr0 + x3, tmp10, xmask) @triton.jit def triton_poi_fused__prelu_kernel_add_convolution_3(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 256 % 4 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + 0) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp9 = tl.load(in_ptr2 + x3, None) tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp7 = tmp6 * tmp2 tmp8 = tl.where(tmp4, tmp2, tmp7) tmp10 = tmp8 + tmp9 tl.store(in_out_ptr0 + x3, tmp2, None) tl.store(out_ptr0 + x3, tmp10, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13) = args args.clear() assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (1,), (1,)) assert_size_stride(primals_5, (4, 4, 8, 8), (256, 64, 8, 1)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (1,), (1,)) assert_size_stride(primals_8, (4, 4, 8, 8), (256, 64, 8, 1)) assert_size_stride(primals_9, (4,), (1,)) assert_size_stride(primals_10, (1,), (1,)) assert_size_stride(primals_11, (4, 4, 8, 8), (256, 64, 8, 1)) assert_size_stride(primals_12, (4,), (1,)) assert_size_stride(primals_13, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0 del buf0 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__prelu_kernel_convolution_0[grid(256)](buf1, primals_2, primals_4, buf2, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf3 = extern_kernels.convolution(buf2, primals_5, stride=(4, 4), padding=(2, 2), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 16, 16), (1024, 256, 16, 1)) buf4 = buf3 del buf3 buf5 = empty_strided_cuda((4, 4, 16, 16), (1024, 256, 16, 1), torch .float32) triton_poi_fused__prelu_kernel_convolution_1[grid(4096)](buf4, primals_6, primals_7, buf5, 4096, XBLOCK=256, num_warps=4, num_stages=1) del primals_6 buf6 = extern_kernels.convolution(buf5, primals_8, stride=(4, 4), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 4, 4, 4), (64, 16, 4, 1)) buf7 = buf6 del buf6 buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__prelu_kernel_convolution_sub_2[grid(256)](buf7, primals_9, primals_10, buf2, buf8, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_9 buf9 = extern_kernels.convolution(buf8, primals_11, stride=(4, 4), padding=(2, 2), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 4, 16, 16), (1024, 256, 16, 1)) buf10 = buf9 del buf9 buf11 = empty_strided_cuda((4, 4, 16, 16), (1024, 256, 16, 1), torch.float32) triton_poi_fused__prelu_kernel_add_convolution_3[grid(4096)](buf10, primals_12, primals_13, buf5, buf11, 4096, XBLOCK=256, num_warps=4, num_stages=1) del primals_12 return (buf11, primals_1, primals_3, primals_4, primals_5, primals_7, primals_8, primals_10, primals_11, primals_13, buf1, buf2, buf4, buf5, buf7, buf8, buf10) class ConvBlock(torch.nn.Module): def __init__(self, input_size, output_size, kernel_size=3, stride=1, padding=1, bias=True, activation='prelu', norm=None): super(ConvBlock, self).__init__() self.conv = torch.nn.Conv2d(input_size, output_size, kernel_size, stride, padding, bias=bias) self.norm = norm if self.norm == 'batch': self.bn = torch.nn.BatchNorm2d(output_size) elif self.norm == 'instance': self.bn = torch.nn.InstanceNorm2d(output_size) self.activation = activation if self.activation == 'relu': self.act = torch.nn.ReLU(True) elif self.activation == 'prelu': self.act = torch.nn.PReLU() elif self.activation == 'lrelu': self.act = torch.nn.LeakyReLU(0.2, True) elif self.activation == 'tanh': self.act = torch.nn.Tanh() elif self.activation == 'sigmoid': self.act = torch.nn.Sigmoid() def forward(self, x): if self.norm is not None: out = self.bn(self.conv(x)) else: out = self.conv(x) if self.activation is not None: return self.act(out) else: return out class DeconvBlock(torch.nn.Module): def __init__(self, input_size, output_size, kernel_size=4, stride=2, padding=1, bias=True, activation='prelu', norm=None): super(DeconvBlock, self).__init__() self.deconv = torch.nn.ConvTranspose2d(input_size, output_size, kernel_size, stride, padding, bias=bias) self.norm = norm if self.norm == 'batch': self.bn = torch.nn.BatchNorm2d(output_size) elif self.norm == 'instance': self.bn = torch.nn.InstanceNorm2d(output_size) self.activation = activation if self.activation == 'relu': self.act = torch.nn.ReLU(True) elif self.activation == 'prelu': self.act = torch.nn.PReLU() elif self.activation == 'lrelu': self.act = torch.nn.LeakyReLU(0.2, True) elif self.activation == 'tanh': self.act = torch.nn.Tanh() elif self.activation == 'sigmoid': self.act = torch.nn.Sigmoid() def forward(self, x): if self.norm is not None: out = self.bn(self.deconv(x)) else: out = self.deconv(x) if self.activation is not None: return self.act(out) else: return out class D_UpBlockNew(torch.nn.Module): def __init__(self, num_filter, kernel_size=8, stride=4, padding=2, num_stages=1, bias=True, activation='prelu', norm=None): super(D_UpBlockNew, self).__init__() self.conv = ConvBlock(num_filter * num_stages, num_filter, 1, 1, 0, activation, norm=None) self.up_conv1 = DeconvBlock(num_filter, num_filter, kernel_size, stride, padding, activation, norm=None) self.up_conv2 = ConvBlock(num_filter, num_filter, kernel_size, stride, padding, activation, norm=None) self.up_conv3 = DeconvBlock(num_filter, num_filter, kernel_size, stride, padding, activation, norm=None) def forward(self, input_0): primals_1 = self.conv.conv.weight primals_2 = self.conv.conv.bias primals_4 = self.conv.act.weight primals_5 = self.up_conv1.deconv.weight primals_6 = self.up_conv1.deconv.bias primals_7 = self.up_conv1.act.weight primals_8 = self.up_conv2.conv.weight primals_9 = self.up_conv2.conv.bias primals_10 = self.up_conv2.act.weight primals_11 = self.up_conv3.deconv.weight primals_12 = self.up_conv3.deconv.bias primals_13 = self.up_conv3.act.weight primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return output[0]
RyanMoussouni/iSeeBetter
D_UpBlock
false
14,394
[ "MIT" ]
327
af193ae0852f8e477fcd6875dce874eb5092a24a
https://github.com/RyanMoussouni/iSeeBetter/tree/af193ae0852f8e477fcd6875dce874eb5092a24a
JointBoneLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/fm/cfm6a6dnefwe7wmwtjo6xtq4yv4kexu4kskkj242y6hsuzo4qect.py # Topologically Sorted Source Nodes: [getitem, getitem_1, sub, J, getitem_2, getitem_3, sub_1, Y, sub_2, loss, sum_1, truediv, loss_1], Original ATen: [aten.index, aten.sub, aten.linalg_vector_norm, aten.abs, aten.sum, aten.div] # Source node to ATen node mapping: # J => pow_1, pow_2, sum_1 # Y => pow_3, pow_4, sum_2 # getitem => index # getitem_1 => index_1 # getitem_2 => index_2 # getitem_3 => index_3 # loss => abs_1 # loss_1 => div_1 # sub => sub # sub_1 => sub_1 # sub_2 => sub_2 # sum_1 => sum_3 # truediv => div # Graph fragment: # %index : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%arg0_1, [None, %lift_fresh_copy]), kwargs = {}) # %index_1 : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%arg0_1, [None, %lift_fresh_copy_1]), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%index, %index_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [-1]), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {}) # %index_2 : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%arg1_1, [None, %lift_fresh_copy_2]), kwargs = {}) # %index_3 : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%arg1_1, [None, %lift_fresh_copy_3]), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%index_2, %index_3), kwargs = {}) # %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_1, 2), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_3, [-1]), kwargs = {}) # %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_2, 0.5), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%pow_2, %pow_4), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_2,), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%abs_1,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_3, 4), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%div, 6), kwargs = {}) triton_red_fused_abs_div_index_linalg_vector_norm_sub_sum_0 = async_compile.triton('triton_red_fused_abs_div_index_linalg_vector_norm_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.reduction( size_hints=[1, 128], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_abs_div_index_linalg_vector_norm_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_red_fused_abs_div_index_linalg_vector_norm_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr): xnumel = 1 rnumel = 96 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rbase = tl.arange(0, RBLOCK)[None, :] _tmp65 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r1 = (rindex // 4) % 6 r0 = rindex % 4 r2 = (rindex // 24) r3 = rindex tmp0 = r1 tmp1 = tl.full([1, 1], 3, tl.int64) tmp2 = tmp0 < tmp1 tmp3 = tl.full([1, 1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.full([1, 1], 2, tl.int64) tmp6 = tmp0 < tmp5 tmp7 = tl.full([1, 1], 0, tl.int64) tmp8 = tl.where(tmp6, tmp7, tmp7) tmp9 = tl.where(tmp4, tmp7, tmp8) tmp10 = tl.full([1, 1], 4, tl.int64) tmp11 = tmp0 < tmp10 tmp12 = tl.full([1, 1], 5, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tl.where(tmp13, tmp3, tmp5) tmp15 = tl.where(tmp11, tmp3, tmp14) tmp16 = tl.where(tmp2, tmp9, tmp15) tmp17 = tl.load(in_ptr0 + ((4*r0) + (16*tmp16) + (64*r2)), rmask, eviction_policy='evict_last', other=0.0) tmp18 = tl.where(tmp6, tmp5, tmp1) tmp19 = tl.where(tmp4, tmp3, tmp18) tmp20 = tl.where(tmp13, tmp1, tmp1) tmp21 = tl.where(tmp11, tmp5, tmp20) tmp22 = tl.where(tmp2, tmp19, tmp21) tmp23 = tl.load(in_ptr0 + ((4*r0) + (16*tmp22) + (64*r2)), rmask, eviction_policy='evict_last', other=0.0) tmp24 = tmp17 - tmp23 tmp25 = tmp24 * tmp24 tmp26 = tl.load(in_ptr0 + (1 + (4*r0) + (16*tmp16) + (64*r2)), rmask, eviction_policy='evict_last', other=0.0) tmp27 = tl.load(in_ptr0 + (1 + (4*r0) + (16*tmp22) + (64*r2)), rmask, eviction_policy='evict_last', other=0.0) tmp28 = tmp26 - tmp27 tmp29 = tmp28 * tmp28 tmp30 = tmp25 + tmp29 tmp31 = tl.load(in_ptr0 + (2 + (4*r0) + (16*tmp16) + (64*r2)), rmask, eviction_policy='evict_last', other=0.0) tmp32 = tl.load(in_ptr0 + (2 + (4*r0) + (16*tmp22) + (64*r2)), rmask, eviction_policy='evict_last', other=0.0) tmp33 = tmp31 - tmp32 tmp34 = tmp33 * tmp33 tmp35 = tmp30 + tmp34 tmp36 = tl.load(in_ptr0 + (3 + (4*r0) + (16*tmp16) + (64*r2)), rmask, eviction_policy='evict_last', other=0.0) tmp37 = tl.load(in_ptr0 + (3 + (4*r0) + (16*tmp22) + (64*r2)), rmask, eviction_policy='evict_last', other=0.0) tmp38 = tmp36 - tmp37 tmp39 = tmp38 * tmp38 tmp40 = tmp35 + tmp39 tmp41 = tl.load(in_ptr1 + ((4*r0) + (16*tmp16) + (64*r2)), rmask, eviction_policy='evict_last', other=0.0) tmp42 = tl.load(in_ptr1 + ((4*r0) + (16*tmp22) + (64*r2)), rmask, eviction_policy='evict_last', other=0.0) tmp43 = tmp41 - tmp42 tmp44 = tmp43 * tmp43 tmp45 = tl.load(in_ptr1 + (1 + (4*r0) + (16*tmp16) + (64*r2)), rmask, eviction_policy='evict_last', other=0.0) tmp46 = tl.load(in_ptr1 + (1 + (4*r0) + (16*tmp22) + (64*r2)), rmask, eviction_policy='evict_last', other=0.0) tmp47 = tmp45 - tmp46 tmp48 = tmp47 * tmp47 tmp49 = tmp44 + tmp48 tmp50 = tl.load(in_ptr1 + (2 + (4*r0) + (16*tmp16) + (64*r2)), rmask, eviction_policy='evict_last', other=0.0) tmp51 = tl.load(in_ptr1 + (2 + (4*r0) + (16*tmp22) + (64*r2)), rmask, eviction_policy='evict_last', other=0.0) tmp52 = tmp50 - tmp51 tmp53 = tmp52 * tmp52 tmp54 = tmp49 + tmp53 tmp55 = tl.load(in_ptr1 + (3 + (4*r0) + (16*tmp16) + (64*r2)), rmask, eviction_policy='evict_last', other=0.0) tmp56 = tl.load(in_ptr1 + (3 + (4*r0) + (16*tmp22) + (64*r2)), rmask, eviction_policy='evict_last', other=0.0) tmp57 = tmp55 - tmp56 tmp58 = tmp57 * tmp57 tmp59 = tmp54 + tmp58 tmp60 = libdevice.sqrt(tmp40) tmp61 = libdevice.sqrt(tmp59) tmp62 = tmp60 - tmp61 tmp63 = tl_math.abs(tmp62) tmp64 = tl.broadcast_to(tmp63, [XBLOCK, RBLOCK]) tmp66 = _tmp65 + tmp64 _tmp65 = tl.where(rmask, tmp66, _tmp65) tmp65 = tl.sum(_tmp65, 1)[:, None] tmp67 = 0.25 tmp68 = tmp65 * tmp67 tmp69 = 0.16666666666666666 tmp70 = tmp68 * tmp69 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp70, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((), (), torch.float32) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [getitem, getitem_1, sub, J, getitem_2, getitem_3, sub_1, Y, sub_2, loss, sum_1, truediv, loss_1], Original ATen: [aten.index, aten.sub, aten.linalg_vector_norm, aten.abs, aten.sum, aten.div] stream0 = get_raw_stream(0) triton_red_fused_abs_div_index_linalg_vector_norm_sub_sum_0.run(buf3, arg0_1, arg1_1, 1, 96, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class JointBoneLoss(torch.nn.Module): def __init__(self, joint_num): super(JointBoneLoss, self).__init__() id_i, id_j = [], [] for i in range(joint_num): for j in range(i + 1, joint_num): id_i.append(i) id_j.append(j) self.id_i = id_i self.id_j = id_j def forward(self, joint_out, joint_gt): J = torch.norm(joint_out[:, self.id_i, :] - joint_out[:, self.id_j, :], p=2, dim=-1, keepdim=False) Y = torch.norm(joint_gt[:, self.id_i, :] - joint_gt[:, self.id_j, : ], p=2, dim=-1, keepdim=False) loss = torch.abs(J - Y) loss = torch.sum(loss) / joint_out.shape[0] / len(self.id_i) return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'joint_num': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_red_fused_abs_div_index_linalg_vector_norm_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl. constexpr): rnumel = 96 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rbase = tl.arange(0, RBLOCK)[None, :] _tmp65 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r1 = rindex // 4 % 6 r0 = rindex % 4 r2 = rindex // 24 tmp0 = r1 tmp1 = tl.full([1, 1], 3, tl.int64) tmp2 = tmp0 < tmp1 tmp3 = tl.full([1, 1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.full([1, 1], 2, tl.int64) tmp6 = tmp0 < tmp5 tmp7 = tl.full([1, 1], 0, tl.int64) tmp8 = tl.where(tmp6, tmp7, tmp7) tmp9 = tl.where(tmp4, tmp7, tmp8) tmp10 = tl.full([1, 1], 4, tl.int64) tmp11 = tmp0 < tmp10 tmp12 = tl.full([1, 1], 5, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tl.where(tmp13, tmp3, tmp5) tmp15 = tl.where(tmp11, tmp3, tmp14) tmp16 = tl.where(tmp2, tmp9, tmp15) tmp17 = tl.load(in_ptr0 + (4 * r0 + 16 * tmp16 + 64 * r2), rmask, eviction_policy='evict_last', other=0.0) tmp18 = tl.where(tmp6, tmp5, tmp1) tmp19 = tl.where(tmp4, tmp3, tmp18) tmp20 = tl.where(tmp13, tmp1, tmp1) tmp21 = tl.where(tmp11, tmp5, tmp20) tmp22 = tl.where(tmp2, tmp19, tmp21) tmp23 = tl.load(in_ptr0 + (4 * r0 + 16 * tmp22 + 64 * r2), rmask, eviction_policy='evict_last', other=0.0) tmp24 = tmp17 - tmp23 tmp25 = tmp24 * tmp24 tmp26 = tl.load(in_ptr0 + (1 + 4 * r0 + 16 * tmp16 + 64 * r2), rmask, eviction_policy='evict_last', other=0.0) tmp27 = tl.load(in_ptr0 + (1 + 4 * r0 + 16 * tmp22 + 64 * r2), rmask, eviction_policy='evict_last', other=0.0) tmp28 = tmp26 - tmp27 tmp29 = tmp28 * tmp28 tmp30 = tmp25 + tmp29 tmp31 = tl.load(in_ptr0 + (2 + 4 * r0 + 16 * tmp16 + 64 * r2), rmask, eviction_policy='evict_last', other=0.0) tmp32 = tl.load(in_ptr0 + (2 + 4 * r0 + 16 * tmp22 + 64 * r2), rmask, eviction_policy='evict_last', other=0.0) tmp33 = tmp31 - tmp32 tmp34 = tmp33 * tmp33 tmp35 = tmp30 + tmp34 tmp36 = tl.load(in_ptr0 + (3 + 4 * r0 + 16 * tmp16 + 64 * r2), rmask, eviction_policy='evict_last', other=0.0) tmp37 = tl.load(in_ptr0 + (3 + 4 * r0 + 16 * tmp22 + 64 * r2), rmask, eviction_policy='evict_last', other=0.0) tmp38 = tmp36 - tmp37 tmp39 = tmp38 * tmp38 tmp40 = tmp35 + tmp39 tmp41 = tl.load(in_ptr1 + (4 * r0 + 16 * tmp16 + 64 * r2), rmask, eviction_policy='evict_last', other=0.0) tmp42 = tl.load(in_ptr1 + (4 * r0 + 16 * tmp22 + 64 * r2), rmask, eviction_policy='evict_last', other=0.0) tmp43 = tmp41 - tmp42 tmp44 = tmp43 * tmp43 tmp45 = tl.load(in_ptr1 + (1 + 4 * r0 + 16 * tmp16 + 64 * r2), rmask, eviction_policy='evict_last', other=0.0) tmp46 = tl.load(in_ptr1 + (1 + 4 * r0 + 16 * tmp22 + 64 * r2), rmask, eviction_policy='evict_last', other=0.0) tmp47 = tmp45 - tmp46 tmp48 = tmp47 * tmp47 tmp49 = tmp44 + tmp48 tmp50 = tl.load(in_ptr1 + (2 + 4 * r0 + 16 * tmp16 + 64 * r2), rmask, eviction_policy='evict_last', other=0.0) tmp51 = tl.load(in_ptr1 + (2 + 4 * r0 + 16 * tmp22 + 64 * r2), rmask, eviction_policy='evict_last', other=0.0) tmp52 = tmp50 - tmp51 tmp53 = tmp52 * tmp52 tmp54 = tmp49 + tmp53 tmp55 = tl.load(in_ptr1 + (3 + 4 * r0 + 16 * tmp16 + 64 * r2), rmask, eviction_policy='evict_last', other=0.0) tmp56 = tl.load(in_ptr1 + (3 + 4 * r0 + 16 * tmp22 + 64 * r2), rmask, eviction_policy='evict_last', other=0.0) tmp57 = tmp55 - tmp56 tmp58 = tmp57 * tmp57 tmp59 = tmp54 + tmp58 tmp60 = libdevice.sqrt(tmp40) tmp61 = libdevice.sqrt(tmp59) tmp62 = tmp60 - tmp61 tmp63 = tl_math.abs(tmp62) tmp64 = tl.broadcast_to(tmp63, [XBLOCK, RBLOCK]) tmp66 = _tmp65 + tmp64 _tmp65 = tl.where(rmask, tmp66, _tmp65) tmp65 = tl.sum(_tmp65, 1)[:, None] tmp67 = 0.25 tmp68 = tmp65 * tmp67 tmp69 = 0.16666666666666666 tmp70 = tmp68 * tmp69 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp70, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((), (), torch.float32) buf3 = buf2 del buf2 get_raw_stream(0) triton_red_fused_abs_div_index_linalg_vector_norm_sub_sum_0[grid(1)]( buf3, arg0_1, arg1_1, 1, 96, XBLOCK=1, RBLOCK=64, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf3, class JointBoneLossNew(torch.nn.Module): def __init__(self, joint_num): super(JointBoneLossNew, self).__init__() id_i, id_j = [], [] for i in range(joint_num): for j in range(i + 1, joint_num): id_i.append(i) id_j.append(j) self.id_i = id_i self.id_j = id_j def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
SevenMoGod/movenet.pytorch
JointBoneLoss
false
14,395
[ "MIT" ]
87
95ec8535245228aa4335243e68722810e50bcaf8
https://github.com/SevenMoGod/movenet.pytorch/tree/95ec8535245228aa4335243e68722810e50bcaf8
GCN
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/be/cbej2f3myglhqo2dienhyo4fp7tbscq32k7imbgc2psgl6gaxxhi.py # Topologically Sorted Source Nodes: [add, x], Original ATen: [aten.add, aten.relu] # Source node to ATen node mapping: # add => add # x => relu # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_1, %primals_4), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add,), kwargs = {}) triton_poi_fused_add_relu_0 = async_compile.triton('triton_poi_fused_add_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ul/culvxc5xcnacfjypzxghwcyc2445sqsz25ci4rib6axjxs3fv3so.py # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # log_softmax => amax, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%addmm_default, [1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%addmm_default, %amax), kwargs = {}) triton_poi_fused__log_softmax_1 = async_compile.triton('triton_poi_fused__log_softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/yr/cyr6fatjcqc5np3quy6arljtkkff4qjmueyb5b4pk5xvkxgrzuvd.py # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # log_softmax => exp, log, sub_1, sum_1 # Graph fragment: # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {}) triton_poi_fused__log_softmax_2 = async_compile.triton('triton_poi_fused__log_softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tl.store(out_ptr0 + (x2), tmp13, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [support], Original ATen: [aten.mm] extern_kernels.mm(primals_2, primals_1, out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [output], Original ATen: [aten.mm] extern_kernels.mm(primals_3, buf0, out=buf1) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [add, x], Original ATen: [aten.add, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_add_relu_0.run(buf2, primals_4, 16, grid=grid(16), stream=stream0) del primals_4 buf3 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [support_1], Original ATen: [aten.mm] extern_kernels.mm(buf2, primals_5, out=buf3) buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.addmm(primals_6, primals_3, buf3, alpha=1, beta=1, out=buf4) del primals_6 buf5 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] triton_poi_fused__log_softmax_1.run(buf4, buf5, 16, grid=grid(16), stream=stream0) buf6 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] triton_poi_fused__log_softmax_2.run(buf5, buf6, 16, grid=grid(16), stream=stream0) del buf5 return (buf6, buf2, buf6, reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch from torch import nn from torch.nn import functional as F class GraphConvolution(nn.Module): """ Simple GCN layer, similar to https://arxiv.org/abs/1609.02907 """ def __init__(self, in_features, out_features, bias=True): super(GraphConvolution, self).__init__() self.in_features = in_features self.out_features = out_features self.weight = nn.Parameter(torch.FloatTensor(in_features, out_features) ) if bias: self.bias = nn.Parameter(torch.FloatTensor(out_features)) else: self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self): stdv = 1.0 / math.sqrt(self.weight.size(1)) self.weight.data.uniform_(-stdv, stdv) if self.bias is not None: self.bias.data.uniform_(-stdv, stdv) def forward(self, input, adj): """ :param input: :param adj: :return: """ support = torch.mm(input, self.weight) output = torch.spmm(adj, support) if self.bias is not None: return output + self.bias else: return output def __repr__(self): return self.__class__.__name__ + ' (' + str(self.in_features ) + ' -> ' + str(self.out_features) + ')' class GCN(nn.Module): def __init__(self, nfeat, nhid, nclass, dropout): super(GCN, self).__init__() self.gc1 = GraphConvolution(nfeat, nhid) self.gc2 = GraphConvolution(nhid, nclass) self.dropout = dropout def forward(self, x, adj): """ :param x: [2708, 1433] :param adj: [2708, 2708] :return: """ x = F.relu(self.gc1(x, adj)) x = F.dropout(x, self.dropout, training=self.training) x = self.gc2(x, adj) return F.log_softmax(x, dim=1) def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'nfeat': 4, 'nhid': 4, 'nclass': 4, 'dropout': 0.5}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tl.store(out_ptr0 + x2, tmp13, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_2, primals_1, out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_3, buf0, out=buf1) buf2 = buf1 del buf1 get_raw_stream(0) triton_poi_fused_add_relu_0[grid(16)](buf2, primals_4, 16, XBLOCK= 16, num_warps=1, num_stages=1) del primals_4 buf3 = buf0 del buf0 extern_kernels.mm(buf2, primals_5, out=buf3) buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_6, primals_3, buf3, alpha=1, beta=1, out=buf4) del primals_6 buf5 = buf3 del buf3 triton_poi_fused__log_softmax_1[grid(16)](buf4, buf5, 16, XBLOCK=16, num_warps=1, num_stages=1) buf6 = buf4 del buf4 triton_poi_fused__log_softmax_2[grid(16)](buf5, buf6, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf5 return buf6, buf2, buf6, reinterpret_tensor(primals_3, (4, 4), (1, 4), 0 ), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0 ), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0) class GraphConvolution(nn.Module): """ Simple GCN layer, similar to https://arxiv.org/abs/1609.02907 """ def __init__(self, in_features, out_features, bias=True): super(GraphConvolution, self).__init__() self.in_features = in_features self.out_features = out_features self.weight = nn.Parameter(torch.FloatTensor(in_features, out_features) ) if bias: self.bias = nn.Parameter(torch.FloatTensor(out_features)) else: self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self): stdv = 1.0 / math.sqrt(self.weight.size(1)) self.weight.data.uniform_(-stdv, stdv) if self.bias is not None: self.bias.data.uniform_(-stdv, stdv) def forward(self, input, adj): """ :param input: :param adj: :return: """ support = torch.mm(input, self.weight) output = torch.spmm(adj, support) if self.bias is not None: return output + self.bias else: return output def __repr__(self): return self.__class__.__name__ + ' (' + str(self.in_features ) + ' -> ' + str(self.out_features) + ')' class GCNNew(nn.Module): def __init__(self, nfeat, nhid, nclass, dropout): super(GCNNew, self).__init__() self.gc1 = GraphConvolution(nfeat, nhid) self.gc2 = GraphConvolution(nhid, nclass) self.dropout = dropout def forward(self, input_0, input_1): primals_1 = self.gc1.weight primals_4 = self.gc1.bias primals_2 = self.gc2.weight primals_6 = self.gc2.bias primals_3 = input_0 primals_5 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
Shadowalker1995/Tutorial-Resource
GCN
false
14,396
[ "Apache-2.0" ]
362
71fe3d521cf9971f708fa9978e9c685c0dda6ba6
https://github.com/Shadowalker1995/Tutorial-Resource/tree/71fe3d521cf9971f708fa9978e9c685c0dda6ba6
TensorPermute
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/64/c64ahxnpt5ixqrlolbug3qf6y4u2zqmcjekif2yu4ba4hcze2fom.py # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] # Source node to ATen node mapping: # contiguous => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) % 4 x2 = (xindex // 64) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (16*x2) + (64*x1)), xmask) tl.store(out_ptr0 + (x3), tmp0, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data class TensorPermute(torch.nn.Module): """ Convert a torch.FloatTensor of shape (NUM_IMAGES x CHANNELS x HEIGHT x WIDTH) to a torch.FloatTensor of shape (CHANNELS x NUM_IMAGES x HEIGHT x WIDTH). """ def forward(self, tensor): return tensor.permute(1, 0, 2, 3).contiguous() def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 % 4 x2 = xindex // 64 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 16 * x2 + 64 * x1), xmask) tl.store(out_ptr0 + x3, tmp0, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, class TensorPermuteNew(torch.nn.Module): """ Convert a torch.FloatTensor of shape (NUM_IMAGES x CHANNELS x HEIGHT x WIDTH) to a torch.FloatTensor of shape (CHANNELS x NUM_IMAGES x HEIGHT x WIDTH). """ def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
SheffieldAI/pykale
TensorPermute
false
14,397
[ "MIT" ]
324
be7670941fb06835883c80477b26702d407017db
https://github.com/SheffieldAI/pykale/tree/be7670941fb06835883c80477b26702d407017db
PredictionHead
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/is/cispe7zbbl4nxt2jjus6h5iou2w7htohqj7z2oz6g7nqz6vbpbqr.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.avg_pool2d] # Source node to ATen node mapping: # x => avg_pool2d # Graph fragment: # %avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%primals_1, [4, 4], [4, 4]), kwargs = {}) triton_poi_fused_avg_pool2d_0 = async_compile.triton('triton_poi_fused_avg_pool2d_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (16*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (16*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (16*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (16*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (4 + (16*x0)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (5 + (16*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (6 + (16*x0)), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr0 + (7 + (16*x0)), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr0 + (8 + (16*x0)), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr0 + (9 + (16*x0)), xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr0 + (10 + (16*x0)), xmask, eviction_policy='evict_last') tmp21 = tl.load(in_ptr0 + (11 + (16*x0)), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr0 + (12 + (16*x0)), xmask, eviction_policy='evict_last') tmp25 = tl.load(in_ptr0 + (13 + (16*x0)), xmask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr0 + (14 + (16*x0)), xmask, eviction_policy='evict_last') tmp29 = tl.load(in_ptr0 + (15 + (16*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp8 = tmp7 + tmp6 tmp10 = tmp9 + tmp8 tmp12 = tmp11 + tmp10 tmp14 = tmp13 + tmp12 tmp16 = tmp15 + tmp14 tmp18 = tmp17 + tmp16 tmp20 = tmp19 + tmp18 tmp22 = tmp21 + tmp20 tmp24 = tmp23 + tmp22 tmp26 = tmp25 + tmp24 tmp28 = tmp27 + tmp26 tmp30 = tmp29 + tmp28 tmp31 = 0.0625 tmp32 = tmp30 * tmp31 tl.store(out_ptr0 + (x0), tmp32, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ul/culvxc5xcnacfjypzxghwcyc2445sqsz25ci4rib6axjxs3fv3so.py # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # log_softmax => amax, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%addmm, [1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%addmm, %amax), kwargs = {}) triton_poi_fused__log_softmax_1 = async_compile.triton('triton_poi_fused__log_softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/yr/cyr6fatjcqc5np3quy6arljtkkff4qjmueyb5b4pk5xvkxgrzuvd.py # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # log_softmax => exp, log, sub_1, sum_1 # Graph fragment: # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {}) triton_poi_fused__log_softmax_2 = async_compile.triton('triton_poi_fused__log_softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tl.store(out_ptr0 + (x2), tmp13, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.avg_pool2d] stream0 = get_raw_stream(0) triton_poi_fused_avg_pool2d_0.run(primals_1, buf0, 16, grid=grid(16), stream=stream0) del primals_1 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_3, reinterpret_tensor(buf0, (4, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_2 del primals_3 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] triton_poi_fused__log_softmax_1.run(buf1, buf2, 16, grid=grid(16), stream=stream0) buf3 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] triton_poi_fused__log_softmax_2.run(buf2, buf3, 16, grid=grid(16), stream=stream0) del buf2 return (buf3, reinterpret_tensor(buf0, (4, 4), (4, 1), 0), buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.data class PredictionHead(nn.Module): """ Simple classification prediction-head block to plug ontop of the 4D output of a CNN. Args: num_classes: the number of different classes that can be predicted. input_shape: the shape that input to this head will have. Expected to be (batch_size, channels, height, width) """ def __init__(self, num_classes, input_shape): super(PredictionHead, self).__init__() self.avgpool = nn.AvgPool2d(input_shape[2]) self.linear = nn.Linear(input_shape[1], num_classes) def forward(self, x): x = self.avgpool(x) x = torch.flatten(x, 1) x = self.linear(x) return F.log_softmax(x, 1) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_classes': 4, 'input_shape': [4, 4, 4]}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 16 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp3 = tl.load(in_ptr0 + (2 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp5 = tl.load(in_ptr0 + (3 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp7 = tl.load(in_ptr0 + (4 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp9 = tl.load(in_ptr0 + (5 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp11 = tl.load(in_ptr0 + (6 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp13 = tl.load(in_ptr0 + (7 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp15 = tl.load(in_ptr0 + (8 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp17 = tl.load(in_ptr0 + (9 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp19 = tl.load(in_ptr0 + (10 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp21 = tl.load(in_ptr0 + (11 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp23 = tl.load(in_ptr0 + (12 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp25 = tl.load(in_ptr0 + (13 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp27 = tl.load(in_ptr0 + (14 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp29 = tl.load(in_ptr0 + (15 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp8 = tmp7 + tmp6 tmp10 = tmp9 + tmp8 tmp12 = tmp11 + tmp10 tmp14 = tmp13 + tmp12 tmp16 = tmp15 + tmp14 tmp18 = tmp17 + tmp16 tmp20 = tmp19 + tmp18 tmp22 = tmp21 + tmp20 tmp24 = tmp23 + tmp22 tmp26 = tmp25 + tmp24 tmp28 = tmp27 + tmp26 tmp30 = tmp29 + tmp28 tmp31 = 0.0625 tmp32 = tmp30 * tmp31 tl.store(out_ptr0 + x0, tmp32, xmask) @triton.jit def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tl.store(out_ptr0 + x2, tmp13, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_avg_pool2d_0[grid(16)](primals_1, buf0, 16, XBLOCK =16, num_warps=1, num_stages=1) del primals_1 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_3, reinterpret_tensor(buf0, (4, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), alpha =1, beta=1, out=buf1) del primals_2 del primals_3 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused__log_softmax_1[grid(16)](buf1, buf2, 16, XBLOCK=16, num_warps=1, num_stages=1) buf3 = buf1 del buf1 triton_poi_fused__log_softmax_2[grid(16)](buf2, buf3, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf2 return buf3, reinterpret_tensor(buf0, (4, 4), (4, 1), 0), buf3 class PredictionHeadNew(nn.Module): """ Simple classification prediction-head block to plug ontop of the 4D output of a CNN. Args: num_classes: the number of different classes that can be predicted. input_shape: the shape that input to this head will have. Expected to be (batch_size, channels, height, width) """ def __init__(self, num_classes, input_shape): super(PredictionHeadNew, self).__init__() self.avgpool = nn.AvgPool2d(input_shape[2]) self.linear = nn.Linear(input_shape[1], num_classes) def forward(self, input_0): primals_2 = self.linear.weight primals_3 = self.linear.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
SheffieldAI/pykale
PredictionHead
false
14,398
[ "MIT" ]
324
be7670941fb06835883c80477b26702d407017db
https://github.com/SheffieldAI/pykale/tree/be7670941fb06835883c80477b26702d407017db
SReLU
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/wt/cwtbm7ruscnyd5hf7etfdfwptqhgjo73ir43mntx3mmz3qyymrrg.py # Topologically Sorted Source Nodes: [sub, relu, add], Original ATen: [aten.sub, aten.relu, aten.add, aten.threshold_backward] # Source node to ATen node mapping: # add => add # relu => relu # sub => sub # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_2, %primals_1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sub,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%relu, %primals_1), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_add_relu_sub_threshold_backward_0 = async_compile.triton('triton_poi_fused_add_relu_sub_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_relu_sub_threshold_backward_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_relu_sub_threshold_backward_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = tmp4 + tmp1 tmp6 = 0.0 tmp7 = tmp4 <= tmp6 tl.store(out_ptr0 + (x3), tmp5, xmask) tl.store(out_ptr1 + (x3), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (1, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [sub, relu, add], Original ATen: [aten.sub, aten.relu, aten.add, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_add_relu_sub_threshold_backward_0.run(primals_2, primals_1, buf0, buf1, 256, grid=grid(256), stream=stream0) del primals_1 del primals_2 return (buf0, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.data class SReLU(nn.Module): """Shifted ReLU""" def __init__(self, nc): super(SReLU, self).__init__() self.srelu_bias = nn.Parameter(torch.Tensor(1, nc, 1, 1)) self.srelu_relu = nn.ReLU(inplace=True) nn.init.constant_(self.srelu_bias, -1.0) def forward(self, x): return self.srelu_relu(x - self.srelu_bias) + self.srelu_bias def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'nc': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_relu_sub_threshold_backward_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = tmp4 + tmp1 tmp6 = 0.0 tmp7 = tmp4 <= tmp6 tl.store(out_ptr0 + x3, tmp5, xmask) tl.store(out_ptr1 + x3, tmp7, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (1, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_add_relu_sub_threshold_backward_0[grid(256)](primals_2 , primals_1, buf0, buf1, 256, XBLOCK=128, num_warps=4, num_stages=1 ) del primals_1 del primals_2 return buf0, buf1 class SReLUNew(nn.Module): """Shifted ReLU""" def __init__(self, nc): super(SReLUNew, self).__init__() self.srelu_bias = nn.Parameter(torch.Tensor(1, nc, 1, 1)) self.srelu_relu = nn.ReLU(inplace=True) nn.init.constant_(self.srelu_bias, -1.0) def forward(self, input_0): primals_1 = self.srelu_bias primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
SheffieldAI/pykale
SReLU
false
14,399
[ "MIT" ]
324
be7670941fb06835883c80477b26702d407017db
https://github.com/SheffieldAI/pykale/tree/be7670941fb06835883c80477b26702d407017db
GHMIoU
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/eu/ceuv7b3vtgnm54c77ljfgp5gdzt44um3527nmb7duufsy6ufr57k.py # Topologically Sorted Source Nodes: [valid, float_3, sum_1], Original ATen: [aten.gt, aten._to_copy, aten.sum] # Source node to ATen node mapping: # float_3 => convert_element_type # sum_1 => sum_1 # valid => gt # Graph fragment: # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%arg1_1, 0), kwargs = {}) # %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%gt, torch.float32), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%convert_element_type,), kwargs = {}) triton_per_fused__to_copy_gt_sum_0 = async_compile.triton('triton_per_fused__to_copy_gt_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__to_copy_gt_sum_0', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__to_copy_gt_sum_0(in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = tmp2.to(tl.float32) tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tl.store(out_ptr0 + (tl.broadcast_to(r0, [RBLOCK])), tmp2, None) tl.store(out_ptr1 + (tl.full([1], 0, tl.int32)), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/yx/cyx33b4cuc5wetqcfqkvlznxkkeck5wuib3zqzten6pdyhb3nib2.py # Topologically Sorted Source Nodes: [weights], Original ATen: [aten.zeros_like] # Source node to ATen node mapping: # weights => full_default # Graph fragment: # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) triton_poi_fused_zeros_like_1 = async_compile.triton('triton_poi_fused_zeros_like_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_zeros_like_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_zeros_like_1(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = 0.0 tl.store(out_ptr0 + (x0), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/o3/co3ohsiccha2jedxkbuuzgpfkttvcqovi7edh443hag7dzlqgnfb.py # Topologically Sorted Source Nodes: [sigmoid, sub, g], Original ATen: [aten.sigmoid, aten.sub, aten.abs] # Source node to ATen node mapping: # g => abs_1 # sigmoid => sigmoid # sub => sub # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%arg2_1,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sigmoid, %arg0_1), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {}) triton_poi_fused_abs_sigmoid_sub_2 = async_compile.triton('triton_poi_fused_abs_sigmoid_sub_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_abs_sigmoid_sub_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_abs_sigmoid_sub_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp2 = tl.load(in_ptr1 + (x0), xmask) tmp1 = tl.sigmoid(tmp0) tmp3 = tmp1 - tmp2 tmp4 = tl_math.abs(tmp3) tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf1 = empty_strided_cuda((), (), torch.float32) # Topologically Sorted Source Nodes: [valid, float_3, sum_1], Original ATen: [aten.gt, aten._to_copy, aten.sum] stream0 = get_raw_stream(0) triton_per_fused__to_copy_gt_sum_0.run(arg1_1, buf0, buf1, 1, 256, grid=grid(1), stream=stream0) del arg1_1 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [weights], Original ATen: [aten.zeros_like] triton_poi_fused_zeros_like_1.run(buf2, 256, grid=grid(256), stream=stream0) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sigmoid, sub, g], Original ATen: [aten.sigmoid, aten.sub, aten.abs] triton_poi_fused_abs_sigmoid_sub_2.run(arg2_1, arg0_1, buf3, 256, grid=grid(256), stream=stream0) del arg2_1 return (buf1, arg0_1, buf2, buf3, buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F import torch.nn as nn class GHMIoU(nn.Module): """GHM IoU prediction loss Details of the theorem can be viewed in the paper "Gradient Harmonized Single-stage Detector". https://arxiv.org/abs/1811.05181 Args: bins (int): Number of the unit regions for distribution calculation. momentum (float): The parameter for moving average. use_sigmoid (bool): Can only be true for BCE based loss now. loss_weight (float): The weight of the total GHM-C loss. """ def __init__(self, bins=10, momentum=0, use_sigmoid=True, loss_weight=1.0): super(GHMIoU, self).__init__() self.bins = bins self.momentum = momentum self.edges = torch.arange(bins + 1).float() / bins self.edges[-1] += 1e-06 if momentum > 0: self.acc_sum = torch.zeros(bins) self.use_sigmoid = use_sigmoid if not self.use_sigmoid: raise NotImplementedError self.loss_weight = loss_weight def forward(self, pred, target, label_weight, *args, **kwargs): """Calculate the GHM-C loss. Args: pred (float tensor of size [batch*A*width*height]): IoU prediction for each regression anchor target (float tensor of size [batch*A*width*height]): store the iou between predicted boxes and its corresponding groundtruth boxes for the positives and the iou between the predicted boxes and anchors for negatives. label_weight (float tensor of size [[batch*A*width*height]): 1 for positives and 0 for others. Returns: The gradient harmonized loss. """ target, label_weight = target.float(), label_weight.float() target = target.detach() edges = self.edges mmt = self.momentum weights = torch.zeros_like(pred) g = torch.abs(pred.sigmoid().detach() - target) valid = label_weight > 0 tot = max(valid.float().sum().item(), 1.0) n = 0 for i in range(self.bins): inds = (g >= edges[i]) & (g < edges[i + 1]) & valid num_in_bin = inds.sum().item() if num_in_bin > 0: if mmt > 0: self.acc_sum[i] = mmt * self.acc_sum[i] + (1 - mmt ) * num_in_bin weights[inds] = tot / self.acc_sum[i] else: weights[inds] = tot / num_in_bin n += 1 if n > 0: weights = weights / n loss = F.binary_cross_entropy_with_logits(pred, target, weights, reduction='sum') / tot return loss * self.loss_weight def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused__to_copy_gt_sum_0(in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = tmp2.to(tl.float32) tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tl.store(out_ptr0 + tl.broadcast_to(r0, [RBLOCK]), tmp2, None) tl.store(out_ptr1 + tl.full([1], 0, tl.int32), tmp6, None) @triton.jit def triton_poi_fused_zeros_like_1(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = 0.0 tl.store(out_ptr0 + x0, tmp0, xmask) @triton.jit def triton_poi_fused_abs_sigmoid_sub_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp2 = tl.load(in_ptr1 + x0, xmask) tmp1 = tl.sigmoid(tmp0) tmp3 = tmp1 - tmp2 tmp4 = tl_math.abs(tmp3) tl.store(out_ptr0 + x0, tmp4, xmask) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf1 = empty_strided_cuda((), (), torch.float32) get_raw_stream(0) triton_per_fused__to_copy_gt_sum_0[grid(1)](arg1_1, buf0, buf1, 1, 256, num_warps=2, num_stages=1) del arg1_1 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_zeros_like_1[grid(256)](buf2, 256, XBLOCK=128, num_warps=4, num_stages=1) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_abs_sigmoid_sub_2[grid(256)](arg2_1, arg0_1, buf3, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg2_1 return buf1, arg0_1, buf2, buf3, buf0 class GHMIoUNew(nn.Module): """GHM IoU prediction loss Details of the theorem can be viewed in the paper "Gradient Harmonized Single-stage Detector". https://arxiv.org/abs/1811.05181 Args: bins (int): Number of the unit regions for distribution calculation. momentum (float): The parameter for moving average. use_sigmoid (bool): Can only be true for BCE based loss now. loss_weight (float): The weight of the total GHM-C loss. """ def __init__(self, bins=10, momentum=0, use_sigmoid=True, loss_weight=1.0): super(GHMIoUNew, self).__init__() self.bins = bins self.momentum = momentum self.edges = torch.arange(bins + 1).float() / bins self.edges[-1] += 1e-06 if momentum > 0: self.acc_sum = torch.zeros(bins) self.use_sigmoid = use_sigmoid if not self.use_sigmoid: raise NotImplementedError self.loss_weight = loss_weight def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
ShegnkaiWu/IoU-aware-single-stage-object-detector-for-accurate-localization
GHMIoU
false
14,400
[ "Apache-2.0" ]
62
67b8955eb59137590dbadc6aac45529ae9459e4a
https://github.com/ShegnkaiWu/IoU-aware-single-stage-object-detector-for-accurate-localization/tree/67b8955eb59137590dbadc6aac45529ae9459e4a
ZoneOutBiLSTM
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/l4/cl4boort6vfsvh6h6bfd4lck36kbmtipkqcrnhckuuxer6sfib77.py # Topologically Sorted Source Nodes: [hs_forward], Original ATen: [aten.zeros] # Source node to ATen node mapping: # hs_forward => full_default # Graph fragment: # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) triton_poi_fused_zeros_0 = async_compile.triton('triton_poi_fused_zeros_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_zeros_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_zeros_0(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = 0.0 tl.store(out_ptr0 + (x0), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/lr/clrb7f4m62tlye2hnxnef4uuphf345plciaidrxlf6473iowu2sk.py # Topologically Sorted Source Nodes: [mul, mul_1, hs_forward_1, mul_3, cs_forward_1, mul_17, hs_backward_1, mul_19, cs_backward_1], Original ATen: [aten.mul, aten.add] # Source node to ATen node mapping: # cs_backward_1 => add_9 # cs_forward_1 => add_1 # hs_backward_1 => add_8 # hs_forward_1 => add # mul => mul # mul_1 => mul_1 # mul_17 => mul_17 # mul_19 => mul_19 # mul_3 => mul_3 # Graph fragment: # %mul : [num_users=4] = call_function[target=torch.ops.aten.mul.Tensor](args = (%normal_functional, 0.1), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem, 0.9), kwargs = {}) # %add : [num_users=4] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem_1, 0.9), kwargs = {}) # %add_1 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_3), kwargs = {}) # %mul_17 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem_12, 0.9), kwargs = {}) # %add_8 : [num_users=4] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_17), kwargs = {}) # %mul_19 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem_13, 0.9), kwargs = {}) # %add_9 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_19), kwargs = {}) triton_poi_fused_add_mul_1 = async_compile.triton('triton_poi_fused_add_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_1', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_1(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp3 = tl.load(in_out_ptr0 + (x0), xmask) tmp7 = tl.load(in_ptr1 + (x0), xmask) tmp10 = tl.load(in_out_ptr1 + (x0), xmask) tmp13 = tl.load(in_ptr2 + (x0), xmask) tmp1 = 0.1 tmp2 = tmp0 * tmp1 tmp4 = 0.9 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp8 = tmp7 * tmp4 tmp9 = tmp2 + tmp8 tmp11 = tmp10 * tmp4 tmp12 = tmp2 + tmp11 tmp14 = tmp13 * tmp4 tmp15 = tmp2 + tmp14 tl.store(in_out_ptr0 + (x0), tmp6, xmask) tl.store(out_ptr0 + (x0), tmp9, xmask) tl.store(in_out_ptr1 + (x0), tmp12, xmask) tl.store(out_ptr1 + (x0), tmp15, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/xu/cxucp3nnmiqdyur667gb2braezdtpwifiamjwvkm4m4ouq5p3nsi.py # Topologically Sorted Source Nodes: [mul_4, mul_5, hs_forward_2], Original ATen: [aten.mul, aten.add] # Source node to ATen node mapping: # hs_forward_2 => add_2 # mul_4 => mul_4 # mul_5 => mul_5 # Graph fragment: # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 0.1), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem_3, 0.9), kwargs = {}) # %add_2 : [num_users=4] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, %mul_5), kwargs = {}) triton_poi_fused_add_mul_2 = async_compile.triton('triton_poi_fused_add_mul_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp3 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = 0.1 tmp2 = tmp0 * tmp1 tmp4 = 0.9 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tl.store(in_out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/k5/ck52ne4tvorbsc3urlfgxip2ccfoaiugkxnkwma67w2j7czziypk.py # Topologically Sorted Source Nodes: [mul_6, mul_7, cs_forward_2], Original ATen: [aten.mul, aten.add] # Source node to ATen node mapping: # cs_forward_2 => add_3 # mul_6 => mul_6 # mul_7 => mul_7 # Graph fragment: # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_1, 0.1), kwargs = {}) # %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem_4, 0.9), kwargs = {}) # %add_3 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_6, %mul_7), kwargs = {}) triton_poi_fused_add_mul_3 = async_compile.triton('triton_poi_fused_add_mul_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp3 = tl.load(in_ptr1 + (x0), xmask) tmp1 = 0.1 tmp2 = tmp0 * tmp1 tmp4 = 0.9 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tl.store(out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/qd/cqdtvfyiqhb3qf427oa5idr2lhpnljsnnnfutav6smjmdnth6hfj.py # Topologically Sorted Source Nodes: [stack], Original ATen: [aten.stack] # Source node to ATen node mapping: # stack => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%add, %add_2, %add_4, %add_6],), kwargs = {}) triton_poi_fused_stack_4 = async_compile.triton('triton_poi_fused_stack_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_stack_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_stack_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x0 = xindex % 4 x2 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (4*x1)), tmp4 & xmask, other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + (x0 + (4*((-4) + x1))), tmp9 & xmask, other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 12, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr2 + (x0 + (4*((-8) + x1))), tmp14 & xmask, other=0.0) tmp16 = tmp0 >= tmp12 tmp17 = tl.full([1], 16, tl.int64) tmp18 = tmp0 < tmp17 tmp19 = tl.load(in_ptr2 + (x0 + (4*((-12) + x1))), tmp16 & xmask, other=0.0) tmp20 = 0.1 tmp21 = tmp19 * tmp20 tmp22 = tl.load(in_ptr3 + (x0 + (4*((-12) + x1))), tmp16 & xmask, other=0.0) tmp23 = 0.9 tmp24 = tmp22 * tmp23 tmp25 = tmp21 + tmp24 tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype) tmp27 = tl.where(tmp16, tmp25, tmp26) tmp28 = tl.where(tmp14, tmp15, tmp27) tmp29 = tl.where(tmp9, tmp10, tmp28) tmp30 = tl.where(tmp4, tmp5, tmp29) tl.store(out_ptr0 + (x2), tmp30, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/te/ctexxbbx5uxjb7wypw3hzfrlp4ek3cc6xsilzyieibn5yu5o2ah6.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.cat] # Source node to ATen node mapping: # out => cat_2 # Graph fragment: # %cat_2 : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%view_1, %view_2], -1), kwargs = {}) triton_poi_fused_cat_5 = async_compile.triton('triton_poi_fused_cat_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_5(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (16, 4), (4, 1)) assert_size_stride(primals_3, (16, 4), (4, 1)) assert_size_stride(primals_4, (16, ), (1, )) assert_size_stride(primals_5, (16, ), (1, )) assert_size_stride(primals_6, (16, 4), (4, 1)) assert_size_stride(primals_7, (16, 4), (4, 1)) assert_size_stride(primals_8, (16, ), (1, )) assert_size_stride(primals_9, (16, ), (1, )) assert_size_stride(primals_10, (4, 8), (8, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [hs_forward], Original ATen: [aten.zeros] stream0 = get_raw_stream(0) triton_poi_fused_zeros_0.run(buf0, 16, grid=grid(16), stream=stream0) # Topologically Sorted Source Nodes: [hs_forward, normal_], Original ATen: [aten.zeros, aten.normal_functional] buf1 = torch.ops.aten.normal_functional.default(buf0, 0.0, 0.7071067811865476) buf2 = buf1 del buf1 buf3 = empty_strided_cuda((4, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [lstm_cell], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 16), (1, 4), 0), out=buf3) buf4 = empty_strided_cuda((4, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [lstm_cell], Original ATen: [aten.mm] extern_kernels.mm(buf2, reinterpret_tensor(primals_3, (4, 16), (1, 4), 0), out=buf4) # Topologically Sorted Source Nodes: [lstm_cell], Original ATen: [aten._thnn_fused_lstm_cell] buf5 = torch.ops.aten._thnn_fused_lstm_cell.default(buf3, buf4, buf2, primals_4, primals_5) buf6 = buf5[0] buf7 = buf5[1] buf8 = buf5[2] del buf5 buf33 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [lstm_cell_4], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (4, 1), 48), reinterpret_tensor(primals_6, (4, 16), (1, 4), 0), out=buf33) buf34 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [lstm_cell_4], Original ATen: [aten.mm] extern_kernels.mm(buf2, reinterpret_tensor(primals_7, (4, 16), (1, 4), 0), out=buf34) # Topologically Sorted Source Nodes: [lstm_cell_4], Original ATen: [aten._thnn_fused_lstm_cell] buf35 = torch.ops.aten._thnn_fused_lstm_cell.default(buf33, buf34, buf2, primals_8, primals_9) buf36 = buf35[0] buf37 = buf35[1] buf9 = buf6; del buf6 # reuse buf10 = buf0; del buf0 # reuse buf39 = buf36; del buf36 # reuse buf40 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, mul_1, hs_forward_1, mul_3, cs_forward_1, mul_17, hs_backward_1, mul_19, cs_backward_1], Original ATen: [aten.mul, aten.add] triton_poi_fused_add_mul_1.run(buf9, buf39, buf2, buf7, buf37, buf10, buf40, 16, grid=grid(16), stream=stream0) buf11 = buf34; del buf34 # reuse # Topologically Sorted Source Nodes: [lstm_cell_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (4, 1), 16), reinterpret_tensor(primals_2, (4, 16), (1, 4), 0), out=buf11) buf12 = buf33; del buf33 # reuse # Topologically Sorted Source Nodes: [lstm_cell_1], Original ATen: [aten.mm] extern_kernels.mm(buf9, reinterpret_tensor(primals_3, (4, 16), (1, 4), 0), out=buf12) # Topologically Sorted Source Nodes: [lstm_cell_1], Original ATen: [aten._thnn_fused_lstm_cell] buf13 = torch.ops.aten._thnn_fused_lstm_cell.default(buf11, buf12, buf10, primals_4, primals_5) buf14 = buf13[0] buf15 = buf13[1] buf16 = buf13[2] del buf13 buf17 = buf14; del buf14 # reuse # Topologically Sorted Source Nodes: [mul_4, mul_5, hs_forward_2], Original ATen: [aten.mul, aten.add] triton_poi_fused_add_mul_2.run(buf17, buf9, 16, grid=grid(16), stream=stream0) buf18 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul_6, mul_7, cs_forward_2], Original ATen: [aten.mul, aten.add] triton_poi_fused_add_mul_3.run(buf10, buf15, buf18, 16, grid=grid(16), stream=stream0) buf19 = buf12; del buf12 # reuse # Topologically Sorted Source Nodes: [lstm_cell_2], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (4, 1), 32), reinterpret_tensor(primals_2, (4, 16), (1, 4), 0), out=buf19) buf20 = buf11; del buf11 # reuse # Topologically Sorted Source Nodes: [lstm_cell_2], Original ATen: [aten.mm] extern_kernels.mm(buf17, reinterpret_tensor(primals_3, (4, 16), (1, 4), 0), out=buf20) # Topologically Sorted Source Nodes: [lstm_cell_2], Original ATen: [aten._thnn_fused_lstm_cell] buf21 = torch.ops.aten._thnn_fused_lstm_cell.default(buf19, buf20, buf18, primals_4, primals_5) buf22 = buf21[0] buf23 = buf21[1] buf24 = buf21[2] del buf21 buf25 = buf22; del buf22 # reuse # Topologically Sorted Source Nodes: [mul_8, mul_9, hs_forward_3], Original ATen: [aten.mul, aten.add] triton_poi_fused_add_mul_2.run(buf25, buf17, 16, grid=grid(16), stream=stream0) buf26 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul_10, mul_11, cs_forward_3], Original ATen: [aten.mul, aten.add] triton_poi_fused_add_mul_3.run(buf18, buf23, buf26, 16, grid=grid(16), stream=stream0) buf27 = buf20; del buf20 # reuse # Topologically Sorted Source Nodes: [lstm_cell_3], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (4, 1), 48), reinterpret_tensor(primals_2, (4, 16), (1, 4), 0), out=buf27) del primals_2 buf28 = buf19; del buf19 # reuse # Topologically Sorted Source Nodes: [lstm_cell_3], Original ATen: [aten.mm] extern_kernels.mm(buf25, reinterpret_tensor(primals_3, (4, 16), (1, 4), 0), out=buf28) # Topologically Sorted Source Nodes: [lstm_cell_3], Original ATen: [aten._thnn_fused_lstm_cell] buf29 = torch.ops.aten._thnn_fused_lstm_cell.default(buf27, buf28, buf26, primals_4, primals_5) del primals_4 del primals_5 buf30 = buf29[0] buf31 = buf29[1] buf32 = buf29[2] del buf29 buf38 = buf35[2] del buf35 buf41 = buf28; del buf28 # reuse # Topologically Sorted Source Nodes: [lstm_cell_5], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (4, 1), 32), reinterpret_tensor(primals_6, (4, 16), (1, 4), 0), out=buf41) buf42 = buf27; del buf27 # reuse # Topologically Sorted Source Nodes: [lstm_cell_5], Original ATen: [aten.mm] extern_kernels.mm(buf39, reinterpret_tensor(primals_7, (4, 16), (1, 4), 0), out=buf42) # Topologically Sorted Source Nodes: [lstm_cell_5], Original ATen: [aten._thnn_fused_lstm_cell] buf43 = torch.ops.aten._thnn_fused_lstm_cell.default(buf41, buf42, buf40, primals_8, primals_9) buf44 = buf43[0] buf45 = buf43[1] buf46 = buf43[2] del buf43 buf47 = buf44; del buf44 # reuse # Topologically Sorted Source Nodes: [mul_20, mul_21, hs_backward_2], Original ATen: [aten.mul, aten.add] triton_poi_fused_add_mul_2.run(buf47, buf39, 16, grid=grid(16), stream=stream0) buf48 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul_22, mul_23, cs_backward_2], Original ATen: [aten.mul, aten.add] triton_poi_fused_add_mul_3.run(buf40, buf45, buf48, 16, grid=grid(16), stream=stream0) buf49 = buf42; del buf42 # reuse # Topologically Sorted Source Nodes: [lstm_cell_6], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (4, 1), 16), reinterpret_tensor(primals_6, (4, 16), (1, 4), 0), out=buf49) buf50 = buf41; del buf41 # reuse # Topologically Sorted Source Nodes: [lstm_cell_6], Original ATen: [aten.mm] extern_kernels.mm(buf47, reinterpret_tensor(primals_7, (4, 16), (1, 4), 0), out=buf50) # Topologically Sorted Source Nodes: [lstm_cell_6], Original ATen: [aten._thnn_fused_lstm_cell] buf51 = torch.ops.aten._thnn_fused_lstm_cell.default(buf49, buf50, buf48, primals_8, primals_9) buf52 = buf51[0] buf53 = buf51[1] buf54 = buf51[2] del buf51 buf55 = buf52; del buf52 # reuse # Topologically Sorted Source Nodes: [mul_24, mul_25, hs_backward_3], Original ATen: [aten.mul, aten.add] triton_poi_fused_add_mul_2.run(buf55, buf47, 16, grid=grid(16), stream=stream0) buf56 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul_26, mul_27, cs_backward_3], Original ATen: [aten.mul, aten.add] triton_poi_fused_add_mul_3.run(buf48, buf53, buf56, 16, grid=grid(16), stream=stream0) buf57 = buf50; del buf50 # reuse # Topologically Sorted Source Nodes: [lstm_cell_7], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 16), (1, 4), 0), out=buf57) del primals_6 buf58 = buf49; del buf49 # reuse # Topologically Sorted Source Nodes: [lstm_cell_7], Original ATen: [aten.mm] extern_kernels.mm(buf55, reinterpret_tensor(primals_7, (4, 16), (1, 4), 0), out=buf58) # Topologically Sorted Source Nodes: [lstm_cell_7], Original ATen: [aten._thnn_fused_lstm_cell] buf59 = torch.ops.aten._thnn_fused_lstm_cell.default(buf57, buf58, buf56, primals_8, primals_9) del primals_8 del primals_9 buf60 = buf59[0] buf61 = buf59[1] buf62 = buf59[2] del buf59 buf63 = reinterpret_tensor(buf58, (16, 4), (4, 1), 0); del buf58 # reuse # Topologically Sorted Source Nodes: [stack], Original ATen: [aten.stack] triton_poi_fused_stack_4.run(buf9, buf17, buf25, buf30, buf63, 64, grid=grid(64), stream=stream0) del buf30 buf64 = reinterpret_tensor(buf57, (16, 4), (4, 1), 0); del buf57 # reuse # Topologically Sorted Source Nodes: [stack_1], Original ATen: [aten.stack] triton_poi_fused_stack_4.run(buf39, buf47, buf55, buf60, buf64, 64, grid=grid(64), stream=stream0) del buf60 buf65 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.cat] triton_poi_fused_cat_5.run(buf63, buf64, buf65, 128, grid=grid(128), stream=stream0) del buf63 buf66 = buf64; del buf64 # reuse # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf65, (16, 8), (8, 1), 0), reinterpret_tensor(primals_10, (8, 4), (1, 8), 0), out=buf66) return (reinterpret_tensor(buf66, (4, 4, 4), (16, 4, 1), 0), buf2, reinterpret_tensor(primals_1, (4, 4), (4, 1), 0), buf7, buf8, buf9, buf10, reinterpret_tensor(primals_1, (4, 4), (4, 1), 16), buf15, buf16, buf17, buf18, reinterpret_tensor(primals_1, (4, 4), (4, 1), 32), buf23, buf24, buf25, buf26, reinterpret_tensor(primals_1, (4, 4), (4, 1), 48), buf31, buf32, buf37, buf38, buf39, buf40, buf45, buf46, buf47, buf48, buf53, buf54, buf55, buf56, buf61, buf62, reinterpret_tensor(buf65, (16, 8), (8, 1), 0), primals_10, primals_7, primals_3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class LinearNorm(nn.Module): """ LinearNorm Projection """ def __init__(self, in_features, out_features, bias=False): super(LinearNorm, self).__init__() self.linear = nn.Linear(in_features, out_features, bias) nn.init.xavier_uniform_(self.linear.weight) if bias: nn.init.constant_(self.linear.bias, 0.0) def forward(self, x): x = self.linear(x) return x class ZoneOutCell(nn.Module): """ZoneOut Cell module. This is a module of zoneout described in `Zoneout: Regularizing RNNs by Randomly Preserving Hidden Activations`_. This code is modified from `eladhoffer/seq2seq.pytorch`_. Examples: >>> lstm = torch.nn.LSTMCell(16, 32) >>> lstm = ZoneOutCell(lstm, 0.5) .. _`Zoneout: Regularizing RNNs by Randomly Preserving Hidden Activations`: https://arxiv.org/abs/1606.01305 .. _`eladhoffer/seq2seq.pytorch`: https://github.com/eladhoffer/seq2seq.pytorch """ def __init__(self, cell, zoneout_rate=0.1): """Initialize zone out cell module. Args: cell (torch.nn.Module): Pytorch recurrent cell module e.g. `torch.nn.Module.LSTMCell`. zoneout_rate (float, optional): Probability of zoneout from 0.0 to 1.0. """ super(ZoneOutCell, self).__init__() self.cell = cell self.hidden_size = cell.hidden_size self.zoneout_rate = zoneout_rate if zoneout_rate > 1.0 or zoneout_rate < 0.0: raise ValueError( 'zoneout probability must be in the range from 0.0 to 1.0.') def forward(self, inputs, hidden): """Calculate forward propagation. Args: inputs (Tensor): Batch of input tensor (B, input_size). hidden (tuple): - Tensor: Batch of initial hidden states (B, hidden_size). - Tensor: Batch of initial cell states (B, hidden_size). Returns: tuple: - Tensor: Batch of next hidden states (B, hidden_size). - Tensor: Batch of next cell states (B, hidden_size). """ next_hidden = self.cell(inputs, hidden) next_hidden = self._zoneout(hidden, next_hidden, self.zoneout_rate) return next_hidden def _zoneout(self, h, next_h, prob): if isinstance(h, tuple): num_h = len(h) if not isinstance(prob, tuple): prob = tuple([prob] * num_h) return tuple([self._zoneout(h[i], next_h[i], prob[i]) for i in range(num_h)]) if self.training: mask = h.new(*h.size()).bernoulli_(prob) return mask * h + (1 - mask) * next_h else: return prob * h + (1 - prob) * next_h class ZoneOutBiLSTM(nn.Module): """ ZoneOut Bi-LSTM """ def __init__(self, hidden_dim, zoneout_rate=0.1): super(ZoneOutBiLSTM, self).__init__() self.hidden_dim = hidden_dim self.lstm_cell_forward = ZoneOutCell(nn.LSTMCell(self.hidden_dim, self.hidden_dim), zoneout_rate) self.lstm_cell_backward = ZoneOutCell(nn.LSTMCell(self.hidden_dim, self.hidden_dim), zoneout_rate) self.linear = LinearNorm(self.hidden_dim * 2, self.hidden_dim) def forward(self, x): batch_size, seq_len, device = x.size(0), x.size(1), x.device hs_forward = torch.zeros(batch_size, self.hidden_dim, device=device) cs_forward = torch.zeros(batch_size, self.hidden_dim, device=device) hs_backward = torch.zeros(batch_size, self.hidden_dim, device=device) cs_backward = torch.zeros(batch_size, self.hidden_dim, device=device) torch.nn.init.kaiming_normal_(hs_forward) torch.nn.init.kaiming_normal_(cs_forward) torch.nn.init.kaiming_normal_(hs_backward) torch.nn.init.kaiming_normal_(cs_backward) forward = [] backward = [] x = x.view(seq_len, batch_size, -1) for i in range(seq_len): hs_forward, cs_forward = self.lstm_cell_forward(x[i], ( hs_forward, cs_forward)) forward.append(hs_forward) for i in reversed(range(seq_len)): hs_backward, cs_backward = self.lstm_cell_backward(x[i], ( hs_backward, cs_backward)) backward.append(hs_backward) out = torch.cat([torch.stack(forward), torch.stack(backward)], dim=-1) out = self.linear(out.view(batch_size, seq_len, -1)) return out def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'hidden_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_zeros_0(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = 0.0 tl.store(out_ptr0 + x0, tmp0, xmask) @triton.jit def triton_poi_fused_add_mul_1(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp3 = tl.load(in_out_ptr0 + x0, xmask) tmp7 = tl.load(in_ptr1 + x0, xmask) tmp10 = tl.load(in_out_ptr1 + x0, xmask) tmp13 = tl.load(in_ptr2 + x0, xmask) tmp1 = 0.1 tmp2 = tmp0 * tmp1 tmp4 = 0.9 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp8 = tmp7 * tmp4 tmp9 = tmp2 + tmp8 tmp11 = tmp10 * tmp4 tmp12 = tmp2 + tmp11 tmp14 = tmp13 * tmp4 tmp15 = tmp2 + tmp14 tl.store(in_out_ptr0 + x0, tmp6, xmask) tl.store(out_ptr0 + x0, tmp9, xmask) tl.store(in_out_ptr1 + x0, tmp12, xmask) tl.store(out_ptr1 + x0, tmp15, xmask) @triton.jit def triton_poi_fused_add_mul_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp3 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = 0.1 tmp2 = tmp0 * tmp1 tmp4 = 0.9 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tl.store(in_out_ptr0 + x0, tmp6, xmask) @triton.jit def triton_poi_fused_add_mul_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp3 = tl.load(in_ptr1 + x0, xmask) tmp1 = 0.1 tmp2 = tmp0 * tmp1 tmp4 = 0.9 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tl.store(out_ptr0 + x0, tmp6, xmask) @triton.jit def triton_poi_fused_stack_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x0 = xindex % 4 x2 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 4 * x1), tmp4 & xmask, other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + (x0 + 4 * (-4 + x1)), tmp9 & xmask, other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 12, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr2 + (x0 + 4 * (-8 + x1)), tmp14 & xmask, other=0.0) tmp16 = tmp0 >= tmp12 tl.full([1], 16, tl.int64) tmp19 = tl.load(in_ptr2 + (x0 + 4 * (-12 + x1)), tmp16 & xmask, other=0.0) tmp20 = 0.1 tmp21 = tmp19 * tmp20 tmp22 = tl.load(in_ptr3 + (x0 + 4 * (-12 + x1)), tmp16 & xmask, other=0.0) tmp23 = 0.9 tmp24 = tmp22 * tmp23 tmp25 = tmp21 + tmp24 tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype) tmp27 = tl.where(tmp16, tmp25, tmp26) tmp28 = tl.where(tmp14, tmp15, tmp27) tmp29 = tl.where(tmp9, tmp10, tmp28) tmp30 = tl.where(tmp4, tmp5, tmp29) tl.store(out_ptr0 + x2, tmp30, xmask) @triton.jit def triton_poi_fused_cat_5(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x2, tmp10, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10) = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (16, 4), (4, 1)) assert_size_stride(primals_3, (16, 4), (4, 1)) assert_size_stride(primals_4, (16,), (1,)) assert_size_stride(primals_5, (16,), (1,)) assert_size_stride(primals_6, (16, 4), (4, 1)) assert_size_stride(primals_7, (16, 4), (4, 1)) assert_size_stride(primals_8, (16,), (1,)) assert_size_stride(primals_9, (16,), (1,)) assert_size_stride(primals_10, (4, 8), (8, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_zeros_0[grid(16)](buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) buf1 = torch.ops.aten.normal_functional.default(buf0, 0.0, 0.7071067811865476) buf2 = buf1 del buf1 buf3 = empty_strided_cuda((4, 16), (16, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 16), (1, 4), 0), out=buf3) buf4 = empty_strided_cuda((4, 16), (16, 1), torch.float32) extern_kernels.mm(buf2, reinterpret_tensor(primals_3, (4, 16), (1, 4), 0), out=buf4) buf5 = torch.ops.aten._thnn_fused_lstm_cell.default(buf3, buf4, buf2, primals_4, primals_5) buf6 = buf5[0] buf7 = buf5[1] buf8 = buf5[2] del buf5 buf33 = buf4 del buf4 extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (4, 1), 48), reinterpret_tensor(primals_6, (4, 16), (1, 4), 0), out=buf33) buf34 = buf3 del buf3 extern_kernels.mm(buf2, reinterpret_tensor(primals_7, (4, 16), (1, 4), 0), out=buf34) buf35 = torch.ops.aten._thnn_fused_lstm_cell.default(buf33, buf34, buf2, primals_8, primals_9) buf36 = buf35[0] buf37 = buf35[1] buf9 = buf6 del buf6 buf10 = buf0 del buf0 buf39 = buf36 del buf36 buf40 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_add_mul_1[grid(16)](buf9, buf39, buf2, buf7, buf37, buf10, buf40, 16, XBLOCK=16, num_warps=1, num_stages=1) buf11 = buf34 del buf34 extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (4, 1), 16), reinterpret_tensor(primals_2, (4, 16), (1, 4), 0), out=buf11) buf12 = buf33 del buf33 extern_kernels.mm(buf9, reinterpret_tensor(primals_3, (4, 16), (1, 4), 0), out=buf12) buf13 = torch.ops.aten._thnn_fused_lstm_cell.default(buf11, buf12, buf10, primals_4, primals_5) buf14 = buf13[0] buf15 = buf13[1] buf16 = buf13[2] del buf13 buf17 = buf14 del buf14 triton_poi_fused_add_mul_2[grid(16)](buf17, buf9, 16, XBLOCK=16, num_warps=1, num_stages=1) buf18 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_add_mul_3[grid(16)](buf10, buf15, buf18, 16, XBLOCK=16, num_warps=1, num_stages=1) buf19 = buf12 del buf12 extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (4, 1), 32), reinterpret_tensor(primals_2, (4, 16), (1, 4), 0), out=buf19) buf20 = buf11 del buf11 extern_kernels.mm(buf17, reinterpret_tensor(primals_3, (4, 16), (1, 4), 0), out=buf20) buf21 = torch.ops.aten._thnn_fused_lstm_cell.default(buf19, buf20, buf18, primals_4, primals_5) buf22 = buf21[0] buf23 = buf21[1] buf24 = buf21[2] del buf21 buf25 = buf22 del buf22 triton_poi_fused_add_mul_2[grid(16)](buf25, buf17, 16, XBLOCK=16, num_warps=1, num_stages=1) buf26 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_add_mul_3[grid(16)](buf18, buf23, buf26, 16, XBLOCK=16, num_warps=1, num_stages=1) buf27 = buf20 del buf20 extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (4, 1), 48), reinterpret_tensor(primals_2, (4, 16), (1, 4), 0), out=buf27) del primals_2 buf28 = buf19 del buf19 extern_kernels.mm(buf25, reinterpret_tensor(primals_3, (4, 16), (1, 4), 0), out=buf28) buf29 = torch.ops.aten._thnn_fused_lstm_cell.default(buf27, buf28, buf26, primals_4, primals_5) del primals_4 del primals_5 buf30 = buf29[0] buf31 = buf29[1] buf32 = buf29[2] del buf29 buf38 = buf35[2] del buf35 buf41 = buf28 del buf28 extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (4, 1), 32), reinterpret_tensor(primals_6, (4, 16), (1, 4), 0), out=buf41) buf42 = buf27 del buf27 extern_kernels.mm(buf39, reinterpret_tensor(primals_7, (4, 16), (1, 4), 0), out=buf42) buf43 = torch.ops.aten._thnn_fused_lstm_cell.default(buf41, buf42, buf40, primals_8, primals_9) buf44 = buf43[0] buf45 = buf43[1] buf46 = buf43[2] del buf43 buf47 = buf44 del buf44 triton_poi_fused_add_mul_2[grid(16)](buf47, buf39, 16, XBLOCK=16, num_warps=1, num_stages=1) buf48 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_add_mul_3[grid(16)](buf40, buf45, buf48, 16, XBLOCK=16, num_warps=1, num_stages=1) buf49 = buf42 del buf42 extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (4, 1), 16), reinterpret_tensor(primals_6, (4, 16), (1, 4), 0), out=buf49) buf50 = buf41 del buf41 extern_kernels.mm(buf47, reinterpret_tensor(primals_7, (4, 16), (1, 4), 0), out=buf50) buf51 = torch.ops.aten._thnn_fused_lstm_cell.default(buf49, buf50, buf48, primals_8, primals_9) buf52 = buf51[0] buf53 = buf51[1] buf54 = buf51[2] del buf51 buf55 = buf52 del buf52 triton_poi_fused_add_mul_2[grid(16)](buf55, buf47, 16, XBLOCK=16, num_warps=1, num_stages=1) buf56 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_add_mul_3[grid(16)](buf48, buf53, buf56, 16, XBLOCK=16, num_warps=1, num_stages=1) buf57 = buf50 del buf50 extern_kernels.mm(reinterpret_tensor(primals_1, (4, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 16), (1, 4), 0), out=buf57) del primals_6 buf58 = buf49 del buf49 extern_kernels.mm(buf55, reinterpret_tensor(primals_7, (4, 16), (1, 4), 0), out=buf58) buf59 = torch.ops.aten._thnn_fused_lstm_cell.default(buf57, buf58, buf56, primals_8, primals_9) del primals_8 del primals_9 buf60 = buf59[0] buf61 = buf59[1] buf62 = buf59[2] del buf59 buf63 = reinterpret_tensor(buf58, (16, 4), (4, 1), 0) del buf58 triton_poi_fused_stack_4[grid(64)](buf9, buf17, buf25, buf30, buf63, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf30 buf64 = reinterpret_tensor(buf57, (16, 4), (4, 1), 0) del buf57 triton_poi_fused_stack_4[grid(64)](buf39, buf47, buf55, buf60, buf64, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf60 buf65 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) triton_poi_fused_cat_5[grid(128)](buf63, buf64, buf65, 128, XBLOCK= 128, num_warps=4, num_stages=1) del buf63 buf66 = buf64 del buf64 extern_kernels.mm(reinterpret_tensor(buf65, (16, 8), (8, 1), 0), reinterpret_tensor(primals_10, (8, 4), (1, 8), 0), out=buf66) return (reinterpret_tensor(buf66, (4, 4, 4), (16, 4, 1), 0), buf2, reinterpret_tensor(primals_1, (4, 4), (4, 1), 0), buf7, buf8, buf9, buf10, reinterpret_tensor(primals_1, (4, 4), (4, 1), 16), buf15, buf16, buf17, buf18, reinterpret_tensor(primals_1, (4, 4), (4, 1), 32), buf23, buf24, buf25, buf26, reinterpret_tensor(primals_1, (4, 4), (4, 1), 48), buf31, buf32, buf37, buf38, buf39, buf40, buf45, buf46, buf47, buf48, buf53, buf54, buf55, buf56, buf61, buf62, reinterpret_tensor(buf65, (16, 8), (8, 1), 0), primals_10, primals_7, primals_3) class LinearNorm(nn.Module): """ LinearNorm Projection """ def __init__(self, in_features, out_features, bias=False): super(LinearNorm, self).__init__() self.linear = nn.Linear(in_features, out_features, bias) nn.init.xavier_uniform_(self.linear.weight) if bias: nn.init.constant_(self.linear.bias, 0.0) def forward(self, x): x = self.linear(x) return x class ZoneOutCell(nn.Module): """ZoneOut Cell module. This is a module of zoneout described in `Zoneout: Regularizing RNNs by Randomly Preserving Hidden Activations`_. This code is modified from `eladhoffer/seq2seq.pytorch`_. Examples: >>> lstm = torch.nn.LSTMCell(16, 32) >>> lstm = ZoneOutCell(lstm, 0.5) .. _`Zoneout: Regularizing RNNs by Randomly Preserving Hidden Activations`: https://arxiv.org/abs/1606.01305 .. _`eladhoffer/seq2seq.pytorch`: https://github.com/eladhoffer/seq2seq.pytorch """ def __init__(self, cell, zoneout_rate=0.1): """Initialize zone out cell module. Args: cell (torch.nn.Module): Pytorch recurrent cell module e.g. `torch.nn.Module.LSTMCell`. zoneout_rate (float, optional): Probability of zoneout from 0.0 to 1.0. """ super(ZoneOutCell, self).__init__() self.cell = cell self.hidden_size = cell.hidden_size self.zoneout_rate = zoneout_rate if zoneout_rate > 1.0 or zoneout_rate < 0.0: raise ValueError( 'zoneout probability must be in the range from 0.0 to 1.0.') def forward(self, inputs, hidden): """Calculate forward propagation. Args: inputs (Tensor): Batch of input tensor (B, input_size). hidden (tuple): - Tensor: Batch of initial hidden states (B, hidden_size). - Tensor: Batch of initial cell states (B, hidden_size). Returns: tuple: - Tensor: Batch of next hidden states (B, hidden_size). - Tensor: Batch of next cell states (B, hidden_size). """ next_hidden = self.cell(inputs, hidden) next_hidden = self._zoneout(hidden, next_hidden, self.zoneout_rate) return next_hidden def _zoneout(self, h, next_h, prob): if isinstance(h, tuple): num_h = len(h) if not isinstance(prob, tuple): prob = tuple([prob] * num_h) return tuple([self._zoneout(h[i], next_h[i], prob[i]) for i in range(num_h)]) if self.training: mask = h.new(*h.size()).bernoulli_(prob) return mask * h + (1 - mask) * next_h else: return prob * h + (1 - prob) * next_h class ZoneOutBiLSTMNew(nn.Module): """ ZoneOut Bi-LSTM """ def __init__(self, hidden_dim, zoneout_rate=0.1): super(ZoneOutBiLSTMNew, self).__init__() self.hidden_dim = hidden_dim self.lstm_cell_forward = ZoneOutCell(nn.LSTMCell(self.hidden_dim, self.hidden_dim), zoneout_rate) self.lstm_cell_backward = ZoneOutCell(nn.LSTMCell(self.hidden_dim, self.hidden_dim), zoneout_rate) self.linear = LinearNorm(self.hidden_dim * 2, self.hidden_dim) def forward(self, input_0): primals_2 = self.lstm_cell_forward.cell.weight_ih primals_3 = self.lstm_cell_forward.cell.weight_hh primals_4 = self.lstm_cell_forward.cell.bias_ih primals_5 = self.lstm_cell_forward.cell.bias_hh primals_6 = self.lstm_cell_backward.cell.weight_ih primals_7 = self.lstm_cell_backward.cell.weight_hh primals_8 = self.lstm_cell_backward.cell.bias_ih primals_9 = self.lstm_cell_backward.cell.bias_hh primals_10 = self.linear.linear.weight primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10]) return output[0]
Seungwoo0326/WaveGrad2-1
ZoneOutBiLSTM
false
14,401
[ "MIT" ]
45
3b202201348449b89353f28bce1596ca7939a810
https://github.com/Seungwoo0326/WaveGrad2-1/tree/3b202201348449b89353f28bce1596ca7939a810
ConvNet
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/pv/cpv7qykvsb2x3mhhybt3e54zyj7yf52qrhpen6orewcwoez2g3mx.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024, 32], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 1024 xnumel = 25 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 32 y1 = (yindex // 32) tmp0 = tl.load(in_ptr0 + (x2 + (25*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (32*x2) + (800*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/af/cafxypwziobqgsujacsjlhl4vifehmfd4kjv6mmsqwsmu52bn4ve.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048, 32], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 2048 xnumel = 25 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 32 y1 = (yindex // 32) tmp0 = tl.load(in_ptr0 + (x2 + (25*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (32*x2) + (800*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ts/ctsxf36l57u3mq2ugcgebaybh3dyc2ufbhccjblzb2rb7pjushfr.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096, 32], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 4096 xnumel = 25 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = (yindex // 64) tmp0 = tl.load(in_ptr0 + (x2 + (25*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (64*x2) + (1600*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/qw/cqwg3xdwx3eugpxibvknyiosqdjdt7h7peu75twynersbsv447ra.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192, 32], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 8192 xnumel = 25 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = (yindex // 64) tmp0 = tl.load(in_ptr0 + (x2 + (25*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (64*x2) + (1600*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/23/c232cjjrpfm7piga4i2u2f6iwdslqscw63lwt2xylgovf64odkma.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_4 = async_compile.triton('triton_poi_fused_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384, 32], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16384 xnumel = 25 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = (yindex // 128) tmp0 = tl.load(in_ptr0 + (x2 + (25*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (128*x2) + (3200*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/4h/c4hcobkjh5ndccnwn27fc3y3a45kthbpdekx4r7i2rmnirh3widu.py # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d => convolution # Graph fragment: # %convolution : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [2, 2], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_5 = async_compile.triton('triton_poi_fused_convolution_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128, 1024], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_5(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 128 xnumel = 576 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 32 y1 = (yindex // 32) tmp0 = tl.load(in_ptr0 + (x2 + (576*y3)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (y0 + (32*x2) + (18432*y1)), tmp2, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/lp/clpvz4wkxjigctsxh7jhtdveyv4cac4rp62cxpmaryo57tkuby3z.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten._prelu_kernel] # Source node to ATen node mapping: # x => gt, mul, where # Graph fragment: # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %convolution), kwargs = {}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul), kwargs = {}) triton_poi_fused__prelu_kernel_6 = async_compile.triton('triton_poi_fused__prelu_kernel_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__prelu_kernel_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__prelu_kernel_6(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 73728 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), None) tmp3 = tl.load(in_ptr1 + (0)) tmp4 = tl.broadcast_to(tmp3, [XBLOCK]) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp5 = tmp4 * tmp0 tmp6 = tl.where(tmp2, tmp0, tmp5) tl.store(out_ptr0 + (x0), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/h7/ch7qxrxvtfhpc4flqbdhjn6lyu25duxy6rqrd4ufpbdezerdqqa3.py # Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten._prelu_kernel] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # x_1 => gt_1, mul_1, where_1 # Graph fragment: # %convolution_1 : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%where, %primals_5, %primals_6, [1, 1], [2, 2], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_1, 0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %convolution_1), kwargs = {}) # %where_1 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %convolution_1, %mul_1), kwargs = {}) triton_poi_fused__prelu_kernel_convolution_7 = async_compile.triton('triton_poi_fused__prelu_kernel_convolution_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__prelu_kernel_convolution_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__prelu_kernel_convolution_7(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 73728 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (0)) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp7 = tmp6 * tmp2 tmp8 = tl.where(tmp4, tmp2, tmp7) tl.store(in_out_ptr0 + (x2), tmp2, None) tl.store(out_ptr0 + (x2), tmp8, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/cx/ccx74wlwwf7cb5yjcdq3ooqngkcyb27ev663ivoe6bet5sddq3c4.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_2 => getitem, getitem_1 # Graph fragment: # %getitem : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {}) # %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_8 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_8(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 18432 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 32 x1 = (xindex // 32) % 12 x2 = (xindex // 384) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (64*x1) + (1536*x2)), None) tmp1 = tl.load(in_ptr0 + (32 + x0 + (64*x1) + (1536*x2)), None) tmp3 = tl.load(in_ptr0 + (768 + x0 + (64*x1) + (1536*x2)), None) tmp5 = tl.load(in_ptr0 + (800 + x0 + (64*x1) + (1536*x2)), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x3), tmp6, None) tl.store(out_ptr1 + (x3), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/lb/clbs5plq3l54kagj7xyoz4bjep23pwvvxay3m3nhjvzfteysjtlk.py # Topologically Sorted Source Nodes: [conv2d_2, x_3], Original ATen: [aten.convolution, aten._prelu_kernel] # Source node to ATen node mapping: # conv2d_2 => convolution_2 # x_3 => gt_2, mul_2, where_2 # Graph fragment: # %convolution_2 : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_8, %primals_9, [1, 1], [2, 2], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_2 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_2, 0), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_2, %convolution_2), kwargs = {}) # %where_2 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %convolution_2, %mul_2), kwargs = {}) triton_poi_fused__prelu_kernel_convolution_9 = async_compile.triton('triton_poi_fused__prelu_kernel_convolution_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__prelu_kernel_convolution_9', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__prelu_kernel_convolution_9(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 36864 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (0)) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp7 = tmp6 * tmp2 tmp8 = tl.where(tmp4, tmp2, tmp7) tl.store(in_out_ptr0 + (x2), tmp2, None) tl.store(out_ptr0 + (x2), tmp8, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/jb/cjb5dhwcpestwfavlatzw7rhg5pwgtoxv27zgkjahh7xtb2kiuoj.py # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_5 => getitem_2, getitem_3 # Graph fragment: # %getitem_2 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 0), kwargs = {}) # %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_10 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_10(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 9216 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 64 x1 = (xindex // 64) % 6 x2 = (xindex // 384) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (128*x1) + (1536*x2)), xmask) tmp1 = tl.load(in_ptr0 + (64 + x0 + (128*x1) + (1536*x2)), xmask) tmp3 = tl.load(in_ptr0 + (768 + x0 + (128*x1) + (1536*x2)), xmask) tmp5 = tl.load(in_ptr0 + (832 + x0 + (128*x1) + (1536*x2)), xmask) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x3), tmp6, xmask) tl.store(out_ptr1 + (x3), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/d3/cd3jr7trplj436qr2ltgnqe53j66334viwky4sltzir4rahlmv53.py # Topologically Sorted Source Nodes: [conv2d_4, x_6], Original ATen: [aten.convolution, aten._prelu_kernel] # Source node to ATen node mapping: # conv2d_4 => convolution_4 # x_6 => gt_4, mul_4, where_4 # Graph fragment: # %convolution_4 : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_2, %primals_14, %primals_15, [1, 1], [2, 2], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_4 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_4, 0), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_4, %convolution_4), kwargs = {}) # %where_4 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_4, %convolution_4, %mul_4), kwargs = {}) triton_poi_fused__prelu_kernel_convolution_11 = async_compile.triton('triton_poi_fused__prelu_kernel_convolution_11', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__prelu_kernel_convolution_11', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__prelu_kernel_convolution_11(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 18432 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (0)) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp7 = tmp6 * tmp2 tmp8 = tl.where(tmp4, tmp2, tmp7) tl.store(in_out_ptr0 + (x2), tmp2, None) tl.store(out_ptr0 + (x2), tmp8, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/fc/cfc5r5uj2epaj3kwiyokvsydl4fpwcq6tzrvfzlhl3nmdpzkmuns.py # Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_8 => _low_memory_max_pool2d_with_offsets_2, getitem_5 # Graph fragment: # %_low_memory_max_pool2d_with_offsets_2 : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%where_5, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {}) # %getitem_5 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_12 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_12', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64, 128], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i8', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_12', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_12(in_ptr0, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 36 xnumel = 128 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 3 y1 = (yindex // 3) y5 = yindex y4 = (yindex // 9) y6 = yindex % 9 tmp0 = tl.load(in_ptr0 + (x2 + (256*y0) + (1536*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (128 + x2 + (256*y0) + (1536*y1)), xmask & ymask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (768 + x2 + (256*y0) + (1536*y1)), xmask & ymask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (896 + x2 + (256*y0) + (1536*y1)), xmask & ymask, eviction_policy='evict_last') tmp2 = tmp1 > tmp0 tmp3 = tl.full([1, 1], 1, tl.int8) tmp4 = tl.full([1, 1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1, 1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1, 1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + (x2 + (128*y5)), tmp15, xmask & ymask) tl.store(out_ptr1 + (y6 + (9*x2) + (1152*y4)), tmp16, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/xr/cxrbamhin4b5pl7ehs6gvheuobdvsywbxex23ck5t2wetzlfapk5.py # Topologically Sorted Source Nodes: [x_10], Original ATen: [aten._prelu_kernel] # Source node to ATen node mapping: # x_10 => gt_6, mul_6, where_6 # Graph fragment: # %gt_6 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%addmm, 0), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_7, %addmm), kwargs = {}) # %where_6 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_6, %addmm, %mul_6), kwargs = {}) triton_poi_fused__prelu_kernel_13 = async_compile.triton('triton_poi_fused__prelu_kernel_13', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__prelu_kernel_13', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__prelu_kernel_13(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp3 = tl.load(in_ptr1 + (0)) tmp4 = tl.broadcast_to(tmp3, [XBLOCK]) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp5 = tmp4 * tmp0 tmp6 = tl.where(tmp2, tmp0, tmp5) tl.store(out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24 = args args.clear() assert_size_stride(primals_1, (32, 1, 5, 5), (25, 25, 5, 1)) assert_size_stride(primals_2, (32, ), (1, )) assert_size_stride(primals_3, (4, 1, 24, 24), (576, 576, 24, 1)) assert_size_stride(primals_4, (1, ), (1, )) assert_size_stride(primals_5, (32, 32, 5, 5), (800, 25, 5, 1)) assert_size_stride(primals_6, (32, ), (1, )) assert_size_stride(primals_7, (1, ), (1, )) assert_size_stride(primals_8, (64, 32, 5, 5), (800, 25, 5, 1)) assert_size_stride(primals_9, (64, ), (1, )) assert_size_stride(primals_10, (1, ), (1, )) assert_size_stride(primals_11, (64, 64, 5, 5), (1600, 25, 5, 1)) assert_size_stride(primals_12, (64, ), (1, )) assert_size_stride(primals_13, (1, ), (1, )) assert_size_stride(primals_14, (128, 64, 5, 5), (1600, 25, 5, 1)) assert_size_stride(primals_15, (128, ), (1, )) assert_size_stride(primals_16, (1, ), (1, )) assert_size_stride(primals_17, (128, 128, 5, 5), (3200, 25, 5, 1)) assert_size_stride(primals_18, (128, ), (1, )) assert_size_stride(primals_19, (1, ), (1, )) assert_size_stride(primals_20, (2, 1152), (1152, 1)) assert_size_stride(primals_21, (2, ), (1, )) assert_size_stride(primals_22, (1, ), (1, )) assert_size_stride(primals_23, (4, 2), (2, 1)) assert_size_stride(primals_24, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((32, 32, 5, 5), (800, 1, 160, 32), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_5, buf0, 1024, 25, grid=grid(1024, 25), stream=stream0) del primals_5 buf1 = empty_strided_cuda((64, 32, 5, 5), (800, 1, 160, 32), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_8, buf1, 2048, 25, grid=grid(2048, 25), stream=stream0) del primals_8 buf2 = empty_strided_cuda((64, 64, 5, 5), (1600, 1, 320, 64), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(primals_11, buf2, 4096, 25, grid=grid(4096, 25), stream=stream0) del primals_11 buf3 = empty_strided_cuda((128, 64, 5, 5), (1600, 1, 320, 64), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_3.run(primals_14, buf3, 8192, 25, grid=grid(8192, 25), stream=stream0) del primals_14 buf4 = empty_strided_cuda((128, 128, 5, 5), (3200, 1, 640, 128), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_4.run(primals_17, buf4, 16384, 25, grid=grid(16384, 25), stream=stream0) del primals_17 # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf5 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 32, 24, 24), (18432, 576, 24, 1)) buf6 = empty_strided_cuda((4, 32, 24, 24), (18432, 1, 768, 32), torch.float32) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] triton_poi_fused_convolution_5.run(buf5, primals_2, buf6, 128, 576, grid=grid(128, 576), stream=stream0) del primals_2 buf7 = reinterpret_tensor(buf5, (4, 32, 24, 24), (18432, 1, 768, 32), 0); del buf5 # reuse # Topologically Sorted Source Nodes: [x], Original ATen: [aten._prelu_kernel] triton_poi_fused__prelu_kernel_6.run(buf6, primals_4, buf7, 73728, grid=grid(73728), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf8 = extern_kernels.convolution(buf7, buf0, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 32, 24, 24), (18432, 1, 768, 32)) buf9 = buf8; del buf8 # reuse buf10 = empty_strided_cuda((4, 32, 24, 24), (18432, 1, 768, 32), torch.float32) # Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten._prelu_kernel] triton_poi_fused__prelu_kernel_convolution_7.run(buf9, primals_6, primals_7, buf10, 73728, grid=grid(73728), stream=stream0) del primals_6 buf11 = empty_strided_cuda((4, 32, 12, 12), (4608, 1, 384, 32), torch.float32) buf12 = empty_strided_cuda((4, 32, 12, 12), (4608, 1, 384, 32), torch.int8) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_8.run(buf10, buf11, buf12, 18432, grid=grid(18432), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf13 = extern_kernels.convolution(buf11, buf1, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf13, (4, 64, 12, 12), (9216, 1, 768, 64)) buf14 = buf13; del buf13 # reuse buf15 = empty_strided_cuda((4, 64, 12, 12), (9216, 1, 768, 64), torch.float32) # Topologically Sorted Source Nodes: [conv2d_2, x_3], Original ATen: [aten.convolution, aten._prelu_kernel] triton_poi_fused__prelu_kernel_convolution_9.run(buf14, primals_9, primals_10, buf15, 36864, grid=grid(36864), stream=stream0) del primals_9 # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf16 = extern_kernels.convolution(buf15, buf2, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf16, (4, 64, 12, 12), (9216, 1, 768, 64)) buf17 = buf16; del buf16 # reuse buf18 = empty_strided_cuda((4, 64, 12, 12), (9216, 1, 768, 64), torch.float32) # Topologically Sorted Source Nodes: [conv2d_3, x_4], Original ATen: [aten.convolution, aten._prelu_kernel] triton_poi_fused__prelu_kernel_convolution_9.run(buf17, primals_12, primals_13, buf18, 36864, grid=grid(36864), stream=stream0) del primals_12 buf19 = empty_strided_cuda((4, 64, 6, 6), (2304, 1, 384, 64), torch.float32) buf20 = empty_strided_cuda((4, 64, 6, 6), (2304, 1, 384, 64), torch.int8) # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_10.run(buf18, buf19, buf20, 9216, grid=grid(9216), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution] buf21 = extern_kernels.convolution(buf19, buf3, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf21, (4, 128, 6, 6), (4608, 1, 768, 128)) buf22 = buf21; del buf21 # reuse buf23 = empty_strided_cuda((4, 128, 6, 6), (4608, 1, 768, 128), torch.float32) # Topologically Sorted Source Nodes: [conv2d_4, x_6], Original ATen: [aten.convolution, aten._prelu_kernel] triton_poi_fused__prelu_kernel_convolution_11.run(buf22, primals_15, primals_16, buf23, 18432, grid=grid(18432), stream=stream0) del primals_15 # Topologically Sorted Source Nodes: [conv2d_5], Original ATen: [aten.convolution] buf24 = extern_kernels.convolution(buf23, buf4, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf24, (4, 128, 6, 6), (4608, 1, 768, 128)) buf25 = buf24; del buf24 # reuse buf26 = empty_strided_cuda((4, 128, 6, 6), (4608, 1, 768, 128), torch.float32) # Topologically Sorted Source Nodes: [conv2d_5, x_7], Original ATen: [aten.convolution, aten._prelu_kernel] triton_poi_fused__prelu_kernel_convolution_11.run(buf25, primals_18, primals_19, buf26, 18432, grid=grid(18432), stream=stream0) del primals_18 buf27 = empty_strided_cuda((4, 128, 3, 3), (1152, 1, 384, 128), torch.int8) buf28 = empty_strided_cuda((4, 128, 3, 3), (1152, 9, 3, 1), torch.float32) # Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_12.run(buf26, buf27, buf28, 36, 128, grid=grid(36, 128), stream=stream0) buf29 = empty_strided_cuda((4, 2), (2, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_21, reinterpret_tensor(buf28, (4, 1152), (1152, 1), 0), reinterpret_tensor(primals_20, (1152, 2), (1, 1152), 0), alpha=1, beta=1, out=buf29) del primals_21 buf30 = empty_strided_cuda((4, 2), (2, 1), torch.float32) # Topologically Sorted Source Nodes: [x_10], Original ATen: [aten._prelu_kernel] triton_poi_fused__prelu_kernel_13.run(buf29, primals_22, buf30, 8, grid=grid(8), stream=stream0) buf31 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [y], Original ATen: [aten.addmm] extern_kernels.addmm(primals_24, buf30, reinterpret_tensor(primals_23, (2, 4), (1, 2), 0), alpha=1, beta=1, out=buf31) del primals_24 return (buf30, buf31, primals_1, primals_3, primals_4, buf0, primals_7, buf1, primals_10, buf2, primals_13, buf3, primals_16, buf4, primals_19, primals_22, buf6, buf7, buf9, buf10, buf11, buf12, buf14, buf15, buf17, buf18, buf19, buf20, buf22, buf23, buf25, buf26, buf27, reinterpret_tensor(buf28, (4, 1152), (1152, 1), 0), buf29, buf30, primals_23, primals_20, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((32, 1, 5, 5), (25, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 1, 24, 24), (576, 576, 24, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((32, 32, 5, 5), (800, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((64, 32, 5, 5), (800, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((64, 64, 5, 5), (1600, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((128, 64, 5, 5), (1600, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((128, 128, 5, 5), (3200, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_19 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_20 = rand_strided((2, 1152), (1152, 1), device='cuda:0', dtype=torch.float32) primals_21 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) primals_22 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_23 = rand_strided((4, 2), (2, 1), device='cuda:0', dtype=torch.float32) primals_24 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from torch.nn import functional as F class ConvNet(nn.Module): """LeNet++ as described in the Center Loss paper.""" def __init__(self, num_classes): super(ConvNet, self).__init__() self.conv1_1 = nn.Conv2d(1, 32, 5, stride=1, padding=2) self.prelu1_1 = nn.PReLU() self.conv1_2 = nn.Conv2d(32, 32, 5, stride=1, padding=2) self.prelu1_2 = nn.PReLU() self.conv2_1 = nn.Conv2d(32, 64, 5, stride=1, padding=2) self.prelu2_1 = nn.PReLU() self.conv2_2 = nn.Conv2d(64, 64, 5, stride=1, padding=2) self.prelu2_2 = nn.PReLU() self.conv3_1 = nn.Conv2d(64, 128, 5, stride=1, padding=2) self.prelu3_1 = nn.PReLU() self.conv3_2 = nn.Conv2d(128, 128, 5, stride=1, padding=2) self.prelu3_2 = nn.PReLU() self.fc1 = nn.Linear(128 * 3 * 3, 2) self.prelu_fc1 = nn.PReLU() self.fc2 = nn.Linear(2, num_classes) def forward(self, x): x = self.prelu1_1(self.conv1_1(x)) x = self.prelu1_2(self.conv1_2(x)) x = F.max_pool2d(x, 2) x = self.prelu2_1(self.conv2_1(x)) x = self.prelu2_2(self.conv2_2(x)) x = F.max_pool2d(x, 2) x = self.prelu3_1(self.conv3_1(x)) x = self.prelu3_2(self.conv3_2(x)) x = F.max_pool2d(x, 2) x = x.view(-1, 128 * 3 * 3) x = self.prelu_fc1(self.fc1(x)) y = self.fc2(x) return x, y def get_inputs(): return [torch.rand([4, 1, 24, 24])] def get_init_inputs(): return [[], {'num_classes': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 25 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 32 y1 = yindex // 32 tmp0 = tl.load(in_ptr0 + (x2 + 25 * y3), xmask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 32 * x2 + 800 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 25 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 32 y1 = yindex // 32 tmp0 = tl.load(in_ptr0 + (x2 + 25 * y3), xmask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 32 * x2 + 800 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 25 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = yindex // 64 tmp0 = tl.load(in_ptr0 + (x2 + 25 * y3), xmask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 64 * x2 + 1600 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 25 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = yindex // 64 tmp0 = tl.load(in_ptr0 + (x2 + 25 * y3), xmask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 64 * x2 + 1600 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 25 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = yindex // 128 tmp0 = tl.load(in_ptr0 + (x2 + 25 * y3), xmask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 128 * x2 + 3200 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_convolution_5(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 128 xnumel = 576 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 32 y1 = yindex // 32 tmp0 = tl.load(in_ptr0 + (x2 + 576 * y3), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (y0 + 32 * x2 + 18432 * y1), tmp2, xmask & ymask) @triton.jit def triton_poi_fused__prelu_kernel_6(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_ptr0 + x0, None) tmp3 = tl.load(in_ptr1 + 0) tmp4 = tl.broadcast_to(tmp3, [XBLOCK]) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp5 = tmp4 * tmp0 tmp6 = tl.where(tmp2, tmp0, tmp5) tl.store(out_ptr0 + x0, tmp6, None) @triton.jit def triton_poi_fused__prelu_kernel_convolution_7(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + 0) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp7 = tmp6 * tmp2 tmp8 = tl.where(tmp4, tmp2, tmp7) tl.store(in_out_ptr0 + x2, tmp2, None) tl.store(out_ptr0 + x2, tmp8, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_8(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 32 x1 = xindex // 32 % 12 x2 = xindex // 384 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1 + 1536 * x2), None) tmp1 = tl.load(in_ptr0 + (32 + x0 + 64 * x1 + 1536 * x2), None) tmp3 = tl.load(in_ptr0 + (768 + x0 + 64 * x1 + 1536 * x2), None) tmp5 = tl.load(in_ptr0 + (800 + x0 + 64 * x1 + 1536 * x2), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x3, tmp6, None) tl.store(out_ptr1 + x3, tmp16, None) @triton.jit def triton_poi_fused__prelu_kernel_convolution_9(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + 0) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp7 = tmp6 * tmp2 tmp8 = tl.where(tmp4, tmp2, tmp7) tl.store(in_out_ptr0 + x2, tmp2, None) tl.store(out_ptr0 + x2, tmp8, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_10(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 9216 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 64 x1 = xindex // 64 % 6 x2 = xindex // 384 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 128 * x1 + 1536 * x2), xmask) tmp1 = tl.load(in_ptr0 + (64 + x0 + 128 * x1 + 1536 * x2), xmask) tmp3 = tl.load(in_ptr0 + (768 + x0 + 128 * x1 + 1536 * x2), xmask) tmp5 = tl.load(in_ptr0 + (832 + x0 + 128 * x1 + 1536 * x2), xmask) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x3, tmp6, xmask) tl.store(out_ptr1 + x3, tmp16, xmask) @triton.jit def triton_poi_fused__prelu_kernel_convolution_11(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + 0) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp7 = tmp6 * tmp2 tmp8 = tl.where(tmp4, tmp2, tmp7) tl.store(in_out_ptr0 + x2, tmp2, None) tl.store(out_ptr0 + x2, tmp8, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_12(in_ptr0, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 36 xnumel = 128 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 3 y1 = yindex // 3 y5 = yindex y4 = yindex // 9 y6 = yindex % 9 tmp0 = tl.load(in_ptr0 + (x2 + 256 * y0 + 1536 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (128 + x2 + 256 * y0 + 1536 * y1), xmask & ymask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (768 + x2 + 256 * y0 + 1536 * y1), xmask & ymask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (896 + x2 + 256 * y0 + 1536 * y1), xmask & ymask, eviction_policy='evict_last') tmp2 = tmp1 > tmp0 tmp3 = tl.full([1, 1], 1, tl.int8) tmp4 = tl.full([1, 1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1, 1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1, 1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + (x2 + 128 * y5), tmp15, xmask & ymask) tl.store(out_ptr1 + (y6 + 9 * x2 + 1152 * y4), tmp16, xmask & ymask) @triton.jit def triton_poi_fused__prelu_kernel_13(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp3 = tl.load(in_ptr1 + 0) tmp4 = tl.broadcast_to(tmp3, [XBLOCK]) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp5 = tmp4 * tmp0 tmp6 = tl.where(tmp2, tmp0, tmp5) tl.store(out_ptr0 + x0, tmp6, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24) = args args.clear() assert_size_stride(primals_1, (32, 1, 5, 5), (25, 25, 5, 1)) assert_size_stride(primals_2, (32,), (1,)) assert_size_stride(primals_3, (4, 1, 24, 24), (576, 576, 24, 1)) assert_size_stride(primals_4, (1,), (1,)) assert_size_stride(primals_5, (32, 32, 5, 5), (800, 25, 5, 1)) assert_size_stride(primals_6, (32,), (1,)) assert_size_stride(primals_7, (1,), (1,)) assert_size_stride(primals_8, (64, 32, 5, 5), (800, 25, 5, 1)) assert_size_stride(primals_9, (64,), (1,)) assert_size_stride(primals_10, (1,), (1,)) assert_size_stride(primals_11, (64, 64, 5, 5), (1600, 25, 5, 1)) assert_size_stride(primals_12, (64,), (1,)) assert_size_stride(primals_13, (1,), (1,)) assert_size_stride(primals_14, (128, 64, 5, 5), (1600, 25, 5, 1)) assert_size_stride(primals_15, (128,), (1,)) assert_size_stride(primals_16, (1,), (1,)) assert_size_stride(primals_17, (128, 128, 5, 5), (3200, 25, 5, 1)) assert_size_stride(primals_18, (128,), (1,)) assert_size_stride(primals_19, (1,), (1,)) assert_size_stride(primals_20, (2, 1152), (1152, 1)) assert_size_stride(primals_21, (2,), (1,)) assert_size_stride(primals_22, (1,), (1,)) assert_size_stride(primals_23, (4, 2), (2, 1)) assert_size_stride(primals_24, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((32, 32, 5, 5), (800, 1, 160, 32), torch. float32) get_raw_stream(0) triton_poi_fused_0[grid(1024, 25)](primals_5, buf0, 1024, 25, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del primals_5 buf1 = empty_strided_cuda((64, 32, 5, 5), (800, 1, 160, 32), torch. float32) triton_poi_fused_1[grid(2048, 25)](primals_8, buf1, 2048, 25, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del primals_8 buf2 = empty_strided_cuda((64, 64, 5, 5), (1600, 1, 320, 64), torch .float32) triton_poi_fused_2[grid(4096, 25)](primals_11, buf2, 4096, 25, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del primals_11 buf3 = empty_strided_cuda((128, 64, 5, 5), (1600, 1, 320, 64), torch.float32) triton_poi_fused_3[grid(8192, 25)](primals_14, buf3, 8192, 25, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del primals_14 buf4 = empty_strided_cuda((128, 128, 5, 5), (3200, 1, 640, 128), torch.float32) triton_poi_fused_4[grid(16384, 25)](primals_17, buf4, 16384, 25, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del primals_17 buf5 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 32, 24, 24), (18432, 576, 24, 1)) buf6 = empty_strided_cuda((4, 32, 24, 24), (18432, 1, 768, 32), torch.float32) triton_poi_fused_convolution_5[grid(128, 576)](buf5, primals_2, buf6, 128, 576, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del primals_2 buf7 = reinterpret_tensor(buf5, (4, 32, 24, 24), (18432, 1, 768, 32), 0 ) del buf5 triton_poi_fused__prelu_kernel_6[grid(73728)](buf6, primals_4, buf7, 73728, XBLOCK=512, num_warps=8, num_stages=1) buf8 = extern_kernels.convolution(buf7, buf0, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 32, 24, 24), (18432, 1, 768, 32)) buf9 = buf8 del buf8 buf10 = empty_strided_cuda((4, 32, 24, 24), (18432, 1, 768, 32), torch.float32) triton_poi_fused__prelu_kernel_convolution_7[grid(73728)](buf9, primals_6, primals_7, buf10, 73728, XBLOCK=1024, num_warps=4, num_stages=1) del primals_6 buf11 = empty_strided_cuda((4, 32, 12, 12), (4608, 1, 384, 32), torch.float32) buf12 = empty_strided_cuda((4, 32, 12, 12), (4608, 1, 384, 32), torch.int8) triton_poi_fused_max_pool2d_with_indices_8[grid(18432)](buf10, buf11, buf12, 18432, XBLOCK=256, num_warps=4, num_stages=1) buf13 = extern_kernels.convolution(buf11, buf1, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf13, (4, 64, 12, 12), (9216, 1, 768, 64)) buf14 = buf13 del buf13 buf15 = empty_strided_cuda((4, 64, 12, 12), (9216, 1, 768, 64), torch.float32) triton_poi_fused__prelu_kernel_convolution_9[grid(36864)](buf14, primals_9, primals_10, buf15, 36864, XBLOCK=512, num_warps=4, num_stages=1) del primals_9 buf16 = extern_kernels.convolution(buf15, buf2, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf16, (4, 64, 12, 12), (9216, 1, 768, 64)) buf17 = buf16 del buf16 buf18 = empty_strided_cuda((4, 64, 12, 12), (9216, 1, 768, 64), torch.float32) triton_poi_fused__prelu_kernel_convolution_9[grid(36864)](buf17, primals_12, primals_13, buf18, 36864, XBLOCK=512, num_warps=4, num_stages=1) del primals_12 buf19 = empty_strided_cuda((4, 64, 6, 6), (2304, 1, 384, 64), torch .float32) buf20 = empty_strided_cuda((4, 64, 6, 6), (2304, 1, 384, 64), torch .int8) triton_poi_fused_max_pool2d_with_indices_10[grid(9216)](buf18, buf19, buf20, 9216, XBLOCK=256, num_warps=4, num_stages=1) buf21 = extern_kernels.convolution(buf19, buf3, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf21, (4, 128, 6, 6), (4608, 1, 768, 128)) buf22 = buf21 del buf21 buf23 = empty_strided_cuda((4, 128, 6, 6), (4608, 1, 768, 128), torch.float32) triton_poi_fused__prelu_kernel_convolution_11[grid(18432)](buf22, primals_15, primals_16, buf23, 18432, XBLOCK=128, num_warps=4, num_stages=1) del primals_15 buf24 = extern_kernels.convolution(buf23, buf4, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf24, (4, 128, 6, 6), (4608, 1, 768, 128)) buf25 = buf24 del buf24 buf26 = empty_strided_cuda((4, 128, 6, 6), (4608, 1, 768, 128), torch.float32) triton_poi_fused__prelu_kernel_convolution_11[grid(18432)](buf25, primals_18, primals_19, buf26, 18432, XBLOCK=128, num_warps=4, num_stages=1) del primals_18 buf27 = empty_strided_cuda((4, 128, 3, 3), (1152, 1, 384, 128), torch.int8) buf28 = empty_strided_cuda((4, 128, 3, 3), (1152, 9, 3, 1), torch. float32) triton_poi_fused_max_pool2d_with_indices_12[grid(36, 128)](buf26, buf27, buf28, 36, 128, XBLOCK=4, YBLOCK=64, num_warps=4, num_stages=1) buf29 = empty_strided_cuda((4, 2), (2, 1), torch.float32) extern_kernels.addmm(primals_21, reinterpret_tensor(buf28, (4, 1152 ), (1152, 1), 0), reinterpret_tensor(primals_20, (1152, 2), (1, 1152), 0), alpha=1, beta=1, out=buf29) del primals_21 buf30 = empty_strided_cuda((4, 2), (2, 1), torch.float32) triton_poi_fused__prelu_kernel_13[grid(8)](buf29, primals_22, buf30, 8, XBLOCK=8, num_warps=1, num_stages=1) buf31 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_24, buf30, reinterpret_tensor( primals_23, (2, 4), (1, 2), 0), alpha=1, beta=1, out=buf31) del primals_24 return (buf30, buf31, primals_1, primals_3, primals_4, buf0, primals_7, buf1, primals_10, buf2, primals_13, buf3, primals_16, buf4, primals_19, primals_22, buf6, buf7, buf9, buf10, buf11, buf12, buf14, buf15, buf17, buf18, buf19, buf20, buf22, buf23, buf25, buf26, buf27, reinterpret_tensor(buf28, (4, 1152), (1152, 1), 0), buf29, buf30, primals_23, primals_20) class ConvNetNew(nn.Module): """LeNet++ as described in the Center Loss paper.""" def __init__(self, num_classes): super(ConvNetNew, self).__init__() self.conv1_1 = nn.Conv2d(1, 32, 5, stride=1, padding=2) self.prelu1_1 = nn.PReLU() self.conv1_2 = nn.Conv2d(32, 32, 5, stride=1, padding=2) self.prelu1_2 = nn.PReLU() self.conv2_1 = nn.Conv2d(32, 64, 5, stride=1, padding=2) self.prelu2_1 = nn.PReLU() self.conv2_2 = nn.Conv2d(64, 64, 5, stride=1, padding=2) self.prelu2_2 = nn.PReLU() self.conv3_1 = nn.Conv2d(64, 128, 5, stride=1, padding=2) self.prelu3_1 = nn.PReLU() self.conv3_2 = nn.Conv2d(128, 128, 5, stride=1, padding=2) self.prelu3_2 = nn.PReLU() self.fc1 = nn.Linear(128 * 3 * 3, 2) self.prelu_fc1 = nn.PReLU() self.fc2 = nn.Linear(2, num_classes) def forward(self, input_0): primals_1 = self.conv1_1.weight primals_2 = self.conv1_1.bias primals_4 = self.prelu1_1.weight primals_5 = self.conv1_2.weight primals_6 = self.conv1_2.bias primals_7 = self.prelu1_2.weight primals_8 = self.conv2_1.weight primals_9 = self.conv2_1.bias primals_10 = self.prelu2_1.weight primals_11 = self.conv2_2.weight primals_12 = self.conv2_2.bias primals_13 = self.prelu2_2.weight primals_14 = self.conv3_1.weight primals_15 = self.conv3_1.bias primals_16 = self.prelu3_1.weight primals_17 = self.conv3_2.weight primals_18 = self.conv3_2.bias primals_19 = self.prelu3_2.weight primals_20 = self.fc1.weight primals_21 = self.fc1.bias primals_22 = self.prelu_fc1.weight primals_23 = self.fc2.weight primals_24 = self.fc2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24]) return output[0], output[1]
SJHBXShub/Center_Loss
ConvNet
false
14,402
[ "MIT" ]
813
4097709144cf4cfc04d91ac1462ebf346b9f0448
https://github.com/SJHBXShub/Center_Loss/tree/4097709144cf4cfc04d91ac1462ebf346b9f0448
VideoBoringModel
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/tu/ctuej2j6f3oxr5p43q7juhagc3r3ncgs2ikvxemutunlnxlnvl24.py # Topologically Sorted Source Nodes: [adaptive_avg_pool3d], Original ATen: [aten.mean] # Source node to ATen node mapping: # adaptive_avg_pool3d => mean # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [-1, -2, -3], True), kwargs = {}) triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 64.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1024, 4), (4, 1)) assert_size_stride(primals_3, (1024, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [adaptive_avg_pool3d], Original ATen: [aten.mean] stream0 = get_raw_stream(0) triton_per_fused_mean_0.run(buf1, primals_1, 4, 64, grid=grid(4), stream=stream0) del primals_1 buf2 = empty_strided_cuda((1, 1024), (1024, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_3, reinterpret_tensor(buf1, (1, 4), (0, 1), 0), reinterpret_tensor(primals_2, (4, 1024), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_2 del primals_3 return (reinterpret_tensor(buf2, (1024, ), (1, ), 0), reinterpret_tensor(buf1, (1, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1024, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.data class VideoBoringModel(nn.Module): def __init__(self, in_channel): super().__init__() self.avg_pool3d = nn.AdaptiveAvgPool3d(1) self.fc = nn.Linear(in_channel, 1024) def forward(self, x): x = self.avg_pool3d(x).squeeze() x = self.fc(x) return x def output_size(self): return self.fc.in_features def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channel': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 64.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp6, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1024, 4), (4, 1)) assert_size_stride(primals_3, (1024,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_mean_0[grid(4)](buf1, primals_1, 4, 64, XBLOCK=1, num_warps=2, num_stages=1) del primals_1 buf2 = empty_strided_cuda((1, 1024), (1024, 1), torch.float32) extern_kernels.addmm(primals_3, reinterpret_tensor(buf1, (1, 4), (0, 1), 0), reinterpret_tensor(primals_2, (4, 1024), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_2 del primals_3 return reinterpret_tensor(buf2, (1024,), (1,), 0), reinterpret_tensor(buf1, (1, 4), (4, 1), 0) class VideoBoringModelNew(nn.Module): def __init__(self, in_channel): super().__init__() self.avg_pool3d = nn.AdaptiveAvgPool3d(1) self.fc = nn.Linear(in_channel, 1024) def output_size(self): return self.fc.in_features def forward(self, input_0): primals_2 = self.fc.weight primals_3 = self.fc.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
SheffieldAI/pykale
VideoBoringModel
false
14,403
[ "MIT" ]
324
be7670941fb06835883c80477b26702d407017db
https://github.com/SheffieldAI/pykale/tree/be7670941fb06835883c80477b26702d407017db
Discriminator2
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/fi/cfiw2yb3plroxcbvajqzv4r2o747ozmvnzitxofswz25dqdgjiny.py # Topologically Sorted Source Nodes: [logits], Original ATen: [aten.cat] # Source node to ATen node mapping: # logits => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%squeeze, %squeeze_1], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 8 x0 = xindex % 4 x2 = (xindex // 32) x3 = xindex tmp6 = tl.load(in_ptr1 + (0)) tmp7 = tl.broadcast_to(tmp6, [XBLOCK]) tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (4*x1) + (16*x2)), tmp4 & xmask, other=0.0) tmp8 = tmp5 + tmp7 tmp9 = tl.full(tmp8.shape, 0.0, tmp8.dtype) tmp10 = tl.where(tmp4, tmp8, tmp9) tmp11 = tmp0 >= tmp3 tmp12 = tl.full([1], 8, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tl.load(in_ptr2 + (x0 + (4*((-4) + x1)) + (16*x2)), tmp11 & xmask, other=0.0) tmp15 = tmp14 + tmp7 tmp16 = tl.full(tmp15.shape, 0.0, tmp15.dtype) tmp17 = tl.where(tmp11, tmp15, tmp16) tmp18 = tl.where(tmp4, tmp10, tmp17) tl.store(out_ptr0 + (x3), tmp18, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (1, ), (1, )) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [bilinear], Original ATen: [aten._trilinear] buf0 = torch.ops.aten._trilinear.default(reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), primals_2, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), [1, 3], [0], [1, 2], [2, 3]) buf1 = buf0 del buf0 # Topologically Sorted Source Nodes: [bilinear_1], Original ATen: [aten._trilinear] buf2 = torch.ops.aten._trilinear.default(reinterpret_tensor(primals_5, (64, 4), (4, 1), 0), primals_2, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), [1, 3], [0], [1, 2], [2, 3]) del primals_2 buf3 = buf2 del buf2 buf4 = empty_strided_cuda((4, 8, 4, 1), (32, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [logits], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(buf1, primals_3, buf3, buf4, 128, grid=grid(128), stream=stream0) del buf1 del buf3 del primals_3 return (buf4, reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_5, (64, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.data class Discriminator2(nn.Module): def __init__(self, n_h): super(Discriminator2, self).__init__() self.f_k = nn.Bilinear(n_h, n_h, 1) for m in self.modules(): self.weights_init(m) def weights_init(self, m): if isinstance(m, nn.Bilinear): torch.nn.init.xavier_uniform_(m.weight.data) if m.bias is not None: m.bias.data.fill_(0.0) def forward(self, c, h_pl, h_mi, s_bias1=None, s_bias2=None): c_x = c sc_1 = torch.squeeze(self.f_k(h_pl, c_x), 2) sc_2 = torch.squeeze(self.f_k(h_mi, c_x), 2) if s_bias1 is not None: sc_1 += s_bias1 if s_bias2 is not None: sc_2 += s_bias2 logits = torch.cat((sc_1, sc_2), 1) return logits def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {'n_h': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 8 x0 = xindex % 4 x2 = xindex // 32 x3 = xindex tmp6 = tl.load(in_ptr1 + 0) tmp7 = tl.broadcast_to(tmp6, [XBLOCK]) tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 4 * x1 + 16 * x2), tmp4 & xmask, other=0.0) tmp8 = tmp5 + tmp7 tmp9 = tl.full(tmp8.shape, 0.0, tmp8.dtype) tmp10 = tl.where(tmp4, tmp8, tmp9) tmp11 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp14 = tl.load(in_ptr2 + (x0 + 4 * (-4 + x1) + 16 * x2), tmp11 & xmask, other=0.0) tmp15 = tmp14 + tmp7 tmp16 = tl.full(tmp15.shape, 0.0, tmp15.dtype) tmp17 = tl.where(tmp11, tmp15, tmp16) tmp18 = tl.where(tmp4, tmp10, tmp17) tl.store(out_ptr0 + x3, tmp18, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (1,), (1,)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = torch.ops.aten._trilinear.default(reinterpret_tensor( primals_4, (64, 4), (4, 1), 0), primals_2, reinterpret_tensor( primals_1, (64, 4), (4, 1), 0), [1, 3], [0], [1, 2], [2, 3]) buf1 = buf0 del buf0 buf2 = torch.ops.aten._trilinear.default(reinterpret_tensor( primals_5, (64, 4), (4, 1), 0), primals_2, reinterpret_tensor( primals_1, (64, 4), (4, 1), 0), [1, 3], [0], [1, 2], [2, 3]) del primals_2 buf3 = buf2 del buf2 buf4 = empty_strided_cuda((4, 8, 4, 1), (32, 4, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(128)](buf1, primals_3, buf3, buf4, 128, XBLOCK=128, num_warps=4, num_stages=1) del buf1 del buf3 del primals_3 return buf4, reinterpret_tensor(primals_4, (64, 4), (4, 1), 0 ), reinterpret_tensor(primals_1, (64, 4), (4, 1), 0 ), reinterpret_tensor(primals_5, (64, 4), (4, 1), 0) class Discriminator2New(nn.Module): def __init__(self, n_h): super(Discriminator2New, self).__init__() self.f_k = nn.Bilinear(n_h, n_h, 1) for m in self.modules(): self.weights_init(m) def weights_init(self, m): if isinstance(m, nn.Bilinear): torch.nn.init.xavier_uniform_(m.weight.data) if m.bias is not None: m.bias.data.fill_(0.0) def forward(self, input_0, input_1, input_2): primals_2 = self.f_k.weight primals_3 = self.f_k.bias primals_1 = input_0 primals_4 = input_1 primals_5 = input_2 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
Shen-Lab/GraphCL
Discriminator2
false
14,404
[ "MIT" ]
275
1d43f79d7f33f8133f9d4b4b8254d8aaeb09a615
https://github.com/Shen-Lab/GraphCL/tree/1d43f79d7f33f8133f9d4b4b8254d8aaeb09a615
rec_attention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/2h/c2hhglkzlzg2xzmumfmt4aaa7rs7o47r76zo3zxuztunan3wht6k.py # Topologically Sorted Source Nodes: [result_2], Original ATen: [aten.cat] # Source node to ATen node mapping: # result_2 => cat_2 # Graph fragment: # %cat_2 : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%cat_1, %unsqueeze_3],), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x0 = xindex % 4 x2 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 3, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.full([1], 2, tl.int64) tmp6 = tmp0 < tmp5 tmp7 = tmp6 & tmp4 tmp8 = tl.full([1], 1, tl.int64) tmp9 = tmp0 < tmp8 tmp10 = tmp9 & tmp7 tmp11 = tl.load(in_ptr0 + (x0), tmp10 & xmask, eviction_policy='evict_last', other=0.0) tmp12 = tmp0 >= tmp8 tmp13 = tmp12 & tmp7 tmp14 = tl.load(in_ptr1 + (x0), tmp13 & xmask, eviction_policy='evict_last', other=0.0) tmp15 = tl.where(tmp9, tmp11, tmp14) tmp16 = tl.full(tmp15.shape, 0.0, tmp15.dtype) tmp17 = tl.where(tmp7, tmp15, tmp16) tmp18 = tmp0 >= tmp5 tmp19 = tmp18 & tmp4 tmp20 = tl.load(in_ptr2 + (x0), tmp19 & xmask, eviction_policy='evict_last', other=0.0) tmp21 = tl.where(tmp6, tmp17, tmp20) tmp22 = tl.full(tmp21.shape, 0.0, tmp21.dtype) tmp23 = tl.where(tmp4, tmp21, tmp22) tmp24 = tmp0 >= tmp3 tmp25 = tl.full([1], 4, tl.int64) tmp26 = tmp0 < tmp25 tmp27 = tl.load(in_ptr3 + (x0), tmp24 & xmask, eviction_policy='evict_last', other=0.0) tmp28 = tl.where(tmp4, tmp23, tmp27) tl.store(out_ptr0 + (x2), tmp28, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ts/ctscnzvbagjv4t25zui245b3recij5udu7nvujnr5rixcyo7elc6.py # Topologically Sorted Source Nodes: [alpha], Original ATen: [aten._softmax] # Source node to ATen node mapping: # alpha => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%squeeze, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%squeeze, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/k6/ck6fz3qsfeqgn5jtm4ugikmu7cwvvlq3jpttijbb5kdniicwtyz6.py # Topologically Sorted Source Nodes: [alpha], Original ATen: [aten._softmax] # Source node to ATen node mapping: # alpha => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 1), (1, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [op], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_2, (4, 4), (4, 1), 0), primals_1, out=buf0) buf1 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [op_2], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_2, (4, 4), (4, 1), 16), primals_1, out=buf1) buf2 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [op_4], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_2, (4, 4), (4, 1), 32), primals_1, out=buf2) buf3 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [op_6], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_2, (4, 4), (4, 1), 48), primals_1, out=buf3) del primals_1 buf4 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [result_2], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(buf0, buf1, buf2, buf3, buf4, 16, grid=grid(16), stream=stream0) del buf0 del buf1 del buf2 del buf3 buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [alpha], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf4, buf5, 16, grid=grid(16), stream=stream0) buf6 = reinterpret_tensor(buf4, (4, 4), (4, 1), 0); del buf4 # reuse # Topologically Sorted Source Nodes: [alpha], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf5, buf6, 16, grid=grid(16), stream=stream0) buf7 = reinterpret_tensor(buf5, (4, 1, 4), (4, 4, 1), 0); del buf5 # reuse # Topologically Sorted Source Nodes: [repres], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf6, (4, 1, 4), (4, 4, 1), 0), primals_2, out=buf7) return (buf7, buf6, buf6, reinterpret_tensor(primals_2, (4, 4, 4), (16, 1, 4), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 48), reinterpret_tensor(primals_2, (4, 4), (1, 4), 32), reinterpret_tensor(primals_2, (4, 4), (1, 4), 16), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import torch import torch.nn as nn def batch_product(iput, mat2): result = None for i in range(iput.size()[0]): op = torch.mm(iput[i], mat2) op = op.unsqueeze(0) if result is None: result = op else: result = torch.cat((result, op), 0) return result.squeeze(2) class rec_attention(nn.Module): def __init__(self, hm, args): super(rec_attention, self).__init__() self.num_directions = 2 if args.bidirectional else 1 if hm is False: self.bin_rep_size = args.bin_rnn_size * self.num_directions else: self.bin_rep_size = args.bin_rnn_size self.bin_context_vector = nn.Parameter(torch.Tensor(self. bin_rep_size, 1), requires_grad=True) self.softmax = nn.Softmax(dim=1) self.bin_context_vector.data.uniform_(-0.1, 0.1) def forward(self, iput): alpha = self.softmax(batch_product(iput, self.bin_context_vector)) [batch_size, source_length, _bin_rep_size2] = iput.size() repres = torch.bmm(alpha.unsqueeze(2).view(batch_size, -1, source_length), iput) return repres, alpha def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'hm': 4, 'args': _mock_config(bidirectional=4, bin_rnn_size=4)}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x0 = xindex % 4 x2 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 3, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.full([1], 2, tl.int64) tmp6 = tmp0 < tmp5 tmp7 = tmp6 & tmp4 tmp8 = tl.full([1], 1, tl.int64) tmp9 = tmp0 < tmp8 tmp10 = tmp9 & tmp7 tmp11 = tl.load(in_ptr0 + x0, tmp10 & xmask, eviction_policy= 'evict_last', other=0.0) tmp12 = tmp0 >= tmp8 tmp13 = tmp12 & tmp7 tmp14 = tl.load(in_ptr1 + x0, tmp13 & xmask, eviction_policy= 'evict_last', other=0.0) tmp15 = tl.where(tmp9, tmp11, tmp14) tmp16 = tl.full(tmp15.shape, 0.0, tmp15.dtype) tmp17 = tl.where(tmp7, tmp15, tmp16) tmp18 = tmp0 >= tmp5 tmp19 = tmp18 & tmp4 tmp20 = tl.load(in_ptr2 + x0, tmp19 & xmask, eviction_policy= 'evict_last', other=0.0) tmp21 = tl.where(tmp6, tmp17, tmp20) tmp22 = tl.full(tmp21.shape, 0.0, tmp21.dtype) tmp23 = tl.where(tmp4, tmp21, tmp22) tmp24 = tmp0 >= tmp3 tl.full([1], 4, tl.int64) tmp27 = tl.load(in_ptr3 + x0, tmp24 & xmask, eviction_policy= 'evict_last', other=0.0) tmp28 = tl.where(tmp4, tmp23, tmp27) tl.store(out_ptr0 + x2, tmp28, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 1), (1, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1), (1, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_2, (4, 4), (4, 1), 0), primals_1, out=buf0) buf1 = empty_strided_cuda((4, 1), (1, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_2, (4, 4), (4, 1), 16), primals_1, out=buf1) buf2 = empty_strided_cuda((4, 1), (1, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_2, (4, 4), (4, 1), 32), primals_1, out=buf2) buf3 = empty_strided_cuda((4, 1), (1, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_2, (4, 4), (4, 1), 48), primals_1, out=buf3) del primals_1 buf4 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(16)](buf0, buf1, buf2, buf3, buf4, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf0 del buf1 del buf2 del buf3 buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused__softmax_1[grid(16)](buf4, buf5, 16, XBLOCK=16, num_warps=1, num_stages=1) buf6 = reinterpret_tensor(buf4, (4, 4), (4, 1), 0) del buf4 triton_poi_fused__softmax_2[grid(16)](buf5, buf6, 16, XBLOCK=16, num_warps=1, num_stages=1) buf7 = reinterpret_tensor(buf5, (4, 1, 4), (4, 4, 1), 0) del buf5 extern_kernels.bmm(reinterpret_tensor(buf6, (4, 1, 4), (4, 4, 1), 0 ), primals_2, out=buf7) return buf7, buf6, buf6, reinterpret_tensor(primals_2, (4, 4, 4), (16, 1, 4), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 48 ), reinterpret_tensor(primals_2, (4, 4), (1, 4), 32 ), reinterpret_tensor(primals_2, (4, 4), (1, 4), 16 ), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0) def batch_product(iput, mat2): result = None for i in range(iput.size()[0]): op = torch.mm(iput[i], mat2) op = op.unsqueeze(0) if result is None: result = op else: result = torch.cat((result, op), 0) return result.squeeze(2) class rec_attentionNew(nn.Module): def __init__(self, hm, args): super(rec_attentionNew, self).__init__() self.num_directions = 2 if args.bidirectional else 1 if hm is False: self.bin_rep_size = args.bin_rnn_size * self.num_directions else: self.bin_rep_size = args.bin_rnn_size self.bin_context_vector = nn.Parameter(torch.Tensor(self. bin_rep_size, 1), requires_grad=True) self.softmax = nn.Softmax(dim=1) self.bin_context_vector.data.uniform_(-0.1, 0.1) def forward(self, input_0): primals_1 = self.bin_context_vector primals_2 = input_0 output = call([primals_1, primals_2]) return output[0], output[1]
Luma-1994/lama
rec_attention
false
14,405
[ "MIT" ]
137
60d802e2e4cce789f03eea11b038212ba5f7fd1b
https://github.com/Luma-1994/lama/tree/60d802e2e4cce789f03eea11b038212ba5f7fd1b
SpanClassifier
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/fa/cfa3r7hdy22srka6lr25ebtxe7opyjxfjy56ybxhhudydf5tntqk.py # Topologically Sorted Source Nodes: [gelu, matmul], Original ATen: [aten.gelu, aten.view] # Source node to ATen node mapping: # gelu => add, erf, mul, mul_1, mul_2 # matmul => view_4 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.5), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.7071067811865476), kwargs = {}) # %erf : [num_users=1] = call_function[target=torch.ops.aten.erf.default](args = (%mul_1,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%erf, 1), kwargs = {}) # %mul_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %add), kwargs = {}) # %view_4 : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%mul_2, [16, 4]), kwargs = {}) triton_poi_fused_gelu_view_0 = async_compile.triton('triton_poi_fused_gelu_view_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_gelu_view_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_gelu_view_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp3 = 0.7071067811865476 tmp4 = tmp0 * tmp3 tmp5 = libdevice.erf(tmp4) tmp6 = 1.0 tmp7 = tmp5 + tmp6 tmp8 = tmp2 * tmp7 tl.store(out_ptr0 + (x0), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/7a/c7aj7yh7dykaeye32pes4jnesrbiip57eljeuw6waxcfkbshsrzx.py # Topologically Sorted Source Nodes: [span_matrix], Original ATen: [aten.cat] # Source node to ATen node mapping: # span_matrix => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%expand, %expand_1], 3), kwargs = {}) triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x4 = (xindex // 32) x1 = (xindex // 8) % 4 x3 = (xindex // 128) x5 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x4) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = 0.5 tmp7 = tmp5 * tmp6 tmp8 = 0.7071067811865476 tmp9 = tmp5 * tmp8 tmp10 = libdevice.erf(tmp9) tmp11 = 1.0 tmp12 = tmp10 + tmp11 tmp13 = tmp7 * tmp12 tmp14 = tl.full(tmp13.shape, 0.0, tmp13.dtype) tmp15 = tl.where(tmp4, tmp13, tmp14) tmp16 = tmp0 >= tmp3 tmp17 = tl.full([1], 8, tl.int64) tmp18 = tmp0 < tmp17 tmp19 = tl.load(in_ptr1 + ((4*x1) + (16*x3) + ((-4) + x0)), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tl.where(tmp4, tmp15, tmp19) tl.store(out_ptr0 + (x5), tmp20, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/my/cmyco5oslv7vsnmzvqpi25vb2ijuiv7woucfwou2clkpv4xhmnuh.py # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] # Source node to ATen node mapping: # add => add_2 # Graph fragment: # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%bmm, %squeeze), kwargs = {}) triton_poi_fused_add_2 = async_compile.triton('triton_poi_fused_add_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask) tmp2 = tl.load(in_ptr1 + (0)) tmp3 = tl.broadcast_to(tmp2, [XBLOCK]) tmp4 = tmp1 + tmp3 tmp5 = tmp0 + tmp4 tl.store(in_out_ptr0 + (x0), tmp5, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (1, 8), (8, 1)) assert_size_stride(primals_8, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_3, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_2 del primals_3 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_4 del primals_5 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [gelu, matmul], Original ATen: [aten.gelu, aten.view] stream0 = get_raw_stream(0) triton_poi_fused_gelu_view_0.run(buf0, buf2, 64, grid=grid(64), stream=stream0) buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.mm] extern_kernels.mm(buf2, primals_6, out=buf3) buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [gelu_1], Original ATen: [aten.gelu] triton_poi_fused_gelu_view_0.run(buf1, buf4, 64, grid=grid(64), stream=stream0) buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [biaffine_logits], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf3, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf4, (4, 4, 4), (16, 1, 4), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [span_matrix], Original ATen: [aten.cat] triton_poi_fused_cat_1.run(buf0, buf4, buf6, 512, grid=grid(512), stream=stream0) buf7 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf6, (64, 8), (8, 1), 0), reinterpret_tensor(primals_7, (8, 1), (1, 8), 0), out=buf7) buf8 = buf5; del buf5 # reuse # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] triton_poi_fused_add_2.run(buf8, buf7, primals_8, 64, grid=grid(64), stream=stream0) del buf7 del primals_8 return (buf8, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), buf0, buf1, reinterpret_tensor(buf6, (64, 8), (8, 1), 0), primals_7, reinterpret_tensor(buf3, (4, 4, 4), (16, 1, 4), 0), buf4, reinterpret_tensor(buf2, (4, 16), (1, 4), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((1, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import init class SpanClassifier(nn.Module): def __init__(self, hidden_size: 'int', dropout_rate: 'float'): super(SpanClassifier, self).__init__() self.start_proj = nn.Linear(hidden_size, hidden_size) self.end_proj = nn.Linear(hidden_size, hidden_size) self.biaffine = nn.Parameter(torch.Tensor(hidden_size, hidden_size)) self.concat_proj = nn.Linear(hidden_size * 2, 1) self.dropout = nn.Dropout(dropout_rate) self.reset_parameters() def forward(self, input_features): _bsz, seq_len, _dim = input_features.size() start_feature = self.dropout(F.gelu(self.start_proj(input_features))) end_feature = self.dropout(F.gelu(self.end_proj(input_features))) biaffine_logits = torch.bmm(torch.matmul(start_feature, self. biaffine), end_feature.transpose(1, 2)) start_extend = start_feature.unsqueeze(2).expand(-1, -1, seq_len, -1) end_extend = end_feature.unsqueeze(1).expand(-1, seq_len, -1, -1) span_matrix = torch.cat([start_extend, end_extend], 3) concat_logits = self.concat_proj(span_matrix).squeeze(-1) return biaffine_logits + concat_logits def reset_parameters(self) ->None: init.kaiming_uniform_(self.biaffine, a=math.sqrt(5)) def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'hidden_size': 4, 'dropout_rate': 0.5}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import math import torch.nn as nn from torch.nn import init assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_gelu_view_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp3 = 0.7071067811865476 tmp4 = tmp0 * tmp3 tmp5 = libdevice.erf(tmp4) tmp6 = 1.0 tmp7 = tmp5 + tmp6 tmp8 = tmp2 * tmp7 tl.store(out_ptr0 + x0, tmp8, xmask) @triton.jit def triton_poi_fused_cat_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x4 = xindex // 32 x1 = xindex // 8 % 4 x3 = xindex // 128 x5 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x4 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = 0.5 tmp7 = tmp5 * tmp6 tmp8 = 0.7071067811865476 tmp9 = tmp5 * tmp8 tmp10 = libdevice.erf(tmp9) tmp11 = 1.0 tmp12 = tmp10 + tmp11 tmp13 = tmp7 * tmp12 tmp14 = tl.full(tmp13.shape, 0.0, tmp13.dtype) tmp15 = tl.where(tmp4, tmp13, tmp14) tmp16 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp19 = tl.load(in_ptr1 + (4 * x1 + 16 * x3 + (-4 + x0)), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tl.where(tmp4, tmp15, tmp19) tl.store(out_ptr0 + x5, tmp20, xmask) @triton.jit def triton_poi_fused_add_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask) tmp2 = tl.load(in_ptr1 + 0) tmp3 = tl.broadcast_to(tmp2, [XBLOCK]) tmp4 = tmp1 + tmp3 tmp5 = tmp0 + tmp4 tl.store(in_out_ptr0 + x0, tmp5, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8) = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (1, 8), (8, 1)) assert_size_stride(primals_8, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_3, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf0) del primals_2 del primals_3 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf1) del primals_4 del primals_5 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_gelu_view_0[grid(64)](buf0, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(buf2, primals_6, out=buf3) buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_gelu_view_0[grid(64)](buf1, buf4, 64, XBLOCK=64, num_warps=1, num_stages=1) buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf3, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf4, (4, 4, 4), (16, 1, 4), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32) triton_poi_fused_cat_1[grid(512)](buf0, buf4, buf6, 512, XBLOCK=128, num_warps=4, num_stages=1) buf7 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf6, (64, 8), (8, 1), 0), reinterpret_tensor(primals_7, (8, 1), (1, 8), 0), out=buf7) buf8 = buf5 del buf5 triton_poi_fused_add_2[grid(64)](buf8, buf7, primals_8, 64, XBLOCK= 64, num_warps=1, num_stages=1) del buf7 del primals_8 return buf8, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0 ), buf0, buf1, reinterpret_tensor(buf6, (64, 8), (8, 1), 0 ), primals_7, reinterpret_tensor(buf3, (4, 4, 4), (16, 1, 4), 0 ), buf4, reinterpret_tensor(buf2, (4, 16), (1, 4), 0 ), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0) class SpanClassifierNew(nn.Module): def __init__(self, hidden_size: 'int', dropout_rate: 'float'): super(SpanClassifierNew, self).__init__() self.start_proj = nn.Linear(hidden_size, hidden_size) self.end_proj = nn.Linear(hidden_size, hidden_size) self.biaffine = nn.Parameter(torch.Tensor(hidden_size, hidden_size)) self.concat_proj = nn.Linear(hidden_size * 2, 1) self.dropout = nn.Dropout(dropout_rate) self.reset_parameters() def reset_parameters(self) ->None: init.kaiming_uniform_(self.biaffine, a=math.sqrt(5)) def forward(self, input_0): primals_2 = self.biaffine primals_4 = self.start_proj.weight primals_3 = self.start_proj.bias primals_6 = self.end_proj.weight primals_5 = self.end_proj.bias primals_7 = self.concat_proj.weight primals_8 = self.concat_proj.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return output[0]
ShannonAI/dice_loss_for_NLP
SpanClassifier
false
14,406
[ "Apache-2.0" ]
143
d437bb999185535df46fdb74d1f2f57161331b44
https://github.com/ShannonAI/dice_loss_for_NLP/tree/d437bb999185535df46fdb74d1f2f57161331b44
QuadricLinearLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/gy/cgy2mxetei6mcgmpywuc33z6uzyl5n4tb4yy6ixrmm7zr7pnoxbk.py # Topologically Sorted Source Nodes: [td_error, td_error_abs, quadratic_part, pow_1, mul, linear_part, mul_1, loss, mul_2, loss_1], Original ATen: [aten.sub, aten.abs, aten.clamp, aten.pow, aten.mul, aten.add, aten.mean] # Source node to ATen node mapping: # linear_part => sub_1 # loss => add # loss_1 => mean # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # pow_1 => pow_1 # quadratic_part => clamp_max # td_error => sub # td_error_abs => abs_1 # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %abs_1 : [num_users=2] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {}) # %clamp_max : [num_users=2] = call_function[target=torch.ops.aten.clamp_max.default](args = (%abs_1, 4), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%clamp_max, 2), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, 0.5), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%abs_1, %clamp_max), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, 4), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, %arg2_1), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%mul_2,), kwargs = {}) triton_per_fused_abs_add_clamp_mean_mul_pow_sub_0 = async_compile.triton('triton_per_fused_abs_add_clamp_mean_mul_pow_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=(4,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_add_clamp_mean_mul_pow_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 3, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_abs_add_clamp_mean_mul_pow_sub_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp12 = tl.load(in_ptr2 + (r0), None) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = 4.0 tmp5 = triton_helpers.minimum(tmp3, tmp4) tmp6 = tmp5 * tmp5 tmp7 = 0.5 tmp8 = tmp6 * tmp7 tmp9 = tmp3 - tmp5 tmp10 = tmp9 * tmp4 tmp11 = tmp8 + tmp10 tmp13 = tmp11 * tmp12 tmp14 = tl.broadcast_to(tmp13, [RBLOCK]) tmp16 = triton_helpers.promote_to_tensor(tl.sum(tmp14, 0)) tmp17 = 256.0 tmp18 = tmp16 / tmp17 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp18, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [td_error, td_error_abs, quadratic_part, pow_1, mul, linear_part, mul_1, loss, mul_2, loss_1], Original ATen: [aten.sub, aten.abs, aten.clamp, aten.pow, aten.mul, aten.add, aten.mean] stream0 = get_raw_stream(0) triton_per_fused_abs_add_clamp_mean_mul_pow_sub_0.run(buf1, arg0_1, arg1_1, arg2_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 del arg2_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class QuadricLinearLoss(nn.Module): def __init__(self, clip_delta): super(QuadricLinearLoss, self).__init__() self.clip_delta = clip_delta def forward(self, y_pred, y_true, weights): td_error = y_true - y_pred td_error_abs = torch.abs(td_error) quadratic_part = torch.clamp(td_error_abs, max=self.clip_delta) linear_part = td_error_abs - quadratic_part loss = 0.5 * quadratic_part ** 2 + self.clip_delta * linear_part loss = torch.mean(loss * weights) return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {'clip_delta': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_abs_add_clamp_mean_mul_pow_sub_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp12 = tl.load(in_ptr2 + r0, None) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = 4.0 tmp5 = triton_helpers.minimum(tmp3, tmp4) tmp6 = tmp5 * tmp5 tmp7 = 0.5 tmp8 = tmp6 * tmp7 tmp9 = tmp3 - tmp5 tmp10 = tmp9 * tmp4 tmp11 = tmp8 + tmp10 tmp13 = tmp11 * tmp12 tmp14 = tl.broadcast_to(tmp13, [RBLOCK]) tmp16 = triton_helpers.promote_to_tensor(tl.sum(tmp14, 0)) tmp17 = 256.0 tmp18 = tmp16 / tmp17 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp18, None) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_abs_add_clamp_mean_mul_pow_sub_0[grid(1)](buf1, arg0_1, arg1_1, arg2_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 del arg2_1 return buf1, class QuadricLinearLossNew(nn.Module): def __init__(self, clip_delta): super(QuadricLinearLossNew, self).__init__() self.clip_delta = clip_delta def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
Shmuma/Run-Skeleton-Run
QuadricLinearLoss
false
14,407
[ "MIT" ]
92
a953e6c524a444b6a99a54ef5b2886a57de0d185
https://github.com/Shmuma/Run-Skeleton-Run/tree/a953e6c524a444b6a99a54ef5b2886a57de0d185
Discriminator
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/4s/c4szhh35rbtilv4zlnanegnq2hofrkvv7yac3nsynw6qjxjbg3tg.py # Topologically Sorted Source Nodes: [bilinear], Original ATen: [aten.clone] # Source node to ATen node mapping: # bilinear => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 4 x3 = xindex tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x3), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/3a/c3a7jkhbifqenis2g23pmqmidmnwe5he2pwgbrunksukoz44fhmm.py # Topologically Sorted Source Nodes: [logits], Original ATen: [aten.cat] # Source node to ATen node mapping: # logits => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%squeeze, %squeeze_1], 1), kwargs = {}) triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp6 = tl.load(in_ptr1 + (0)) tmp7 = tl.broadcast_to(tmp6, [XBLOCK]) tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp8 = tmp5 + tmp7 tmp9 = tl.full(tmp8.shape, 0.0, tmp8.dtype) tmp10 = tl.where(tmp4, tmp8, tmp9) tmp11 = tmp0 >= tmp3 tmp12 = tl.full([1], 8, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tl.load(in_ptr2 + ((4*x1) + ((-4) + x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp15 = tmp14 + tmp7 tmp16 = tl.full(tmp15.shape, 0.0, tmp15.dtype) tmp17 = tl.where(tmp11, tmp15, tmp16) tmp18 = tl.where(tmp4, tmp10, tmp17) tl.store(out_ptr0 + (x2), tmp18, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, ), (1, )) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (1, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (1, ), (1, )) assert_size_stride(primals_5, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [bilinear], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(primals_1, buf0, 64, grid=grid(64), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [bilinear], Original ATen: [aten._trilinear] buf1 = torch.ops.aten._trilinear.default(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), primals_3, reinterpret_tensor(buf0, (16, 4), (4, 1), 0), [1, 3], [0], [1, 2], [2, 3]) buf2 = buf1 del buf1 # Topologically Sorted Source Nodes: [bilinear_1], Original ATen: [aten._trilinear] buf3 = torch.ops.aten._trilinear.default(reinterpret_tensor(primals_5, (16, 4), (4, 1), 0), primals_3, reinterpret_tensor(buf0, (16, 4), (4, 1), 0), [1, 3], [0], [1, 2], [2, 3]) del primals_3 buf4 = buf3 del buf3 buf5 = empty_strided_cuda((4, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [logits], Original ATen: [aten.cat] triton_poi_fused_cat_1.run(buf2, primals_4, buf4, buf5, 32, grid=grid(32), stream=stream0) del buf2 del buf4 del primals_4 return (buf5, reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (16, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.data class Discriminator(nn.Module): def __init__(self, n_h): super(Discriminator, self).__init__() self.f_k = nn.Bilinear(n_h, n_h, 1) for m in self.modules(): self.weights_init(m) def weights_init(self, m): if isinstance(m, nn.Bilinear): torch.nn.init.xavier_uniform_(m.weight.data) if m.bias is not None: m.bias.data.fill_(0.0) def forward(self, c, h_pl, h_mi, s_bias1=None, s_bias2=None): c_x = torch.unsqueeze(c, 1) c_x = c_x.expand_as(h_pl) sc_1 = torch.squeeze(self.f_k(h_pl, c_x), 2) sc_2 = torch.squeeze(self.f_k(h_mi, c_x), 2) if s_bias1 is not None: sc_1 += s_bias1 if s_bias2 is not None: sc_2 += s_bias2 logits = torch.cat((sc_1, sc_2), 1) return logits def get_inputs(): return [torch.rand([4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'n_h': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 4 x3 = xindex tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tl.store(out_ptr0 + x3, tmp0, xmask) @triton.jit def triton_poi_fused_cat_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp6 = tl.load(in_ptr1 + 0) tmp7 = tl.broadcast_to(tmp6, [XBLOCK]) tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp8 = tmp5 + tmp7 tmp9 = tl.full(tmp8.shape, 0.0, tmp8.dtype) tmp10 = tl.where(tmp4, tmp8, tmp9) tmp11 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp14 = tl.load(in_ptr2 + (4 * x1 + (-4 + x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp15 = tmp14 + tmp7 tmp16 = tl.full(tmp15.shape, 0.0, tmp15.dtype) tmp17 = tl.where(tmp11, tmp15, tmp16) tmp18 = tl.where(tmp4, tmp10, tmp17) tl.store(out_ptr0 + x2, tmp18, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4,), (1,)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (1, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (1,), (1,)) assert_size_stride(primals_5, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(64)](primals_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_1 buf1 = torch.ops.aten._trilinear.default(reinterpret_tensor( primals_2, (16, 4), (4, 1), 0), primals_3, reinterpret_tensor( buf0, (16, 4), (4, 1), 0), [1, 3], [0], [1, 2], [2, 3]) buf2 = buf1 del buf1 buf3 = torch.ops.aten._trilinear.default(reinterpret_tensor( primals_5, (16, 4), (4, 1), 0), primals_3, reinterpret_tensor( buf0, (16, 4), (4, 1), 0), [1, 3], [0], [1, 2], [2, 3]) del primals_3 buf4 = buf3 del buf3 buf5 = empty_strided_cuda((4, 8), (8, 1), torch.float32) triton_poi_fused_cat_1[grid(32)](buf2, primals_4, buf4, buf5, 32, XBLOCK=32, num_warps=1, num_stages=1) del buf2 del buf4 del primals_4 return buf5, reinterpret_tensor(primals_2, (16, 4), (4, 1), 0 ), reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor( primals_5, (16, 4), (4, 1), 0) class DiscriminatorNew(nn.Module): def __init__(self, n_h): super(DiscriminatorNew, self).__init__() self.f_k = nn.Bilinear(n_h, n_h, 1) for m in self.modules(): self.weights_init(m) def weights_init(self, m): if isinstance(m, nn.Bilinear): torch.nn.init.xavier_uniform_(m.weight.data) if m.bias is not None: m.bias.data.fill_(0.0) def forward(self, input_0, input_1, input_2): primals_3 = self.f_k.weight primals_4 = self.f_k.bias primals_1 = input_0 primals_2 = input_1 primals_5 = input_2 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
Shen-Lab/GraphCL
Discriminator
false
14,408
[ "MIT" ]
275
1d43f79d7f33f8133f9d4b4b8254d8aaeb09a615
https://github.com/Shen-Lab/GraphCL/tree/1d43f79d7f33f8133f9d4b4b8254d8aaeb09a615
MNISTDecoder
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/s7/cs7uub5ykeyjstuahjj2wiqvaxvpwbl5433nkj44otqf5jiyt5xu.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x => relu # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_2), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {}) # %le_3 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/kk/ckkeehad7xvjmxduxmwzjdm4zu3f5inttmd6kj4pju55xhwrnoea.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] # Source node to ATen node mapping: # x_2 => add, add_1, convert_element_type, convert_element_type_1, iota, mul, mul_1 # Graph fragment: # %iota : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (8,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%iota, 1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 0), kwargs = {}) # %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%add, torch.float32), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type, 0.0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_1, 0.5), kwargs = {}) # %convert_element_type_1 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%mul_1, torch.int64), kwargs = {}) triton_poi_fused__to_copy_add_arange_mul_1 = async_compile.triton('triton_poi_fused__to_copy_add_arange_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_1(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ru/cruw2obxva6pxpn36ij7fryfxps75ae46yoxvlx2qcwblzrcmqcs.py # Topologically Sorted Source Nodes: [conv2d, relu_1, x_2], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index] # Source node to ATen node mapping: # conv2d => convolution # relu_1 => relu_1 # x_2 => _unsafe_index # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%view, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) # %_unsafe_index : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_1, [None, None, %unsqueeze, %convert_element_type_1]), kwargs = {}) triton_poi_fused__unsafe_index_convolution_relu_2 = async_compile.triton('triton_poi_fused__unsafe_index_convolution_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_convolution_relu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_convolution_relu_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2048 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 8) % 8 x0 = xindex % 8 x5 = (xindex // 64) x2 = (xindex // 64) % 8 x6 = xindex tmp0 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + (x2), None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr1 + (tmp8 + (4*tmp4) + (16*x5)), None, eviction_policy='evict_last') tmp11 = tmp9 + tmp10 tmp12 = tl.full([1], 0, tl.int32) tmp13 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + (x6), tmp13, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/5f/c5f2afcmmv553z7zzpjtqsabkp6o4q2u2oowxevzrgutfupwhlew.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] # Source node to ATen node mapping: # x_3 => add_4, add_5, convert_element_type_4, convert_element_type_5, iota_2, mul_4, mul_5 # Graph fragment: # %iota_2 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (16,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%iota_2, 1), kwargs = {}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, 0), kwargs = {}) # %convert_element_type_4 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%add_4, torch.float32), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_4, 0.0), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_5, 0.5), kwargs = {}) # %convert_element_type_5 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%mul_5, torch.int64), kwargs = {}) triton_poi_fused__to_copy_add_arange_mul_3 = async_compile.triton('triton_poi_fused__to_copy_add_arange_mul_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_mul_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_3(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/si/csinpv43twpmrw72ql2lirge6zzzke57p54vzv5bhbd4whwupsos.py # Topologically Sorted Source Nodes: [conv2d_1, relu_2, x_3], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # relu_2 => relu_2 # x_3 => _unsafe_index_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) # %_unsafe_index_1 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_2, [None, None, %unsqueeze_1, %convert_element_type_5]), kwargs = {}) triton_poi_fused__unsafe_index_convolution_relu_4 = async_compile.triton('triton_poi_fused__unsafe_index_convolution_relu_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_convolution_relu_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_convolution_relu_4(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 16) % 16 x0 = xindex % 16 x5 = (xindex // 256) x2 = (xindex // 256) % 8 x6 = xindex tmp0 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + (x2), None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 8, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr1 + (tmp8 + (8*tmp4) + (64*x5)), None, eviction_policy='evict_last') tmp11 = tmp9 + tmp10 tmp12 = tl.full([1], 0, tl.int32) tmp13 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + (x6), tmp13, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/rr/crrv3ct64guewfyjsmcryukhlnd6445rtoyjru4dcevosxesviof.py # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] # Source node to ATen node mapping: # x_4 => add_8, add_9, convert_element_type_8, convert_element_type_9, iota_4, mul_8, mul_9 # Graph fragment: # %iota_4 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (28,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%iota_4, 1), kwargs = {}) # %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_8, 0), kwargs = {}) # %convert_element_type_8 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%add_8, torch.float32), kwargs = {}) # %add_9 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_8, 0.0), kwargs = {}) # %mul_9 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_9, 0.5), kwargs = {}) # %convert_element_type_9 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%mul_9, torch.int64), kwargs = {}) triton_poi_fused__to_copy_add_arange_mul_5 = async_compile.triton('triton_poi_fused__to_copy_add_arange_mul_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_mul_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_5(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 28 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/xz/cxzoom4dh3m2cnqpy3aorwxuxy4zjbahtvwgoeklhrynfpp3pjtw.py # Topologically Sorted Source Nodes: [conv2d_2, relu_3, x_4], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index] # Source node to ATen node mapping: # conv2d_2 => convolution_2 # relu_3 => relu_3 # x_4 => _unsafe_index_2 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_8, %primals_9, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {}) # %_unsafe_index_2 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_3, [None, None, %unsqueeze_2, %convert_element_type_9]), kwargs = {}) triton_poi_fused__unsafe_index_convolution_relu_6 = async_compile.triton('triton_poi_fused__unsafe_index_convolution_relu_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_convolution_relu_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_convolution_relu_6(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 50176 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 28) % 28 x0 = xindex % 28 x5 = (xindex // 784) x2 = (xindex // 784) % 16 x6 = xindex tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + (x2), xmask, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 14, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr1 + (tmp8 + (14*tmp4) + (196*x5)), xmask, eviction_policy='evict_last') tmp11 = tmp9 + tmp10 tmp12 = tl.full([1], 0, tl.int32) tmp13 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + (x6), tmp13, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/n2/cn2pp3npwqwime32robz5raw354ukxrcq3clyyi5ianvfxu3fa3t.py # Topologically Sorted Source Nodes: [conv2d_3, x_5], Original ATen: [aten.convolution, aten.sigmoid] # Source node to ATen node mapping: # conv2d_3 => convolution_3 # x_5 => sigmoid # Graph fragment: # %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_2, %primals_10, %primals_11, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_3,), kwargs = {}) triton_poi_fused_convolution_sigmoid_7 = async_compile.triton('triton_poi_fused_convolution_sigmoid_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_sigmoid_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_sigmoid_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 3136 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/6r/c6rjn6sh6etpryrcklwig4pxf2irvfhi7n2urko6cggdpwbiym4e.py # Topologically Sorted Source Nodes: [conv2d_2, relu_3], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_2 => convolution_2 # relu_3 => relu_3 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_8, %primals_9, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_3, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_8 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_8(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 12544 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 196) % 16 x2 = (xindex // 3136) x4 = xindex % 3136 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x4 + (3200*x2)), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/xx/cxx4h6lyvkluyrzz5amipzsddmvupdd5izii5rviasasquour45t.py # Topologically Sorted Source Nodes: [conv2d_1, relu_2], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # relu_2 => relu_2 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_2, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_9 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_9(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2048 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 64) % 8 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x3), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/76/c76zto4btgqqoy2vibpcyvnibizgd3usp7hd2cytpjygs6dbmqoa.py # Topologically Sorted Source Nodes: [conv2d, relu_1], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d => convolution # relu_1 => relu_1 # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%view, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) # %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_10 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_10(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 8 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x3), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (128, 4), (4, 1)) assert_size_stride(primals_2, (128, ), (1, )) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (8, 8, 3, 3), (72, 9, 3, 1)) assert_size_stride(primals_5, (8, ), (1, )) assert_size_stride(primals_6, (8, 8, 3, 3), (72, 9, 3, 1)) assert_size_stride(primals_7, (8, ), (1, )) assert_size_stride(primals_8, (16, 8, 3, 3), (72, 9, 3, 1)) assert_size_stride(primals_9, (16, ), (1, )) assert_size_stride(primals_10, (1, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_11, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 128), (128, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 128), (1, 4), 0), out=buf0) del primals_1 buf1 = buf0; del buf0 # reuse buf16 = empty_strided_cuda((4, 128), (128, 1), torch.bool) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf16, 512, grid=grid(512), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(reinterpret_tensor(buf1, (4, 8, 4, 4), (128, 16, 4, 1), 0), primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 8, 4, 4), (128, 16, 4, 1)) buf3 = empty_strided_cuda((8, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] triton_poi_fused__to_copy_add_arange_mul_1.run(buf3, 8, grid=grid(8), stream=stream0) buf4 = empty_strided_cuda((4, 8, 8, 8), (512, 64, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d, relu_1, x_2], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index] triton_poi_fused__unsafe_index_convolution_relu_2.run(buf3, buf2, primals_5, buf4, 2048, grid=grid(2048), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf5 = extern_kernels.convolution(buf4, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 8, 8, 8), (512, 64, 8, 1)) buf6 = empty_strided_cuda((16, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] triton_poi_fused__to_copy_add_arange_mul_3.run(buf6, 16, grid=grid(16), stream=stream0) buf7 = empty_strided_cuda((4, 8, 16, 16), (2048, 256, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_1, relu_2, x_3], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index] triton_poi_fused__unsafe_index_convolution_relu_4.run(buf6, buf5, primals_7, buf7, 8192, grid=grid(8192), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf8 = extern_kernels.convolution(buf7, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 16, 14, 14), (3136, 196, 14, 1)) buf9 = empty_strided_cuda((28, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy] triton_poi_fused__to_copy_add_arange_mul_5.run(buf9, 28, grid=grid(28), stream=stream0) buf10 = empty_strided_cuda((4, 16, 28, 28), (12544, 784, 28, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_2, relu_3, x_4], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index] triton_poi_fused__unsafe_index_convolution_relu_6.run(buf9, buf8, primals_9, buf10, 50176, grid=grid(50176), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf11 = extern_kernels.convolution(buf10, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf11, (4, 1, 28, 28), (784, 784, 28, 1)) buf12 = buf11; del buf11 # reuse # Topologically Sorted Source Nodes: [conv2d_3, x_5], Original ATen: [aten.convolution, aten.sigmoid] triton_poi_fused_convolution_sigmoid_7.run(buf12, primals_11, 3136, grid=grid(3136), stream=stream0) del primals_11 buf13 = empty_strided_cuda((4, 16, 14, 14), (3200, 196, 14, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_2, relu_3], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_8.run(buf8, primals_9, buf13, 12544, grid=grid(12544), stream=stream0) del buf8 del primals_9 buf14 = empty_strided_cuda((4, 8, 8, 8), (512, 64, 8, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_1, relu_2], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_9.run(buf5, primals_7, buf14, 2048, grid=grid(2048), stream=stream0) del buf5 del primals_7 buf15 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d, relu_1], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_10.run(buf2, primals_5, buf15, 512, grid=grid(512), stream=stream0) del buf2 del primals_5 return (buf12, primals_3, primals_4, primals_6, primals_8, primals_10, reinterpret_tensor(buf1, (4, 8, 4, 4), (128, 16, 4, 1), 0), buf3, buf4, buf6, buf7, buf9, buf10, buf12, buf13, buf14, buf15, buf16, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((128, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((8, 8, 3, 3), (72, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((8, 8, 3, 3), (72, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((16, 8, 3, 3), (72, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((1, 16, 3, 3), (144, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class MNISTDecoder(nn.Module): """ MNIST decoder used in the Counterfactual with Reinforcement Learning experiments. The model consists of a fully connected layer of 128 units with ReLU activation followed by a convolutional block. The convolutional block consists fo 4 convolutional layers having 8, 8, 8 and 1 channels and a kernel size of 3. Each convolutional layer, except the last one, has ReLU nonlinearities and is followed by an upsampling layer of size 2. The final layers uses a sigmoid activation to clip the output values in [0, 1]. """ def __init__(self, latent_dim: 'int'): """ Constructor. Parameters ---------- latent_dim Latent dimension. """ super().__init__() self.fc1 = nn.Linear(latent_dim, 128) self.conv1 = nn.Conv2d(8, 8, kernel_size=(3, 3), padding=1) self.up1 = nn.Upsample(scale_factor=2) self.conv2 = nn.Conv2d(8, 8, kernel_size=(3, 3), padding=1) self.up2 = nn.Upsample(scale_factor=2) self.conv3 = nn.Conv2d(8, 16, kernel_size=(3, 3)) self.up3 = nn.Upsample(scale_factor=2) self.conv4 = nn.Conv2d(16, 1, kernel_size=(3, 3), padding=1) def forward(self, x: 'torch.Tensor') ->torch.Tensor: x = F.relu(self.fc1(x)) x = x.view(x.shape[0], 8, 4, 4) x = self.up1(F.relu(self.conv1(x))) x = self.up2(F.relu(self.conv2(x))) x = self.up3(F.relu(self.conv3(x))) x = torch.sigmoid(self.conv4(x)) return x def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {'latent_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_1(out_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + x0, tmp4, xmask) @triton.jit def triton_poi_fused__unsafe_index_convolution_relu_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 8 % 8 x0 = xindex % 8 x5 = xindex // 64 x2 = xindex // 64 % 8 x6 = xindex tmp0 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + x2, None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr1 + (tmp8 + 4 * tmp4 + 16 * x5), None, eviction_policy='evict_last') tmp11 = tmp9 + tmp10 tmp12 = tl.full([1], 0, tl.int32) tmp13 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + x6, tmp13, None) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_3(out_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + x0, tmp4, xmask) @triton.jit def triton_poi_fused__unsafe_index_convolution_relu_4(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 16 % 16 x0 = xindex % 16 x5 = xindex // 256 x2 = xindex // 256 % 8 x6 = xindex tmp0 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + x2, None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 8, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr1 + (tmp8 + 8 * tmp4 + 64 * x5), None, eviction_policy='evict_last') tmp11 = tmp9 + tmp10 tmp12 = tl.full([1], 0, tl.int32) tmp13 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + x6, tmp13, None) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_5(out_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 28 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + x0, tmp4, xmask) @triton.jit def triton_poi_fused__unsafe_index_convolution_relu_6(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 50176 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 28 % 28 x0 = xindex % 28 x5 = xindex // 784 x2 = xindex // 784 % 16 x6 = xindex tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 14, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr1 + (tmp8 + 14 * tmp4 + 196 * x5), xmask, eviction_policy='evict_last') tmp11 = tmp9 + tmp10 tmp12 = tl.full([1], 0, tl.int32) tmp13 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + x6, tmp13, xmask) @triton.jit def triton_poi_fused_convolution_sigmoid_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 3136 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + x0, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_8(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 12544 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 196 % 16 x2 = xindex // 3136 x4 = xindex % 3136 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x4 + 3200 * x2), tmp6, xmask) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_9(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 64 % 8 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x3, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_10(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 8 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x3, tmp6, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (128, 4), (4, 1)) assert_size_stride(primals_2, (128,), (1,)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (8, 8, 3, 3), (72, 9, 3, 1)) assert_size_stride(primals_5, (8,), (1,)) assert_size_stride(primals_6, (8, 8, 3, 3), (72, 9, 3, 1)) assert_size_stride(primals_7, (8,), (1,)) assert_size_stride(primals_8, (16, 8, 3, 3), (72, 9, 3, 1)) assert_size_stride(primals_9, (16,), (1,)) assert_size_stride(primals_10, (1, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_11, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 128), (128, 1), torch.float32) extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 128), (1, 4), 0), out=buf0) del primals_1 buf1 = buf0 del buf0 buf16 = empty_strided_cuda((4, 128), (128, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(512)](buf1, primals_2, buf16, 512, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = extern_kernels.convolution(reinterpret_tensor(buf1, (4, 8, 4, 4), (128, 16, 4, 1), 0), primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 8, 4, 4), (128, 16, 4, 1)) buf3 = empty_strided_cuda((8,), (1,), torch.int64) triton_poi_fused__to_copy_add_arange_mul_1[grid(8)](buf3, 8, XBLOCK =8, num_warps=1, num_stages=1) buf4 = empty_strided_cuda((4, 8, 8, 8), (512, 64, 8, 1), torch.float32) triton_poi_fused__unsafe_index_convolution_relu_2[grid(2048)](buf3, buf2, primals_5, buf4, 2048, XBLOCK=256, num_warps=4, num_stages=1) buf5 = extern_kernels.convolution(buf4, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 8, 8, 8), (512, 64, 8, 1)) buf6 = empty_strided_cuda((16,), (1,), torch.int64) triton_poi_fused__to_copy_add_arange_mul_3[grid(16)](buf6, 16, XBLOCK=16, num_warps=1, num_stages=1) buf7 = empty_strided_cuda((4, 8, 16, 16), (2048, 256, 16, 1), torch .float32) triton_poi_fused__unsafe_index_convolution_relu_4[grid(8192)](buf6, buf5, primals_7, buf7, 8192, XBLOCK=128, num_warps=4, num_stages=1) buf8 = extern_kernels.convolution(buf7, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 16, 14, 14), (3136, 196, 14, 1)) buf9 = empty_strided_cuda((28,), (1,), torch.int64) triton_poi_fused__to_copy_add_arange_mul_5[grid(28)](buf9, 28, XBLOCK=32, num_warps=1, num_stages=1) buf10 = empty_strided_cuda((4, 16, 28, 28), (12544, 784, 28, 1), torch.float32) triton_poi_fused__unsafe_index_convolution_relu_6[grid(50176)](buf9, buf8, primals_9, buf10, 50176, XBLOCK=512, num_warps=4, num_stages=1) buf11 = extern_kernels.convolution(buf10, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf11, (4, 1, 28, 28), (784, 784, 28, 1)) buf12 = buf11 del buf11 triton_poi_fused_convolution_sigmoid_7[grid(3136)](buf12, primals_11, 3136, XBLOCK=128, num_warps=4, num_stages=1) del primals_11 buf13 = empty_strided_cuda((4, 16, 14, 14), (3200, 196, 14, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_8[grid(12544)]( buf8, primals_9, buf13, 12544, XBLOCK=128, num_warps=4, num_stages=1) del buf8 del primals_9 buf14 = empty_strided_cuda((4, 8, 8, 8), (512, 64, 8, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_9[grid(2048)](buf5 , primals_7, buf14, 2048, XBLOCK=128, num_warps=4, num_stages=1) del buf5 del primals_7 buf15 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_10[grid(512)](buf2 , primals_5, buf15, 512, XBLOCK=128, num_warps=4, num_stages=1) del buf2 del primals_5 return (buf12, primals_3, primals_4, primals_6, primals_8, primals_10, reinterpret_tensor(buf1, (4, 8, 4, 4), (128, 16, 4, 1), 0), buf3, buf4, buf6, buf7, buf9, buf10, buf12, buf13, buf14, buf15, buf16) class MNISTDecoderNew(nn.Module): """ MNIST decoder used in the Counterfactual with Reinforcement Learning experiments. The model consists of a fully connected layer of 128 units with ReLU activation followed by a convolutional block. The convolutional block consists fo 4 convolutional layers having 8, 8, 8 and 1 channels and a kernel size of 3. Each convolutional layer, except the last one, has ReLU nonlinearities and is followed by an upsampling layer of size 2. The final layers uses a sigmoid activation to clip the output values in [0, 1]. """ def __init__(self, latent_dim: 'int'): """ Constructor. Parameters ---------- latent_dim Latent dimension. """ super().__init__() self.fc1 = nn.Linear(latent_dim, 128) self.conv1 = nn.Conv2d(8, 8, kernel_size=(3, 3), padding=1) self.up1 = nn.Upsample(scale_factor=2) self.conv2 = nn.Conv2d(8, 8, kernel_size=(3, 3), padding=1) self.up2 = nn.Upsample(scale_factor=2) self.conv3 = nn.Conv2d(8, 16, kernel_size=(3, 3)) self.up3 = nn.Upsample(scale_factor=2) self.conv4 = nn.Conv2d(16, 1, kernel_size=(3, 3), padding=1) def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.conv1.weight primals_5 = self.conv1.bias primals_6 = self.conv2.weight primals_7 = self.conv2.bias primals_8 = self.conv3.weight primals_9 = self.conv3.bias primals_10 = self.conv4.weight primals_11 = self.conv4.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0]
SeldonIO/alibi
MNISTDecoder
false
14,409
[ "ECL-2.0", "Apache-2.0" ]
1,570
a94b6e3cf6f47aaca560f6d4841e91a62439fa3b
https://github.com/SeldonIO/alibi/tree/a94b6e3cf6f47aaca560f6d4841e91a62439fa3b
CumulativeMagSpectralNorm
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/s4/cs4unwn7tzvk4mxiocfpzxeruj4qbvvcfop5wxj2b5hnk2v2blmx.py # Topologically Sorted Source Nodes: [step_sum, mu], Original ATen: [aten.mean] # Source node to ATen node mapping: # mu => mean_1 # step_sum => mean # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%view, [1]), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%mean, [-1]), kwargs = {}) triton_poi_fused_mean_0 = async_compile.triton('triton_poi_fused_mean_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (16*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (4 + (16*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (8 + (16*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (12 + (16*x0)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (1 + (16*x0)), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (5 + (16*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (9 + (16*x0)), xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr0 + (13 + (16*x0)), xmask, eviction_policy='evict_last') tmp18 = tl.load(in_ptr0 + (2 + (16*x0)), xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr0 + (6 + (16*x0)), xmask, eviction_policy='evict_last') tmp21 = tl.load(in_ptr0 + (10 + (16*x0)), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr0 + (14 + (16*x0)), xmask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr0 + (3 + (16*x0)), xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr0 + (7 + (16*x0)), xmask, eviction_policy='evict_last') tmp30 = tl.load(in_ptr0 + (11 + (16*x0)), xmask, eviction_policy='evict_last') tmp32 = tl.load(in_ptr0 + (15 + (16*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp11 = tmp9 + tmp10 tmp13 = tmp11 + tmp12 tmp15 = tmp13 + tmp14 tmp16 = tmp15 / tmp7 tmp17 = tmp8 + tmp16 tmp20 = tmp18 + tmp19 tmp22 = tmp20 + tmp21 tmp24 = tmp22 + tmp23 tmp25 = tmp24 / tmp7 tmp26 = tmp17 + tmp25 tmp29 = tmp27 + tmp28 tmp31 = tmp29 + tmp30 tmp33 = tmp31 + tmp32 tmp34 = tmp33 / tmp7 tmp35 = tmp26 + tmp34 tmp36 = tmp35 / tmp7 tl.store(out_ptr0 + (x0), tmp36, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/jv/cjv3w2lgt7zitf6mnfv6uyizsr6rm46utkix4hkdwwe574z4p6xx.py # Topologically Sorted Source Nodes: [add, input_normed], Original ATen: [aten.add, aten.div] # Source node to ATen node mapping: # add => add # input_normed => div # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, 1e-06), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view, %add), kwargs = {}) triton_poi_fused_add_div_1 = async_compile.triton('triton_poi_fused_add_div_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 16) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = 1e-06 tmp3 = tmp1 + tmp2 tmp4 = tmp0 / tmp3 tl.store(out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [step_sum, mu], Original ATen: [aten.mean] stream0 = get_raw_stream(0) triton_poi_fused_mean_0.run(arg0_1, buf0, 16, grid=grid(16), stream=stream0) buf1 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add, input_normed], Original ATen: [aten.add, aten.div] triton_poi_fused_add_div_1.run(arg0_1, buf0, buf1, 256, grid=grid(256), stream=stream0) del arg0_1 del buf0 return (reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class CumulativeMagSpectralNorm(nn.Module): def __init__(self, cumulative=False, use_mid_freq_mu=False): """ Args: cumulative: 是否采用累积的方式计算 mu use_mid_freq_mu: 仅采用中心频率的 mu 来代替全局 mu Notes: 先算均值再累加 等同于 先累加再算均值 """ super().__init__() self.eps = 1e-06 self.cumulative = cumulative self.use_mid_freq_mu = use_mid_freq_mu def forward(self, input): assert input.ndim == 4, f'{self.__name__} only support 4D input.' batch_size, n_channels, n_freqs, n_frames = input.size() device = input.device data_type = input.dtype input = input.reshape(batch_size * n_channels, n_freqs, n_frames) if self.use_mid_freq_mu: step_sum = input[:, int(n_freqs // 2 - 1), :] else: step_sum = torch.mean(input, dim=1) if self.cumulative: cumulative_sum = torch.cumsum(step_sum, dim=-1) entry_count = torch.arange(1, n_frames + 1, dtype=data_type, device=device) entry_count = entry_count.reshape(1, n_frames) entry_count = entry_count.expand_as(cumulative_sum) mu = cumulative_sum / entry_count mu = mu.reshape(batch_size * n_channels, 1, n_frames) else: mu = torch.mean(step_sum, dim=-1) mu = mu.reshape(batch_size * n_channels, 1, 1) input_normed = input / (mu + self.eps) input_normed = input_normed.reshape(batch_size, n_channels, n_freqs, n_frames) return input_normed def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 16 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (4 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp3 = tl.load(in_ptr0 + (8 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp5 = tl.load(in_ptr0 + (12 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr0 + (1 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp10 = tl.load(in_ptr0 + (5 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp12 = tl.load(in_ptr0 + (9 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp14 = tl.load(in_ptr0 + (13 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp18 = tl.load(in_ptr0 + (2 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp19 = tl.load(in_ptr0 + (6 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp21 = tl.load(in_ptr0 + (10 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp23 = tl.load(in_ptr0 + (14 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp27 = tl.load(in_ptr0 + (3 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp28 = tl.load(in_ptr0 + (7 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp30 = tl.load(in_ptr0 + (11 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp32 = tl.load(in_ptr0 + (15 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp11 = tmp9 + tmp10 tmp13 = tmp11 + tmp12 tmp15 = tmp13 + tmp14 tmp16 = tmp15 / tmp7 tmp17 = tmp8 + tmp16 tmp20 = tmp18 + tmp19 tmp22 = tmp20 + tmp21 tmp24 = tmp22 + tmp23 tmp25 = tmp24 / tmp7 tmp26 = tmp17 + tmp25 tmp29 = tmp27 + tmp28 tmp31 = tmp29 + tmp30 tmp33 = tmp31 + tmp32 tmp34 = tmp33 / tmp7 tmp35 = tmp26 + tmp34 tmp36 = tmp35 / tmp7 tl.store(out_ptr0 + x0, tmp36, xmask) @triton.jit def triton_poi_fused_add_div_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 16 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = 1e-06 tmp3 = tmp1 + tmp2 tmp4 = tmp0 / tmp3 tl.store(out_ptr0 + x2, tmp4, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16,), (1,), torch.float32) get_raw_stream(0) triton_poi_fused_mean_0[grid(16)](arg0_1, buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_add_div_1[grid(256)](arg0_1, buf0, buf1, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 del buf0 return reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0), class CumulativeMagSpectralNormNew(nn.Module): def __init__(self, cumulative=False, use_mid_freq_mu=False): """ Args: cumulative: 是否采用累积的方式计算 mu use_mid_freq_mu: 仅采用中心频率的 mu 来代替全局 mu Notes: 先算均值再累加 等同于 先累加再算均值 """ super().__init__() self.eps = 1e-06 self.cumulative = cumulative self.use_mid_freq_mu = use_mid_freq_mu def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
ShkarupaDC/FullSubNet
CumulativeMagSpectralNorm
false
14,410
[ "MIT" ]
219
2aef8b656376a42fbf519e0020636a893b56c4f8
https://github.com/ShkarupaDC/FullSubNet/tree/2aef8b656376a42fbf519e0020636a893b56c4f8
My_loss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/u7/cu7jbpg6udbjxk2d7egze4hjev5drr6fjzc7ju55wg4mbwt4msyw.py # Topologically Sorted Source Nodes: [mean, vx, mean_1, vy, mul, sum_1, pow_1, sum_2, sqrt, pow_2, sum_3, sqrt_1, mul_1, rho, mul_2, x_s, mul_3, y_s, mul_4, pow_3, pow_4, add, x_m, y_m, sub_2, pow_5, add_1, ccc, cccs, mean_4, vx_1, mean_5, vy_1, mul_5, sum_4, pow_6, sum_5, sqrt_2, pow_7, sum_6, sqrt_3, mul_6, rho_1, mul_7, x_s_1, mul_8, y_s_1, mul_9, pow_8, pow_9, add_3, x_m_1, y_m_1, sub_5, pow_10, add_4, ccc_1, cccs_1, mean_8, vx_2, mean_9, vy_2, mul_10, sum_7, pow_11, sum_8, sqrt_4, pow_12, sum_9, sqrt_5, mul_11, rho_2, mul_12, x_s_2, mul_13, y_s_2, mul_14, pow_13, pow_14, add_5, x_m_2, y_m_2, sub_8, pow_15, add_6, ccc_2, cccs_2, mean_12, vx_3, mean_13, vy_3, mul_15, sum_10, pow_16, sum_11, sqrt_6, pow_17, sum_12, sqrt_7, mul_16, rho_3, mul_17, x_s_3, mul_18, y_s_3, mul_19, pow_18, pow_19, add_7, x_m_3, y_m_3, sub_11, pow_20, add_8, ccc_3, cccs_3, neg], Original ATen: [aten.mean, aten.sub, aten.mul, aten.sum, aten.pow, aten.sqrt, aten.div, aten.std, aten.add, aten.neg] # Source node to ATen node mapping: # add => add # add_1 => add_1 # add_3 => add_3 # add_4 => add_4 # add_5 => add_6 # add_6 => add_7 # add_7 => add_9 # add_8 => add_10 # ccc => div_1 # ccc_1 => div_3 # ccc_2 => div_5 # ccc_3 => div_7 # cccs => add_2 # cccs_1 => add_5 # cccs_2 => add_8 # cccs_3 => add_11 # mean => mean # mean_1 => mean_1 # mean_12 => mean_12 # mean_13 => mean_13 # mean_4 => mean_4 # mean_5 => mean_5 # mean_8 => mean_8 # mean_9 => mean_9 # mul => mul # mul_1 => mul_1 # mul_10 => mul_10 # mul_11 => mul_11 # mul_12 => mul_12 # mul_13 => mul_13 # mul_14 => mul_14 # mul_15 => mul_15 # mul_16 => mul_16 # mul_17 => mul_17 # mul_18 => mul_18 # mul_19 => mul_19 # mul_2 => mul_2 # mul_3 => mul_3 # mul_4 => mul_4 # mul_5 => mul_5 # mul_6 => mul_6 # mul_7 => mul_7 # mul_8 => mul_8 # mul_9 => mul_9 # neg => neg # pow_1 => pow_1 # pow_10 => pow_10 # pow_11 => pow_11 # pow_12 => pow_12 # pow_13 => pow_13 # pow_14 => pow_14 # pow_15 => pow_15 # pow_16 => pow_16 # pow_17 => pow_17 # pow_18 => pow_18 # pow_19 => pow_19 # pow_2 => pow_2 # pow_20 => pow_20 # pow_3 => pow_3 # pow_4 => pow_4 # pow_5 => pow_5 # pow_6 => pow_6 # pow_7 => pow_7 # pow_8 => pow_8 # pow_9 => pow_9 # rho => div # rho_1 => div_2 # rho_2 => div_4 # rho_3 => div_6 # sqrt => sqrt # sqrt_1 => sqrt_1 # sqrt_2 => sqrt_4 # sqrt_3 => sqrt_5 # sqrt_4 => sqrt_8 # sqrt_5 => sqrt_9 # sqrt_6 => sqrt_12 # sqrt_7 => sqrt_13 # sub_11 => sub_11 # sub_2 => sub_2 # sub_5 => sub_5 # sub_8 => sub_8 # sum_1 => sum_1 # sum_10 => sum_10 # sum_11 => sum_11 # sum_12 => sum_12 # sum_2 => sum_2 # sum_3 => sum_3 # sum_4 => sum_4 # sum_5 => sum_5 # sum_6 => sum_6 # sum_7 => sum_7 # sum_8 => sum_8 # sum_9 => sum_9 # vx => sub # vx_1 => sub_3 # vx_2 => sub_6 # vx_3 => sub_9 # vy => sub_1 # vy_1 => sub_4 # vy_2 => sub_7 # vy_3 => sub_10 # x_m => mean_2 # x_m_1 => mean_6 # x_m_2 => mean_10 # x_m_3 => mean_14 # x_s => sqrt_2, var # x_s_1 => sqrt_6, var_2 # x_s_2 => sqrt_10, var_4 # x_s_3 => sqrt_14, var_6 # y_m => mean_3 # y_m_1 => mean_7 # y_m_2 => mean_11 # y_m_3 => mean_15 # y_s => sqrt_3, var_1 # y_s_1 => sqrt_7, var_3 # y_s_2 => sqrt_11, var_5 # y_s_3 => sqrt_15, var_7 # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%select,), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select, %mean), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%select_1,), kwargs = {}) # %sub_1 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_1, %mean_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %sub_1), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%pow_1,), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%sum_2,), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_1, 2), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%pow_2,), kwargs = {}) # %sqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%sum_3,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sqrt, %sqrt_1), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %mul_1), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, 2), kwargs = {}) # %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%select,), kwargs = {correction: 1.0}) # %sqrt_2 : [num_users=2] = call_function[target=torch.ops.aten.sqrt.default](args = (%var,), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %sqrt_2), kwargs = {}) # %var_1 : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%select_1,), kwargs = {correction: 1.0}) # %sqrt_3 : [num_users=2] = call_function[target=torch.ops.aten.sqrt.default](args = (%var_1,), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_3, %sqrt_3), kwargs = {}) # %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sqrt_2, 2), kwargs = {}) # %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sqrt_3, 2), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_3, %pow_4), kwargs = {}) # %mean_2 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%select,), kwargs = {}) # %mean_3 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%select_1,), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mean_2, %mean_3), kwargs = {}) # %pow_5 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_2, 2), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %pow_5), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_4, %add_1), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div_1, 0), kwargs = {}) # %mean_4 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%select_2,), kwargs = {}) # %sub_3 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_2, %mean_4), kwargs = {}) # %mean_5 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%select_3,), kwargs = {}) # %sub_4 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_3, %mean_5), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, %sub_4), kwargs = {}) # %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_5,), kwargs = {}) # %pow_6 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_3, 2), kwargs = {}) # %sum_5 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%pow_6,), kwargs = {}) # %sqrt_4 : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%sum_5,), kwargs = {}) # %pow_7 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_4, 2), kwargs = {}) # %sum_6 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%pow_7,), kwargs = {}) # %sqrt_5 : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%sum_6,), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sqrt_4, %sqrt_5), kwargs = {}) # %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_4, %mul_6), kwargs = {}) # %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_2, 2), kwargs = {}) # %var_2 : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%select_2,), kwargs = {correction: 1.0}) # %sqrt_6 : [num_users=2] = call_function[target=torch.ops.aten.sqrt.default](args = (%var_2,), kwargs = {}) # %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_7, %sqrt_6), kwargs = {}) # %var_3 : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%select_3,), kwargs = {correction: 1.0}) # %sqrt_7 : [num_users=2] = call_function[target=torch.ops.aten.sqrt.default](args = (%var_3,), kwargs = {}) # %mul_9 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_8, %sqrt_7), kwargs = {}) # %pow_8 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sqrt_6, 2), kwargs = {}) # %pow_9 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sqrt_7, 2), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_8, %pow_9), kwargs = {}) # %mean_6 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%select_2,), kwargs = {}) # %mean_7 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%select_3,), kwargs = {}) # %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mean_6, %mean_7), kwargs = {}) # %pow_10 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_5, 2), kwargs = {}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_3, %pow_10), kwargs = {}) # %div_3 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_9, %add_4), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %div_3), kwargs = {}) # %mean_8 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%select_4,), kwargs = {}) # %sub_6 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_4, %mean_8), kwargs = {}) # %mean_9 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%select_5,), kwargs = {}) # %sub_7 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_5, %mean_9), kwargs = {}) # %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_6, %sub_7), kwargs = {}) # %sum_7 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_10,), kwargs = {}) # %pow_11 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_6, 2), kwargs = {}) # %sum_8 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%pow_11,), kwargs = {}) # %sqrt_8 : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%sum_8,), kwargs = {}) # %pow_12 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_7, 2), kwargs = {}) # %sum_9 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%pow_12,), kwargs = {}) # %sqrt_9 : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%sum_9,), kwargs = {}) # %mul_11 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sqrt_8, %sqrt_9), kwargs = {}) # %div_4 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_7, %mul_11), kwargs = {}) # %mul_12 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_4, 2), kwargs = {}) # %var_4 : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%select_4,), kwargs = {correction: 1.0}) # %sqrt_10 : [num_users=2] = call_function[target=torch.ops.aten.sqrt.default](args = (%var_4,), kwargs = {}) # %mul_13 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_12, %sqrt_10), kwargs = {}) # %var_5 : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%select_5,), kwargs = {correction: 1.0}) # %sqrt_11 : [num_users=2] = call_function[target=torch.ops.aten.sqrt.default](args = (%var_5,), kwargs = {}) # %mul_14 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_13, %sqrt_11), kwargs = {}) # %pow_13 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sqrt_10, 2), kwargs = {}) # %pow_14 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sqrt_11, 2), kwargs = {}) # %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_13, %pow_14), kwargs = {}) # %mean_10 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%select_4,), kwargs = {}) # %mean_11 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%select_5,), kwargs = {}) # %sub_8 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mean_10, %mean_11), kwargs = {}) # %pow_15 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_8, 2), kwargs = {}) # %add_7 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_6, %pow_15), kwargs = {}) # %div_5 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_14, %add_7), kwargs = {}) # %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_5, %div_5), kwargs = {}) # %mean_12 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%select_6,), kwargs = {}) # %sub_9 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_6, %mean_12), kwargs = {}) # %mean_13 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%select_7,), kwargs = {}) # %sub_10 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_7, %mean_13), kwargs = {}) # %mul_15 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_9, %sub_10), kwargs = {}) # %sum_10 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_15,), kwargs = {}) # %pow_16 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_9, 2), kwargs = {}) # %sum_11 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%pow_16,), kwargs = {}) # %sqrt_12 : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%sum_11,), kwargs = {}) # %pow_17 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_10, 2), kwargs = {}) # %sum_12 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%pow_17,), kwargs = {}) # %sqrt_13 : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%sum_12,), kwargs = {}) # %mul_16 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sqrt_12, %sqrt_13), kwargs = {}) # %div_6 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_10, %mul_16), kwargs = {}) # %mul_17 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_6, 2), kwargs = {}) # %var_6 : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%select_6,), kwargs = {correction: 1.0}) # %sqrt_14 : [num_users=2] = call_function[target=torch.ops.aten.sqrt.default](args = (%var_6,), kwargs = {}) # %mul_18 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_17, %sqrt_14), kwargs = {}) # %var_7 : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%select_7,), kwargs = {correction: 1.0}) # %sqrt_15 : [num_users=2] = call_function[target=torch.ops.aten.sqrt.default](args = (%var_7,), kwargs = {}) # %mul_19 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_18, %sqrt_15), kwargs = {}) # %pow_18 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sqrt_14, 2), kwargs = {}) # %pow_19 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sqrt_15, 2), kwargs = {}) # %add_9 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_18, %pow_19), kwargs = {}) # %mean_14 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%select_6,), kwargs = {}) # %mean_15 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%select_7,), kwargs = {}) # %sub_11 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mean_14, %mean_15), kwargs = {}) # %pow_20 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_11, 2), kwargs = {}) # %add_10 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_9, %pow_20), kwargs = {}) # %div_7 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_19, %add_10), kwargs = {}) # %add_11 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_8, %div_7), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%add_11,), kwargs = {}) triton_per_fused_add_div_mean_mul_neg_pow_sqrt_std_sub_sum_0 = async_compile.triton('triton_per_fused_add_div_mean_mul_neg_pow_sqrt_std_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mean_mul_neg_pow_sqrt_std_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 52, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_mean_mul_neg_pow_sqrt_std_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 16 r1 = (rindex // 16) tmp0 = tl.load(in_ptr0 + (48 + r0 + (64*r1)), None) tmp4 = tl.load(in_ptr1 + (48 + r0 + (64*r1)), None) tmp47 = tl.load(in_ptr0 + (32 + r0 + (64*r1)), None) tmp51 = tl.load(in_ptr1 + (32 + r0 + (64*r1)), None) tmp91 = tl.load(in_ptr0 + (16 + r0 + (64*r1)), None) tmp95 = tl.load(in_ptr1 + (16 + r0 + (64*r1)), None) tmp135 = tl.load(in_ptr0 + (r0 + (64*r1)), None) tmp139 = tl.load(in_ptr1 + (r0 + (64*r1)), None) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.sum(tmp1, 1)[:, None] tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK]) tmp7 = tl.sum(tmp5, 1)[:, None] tmp8 = 64.0 tmp9 = tmp3 / tmp8 tmp10 = tmp0 - tmp9 tmp11 = tmp7 / tmp8 tmp12 = tmp4 - tmp11 tmp13 = tmp10 * tmp12 tmp14 = tl.broadcast_to(tmp13, [XBLOCK, RBLOCK]) tmp16 = tl.sum(tmp14, 1)[:, None] tmp17 = tmp10 * tmp10 tmp18 = tl.broadcast_to(tmp17, [XBLOCK, RBLOCK]) tmp20 = tl.sum(tmp18, 1)[:, None] tmp21 = tmp12 * tmp12 tmp22 = tl.broadcast_to(tmp21, [XBLOCK, RBLOCK]) tmp24 = tl.sum(tmp22, 1)[:, None] tmp26 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp28 = tl.sum(tmp26, 1)[:, None] tmp29 = tl.full([XBLOCK, 1], 64, tl.int32) tmp30 = tmp29.to(tl.float32) tmp31 = tmp28 / tmp30 tmp32 = tmp1 - tmp31 tmp33 = tmp32 * tmp32 tmp34 = tl.broadcast_to(tmp33, [XBLOCK, RBLOCK]) tmp36 = tl.sum(tmp34, 1)[:, None] tmp38 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK]) tmp40 = tl.sum(tmp38, 1)[:, None] tmp41 = tmp40 / tmp30 tmp42 = tmp5 - tmp41 tmp43 = tmp42 * tmp42 tmp44 = tl.broadcast_to(tmp43, [XBLOCK, RBLOCK]) tmp46 = tl.sum(tmp44, 1)[:, None] tmp48 = tl.broadcast_to(tmp47, [XBLOCK, RBLOCK]) tmp50 = tl.sum(tmp48, 1)[:, None] tmp52 = tl.broadcast_to(tmp51, [XBLOCK, RBLOCK]) tmp54 = tl.sum(tmp52, 1)[:, None] tmp55 = tmp50 / tmp8 tmp56 = tmp47 - tmp55 tmp57 = tmp54 / tmp8 tmp58 = tmp51 - tmp57 tmp59 = tmp56 * tmp58 tmp60 = tl.broadcast_to(tmp59, [XBLOCK, RBLOCK]) tmp62 = tl.sum(tmp60, 1)[:, None] tmp63 = tmp56 * tmp56 tmp64 = tl.broadcast_to(tmp63, [XBLOCK, RBLOCK]) tmp66 = tl.sum(tmp64, 1)[:, None] tmp67 = tmp58 * tmp58 tmp68 = tl.broadcast_to(tmp67, [XBLOCK, RBLOCK]) tmp70 = tl.sum(tmp68, 1)[:, None] tmp72 = tl.broadcast_to(tmp48, [XBLOCK, RBLOCK]) tmp74 = tl.sum(tmp72, 1)[:, None] tmp75 = tmp74 / tmp30 tmp76 = tmp48 - tmp75 tmp77 = tmp76 * tmp76 tmp78 = tl.broadcast_to(tmp77, [XBLOCK, RBLOCK]) tmp80 = tl.sum(tmp78, 1)[:, None] tmp82 = tl.broadcast_to(tmp52, [XBLOCK, RBLOCK]) tmp84 = tl.sum(tmp82, 1)[:, None] tmp85 = tmp84 / tmp30 tmp86 = tmp52 - tmp85 tmp87 = tmp86 * tmp86 tmp88 = tl.broadcast_to(tmp87, [XBLOCK, RBLOCK]) tmp90 = tl.sum(tmp88, 1)[:, None] tmp92 = tl.broadcast_to(tmp91, [XBLOCK, RBLOCK]) tmp94 = tl.sum(tmp92, 1)[:, None] tmp96 = tl.broadcast_to(tmp95, [XBLOCK, RBLOCK]) tmp98 = tl.sum(tmp96, 1)[:, None] tmp99 = tmp94 / tmp8 tmp100 = tmp91 - tmp99 tmp101 = tmp98 / tmp8 tmp102 = tmp95 - tmp101 tmp103 = tmp100 * tmp102 tmp104 = tl.broadcast_to(tmp103, [XBLOCK, RBLOCK]) tmp106 = tl.sum(tmp104, 1)[:, None] tmp107 = tmp100 * tmp100 tmp108 = tl.broadcast_to(tmp107, [XBLOCK, RBLOCK]) tmp110 = tl.sum(tmp108, 1)[:, None] tmp111 = tmp102 * tmp102 tmp112 = tl.broadcast_to(tmp111, [XBLOCK, RBLOCK]) tmp114 = tl.sum(tmp112, 1)[:, None] tmp116 = tl.broadcast_to(tmp92, [XBLOCK, RBLOCK]) tmp118 = tl.sum(tmp116, 1)[:, None] tmp119 = tmp118 / tmp30 tmp120 = tmp92 - tmp119 tmp121 = tmp120 * tmp120 tmp122 = tl.broadcast_to(tmp121, [XBLOCK, RBLOCK]) tmp124 = tl.sum(tmp122, 1)[:, None] tmp126 = tl.broadcast_to(tmp96, [XBLOCK, RBLOCK]) tmp128 = tl.sum(tmp126, 1)[:, None] tmp129 = tmp128 / tmp30 tmp130 = tmp96 - tmp129 tmp131 = tmp130 * tmp130 tmp132 = tl.broadcast_to(tmp131, [XBLOCK, RBLOCK]) tmp134 = tl.sum(tmp132, 1)[:, None] tmp136 = tl.broadcast_to(tmp135, [XBLOCK, RBLOCK]) tmp138 = tl.sum(tmp136, 1)[:, None] tmp140 = tl.broadcast_to(tmp139, [XBLOCK, RBLOCK]) tmp142 = tl.sum(tmp140, 1)[:, None] tmp143 = tmp138 / tmp8 tmp144 = tmp135 - tmp143 tmp145 = tmp142 / tmp8 tmp146 = tmp139 - tmp145 tmp147 = tmp144 * tmp146 tmp148 = tl.broadcast_to(tmp147, [XBLOCK, RBLOCK]) tmp150 = tl.sum(tmp148, 1)[:, None] tmp151 = tmp144 * tmp144 tmp152 = tl.broadcast_to(tmp151, [XBLOCK, RBLOCK]) tmp154 = tl.sum(tmp152, 1)[:, None] tmp155 = tmp146 * tmp146 tmp156 = tl.broadcast_to(tmp155, [XBLOCK, RBLOCK]) tmp158 = tl.sum(tmp156, 1)[:, None] tmp160 = tl.broadcast_to(tmp136, [XBLOCK, RBLOCK]) tmp162 = tl.sum(tmp160, 1)[:, None] tmp163 = tmp162 / tmp30 tmp164 = tmp136 - tmp163 tmp165 = tmp164 * tmp164 tmp166 = tl.broadcast_to(tmp165, [XBLOCK, RBLOCK]) tmp168 = tl.sum(tmp166, 1)[:, None] tmp170 = tl.broadcast_to(tmp140, [XBLOCK, RBLOCK]) tmp172 = tl.sum(tmp170, 1)[:, None] tmp173 = tmp172 / tmp30 tmp174 = tmp140 - tmp173 tmp175 = tmp174 * tmp174 tmp176 = tl.broadcast_to(tmp175, [XBLOCK, RBLOCK]) tmp178 = tl.sum(tmp176, 1)[:, None] tmp179 = libdevice.sqrt(tmp154) tmp180 = libdevice.sqrt(tmp158) tmp181 = tmp179 * tmp180 tmp182 = tmp150 / tmp181 tmp183 = 2.0 tmp184 = tmp182 * tmp183 tmp185 = 63.0 tmp186 = tmp168 / tmp185 tmp187 = libdevice.sqrt(tmp186) tmp188 = tmp184 * tmp187 tmp189 = tmp178 / tmp185 tmp190 = libdevice.sqrt(tmp189) tmp191 = tmp188 * tmp190 tmp192 = tmp187 * tmp187 tmp193 = tmp190 * tmp190 tmp194 = tmp192 + tmp193 tmp195 = tmp143 - tmp145 tmp196 = tmp195 * tmp195 tmp197 = tmp194 + tmp196 tmp198 = tmp191 / tmp197 tmp199 = libdevice.sqrt(tmp110) tmp200 = libdevice.sqrt(tmp114) tmp201 = tmp199 * tmp200 tmp202 = tmp106 / tmp201 tmp203 = tmp202 * tmp183 tmp204 = tmp124 / tmp185 tmp205 = libdevice.sqrt(tmp204) tmp206 = tmp203 * tmp205 tmp207 = tmp134 / tmp185 tmp208 = libdevice.sqrt(tmp207) tmp209 = tmp206 * tmp208 tmp210 = tmp205 * tmp205 tmp211 = tmp208 * tmp208 tmp212 = tmp210 + tmp211 tmp213 = tmp99 - tmp101 tmp214 = tmp213 * tmp213 tmp215 = tmp212 + tmp214 tmp216 = tmp209 / tmp215 tmp217 = libdevice.sqrt(tmp66) tmp218 = libdevice.sqrt(tmp70) tmp219 = tmp217 * tmp218 tmp220 = tmp62 / tmp219 tmp221 = tmp220 * tmp183 tmp222 = tmp80 / tmp185 tmp223 = libdevice.sqrt(tmp222) tmp224 = tmp221 * tmp223 tmp225 = tmp90 / tmp185 tmp226 = libdevice.sqrt(tmp225) tmp227 = tmp224 * tmp226 tmp228 = tmp223 * tmp223 tmp229 = tmp226 * tmp226 tmp230 = tmp228 + tmp229 tmp231 = tmp55 - tmp57 tmp232 = tmp231 * tmp231 tmp233 = tmp230 + tmp232 tmp234 = tmp227 / tmp233 tmp235 = libdevice.sqrt(tmp20) tmp236 = libdevice.sqrt(tmp24) tmp237 = tmp235 * tmp236 tmp238 = tmp16 / tmp237 tmp239 = tmp238 * tmp183 tmp240 = tmp36 / tmp185 tmp241 = libdevice.sqrt(tmp240) tmp242 = tmp239 * tmp241 tmp243 = tmp46 / tmp185 tmp244 = libdevice.sqrt(tmp243) tmp245 = tmp242 * tmp244 tmp246 = tmp241 * tmp241 tmp247 = tmp244 * tmp244 tmp248 = tmp246 + tmp247 tmp249 = tmp9 - tmp11 tmp250 = tmp249 * tmp249 tmp251 = tmp248 + tmp250 tmp252 = tmp245 / tmp251 tmp253 = 0.0 tmp254 = tmp198 + tmp253 tmp255 = tmp254 + tmp216 tmp256 = tmp255 + tmp234 tmp257 = tmp256 + tmp252 tmp258 = -tmp257 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp258, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf11 = empty_strided_cuda((), (), torch.float32) buf13 = buf11; del buf11 # reuse buf56 = buf13; del buf13 # reuse # Topologically Sorted Source Nodes: [mean, vx, mean_1, vy, mul, sum_1, pow_1, sum_2, sqrt, pow_2, sum_3, sqrt_1, mul_1, rho, mul_2, x_s, mul_3, y_s, mul_4, pow_3, pow_4, add, x_m, y_m, sub_2, pow_5, add_1, ccc, cccs, mean_4, vx_1, mean_5, vy_1, mul_5, sum_4, pow_6, sum_5, sqrt_2, pow_7, sum_6, sqrt_3, mul_6, rho_1, mul_7, x_s_1, mul_8, y_s_1, mul_9, pow_8, pow_9, add_3, x_m_1, y_m_1, sub_5, pow_10, add_4, ccc_1, cccs_1, mean_8, vx_2, mean_9, vy_2, mul_10, sum_7, pow_11, sum_8, sqrt_4, pow_12, sum_9, sqrt_5, mul_11, rho_2, mul_12, x_s_2, mul_13, y_s_2, mul_14, pow_13, pow_14, add_5, x_m_2, y_m_2, sub_8, pow_15, add_6, ccc_2, cccs_2, mean_12, vx_3, mean_13, vy_3, mul_15, sum_10, pow_16, sum_11, sqrt_6, pow_17, sum_12, sqrt_7, mul_16, rho_3, mul_17, x_s_3, mul_18, y_s_3, mul_19, pow_18, pow_19, add_7, x_m_3, y_m_3, sub_11, pow_20, add_8, ccc_3, cccs_3, neg], Original ATen: [aten.mean, aten.sub, aten.mul, aten.sum, aten.pow, aten.sqrt, aten.div, aten.std, aten.add, aten.neg] stream0 = get_raw_stream(0) triton_per_fused_add_div_mean_mul_neg_pow_sqrt_std_sub_sum_0.run(buf56, arg0_1, arg1_1, 1, 64, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf56, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data import torch._utils import torch.nn.parallel import torch.optim from torch.autograd import Variable as Variable class My_loss(torch.nn.Module): def __init__(self): super().__init__() def forward(self, x, y): cccs = 0 for i in range(x.size(-1)): x_i = x[:, i] y_i = y[:, i] if len(x_i.size()) == 2 or len(y_i.size()) == 2: x_i = x_i.contiguous() y_i = y_i.contiguous() x_i = x_i.view(-1) y_i = y_i.view(-1) vx = x_i - torch.mean(x_i) vy = y_i - torch.mean(y_i) rho = torch.sum(vx * vy) / (torch.sqrt(torch.sum(torch.pow(vx, 2))) * torch.sqrt(torch.sum(torch.pow(vy, 2)))) x_m = torch.mean(x_i) y_m = torch.mean(y_i) x_s = torch.std(x_i) y_s = torch.std(y_i) ccc = 2 * rho * x_s * y_s / (torch.pow(x_s, 2) + torch.pow(y_s, 2) + torch.pow(x_m - y_m, 2)) cccs += ccc return -cccs def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.utils.data import torch._utils import torch.nn.parallel import torch.optim from torch.autograd import Variable as Variable assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_div_mean_mul_neg_pow_sqrt_std_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 16 r1 = rindex // 16 tmp0 = tl.load(in_ptr0 + (48 + r0 + 64 * r1), None) tmp4 = tl.load(in_ptr1 + (48 + r0 + 64 * r1), None) tmp47 = tl.load(in_ptr0 + (32 + r0 + 64 * r1), None) tmp51 = tl.load(in_ptr1 + (32 + r0 + 64 * r1), None) tmp91 = tl.load(in_ptr0 + (16 + r0 + 64 * r1), None) tmp95 = tl.load(in_ptr1 + (16 + r0 + 64 * r1), None) tmp135 = tl.load(in_ptr0 + (r0 + 64 * r1), None) tmp139 = tl.load(in_ptr1 + (r0 + 64 * r1), None) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.sum(tmp1, 1)[:, None] tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK]) tmp7 = tl.sum(tmp5, 1)[:, None] tmp8 = 64.0 tmp9 = tmp3 / tmp8 tmp10 = tmp0 - tmp9 tmp11 = tmp7 / tmp8 tmp12 = tmp4 - tmp11 tmp13 = tmp10 * tmp12 tmp14 = tl.broadcast_to(tmp13, [XBLOCK, RBLOCK]) tmp16 = tl.sum(tmp14, 1)[:, None] tmp17 = tmp10 * tmp10 tmp18 = tl.broadcast_to(tmp17, [XBLOCK, RBLOCK]) tmp20 = tl.sum(tmp18, 1)[:, None] tmp21 = tmp12 * tmp12 tmp22 = tl.broadcast_to(tmp21, [XBLOCK, RBLOCK]) tmp24 = tl.sum(tmp22, 1)[:, None] tmp26 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp28 = tl.sum(tmp26, 1)[:, None] tmp29 = tl.full([XBLOCK, 1], 64, tl.int32) tmp30 = tmp29.to(tl.float32) tmp31 = tmp28 / tmp30 tmp32 = tmp1 - tmp31 tmp33 = tmp32 * tmp32 tmp34 = tl.broadcast_to(tmp33, [XBLOCK, RBLOCK]) tmp36 = tl.sum(tmp34, 1)[:, None] tmp38 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK]) tmp40 = tl.sum(tmp38, 1)[:, None] tmp41 = tmp40 / tmp30 tmp42 = tmp5 - tmp41 tmp43 = tmp42 * tmp42 tmp44 = tl.broadcast_to(tmp43, [XBLOCK, RBLOCK]) tmp46 = tl.sum(tmp44, 1)[:, None] tmp48 = tl.broadcast_to(tmp47, [XBLOCK, RBLOCK]) tmp50 = tl.sum(tmp48, 1)[:, None] tmp52 = tl.broadcast_to(tmp51, [XBLOCK, RBLOCK]) tmp54 = tl.sum(tmp52, 1)[:, None] tmp55 = tmp50 / tmp8 tmp56 = tmp47 - tmp55 tmp57 = tmp54 / tmp8 tmp58 = tmp51 - tmp57 tmp59 = tmp56 * tmp58 tmp60 = tl.broadcast_to(tmp59, [XBLOCK, RBLOCK]) tmp62 = tl.sum(tmp60, 1)[:, None] tmp63 = tmp56 * tmp56 tmp64 = tl.broadcast_to(tmp63, [XBLOCK, RBLOCK]) tmp66 = tl.sum(tmp64, 1)[:, None] tmp67 = tmp58 * tmp58 tmp68 = tl.broadcast_to(tmp67, [XBLOCK, RBLOCK]) tmp70 = tl.sum(tmp68, 1)[:, None] tmp72 = tl.broadcast_to(tmp48, [XBLOCK, RBLOCK]) tmp74 = tl.sum(tmp72, 1)[:, None] tmp75 = tmp74 / tmp30 tmp76 = tmp48 - tmp75 tmp77 = tmp76 * tmp76 tmp78 = tl.broadcast_to(tmp77, [XBLOCK, RBLOCK]) tmp80 = tl.sum(tmp78, 1)[:, None] tmp82 = tl.broadcast_to(tmp52, [XBLOCK, RBLOCK]) tmp84 = tl.sum(tmp82, 1)[:, None] tmp85 = tmp84 / tmp30 tmp86 = tmp52 - tmp85 tmp87 = tmp86 * tmp86 tmp88 = tl.broadcast_to(tmp87, [XBLOCK, RBLOCK]) tmp90 = tl.sum(tmp88, 1)[:, None] tmp92 = tl.broadcast_to(tmp91, [XBLOCK, RBLOCK]) tmp94 = tl.sum(tmp92, 1)[:, None] tmp96 = tl.broadcast_to(tmp95, [XBLOCK, RBLOCK]) tmp98 = tl.sum(tmp96, 1)[:, None] tmp99 = tmp94 / tmp8 tmp100 = tmp91 - tmp99 tmp101 = tmp98 / tmp8 tmp102 = tmp95 - tmp101 tmp103 = tmp100 * tmp102 tmp104 = tl.broadcast_to(tmp103, [XBLOCK, RBLOCK]) tmp106 = tl.sum(tmp104, 1)[:, None] tmp107 = tmp100 * tmp100 tmp108 = tl.broadcast_to(tmp107, [XBLOCK, RBLOCK]) tmp110 = tl.sum(tmp108, 1)[:, None] tmp111 = tmp102 * tmp102 tmp112 = tl.broadcast_to(tmp111, [XBLOCK, RBLOCK]) tmp114 = tl.sum(tmp112, 1)[:, None] tmp116 = tl.broadcast_to(tmp92, [XBLOCK, RBLOCK]) tmp118 = tl.sum(tmp116, 1)[:, None] tmp119 = tmp118 / tmp30 tmp120 = tmp92 - tmp119 tmp121 = tmp120 * tmp120 tmp122 = tl.broadcast_to(tmp121, [XBLOCK, RBLOCK]) tmp124 = tl.sum(tmp122, 1)[:, None] tmp126 = tl.broadcast_to(tmp96, [XBLOCK, RBLOCK]) tmp128 = tl.sum(tmp126, 1)[:, None] tmp129 = tmp128 / tmp30 tmp130 = tmp96 - tmp129 tmp131 = tmp130 * tmp130 tmp132 = tl.broadcast_to(tmp131, [XBLOCK, RBLOCK]) tmp134 = tl.sum(tmp132, 1)[:, None] tmp136 = tl.broadcast_to(tmp135, [XBLOCK, RBLOCK]) tmp138 = tl.sum(tmp136, 1)[:, None] tmp140 = tl.broadcast_to(tmp139, [XBLOCK, RBLOCK]) tmp142 = tl.sum(tmp140, 1)[:, None] tmp143 = tmp138 / tmp8 tmp144 = tmp135 - tmp143 tmp145 = tmp142 / tmp8 tmp146 = tmp139 - tmp145 tmp147 = tmp144 * tmp146 tmp148 = tl.broadcast_to(tmp147, [XBLOCK, RBLOCK]) tmp150 = tl.sum(tmp148, 1)[:, None] tmp151 = tmp144 * tmp144 tmp152 = tl.broadcast_to(tmp151, [XBLOCK, RBLOCK]) tmp154 = tl.sum(tmp152, 1)[:, None] tmp155 = tmp146 * tmp146 tmp156 = tl.broadcast_to(tmp155, [XBLOCK, RBLOCK]) tmp158 = tl.sum(tmp156, 1)[:, None] tmp160 = tl.broadcast_to(tmp136, [XBLOCK, RBLOCK]) tmp162 = tl.sum(tmp160, 1)[:, None] tmp163 = tmp162 / tmp30 tmp164 = tmp136 - tmp163 tmp165 = tmp164 * tmp164 tmp166 = tl.broadcast_to(tmp165, [XBLOCK, RBLOCK]) tmp168 = tl.sum(tmp166, 1)[:, None] tmp170 = tl.broadcast_to(tmp140, [XBLOCK, RBLOCK]) tmp172 = tl.sum(tmp170, 1)[:, None] tmp173 = tmp172 / tmp30 tmp174 = tmp140 - tmp173 tmp175 = tmp174 * tmp174 tmp176 = tl.broadcast_to(tmp175, [XBLOCK, RBLOCK]) tmp178 = tl.sum(tmp176, 1)[:, None] tmp179 = libdevice.sqrt(tmp154) tmp180 = libdevice.sqrt(tmp158) tmp181 = tmp179 * tmp180 tmp182 = tmp150 / tmp181 tmp183 = 2.0 tmp184 = tmp182 * tmp183 tmp185 = 63.0 tmp186 = tmp168 / tmp185 tmp187 = libdevice.sqrt(tmp186) tmp188 = tmp184 * tmp187 tmp189 = tmp178 / tmp185 tmp190 = libdevice.sqrt(tmp189) tmp191 = tmp188 * tmp190 tmp192 = tmp187 * tmp187 tmp193 = tmp190 * tmp190 tmp194 = tmp192 + tmp193 tmp195 = tmp143 - tmp145 tmp196 = tmp195 * tmp195 tmp197 = tmp194 + tmp196 tmp198 = tmp191 / tmp197 tmp199 = libdevice.sqrt(tmp110) tmp200 = libdevice.sqrt(tmp114) tmp201 = tmp199 * tmp200 tmp202 = tmp106 / tmp201 tmp203 = tmp202 * tmp183 tmp204 = tmp124 / tmp185 tmp205 = libdevice.sqrt(tmp204) tmp206 = tmp203 * tmp205 tmp207 = tmp134 / tmp185 tmp208 = libdevice.sqrt(tmp207) tmp209 = tmp206 * tmp208 tmp210 = tmp205 * tmp205 tmp211 = tmp208 * tmp208 tmp212 = tmp210 + tmp211 tmp213 = tmp99 - tmp101 tmp214 = tmp213 * tmp213 tmp215 = tmp212 + tmp214 tmp216 = tmp209 / tmp215 tmp217 = libdevice.sqrt(tmp66) tmp218 = libdevice.sqrt(tmp70) tmp219 = tmp217 * tmp218 tmp220 = tmp62 / tmp219 tmp221 = tmp220 * tmp183 tmp222 = tmp80 / tmp185 tmp223 = libdevice.sqrt(tmp222) tmp224 = tmp221 * tmp223 tmp225 = tmp90 / tmp185 tmp226 = libdevice.sqrt(tmp225) tmp227 = tmp224 * tmp226 tmp228 = tmp223 * tmp223 tmp229 = tmp226 * tmp226 tmp230 = tmp228 + tmp229 tmp231 = tmp55 - tmp57 tmp232 = tmp231 * tmp231 tmp233 = tmp230 + tmp232 tmp234 = tmp227 / tmp233 tmp235 = libdevice.sqrt(tmp20) tmp236 = libdevice.sqrt(tmp24) tmp237 = tmp235 * tmp236 tmp238 = tmp16 / tmp237 tmp239 = tmp238 * tmp183 tmp240 = tmp36 / tmp185 tmp241 = libdevice.sqrt(tmp240) tmp242 = tmp239 * tmp241 tmp243 = tmp46 / tmp185 tmp244 = libdevice.sqrt(tmp243) tmp245 = tmp242 * tmp244 tmp246 = tmp241 * tmp241 tmp247 = tmp244 * tmp244 tmp248 = tmp246 + tmp247 tmp249 = tmp9 - tmp11 tmp250 = tmp249 * tmp249 tmp251 = tmp248 + tmp250 tmp252 = tmp245 / tmp251 tmp253 = 0.0 tmp254 = tmp198 + tmp253 tmp255 = tmp254 + tmp216 tmp256 = tmp255 + tmp234 tmp257 = tmp256 + tmp252 tmp258 = -tmp257 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp258, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf11 = empty_strided_cuda((), (), torch.float32) buf13 = buf11 del buf11 buf56 = buf13 del buf13 get_raw_stream(0) triton_per_fused_add_div_mean_mul_neg_pow_sqrt_std_sub_sum_0[grid(1)]( buf56, arg0_1, arg1_1, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf56, class My_lossNew(torch.nn.Module): def __init__(self): super().__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
Shelly-Lee/ICCV-2021-Competition-Valence-Arousal-Challenge
My_loss
false
14,411
[ "MIT" ]
58
b3816ef4d4ba7b98c2f9ddd0dd3942d7a666777a
https://github.com/Shelly-Lee/ICCV-2021-Competition-Valence-Arousal-Challenge/tree/b3816ef4d4ba7b98c2f9ddd0dd3942d7a666777a
UnaryBlock
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/e6/ce6tqme72afv5izixrlqsb4h23mpercfe7y5zvnsisyh2oc2duiq.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.clone, aten._native_batch_norm_legit] # Source node to ATen node mapping: # x_3 => add, clone, rsqrt, var_mean # Graph fragment: # %clone : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%permute_1,), kwargs = {memory_format: torch.contiguous_format}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%clone, [0, 2]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) triton_poi_fused__native_batch_norm_legit_clone_0 = async_compile.triton('triton_poi_fused__native_batch_norm_legit_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__native_batch_norm_legit_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__native_batch_norm_legit_clone_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (4 + x0), xmask) tmp3 = tl.load(in_ptr0 + (8 + x0), xmask) tmp5 = tl.load(in_ptr0 + (12 + x0), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + (x0), tmp8, xmask) tl.store(out_ptr1 + (x0), tmp23, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/5q/c5qbi4chxnbs53eylw22fbsfbunx4fnrutx3avt4ruggohxocntf.py # Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # x_6 => gt, mul_1, where # Graph fragment: # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%squeeze_2, 0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_2, 0.1), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %squeeze_2, %mul_1), kwargs = {}) triton_poi_fused_leaky_relu_1 = async_compile.triton('triton_poi_fused_leaky_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 4 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (x1 + (4*y0)), xmask & ymask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp5 = 0.0 tmp6 = tmp4 > tmp5 tmp7 = 0.1 tmp8 = tmp4 * tmp7 tmp9 = tl.where(tmp6, tmp4, tmp8) tl.store(out_ptr0 + (y0 + (4*x1)), tmp9, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.mm] extern_kernels.mm(primals_2, reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((1, 4, 1), (4, 1, 4), torch.float32) buf2 = empty_strided_cuda((1, 4, 1), (4, 1, 4), torch.float32) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.clone, aten._native_batch_norm_legit] stream0 = get_raw_stream(0) triton_poi_fused__native_batch_norm_legit_clone_0.run(buf0, buf1, buf2, 4, grid=grid(4), stream=stream0) buf3 = empty_strided_cuda((4, 4), (1, 4), torch.float32) # Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_1.run(buf0, buf1, buf2, buf3, 4, 4, grid=grid(4, 4), stream=stream0) del buf1 del buf2 return (buf3, primals_2, buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data import torch.nn as nn from torch.nn.parameter import Parameter class BatchNormBlock(nn.Module): def __init__(self, in_dim, use_bn, bn_momentum): """ Initialize a batch normalization block. If network does not use batch normalization, replace with biases. :param in_dim: dimension input features :param use_bn: boolean indicating if we use Batch Norm :param bn_momentum: Batch norm momentum """ super(BatchNormBlock, self).__init__() self.bn_momentum = bn_momentum self.use_bn = use_bn self.in_dim = in_dim if self.use_bn: self.batch_norm = nn.InstanceNorm1d(in_dim, momentum=bn_momentum) else: self.bias = Parameter(torch.zeros(in_dim, dtype=torch.float32), requires_grad=True) return def reset_parameters(self): nn.init.zeros_(self.bias) def forward(self, x): if self.use_bn: x = x.unsqueeze(2) x = x.transpose(0, 2) x = self.batch_norm(x) x = x.transpose(0, 2) return x.squeeze() else: return x + self.bias def __repr__(self): return ( 'BatchNormBlock(in_feat: {:d}, momentum: {:.3f}, only_bias: {:s})' .format(self.in_dim, self.bn_momentum, str(not self.use_bn))) class UnaryBlock(nn.Module): def __init__(self, in_dim, out_dim, use_bn, bn_momentum, no_relu=False): """ Initialize a standard unary block with its ReLU and BatchNorm. :param in_dim: dimension input features :param out_dim: dimension input features :param use_bn: boolean indicating if we use Batch Norm :param bn_momentum: Batch norm momentum """ super(UnaryBlock, self).__init__() self.bn_momentum = bn_momentum self.use_bn = use_bn self.no_relu = no_relu self.in_dim = in_dim self.out_dim = out_dim self.mlp = nn.Linear(in_dim, out_dim, bias=False) self.batch_norm = BatchNormBlock(out_dim, self.use_bn, self.bn_momentum ) if not no_relu: self.leaky_relu = nn.LeakyReLU(0.1) return def forward(self, x, batch=None): x = self.mlp(x) x = self.batch_norm(x) if not self.no_relu: x = self.leaky_relu(x) return x def __repr__(self): return ( 'UnaryBlock(in_feat: {:d}, out_feat: {:d}, BN: {:s}, ReLU: {:s})' .format(self.in_dim, self.out_dim, str(self.use_bn), str(not self.no_relu))) def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {'in_dim': 4, 'out_dim': 4, 'use_bn': 4, 'bn_momentum': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.utils.data import torch.nn as nn from torch.nn.parameter import Parameter assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__native_batch_norm_legit_clone_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + (4 + x0), xmask) tmp3 = tl.load(in_ptr0 + (8 + x0), xmask) tmp5 = tl.load(in_ptr0 + (12 + x0), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + x0, tmp8, xmask) tl.store(out_ptr1 + x0, tmp23, xmask) @triton.jit def triton_poi_fused_leaky_relu_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 4 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (x1 + 4 * y0), xmask & ymask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp5 = 0.0 tmp6 = tmp4 > tmp5 tmp7 = 0.1 tmp8 = tmp4 * tmp7 tmp9 = tl.where(tmp6, tmp4, tmp8) tl.store(out_ptr0 + (y0 + 4 * x1), tmp9, xmask & ymask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_2, reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((1, 4, 1), (4, 1, 4), torch.float32) buf2 = empty_strided_cuda((1, 4, 1), (4, 1, 4), torch.float32) get_raw_stream(0) triton_poi_fused__native_batch_norm_legit_clone_0[grid(4)](buf0, buf1, buf2, 4, XBLOCK=4, num_warps=1, num_stages=1) buf3 = empty_strided_cuda((4, 4), (1, 4), torch.float32) triton_poi_fused_leaky_relu_1[grid(4, 4)](buf0, buf1, buf2, buf3, 4, 4, XBLOCK=4, YBLOCK=4, num_warps=1, num_stages=1) del buf1 del buf2 return buf3, primals_2, buf0 class BatchNormBlock(nn.Module): def __init__(self, in_dim, use_bn, bn_momentum): """ Initialize a batch normalization block. If network does not use batch normalization, replace with biases. :param in_dim: dimension input features :param use_bn: boolean indicating if we use Batch Norm :param bn_momentum: Batch norm momentum """ super(BatchNormBlock, self).__init__() self.bn_momentum = bn_momentum self.use_bn = use_bn self.in_dim = in_dim if self.use_bn: self.batch_norm = nn.InstanceNorm1d(in_dim, momentum=bn_momentum) else: self.bias = Parameter(torch.zeros(in_dim, dtype=torch.float32), requires_grad=True) return def reset_parameters(self): nn.init.zeros_(self.bias) def forward(self, x): if self.use_bn: x = x.unsqueeze(2) x = x.transpose(0, 2) x = self.batch_norm(x) x = x.transpose(0, 2) return x.squeeze() else: return x + self.bias def __repr__(self): return ( 'BatchNormBlock(in_feat: {:d}, momentum: {:.3f}, only_bias: {:s})' .format(self.in_dim, self.bn_momentum, str(not self.use_bn))) class UnaryBlockNew(nn.Module): def __init__(self, in_dim, out_dim, use_bn, bn_momentum, no_relu=False): """ Initialize a standard unary block with its ReLU and BatchNorm. :param in_dim: dimension input features :param out_dim: dimension input features :param use_bn: boolean indicating if we use Batch Norm :param bn_momentum: Batch norm momentum """ super(UnaryBlockNew, self).__init__() self.bn_momentum = bn_momentum self.use_bn = use_bn self.no_relu = no_relu self.in_dim = in_dim self.out_dim = out_dim self.mlp = nn.Linear(in_dim, out_dim, bias=False) self.batch_norm = BatchNormBlock(out_dim, self.use_bn, self.bn_momentum ) if not no_relu: self.leaky_relu = nn.LeakyReLU(0.1) return def __repr__(self): return ( 'UnaryBlock(in_feat: {:d}, out_feat: {:d}, BN: {:s}, ReLU: {:s})' .format(self.in_dim, self.out_dim, str(self.use_bn), str(not self.no_relu))) def forward(self, input_0): primals_1 = self.mlp.weight primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
ShengyuH/PredateOverlap
UnaryBlock
false
14,412
[ "MIT" ]
153
770c3063399f08b3836935212ab4c84d355b4704
https://github.com/ShengyuH/PredateOverlap/tree/770c3063399f08b3836935212ab4c84d355b4704
LinearNet
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/ck/cck6zsxedo53nyj2po2pvkfjvrr75ansuu3rjjhu6zyrx6xzssqo.py # Topologically Sorted Source Nodes: [input_2], Original ATen: [aten.elu] # Source node to ATen node mapping: # input_2 => expm1, gt, mul, mul_2, where # Graph fragment: # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_1, 0), kwargs = {}) # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 1.0), kwargs = {}) # %expm1 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1, 1.0), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %mul, %mul_2), kwargs = {}) triton_poi_fused_elu_0 = async_compile.triton('triton_poi_fused_elu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_elu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_elu_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 1.0 tmp4 = tmp0 * tmp3 tmp5 = libdevice.expm1(tmp4) tmp6 = tmp5 * tmp3 tmp7 = tl.where(tmp2, tmp4, tmp6) tl.store(out_ptr0 + (x0), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [input_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [input_2], Original ATen: [aten.elu] stream0 = get_raw_stream(0) triton_poi_fused_elu_0.run(buf0, buf1, 256, grid=grid(256), stream=stream0) return (buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from collections import OrderedDict from itertools import tee def pairwise(iterable): """s -> (s0,s1), (s1,s2), (s2, s3), ...""" a, b = tee(iterable) next(b, None) return zip(a, b) class LayerNorm(nn.Module): def __init__(self, features, eps=1e-06): super().__init__() self.gamma = nn.Parameter(torch.ones(features)) self.beta = nn.Parameter(torch.zeros(features)) self.eps = eps def forward(self, x): mean = x.mean(-1, keepdim=True) std = x.std(-1, keepdim=True) return self.gamma * (x - mean) / (std + self.eps) + self.beta class LinearNet(nn.Module): def __init__(self, layers, activation=torch.nn.ELU, layer_norm=False, linear_layer=nn.Linear): super(LinearNet, self).__init__() self.input_shape = layers[0] self.output_shape = layers[-1] if layer_norm: def layer_fn(layer): return [('linear_{}'.format(layer[0]), linear_layer(layer[1 ][0], layer[1][1])), ('layer_norm_{}'.format(layer[0]), LayerNorm(layer[1][1])), ('act_{}'.format(layer[0]), activation())] else: def layer_fn(layer): return [('linear_{}'.format(layer[0]), linear_layer(layer[1 ][0], layer[1][1])), ('act_{}'.format(layer[0]), activation())] self.net = torch.nn.Sequential(OrderedDict([x for y in map(lambda layer: layer_fn(layer), enumerate(pairwise(layers))) for x in y])) def forward(self, x): x = self.net.forward(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'layers': [4, 4]}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn from collections import OrderedDict from itertools import tee assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_elu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 1.0 tmp4 = tmp0 * tmp3 tmp5 = libdevice.expm1(tmp4) tmp6 = tmp5 * tmp3 tmp7 = tl.where(tmp2, tmp4, tmp6) tl.store(out_ptr0 + x0, tmp7, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_elu_0[grid(256)](buf0, buf1, 256, XBLOCK=256, num_warps=4, num_stages=1) return buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0 def pairwise(iterable): """s -> (s0,s1), (s1,s2), (s2, s3), ...""" a, b = tee(iterable) next(b, None) return zip(a, b) class LayerNorm(nn.Module): def __init__(self, features, eps=1e-06): super().__init__() self.gamma = nn.Parameter(torch.ones(features)) self.beta = nn.Parameter(torch.zeros(features)) self.eps = eps def forward(self, x): mean = x.mean(-1, keepdim=True) std = x.std(-1, keepdim=True) return self.gamma * (x - mean) / (std + self.eps) + self.beta class LinearNetNew(nn.Module): def __init__(self, layers, activation=torch.nn.ELU, layer_norm=False, linear_layer=nn.Linear): super(LinearNetNew, self).__init__() self.input_shape = layers[0] self.output_shape = layers[-1] if layer_norm: def layer_fn(layer): return [('linear_{}'.format(layer[0]), linear_layer(layer[1 ][0], layer[1][1])), ('layer_norm_{}'.format(layer[0]), LayerNorm(layer[1][1])), ('act_{}'.format(layer[0]), activation())] else: def layer_fn(layer): return [('linear_{}'.format(layer[0]), linear_layer(layer[1 ][0], layer[1][1])), ('act_{}'.format(layer[0]), activation())] self.net = torch.nn.Sequential(OrderedDict([x for y in map(lambda layer: layer_fn(layer), enumerate(pairwise(layers))) for x in y])) def forward(self, input_0): primals_1 = self.net.linear_0.weight primals_2 = self.net.linear_0.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
Shmuma/Run-Skeleton-Run
LinearNet
false
14,413
[ "MIT" ]
92
a953e6c524a444b6a99a54ef5b2886a57de0d185
https://github.com/Shmuma/Run-Skeleton-Run/tree/a953e6c524a444b6a99a54ef5b2886a57de0d185
FastRNNCell
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/tb/ctbc62iwsfjylunbfj67j7mqt6piotcv6s56drmljjg2lp7vfyhv.py # Topologically Sorted Source Nodes: [pre_comp, add_1, c, sigmoid, mul, sigmoid_1, mul_1, new_h], Original ATen: [aten.add, aten.tanh, aten.sigmoid, aten.mul] # Source node to ATen node mapping: # add_1 => add_1 # c => tanh # mul => mul # mul_1 => mul_1 # new_h => add_2 # pre_comp => add # sigmoid => sigmoid # sigmoid_1 => sigmoid_1 # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %view_3), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %primals_5), kwargs = {}) # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%add_1,), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%primals_6,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %primals_4), kwargs = {}) # %sigmoid_1 : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%primals_7,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid_1, %tanh), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {}) triton_poi_fused_add_mul_sigmoid_tanh_0 = async_compile.triton('triton_poi_fused_add_mul_sigmoid_tanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_sigmoid_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_sigmoid_tanh_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x2), xmask) tmp3 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr2 + (0)) tmp7 = tl.broadcast_to(tmp6, [XBLOCK]) tmp9 = tl.load(in_ptr3 + (x2), xmask) tmp11 = tl.load(in_ptr4 + (0)) tmp12 = tl.broadcast_to(tmp11, [XBLOCK]) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp5 = libdevice.tanh(tmp4) tmp8 = tl.sigmoid(tmp7) tmp10 = tmp8 * tmp9 tmp13 = tl.sigmoid(tmp12) tmp14 = tmp13 * tmp5 tmp15 = tmp10 + tmp14 tl.store(in_out_ptr0 + (x2), tmp5, xmask) tl.store(out_ptr0 + (x2), tmp15, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (1, 4), (4, 1)) assert_size_stride(primals_6, (1, 1), (1, 1)) assert_size_stride(primals_7, (1, 1), (1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [wComp], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), primals_1, out=buf0) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [uComp], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), primals_3, out=buf1) del primals_3 buf2 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [pre_comp, add_1, c, sigmoid, mul, sigmoid_1, mul_1, new_h], Original ATen: [aten.add, aten.tanh, aten.sigmoid, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_sigmoid_tanh_0.run(buf2, buf1, primals_5, primals_6, primals_4, primals_7, buf3, 256, grid=grid(256), stream=stream0) del buf1 del primals_5 return (buf3, primals_4, primals_6, primals_7, buf2, reinterpret_tensor(primals_2, (4, 64), (1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((1, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((1, 1), (1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.onnx from itertools import product as product def gen_nonlinearity(A, nonlinearity): """ Returns required activation for a tensor based on the inputs nonlinearity is either a callable or a value in ['tanh', 'sigmoid', 'relu', 'quantTanh', 'quantSigm', 'quantSigm4'] """ if nonlinearity == 'tanh': return torch.tanh(A) elif nonlinearity == 'sigmoid': return torch.sigmoid(A) elif nonlinearity == 'relu': return torch.relu(A, 0.0) elif nonlinearity == 'quantTanh': return torch.max(torch.min(A, torch.ones_like(A)), -1.0 * torch. ones_like(A)) elif nonlinearity == 'quantSigm': A = (A + 1.0) / 2.0 return torch.max(torch.min(A, torch.ones_like(A)), torch.zeros_like(A)) elif nonlinearity == 'quantSigm4': A = (A + 2.0) / 4.0 return torch.max(torch.min(A, torch.ones_like(A)), torch.zeros_like(A)) else: if not callable(nonlinearity): raise ValueError( 'nonlinearity is either a callable or a value ' + "['tanh', 'sigmoid', 'relu', 'quantTanh', " + "'quantSigm'") return nonlinearity(A) class RNNCell(nn.Module): def __init__(self, input_size, hidden_size, gate_nonlinearity, update_nonlinearity, num_W_matrices, num_U_matrices, num_biases, wRank=None, uRank=None, wSparsity=1.0, uSparsity=1.0): super(RNNCell, self).__init__() self._input_size = input_size self._hidden_size = hidden_size self._gate_nonlinearity = gate_nonlinearity self._update_nonlinearity = update_nonlinearity self._num_W_matrices = num_W_matrices self._num_U_matrices = num_U_matrices self._num_biases = num_biases self._num_weight_matrices = [self._num_W_matrices, self. _num_U_matrices, self._num_biases] self._wRank = wRank self._uRank = uRank self._wSparsity = wSparsity self._uSparsity = uSparsity self.oldmats = [] @property def state_size(self): return self._hidden_size @property def input_size(self): return self._input_size @property def output_size(self): return self._hidden_size @property def gate_nonlinearity(self): return self._gate_nonlinearity @property def update_nonlinearity(self): return self._update_nonlinearity @property def wRank(self): return self._wRank @property def uRank(self): return self._uRank @property def num_W_matrices(self): return self._num_W_matrices @property def num_U_matrices(self): return self._num_U_matrices @property def num_weight_matrices(self): return self._num_weight_matrices @property def name(self): raise NotImplementedError() def forward(self, input, state): raise NotImplementedError() def getVars(self): raise NotImplementedError() def get_model_size(self): """ Function to get aimed model size """ mats = self.getVars() endW = self._num_W_matrices endU = endW + self._num_U_matrices totalnnz = 2 for i in range(0, endW): mats[i].device totalnnz += utils.countNNZ(mats[i].cpu(), self._wSparsity) mats[i] for i in range(endW, endU): mats[i].device totalnnz += utils.countNNZ(mats[i].cpu(), self._uSparsity) mats[i] for i in range(endU, len(mats)): mats[i].device totalnnz += utils.countNNZ(mats[i].cpu(), False) mats[i] return totalnnz * 4 def copy_previous_UW(self): mats = self.getVars() num_mats = self._num_W_matrices + self._num_U_matrices if len(self.oldmats) != num_mats: for i in range(num_mats): self.oldmats.append(torch.FloatTensor()) for i in range(num_mats): self.oldmats[i] = torch.FloatTensor(mats[i].detach().clone()) def sparsify(self): mats = self.getVars() endW = self._num_W_matrices endU = endW + self._num_U_matrices for i in range(0, endW): mats[i] = utils.hardThreshold(mats[i], self._wSparsity) for i in range(endW, endU): mats[i] = utils.hardThreshold(mats[i], self._uSparsity) self.W.data.copy_(mats[0]) self.U.data.copy_(mats[1]) def sparsifyWithSupport(self): mats = self.getVars() endU = self._num_W_matrices + self._num_U_matrices for i in range(0, endU): mats[i] = utils.supportBasedThreshold(mats[i], self.oldmats[i]) class FastRNNCell(RNNCell): """ FastRNN Cell with Both Full Rank and Low Rank Formulations Has multiple activation functions for the gates hidden_size = # hidden units update_nonlinearity = nonlinearity for final rnn update can be chosen from [tanh, sigmoid, relu, quantTanh, quantSigm] wRank = rank of W matrix (creates two matrices if not None) uRank = rank of U matrix (creates two matrices if not None) wSparsity = intended sparsity of W matrix(ces) uSparsity = intended sparsity of U matrix(ces) Warning: The Cell will not automatically sparsify. The user must invoke .sparsify to hard threshold. alphaInit = init for alpha, the update scalar betaInit = init for beta, the weight for previous state FastRNN architecture and compression techniques are found in FastGRNN(LINK) paper Basic architecture is like: h_t^ = update_nl(Wx_t + Uh_{t-1} + B_h) h_t = sigmoid(beta)*h_{t-1} + sigmoid(alpha)*h_t^ W and U can further parameterised into low rank version by W = matmul(W_1, W_2) and U = matmul(U_1, U_2) """ def __init__(self, input_size, hidden_size, update_nonlinearity='tanh', wRank=None, uRank=None, wSparsity=1.0, uSparsity=1.0, alphaInit=- 3.0, betaInit=3.0, name='FastRNN'): super(FastRNNCell, self).__init__(input_size, hidden_size, None, update_nonlinearity, 1, 1, 1, wRank, uRank, wSparsity, uSparsity) self._alphaInit = alphaInit self._betaInit = betaInit if wRank is not None: self._num_W_matrices += 1 self._num_weight_matrices[0] = self._num_W_matrices if uRank is not None: self._num_U_matrices += 1 self._num_weight_matrices[1] = self._num_U_matrices self._name = name if wRank is None: self.W = nn.Parameter(0.1 * torch.randn([input_size, hidden_size])) else: self.W1 = nn.Parameter(0.1 * torch.randn([input_size, wRank])) self.W2 = nn.Parameter(0.1 * torch.randn([wRank, hidden_size])) if uRank is None: self.U = nn.Parameter(0.1 * torch.randn([hidden_size, hidden_size]) ) else: self.U1 = nn.Parameter(0.1 * torch.randn([hidden_size, uRank])) self.U2 = nn.Parameter(0.1 * torch.randn([uRank, hidden_size])) self.bias_update = nn.Parameter(torch.ones([1, hidden_size])) self.alpha = nn.Parameter(self._alphaInit * torch.ones([1, 1])) self.beta = nn.Parameter(self._betaInit * torch.ones([1, 1])) @property def name(self): return self._name @property def cellType(self): return 'FastRNN' def forward(self, input, state): if self._wRank is None: wComp = torch.matmul(input, self.W) else: wComp = torch.matmul(torch.matmul(input, self.W1), self.W2) if self._uRank is None: uComp = torch.matmul(state, self.U) else: uComp = torch.matmul(torch.matmul(state, self.U1), self.U2) pre_comp = wComp + uComp c = gen_nonlinearity(pre_comp + self.bias_update, self. _update_nonlinearity) new_h = torch.sigmoid(self.beta) * state + torch.sigmoid(self.alpha ) * c return new_h def getVars(self): Vars = [] if self._num_W_matrices == 1: Vars.append(self.W) else: Vars.extend([self.W1, self.W2]) if self._num_U_matrices == 1: Vars.append(self.U) else: Vars.extend([self.U1, self.U2]) Vars.extend([self.bias_update]) Vars.extend([self.alpha, self.beta]) return Vars def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4, 'hidden_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn import torch.onnx from itertools import product as product assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_mul_sigmoid_tanh_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x2, xmask) tmp3 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr2 + 0) tmp7 = tl.broadcast_to(tmp6, [XBLOCK]) tmp9 = tl.load(in_ptr3 + x2, xmask) tmp11 = tl.load(in_ptr4 + 0) tmp12 = tl.broadcast_to(tmp11, [XBLOCK]) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp5 = libdevice.tanh(tmp4) tmp8 = tl.sigmoid(tmp7) tmp10 = tmp8 * tmp9 tmp13 = tl.sigmoid(tmp12) tmp14 = tmp13 * tmp5 tmp15 = tmp10 + tmp14 tl.store(in_out_ptr0 + x2, tmp5, xmask) tl.store(out_ptr0 + x2, tmp15, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (1, 4), (4, 1)) assert_size_stride(primals_6, (1, 1), (1, 1)) assert_size_stride(primals_7, (1, 1), (1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), primals_1, out=buf0) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), primals_3, out=buf1) del primals_3 buf2 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_sigmoid_tanh_0[grid(256)](buf2, buf1, primals_5, primals_6, primals_4, primals_7, buf3, 256, XBLOCK= 128, num_warps=4, num_stages=1) del buf1 del primals_5 return buf3, primals_4, primals_6, primals_7, buf2, reinterpret_tensor( primals_2, (4, 64), (1, 4), 0) def gen_nonlinearity(A, nonlinearity): """ Returns required activation for a tensor based on the inputs nonlinearity is either a callable or a value in ['tanh', 'sigmoid', 'relu', 'quantTanh', 'quantSigm', 'quantSigm4'] """ if nonlinearity == 'tanh': return torch.tanh(A) elif nonlinearity == 'sigmoid': return torch.sigmoid(A) elif nonlinearity == 'relu': return torch.relu(A, 0.0) elif nonlinearity == 'quantTanh': return torch.max(torch.min(A, torch.ones_like(A)), -1.0 * torch. ones_like(A)) elif nonlinearity == 'quantSigm': A = (A + 1.0) / 2.0 return torch.max(torch.min(A, torch.ones_like(A)), torch.zeros_like(A)) elif nonlinearity == 'quantSigm4': A = (A + 2.0) / 4.0 return torch.max(torch.min(A, torch.ones_like(A)), torch.zeros_like(A)) else: if not callable(nonlinearity): raise ValueError( 'nonlinearity is either a callable or a value ' + "['tanh', 'sigmoid', 'relu', 'quantTanh', " + "'quantSigm'") return nonlinearity(A) class RNNCell(nn.Module): def __init__(self, input_size, hidden_size, gate_nonlinearity, update_nonlinearity, num_W_matrices, num_U_matrices, num_biases, wRank=None, uRank=None, wSparsity=1.0, uSparsity=1.0): super(RNNCell, self).__init__() self._input_size = input_size self._hidden_size = hidden_size self._gate_nonlinearity = gate_nonlinearity self._update_nonlinearity = update_nonlinearity self._num_W_matrices = num_W_matrices self._num_U_matrices = num_U_matrices self._num_biases = num_biases self._num_weight_matrices = [self._num_W_matrices, self. _num_U_matrices, self._num_biases] self._wRank = wRank self._uRank = uRank self._wSparsity = wSparsity self._uSparsity = uSparsity self.oldmats = [] @property def state_size(self): return self._hidden_size @property def input_size(self): return self._input_size @property def output_size(self): return self._hidden_size @property def gate_nonlinearity(self): return self._gate_nonlinearity @property def update_nonlinearity(self): return self._update_nonlinearity @property def wRank(self): return self._wRank @property def uRank(self): return self._uRank @property def num_W_matrices(self): return self._num_W_matrices @property def num_U_matrices(self): return self._num_U_matrices @property def num_weight_matrices(self): return self._num_weight_matrices @property def name(self): raise NotImplementedError() def forward(self, input, state): raise NotImplementedError() def getVars(self): raise NotImplementedError() def get_model_size(self): """ Function to get aimed model size """ mats = self.getVars() endW = self._num_W_matrices endU = endW + self._num_U_matrices totalnnz = 2 for i in range(0, endW): mats[i].device totalnnz += utils.countNNZ(mats[i].cpu(), self._wSparsity) mats[i] for i in range(endW, endU): mats[i].device totalnnz += utils.countNNZ(mats[i].cpu(), self._uSparsity) mats[i] for i in range(endU, len(mats)): mats[i].device totalnnz += utils.countNNZ(mats[i].cpu(), False) mats[i] return totalnnz * 4 def copy_previous_UW(self): mats = self.getVars() num_mats = self._num_W_matrices + self._num_U_matrices if len(self.oldmats) != num_mats: for i in range(num_mats): self.oldmats.append(torch.FloatTensor()) for i in range(num_mats): self.oldmats[i] = torch.FloatTensor(mats[i].detach().clone()) def sparsify(self): mats = self.getVars() endW = self._num_W_matrices endU = endW + self._num_U_matrices for i in range(0, endW): mats[i] = utils.hardThreshold(mats[i], self._wSparsity) for i in range(endW, endU): mats[i] = utils.hardThreshold(mats[i], self._uSparsity) self.W.data.copy_(mats[0]) self.U.data.copy_(mats[1]) def sparsifyWithSupport(self): mats = self.getVars() endU = self._num_W_matrices + self._num_U_matrices for i in range(0, endU): mats[i] = utils.supportBasedThreshold(mats[i], self.oldmats[i]) class FastRNNCellNew(RNNCell): """ FastRNN Cell with Both Full Rank and Low Rank Formulations Has multiple activation functions for the gates hidden_size = # hidden units update_nonlinearity = nonlinearity for final rnn update can be chosen from [tanh, sigmoid, relu, quantTanh, quantSigm] wRank = rank of W matrix (creates two matrices if not None) uRank = rank of U matrix (creates two matrices if not None) wSparsity = intended sparsity of W matrix(ces) uSparsity = intended sparsity of U matrix(ces) Warning: The Cell will not automatically sparsify. The user must invoke .sparsify to hard threshold. alphaInit = init for alpha, the update scalar betaInit = init for beta, the weight for previous state FastRNN architecture and compression techniques are found in FastGRNN(LINK) paper Basic architecture is like: h_t^ = update_nl(Wx_t + Uh_{t-1} + B_h) h_t = sigmoid(beta)*h_{t-1} + sigmoid(alpha)*h_t^ W and U can further parameterised into low rank version by W = matmul(W_1, W_2) and U = matmul(U_1, U_2) """ def __init__(self, input_size, hidden_size, update_nonlinearity='tanh', wRank=None, uRank=None, wSparsity=1.0, uSparsity=1.0, alphaInit=- 3.0, betaInit=3.0, name='FastRNN'): super(FastRNNCellNew, self).__init__(input_size, hidden_size, None, update_nonlinearity, 1, 1, 1, wRank, uRank, wSparsity, uSparsity) self._alphaInit = alphaInit self._betaInit = betaInit if wRank is not None: self._num_W_matrices += 1 self._num_weight_matrices[0] = self._num_W_matrices if uRank is not None: self._num_U_matrices += 1 self._num_weight_matrices[1] = self._num_U_matrices self._name = name if wRank is None: self.W = nn.Parameter(0.1 * torch.randn([input_size, hidden_size])) else: self.W1 = nn.Parameter(0.1 * torch.randn([input_size, wRank])) self.W2 = nn.Parameter(0.1 * torch.randn([wRank, hidden_size])) if uRank is None: self.U = nn.Parameter(0.1 * torch.randn([hidden_size, hidden_size]) ) else: self.U1 = nn.Parameter(0.1 * torch.randn([hidden_size, uRank])) self.U2 = nn.Parameter(0.1 * torch.randn([uRank, hidden_size])) self.bias_update = nn.Parameter(torch.ones([1, hidden_size])) self.alpha = nn.Parameter(self._alphaInit * torch.ones([1, 1])) self.beta = nn.Parameter(self._betaInit * torch.ones([1, 1])) @property def name(self): return self._name @property def cellType(self): return 'FastRNN' def getVars(self): Vars = [] if self._num_W_matrices == 1: Vars.append(self.W) else: Vars.extend([self.W1, self.W2]) if self._num_U_matrices == 1: Vars.append(self.U) else: Vars.extend([self.U1, self.U2]) Vars.extend([self.bias_update]) Vars.extend([self.alpha, self.beta]) return Vars def forward(self, input_0, input_1): primals_1 = self.W primals_3 = self.U primals_5 = self.bias_update primals_6 = self.alpha primals_7 = self.beta primals_2 = input_0 primals_4 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
Shenzhen-Cloudatawalk-Technology-Co-Ltd/EdgeML
FastRNNCell
false
14,414
[ "MIT" ]
719
ef9f8a77f096acbdeb941014791f8eda1c1bc35b
https://github.com/Shenzhen-Cloudatawalk-Technology-Co-Ltd/EdgeML/tree/ef9f8a77f096acbdeb941014791f8eda1c1bc35b
ProtoNN
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/dj/cdjhwfxa4rmj7sf4p4wvsuo75o54dwfcioekxuix47trjvtclo2h.py # Topologically Sorted Source Nodes: [l2sim, l2sim_1, l2sim_2], Original ATen: [aten.sub, aten.pow, aten.sum] # Source node to ATen node mapping: # l2sim => sub # l2sim_1 => pow_1 # l2sim_2 => sum_1 # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_3, %view_2), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %sum_1 : [num_users=2] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1], True), kwargs = {}) triton_poi_fused_pow_sub_sum_0 = async_compile.triton('triton_poi_fused_pow_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_pow_sub_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_pow_sub_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (4 + x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (8 + x0), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr0 + (12 + x0), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp6 = tmp4 - tmp5 tmp7 = tmp6 * tmp6 tmp8 = tmp3 + tmp7 tmp11 = tmp9 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tmp8 + tmp12 tmp16 = tmp14 - tmp15 tmp17 = tmp16 * tmp16 tmp18 = tmp13 + tmp17 tl.store(out_ptr0 + (x2), tmp18, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/vq/cvqpmuazxnwnsptaxlt2b7ipl2pprxtdxzwiesxonokjn253gipy.py # Topologically Sorted Source Nodes: [gammal2sim, M, y, y_1], Original ATen: [aten.mul, aten.exp, aten.sum] # Source node to ATen node mapping: # M => exp # gammal2sim => mul # y => mul_1 # y_1 => sum_2 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, -16), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%mul,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_4, %exp), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_1, [2]), kwargs = {}) triton_poi_fused_exp_mul_sum_1 = async_compile.triton('triton_poi_fused_exp_mul_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_exp_mul_sum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_exp_mul_sum_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp18 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp2 = -16.0 tmp3 = tmp1 * tmp2 tmp4 = tl_math.exp(tmp3) tmp5 = tmp0 * tmp4 tmp8 = tmp7 * tmp2 tmp9 = tl_math.exp(tmp8) tmp10 = tmp6 * tmp9 tmp11 = tmp5 + tmp10 tmp14 = tmp13 * tmp2 tmp15 = tl_math.exp(tmp14) tmp16 = tmp12 * tmp15 tmp17 = tmp11 + tmp16 tmp20 = tmp19 * tmp2 tmp21 = tl_math.exp(tmp20) tmp22 = tmp18 * tmp21 tmp23 = tmp17 + tmp22 tl.store(out_ptr0 + (x2), tmp23, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [WX], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), primals_1, out=buf0) del primals_1 buf1 = empty_strided_cuda((64, 1, 4), (4, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [l2sim, l2sim_1, l2sim_2], Original ATen: [aten.sub, aten.pow, aten.sum] stream0 = get_raw_stream(0) triton_poi_fused_pow_sub_sum_0.run(primals_2, buf0, buf1, 256, grid=grid(256), stream=stream0) buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [gammal2sim, M, y, y_1], Original ATen: [aten.mul, aten.exp, aten.sum] triton_poi_fused_exp_mul_sum_1.run(primals_3, buf1, buf2, 256, grid=grid(256), stream=stream0) return (buf2, buf1, primals_2, primals_3, buf0, buf1, reinterpret_tensor(primals_4, (4, 64), (1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np import torch.nn as nn import torch.onnx from itertools import product as product class ProtoNN(nn.Module): def __init__(self, inputDimension, projectionDimension, numPrototypes, numOutputLabels, gamma, W=None, B=None, Z=None): """ Forward computation graph for ProtoNN. inputDimension: Input data dimension or feature dimension. projectionDimension: hyperparameter numPrototypes: hyperparameter numOutputLabels: The number of output labels or classes W, B, Z: Numpy matrices that can be used to initialize projection matrix(W), prototype matrix (B) and prototype labels matrix (B). Expected Dimensions: W inputDimension (d) x projectionDimension (d_cap) B projectionDimension (d_cap) x numPrototypes (m) Z numOutputLabels (L) x numPrototypes (m) """ super(ProtoNN, self).__init__() self.__d = inputDimension self.__d_cap = projectionDimension self.__m = numPrototypes self.__L = numOutputLabels self.W, self.B, self.Z = None, None, None self.gamma = gamma self.__validInit = False self.__initWBZ(W, B, Z) self.__validateInit() def __validateInit(self): self.__validinit = False errmsg = 'Dimensions mismatch! Should be W[d, d_cap]' errmsg += ', B[d_cap, m] and Z[L, m]' d, d_cap, m, L, _ = self.getHyperParams() assert self.W.shape[0] == d, errmsg assert self.W.shape[1] == d_cap, errmsg assert self.B.shape[0] == d_cap, errmsg assert self.B.shape[1] == m, errmsg assert self.Z.shape[0] == L, errmsg assert self.Z.shape[1] == m, errmsg self.__validInit = True def __initWBZ(self, inW, inB, inZ): if inW is None: self.W = torch.randn([self.__d, self.__d_cap]) self.W = nn.Parameter(self.W) else: self.W = nn.Parameter(torch.from_numpy(inW.astype(np.float32))) if inB is None: self.B = torch.randn([self.__d_cap, self.__m]) self.B = nn.Parameter(self.B) else: self.B = nn.Parameter(torch.from_numpy(inB.astype(np.float32))) if inZ is None: self.Z = torch.randn([self.__L, self.__m]) self.Z = nn.Parameter(self.Z) else: self.Z = nn.Parameter(torch.from_numpy(inZ.astype(np.float32))) def getHyperParams(self): """ Returns the model hyperparameters: [inputDimension, projectionDimension, numPrototypes, numOutputLabels, gamma] """ d = self.__d dcap = self.__d_cap m = self.__m L = self.__L return d, dcap, m, L, self.gamma def getModelMatrices(self): """ Returns model matrices, which can then be evaluated to obtain corresponding numpy arrays. These can then be exported as part of other implementations of ProtonNN, for instance a C++ implementation or pure python implementation. Returns [ProjectionMatrix (W), prototypeMatrix (B), prototypeLabelsMatrix (Z), gamma] """ return self.W, self.B, self.Z, self.gamma def forward(self, X): """ This method is responsible for construction of the forward computation graph. The end point of the computation graph, or in other words the output operator for the forward computation is returned. X: Input of shape [-1, inputDimension] returns: The forward computation outputs, self.protoNNOut """ assert self.__validInit is True, 'Initialization failed!' W, B, Z, gamma = self.W, self.B, self.Z, self.gamma WX = torch.matmul(X, W) dim = [-1, WX.shape[1], 1] WX = torch.reshape(WX, dim) dim = [1, B.shape[0], -1] B_ = torch.reshape(B, dim) l2sim = B_ - WX l2sim = torch.pow(l2sim, 2) l2sim = torch.sum(l2sim, dim=1, keepdim=True) self.l2sim = l2sim gammal2sim = -1 * gamma * gamma * l2sim M = torch.exp(gammal2sim) dim = [1] + list(Z.shape) Z_ = torch.reshape(Z, dim) y = Z_ * M y = torch.sum(y, dim=2) return y def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'inputDimension': 4, 'projectionDimension': 4, 'numPrototypes': 4, 'numOutputLabels': 4, 'gamma': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import numpy as np import torch.nn as nn import torch.onnx from itertools import product as product assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_pow_sub_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (4 + x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (8 + x0), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp14 = tl.load(in_ptr0 + (12 + x0), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp6 = tmp4 - tmp5 tmp7 = tmp6 * tmp6 tmp8 = tmp3 + tmp7 tmp11 = tmp9 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tmp8 + tmp12 tmp16 = tmp14 - tmp15 tmp17 = tmp16 * tmp16 tmp18 = tmp13 + tmp17 tl.store(out_ptr0 + x2, tmp18, xmask) @triton.jit def triton_poi_fused_exp_mul_sum_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp13 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp18 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp19 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp2 = -16.0 tmp3 = tmp1 * tmp2 tmp4 = tl_math.exp(tmp3) tmp5 = tmp0 * tmp4 tmp8 = tmp7 * tmp2 tmp9 = tl_math.exp(tmp8) tmp10 = tmp6 * tmp9 tmp11 = tmp5 + tmp10 tmp14 = tmp13 * tmp2 tmp15 = tl_math.exp(tmp14) tmp16 = tmp12 * tmp15 tmp17 = tmp11 + tmp16 tmp20 = tmp19 * tmp2 tmp21 = tl_math.exp(tmp20) tmp22 = tmp18 * tmp21 tmp23 = tmp17 + tmp22 tl.store(out_ptr0 + x2, tmp23, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), primals_1, out=buf0) del primals_1 buf1 = empty_strided_cuda((64, 1, 4), (4, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_pow_sub_sum_0[grid(256)](primals_2, buf0, buf1, 256, XBLOCK=128, num_warps=4, num_stages=1) buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) triton_poi_fused_exp_mul_sum_1[grid(256)](primals_3, buf1, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) return buf2, buf1, primals_2, primals_3, buf0, buf1, reinterpret_tensor( primals_4, (4, 64), (1, 4), 0) class ProtoNNNew(nn.Module): def __init__(self, inputDimension, projectionDimension, numPrototypes, numOutputLabels, gamma, W=None, B=None, Z=None): """ Forward computation graph for ProtoNN. inputDimension: Input data dimension or feature dimension. projectionDimension: hyperparameter numPrototypes: hyperparameter numOutputLabels: The number of output labels or classes W, B, Z: Numpy matrices that can be used to initialize projection matrix(W), prototype matrix (B) and prototype labels matrix (B). Expected Dimensions: W inputDimension (d) x projectionDimension (d_cap) B projectionDimension (d_cap) x numPrototypes (m) Z numOutputLabels (L) x numPrototypes (m) """ super(ProtoNNNew, self).__init__() self.__d = inputDimension self.__d_cap = projectionDimension self.__m = numPrototypes self.__L = numOutputLabels self.W, self.B, self.Z = None, None, None self.gamma = gamma self.__validInit = False self.__initWBZ(W, B, Z) self.__validateInit() def __validateInit(self): self.__validinit = False errmsg = 'Dimensions mismatch! Should be W[d, d_cap]' errmsg += ', B[d_cap, m] and Z[L, m]' d, d_cap, m, L, _ = self.getHyperParams() assert self.W.shape[0] == d, errmsg assert self.W.shape[1] == d_cap, errmsg assert self.B.shape[0] == d_cap, errmsg assert self.B.shape[1] == m, errmsg assert self.Z.shape[0] == L, errmsg assert self.Z.shape[1] == m, errmsg self.__validInit = True def __initWBZ(self, inW, inB, inZ): if inW is None: self.W = torch.randn([self.__d, self.__d_cap]) self.W = nn.Parameter(self.W) else: self.W = nn.Parameter(torch.from_numpy(inW.astype(np.float32))) if inB is None: self.B = torch.randn([self.__d_cap, self.__m]) self.B = nn.Parameter(self.B) else: self.B = nn.Parameter(torch.from_numpy(inB.astype(np.float32))) if inZ is None: self.Z = torch.randn([self.__L, self.__m]) self.Z = nn.Parameter(self.Z) else: self.Z = nn.Parameter(torch.from_numpy(inZ.astype(np.float32))) def getHyperParams(self): """ Returns the model hyperparameters: [inputDimension, projectionDimension, numPrototypes, numOutputLabels, gamma] """ d = self.__d dcap = self.__d_cap m = self.__m L = self.__L return d, dcap, m, L, self.gamma def getModelMatrices(self): """ Returns model matrices, which can then be evaluated to obtain corresponding numpy arrays. These can then be exported as part of other implementations of ProtonNN, for instance a C++ implementation or pure python implementation. Returns [ProjectionMatrix (W), prototypeMatrix (B), prototypeLabelsMatrix (Z), gamma] """ return self.W, self.B, self.Z, self.gamma def forward(self, input_0): primals_1 = self.W primals_2 = self.B primals_3 = self.Z primals_4 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
Shenzhen-Cloudatawalk-Technology-Co-Ltd/EdgeML
ProtoNN
false
14,415
[ "MIT" ]
719
ef9f8a77f096acbdeb941014791f8eda1c1bc35b
https://github.com/Shenzhen-Cloudatawalk-Technology-Co-Ltd/EdgeML/tree/ef9f8a77f096acbdeb941014791f8eda1c1bc35b
FastGRNNCell
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/w4/cw4ae3o32nppo7llvm7ul7p5le255pvoa5wqcrceacbu2xvt2ydy.py # Topologically Sorted Source Nodes: [pre_comp, add_1, z, add_2, c, mul, sigmoid_1, sub, mul_1, sigmoid_2, add_3, mul_2, new_h], Original ATen: [aten.add, aten.sigmoid, aten.tanh, aten.mul, aten.rsub] # Source node to ATen node mapping: # add_1 => add_1 # add_2 => add_2 # add_3 => add_3 # c => tanh # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # new_h => add_4 # pre_comp => add # sigmoid_1 => sigmoid_1 # sigmoid_2 => sigmoid_2 # sub => sub # z => sigmoid # Graph fragment: # %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %view_3), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %primals_5), kwargs = {}) # %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add_1,), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %primals_6), kwargs = {}) # %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%add_2,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %primals_4), kwargs = {}) # %sigmoid_1 : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%primals_7,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %sigmoid), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid_1, %sub), kwargs = {}) # %sigmoid_2 : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%primals_8,), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %sigmoid_2), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_3, %tanh), kwargs = {}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_2), kwargs = {}) triton_poi_fused_add_mul_rsub_sigmoid_tanh_0 = async_compile.triton('triton_poi_fused_add_mul_rsub_sigmoid_tanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_rsub_sigmoid_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_rsub_sigmoid_tanh_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex x1 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask) tmp3 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr2 + (x0), xmask) tmp8 = tl.load(in_ptr3 + (0)) tmp9 = tl.broadcast_to(tmp8, [XBLOCK]) tmp14 = tl.load(in_ptr4 + (0)) tmp15 = tl.broadcast_to(tmp14, [XBLOCK]) tmp18 = tl.load(in_ptr5 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp5 = tl.sigmoid(tmp4) tmp7 = tmp5 * tmp6 tmp10 = tl.sigmoid(tmp9) tmp11 = 1.0 tmp12 = tmp11 - tmp5 tmp13 = tmp10 * tmp12 tmp16 = tl.sigmoid(tmp15) tmp17 = tmp13 + tmp16 tmp19 = tmp2 + tmp18 tmp20 = libdevice.tanh(tmp19) tmp21 = tmp17 * tmp20 tmp22 = tmp7 + tmp21 tl.store(in_out_ptr0 + (x0), tmp2, xmask) tl.store(out_ptr0 + (x0), tmp22, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (1, 4), (4, 1)) assert_size_stride(primals_6, (1, 4), (4, 1)) assert_size_stride(primals_7, (1, 1), (1, 1)) assert_size_stride(primals_8, (1, 1), (1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [wComp], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), primals_1, out=buf0) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [uComp], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), primals_3, out=buf1) del primals_3 buf2 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [pre_comp, add_1, z, add_2, c, mul, sigmoid_1, sub, mul_1, sigmoid_2, add_3, mul_2, new_h], Original ATen: [aten.add, aten.sigmoid, aten.tanh, aten.mul, aten.rsub] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_rsub_sigmoid_tanh_0.run(buf2, buf1, primals_5, primals_4, primals_7, primals_8, primals_6, buf3, 256, grid=grid(256), stream=stream0) del buf1 return (buf3, primals_4, primals_5, primals_6, primals_7, primals_8, buf2, reinterpret_tensor(primals_2, (4, 64), (1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((1, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((1, 1), (1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.onnx from itertools import product as product def gen_nonlinearity(A, nonlinearity): """ Returns required activation for a tensor based on the inputs nonlinearity is either a callable or a value in ['tanh', 'sigmoid', 'relu', 'quantTanh', 'quantSigm', 'quantSigm4'] """ if nonlinearity == 'tanh': return torch.tanh(A) elif nonlinearity == 'sigmoid': return torch.sigmoid(A) elif nonlinearity == 'relu': return torch.relu(A, 0.0) elif nonlinearity == 'quantTanh': return torch.max(torch.min(A, torch.ones_like(A)), -1.0 * torch. ones_like(A)) elif nonlinearity == 'quantSigm': A = (A + 1.0) / 2.0 return torch.max(torch.min(A, torch.ones_like(A)), torch.zeros_like(A)) elif nonlinearity == 'quantSigm4': A = (A + 2.0) / 4.0 return torch.max(torch.min(A, torch.ones_like(A)), torch.zeros_like(A)) else: if not callable(nonlinearity): raise ValueError( 'nonlinearity is either a callable or a value ' + "['tanh', 'sigmoid', 'relu', 'quantTanh', " + "'quantSigm'") return nonlinearity(A) class RNNCell(nn.Module): def __init__(self, input_size, hidden_size, gate_nonlinearity, update_nonlinearity, num_W_matrices, num_U_matrices, num_biases, wRank=None, uRank=None, wSparsity=1.0, uSparsity=1.0): super(RNNCell, self).__init__() self._input_size = input_size self._hidden_size = hidden_size self._gate_nonlinearity = gate_nonlinearity self._update_nonlinearity = update_nonlinearity self._num_W_matrices = num_W_matrices self._num_U_matrices = num_U_matrices self._num_biases = num_biases self._num_weight_matrices = [self._num_W_matrices, self. _num_U_matrices, self._num_biases] self._wRank = wRank self._uRank = uRank self._wSparsity = wSparsity self._uSparsity = uSparsity self.oldmats = [] @property def state_size(self): return self._hidden_size @property def input_size(self): return self._input_size @property def output_size(self): return self._hidden_size @property def gate_nonlinearity(self): return self._gate_nonlinearity @property def update_nonlinearity(self): return self._update_nonlinearity @property def wRank(self): return self._wRank @property def uRank(self): return self._uRank @property def num_W_matrices(self): return self._num_W_matrices @property def num_U_matrices(self): return self._num_U_matrices @property def num_weight_matrices(self): return self._num_weight_matrices @property def name(self): raise NotImplementedError() def forward(self, input, state): raise NotImplementedError() def getVars(self): raise NotImplementedError() def get_model_size(self): """ Function to get aimed model size """ mats = self.getVars() endW = self._num_W_matrices endU = endW + self._num_U_matrices totalnnz = 2 for i in range(0, endW): mats[i].device totalnnz += utils.countNNZ(mats[i].cpu(), self._wSparsity) mats[i] for i in range(endW, endU): mats[i].device totalnnz += utils.countNNZ(mats[i].cpu(), self._uSparsity) mats[i] for i in range(endU, len(mats)): mats[i].device totalnnz += utils.countNNZ(mats[i].cpu(), False) mats[i] return totalnnz * 4 def copy_previous_UW(self): mats = self.getVars() num_mats = self._num_W_matrices + self._num_U_matrices if len(self.oldmats) != num_mats: for i in range(num_mats): self.oldmats.append(torch.FloatTensor()) for i in range(num_mats): self.oldmats[i] = torch.FloatTensor(mats[i].detach().clone()) def sparsify(self): mats = self.getVars() endW = self._num_W_matrices endU = endW + self._num_U_matrices for i in range(0, endW): mats[i] = utils.hardThreshold(mats[i], self._wSparsity) for i in range(endW, endU): mats[i] = utils.hardThreshold(mats[i], self._uSparsity) self.W.data.copy_(mats[0]) self.U.data.copy_(mats[1]) def sparsifyWithSupport(self): mats = self.getVars() endU = self._num_W_matrices + self._num_U_matrices for i in range(0, endU): mats[i] = utils.supportBasedThreshold(mats[i], self.oldmats[i]) class FastGRNNCell(RNNCell): """ FastGRNN Cell with Both Full Rank and Low Rank Formulations Has multiple activation functions for the gates hidden_size = # hidden units gate_nonlinearity = nonlinearity for the gate can be chosen from [tanh, sigmoid, relu, quantTanh, quantSigm] update_nonlinearity = nonlinearity for final rnn update can be chosen from [tanh, sigmoid, relu, quantTanh, quantSigm] wRank = rank of W matrix (creates two matrices if not None) uRank = rank of U matrix (creates two matrices if not None) wSparsity = intended sparsity of W matrix(ces) uSparsity = intended sparsity of U matrix(ces) Warning: The Cell will not automatically sparsify. The user must invoke .sparsify to hard threshold. zetaInit = init for zeta, the scale param nuInit = init for nu, the translation param FastGRNN architecture and compression techniques are found in FastGRNN(LINK) paper Basic architecture is like: z_t = gate_nl(Wx_t + Uh_{t-1} + B_g) h_t^ = update_nl(Wx_t + Uh_{t-1} + B_h) h_t = z_t*h_{t-1} + (sigmoid(zeta)(1-z_t) + sigmoid(nu))*h_t^ W and U can further parameterised into low rank version by W = matmul(W_1, W_2) and U = matmul(U_1, U_2) """ def __init__(self, input_size, hidden_size, gate_nonlinearity='sigmoid', update_nonlinearity='tanh', wRank=None, uRank=None, wSparsity=1.0, uSparsity=1.0, zetaInit=1.0, nuInit=-4.0, name='FastGRNN'): super(FastGRNNCell, self).__init__(input_size, hidden_size, gate_nonlinearity, update_nonlinearity, 1, 1, 2, wRank, uRank, wSparsity, uSparsity) self._zetaInit = zetaInit self._nuInit = nuInit if wRank is not None: self._num_W_matrices += 1 self._num_weight_matrices[0] = self._num_W_matrices if uRank is not None: self._num_U_matrices += 1 self._num_weight_matrices[1] = self._num_U_matrices self._name = name if wRank is None: self.W = nn.Parameter(0.1 * torch.randn([input_size, hidden_size])) else: self.W1 = nn.Parameter(0.1 * torch.randn([input_size, wRank])) self.W2 = nn.Parameter(0.1 * torch.randn([wRank, hidden_size])) if uRank is None: self.U = nn.Parameter(0.1 * torch.randn([hidden_size, hidden_size]) ) else: self.U1 = nn.Parameter(0.1 * torch.randn([hidden_size, uRank])) self.U2 = nn.Parameter(0.1 * torch.randn([uRank, hidden_size])) self.bias_gate = nn.Parameter(torch.ones([1, hidden_size])) self.bias_update = nn.Parameter(torch.ones([1, hidden_size])) self.zeta = nn.Parameter(self._zetaInit * torch.ones([1, 1])) self.nu = nn.Parameter(self._nuInit * torch.ones([1, 1])) @property def name(self): return self._name @property def cellType(self): return 'FastGRNN' def forward(self, input, state): if self._wRank is None: wComp = torch.matmul(input, self.W) else: wComp = torch.matmul(torch.matmul(input, self.W1), self.W2) if self._uRank is None: uComp = torch.matmul(state, self.U) else: uComp = torch.matmul(torch.matmul(state, self.U1), self.U2) pre_comp = wComp + uComp z = gen_nonlinearity(pre_comp + self.bias_gate, self._gate_nonlinearity ) c = gen_nonlinearity(pre_comp + self.bias_update, self. _update_nonlinearity) new_h = z * state + (torch.sigmoid(self.zeta) * (1.0 - z) + torch. sigmoid(self.nu)) * c return new_h def getVars(self): Vars = [] if self._num_W_matrices == 1: Vars.append(self.W) else: Vars.extend([self.W1, self.W2]) if self._num_U_matrices == 1: Vars.append(self.U) else: Vars.extend([self.U1, self.U2]) Vars.extend([self.bias_gate, self.bias_update]) Vars.extend([self.zeta, self.nu]) return Vars def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4, 'hidden_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn import torch.onnx from itertools import product as product assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_mul_rsub_sigmoid_tanh_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex x1 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask) tmp3 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr2 + x0, xmask) tmp8 = tl.load(in_ptr3 + 0) tmp9 = tl.broadcast_to(tmp8, [XBLOCK]) tmp14 = tl.load(in_ptr4 + 0) tmp15 = tl.broadcast_to(tmp14, [XBLOCK]) tmp18 = tl.load(in_ptr5 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp5 = tl.sigmoid(tmp4) tmp7 = tmp5 * tmp6 tmp10 = tl.sigmoid(tmp9) tmp11 = 1.0 tmp12 = tmp11 - tmp5 tmp13 = tmp10 * tmp12 tmp16 = tl.sigmoid(tmp15) tmp17 = tmp13 + tmp16 tmp19 = tmp2 + tmp18 tmp20 = libdevice.tanh(tmp19) tmp21 = tmp17 * tmp20 tmp22 = tmp7 + tmp21 tl.store(in_out_ptr0 + x0, tmp2, xmask) tl.store(out_ptr0 + x0, tmp22, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (1, 4), (4, 1)) assert_size_stride(primals_6, (1, 4), (4, 1)) assert_size_stride(primals_7, (1, 1), (1, 1)) assert_size_stride(primals_8, (1, 1), (1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), primals_1, out=buf0) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), primals_3, out=buf1) del primals_3 buf2 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_rsub_sigmoid_tanh_0[grid(256)](buf2, buf1, primals_5, primals_4, primals_7, primals_8, primals_6, buf3, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf1 return (buf3, primals_4, primals_5, primals_6, primals_7, primals_8, buf2, reinterpret_tensor(primals_2, (4, 64), (1, 4), 0)) def gen_nonlinearity(A, nonlinearity): """ Returns required activation for a tensor based on the inputs nonlinearity is either a callable or a value in ['tanh', 'sigmoid', 'relu', 'quantTanh', 'quantSigm', 'quantSigm4'] """ if nonlinearity == 'tanh': return torch.tanh(A) elif nonlinearity == 'sigmoid': return torch.sigmoid(A) elif nonlinearity == 'relu': return torch.relu(A, 0.0) elif nonlinearity == 'quantTanh': return torch.max(torch.min(A, torch.ones_like(A)), -1.0 * torch. ones_like(A)) elif nonlinearity == 'quantSigm': A = (A + 1.0) / 2.0 return torch.max(torch.min(A, torch.ones_like(A)), torch.zeros_like(A)) elif nonlinearity == 'quantSigm4': A = (A + 2.0) / 4.0 return torch.max(torch.min(A, torch.ones_like(A)), torch.zeros_like(A)) else: if not callable(nonlinearity): raise ValueError( 'nonlinearity is either a callable or a value ' + "['tanh', 'sigmoid', 'relu', 'quantTanh', " + "'quantSigm'") return nonlinearity(A) class RNNCell(nn.Module): def __init__(self, input_size, hidden_size, gate_nonlinearity, update_nonlinearity, num_W_matrices, num_U_matrices, num_biases, wRank=None, uRank=None, wSparsity=1.0, uSparsity=1.0): super(RNNCell, self).__init__() self._input_size = input_size self._hidden_size = hidden_size self._gate_nonlinearity = gate_nonlinearity self._update_nonlinearity = update_nonlinearity self._num_W_matrices = num_W_matrices self._num_U_matrices = num_U_matrices self._num_biases = num_biases self._num_weight_matrices = [self._num_W_matrices, self. _num_U_matrices, self._num_biases] self._wRank = wRank self._uRank = uRank self._wSparsity = wSparsity self._uSparsity = uSparsity self.oldmats = [] @property def state_size(self): return self._hidden_size @property def input_size(self): return self._input_size @property def output_size(self): return self._hidden_size @property def gate_nonlinearity(self): return self._gate_nonlinearity @property def update_nonlinearity(self): return self._update_nonlinearity @property def wRank(self): return self._wRank @property def uRank(self): return self._uRank @property def num_W_matrices(self): return self._num_W_matrices @property def num_U_matrices(self): return self._num_U_matrices @property def num_weight_matrices(self): return self._num_weight_matrices @property def name(self): raise NotImplementedError() def forward(self, input, state): raise NotImplementedError() def getVars(self): raise NotImplementedError() def get_model_size(self): """ Function to get aimed model size """ mats = self.getVars() endW = self._num_W_matrices endU = endW + self._num_U_matrices totalnnz = 2 for i in range(0, endW): mats[i].device totalnnz += utils.countNNZ(mats[i].cpu(), self._wSparsity) mats[i] for i in range(endW, endU): mats[i].device totalnnz += utils.countNNZ(mats[i].cpu(), self._uSparsity) mats[i] for i in range(endU, len(mats)): mats[i].device totalnnz += utils.countNNZ(mats[i].cpu(), False) mats[i] return totalnnz * 4 def copy_previous_UW(self): mats = self.getVars() num_mats = self._num_W_matrices + self._num_U_matrices if len(self.oldmats) != num_mats: for i in range(num_mats): self.oldmats.append(torch.FloatTensor()) for i in range(num_mats): self.oldmats[i] = torch.FloatTensor(mats[i].detach().clone()) def sparsify(self): mats = self.getVars() endW = self._num_W_matrices endU = endW + self._num_U_matrices for i in range(0, endW): mats[i] = utils.hardThreshold(mats[i], self._wSparsity) for i in range(endW, endU): mats[i] = utils.hardThreshold(mats[i], self._uSparsity) self.W.data.copy_(mats[0]) self.U.data.copy_(mats[1]) def sparsifyWithSupport(self): mats = self.getVars() endU = self._num_W_matrices + self._num_U_matrices for i in range(0, endU): mats[i] = utils.supportBasedThreshold(mats[i], self.oldmats[i]) class FastGRNNCellNew(RNNCell): """ FastGRNN Cell with Both Full Rank and Low Rank Formulations Has multiple activation functions for the gates hidden_size = # hidden units gate_nonlinearity = nonlinearity for the gate can be chosen from [tanh, sigmoid, relu, quantTanh, quantSigm] update_nonlinearity = nonlinearity for final rnn update can be chosen from [tanh, sigmoid, relu, quantTanh, quantSigm] wRank = rank of W matrix (creates two matrices if not None) uRank = rank of U matrix (creates two matrices if not None) wSparsity = intended sparsity of W matrix(ces) uSparsity = intended sparsity of U matrix(ces) Warning: The Cell will not automatically sparsify. The user must invoke .sparsify to hard threshold. zetaInit = init for zeta, the scale param nuInit = init for nu, the translation param FastGRNN architecture and compression techniques are found in FastGRNN(LINK) paper Basic architecture is like: z_t = gate_nl(Wx_t + Uh_{t-1} + B_g) h_t^ = update_nl(Wx_t + Uh_{t-1} + B_h) h_t = z_t*h_{t-1} + (sigmoid(zeta)(1-z_t) + sigmoid(nu))*h_t^ W and U can further parameterised into low rank version by W = matmul(W_1, W_2) and U = matmul(U_1, U_2) """ def __init__(self, input_size, hidden_size, gate_nonlinearity='sigmoid', update_nonlinearity='tanh', wRank=None, uRank=None, wSparsity=1.0, uSparsity=1.0, zetaInit=1.0, nuInit=-4.0, name='FastGRNN'): super(FastGRNNCellNew, self).__init__(input_size, hidden_size, gate_nonlinearity, update_nonlinearity, 1, 1, 2, wRank, uRank, wSparsity, uSparsity) self._zetaInit = zetaInit self._nuInit = nuInit if wRank is not None: self._num_W_matrices += 1 self._num_weight_matrices[0] = self._num_W_matrices if uRank is not None: self._num_U_matrices += 1 self._num_weight_matrices[1] = self._num_U_matrices self._name = name if wRank is None: self.W = nn.Parameter(0.1 * torch.randn([input_size, hidden_size])) else: self.W1 = nn.Parameter(0.1 * torch.randn([input_size, wRank])) self.W2 = nn.Parameter(0.1 * torch.randn([wRank, hidden_size])) if uRank is None: self.U = nn.Parameter(0.1 * torch.randn([hidden_size, hidden_size]) ) else: self.U1 = nn.Parameter(0.1 * torch.randn([hidden_size, uRank])) self.U2 = nn.Parameter(0.1 * torch.randn([uRank, hidden_size])) self.bias_gate = nn.Parameter(torch.ones([1, hidden_size])) self.bias_update = nn.Parameter(torch.ones([1, hidden_size])) self.zeta = nn.Parameter(self._zetaInit * torch.ones([1, 1])) self.nu = nn.Parameter(self._nuInit * torch.ones([1, 1])) @property def name(self): return self._name @property def cellType(self): return 'FastGRNN' def getVars(self): Vars = [] if self._num_W_matrices == 1: Vars.append(self.W) else: Vars.extend([self.W1, self.W2]) if self._num_U_matrices == 1: Vars.append(self.U) else: Vars.extend([self.U1, self.U2]) Vars.extend([self.bias_gate, self.bias_update]) Vars.extend([self.zeta, self.nu]) return Vars def forward(self, input_0, input_1): primals_1 = self.W primals_3 = self.U primals_5 = self.bias_gate primals_6 = self.bias_update primals_7 = self.zeta primals_8 = self.nu primals_2 = input_0 primals_4 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return output[0]
Shenzhen-Cloudatawalk-Technology-Co-Ltd/EdgeML
FastGRNNCell
false
14,416
[ "MIT" ]
719
ef9f8a77f096acbdeb941014791f8eda1c1bc35b
https://github.com/Shenzhen-Cloudatawalk-Technology-Co-Ltd/EdgeML/tree/ef9f8a77f096acbdeb941014791f8eda1c1bc35b
UGRNNLRCell
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/id/cidxuzakshtvnrldbbqkyga2amymtgyw2cvpqv7d2kjchobiepep.py # Topologically Sorted Source Nodes: [pre_comp1, pre_comp2, add_2, z, add_3, c, mul, sub, mul_1, new_h], Original ATen: [aten.add, aten.sigmoid, aten.tanh, aten.mul, aten.rsub] # Source node to ATen node mapping: # add_2 => add_2 # add_3 => add_3 # c => tanh # mul => mul # mul_1 => mul_1 # new_h => add_4 # pre_comp1 => add # pre_comp2 => add_1 # sub => sub # z => sigmoid # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %view_5), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_3, %view_7), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %primals_7), kwargs = {}) # %sigmoid : [num_users=3] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add_2,), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %primals_8), kwargs = {}) # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%add_3,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %primals_5), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %sigmoid), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %tanh), kwargs = {}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {}) triton_poi_fused_add_mul_rsub_sigmoid_tanh_0 = async_compile.triton('triton_poi_fused_add_mul_rsub_sigmoid_tanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_rsub_sigmoid_tanh_0', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_rsub_sigmoid_tanh_0(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x2), xmask) tmp3 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_out_ptr1 + (x2), xmask) tmp7 = tl.load(in_ptr2 + (x2), xmask) tmp9 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr4 + (x2), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp5 = tl.sigmoid(tmp4) tmp8 = tmp6 + tmp7 tmp10 = tmp8 + tmp9 tmp11 = libdevice.tanh(tmp10) tmp13 = tmp5 * tmp12 tmp14 = 1.0 tmp15 = tmp14 - tmp5 tmp16 = tmp15 * tmp11 tmp17 = tmp13 + tmp16 tl.store(in_out_ptr0 + (x2), tmp5, xmask) tl.store(in_out_ptr1 + (x2), tmp11, xmask) tl.store(out_ptr0 + (x2), tmp17, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (1, 4), (4, 1)) assert_size_stride(primals_8, (1, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [wComp1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), primals_1, out=buf0) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [wComp2], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), primals_3, out=buf1) del primals_3 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [uComp1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_5, (64, 4), (4, 1), 0), primals_4, out=buf2) del primals_4 buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [uComp2], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_5, (64, 4), (4, 1), 0), primals_6, out=buf3) del primals_6 buf4 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse buf5 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf1 # reuse buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [pre_comp1, pre_comp2, add_2, z, add_3, c, mul, sub, mul_1, new_h], Original ATen: [aten.add, aten.sigmoid, aten.tanh, aten.mul, aten.rsub] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_rsub_sigmoid_tanh_0.run(buf4, buf5, buf2, primals_7, buf3, primals_8, primals_5, buf6, 256, grid=grid(256), stream=stream0) del buf2 del buf3 del primals_7 del primals_8 return (buf6, primals_5, buf4, buf5, reinterpret_tensor(primals_2, (4, 64), (1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.onnx from itertools import product as product def gen_nonlinearity(A, nonlinearity): """ Returns required activation for a tensor based on the inputs nonlinearity is either a callable or a value in ['tanh', 'sigmoid', 'relu', 'quantTanh', 'quantSigm', 'quantSigm4'] """ if nonlinearity == 'tanh': return torch.tanh(A) elif nonlinearity == 'sigmoid': return torch.sigmoid(A) elif nonlinearity == 'relu': return torch.relu(A, 0.0) elif nonlinearity == 'quantTanh': return torch.max(torch.min(A, torch.ones_like(A)), -1.0 * torch. ones_like(A)) elif nonlinearity == 'quantSigm': A = (A + 1.0) / 2.0 return torch.max(torch.min(A, torch.ones_like(A)), torch.zeros_like(A)) elif nonlinearity == 'quantSigm4': A = (A + 2.0) / 4.0 return torch.max(torch.min(A, torch.ones_like(A)), torch.zeros_like(A)) else: if not callable(nonlinearity): raise ValueError( 'nonlinearity is either a callable or a value ' + "['tanh', 'sigmoid', 'relu', 'quantTanh', " + "'quantSigm'") return nonlinearity(A) class RNNCell(nn.Module): def __init__(self, input_size, hidden_size, gate_nonlinearity, update_nonlinearity, num_W_matrices, num_U_matrices, num_biases, wRank=None, uRank=None, wSparsity=1.0, uSparsity=1.0): super(RNNCell, self).__init__() self._input_size = input_size self._hidden_size = hidden_size self._gate_nonlinearity = gate_nonlinearity self._update_nonlinearity = update_nonlinearity self._num_W_matrices = num_W_matrices self._num_U_matrices = num_U_matrices self._num_biases = num_biases self._num_weight_matrices = [self._num_W_matrices, self. _num_U_matrices, self._num_biases] self._wRank = wRank self._uRank = uRank self._wSparsity = wSparsity self._uSparsity = uSparsity self.oldmats = [] @property def state_size(self): return self._hidden_size @property def input_size(self): return self._input_size @property def output_size(self): return self._hidden_size @property def gate_nonlinearity(self): return self._gate_nonlinearity @property def update_nonlinearity(self): return self._update_nonlinearity @property def wRank(self): return self._wRank @property def uRank(self): return self._uRank @property def num_W_matrices(self): return self._num_W_matrices @property def num_U_matrices(self): return self._num_U_matrices @property def num_weight_matrices(self): return self._num_weight_matrices @property def name(self): raise NotImplementedError() def forward(self, input, state): raise NotImplementedError() def getVars(self): raise NotImplementedError() def get_model_size(self): """ Function to get aimed model size """ mats = self.getVars() endW = self._num_W_matrices endU = endW + self._num_U_matrices totalnnz = 2 for i in range(0, endW): mats[i].device totalnnz += utils.countNNZ(mats[i].cpu(), self._wSparsity) mats[i] for i in range(endW, endU): mats[i].device totalnnz += utils.countNNZ(mats[i].cpu(), self._uSparsity) mats[i] for i in range(endU, len(mats)): mats[i].device totalnnz += utils.countNNZ(mats[i].cpu(), False) mats[i] return totalnnz * 4 def copy_previous_UW(self): mats = self.getVars() num_mats = self._num_W_matrices + self._num_U_matrices if len(self.oldmats) != num_mats: for i in range(num_mats): self.oldmats.append(torch.FloatTensor()) for i in range(num_mats): self.oldmats[i] = torch.FloatTensor(mats[i].detach().clone()) def sparsify(self): mats = self.getVars() endW = self._num_W_matrices endU = endW + self._num_U_matrices for i in range(0, endW): mats[i] = utils.hardThreshold(mats[i], self._wSparsity) for i in range(endW, endU): mats[i] = utils.hardThreshold(mats[i], self._uSparsity) self.W.data.copy_(mats[0]) self.U.data.copy_(mats[1]) def sparsifyWithSupport(self): mats = self.getVars() endU = self._num_W_matrices + self._num_U_matrices for i in range(0, endU): mats[i] = utils.supportBasedThreshold(mats[i], self.oldmats[i]) class UGRNNLRCell(RNNCell): """ UGRNN LR Cell with Both Full Rank and Low Rank Formulations Has multiple activation functions for the gates hidden_size = # hidden units gate_nonlinearity = nonlinearity for the gate can be chosen from [tanh, sigmoid, relu, quantTanh, quantSigm] update_nonlinearity = nonlinearity for final rnn update can be chosen from [tanh, sigmoid, relu, quantTanh, quantSigm] wRank = rank of W matrix (creates 3 matrices if not None else creates 2 matrices) uRank = rank of U matrix (creates 3 matrices if not None else creates 2 matrices) UGRNN architecture and compression techniques are found in UGRNN(LINK) paper Basic architecture is like: z_t = gate_nl(W1x_t + U1h_{t-1} + B_g) h_t^ = update_nl(W1x_t + U1h_{t-1} + B_h) h_t = z_t*h_{t-1} + (1-z_t)*h_t^ Wi and Ui can further parameterised into low rank version by Wi = matmul(W, W_i) and Ui = matmul(U, U_i) """ def __init__(self, input_size, hidden_size, gate_nonlinearity='sigmoid', update_nonlinearity='tanh', wRank=None, uRank=None, wSparsity=1.0, uSparsity=1.0, name='UGRNNLR'): super(UGRNNLRCell, self).__init__(input_size, hidden_size, gate_nonlinearity, update_nonlinearity, 2, 2, 2, wRank, uRank, wSparsity, uSparsity) if wRank is not None: self._num_W_matrices += 1 self._num_weight_matrices[0] = self._num_W_matrices if uRank is not None: self._num_U_matrices += 1 self._num_weight_matrices[1] = self._num_U_matrices self._name = name if wRank is None: self.W1 = nn.Parameter(0.1 * torch.randn([input_size, hidden_size]) ) self.W2 = nn.Parameter(0.1 * torch.randn([input_size, hidden_size]) ) else: self.W = nn.Parameter(0.1 * torch.randn([input_size, wRank])) self.W1 = nn.Parameter(0.1 * torch.randn([wRank, hidden_size])) self.W2 = nn.Parameter(0.1 * torch.randn([wRank, hidden_size])) if uRank is None: self.U1 = nn.Parameter(0.1 * torch.randn([hidden_size, hidden_size])) self.U2 = nn.Parameter(0.1 * torch.randn([hidden_size, hidden_size])) else: self.U = nn.Parameter(0.1 * torch.randn([hidden_size, uRank])) self.U1 = nn.Parameter(0.1 * torch.randn([uRank, hidden_size])) self.U2 = nn.Parameter(0.1 * torch.randn([uRank, hidden_size])) self.bias_gate = nn.Parameter(torch.ones([1, hidden_size])) self.bias_update = nn.Parameter(torch.ones([1, hidden_size])) self._device = self.bias_update.device @property def name(self): return self._name @property def cellType(self): return 'UGRNNLR' def forward(self, input, state): if self._wRank is None: wComp1 = torch.matmul(input, self.W1) wComp2 = torch.matmul(input, self.W2) else: wComp1 = torch.matmul(torch.matmul(input, self.W), self.W1) wComp2 = torch.matmul(torch.matmul(input, self.W), self.W2) if self._uRank is None: uComp1 = torch.matmul(state, self.U1) uComp2 = torch.matmul(state, self.U2) else: uComp1 = torch.matmul(torch.matmul(state, self.U), self.U1) uComp2 = torch.matmul(torch.matmul(state, self.U), self.U2) pre_comp1 = wComp1 + uComp1 pre_comp2 = wComp2 + uComp2 z = gen_nonlinearity(pre_comp1 + self.bias_gate, self. _gate_nonlinearity) c = gen_nonlinearity(pre_comp2 + self.bias_update, self. _update_nonlinearity) new_h = z * state + (1.0 - z) * c return new_h def getVars(self): Vars = [] if self._num_W_matrices == 2: Vars.extend([self.W1, self.W2]) else: Vars.extend([self.W, self.W1, self.W2]) if self._num_U_matrices == 2: Vars.extend([self.U1, self.U2]) else: Vars.extend([self.U, self.U1, self.U2]) Vars.extend([self.bias_gate, self.bias_update]) return Vars def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4, 'hidden_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn import torch.onnx from itertools import product as product assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_mul_rsub_sigmoid_tanh_0(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x2, xmask) tmp3 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_out_ptr1 + x2, xmask) tmp7 = tl.load(in_ptr2 + x2, xmask) tmp9 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr4 + x2, xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp5 = tl.sigmoid(tmp4) tmp8 = tmp6 + tmp7 tmp10 = tmp8 + tmp9 tmp11 = libdevice.tanh(tmp10) tmp13 = tmp5 * tmp12 tmp14 = 1.0 tmp15 = tmp14 - tmp5 tmp16 = tmp15 * tmp11 tmp17 = tmp13 + tmp16 tl.store(in_out_ptr0 + x2, tmp5, xmask) tl.store(in_out_ptr1 + x2, tmp11, xmask) tl.store(out_ptr0 + x2, tmp17, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (1, 4), (4, 1)) assert_size_stride(primals_8, (1, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), primals_1, out=buf0) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), primals_3, out=buf1) del primals_3 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_5, (64, 4), (4, 1), 0), primals_4, out=buf2) del primals_4 buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_5, (64, 4), (4, 1), 0), primals_6, out=buf3) del primals_6 buf4 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 buf5 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf1 buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_rsub_sigmoid_tanh_0[grid(256)](buf4, buf5, buf2, primals_7, buf3, primals_8, primals_5, buf6, 256, XBLOCK= 256, num_warps=4, num_stages=1) del buf2 del buf3 del primals_7 del primals_8 return buf6, primals_5, buf4, buf5, reinterpret_tensor(primals_2, (4, 64), (1, 4), 0) def gen_nonlinearity(A, nonlinearity): """ Returns required activation for a tensor based on the inputs nonlinearity is either a callable or a value in ['tanh', 'sigmoid', 'relu', 'quantTanh', 'quantSigm', 'quantSigm4'] """ if nonlinearity == 'tanh': return torch.tanh(A) elif nonlinearity == 'sigmoid': return torch.sigmoid(A) elif nonlinearity == 'relu': return torch.relu(A, 0.0) elif nonlinearity == 'quantTanh': return torch.max(torch.min(A, torch.ones_like(A)), -1.0 * torch. ones_like(A)) elif nonlinearity == 'quantSigm': A = (A + 1.0) / 2.0 return torch.max(torch.min(A, torch.ones_like(A)), torch.zeros_like(A)) elif nonlinearity == 'quantSigm4': A = (A + 2.0) / 4.0 return torch.max(torch.min(A, torch.ones_like(A)), torch.zeros_like(A)) else: if not callable(nonlinearity): raise ValueError( 'nonlinearity is either a callable or a value ' + "['tanh', 'sigmoid', 'relu', 'quantTanh', " + "'quantSigm'") return nonlinearity(A) class RNNCell(nn.Module): def __init__(self, input_size, hidden_size, gate_nonlinearity, update_nonlinearity, num_W_matrices, num_U_matrices, num_biases, wRank=None, uRank=None, wSparsity=1.0, uSparsity=1.0): super(RNNCell, self).__init__() self._input_size = input_size self._hidden_size = hidden_size self._gate_nonlinearity = gate_nonlinearity self._update_nonlinearity = update_nonlinearity self._num_W_matrices = num_W_matrices self._num_U_matrices = num_U_matrices self._num_biases = num_biases self._num_weight_matrices = [self._num_W_matrices, self. _num_U_matrices, self._num_biases] self._wRank = wRank self._uRank = uRank self._wSparsity = wSparsity self._uSparsity = uSparsity self.oldmats = [] @property def state_size(self): return self._hidden_size @property def input_size(self): return self._input_size @property def output_size(self): return self._hidden_size @property def gate_nonlinearity(self): return self._gate_nonlinearity @property def update_nonlinearity(self): return self._update_nonlinearity @property def wRank(self): return self._wRank @property def uRank(self): return self._uRank @property def num_W_matrices(self): return self._num_W_matrices @property def num_U_matrices(self): return self._num_U_matrices @property def num_weight_matrices(self): return self._num_weight_matrices @property def name(self): raise NotImplementedError() def forward(self, input, state): raise NotImplementedError() def getVars(self): raise NotImplementedError() def get_model_size(self): """ Function to get aimed model size """ mats = self.getVars() endW = self._num_W_matrices endU = endW + self._num_U_matrices totalnnz = 2 for i in range(0, endW): mats[i].device totalnnz += utils.countNNZ(mats[i].cpu(), self._wSparsity) mats[i] for i in range(endW, endU): mats[i].device totalnnz += utils.countNNZ(mats[i].cpu(), self._uSparsity) mats[i] for i in range(endU, len(mats)): mats[i].device totalnnz += utils.countNNZ(mats[i].cpu(), False) mats[i] return totalnnz * 4 def copy_previous_UW(self): mats = self.getVars() num_mats = self._num_W_matrices + self._num_U_matrices if len(self.oldmats) != num_mats: for i in range(num_mats): self.oldmats.append(torch.FloatTensor()) for i in range(num_mats): self.oldmats[i] = torch.FloatTensor(mats[i].detach().clone()) def sparsify(self): mats = self.getVars() endW = self._num_W_matrices endU = endW + self._num_U_matrices for i in range(0, endW): mats[i] = utils.hardThreshold(mats[i], self._wSparsity) for i in range(endW, endU): mats[i] = utils.hardThreshold(mats[i], self._uSparsity) self.W.data.copy_(mats[0]) self.U.data.copy_(mats[1]) def sparsifyWithSupport(self): mats = self.getVars() endU = self._num_W_matrices + self._num_U_matrices for i in range(0, endU): mats[i] = utils.supportBasedThreshold(mats[i], self.oldmats[i]) class UGRNNLRCellNew(RNNCell): """ UGRNN LR Cell with Both Full Rank and Low Rank Formulations Has multiple activation functions for the gates hidden_size = # hidden units gate_nonlinearity = nonlinearity for the gate can be chosen from [tanh, sigmoid, relu, quantTanh, quantSigm] update_nonlinearity = nonlinearity for final rnn update can be chosen from [tanh, sigmoid, relu, quantTanh, quantSigm] wRank = rank of W matrix (creates 3 matrices if not None else creates 2 matrices) uRank = rank of U matrix (creates 3 matrices if not None else creates 2 matrices) UGRNN architecture and compression techniques are found in UGRNN(LINK) paper Basic architecture is like: z_t = gate_nl(W1x_t + U1h_{t-1} + B_g) h_t^ = update_nl(W1x_t + U1h_{t-1} + B_h) h_t = z_t*h_{t-1} + (1-z_t)*h_t^ Wi and Ui can further parameterised into low rank version by Wi = matmul(W, W_i) and Ui = matmul(U, U_i) """ def __init__(self, input_size, hidden_size, gate_nonlinearity='sigmoid', update_nonlinearity='tanh', wRank=None, uRank=None, wSparsity=1.0, uSparsity=1.0, name='UGRNNLR'): super(UGRNNLRCellNew, self).__init__(input_size, hidden_size, gate_nonlinearity, update_nonlinearity, 2, 2, 2, wRank, uRank, wSparsity, uSparsity) if wRank is not None: self._num_W_matrices += 1 self._num_weight_matrices[0] = self._num_W_matrices if uRank is not None: self._num_U_matrices += 1 self._num_weight_matrices[1] = self._num_U_matrices self._name = name if wRank is None: self.W1 = nn.Parameter(0.1 * torch.randn([input_size, hidden_size]) ) self.W2 = nn.Parameter(0.1 * torch.randn([input_size, hidden_size]) ) else: self.W = nn.Parameter(0.1 * torch.randn([input_size, wRank])) self.W1 = nn.Parameter(0.1 * torch.randn([wRank, hidden_size])) self.W2 = nn.Parameter(0.1 * torch.randn([wRank, hidden_size])) if uRank is None: self.U1 = nn.Parameter(0.1 * torch.randn([hidden_size, hidden_size])) self.U2 = nn.Parameter(0.1 * torch.randn([hidden_size, hidden_size])) else: self.U = nn.Parameter(0.1 * torch.randn([hidden_size, uRank])) self.U1 = nn.Parameter(0.1 * torch.randn([uRank, hidden_size])) self.U2 = nn.Parameter(0.1 * torch.randn([uRank, hidden_size])) self.bias_gate = nn.Parameter(torch.ones([1, hidden_size])) self.bias_update = nn.Parameter(torch.ones([1, hidden_size])) self._device = self.bias_update.device @property def name(self): return self._name @property def cellType(self): return 'UGRNNLR' def getVars(self): Vars = [] if self._num_W_matrices == 2: Vars.extend([self.W1, self.W2]) else: Vars.extend([self.W, self.W1, self.W2]) if self._num_U_matrices == 2: Vars.extend([self.U1, self.U2]) else: Vars.extend([self.U, self.U1, self.U2]) Vars.extend([self.bias_gate, self.bias_update]) return Vars def forward(self, input_0, input_1): primals_1 = self.W1 primals_3 = self.W2 primals_4 = self.U1 primals_6 = self.U2 primals_7 = self.bias_gate primals_8 = self.bias_update primals_2 = input_0 primals_5 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return output[0]
Shenzhen-Cloudatawalk-Technology-Co-Ltd/EdgeML
UGRNNLRCell
false
14,417
[ "MIT" ]
719
ef9f8a77f096acbdeb941014791f8eda1c1bc35b
https://github.com/Shenzhen-Cloudatawalk-Technology-Co-Ltd/EdgeML/tree/ef9f8a77f096acbdeb941014791f8eda1c1bc35b
SSIM
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/kc/ckc5ftdtcxbcmqsxx57xrul2upk2ygczpppolriskw2ya5alzvp2.py # Topologically Sorted Source Nodes: [x, y, mul], Original ATen: [aten.reflection_pad2d, aten.mul] # Source node to ATen node mapping: # mul => mul # x => _unsafe_index, _unsafe_index_1 # y => _unsafe_index_2, _unsafe_index_3 # Graph fragment: # %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%arg0_1, [None, None, %sub_1, None]), kwargs = {}) # %_unsafe_index_1 : [num_users=3] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index, [None, None, None, %sub_3]), kwargs = {}) # %_unsafe_index_2 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%arg1_1, [None, None, %sub_5, None]), kwargs = {}) # %_unsafe_index_3 : [num_users=3] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_2, [None, None, None, %sub_7]), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%_unsafe_index_1, %_unsafe_index_3), kwargs = {}) triton_poi_fused_mul_reflection_pad2d_0 = async_compile.triton('triton_poi_fused_mul_reflection_pad2d_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_reflection_pad2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_reflection_pad2d_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 6 x1 = (xindex // 6) % 6 x2 = (xindex // 36) x3 = xindex tmp0 = tl.load(in_ptr0 + (15 + ((-1)*(tl_math.abs((-3) + (tl_math.abs((-1) + x0))))) + ((-4)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + (16*x2)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (15 + ((-1)*(tl_math.abs((-3) + (tl_math.abs((-1) + x0))))) + ((-4)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + (16*x2)), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/lo/clow3kzmb7jev264jm5hdsre6kicqfeascpf6ijglocrlea2sell.py # Topologically Sorted Source Nodes: [x, mu_x, mul_2, y, mu_y, mul_3, add, mul, avg_pool2d_4, mul_1, sigma_xy, mul_4, add_1, SSIM_n, pow_5, pow_6, add_2, add_3, pow_1, avg_pool2d_2, pow_2, sigma_x, pow_3, avg_pool2d_3, pow_4, sigma_y, add_4, add_5, SSIM_d, truediv, sub_3, truediv_1, clamp], Original ATen: [aten.reflection_pad2d, aten.avg_pool2d, aten.mul, aten.add, aten.sub, aten.pow, aten.div, aten.rsub, aten.clamp] # Source node to ATen node mapping: # SSIM_d => mul_6 # SSIM_n => mul_5 # add => add # add_1 => add_1 # add_2 => add_2 # add_3 => add_3 # add_4 => add_4 # add_5 => add_5 # avg_pool2d_2 => avg_pool2d_2 # avg_pool2d_3 => avg_pool2d_3 # avg_pool2d_4 => avg_pool2d_4 # clamp => clamp_max, clamp_min # mu_x => avg_pool2d # mu_y => avg_pool2d_1 # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # mul_3 => mul_3 # mul_4 => mul_4 # pow_1 => pow_1 # pow_2 => pow_2 # pow_3 => pow_3 # pow_4 => pow_4 # pow_5 => pow_5 # pow_6 => pow_6 # sigma_x => sub_8 # sigma_xy => sub_10 # sigma_y => sub_9 # sub_3 => sub_11 # truediv => div # truediv_1 => div_1 # x => _unsafe_index, _unsafe_index_1 # y => _unsafe_index_2, _unsafe_index_3 # Graph fragment: # %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%arg0_1, [None, None, %sub_1, None]), kwargs = {}) # %_unsafe_index_1 : [num_users=3] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index, [None, None, None, %sub_3]), kwargs = {}) # %avg_pool2d : [num_users=4] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%_unsafe_index_1, [3, 3], [1, 1]), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%avg_pool2d, 2), kwargs = {}) # %_unsafe_index_2 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%arg1_1, [None, None, %sub_5, None]), kwargs = {}) # %_unsafe_index_3 : [num_users=3] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_2, [None, None, None, %sub_7]), kwargs = {}) # %avg_pool2d_1 : [num_users=4] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%_unsafe_index_3, [3, 3], [1, 1]), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %avg_pool2d_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_3, 0.0001), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%_unsafe_index_1, %_unsafe_index_3), kwargs = {}) # %avg_pool2d_4 : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%mul, [3, 3], [1, 1]), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%avg_pool2d, %avg_pool2d_1), kwargs = {}) # %sub_10 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%avg_pool2d_4, %mul_1), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_10, 2), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, 0.0009), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, %add_1), kwargs = {}) # %pow_5 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%avg_pool2d, 2), kwargs = {}) # %pow_6 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%avg_pool2d_1, 2), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_5, %pow_6), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, 0.0001), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%_unsafe_index_1, 2), kwargs = {}) # %avg_pool2d_2 : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%pow_1, [3, 3], [1, 1]), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%avg_pool2d, 2), kwargs = {}) # %sub_8 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%avg_pool2d_2, %pow_2), kwargs = {}) # %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%_unsafe_index_3, 2), kwargs = {}) # %avg_pool2d_3 : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%pow_3, [3, 3], [1, 1]), kwargs = {}) # %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%avg_pool2d_1, 2), kwargs = {}) # %sub_9 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%avg_pool2d_3, %pow_4), kwargs = {}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub_8, %sub_9), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_4, 0.0009), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_3, %add_5), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_5, %mul_6), kwargs = {}) # %sub_11 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %div), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_11, 2), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%div_1, 0), kwargs = {}) # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 1), kwargs = {}) triton_poi_fused_add_avg_pool2d_clamp_div_mul_pow_reflection_pad2d_rsub_sub_1 = async_compile.triton('triton_poi_fused_add_avg_pool2d_clamp_div_mul_pow_reflection_pad2d_rsub_sub_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_avg_pool2d_clamp_div_mul_pow_reflection_pad2d_rsub_sub_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 27, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_avg_pool2d_clamp_div_mul_pow_reflection_pad2d_rsub_sub_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) % 4 x2 = (xindex // 16) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (6*x1) + (36*x2)), xmask) tmp1 = tl.load(in_ptr0 + (1 + x0 + (6*x1) + (36*x2)), xmask) tmp3 = tl.load(in_ptr0 + (2 + x0 + (6*x1) + (36*x2)), xmask) tmp5 = tl.load(in_ptr0 + (6 + x0 + (6*x1) + (36*x2)), xmask) tmp7 = tl.load(in_ptr0 + (7 + x0 + (6*x1) + (36*x2)), xmask) tmp9 = tl.load(in_ptr0 + (8 + x0 + (6*x1) + (36*x2)), xmask) tmp11 = tl.load(in_ptr0 + (12 + x0 + (6*x1) + (36*x2)), xmask) tmp13 = tl.load(in_ptr0 + (13 + x0 + (6*x1) + (36*x2)), xmask) tmp15 = tl.load(in_ptr0 + (14 + x0 + (6*x1) + (36*x2)), xmask) tmp19 = tl.load(in_ptr1 + (15 + ((-1)*(tl_math.abs((-3) + (tl_math.abs((-1) + x0))))) + ((-4)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + (16*x2)), xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr1 + (15 + ((-1)*(tl_math.abs((-3) + x0))) + ((-4)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + (16*x2)), xmask) tmp22 = tl.load(in_ptr1 + (15 + ((-1)*(tl_math.abs((-2) + x0))) + ((-4)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + (16*x2)), xmask) tmp24 = tl.load(in_ptr1 + (15 + ((-1)*(tl_math.abs((-3) + (tl_math.abs((-1) + x0))))) + ((-4)*(tl_math.abs((-3) + x1))) + (16*x2)), xmask, eviction_policy='evict_last') tmp26 = tl.load(in_ptr1 + (15 + ((-1)*(tl_math.abs((-3) + x0))) + ((-4)*(tl_math.abs((-3) + x1))) + (16*x2)), xmask) tmp28 = tl.load(in_ptr1 + (15 + ((-1)*(tl_math.abs((-2) + x0))) + ((-4)*(tl_math.abs((-3) + x1))) + (16*x2)), xmask) tmp30 = tl.load(in_ptr1 + (15 + ((-1)*(tl_math.abs((-3) + (tl_math.abs((-1) + x0))))) + ((-4)*(tl_math.abs((-2) + x1))) + (16*x2)), xmask, eviction_policy='evict_last') tmp32 = tl.load(in_ptr1 + (15 + ((-1)*(tl_math.abs((-3) + x0))) + ((-4)*(tl_math.abs((-2) + x1))) + (16*x2)), xmask) tmp34 = tl.load(in_ptr1 + (15 + ((-1)*(tl_math.abs((-2) + x0))) + ((-4)*(tl_math.abs((-2) + x1))) + (16*x2)), xmask) tmp55 = tl.load(in_ptr2 + (15 + ((-1)*(tl_math.abs((-3) + (tl_math.abs((-1) + x0))))) + ((-4)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + (16*x2)), xmask, eviction_policy='evict_last') tmp56 = tl.load(in_ptr2 + (15 + ((-1)*(tl_math.abs((-3) + x0))) + ((-4)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + (16*x2)), xmask) tmp58 = tl.load(in_ptr2 + (15 + ((-1)*(tl_math.abs((-2) + x0))) + ((-4)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + (16*x2)), xmask) tmp60 = tl.load(in_ptr2 + (15 + ((-1)*(tl_math.abs((-3) + (tl_math.abs((-1) + x0))))) + ((-4)*(tl_math.abs((-3) + x1))) + (16*x2)), xmask, eviction_policy='evict_last') tmp62 = tl.load(in_ptr2 + (15 + ((-1)*(tl_math.abs((-3) + x0))) + ((-4)*(tl_math.abs((-3) + x1))) + (16*x2)), xmask) tmp64 = tl.load(in_ptr2 + (15 + ((-1)*(tl_math.abs((-2) + x0))) + ((-4)*(tl_math.abs((-3) + x1))) + (16*x2)), xmask) tmp66 = tl.load(in_ptr2 + (15 + ((-1)*(tl_math.abs((-3) + (tl_math.abs((-1) + x0))))) + ((-4)*(tl_math.abs((-2) + x1))) + (16*x2)), xmask, eviction_policy='evict_last') tmp68 = tl.load(in_ptr2 + (15 + ((-1)*(tl_math.abs((-3) + x0))) + ((-4)*(tl_math.abs((-2) + x1))) + (16*x2)), xmask) tmp70 = tl.load(in_ptr2 + (15 + ((-1)*(tl_math.abs((-2) + x0))) + ((-4)*(tl_math.abs((-2) + x1))) + (16*x2)), xmask) tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp8 = tmp7 + tmp6 tmp10 = tmp9 + tmp8 tmp12 = tmp11 + tmp10 tmp14 = tmp13 + tmp12 tmp16 = tmp15 + tmp14 tmp17 = 0.1111111111111111 tmp18 = tmp16 * tmp17 tmp21 = tmp20 + tmp19 tmp23 = tmp22 + tmp21 tmp25 = tmp24 + tmp23 tmp27 = tmp26 + tmp25 tmp29 = tmp28 + tmp27 tmp31 = tmp30 + tmp29 tmp33 = tmp32 + tmp31 tmp35 = tmp34 + tmp33 tmp36 = tmp35 * tmp17 tmp37 = tmp19 * tmp19 tmp38 = tmp20 * tmp20 tmp39 = tmp38 + tmp37 tmp40 = tmp22 * tmp22 tmp41 = tmp40 + tmp39 tmp42 = tmp24 * tmp24 tmp43 = tmp42 + tmp41 tmp44 = tmp26 * tmp26 tmp45 = tmp44 + tmp43 tmp46 = tmp28 * tmp28 tmp47 = tmp46 + tmp45 tmp48 = tmp30 * tmp30 tmp49 = tmp48 + tmp47 tmp50 = tmp32 * tmp32 tmp51 = tmp50 + tmp49 tmp52 = tmp34 * tmp34 tmp53 = tmp52 + tmp51 tmp54 = tmp53 * tmp17 tmp57 = tmp56 + tmp55 tmp59 = tmp58 + tmp57 tmp61 = tmp60 + tmp59 tmp63 = tmp62 + tmp61 tmp65 = tmp64 + tmp63 tmp67 = tmp66 + tmp65 tmp69 = tmp68 + tmp67 tmp71 = tmp70 + tmp69 tmp72 = tmp71 * tmp17 tmp73 = tmp55 * tmp55 tmp74 = tmp56 * tmp56 tmp75 = tmp74 + tmp73 tmp76 = tmp58 * tmp58 tmp77 = tmp76 + tmp75 tmp78 = tmp60 * tmp60 tmp79 = tmp78 + tmp77 tmp80 = tmp62 * tmp62 tmp81 = tmp80 + tmp79 tmp82 = tmp64 * tmp64 tmp83 = tmp82 + tmp81 tmp84 = tmp66 * tmp66 tmp85 = tmp84 + tmp83 tmp86 = tmp68 * tmp68 tmp87 = tmp86 + tmp85 tmp88 = tmp70 * tmp70 tmp89 = tmp88 + tmp87 tmp90 = tmp89 * tmp17 tmp91 = 2.0 tmp92 = tmp36 * tmp91 tmp93 = tmp92 * tmp72 tmp94 = 0.0001 tmp95 = tmp93 + tmp94 tmp96 = tmp36 * tmp72 tmp97 = tmp18 - tmp96 tmp98 = tmp97 * tmp91 tmp99 = 0.0009 tmp100 = tmp98 + tmp99 tmp101 = tmp95 * tmp100 tmp102 = tmp36 * tmp36 tmp103 = tmp72 * tmp72 tmp104 = tmp102 + tmp103 tmp105 = tmp104 + tmp94 tmp106 = tmp54 - tmp102 tmp107 = tmp90 - tmp103 tmp108 = tmp106 + tmp107 tmp109 = tmp108 + tmp99 tmp110 = tmp105 * tmp109 tmp111 = tmp101 / tmp110 tmp112 = 1.0 tmp113 = tmp112 - tmp111 tmp114 = 0.5 tmp115 = tmp113 * tmp114 tmp116 = 0.0 tmp117 = triton_helpers.maximum(tmp115, tmp116) tmp118 = triton_helpers.minimum(tmp117, tmp112) tl.store(in_out_ptr0 + (x3), tmp118, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32) # Topologically Sorted Source Nodes: [x, y, mul], Original ATen: [aten.reflection_pad2d, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_reflection_pad2d_0.run(arg0_1, arg1_1, buf2, 576, grid=grid(576), stream=stream0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf6 = buf0; del buf0 # reuse buf7 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [x, mu_x, mul_2, y, mu_y, mul_3, add, mul, avg_pool2d_4, mul_1, sigma_xy, mul_4, add_1, SSIM_n, pow_5, pow_6, add_2, add_3, pow_1, avg_pool2d_2, pow_2, sigma_x, pow_3, avg_pool2d_3, pow_4, sigma_y, add_4, add_5, SSIM_d, truediv, sub_3, truediv_1, clamp], Original ATen: [aten.reflection_pad2d, aten.avg_pool2d, aten.mul, aten.add, aten.sub, aten.pow, aten.div, aten.rsub, aten.clamp] triton_poi_fused_add_avg_pool2d_clamp_div_mul_pow_reflection_pad2d_rsub_sub_1.run(buf7, buf2, arg0_1, arg1_1, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 del buf2 return (buf7, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class SSIM(nn.Module): """Layer to compute the SSIM loss between a pair of images """ def __init__(self): super(SSIM, self).__init__() self.mu_x_pool = nn.AvgPool2d(3, 1) self.mu_y_pool = nn.AvgPool2d(3, 1) self.sig_x_pool = nn.AvgPool2d(3, 1) self.sig_y_pool = nn.AvgPool2d(3, 1) self.sig_xy_pool = nn.AvgPool2d(3, 1) self.refl = nn.ReflectionPad2d(1) self.C1 = 0.01 ** 2 self.C2 = 0.03 ** 2 def forward(self, x, y): x = self.refl(x) y = self.refl(y) mu_x = self.mu_x_pool(x) mu_y = self.mu_y_pool(y) sigma_x = self.sig_x_pool(x ** 2) - mu_x ** 2 sigma_y = self.sig_y_pool(y ** 2) - mu_y ** 2 sigma_xy = self.sig_xy_pool(x * y) - mu_x * mu_y SSIM_n = (2 * mu_x * mu_y + self.C1) * (2 * sigma_xy + self.C2) SSIM_d = (mu_x ** 2 + mu_y ** 2 + self.C1) * (sigma_x + sigma_y + self.C2) return torch.clamp((1 - SSIM_n / SSIM_d) / 2, 0, 1) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_reflection_pad2d_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 6 x1 = xindex // 6 % 6 x2 = xindex // 36 x3 = xindex tmp0 = tl.load(in_ptr0 + (15 + -1 * tl_math.abs(-3 + tl_math.abs(-1 + x0)) + -4 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + 16 * x2), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (15 + -1 * tl_math.abs(-3 + tl_math.abs(-1 + x0)) + -4 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + 16 * x2), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x3, tmp2, xmask) @triton.jit def triton_poi_fused_add_avg_pool2d_clamp_div_mul_pow_reflection_pad2d_rsub_sub_1( in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 % 4 x2 = xindex // 16 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 6 * x1 + 36 * x2), xmask) tmp1 = tl.load(in_ptr0 + (1 + x0 + 6 * x1 + 36 * x2), xmask) tmp3 = tl.load(in_ptr0 + (2 + x0 + 6 * x1 + 36 * x2), xmask) tmp5 = tl.load(in_ptr0 + (6 + x0 + 6 * x1 + 36 * x2), xmask) tmp7 = tl.load(in_ptr0 + (7 + x0 + 6 * x1 + 36 * x2), xmask) tmp9 = tl.load(in_ptr0 + (8 + x0 + 6 * x1 + 36 * x2), xmask) tmp11 = tl.load(in_ptr0 + (12 + x0 + 6 * x1 + 36 * x2), xmask) tmp13 = tl.load(in_ptr0 + (13 + x0 + 6 * x1 + 36 * x2), xmask) tmp15 = tl.load(in_ptr0 + (14 + x0 + 6 * x1 + 36 * x2), xmask) tmp19 = tl.load(in_ptr1 + (15 + -1 * tl_math.abs(-3 + tl_math.abs(-1 + x0)) + -4 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + 16 * x2), xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr1 + (15 + -1 * tl_math.abs(-3 + x0) + -4 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + 16 * x2), xmask) tmp22 = tl.load(in_ptr1 + (15 + -1 * tl_math.abs(-2 + x0) + -4 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + 16 * x2), xmask) tmp24 = tl.load(in_ptr1 + (15 + -1 * tl_math.abs(-3 + tl_math.abs(-1 + x0)) + -4 * tl_math.abs(-3 + x1) + 16 * x2), xmask, eviction_policy ='evict_last') tmp26 = tl.load(in_ptr1 + (15 + -1 * tl_math.abs(-3 + x0) + -4 * tl_math.abs(-3 + x1) + 16 * x2), xmask) tmp28 = tl.load(in_ptr1 + (15 + -1 * tl_math.abs(-2 + x0) + -4 * tl_math.abs(-3 + x1) + 16 * x2), xmask) tmp30 = tl.load(in_ptr1 + (15 + -1 * tl_math.abs(-3 + tl_math.abs(-1 + x0)) + -4 * tl_math.abs(-2 + x1) + 16 * x2), xmask, eviction_policy ='evict_last') tmp32 = tl.load(in_ptr1 + (15 + -1 * tl_math.abs(-3 + x0) + -4 * tl_math.abs(-2 + x1) + 16 * x2), xmask) tmp34 = tl.load(in_ptr1 + (15 + -1 * tl_math.abs(-2 + x0) + -4 * tl_math.abs(-2 + x1) + 16 * x2), xmask) tmp55 = tl.load(in_ptr2 + (15 + -1 * tl_math.abs(-3 + tl_math.abs(-1 + x0)) + -4 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + 16 * x2), xmask, eviction_policy='evict_last') tmp56 = tl.load(in_ptr2 + (15 + -1 * tl_math.abs(-3 + x0) + -4 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + 16 * x2), xmask) tmp58 = tl.load(in_ptr2 + (15 + -1 * tl_math.abs(-2 + x0) + -4 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + 16 * x2), xmask) tmp60 = tl.load(in_ptr2 + (15 + -1 * tl_math.abs(-3 + tl_math.abs(-1 + x0)) + -4 * tl_math.abs(-3 + x1) + 16 * x2), xmask, eviction_policy ='evict_last') tmp62 = tl.load(in_ptr2 + (15 + -1 * tl_math.abs(-3 + x0) + -4 * tl_math.abs(-3 + x1) + 16 * x2), xmask) tmp64 = tl.load(in_ptr2 + (15 + -1 * tl_math.abs(-2 + x0) + -4 * tl_math.abs(-3 + x1) + 16 * x2), xmask) tmp66 = tl.load(in_ptr2 + (15 + -1 * tl_math.abs(-3 + tl_math.abs(-1 + x0)) + -4 * tl_math.abs(-2 + x1) + 16 * x2), xmask, eviction_policy ='evict_last') tmp68 = tl.load(in_ptr2 + (15 + -1 * tl_math.abs(-3 + x0) + -4 * tl_math.abs(-2 + x1) + 16 * x2), xmask) tmp70 = tl.load(in_ptr2 + (15 + -1 * tl_math.abs(-2 + x0) + -4 * tl_math.abs(-2 + x1) + 16 * x2), xmask) tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp8 = tmp7 + tmp6 tmp10 = tmp9 + tmp8 tmp12 = tmp11 + tmp10 tmp14 = tmp13 + tmp12 tmp16 = tmp15 + tmp14 tmp17 = 0.1111111111111111 tmp18 = tmp16 * tmp17 tmp21 = tmp20 + tmp19 tmp23 = tmp22 + tmp21 tmp25 = tmp24 + tmp23 tmp27 = tmp26 + tmp25 tmp29 = tmp28 + tmp27 tmp31 = tmp30 + tmp29 tmp33 = tmp32 + tmp31 tmp35 = tmp34 + tmp33 tmp36 = tmp35 * tmp17 tmp37 = tmp19 * tmp19 tmp38 = tmp20 * tmp20 tmp39 = tmp38 + tmp37 tmp40 = tmp22 * tmp22 tmp41 = tmp40 + tmp39 tmp42 = tmp24 * tmp24 tmp43 = tmp42 + tmp41 tmp44 = tmp26 * tmp26 tmp45 = tmp44 + tmp43 tmp46 = tmp28 * tmp28 tmp47 = tmp46 + tmp45 tmp48 = tmp30 * tmp30 tmp49 = tmp48 + tmp47 tmp50 = tmp32 * tmp32 tmp51 = tmp50 + tmp49 tmp52 = tmp34 * tmp34 tmp53 = tmp52 + tmp51 tmp54 = tmp53 * tmp17 tmp57 = tmp56 + tmp55 tmp59 = tmp58 + tmp57 tmp61 = tmp60 + tmp59 tmp63 = tmp62 + tmp61 tmp65 = tmp64 + tmp63 tmp67 = tmp66 + tmp65 tmp69 = tmp68 + tmp67 tmp71 = tmp70 + tmp69 tmp72 = tmp71 * tmp17 tmp73 = tmp55 * tmp55 tmp74 = tmp56 * tmp56 tmp75 = tmp74 + tmp73 tmp76 = tmp58 * tmp58 tmp77 = tmp76 + tmp75 tmp78 = tmp60 * tmp60 tmp79 = tmp78 + tmp77 tmp80 = tmp62 * tmp62 tmp81 = tmp80 + tmp79 tmp82 = tmp64 * tmp64 tmp83 = tmp82 + tmp81 tmp84 = tmp66 * tmp66 tmp85 = tmp84 + tmp83 tmp86 = tmp68 * tmp68 tmp87 = tmp86 + tmp85 tmp88 = tmp70 * tmp70 tmp89 = tmp88 + tmp87 tmp90 = tmp89 * tmp17 tmp91 = 2.0 tmp92 = tmp36 * tmp91 tmp93 = tmp92 * tmp72 tmp94 = 0.0001 tmp95 = tmp93 + tmp94 tmp96 = tmp36 * tmp72 tmp97 = tmp18 - tmp96 tmp98 = tmp97 * tmp91 tmp99 = 0.0009 tmp100 = tmp98 + tmp99 tmp101 = tmp95 * tmp100 tmp102 = tmp36 * tmp36 tmp103 = tmp72 * tmp72 tmp104 = tmp102 + tmp103 tmp105 = tmp104 + tmp94 tmp106 = tmp54 - tmp102 tmp107 = tmp90 - tmp103 tmp108 = tmp106 + tmp107 tmp109 = tmp108 + tmp99 tmp110 = tmp105 * tmp109 tmp111 = tmp101 / tmp110 tmp112 = 1.0 tmp113 = tmp112 - tmp111 tmp114 = 0.5 tmp115 = tmp113 * tmp114 tmp116 = 0.0 tmp117 = triton_helpers.maximum(tmp115, tmp116) tmp118 = triton_helpers.minimum(tmp117, tmp112) tl.store(in_out_ptr0 + x3, tmp118, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_reflection_pad2d_0[grid(576)](arg0_1, arg1_1, buf2, 576, XBLOCK=256, num_warps=4, num_stages=1) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf6 = buf0 del buf0 buf7 = buf6 del buf6 triton_poi_fused_add_avg_pool2d_clamp_div_mul_pow_reflection_pad2d_rsub_sub_1[ grid(256)](buf7, buf2, arg0_1, arg1_1, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 del arg1_1 del buf2 return buf7, class SSIMNew(nn.Module): """Layer to compute the SSIM loss between a pair of images """ def __init__(self): super(SSIMNew, self).__init__() self.mu_x_pool = nn.AvgPool2d(3, 1) self.mu_y_pool = nn.AvgPool2d(3, 1) self.sig_x_pool = nn.AvgPool2d(3, 1) self.sig_y_pool = nn.AvgPool2d(3, 1) self.sig_xy_pool = nn.AvgPool2d(3, 1) self.refl = nn.ReflectionPad2d(1) self.C1 = 0.01 ** 2 self.C2 = 0.03 ** 2 def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
Siddharth-Shrivastava7/DANNet
SSIM
false
14,418
[ "Apache-2.0" ]
61
8db10056a4e445d24fc899505923615457cae5b7
https://github.com/Siddharth-Shrivastava7/DANNet/tree/8db10056a4e445d24fc899505923615457cae5b7
LanguageModelCriterion
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/y6/cy6c63inntzv3gk7tttvtntl47lyazeloek7emnkrhkhkqbx5kci.py # Topologically Sorted Source Nodes: [neg, output, sum_1, sum_2, output_1], Original ATen: [aten.neg, aten.mul, aten.sum, aten.div] # Source node to ATen node mapping: # neg => neg # output => mul # output_1 => div # sum_1 => sum_1 # sum_2 => sum_2 # Graph fragment: # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%squeeze,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%neg, %arg2_1), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%arg2_1,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %sum_2), kwargs = {}) triton_per_fused_div_mul_neg_sum_0 = async_compile.triton('triton_per_fused_div_mul_neg_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*i64', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=(4,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_mul_neg_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_div_mul_neg_sum_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp9 = tl.load(in_ptr2 + (r0), None) tmp1 = tl.full([XBLOCK, RBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tl.device_assert((0 <= tmp4) & (tmp4 < 4), "index out of bounds: 0 <= tmp4 < 4") tmp6 = tl.load(in_ptr1 + (tmp4 + (4*r0)), None, eviction_policy='evict_last') tmp7 = -tmp6 tmp8 = tmp7.to(tl.float32) tmp10 = tmp8 * tmp9 tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK]) tmp13 = tl.sum(tmp11, 1)[:, None] tmp14 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK]) tmp16 = tl.sum(tmp14, 1)[:, None] tmp17 = tmp13 / tmp16 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp17, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg1_1, (4, 4), (4, 1)) assert_size_stride(arg2_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf2 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [neg, output, sum_1, sum_2, output_1], Original ATen: [aten.neg, aten.mul, aten.sum, aten.div] stream0 = get_raw_stream(0) triton_per_fused_div_mul_neg_sum_0.run(buf2, arg1_1, arg0_1, arg2_1, 1, 16, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 del arg2_1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.int64) arg1_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.int64) arg2_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from torch.autograd import * class LanguageModelCriterion(nn.Module): def __init__(self): super(LanguageModelCriterion, self).__init__() def forward(self, input, target, mask): target = target[:, :input.size(1)] mask = mask[:, :input.size(1)] output = -input.gather(2, target.unsqueeze(2)).squeeze(2) * mask output = torch.sum(output) / torch.sum(mask) return output def get_inputs(): return [torch.ones([4, 4, 4], dtype=torch.int64), torch.ones([4, 4], dtype=torch.int64), torch.rand([4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn from torch.autograd import * assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_div_mul_neg_sum_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp9 = tl.load(in_ptr2 + r0, None) tmp1 = tl.full([XBLOCK, RBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tl.device_assert((0 <= tmp4) & (tmp4 < 4), 'index out of bounds: 0 <= tmp4 < 4') tmp6 = tl.load(in_ptr1 + (tmp4 + 4 * r0), None, eviction_policy= 'evict_last') tmp7 = -tmp6 tmp8 = tmp7.to(tl.float32) tmp10 = tmp8 * tmp9 tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK]) tmp13 = tl.sum(tmp11, 1)[:, None] tmp14 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK]) tmp16 = tl.sum(tmp14, 1)[:, None] tmp17 = tmp13 / tmp16 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp17, None) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg1_1, (4, 4), (4, 1)) assert_size_stride(arg2_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf2 = buf0 del buf0 get_raw_stream(0) triton_per_fused_div_mul_neg_sum_0[grid(1)](buf2, arg1_1, arg0_1, arg2_1, 1, 16, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del arg1_1 del arg2_1 return buf2, class LanguageModelCriterionNew(nn.Module): def __init__(self): super(LanguageModelCriterionNew, self).__init__() def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
SikandarBakht/Sub-GC
LanguageModelCriterion
false
14,419
[ "MIT" ]
71
5b89aff766df0b11446cf970fb285004ebfef672
https://github.com/SikandarBakht/Sub-GC/tree/5b89aff766df0b11446cf970fb285004ebfef672
PairwiseRankingLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/eq/ceqhkwm2d735ddv4kryb45afnds5mdj2jfkqyfgb53xuu6ykceh3.py # Topologically Sorted Source Nodes: [sub, add, clamp, cost_sent, sub_1, add_1, clamp_1, cost_img, loss], Original ATen: [aten.rsub, aten.add, aten.clamp, aten.sum] # Source node to ATen node mapping: # add => add # add_1 => add_1 # clamp => clamp_min # clamp_1 => clamp_min_1 # cost_img => sum_2 # cost_sent => sum_1 # loss => add_2 # sub => sub # sub_1 => sub_1 # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (4, %arg0_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub, %arg1_1), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add, 0.0), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%clamp_min,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (4, %arg2_1), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub_1, %arg3_1), kwargs = {}) # %clamp_min_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add_1, 0.0), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%clamp_min_1,), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, %sum_2), kwargs = {}) triton_per_fused_add_clamp_rsub_sum_0 = async_compile.triton('triton_per_fused_add_clamp_rsub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {5: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 6), equal_to_1=(5,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_clamp_rsub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 4, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_clamp_rsub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp3 = tl.load(in_ptr1 + (r0), None) tmp10 = tl.load(in_ptr2 + (r0), None) tmp12 = tl.load(in_ptr3 + (r0), None) tmp1 = 4.0 tmp2 = tmp1 - tmp0 tmp4 = tmp2 + tmp3 tmp5 = 0.0 tmp6 = triton_helpers.maximum(tmp4, tmp5) tmp7 = tl.broadcast_to(tmp6, [RBLOCK]) tmp9 = triton_helpers.promote_to_tensor(tl.sum(tmp7, 0)) tmp11 = tmp1 - tmp10 tmp13 = tmp11 + tmp12 tmp14 = triton_helpers.maximum(tmp13, tmp5) tmp15 = tl.broadcast_to(tmp14, [RBLOCK]) tmp17 = triton_helpers.promote_to_tensor(tl.sum(tmp15, 0)) tmp18 = tmp9 + tmp17 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp18, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1, arg3_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf2 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [sub, add, clamp, cost_sent, sub_1, add_1, clamp_1, cost_img, loss], Original ATen: [aten.rsub, aten.add, aten.clamp, aten.sum] stream0 = get_raw_stream(0) triton_per_fused_add_clamp_rsub_sum_0.run(buf2, arg0_1, arg1_1, arg2_1, arg3_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 del arg2_1 del arg3_1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg3_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1, arg3_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class PairwiseRankingLoss(nn.Module): """ Pairwise ranking loss """ def __init__(self, margin): super(PairwiseRankingLoss, self).__init__() self.margin = margin def forward(self, anchor1, anchor2, img_sentc, sent_imgc): cost_sent = torch.clamp(self.margin - anchor1 + img_sentc, min=0.0 ).sum() cost_img = torch.clamp(self.margin - anchor2 + sent_imgc, min=0.0).sum( ) loss = cost_sent + cost_img return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'margin': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_clamp_rsub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp3 = tl.load(in_ptr1 + r0, None) tmp10 = tl.load(in_ptr2 + r0, None) tmp12 = tl.load(in_ptr3 + r0, None) tmp1 = 4.0 tmp2 = tmp1 - tmp0 tmp4 = tmp2 + tmp3 tmp5 = 0.0 tmp6 = triton_helpers.maximum(tmp4, tmp5) tmp7 = tl.broadcast_to(tmp6, [RBLOCK]) tmp9 = triton_helpers.promote_to_tensor(tl.sum(tmp7, 0)) tmp11 = tmp1 - tmp10 tmp13 = tmp11 + tmp12 tmp14 = triton_helpers.maximum(tmp13, tmp5) tmp15 = tl.broadcast_to(tmp14, [RBLOCK]) tmp17 = triton_helpers.promote_to_tensor(tl.sum(tmp15, 0)) tmp18 = tmp9 + tmp17 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp18, None) def call(args): arg0_1, arg1_1, arg2_1, arg3_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf2 = buf0 del buf0 get_raw_stream(0) triton_per_fused_add_clamp_rsub_sum_0[grid(1)](buf2, arg0_1, arg1_1, arg2_1, arg3_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 del arg2_1 del arg3_1 return buf2, class PairwiseRankingLossNew(nn.Module): """ Pairwise ranking loss """ def __init__(self, margin): super(PairwiseRankingLossNew, self).__init__() self.margin = margin def forward(self, input_0, input_1, input_2, input_3): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 arg3_1 = input_3 output = call([arg0_1, arg1_1, arg2_1, arg3_1]) return output[0]
SilanHe/e-SNLI
PairwiseRankingLoss
false
14,420
[ "MIT" ]
125
1c38981f50f931e45cf06146e693c588bc89b78d
https://github.com/SilanHe/e-SNLI/tree/1c38981f50f931e45cf06146e693c588bc89b78d
SPPModule
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/3u/c3ubksbl7mlb4d6aptxkq24ltif22muqk6bnsopvoydcddchljhf.py # Topologically Sorted Source Nodes: [tensor, x], Original ATen: [aten.max_pool2d_with_indices, aten.cat] # Source node to ATen node mapping: # tensor => _low_memory_max_pool2d_with_offsets # x => cat # Graph fragment: # %_low_memory_max_pool2d_with_offsets : [num_users=1] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%arg0_1, [5, 5], [1, 1], [2, 2], [1, 1], False), kwargs = {}) # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%arg0_1, %getitem, %getitem_2, %getitem_4, %getitem_6], 1), kwargs = {}) triton_poi_fused_cat_max_pool2d_with_indices_0 = async_compile.triton('triton_poi_fused_cat_max_pool2d_with_indices_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_max_pool2d_with_indices_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 26, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_max_pool2d_with_indices_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 4 x0 = xindex % 4 x7 = xindex x3 = (xindex // 64) x4 = xindex % 64 tmp116 = tl.load(in_ptr0 + (x7), xmask) tmp0 = (-2) + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = (-2) + x0 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + ((-10) + x7), tmp10 & xmask, other=float("-inf")) tmp12 = (-1) + x0 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + ((-9) + x7), tmp16 & xmask, other=float("-inf")) tmp18 = triton_helpers.maximum(tmp17, tmp11) tmp19 = x0 tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + ((-8) + x7), tmp23 & xmask, other=float("-inf")) tmp25 = triton_helpers.maximum(tmp24, tmp18) tmp26 = 1 + x0 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp5 & tmp29 tmp31 = tl.load(in_ptr0 + ((-7) + x7), tmp30 & xmask, other=float("-inf")) tmp32 = triton_helpers.maximum(tmp31, tmp25) tmp33 = 2 + x0 tmp34 = tmp33 >= tmp1 tmp35 = tmp33 < tmp3 tmp36 = tmp34 & tmp35 tmp37 = tmp5 & tmp36 tmp38 = tl.load(in_ptr0 + ((-6) + x7), tmp37 & xmask, other=float("-inf")) tmp39 = triton_helpers.maximum(tmp38, tmp32) tmp40 = (-1) + x1 tmp41 = tmp40 >= tmp1 tmp42 = tmp40 < tmp3 tmp43 = tmp41 & tmp42 tmp44 = tmp43 & tmp9 tmp45 = tl.load(in_ptr0 + ((-6) + x7), tmp44 & xmask, other=float("-inf")) tmp46 = triton_helpers.maximum(tmp45, tmp39) tmp47 = tmp43 & tmp15 tmp48 = tl.load(in_ptr0 + ((-5) + x7), tmp47 & xmask, other=float("-inf")) tmp49 = triton_helpers.maximum(tmp48, tmp46) tmp50 = tmp43 & tmp22 tmp51 = tl.load(in_ptr0 + ((-4) + x7), tmp50 & xmask, other=float("-inf")) tmp52 = triton_helpers.maximum(tmp51, tmp49) tmp53 = tmp43 & tmp29 tmp54 = tl.load(in_ptr0 + ((-3) + x7), tmp53 & xmask, other=float("-inf")) tmp55 = triton_helpers.maximum(tmp54, tmp52) tmp56 = tmp43 & tmp36 tmp57 = tl.load(in_ptr0 + ((-2) + x7), tmp56 & xmask, other=float("-inf")) tmp58 = triton_helpers.maximum(tmp57, tmp55) tmp59 = x1 tmp60 = tmp59 >= tmp1 tmp61 = tmp59 < tmp3 tmp62 = tmp60 & tmp61 tmp63 = tmp62 & tmp9 tmp64 = tl.load(in_ptr0 + ((-2) + x7), tmp63 & xmask, other=float("-inf")) tmp65 = triton_helpers.maximum(tmp64, tmp58) tmp66 = tmp62 & tmp15 tmp67 = tl.load(in_ptr0 + ((-1) + x7), tmp66 & xmask, other=float("-inf")) tmp68 = triton_helpers.maximum(tmp67, tmp65) tmp69 = tmp62 & tmp22 tmp70 = tl.load(in_ptr0 + (x7), tmp69 & xmask, other=float("-inf")) tmp71 = triton_helpers.maximum(tmp70, tmp68) tmp72 = tmp62 & tmp29 tmp73 = tl.load(in_ptr0 + (1 + x7), tmp72 & xmask, other=float("-inf")) tmp74 = triton_helpers.maximum(tmp73, tmp71) tmp75 = tmp62 & tmp36 tmp76 = tl.load(in_ptr0 + (2 + x7), tmp75 & xmask, other=float("-inf")) tmp77 = triton_helpers.maximum(tmp76, tmp74) tmp78 = 1 + x1 tmp79 = tmp78 >= tmp1 tmp80 = tmp78 < tmp3 tmp81 = tmp79 & tmp80 tmp82 = tmp81 & tmp9 tmp83 = tl.load(in_ptr0 + (2 + x7), tmp82 & xmask, other=float("-inf")) tmp84 = triton_helpers.maximum(tmp83, tmp77) tmp85 = tmp81 & tmp15 tmp86 = tl.load(in_ptr0 + (3 + x7), tmp85 & xmask, other=float("-inf")) tmp87 = triton_helpers.maximum(tmp86, tmp84) tmp88 = tmp81 & tmp22 tmp89 = tl.load(in_ptr0 + (4 + x7), tmp88 & xmask, other=float("-inf")) tmp90 = triton_helpers.maximum(tmp89, tmp87) tmp91 = tmp81 & tmp29 tmp92 = tl.load(in_ptr0 + (5 + x7), tmp91 & xmask, other=float("-inf")) tmp93 = triton_helpers.maximum(tmp92, tmp90) tmp94 = tmp81 & tmp36 tmp95 = tl.load(in_ptr0 + (6 + x7), tmp94 & xmask, other=float("-inf")) tmp96 = triton_helpers.maximum(tmp95, tmp93) tmp97 = 2 + x1 tmp98 = tmp97 >= tmp1 tmp99 = tmp97 < tmp3 tmp100 = tmp98 & tmp99 tmp101 = tmp100 & tmp9 tmp102 = tl.load(in_ptr0 + (6 + x7), tmp101 & xmask, other=float("-inf")) tmp103 = triton_helpers.maximum(tmp102, tmp96) tmp104 = tmp100 & tmp15 tmp105 = tl.load(in_ptr0 + (7 + x7), tmp104 & xmask, other=float("-inf")) tmp106 = triton_helpers.maximum(tmp105, tmp103) tmp107 = tmp100 & tmp22 tmp108 = tl.load(in_ptr0 + (8 + x7), tmp107 & xmask, other=float("-inf")) tmp109 = triton_helpers.maximum(tmp108, tmp106) tmp110 = tmp100 & tmp29 tmp111 = tl.load(in_ptr0 + (9 + x7), tmp110 & xmask, other=float("-inf")) tmp112 = triton_helpers.maximum(tmp111, tmp109) tmp113 = tmp100 & tmp36 tmp114 = tl.load(in_ptr0 + (10 + x7), tmp113 & xmask, other=float("-inf")) tmp115 = triton_helpers.maximum(tmp114, tmp112) tl.store(out_ptr0 + (x4 + (320*x3)), tmp115, xmask) tl.store(out_ptr1 + (x4 + (320*x3)), tmp116, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/tp/ctp2morjs6bq2buffn3lkqaexzamd5eaa3zdl25kd5tsepb5cptz.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat] # Source node to ATen node mapping: # x => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%arg0_1, %getitem, %getitem_2, %getitem_4, %getitem_6], 1), kwargs = {}) triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 x1 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x2), xmask) tl.store(out_ptr0 + (x0 + (320*x1)), tmp0, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf14 = empty_strided_cuda((4, 20, 4, 4), (320, 16, 4, 1), torch.float32) buf0 = reinterpret_tensor(buf14, (4, 4, 4, 4), (320, 16, 4, 1), 64) # alias buf10 = reinterpret_tensor(buf14, (4, 4, 4, 4), (320, 16, 4, 1), 0) # alias # Topologically Sorted Source Nodes: [tensor, x], Original ATen: [aten.max_pool2d_with_indices, aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_max_pool2d_with_indices_0.run(arg0_1, buf0, buf10, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [tensor_1], Original ATen: [aten.max_pool2d_with_indices] buf1 = torch.ops.aten.max_pool2d_with_indices.default(arg0_1, [9, 9], [1, 1], [4, 4]) buf2 = buf1[0] del buf1 # Topologically Sorted Source Nodes: [tensor_2], Original ATen: [aten.max_pool2d_with_indices] buf4 = torch.ops.aten.max_pool2d_with_indices.default(arg0_1, [13, 13], [1, 1], [6, 6]) buf5 = buf4[0] del buf4 # Topologically Sorted Source Nodes: [tensor_3], Original ATen: [aten.max_pool2d_with_indices] buf7 = torch.ops.aten.max_pool2d_with_indices.default(arg0_1, [17, 17], [1, 1], [8, 8]) del arg0_1 buf8 = buf7[0] del buf7 buf11 = reinterpret_tensor(buf14, (4, 4, 4, 4), (320, 16, 4, 1), 128) # alias # Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat] triton_poi_fused_cat_1.run(buf2, buf11, 256, grid=grid(256), stream=stream0) del buf2 buf12 = reinterpret_tensor(buf14, (4, 4, 4, 4), (320, 16, 4, 1), 192) # alias # Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat] triton_poi_fused_cat_1.run(buf5, buf12, 256, grid=grid(256), stream=stream0) del buf5 buf13 = reinterpret_tensor(buf14, (4, 4, 4, 4), (320, 16, 4, 1), 256) # alias # Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat] triton_poi_fused_cat_1.run(buf8, buf13, 256, grid=grid(256), stream=stream0) del buf8 return (buf14, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class SPPModule(nn.Module): def __init__(self, num_levels, pool_type='max_pool'): super(SPPModule, self).__init__() self.num_levels = num_levels self.pool_type = pool_type def forward(self, x): _bs, _c, _h, _w = x.size() pooling_layers = [x] for i in range(self.num_levels): kernel_size = 4 * (i + 1) + 1 padding = (kernel_size - 1) // 2 if self.pool_type == 'max_pool': tensor = F.max_pool2d(x, kernel_size=kernel_size, stride=1, padding=padding) else: tensor = F.avg_pool2d(x, kernel_size=kernel_size, stride=1, padding=padding) pooling_layers.append(tensor) x = torch.cat(pooling_layers, dim=1) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_levels': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_max_pool2d_with_indices_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 4 x0 = xindex % 4 x7 = xindex x3 = xindex // 64 x4 = xindex % 64 tmp116 = tl.load(in_ptr0 + x7, xmask) tmp0 = -2 + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = -2 + x0 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + (-10 + x7), tmp10 & xmask, other=float('-inf')) tmp12 = -1 + x0 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + (-9 + x7), tmp16 & xmask, other=float('-inf')) tmp18 = triton_helpers.maximum(tmp17, tmp11) tmp19 = x0 tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + (-8 + x7), tmp23 & xmask, other=float('-inf')) tmp25 = triton_helpers.maximum(tmp24, tmp18) tmp26 = 1 + x0 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp5 & tmp29 tmp31 = tl.load(in_ptr0 + (-7 + x7), tmp30 & xmask, other=float('-inf')) tmp32 = triton_helpers.maximum(tmp31, tmp25) tmp33 = 2 + x0 tmp34 = tmp33 >= tmp1 tmp35 = tmp33 < tmp3 tmp36 = tmp34 & tmp35 tmp37 = tmp5 & tmp36 tmp38 = tl.load(in_ptr0 + (-6 + x7), tmp37 & xmask, other=float('-inf')) tmp39 = triton_helpers.maximum(tmp38, tmp32) tmp40 = -1 + x1 tmp41 = tmp40 >= tmp1 tmp42 = tmp40 < tmp3 tmp43 = tmp41 & tmp42 tmp44 = tmp43 & tmp9 tmp45 = tl.load(in_ptr0 + (-6 + x7), tmp44 & xmask, other=float('-inf')) tmp46 = triton_helpers.maximum(tmp45, tmp39) tmp47 = tmp43 & tmp15 tmp48 = tl.load(in_ptr0 + (-5 + x7), tmp47 & xmask, other=float('-inf')) tmp49 = triton_helpers.maximum(tmp48, tmp46) tmp50 = tmp43 & tmp22 tmp51 = tl.load(in_ptr0 + (-4 + x7), tmp50 & xmask, other=float('-inf')) tmp52 = triton_helpers.maximum(tmp51, tmp49) tmp53 = tmp43 & tmp29 tmp54 = tl.load(in_ptr0 + (-3 + x7), tmp53 & xmask, other=float('-inf')) tmp55 = triton_helpers.maximum(tmp54, tmp52) tmp56 = tmp43 & tmp36 tmp57 = tl.load(in_ptr0 + (-2 + x7), tmp56 & xmask, other=float('-inf')) tmp58 = triton_helpers.maximum(tmp57, tmp55) tmp59 = x1 tmp60 = tmp59 >= tmp1 tmp61 = tmp59 < tmp3 tmp62 = tmp60 & tmp61 tmp63 = tmp62 & tmp9 tmp64 = tl.load(in_ptr0 + (-2 + x7), tmp63 & xmask, other=float('-inf')) tmp65 = triton_helpers.maximum(tmp64, tmp58) tmp66 = tmp62 & tmp15 tmp67 = tl.load(in_ptr0 + (-1 + x7), tmp66 & xmask, other=float('-inf')) tmp68 = triton_helpers.maximum(tmp67, tmp65) tmp69 = tmp62 & tmp22 tmp70 = tl.load(in_ptr0 + x7, tmp69 & xmask, other=float('-inf')) tmp71 = triton_helpers.maximum(tmp70, tmp68) tmp72 = tmp62 & tmp29 tmp73 = tl.load(in_ptr0 + (1 + x7), tmp72 & xmask, other=float('-inf')) tmp74 = triton_helpers.maximum(tmp73, tmp71) tmp75 = tmp62 & tmp36 tmp76 = tl.load(in_ptr0 + (2 + x7), tmp75 & xmask, other=float('-inf')) tmp77 = triton_helpers.maximum(tmp76, tmp74) tmp78 = 1 + x1 tmp79 = tmp78 >= tmp1 tmp80 = tmp78 < tmp3 tmp81 = tmp79 & tmp80 tmp82 = tmp81 & tmp9 tmp83 = tl.load(in_ptr0 + (2 + x7), tmp82 & xmask, other=float('-inf')) tmp84 = triton_helpers.maximum(tmp83, tmp77) tmp85 = tmp81 & tmp15 tmp86 = tl.load(in_ptr0 + (3 + x7), tmp85 & xmask, other=float('-inf')) tmp87 = triton_helpers.maximum(tmp86, tmp84) tmp88 = tmp81 & tmp22 tmp89 = tl.load(in_ptr0 + (4 + x7), tmp88 & xmask, other=float('-inf')) tmp90 = triton_helpers.maximum(tmp89, tmp87) tmp91 = tmp81 & tmp29 tmp92 = tl.load(in_ptr0 + (5 + x7), tmp91 & xmask, other=float('-inf')) tmp93 = triton_helpers.maximum(tmp92, tmp90) tmp94 = tmp81 & tmp36 tmp95 = tl.load(in_ptr0 + (6 + x7), tmp94 & xmask, other=float('-inf')) tmp96 = triton_helpers.maximum(tmp95, tmp93) tmp97 = 2 + x1 tmp98 = tmp97 >= tmp1 tmp99 = tmp97 < tmp3 tmp100 = tmp98 & tmp99 tmp101 = tmp100 & tmp9 tmp102 = tl.load(in_ptr0 + (6 + x7), tmp101 & xmask, other=float('-inf')) tmp103 = triton_helpers.maximum(tmp102, tmp96) tmp104 = tmp100 & tmp15 tmp105 = tl.load(in_ptr0 + (7 + x7), tmp104 & xmask, other=float('-inf')) tmp106 = triton_helpers.maximum(tmp105, tmp103) tmp107 = tmp100 & tmp22 tmp108 = tl.load(in_ptr0 + (8 + x7), tmp107 & xmask, other=float('-inf')) tmp109 = triton_helpers.maximum(tmp108, tmp106) tmp110 = tmp100 & tmp29 tmp111 = tl.load(in_ptr0 + (9 + x7), tmp110 & xmask, other=float('-inf')) tmp112 = triton_helpers.maximum(tmp111, tmp109) tmp113 = tmp100 & tmp36 tmp114 = tl.load(in_ptr0 + (10 + x7), tmp113 & xmask, other=float('-inf')) tmp115 = triton_helpers.maximum(tmp114, tmp112) tl.store(out_ptr0 + (x4 + 320 * x3), tmp115, xmask) tl.store(out_ptr1 + (x4 + 320 * x3), tmp116, xmask) @triton.jit def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 x1 = xindex // 64 tmp0 = tl.load(in_ptr0 + x2, xmask) tl.store(out_ptr0 + (x0 + 320 * x1), tmp0, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf14 = empty_strided_cuda((4, 20, 4, 4), (320, 16, 4, 1), torch. float32) buf0 = reinterpret_tensor(buf14, (4, 4, 4, 4), (320, 16, 4, 1), 64) buf10 = reinterpret_tensor(buf14, (4, 4, 4, 4), (320, 16, 4, 1), 0) get_raw_stream(0) triton_poi_fused_cat_max_pool2d_with_indices_0[grid(256)](arg0_1, buf0, buf10, 256, XBLOCK=128, num_warps=4, num_stages=1) buf1 = torch.ops.aten.max_pool2d_with_indices.default(arg0_1, [9, 9 ], [1, 1], [4, 4]) buf2 = buf1[0] del buf1 buf4 = torch.ops.aten.max_pool2d_with_indices.default(arg0_1, [13, 13], [1, 1], [6, 6]) buf5 = buf4[0] del buf4 buf7 = torch.ops.aten.max_pool2d_with_indices.default(arg0_1, [17, 17], [1, 1], [8, 8]) del arg0_1 buf8 = buf7[0] del buf7 buf11 = reinterpret_tensor(buf14, (4, 4, 4, 4), (320, 16, 4, 1), 128) triton_poi_fused_cat_1[grid(256)](buf2, buf11, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf2 buf12 = reinterpret_tensor(buf14, (4, 4, 4, 4), (320, 16, 4, 1), 192) triton_poi_fused_cat_1[grid(256)](buf5, buf12, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf5 buf13 = reinterpret_tensor(buf14, (4, 4, 4, 4), (320, 16, 4, 1), 256) triton_poi_fused_cat_1[grid(256)](buf8, buf13, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf8 return buf14, class SPPModuleNew(nn.Module): def __init__(self, num_levels, pool_type='max_pool'): super(SPPModuleNew, self).__init__() self.num_levels = num_levels self.pool_type = pool_type def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
ShuangXieIrene/ssds.pytorch
SPPModule
false
14,421
[ "MIT" ]
661
b5ec682a42c923afe964205b21448e9f141d55bc
https://github.com/ShuangXieIrene/ssds.pytorch/tree/b5ec682a42c923afe964205b21448e9f141d55bc
GRULRCell
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/3l/c3lvfnzdm4j54qmpqlq4wtibe7wlwzukm4xfgt3bw5bdnfre2jng.py # Topologically Sorted Source Nodes: [pre_comp1, add_2, r, mul], Original ATen: [aten.add, aten.sigmoid, aten.mul, aten.sigmoid_backward] # Source node to ATen node mapping: # add_2 => add_2 # mul => mul # pre_comp1 => add # r => sigmoid # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %view_7), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %primals_8), kwargs = {}) # %sigmoid : [num_users=3] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add_2,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %primals_6), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {}) # %mul_11 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %sub_3), kwargs = {}) triton_poi_fused_add_mul_sigmoid_sigmoid_backward_0 = async_compile.triton('triton_poi_fused_add_mul_sigmoid_sigmoid_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_sigmoid_sigmoid_backward_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_sigmoid_sigmoid_backward_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp3 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr3 + (x2), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp5 = tl.sigmoid(tmp4) tmp7 = tmp5 * tmp6 tmp8 = 1.0 tmp9 = tmp8 - tmp5 tmp10 = tmp5 * tmp9 tl.store(out_ptr0 + (x2), tmp7, xmask) tl.store(out_ptr1 + (x2), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/lz/clzjpvamptc4sf4uhsz3jl6umhb36eb2okmo444rgajkmwalgs3q.py # Topologically Sorted Source Nodes: [pre_comp2, add_3, z, pre_comp3, add_5, c, mul_1, sub, mul_2, new_h], Original ATen: [aten.add, aten.sigmoid, aten.tanh, aten.mul, aten.rsub] # Source node to ATen node mapping: # add_3 => add_3 # add_5 => add_5 # c => tanh # mul_1 => mul_1 # mul_2 => mul_2 # new_h => add_6 # pre_comp2 => add_1 # pre_comp3 => add_4 # sub => sub # z => sigmoid_1 # Graph fragment: # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_3, %view_9), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %primals_9), kwargs = {}) # %sigmoid_1 : [num_users=3] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add_3,), kwargs = {}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_5, %view_11), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_4, %primals_11), kwargs = {}) # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%add_5,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid_1, %primals_6), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %sigmoid_1), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %tanh), kwargs = {}) # %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %mul_2), kwargs = {}) triton_poi_fused_add_mul_rsub_sigmoid_tanh_1 = async_compile.triton('triton_poi_fused_add_mul_rsub_sigmoid_tanh_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_rsub_sigmoid_tanh_1', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_rsub_sigmoid_tanh_1(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x2), xmask) tmp3 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_out_ptr1 + (x2), xmask) tmp7 = tl.load(in_ptr2 + (x2), xmask) tmp9 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr4 + (x2), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp5 = tl.sigmoid(tmp4) tmp8 = tmp6 + tmp7 tmp10 = tmp8 + tmp9 tmp11 = libdevice.tanh(tmp10) tmp13 = tmp5 * tmp12 tmp14 = 1.0 tmp15 = tmp14 - tmp5 tmp16 = tmp15 * tmp11 tmp17 = tmp13 + tmp16 tl.store(in_out_ptr0 + (x2), tmp5, xmask) tl.store(in_out_ptr1 + (x2), tmp11, xmask) tl.store(out_ptr0 + (x2), tmp17, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (1, 4), (4, 1)) assert_size_stride(primals_9, (1, 4), (4, 1)) assert_size_stride(primals_10, (4, 4), (4, 1)) assert_size_stride(primals_11, (1, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [wComp1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), primals_1, out=buf0) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [wComp2], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), primals_3, out=buf1) del primals_3 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [wComp3], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), primals_4, out=buf2) del primals_4 buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [uComp1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), primals_5, out=buf3) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [uComp2], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), primals_7, out=buf4) del primals_7 buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [pre_comp1, add_2, r, mul], Original ATen: [aten.add, aten.sigmoid, aten.mul, aten.sigmoid_backward] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_sigmoid_sigmoid_backward_0.run(buf0, buf3, primals_8, primals_6, buf6, buf10, 256, grid=grid(256), stream=stream0) del primals_8 buf7 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [matmul_5], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf6, (64, 4), (4, 1), 0), primals_10, out=buf7) buf5 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf1 # reuse buf8 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse buf9 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [pre_comp2, add_3, z, pre_comp3, add_5, c, mul_1, sub, mul_2, new_h], Original ATen: [aten.add, aten.sigmoid, aten.tanh, aten.mul, aten.rsub] triton_poi_fused_add_mul_rsub_sigmoid_tanh_1.run(buf5, buf8, buf4, primals_9, buf7, primals_11, primals_6, buf9, 256, grid=grid(256), stream=stream0) del buf4 del buf7 del primals_11 del primals_9 return (buf9, primals_6, buf5, buf8, reinterpret_tensor(buf6, (4, 64), (1, 4), 0), reinterpret_tensor(primals_10, (4, 4), (1, 4), 0), buf10, reinterpret_tensor(primals_2, (4, 64), (1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.onnx from itertools import product as product def gen_nonlinearity(A, nonlinearity): """ Returns required activation for a tensor based on the inputs nonlinearity is either a callable or a value in ['tanh', 'sigmoid', 'relu', 'quantTanh', 'quantSigm', 'quantSigm4'] """ if nonlinearity == 'tanh': return torch.tanh(A) elif nonlinearity == 'sigmoid': return torch.sigmoid(A) elif nonlinearity == 'relu': return torch.relu(A, 0.0) elif nonlinearity == 'quantTanh': return torch.max(torch.min(A, torch.ones_like(A)), -1.0 * torch. ones_like(A)) elif nonlinearity == 'quantSigm': A = (A + 1.0) / 2.0 return torch.max(torch.min(A, torch.ones_like(A)), torch.zeros_like(A)) elif nonlinearity == 'quantSigm4': A = (A + 2.0) / 4.0 return torch.max(torch.min(A, torch.ones_like(A)), torch.zeros_like(A)) else: if not callable(nonlinearity): raise ValueError( 'nonlinearity is either a callable or a value ' + "['tanh', 'sigmoid', 'relu', 'quantTanh', " + "'quantSigm'") return nonlinearity(A) class RNNCell(nn.Module): def __init__(self, input_size, hidden_size, gate_nonlinearity, update_nonlinearity, num_W_matrices, num_U_matrices, num_biases, wRank=None, uRank=None, wSparsity=1.0, uSparsity=1.0): super(RNNCell, self).__init__() self._input_size = input_size self._hidden_size = hidden_size self._gate_nonlinearity = gate_nonlinearity self._update_nonlinearity = update_nonlinearity self._num_W_matrices = num_W_matrices self._num_U_matrices = num_U_matrices self._num_biases = num_biases self._num_weight_matrices = [self._num_W_matrices, self. _num_U_matrices, self._num_biases] self._wRank = wRank self._uRank = uRank self._wSparsity = wSparsity self._uSparsity = uSparsity self.oldmats = [] @property def state_size(self): return self._hidden_size @property def input_size(self): return self._input_size @property def output_size(self): return self._hidden_size @property def gate_nonlinearity(self): return self._gate_nonlinearity @property def update_nonlinearity(self): return self._update_nonlinearity @property def wRank(self): return self._wRank @property def uRank(self): return self._uRank @property def num_W_matrices(self): return self._num_W_matrices @property def num_U_matrices(self): return self._num_U_matrices @property def num_weight_matrices(self): return self._num_weight_matrices @property def name(self): raise NotImplementedError() def forward(self, input, state): raise NotImplementedError() def getVars(self): raise NotImplementedError() def get_model_size(self): """ Function to get aimed model size """ mats = self.getVars() endW = self._num_W_matrices endU = endW + self._num_U_matrices totalnnz = 2 for i in range(0, endW): mats[i].device totalnnz += utils.countNNZ(mats[i].cpu(), self._wSparsity) mats[i] for i in range(endW, endU): mats[i].device totalnnz += utils.countNNZ(mats[i].cpu(), self._uSparsity) mats[i] for i in range(endU, len(mats)): mats[i].device totalnnz += utils.countNNZ(mats[i].cpu(), False) mats[i] return totalnnz * 4 def copy_previous_UW(self): mats = self.getVars() num_mats = self._num_W_matrices + self._num_U_matrices if len(self.oldmats) != num_mats: for i in range(num_mats): self.oldmats.append(torch.FloatTensor()) for i in range(num_mats): self.oldmats[i] = torch.FloatTensor(mats[i].detach().clone()) def sparsify(self): mats = self.getVars() endW = self._num_W_matrices endU = endW + self._num_U_matrices for i in range(0, endW): mats[i] = utils.hardThreshold(mats[i], self._wSparsity) for i in range(endW, endU): mats[i] = utils.hardThreshold(mats[i], self._uSparsity) self.W.data.copy_(mats[0]) self.U.data.copy_(mats[1]) def sparsifyWithSupport(self): mats = self.getVars() endU = self._num_W_matrices + self._num_U_matrices for i in range(0, endU): mats[i] = utils.supportBasedThreshold(mats[i], self.oldmats[i]) class GRULRCell(RNNCell): """ GRU LR Cell with Both Full Rank and Low Rank Formulations Has multiple activation functions for the gates hidden_size = # hidden units gate_nonlinearity = nonlinearity for the gate can be chosen from [tanh, sigmoid, relu, quantTanh, quantSigm] update_nonlinearity = nonlinearity for final rnn update can be chosen from [tanh, sigmoid, relu, quantTanh, quantSigm] wRank = rank of W matrix (creates 4 matrices if not None else creates 3 matrices) uRank = rank of U matrix (creates 4 matrices if not None else creates 3 matrices) GRU architecture and compression techniques are found in GRU(LINK) paper Basic architecture is like: r_t = gate_nl(W1x_t + U1h_{t-1} + B_r) z_t = gate_nl(W2x_t + U2h_{t-1} + B_g) h_t^ = update_nl(W3x_t + r_t*U3(h_{t-1}) + B_h) h_t = z_t*h_{t-1} + (1-z_t)*h_t^ Wi and Ui can further parameterised into low rank version by Wi = matmul(W, W_i) and Ui = matmul(U, U_i) """ def __init__(self, input_size, hidden_size, gate_nonlinearity='sigmoid', update_nonlinearity='tanh', wRank=None, uRank=None, wSparsity=1.0, uSparsity=1.0, name='GRULR'): super(GRULRCell, self).__init__(input_size, hidden_size, gate_nonlinearity, update_nonlinearity, 3, 3, 3, wRank, uRank, wSparsity, uSparsity) if wRank is not None: self._num_W_matrices += 1 self._num_weight_matrices[0] = self._num_W_matrices if uRank is not None: self._num_U_matrices += 1 self._num_weight_matrices[1] = self._num_U_matrices self._name = name if wRank is None: self.W1 = nn.Parameter(0.1 * torch.randn([input_size, hidden_size]) ) self.W2 = nn.Parameter(0.1 * torch.randn([input_size, hidden_size]) ) self.W3 = nn.Parameter(0.1 * torch.randn([input_size, hidden_size]) ) else: self.W = nn.Parameter(0.1 * torch.randn([input_size, wRank])) self.W1 = nn.Parameter(0.1 * torch.randn([wRank, hidden_size])) self.W2 = nn.Parameter(0.1 * torch.randn([wRank, hidden_size])) self.W3 = nn.Parameter(0.1 * torch.randn([wRank, hidden_size])) if uRank is None: self.U1 = nn.Parameter(0.1 * torch.randn([hidden_size, hidden_size])) self.U2 = nn.Parameter(0.1 * torch.randn([hidden_size, hidden_size])) self.U3 = nn.Parameter(0.1 * torch.randn([hidden_size, hidden_size])) else: self.U = nn.Parameter(0.1 * torch.randn([hidden_size, uRank])) self.U1 = nn.Parameter(0.1 * torch.randn([uRank, hidden_size])) self.U2 = nn.Parameter(0.1 * torch.randn([uRank, hidden_size])) self.U3 = nn.Parameter(0.1 * torch.randn([uRank, hidden_size])) self.bias_r = nn.Parameter(torch.ones([1, hidden_size])) self.bias_gate = nn.Parameter(torch.ones([1, hidden_size])) self.bias_update = nn.Parameter(torch.ones([1, hidden_size])) self._device = self.bias_update.device @property def name(self): return self._name @property def cellType(self): return 'GRULR' def forward(self, input, state): if self._wRank is None: wComp1 = torch.matmul(input, self.W1) wComp2 = torch.matmul(input, self.W2) wComp3 = torch.matmul(input, self.W3) else: wComp1 = torch.matmul(torch.matmul(input, self.W), self.W1) wComp2 = torch.matmul(torch.matmul(input, self.W), self.W2) wComp3 = torch.matmul(torch.matmul(input, self.W), self.W3) if self._uRank is None: uComp1 = torch.matmul(state, self.U1) uComp2 = torch.matmul(state, self.U2) else: uComp1 = torch.matmul(torch.matmul(state, self.U), self.U1) uComp2 = torch.matmul(torch.matmul(state, self.U), self.U2) pre_comp1 = wComp1 + uComp1 pre_comp2 = wComp2 + uComp2 r = gen_nonlinearity(pre_comp1 + self.bias_r, self._gate_nonlinearity) z = gen_nonlinearity(pre_comp2 + self.bias_gate, self. _gate_nonlinearity) if self._uRank is None: pre_comp3 = wComp3 + torch.matmul(r * state, self.U3) else: pre_comp3 = wComp3 + torch.matmul(torch.matmul(r * state, self. U), self.U3) c = gen_nonlinearity(pre_comp3 + self.bias_update, self. _update_nonlinearity) new_h = z * state + (1.0 - z) * c return new_h def getVars(self): Vars = [] if self._num_W_matrices == 3: Vars.extend([self.W1, self.W2, self.W3]) else: Vars.extend([self.W, self.W1, self.W2, self.W3]) if self._num_U_matrices == 3: Vars.extend([self.U1, self.U2, self.U3]) else: Vars.extend([self.U, self.U1, self.U2, self.U3]) Vars.extend([self.bias_r, self.bias_gate, self.bias_update]) return Vars def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4, 'hidden_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn import torch.onnx from itertools import product as product assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_mul_sigmoid_sigmoid_backward_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x2, xmask) tmp3 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr3 + x2, xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp5 = tl.sigmoid(tmp4) tmp7 = tmp5 * tmp6 tmp8 = 1.0 tmp9 = tmp8 - tmp5 tmp10 = tmp5 * tmp9 tl.store(out_ptr0 + x2, tmp7, xmask) tl.store(out_ptr1 + x2, tmp10, xmask) @triton.jit def triton_poi_fused_add_mul_rsub_sigmoid_tanh_1(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x2, xmask) tmp3 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_out_ptr1 + x2, xmask) tmp7 = tl.load(in_ptr2 + x2, xmask) tmp9 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr4 + x2, xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp5 = tl.sigmoid(tmp4) tmp8 = tmp6 + tmp7 tmp10 = tmp8 + tmp9 tmp11 = libdevice.tanh(tmp10) tmp13 = tmp5 * tmp12 tmp14 = 1.0 tmp15 = tmp14 - tmp5 tmp16 = tmp15 * tmp11 tmp17 = tmp13 + tmp16 tl.store(in_out_ptr0 + x2, tmp5, xmask) tl.store(in_out_ptr1 + x2, tmp11, xmask) tl.store(out_ptr0 + x2, tmp17, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (1, 4), (4, 1)) assert_size_stride(primals_9, (1, 4), (4, 1)) assert_size_stride(primals_10, (4, 4), (4, 1)) assert_size_stride(primals_11, (1, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), primals_1, out=buf0) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), primals_3, out=buf1) del primals_3 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), primals_4, out=buf2) del primals_4 buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), primals_5, out=buf3) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), primals_7, out=buf4) del primals_7 buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_sigmoid_sigmoid_backward_0[grid(256)](buf0, buf3, primals_8, primals_6, buf6, buf10, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_8 buf7 = buf3 del buf3 extern_kernels.mm(reinterpret_tensor(buf6, (64, 4), (4, 1), 0), primals_10, out=buf7) buf5 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf1 buf8 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf2 buf9 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 triton_poi_fused_add_mul_rsub_sigmoid_tanh_1[grid(256)](buf5, buf8, buf4, primals_9, buf7, primals_11, primals_6, buf9, 256, XBLOCK =128, num_warps=4, num_stages=1) del buf4 del buf7 del primals_11 del primals_9 return buf9, primals_6, buf5, buf8, reinterpret_tensor(buf6, (4, 64), ( 1, 4), 0), reinterpret_tensor(primals_10, (4, 4), (1, 4), 0 ), buf10, reinterpret_tensor(primals_2, (4, 64), (1, 4), 0) def gen_nonlinearity(A, nonlinearity): """ Returns required activation for a tensor based on the inputs nonlinearity is either a callable or a value in ['tanh', 'sigmoid', 'relu', 'quantTanh', 'quantSigm', 'quantSigm4'] """ if nonlinearity == 'tanh': return torch.tanh(A) elif nonlinearity == 'sigmoid': return torch.sigmoid(A) elif nonlinearity == 'relu': return torch.relu(A, 0.0) elif nonlinearity == 'quantTanh': return torch.max(torch.min(A, torch.ones_like(A)), -1.0 * torch. ones_like(A)) elif nonlinearity == 'quantSigm': A = (A + 1.0) / 2.0 return torch.max(torch.min(A, torch.ones_like(A)), torch.zeros_like(A)) elif nonlinearity == 'quantSigm4': A = (A + 2.0) / 4.0 return torch.max(torch.min(A, torch.ones_like(A)), torch.zeros_like(A)) else: if not callable(nonlinearity): raise ValueError( 'nonlinearity is either a callable or a value ' + "['tanh', 'sigmoid', 'relu', 'quantTanh', " + "'quantSigm'") return nonlinearity(A) class RNNCell(nn.Module): def __init__(self, input_size, hidden_size, gate_nonlinearity, update_nonlinearity, num_W_matrices, num_U_matrices, num_biases, wRank=None, uRank=None, wSparsity=1.0, uSparsity=1.0): super(RNNCell, self).__init__() self._input_size = input_size self._hidden_size = hidden_size self._gate_nonlinearity = gate_nonlinearity self._update_nonlinearity = update_nonlinearity self._num_W_matrices = num_W_matrices self._num_U_matrices = num_U_matrices self._num_biases = num_biases self._num_weight_matrices = [self._num_W_matrices, self. _num_U_matrices, self._num_biases] self._wRank = wRank self._uRank = uRank self._wSparsity = wSparsity self._uSparsity = uSparsity self.oldmats = [] @property def state_size(self): return self._hidden_size @property def input_size(self): return self._input_size @property def output_size(self): return self._hidden_size @property def gate_nonlinearity(self): return self._gate_nonlinearity @property def update_nonlinearity(self): return self._update_nonlinearity @property def wRank(self): return self._wRank @property def uRank(self): return self._uRank @property def num_W_matrices(self): return self._num_W_matrices @property def num_U_matrices(self): return self._num_U_matrices @property def num_weight_matrices(self): return self._num_weight_matrices @property def name(self): raise NotImplementedError() def forward(self, input, state): raise NotImplementedError() def getVars(self): raise NotImplementedError() def get_model_size(self): """ Function to get aimed model size """ mats = self.getVars() endW = self._num_W_matrices endU = endW + self._num_U_matrices totalnnz = 2 for i in range(0, endW): mats[i].device totalnnz += utils.countNNZ(mats[i].cpu(), self._wSparsity) mats[i] for i in range(endW, endU): mats[i].device totalnnz += utils.countNNZ(mats[i].cpu(), self._uSparsity) mats[i] for i in range(endU, len(mats)): mats[i].device totalnnz += utils.countNNZ(mats[i].cpu(), False) mats[i] return totalnnz * 4 def copy_previous_UW(self): mats = self.getVars() num_mats = self._num_W_matrices + self._num_U_matrices if len(self.oldmats) != num_mats: for i in range(num_mats): self.oldmats.append(torch.FloatTensor()) for i in range(num_mats): self.oldmats[i] = torch.FloatTensor(mats[i].detach().clone()) def sparsify(self): mats = self.getVars() endW = self._num_W_matrices endU = endW + self._num_U_matrices for i in range(0, endW): mats[i] = utils.hardThreshold(mats[i], self._wSparsity) for i in range(endW, endU): mats[i] = utils.hardThreshold(mats[i], self._uSparsity) self.W.data.copy_(mats[0]) self.U.data.copy_(mats[1]) def sparsifyWithSupport(self): mats = self.getVars() endU = self._num_W_matrices + self._num_U_matrices for i in range(0, endU): mats[i] = utils.supportBasedThreshold(mats[i], self.oldmats[i]) class GRULRCellNew(RNNCell): """ GRU LR Cell with Both Full Rank and Low Rank Formulations Has multiple activation functions for the gates hidden_size = # hidden units gate_nonlinearity = nonlinearity for the gate can be chosen from [tanh, sigmoid, relu, quantTanh, quantSigm] update_nonlinearity = nonlinearity for final rnn update can be chosen from [tanh, sigmoid, relu, quantTanh, quantSigm] wRank = rank of W matrix (creates 4 matrices if not None else creates 3 matrices) uRank = rank of U matrix (creates 4 matrices if not None else creates 3 matrices) GRU architecture and compression techniques are found in GRU(LINK) paper Basic architecture is like: r_t = gate_nl(W1x_t + U1h_{t-1} + B_r) z_t = gate_nl(W2x_t + U2h_{t-1} + B_g) h_t^ = update_nl(W3x_t + r_t*U3(h_{t-1}) + B_h) h_t = z_t*h_{t-1} + (1-z_t)*h_t^ Wi and Ui can further parameterised into low rank version by Wi = matmul(W, W_i) and Ui = matmul(U, U_i) """ def __init__(self, input_size, hidden_size, gate_nonlinearity='sigmoid', update_nonlinearity='tanh', wRank=None, uRank=None, wSparsity=1.0, uSparsity=1.0, name='GRULR'): super(GRULRCellNew, self).__init__(input_size, hidden_size, gate_nonlinearity, update_nonlinearity, 3, 3, 3, wRank, uRank, wSparsity, uSparsity) if wRank is not None: self._num_W_matrices += 1 self._num_weight_matrices[0] = self._num_W_matrices if uRank is not None: self._num_U_matrices += 1 self._num_weight_matrices[1] = self._num_U_matrices self._name = name if wRank is None: self.W1 = nn.Parameter(0.1 * torch.randn([input_size, hidden_size]) ) self.W2 = nn.Parameter(0.1 * torch.randn([input_size, hidden_size]) ) self.W3 = nn.Parameter(0.1 * torch.randn([input_size, hidden_size]) ) else: self.W = nn.Parameter(0.1 * torch.randn([input_size, wRank])) self.W1 = nn.Parameter(0.1 * torch.randn([wRank, hidden_size])) self.W2 = nn.Parameter(0.1 * torch.randn([wRank, hidden_size])) self.W3 = nn.Parameter(0.1 * torch.randn([wRank, hidden_size])) if uRank is None: self.U1 = nn.Parameter(0.1 * torch.randn([hidden_size, hidden_size])) self.U2 = nn.Parameter(0.1 * torch.randn([hidden_size, hidden_size])) self.U3 = nn.Parameter(0.1 * torch.randn([hidden_size, hidden_size])) else: self.U = nn.Parameter(0.1 * torch.randn([hidden_size, uRank])) self.U1 = nn.Parameter(0.1 * torch.randn([uRank, hidden_size])) self.U2 = nn.Parameter(0.1 * torch.randn([uRank, hidden_size])) self.U3 = nn.Parameter(0.1 * torch.randn([uRank, hidden_size])) self.bias_r = nn.Parameter(torch.ones([1, hidden_size])) self.bias_gate = nn.Parameter(torch.ones([1, hidden_size])) self.bias_update = nn.Parameter(torch.ones([1, hidden_size])) self._device = self.bias_update.device @property def name(self): return self._name @property def cellType(self): return 'GRULR' def getVars(self): Vars = [] if self._num_W_matrices == 3: Vars.extend([self.W1, self.W2, self.W3]) else: Vars.extend([self.W, self.W1, self.W2, self.W3]) if self._num_U_matrices == 3: Vars.extend([self.U1, self.U2, self.U3]) else: Vars.extend([self.U, self.U1, self.U2, self.U3]) Vars.extend([self.bias_r, self.bias_gate, self.bias_update]) return Vars def forward(self, input_0, input_1): primals_1 = self.W1 primals_3 = self.W2 primals_4 = self.W3 primals_5 = self.U1 primals_7 = self.U2 primals_10 = self.U3 primals_8 = self.bias_r primals_9 = self.bias_gate primals_11 = self.bias_update primals_2 = input_0 primals_6 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0]
Shenzhen-Cloudatawalk-Technology-Co-Ltd/EdgeML
GRULRCell
false
14,422
[ "MIT" ]
719
ef9f8a77f096acbdeb941014791f8eda1c1bc35b
https://github.com/Shenzhen-Cloudatawalk-Technology-Co-Ltd/EdgeML/tree/ef9f8a77f096acbdeb941014791f8eda1c1bc35b
NTM
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/73/c73dfvvwnsel4knqrcweibmutqlsocw2adin6ttrejza5e3sylp5.py # Topologically Sorted Source Nodes: [e1], Original ATen: [aten.relu] # Source node to ATen node mapping: # e1 => relu # Graph fragment: # %add_tensor_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_4, %primals_3), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_4,), kwargs = {}) triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 500 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/jz/cjzinezasvhkdapb4loejpgey7kmckbefzwmpql73yeknocwxue2.py # Topologically Sorted Source Nodes: [e1_1], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # e1_1 => relu_1 # Graph fragment: # %add_tensor_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_3, %primals_5), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_3,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 500 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ns/cnszijuiz432ctw37rqktvk3syr2vugzeuatmva3neoizic6f3sq.py # Topologically Sorted Source Nodes: [g1], Original ATen: [aten.tanh] # Source node to ATen node mapping: # g1 => tanh # Graph fragment: # %add_tensor_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_2, %primals_12), kwargs = {}) # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%add_tensor_2,), kwargs = {}) triton_poi_fused_tanh_2 = async_compile.triton('triton_poi_fused_tanh_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/e3/ce3awwui6azorvya5mylijhwq6pxpyh7wddzrdkjd5loisybpcql.py # Topologically Sorted Source Nodes: [g1_3, g1_4], Original ATen: [aten.tanh, aten.add] # Source node to ATen node mapping: # g1_3 => tanh_3 # g1_4 => add_1 # Graph fragment: # %tanh_3 : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%addmm_7,), kwargs = {}) # %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%tanh_3, %addmm_2), kwargs = {}) triton_poi_fused_add_tanh_3 = async_compile.triton('triton_poi_fused_add_tanh_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_tanh_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_tanh_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp2 = tl.load(in_ptr1 + (x0), xmask) tmp1 = libdevice.tanh(tmp0) tmp3 = tmp1 + tmp2 tl.store(out_ptr0 + (x0), tmp3, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/iv/civdgwzpphyda4rs4fr3g6w25bprv7bn4anqgivrgzavi7xr5pdl.py # Topologically Sorted Source Nodes: [d1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # d1 => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%addmm_8, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%addmm_8, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_4 = async_compile.triton('triton_poi_fused__softmax_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/a4/ca4u6hbohfqkgchihihlu5hrf3vuqm27r2ncsg7xb6g4ikttl2at.py # Topologically Sorted Source Nodes: [d1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # d1 => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_5 = async_compile.triton('triton_poi_fused__softmax_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_5(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (500, 4), (4, 1)) assert_size_stride(primals_3, (500, ), (1, )) assert_size_stride(primals_4, (500, 500), (500, 1)) assert_size_stride(primals_5, (500, ), (1, )) assert_size_stride(primals_6, (500, 4), (4, 1)) assert_size_stride(primals_7, (4, 500), (500, 1)) assert_size_stride(primals_8, (4, ), (1, )) assert_size_stride(primals_9, (4, 500), (500, 1)) assert_size_stride(primals_10, (4, ), (1, )) assert_size_stride(primals_11, (4, 4), (4, 1)) assert_size_stride(primals_12, (4, ), (1, )) assert_size_stride(primals_13, (4, 4), (4, 1)) assert_size_stride(primals_14, (4, ), (1, )) assert_size_stride(primals_15, (4, 4), (4, 1)) assert_size_stride(primals_16, (4, ), (1, )) assert_size_stride(primals_17, (4, 4), (4, 1)) assert_size_stride(primals_18, (4, ), (1, )) assert_size_stride(primals_19, (4, 4), (4, 1)) assert_size_stride(primals_20, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 500), (500, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 500), (1, 4), 0), out=buf0) del primals_2 buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [e1], Original ATen: [aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_relu_0.run(buf1, primals_3, 32000, grid=grid(32000), stream=stream0) del primals_3 buf2 = empty_strided_cuda((64, 500), (500, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf1, reinterpret_tensor(primals_4, (500, 500), (1, 500), 0), out=buf2) buf3 = buf2; del buf2 # reuse buf18 = empty_strided_cuda((64, 500), (500, 1), torch.bool) # Topologically Sorted Source Nodes: [e1_1], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_1.run(buf3, primals_5, buf18, 32000, grid=grid(32000), stream=stream0) del primals_5 buf4 = empty_strided_cuda((64, 500), (500, 1), torch.float32) # Topologically Sorted Source Nodes: [e1_1], Original ATen: [aten.relu] extern_kernels.addmm(buf3, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 500), (1, 4), 0), alpha=1, beta=1, out=buf4) del buf3 del primals_6 buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [mu], Original ATen: [aten.addmm] extern_kernels.addmm(primals_8, buf4, reinterpret_tensor(primals_7, (500, 4), (1, 500), 0), alpha=1, beta=1, out=buf5) del primals_8 buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [logvar], Original ATen: [aten.addmm] extern_kernels.addmm(primals_10, buf4, reinterpret_tensor(primals_9, (500, 4), (1, 500), 0), alpha=1, beta=1, out=buf6) del primals_10 buf7 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf5, reinterpret_tensor(primals_11, (4, 4), (1, 4), 0), out=buf7) buf8 = buf7; del buf7 # reuse # Topologically Sorted Source Nodes: [g1], Original ATen: [aten.tanh] triton_poi_fused_tanh_2.run(buf8, primals_12, 256, grid=grid(256), stream=stream0) del primals_12 buf9 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf8, reinterpret_tensor(primals_13, (4, 4), (1, 4), 0), out=buf9) buf10 = buf9; del buf9 # reuse # Topologically Sorted Source Nodes: [g1_1], Original ATen: [aten.tanh] triton_poi_fused_tanh_2.run(buf10, primals_14, 256, grid=grid(256), stream=stream0) del primals_14 buf11 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf10, reinterpret_tensor(primals_15, (4, 4), (1, 4), 0), out=buf11) buf12 = buf11; del buf11 # reuse # Topologically Sorted Source Nodes: [g1_2], Original ATen: [aten.tanh] triton_poi_fused_tanh_2.run(buf12, primals_16, 256, grid=grid(256), stream=stream0) del primals_16 buf13 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_8], Original ATen: [aten.addmm] extern_kernels.addmm(primals_18, buf12, reinterpret_tensor(primals_17, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf13) del primals_18 buf14 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [g1_3, g1_4], Original ATen: [aten.tanh, aten.add] triton_poi_fused_add_tanh_3.run(buf13, buf5, buf14, 256, grid=grid(256), stream=stream0) buf15 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_9], Original ATen: [aten.addmm] extern_kernels.addmm(primals_20, buf14, reinterpret_tensor(primals_19, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf15) del primals_20 buf16 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [d1], Original ATen: [aten._softmax] triton_poi_fused__softmax_4.run(buf15, buf16, 256, grid=grid(256), stream=stream0) buf17 = buf15; del buf15 # reuse # Topologically Sorted Source Nodes: [d1], Original ATen: [aten._softmax] triton_poi_fused__softmax_5.run(buf16, buf17, 256, grid=grid(256), stream=stream0) del buf16 return (buf5, buf14, buf17, buf6, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), buf1, buf4, buf5, buf8, buf10, buf12, buf13, buf14, buf17, primals_19, primals_17, primals_15, primals_13, primals_11, primals_9, primals_7, buf18, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((500, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((500, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((500, 500), (500, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((500, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((500, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 500), (500, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, 500), (500, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_19 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_20 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import logging import torch import numpy as np from torch.nn import functional as F import torch.utils.data import torch.nn as nn class NTM(nn.Module): def __init__(self, opt, hidden_dim=500, l1_strength=0.001): super(NTM, self).__init__() self.input_dim = opt.bow_vocab_size self.topic_num = opt.topic_num topic_num = opt.topic_num self.fc11 = nn.Linear(self.input_dim, hidden_dim) self.fc12 = nn.Linear(hidden_dim, hidden_dim) self.fc21 = nn.Linear(hidden_dim, topic_num) self.fc22 = nn.Linear(hidden_dim, topic_num) self.fcs = nn.Linear(self.input_dim, hidden_dim, bias=False) self.fcg1 = nn.Linear(topic_num, topic_num) self.fcg2 = nn.Linear(topic_num, topic_num) self.fcg3 = nn.Linear(topic_num, topic_num) self.fcg4 = nn.Linear(topic_num, topic_num) self.fcd1 = nn.Linear(topic_num, self.input_dim) self.l1_strength = torch.FloatTensor([l1_strength]) def encode(self, x): e1 = F.relu(self.fc11(x)) e1 = F.relu(self.fc12(e1)) e1 = e1.add(self.fcs(x)) return self.fc21(e1), self.fc22(e1) def reparameterize(self, mu, logvar): if self.training: std = torch.exp(0.5 * logvar) eps = torch.randn_like(std) return eps.mul(std).add_(mu) else: return mu def generate(self, h): g1 = torch.tanh(self.fcg1(h)) g1 = torch.tanh(self.fcg2(g1)) g1 = torch.tanh(self.fcg3(g1)) g1 = torch.tanh(self.fcg4(g1)) g1 = g1.add(h) return g1 def decode(self, z): d1 = F.softmax(self.fcd1(z), dim=1) return d1 def forward(self, x): mu, logvar = self.encode(x.view(-1, self.input_dim)) z = self.reparameterize(mu, logvar) g = self.generate(z) return z, g, self.decode(g), mu, logvar def print_topic_words(self, vocab_dic, fn, n_top_words=10): beta_exp = self.fcd1.weight.data.cpu().numpy().T logging.info('Writing to %s' % fn) fw = open(fn, 'w') for k, beta_k in enumerate(beta_exp): topic_words = [vocab_dic[w_id] for w_id in np.argsort(beta_k)[: -n_top_words - 1:-1]] None fw.write('{}\n'.format(' '.join(topic_words))) fw.close() def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'opt': _mock_config(bow_vocab_size=4, topic_num=4)}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import logging import numpy as np from torch.nn import functional as F import torch.utils.data import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 32000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 500 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 32000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 500 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_tanh_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) @triton.jit def triton_poi_fused_add_tanh_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp2 = tl.load(in_ptr1 + x0, xmask) tmp1 = libdevice.tanh(tmp0) tmp3 = tmp1 + tmp2 tl.store(out_ptr0 + x0, tmp3, xmask) @triton.jit def triton_poi_fused__softmax_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_5(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20) = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (500, 4), (4, 1)) assert_size_stride(primals_3, (500,), (1,)) assert_size_stride(primals_4, (500, 500), (500, 1)) assert_size_stride(primals_5, (500,), (1,)) assert_size_stride(primals_6, (500, 4), (4, 1)) assert_size_stride(primals_7, (4, 500), (500, 1)) assert_size_stride(primals_8, (4,), (1,)) assert_size_stride(primals_9, (4, 500), (500, 1)) assert_size_stride(primals_10, (4,), (1,)) assert_size_stride(primals_11, (4, 4), (4, 1)) assert_size_stride(primals_12, (4,), (1,)) assert_size_stride(primals_13, (4, 4), (4, 1)) assert_size_stride(primals_14, (4,), (1,)) assert_size_stride(primals_15, (4, 4), (4, 1)) assert_size_stride(primals_16, (4,), (1,)) assert_size_stride(primals_17, (4, 4), (4, 1)) assert_size_stride(primals_18, (4,), (1,)) assert_size_stride(primals_19, (4, 4), (4, 1)) assert_size_stride(primals_20, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 500), (500, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 500), (1, 4), 0), out=buf0) del primals_2 buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_relu_0[grid(32000)](buf1, primals_3, 32000, XBLOCK =256, num_warps=4, num_stages=1) del primals_3 buf2 = empty_strided_cuda((64, 500), (500, 1), torch.float32) extern_kernels.mm(buf1, reinterpret_tensor(primals_4, (500, 500), ( 1, 500), 0), out=buf2) buf3 = buf2 del buf2 buf18 = empty_strided_cuda((64, 500), (500, 1), torch.bool) triton_poi_fused_relu_threshold_backward_1[grid(32000)](buf3, primals_5, buf18, 32000, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((64, 500), (500, 1), torch.float32) extern_kernels.addmm(buf3, reinterpret_tensor(primals_1, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_6, (4, 500), (1, 4), 0), alpha=1, beta=1, out=buf4) del buf3 del primals_6 buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_8, buf4, reinterpret_tensor(primals_7, (500, 4), (1, 500), 0), alpha=1, beta=1, out=buf5) del primals_8 buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_10, buf4, reinterpret_tensor(primals_9, (500, 4), (1, 500), 0), alpha=1, beta=1, out=buf6) del primals_10 buf7 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(buf5, reinterpret_tensor(primals_11, (4, 4), (1, 4), 0), out=buf7) buf8 = buf7 del buf7 triton_poi_fused_tanh_2[grid(256)](buf8, primals_12, 256, XBLOCK= 128, num_warps=4, num_stages=1) del primals_12 buf9 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(buf8, reinterpret_tensor(primals_13, (4, 4), (1, 4), 0), out=buf9) buf10 = buf9 del buf9 triton_poi_fused_tanh_2[grid(256)](buf10, primals_14, 256, XBLOCK= 128, num_warps=4, num_stages=1) del primals_14 buf11 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(buf10, reinterpret_tensor(primals_15, (4, 4), (1, 4), 0), out=buf11) buf12 = buf11 del buf11 triton_poi_fused_tanh_2[grid(256)](buf12, primals_16, 256, XBLOCK= 128, num_warps=4, num_stages=1) del primals_16 buf13 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_18, buf12, reinterpret_tensor( primals_17, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf13) del primals_18 buf14 = empty_strided_cuda((64, 4), (4, 1), torch.float32) triton_poi_fused_add_tanh_3[grid(256)](buf13, buf5, buf14, 256, XBLOCK=256, num_warps=4, num_stages=1) buf15 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_20, buf14, reinterpret_tensor( primals_19, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf15) del primals_20 buf16 = empty_strided_cuda((64, 4), (4, 1), torch.float32) triton_poi_fused__softmax_4[grid(256)](buf15, buf16, 256, XBLOCK= 256, num_warps=4, num_stages=1) buf17 = buf15 del buf15 triton_poi_fused__softmax_5[grid(256)](buf16, buf17, 256, XBLOCK= 128, num_warps=4, num_stages=1) del buf16 return (buf5, buf14, buf17, buf6, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), buf1, buf4, buf5, buf8, buf10, buf12, buf13, buf14, buf17, primals_19, primals_17, primals_15, primals_13, primals_11, primals_9, primals_7, buf18, primals_4) class NTMNew(nn.Module): def __init__(self, opt, hidden_dim=500, l1_strength=0.001): super(NTMNew, self).__init__() self.input_dim = opt.bow_vocab_size self.topic_num = opt.topic_num topic_num = opt.topic_num self.fc11 = nn.Linear(self.input_dim, hidden_dim) self.fc12 = nn.Linear(hidden_dim, hidden_dim) self.fc21 = nn.Linear(hidden_dim, topic_num) self.fc22 = nn.Linear(hidden_dim, topic_num) self.fcs = nn.Linear(self.input_dim, hidden_dim, bias=False) self.fcg1 = nn.Linear(topic_num, topic_num) self.fcg2 = nn.Linear(topic_num, topic_num) self.fcg3 = nn.Linear(topic_num, topic_num) self.fcg4 = nn.Linear(topic_num, topic_num) self.fcd1 = nn.Linear(topic_num, self.input_dim) self.l1_strength = torch.FloatTensor([l1_strength]) def encode(self, x): e1 = F.relu(self.fc11(x)) e1 = F.relu(self.fc12(e1)) e1 = e1.add(self.fcs(x)) return self.fc21(e1), self.fc22(e1) def reparameterize(self, mu, logvar): if self.training: std = torch.exp(0.5 * logvar) eps = torch.randn_like(std) return eps.mul(std).add_(mu) else: return mu def generate(self, h): g1 = torch.tanh(self.fcg1(h)) g1 = torch.tanh(self.fcg2(g1)) g1 = torch.tanh(self.fcg3(g1)) g1 = torch.tanh(self.fcg4(g1)) g1 = g1.add(h) return g1 def decode(self, z): d1 = F.softmax(self.fcd1(z), dim=1) return d1 def print_topic_words(self, vocab_dic, fn, n_top_words=10): beta_exp = self.fcd1.weight.data.cpu().numpy().T logging.info('Writing to %s' % fn) fw = open(fn, 'w') for k, beta_k in enumerate(beta_exp): topic_words = [vocab_dic[w_id] for w_id in np.argsort(beta_k)[: -n_top_words - 1:-1]] None fw.write('{}\n'.format(' '.join(topic_words))) fw.close() def forward(self, input_0): primals_2 = self.fc11.weight primals_3 = self.fc11.bias primals_4 = self.fc12.weight primals_5 = self.fc12.bias primals_7 = self.fc21.weight primals_8 = self.fc21.bias primals_9 = self.fc22.weight primals_10 = self.fc22.bias primals_6 = self.fcs.weight primals_11 = self.fcg1.weight primals_12 = self.fcg1.bias primals_13 = self.fcg2.weight primals_14 = self.fcg2.bias primals_15 = self.fcg3.weight primals_16 = self.fcg3.bias primals_17 = self.fcg4.weight primals_18 = self.fcg4.bias primals_19 = self.fcd1.weight primals_20 = self.fcd1.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20]) return output[0], output[1], output[2], output[3], output[4]
Nullius-2020/TAKG-Paddle
NTM
false
14,423
[ "MIT" ]
130
7ebb5c4cdd1d2c68b1ca4a518b73c5e815fc5812
https://github.com/Nullius-2020/TAKG-Paddle/tree/7ebb5c4cdd1d2c68b1ca4a518b73c5e815fc5812
BertPSIHead
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/yy/cyya3js6wt64vdji3sfisvrqyfvqxwkwqq5mzg5bqjl2crzjs4t3.py # Topologically Sorted Source Nodes: [hidden_states_1], Original ATen: [aten.clone] # Source node to ATen node mapping: # hidden_states_1 => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%select,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask) tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/2g/c2gw7362i2a6wsfdx2sxyywx4o6ronjg6goebvdn44w6gpjsxpbc.py # Topologically Sorted Source Nodes: [hidden_states_1, hidden_states_2], Original ATen: [aten.add, aten.tanh] # Source node to ATen node mapping: # hidden_states_1 => add # hidden_states_2 => tanh # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %primals_3), kwargs = {}) # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%add,), kwargs = {}) triton_poi_fused_add_tanh_1 = async_compile.triton('triton_poi_fused_add_tanh_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_tanh_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (2, 4), (4, 1)) assert_size_stride(primals_5, (2, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [hidden_states_1], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(primals_1, buf0, 64, grid=grid(64), stream=stream0) del primals_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [hidden_states_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1) del primals_2 buf2 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [hidden_states_1, hidden_states_2], Original ATen: [aten.add, aten.tanh] triton_poi_fused_add_tanh_1.run(buf2, primals_3, 64, grid=grid(64), stream=stream0) del primals_3 buf3 = empty_strided_cuda((16, 2), (2, 1), torch.float32) # Topologically Sorted Source Nodes: [hidden_states_3], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 2), (1, 4), 0), alpha=1, beta=1, out=buf3) del primals_5 return (reinterpret_tensor(buf3, (4, 4, 2), (8, 2, 1), 0), reinterpret_tensor(buf0, (16, 4), (4, 1), 0), buf2, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((2, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import torch from torch import nn class BertPSIHead(nn.Module): def __init__(self, config): super().__init__() self.transform = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() self.decoder = nn.Linear(config.hidden_size, 2, bias=False) self.bias = nn.Parameter(torch.zeros(2)) self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = hidden_states[:, 0] hidden_states = self.transform(hidden_states) hidden_states = self.activation(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'config': _mock_config(hidden_size=4)}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask) tl.store(out_ptr0 + x2, tmp0, xmask) @triton.jit def triton_poi_fused_add_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (2, 4), (4, 1)) assert_size_stride(primals_5, (2,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(64)](primals_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1) del primals_2 buf2 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0) del buf1 triton_poi_fused_add_tanh_1[grid(64)](buf2, primals_3, 64, XBLOCK= 64, num_warps=1, num_stages=1) del primals_3 buf3 = empty_strided_cuda((16, 2), (2, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf2, (16, 4), ( 4, 1), 0), reinterpret_tensor(primals_4, (4, 2), (1, 4), 0), alpha=1, beta=1, out=buf3) del primals_5 return reinterpret_tensor(buf3, (4, 4, 2), (8, 2, 1), 0 ), reinterpret_tensor(buf0, (16, 4), (4, 1), 0), buf2, primals_4 class BertPSIHeadNew(nn.Module): def __init__(self, config): super().__init__() self.transform = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() self.decoder = nn.Linear(config.hidden_size, 2, bias=False) self.bias = nn.Parameter(torch.zeros(2)) self.decoder.bias = self.bias def forward(self, input_0): primals_5 = self.bias primals_2 = self.transform.weight primals_3 = self.transform.bias primals_4 = self.decoder.weight primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
Sologa/awesome-align
BertPSIHead
false
14,424
[ "BSD-3-Clause" ]
173
62eaae7eac9bac06c10627fac6cc942c07a50e64
https://github.com/Sologa/awesome-align/tree/62eaae7eac9bac06c10627fac6cc942c07a50e64
Net
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/y3/cy3felillfbofvf2vrfh6z4subeyn6afwd5cow5tuxyc7wvqr3lb.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192, 4096], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 8192 xnumel = 4096 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 2048 y1 = (yindex // 2048) tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), None, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (2048*x2) + (8388608*y1)), tmp0, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/md/cmdg26mvj25zj3kwofxwum4diehafaiwh3xgioilczebxohnzqi5.py # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d => convolution # x => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192, 4096], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 8192 xnumel = 4096 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y0 = yindex % 2048 y1 = (yindex // 2048) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (2048*x2) + (8388608*y1)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2 + (4096*y3)), tmp4, None) tl.store(out_ptr1 + (y0 + (2048*x2) + (8388608*y1)), tmp6, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (2048, 2048, 1, 1), (2048, 1, 1, 1)) assert_size_stride(primals_2, (2048, ), (1, )) assert_size_stride(primals_3, (4, 2048, 64, 64), (8388608, 4096, 64, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 2048, 64, 64), (8388608, 1, 131072, 2048), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_3, buf0, 8192, 4096, grid=grid(8192, 4096), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 2048, 64, 64), (8388608, 1, 131072, 2048)) buf2 = empty_strided_cuda((4, 2048, 64, 64), (8388608, 4096, 64, 1), torch.float32) buf3 = empty_strided_cuda((4, 2048, 64, 64), (8388608, 1, 131072, 2048), torch.bool) # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_1.run(buf1, primals_2, buf2, buf3, 8192, 4096, grid=grid(8192, 4096), stream=stream0) del buf1 del primals_2 return (buf2, primals_1, buf0, buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((2048, 2048, 1, 1), (2048, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 2048, 64, 64), (8388608, 4096, 64, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.nn.functional as F class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(2048, 2048, kernel_size=1) def forward(self, x): x = F.relu(self.conv1(x)) return x def get_inputs(): return [torch.rand([4, 2048, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 2048 y1 = yindex // 2048 tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), None, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 2048 * x2 + 8388608 * y1), tmp0, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl. constexpr): yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y0 = yindex % 2048 y1 = yindex // 2048 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 2048 * x2 + 8388608 * y1), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2 + 4096 * y3), tmp4, None) tl.store(out_ptr1 + (y0 + 2048 * x2 + 8388608 * y1), tmp6, None) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (2048, 2048, 1, 1), (2048, 1, 1, 1)) assert_size_stride(primals_2, (2048,), (1,)) assert_size_stride(primals_3, (4, 2048, 64, 64), (8388608, 4096, 64, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 2048, 64, 64), (8388608, 1, 131072, 2048), torch.float32) get_raw_stream(0) triton_poi_fused_0[grid(8192, 4096)](primals_3, buf0, 8192, 4096, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del primals_3 buf1 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 2048, 64, 64), (8388608, 1, 131072, 2048)) buf2 = empty_strided_cuda((4, 2048, 64, 64), (8388608, 4096, 64, 1), torch.float32) buf3 = empty_strided_cuda((4, 2048, 64, 64), (8388608, 1, 131072, 2048), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_1[grid(8192, 4096) ](buf1, primals_2, buf2, buf3, 8192, 4096, XBLOCK=16, YBLOCK= 256, num_warps=8, num_stages=1) del buf1 del primals_2 return buf2, primals_1, buf0, buf3 class NetNew(nn.Module): def __init__(self): super(NetNew, self).__init__() self.conv1 = nn.Conv2d(2048, 2048, kernel_size=1) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
ReyhaneAskari/pytorch_experiments
Net
false
14,425
[ "MIT" ]
60
43d2efbc08c9dd6275530c4bf49c68772f8afb75
https://github.com/ReyhaneAskari/pytorch_experiments/tree/43d2efbc08c9dd6275530c4bf49c68772f8afb75
FCDiscriminator
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/fl/cflskeukqjcpn5pfynzkpwyovblowpewl3lyqiwirncoqacxcylo.py # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # x => convolution # x_1 => gt, mul, where # Graph fragment: # %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.2), kwargs = {}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul), kwargs = {}) triton_poi_fused_convolution_leaky_relu_0 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 1024) % 64 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(in_out_ptr0 + (x3), tmp7, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/fi/cfik3ekgqfui53hs3oovko4x7tlh4b2wbgnht32gjrarwmhugyng.py # Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # x_2 => convolution_1 # x_3 => gt_1, mul_1, where_1 # Graph fragment: # %convolution_1 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where, %primals_4, %primals_5, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_1, 0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_1, 0.2), kwargs = {}) # %where_1 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %convolution_1, %mul_1), kwargs = {}) triton_poi_fused_convolution_leaky_relu_1 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 256) % 128 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(in_out_ptr0 + (x3), tmp7, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/4i/c4iln3sjhretnartiepdg5fntudbb2rgiwwz2jy54h55ajbvqod7.py # Topologically Sorted Source Nodes: [x_4, x_5], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # x_4 => convolution_2 # x_5 => gt_2, mul_2, where_2 # Graph fragment: # %convolution_2 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where_1, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_2 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_2, 0), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_2, 0.2), kwargs = {}) # %where_2 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %convolution_2, %mul_2), kwargs = {}) triton_poi_fused_convolution_leaky_relu_2 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 230400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 225) % 256 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(in_out_ptr0 + (x3), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/xp/cxpwsvsadqz5qnxgkyvg77eplout3iaqlqptuiyejjg25o6wihja.py # Topologically Sorted Source Nodes: [x_6, x_7], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # x_6 => convolution_3 # x_7 => gt_3, mul_3, where_3 # Graph fragment: # %convolution_3 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where_2, %primals_8, %primals_9, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_3 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_3, 0), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_3, 0.2), kwargs = {}) # %where_3 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_3, %convolution_3, %mul_3), kwargs = {}) triton_poi_fused_convolution_leaky_relu_3 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 200704 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 196) % 256 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(in_out_ptr0 + (x3), tmp7, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/vq/cvq36ojyq7ojxj3jaqpvt7ojq3zrdtb33cbwq37tx4qphthrcw3e.py # Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x_8 => convolution_4 # Graph fragment: # %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%where_3, %primals_10, %primals_11, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_4 = async_compile.triton('triton_poi_fused_convolution_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 676 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + (x0), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (64, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (64, ), (1, )) assert_size_stride(primals_3, (4, 4, 64, 64), (16384, 4096, 64, 1)) assert_size_stride(primals_4, (128, 64, 4, 4), (1024, 16, 4, 1)) assert_size_stride(primals_5, (128, ), (1, )) assert_size_stride(primals_6, (256, 128, 4, 4), (2048, 16, 4, 1)) assert_size_stride(primals_7, (256, ), (1, )) assert_size_stride(primals_8, (256, 256, 4, 4), (4096, 16, 4, 1)) assert_size_stride(primals_9, (256, ), (1, )) assert_size_stride(primals_10, (1, 256, 4, 4), (4096, 16, 4, 1)) assert_size_stride(primals_11, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 64, 32, 32), (65536, 1024, 32, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.leaky_relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_leaky_relu_0.run(buf1, primals_2, 262144, grid=grid(262144), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 128, 16, 16), (32768, 256, 16, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_1.run(buf3, primals_5, 131072, grid=grid(131072), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 256, 15, 15), (57600, 225, 15, 1)) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [x_4, x_5], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_2.run(buf5, primals_7, 230400, grid=grid(230400), stream=stream0) del primals_7 # Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 256, 14, 14), (50176, 196, 14, 1)) buf7 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [x_6, x_7], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_3.run(buf7, primals_9, 200704, grid=grid(200704), stream=stream0) del primals_9 # Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.convolution] buf8 = extern_kernels.convolution(buf7, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 1, 13, 13), (169, 169, 13, 1)) buf9 = buf8; del buf8 # reuse # Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.convolution] triton_poi_fused_convolution_4.run(buf9, primals_11, 676, grid=grid(676), stream=stream0) del primals_11 return (buf9, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, buf1, buf3, buf5, buf7, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((64, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 64, 64), (16384, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((128, 64, 4, 4), (1024, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((256, 128, 4, 4), (2048, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((256, 256, 4, 4), (4096, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((1, 256, 4, 4), (4096, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class FCDiscriminator(nn.Module): def __init__(self, num_classes, ndf=64): super(FCDiscriminator, self).__init__() self.conv1 = nn.Conv2d(num_classes, ndf, kernel_size=4, stride=2, padding=1) self.conv2 = nn.Conv2d(ndf, ndf * 2, kernel_size=4, stride=2, padding=1 ) self.conv3 = nn.Conv2d(ndf * 2, ndf * 4, kernel_size=4, stride=1, padding=1) self.conv4 = nn.Conv2d(ndf * 4, ndf * 4, kernel_size=4, stride=1, padding=1) self.classifier = nn.Conv2d(ndf * 4, 1, kernel_size=4, stride=1, padding=1) self.leaky_relu = nn.LeakyReLU(negative_slope=0.2, inplace=True) def forward(self, x): x = self.conv1(x) x = self.leaky_relu(x) x = self.conv2(x) x = self.leaky_relu(x) x = self.conv3(x) x = self.leaky_relu(x) x = self.conv4(x) x = self.leaky_relu(x) x = self.classifier(x) return x def get_inputs(): return [torch.rand([4, 4, 64, 64])] def get_init_inputs(): return [[], {'num_classes': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride @triton.jit def triton_poi_fused_convolution_leaky_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 1024 % 64 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(in_out_ptr0 + x3, tmp7, None) @triton.jit def triton_poi_fused_convolution_leaky_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 256 % 128 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(in_out_ptr0 + x3, tmp7, None) @triton.jit def triton_poi_fused_convolution_leaky_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 230400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 225 % 256 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(in_out_ptr0 + x3, tmp7, xmask) @triton.jit def triton_poi_fused_convolution_leaky_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 196 % 256 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(in_out_ptr0 + x3, tmp7, None) @triton.jit def triton_poi_fused_convolution_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 676 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + x0, tmp3, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (64, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (64,), (1,)) assert_size_stride(primals_3, (4, 4, 64, 64), (16384, 4096, 64, 1)) assert_size_stride(primals_4, (128, 64, 4, 4), (1024, 16, 4, 1)) assert_size_stride(primals_5, (128,), (1,)) assert_size_stride(primals_6, (256, 128, 4, 4), (2048, 16, 4, 1)) assert_size_stride(primals_7, (256,), (1,)) assert_size_stride(primals_8, (256, 256, 4, 4), (4096, 16, 4, 1)) assert_size_stride(primals_9, (256,), (1,)) assert_size_stride(primals_10, (1, 256, 4, 4), (4096, 16, 4, 1)) assert_size_stride(primals_11, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 64, 32, 32), (65536, 1024, 32, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_leaky_relu_0[grid(262144)](buf1, primals_2, 262144, XBLOCK=512, num_warps=8, num_stages=1) del primals_2 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 128, 16, 16), (32768, 256, 16, 1)) buf3 = buf2 del buf2 triton_poi_fused_convolution_leaky_relu_1[grid(131072)](buf3, primals_5, 131072, XBLOCK=1024, num_warps=4, num_stages=1) del primals_5 buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 256, 15, 15), (57600, 225, 15, 1)) buf5 = buf4 del buf4 triton_poi_fused_convolution_leaky_relu_2[grid(230400)](buf5, primals_7, 230400, XBLOCK=512, num_warps=8, num_stages=1) del primals_7 buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 256, 14, 14), (50176, 196, 14, 1)) buf7 = buf6 del buf6 triton_poi_fused_convolution_leaky_relu_3[grid(200704)](buf7, primals_9, 200704, XBLOCK=1024, num_warps=4, num_stages=1) del primals_9 buf8 = extern_kernels.convolution(buf7, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 1, 13, 13), (169, 169, 13, 1)) buf9 = buf8 del buf8 triton_poi_fused_convolution_4[grid(676)](buf9, primals_11, 676, XBLOCK=256, num_warps=4, num_stages=1) del primals_11 return (buf9, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, buf1, buf3, buf5, buf7) class FCDiscriminatorNew(nn.Module): def __init__(self, num_classes, ndf=64): super(FCDiscriminatorNew, self).__init__() self.conv1 = nn.Conv2d(num_classes, ndf, kernel_size=4, stride=2, padding=1) self.conv2 = nn.Conv2d(ndf, ndf * 2, kernel_size=4, stride=2, padding=1 ) self.conv3 = nn.Conv2d(ndf * 2, ndf * 4, kernel_size=4, stride=1, padding=1) self.conv4 = nn.Conv2d(ndf * 4, ndf * 4, kernel_size=4, stride=1, padding=1) self.classifier = nn.Conv2d(ndf * 4, 1, kernel_size=4, stride=1, padding=1) self.leaky_relu = nn.LeakyReLU(negative_slope=0.2, inplace=True) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.conv3.weight primals_7 = self.conv3.bias primals_8 = self.conv4.weight primals_9 = self.conv4.bias primals_10 = self.classifier.weight primals_11 = self.classifier.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0]
Siddharth-Shrivastava7/DANNet
FCDiscriminator
false
14,426
[ "Apache-2.0" ]
61
8db10056a4e445d24fc899505923615457cae5b7
https://github.com/Siddharth-Shrivastava7/DANNet/tree/8db10056a4e445d24fc899505923615457cae5b7
TranspConv3DBlock
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/dr/cdrlydtsq3qqqa57al6aox75yyeevydgeqsftjz5njlfbaghwpbn.py # Topologically Sorted Source Nodes: [conv_transpose3d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv_transpose3d => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%unsqueeze, %primals_1, %primals_2, [2, 2, 2], [0, 0, 0], [1, 1, 1], True, [0, 0, 0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2048 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x1 = (xindex // 512) tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 2, 2, 2), (32, 8, 4, 2, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv_transpose3d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(reinterpret_tensor(primals_3, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), primals_1, stride=(2, 2, 2), padding=(0, 0, 0), dilation=(1, 1, 1), transposed=True, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf0, (1, 4, 8, 8, 8), (2048, 512, 64, 8, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv_transpose3d], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf1, primals_2, 2048, grid=grid(2048), stream=stream0) del primals_2 return (reinterpret_tensor(buf1, (4, 8, 8, 8), (512, 64, 8, 1), 0), primals_1, reinterpret_tensor(primals_3, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 2, 2, 2), (32, 8, 4, 2, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class TranspConv3DBlock(nn.Module): def __init__(self, in_planes, out_planes): super().__init__() self.block = nn.ConvTranspose3d(in_planes, out_planes, kernel_size= 2, stride=2, padding=0, output_padding=0) def forward(self, x): return self.block(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_planes': 4, 'out_planes': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x1 = xindex // 512 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, None) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 2, 2, 2), (32, 8, 4, 2, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(reinterpret_tensor(primals_3, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), primals_1, stride=(2, 2, 2), padding=(0, 0, 0), dilation=(1, 1, 1), transposed=True, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf0, (1, 4, 8, 8, 8), (2048, 512, 64, 8, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(2048)](buf1, primals_2, 2048, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 return reinterpret_tensor(buf1, (4, 8, 8, 8), (512, 64, 8, 1), 0 ), primals_1, reinterpret_tensor(primals_3, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0) class TranspConv3DBlockNew(nn.Module): def __init__(self, in_planes, out_planes): super().__init__() self.block = nn.ConvTranspose3d(in_planes, out_planes, kernel_size= 2, stride=2, padding=0, output_padding=0) def forward(self, input_0): primals_1 = self.block.weight primals_2 = self.block.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
Siyuan89/self-attention-cv
TranspConv3DBlock
false
14,427
[ "MIT" ]
759
b39cde2fb68e05351bf3bc8048f4af13bbab256a
https://github.com/Siyuan89/self-attention-cv/tree/b39cde2fb68e05351bf3bc8048f4af13bbab256a
Entmax15
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/uc/cuct53d7tbv4oqgsdpn3pyhu4ztoebl3dm3bhhovn4qqnrghpmsp.py # Topologically Sorted Source Nodes: [max_1, X, X_1, sort, pow_1, cumsum_1, cumsum], Original ATen: [aten.max, aten.sub, aten.div, aten.sort, aten.pow, aten.cumsum] # Source node to ATen node mapping: # X => sub # X_1 => div # cumsum => cumsum # cumsum_1 => cumsum_1 # max_1 => max_1 # pow_1 => pow_1 # sort => sort # Graph fragment: # %max_1 : [num_users=1] = call_function[target=torch.ops.aten.max.dim](args = (%arg0_1, -1, True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %getitem), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, 2), kwargs = {}) # %sort : [num_users=1] = call_function[target=torch.ops.aten.sort.default](args = (%div, -1, True), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%getitem_2, 2), kwargs = {}) # %cumsum_1 : [num_users=1] = call_function[target=torch.ops.aten.cumsum.default](args = (%pow_1, -1), kwargs = {}) # %cumsum : [num_users=1] = call_function[target=torch.ops.aten.cumsum.default](args = (%getitem_2, -1), kwargs = {}) triton_per_fused_cumsum_div_max_pow_sort_sub_0 = async_compile.triton('triton_per_fused_cumsum_div_max_pow_sort_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton.jit def _triton_helper_fn_add0(arg0_0, arg1_0): tmp0 = arg0_0 + arg1_0 return tmp0 @triton_heuristics.persistent_reduction( size_hints=[64, 4], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_cumsum_div_max_pow_sort_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_cumsum_div_max_pow_sort_sub_0(in_ptr0, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 64 rnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (4*x0)), xmask, other=0.0) tmp1 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = 0.5 tmp10 = tmp8 * tmp9 tmp11 = r1 tmp12 = tmp11.to(tl.int16) tmp13 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK]) tmp14 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp15, tmp16, = triton_helpers.sort_with_index(tmp13, tmp14, None, 1, stable=False, descending=True) tmp17 = tmp15 * tmp15 tmp18 = tmp17.to(tl.float32) tmp19 = tl.broadcast_to(tmp18, [XBLOCK, RBLOCK]) tmp20, = tl.associative_scan((tmp19,), 1, _triton_helper_fn_add0) tmp21 = tmp15.to(tl.float32) tmp22 = tl.broadcast_to(tmp21, [XBLOCK, RBLOCK]) tmp23, = tl.associative_scan((tmp22,), 1, _triton_helper_fn_add0) tl.store(out_ptr0 + (r1 + (4*x0)), tmp10, xmask) tl.store(out_ptr1 + (r1 + (4*x0)), tmp15, xmask) tl.store(out_ptr2 + (r1 + (4*x0)), tmp20, xmask) tl.store(out_ptr3 + (r1 + (4*x0)), tmp23, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/fc/cfc35vcmsbfc27vwyzjeuvwv7proixzoady3x4dn4wkwb46on5ba.py # Topologically Sorted Source Nodes: [mean_sq, mean, pow_2, sub_1, ss, sub_2, delta, delta_nz, sqrt, tau, le, sum_1], Original ATen: [aten.div, aten.pow, aten.sub, aten.mul, aten.rsub, aten.clamp, aten.sqrt, aten.le, aten.sum] # Source node to ATen node mapping: # delta => div_3 # delta_nz => clamp_min # le => le # mean => div_1 # mean_sq => div_2 # pow_2 => pow_2 # sqrt => sqrt # ss => mul_1 # sub_1 => sub_1 # sub_2 => sub_2 # sum_1 => sum_1 # tau => sub_3 # Graph fragment: # %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%cumsum_1, %permute), kwargs = {}) # %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%cumsum, %permute), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%div_1, 2), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%div_2, %pow_2), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%permute, %sub_1), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %mul_1), kwargs = {}) # %div_3 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_2, %permute), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%div_3, 0), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%clamp_min,), kwargs = {}) # %sub_3 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%div_1, %sqrt), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Tensor](args = (%sub_3, %getitem_2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%le, [-1]), kwargs = {}) triton_poi_fused_clamp_div_le_mul_pow_rsub_sqrt_sub_sum_1 = async_compile.triton('triton_poi_fused_clamp_div_le_mul_pow_rsub_sqrt_sub_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i64', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_div_le_mul_pow_rsub_sqrt_sub_sum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 12, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clamp_div_le_mul_pow_rsub_sqrt_sub_sum_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr2 + (4*x0), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp30 = tl.load(in_ptr2 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp34 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp37 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp47 = tl.load(in_ptr2 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp51 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp54 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp64 = tl.load(in_ptr2 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 / tmp1 tmp4 = tmp3 / tmp1 tmp5 = tmp2 * tmp2 tmp6 = tmp4 - tmp5 tmp7 = tmp1 * tmp6 tmp8 = tmp1 - tmp7 tmp9 = tmp8 / tmp1 tmp10 = 0.0 tmp11 = triton_helpers.maximum(tmp9, tmp10) tmp12 = libdevice.sqrt(tmp11) tmp13 = tmp2 - tmp12 tmp15 = tmp13 <= tmp14 tmp16 = tmp15.to(tl.int64) tmp18 = 2.0 tmp19 = tmp17 / tmp18 tmp21 = tmp20 / tmp18 tmp22 = tmp19 * tmp19 tmp23 = tmp21 - tmp22 tmp24 = tmp18 * tmp23 tmp25 = tmp1 - tmp24 tmp26 = tmp25 / tmp18 tmp27 = triton_helpers.maximum(tmp26, tmp10) tmp28 = libdevice.sqrt(tmp27) tmp29 = tmp19 - tmp28 tmp31 = tmp29 <= tmp30 tmp32 = tmp31.to(tl.int64) tmp33 = tmp16 + tmp32 tmp35 = 3.0 tmp36 = tmp34 / tmp35 tmp38 = tmp37 / tmp35 tmp39 = tmp36 * tmp36 tmp40 = tmp38 - tmp39 tmp41 = tmp35 * tmp40 tmp42 = tmp1 - tmp41 tmp43 = tmp42 / tmp35 tmp44 = triton_helpers.maximum(tmp43, tmp10) tmp45 = libdevice.sqrt(tmp44) tmp46 = tmp36 - tmp45 tmp48 = tmp46 <= tmp47 tmp49 = tmp48.to(tl.int64) tmp50 = tmp33 + tmp49 tmp52 = 4.0 tmp53 = tmp51 / tmp52 tmp55 = tmp54 / tmp52 tmp56 = tmp53 * tmp53 tmp57 = tmp55 - tmp56 tmp58 = tmp52 * tmp57 tmp59 = tmp1 - tmp58 tmp60 = tmp59 / tmp52 tmp61 = triton_helpers.maximum(tmp60, tmp10) tmp62 = libdevice.sqrt(tmp61) tmp63 = tmp53 - tmp62 tmp65 = tmp63 <= tmp64 tmp66 = tmp65.to(tl.int64) tmp67 = tmp50 + tmp66 tl.store(out_ptr0 + (x0), tmp67, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ew/cew26k3sdtsxsjc6buf3rp6skduxkoiohho322xjrv4c2dhheduy.py # Topologically Sorted Source Nodes: [mean_sq, mean, pow_2, sub_1, ss, sub_2, delta, delta_nz, sqrt, tau, sub_4, tau_star, sub_5, clamp_1, Y], Original ATen: [aten.div, aten.pow, aten.sub, aten.mul, aten.rsub, aten.clamp, aten.sqrt, aten.gather] # Source node to ATen node mapping: # Y => pow_3 # clamp_1 => clamp_min_1 # delta => div_3 # delta_nz => clamp_min # mean => div_1 # mean_sq => div_2 # pow_2 => pow_2 # sqrt => sqrt # ss => mul_1 # sub_1 => sub_1 # sub_2 => sub_2 # sub_4 => sub_4 # sub_5 => sub_5 # tau => sub_3 # tau_star => gather # Graph fragment: # %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%cumsum_1, %permute), kwargs = {}) # %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%cumsum, %permute), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%div_1, 2), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%div_2, %pow_2), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%permute, %sub_1), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %mul_1), kwargs = {}) # %div_3 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_2, %permute), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%div_3, 0), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%clamp_min,), kwargs = {}) # %sub_3 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%div_1, %sqrt), kwargs = {}) # %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%unsqueeze, 1), kwargs = {}) # %gather : [num_users=1] = call_function[target=torch.ops.aten.gather.default](args = (%sub_3, -1, %sub_4), kwargs = {}) # %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%div, %gather), kwargs = {}) # %clamp_min_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_5, 0), kwargs = {}) # %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%clamp_min_1, 2), kwargs = {}) triton_poi_fused_clamp_div_gather_mul_pow_rsub_sqrt_sub_2 = async_compile.triton('triton_poi_fused_clamp_div_gather_mul_pow_rsub_sqrt_sub_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_div_gather_mul_pow_rsub_sqrt_sub_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clamp_div_gather_mul_pow_rsub_sqrt_sub_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tl.full([1], 1, tl.int64) tmp3 = tmp1 - tmp2 tmp4 = tl.full([XBLOCK], 4, tl.int32) tmp5 = tmp3 + tmp4 tmp6 = tmp3 < 0 tmp7 = tl.where(tmp6, tmp5, tmp3) tl.device_assert(((0 <= tmp7) & (tmp7 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp7 < 4") tmp9 = tl.load(in_ptr2 + (tmp7 + (4*x1)), xmask, eviction_policy='evict_last') tmp10 = 1 + tmp7 tmp11 = tmp10.to(tl.float32) tmp12 = tmp9 / tmp11 tmp13 = tl.load(in_ptr3 + (tmp7 + (4*x1)), xmask, eviction_policy='evict_last') tmp14 = tmp13 / tmp11 tmp15 = tmp12 * tmp12 tmp16 = tmp14 - tmp15 tmp17 = tmp11 * tmp16 tmp18 = 1.0 tmp19 = tmp18 - tmp17 tmp20 = tmp19 / tmp11 tmp21 = 0.0 tmp22 = triton_helpers.maximum(tmp20, tmp21) tmp23 = libdevice.sqrt(tmp22) tmp24 = tmp12 - tmp23 tmp25 = tmp0 - tmp24 tmp26 = triton_helpers.maximum(tmp25, tmp21) tmp27 = tmp26 * tmp26 tl.store(out_ptr0 + (x2), tmp27, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [max_1, X, X_1, sort, pow_1, cumsum_1, cumsum], Original ATen: [aten.max, aten.sub, aten.div, aten.sort, aten.pow, aten.cumsum] stream0 = get_raw_stream(0) triton_per_fused_cumsum_div_max_pow_sort_sub_0.run(arg0_1, buf0, buf1, buf3, buf4, 64, 4, grid=grid(64), stream=stream0) del arg0_1 buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.int64) # Topologically Sorted Source Nodes: [mean_sq, mean, pow_2, sub_1, ss, sub_2, delta, delta_nz, sqrt, tau, le, sum_1], Original ATen: [aten.div, aten.pow, aten.sub, aten.mul, aten.rsub, aten.clamp, aten.sqrt, aten.le, aten.sum] triton_poi_fused_clamp_div_le_mul_pow_rsub_sqrt_sub_sum_1.run(buf4, buf3, buf1, buf5, 64, grid=grid(64), stream=stream0) buf6 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [mean_sq, mean, pow_2, sub_1, ss, sub_2, delta, delta_nz, sqrt, tau, sub_4, tau_star, sub_5, clamp_1, Y], Original ATen: [aten.div, aten.pow, aten.sub, aten.mul, aten.rsub, aten.clamp, aten.sqrt, aten.gather] triton_poi_fused_clamp_div_gather_mul_pow_rsub_sqrt_sub_2.run(buf0, buf5, buf4, buf3, buf6, 256, grid=grid(256), stream=stream0) del buf0 del buf3 del buf4 del buf5 return (buf6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.autograd import Function import torch from torch import nn def _make_ix_like(X, dim): d = X.size(dim) rho = torch.arange(1, d + 1, device=X.device, dtype=X.dtype) view = [1] * X.dim() view[0] = -1 return rho.view(view).transpose(0, dim) def _roll_last(X, dim): if dim == -1: return X elif dim < 0: dim = X.dim() - dim perm = [i for i in range(X.dim()) if i != dim] + [dim] return X.permute(perm) def _entmax_threshold_and_support(X, dim=-1, k=None): """Core computation for 1.5-entmax: optimal threshold and support size. Parameters ---------- X : torch.Tensor The input tensor to compute thresholds over. dim : int The dimension along which to apply 1.5-entmax. k : int or None number of largest elements to partial-sort over. For optimal performance, should be slightly bigger than the expected number of nonzeros in the solution. If the solution is more than k-sparse, this function is recursively called with a 2*k schedule. If `None`, full sorting is performed from the beginning. Returns ------- tau : torch.Tensor like `X`, with all but the `dim` dimension intact the threshold value for each vector support_size : torch LongTensor, shape like `tau` the number of nonzeros in each vector. """ if k is None or k >= X.shape[dim]: Xsrt, _ = torch.sort(X, dim=dim, descending=True) else: Xsrt, _ = torch.topk(X, k=k, dim=dim) rho = _make_ix_like(Xsrt, dim) mean = Xsrt.cumsum(dim) / rho mean_sq = (Xsrt ** 2).cumsum(dim) / rho ss = rho * (mean_sq - mean ** 2) delta = (1 - ss) / rho delta_nz = torch.clamp(delta, 0) tau = mean - torch.sqrt(delta_nz) support_size = (tau <= Xsrt).sum(dim).unsqueeze(dim) tau_star = tau.gather(dim, support_size - 1) if k is not None and k < X.shape[dim]: unsolved = (support_size == k).squeeze(dim) if torch.any(unsolved): X_ = _roll_last(X, dim)[unsolved] tau_, ss_ = _entmax_threshold_and_support(X_, dim=-1, k=2 * k) _roll_last(tau_star, dim)[unsolved] = tau_ _roll_last(support_size, dim)[unsolved] = ss_ return tau_star, support_size def entmax15(X, dim=-1, k=None): """1.5-entmax: normalizing sparse transform (a la softmax). Solves the optimization problem: max_p <x, p> - H_1.5(p) s.t. p >= 0, sum(p) == 1. where H_1.5(p) is the Tsallis alpha-entropy with alpha=1.5. Parameters ---------- X : torch.Tensor The input tensor. dim : int The dimension along which to apply 1.5-entmax. k : int or None number of largest elements to partial-sort over. For optimal performance, should be slightly bigger than the expected number of nonzeros in the solution. If the solution is more than k-sparse, this function is recursively called with a 2*k schedule. If `None`, full sorting is performed from the beginning. Returns ------- P : torch tensor, same shape as X The projection result, such that P.sum(dim=dim) == 1 elementwise. """ return Entmax15Function.apply(X, dim, k) class Entmax15Function(Function): @classmethod def forward(cls, ctx, X, dim=0, k=None): ctx.dim = dim max_val, _ = X.max(dim=dim, keepdim=True) X = X - max_val X = X / 2 tau_star, _ = _entmax_threshold_and_support(X, dim=dim, k=k) Y = torch.clamp(X - tau_star, min=0) ** 2 ctx.save_for_backward(Y) return Y @classmethod def backward(cls, ctx, dY): Y, = ctx.saved_tensors gppr = Y.sqrt() dX = dY * gppr q = dX.sum(ctx.dim) / gppr.sum(ctx.dim) q = q.unsqueeze(ctx.dim) dX -= q * gppr return dX, None, None class Entmax15(nn.Module): def __init__(self, dim=-1, k=None): """1.5-entmax: normalizing sparse transform (a la softmax). Solves the optimization problem: max_p <x, p> - H_1.5(p) s.t. p >= 0, sum(p) == 1. where H_1.5(p) is the Tsallis alpha-entropy with alpha=1.5. Parameters ---------- dim : int The dimension along which to apply 1.5-entmax. k : int or None number of largest elements to partial-sort over. For optimal performance, should be slightly bigger than the expected number of nonzeros in the solution. If the solution is more than k-sparse, this function is recursively called with a 2*k schedule. If `None`, full sorting is performed from the beginning. """ self.dim = dim self.k = k super(Entmax15, self).__init__() def forward(self, X): return entmax15(X, dim=self.dim, k=self.k) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice from torch.autograd import Function from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def _triton_helper_fn_add0(arg0_0, arg1_0): tmp0 = arg0_0 + arg1_0 return tmp0 @triton.jit def triton_per_fused_cumsum_div_max_pow_sort_sub_0(in_ptr0, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 64 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 4 * x0), xmask, other=0.0) tmp1 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = 0.5 tmp10 = tmp8 * tmp9 tmp11 = r1 tmp12 = tmp11.to(tl.int16) tmp13 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK]) tmp14 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp15, _tmp16 = triton_helpers.sort_with_index(tmp13, tmp14, None, 1, stable=False, descending=True) tmp17 = tmp15 * tmp15 tmp18 = tmp17.to(tl.float32) tmp19 = tl.broadcast_to(tmp18, [XBLOCK, RBLOCK]) tmp20, = tl.associative_scan((tmp19,), 1, _triton_helper_fn_add0) tmp21 = tmp15.to(tl.float32) tmp22 = tl.broadcast_to(tmp21, [XBLOCK, RBLOCK]) tmp23, = tl.associative_scan((tmp22,), 1, _triton_helper_fn_add0) tl.store(out_ptr0 + (r1 + 4 * x0), tmp10, xmask) tl.store(out_ptr1 + (r1 + 4 * x0), tmp15, xmask) tl.store(out_ptr2 + (r1 + 4 * x0), tmp20, xmask) tl.store(out_ptr3 + (r1 + 4 * x0), tmp23, xmask) @triton.jit def triton_poi_fused_clamp_div_le_mul_pow_rsub_sqrt_sub_sum_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr2 + 4 * x0, xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp20 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp30 = tl.load(in_ptr2 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp34 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp37 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp47 = tl.load(in_ptr2 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp51 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp54 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp64 = tl.load(in_ptr2 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp1 = 1.0 tmp2 = tmp0 / tmp1 tmp4 = tmp3 / tmp1 tmp5 = tmp2 * tmp2 tmp6 = tmp4 - tmp5 tmp7 = tmp1 * tmp6 tmp8 = tmp1 - tmp7 tmp9 = tmp8 / tmp1 tmp10 = 0.0 tmp11 = triton_helpers.maximum(tmp9, tmp10) tmp12 = libdevice.sqrt(tmp11) tmp13 = tmp2 - tmp12 tmp15 = tmp13 <= tmp14 tmp16 = tmp15.to(tl.int64) tmp18 = 2.0 tmp19 = tmp17 / tmp18 tmp21 = tmp20 / tmp18 tmp22 = tmp19 * tmp19 tmp23 = tmp21 - tmp22 tmp24 = tmp18 * tmp23 tmp25 = tmp1 - tmp24 tmp26 = tmp25 / tmp18 tmp27 = triton_helpers.maximum(tmp26, tmp10) tmp28 = libdevice.sqrt(tmp27) tmp29 = tmp19 - tmp28 tmp31 = tmp29 <= tmp30 tmp32 = tmp31.to(tl.int64) tmp33 = tmp16 + tmp32 tmp35 = 3.0 tmp36 = tmp34 / tmp35 tmp38 = tmp37 / tmp35 tmp39 = tmp36 * tmp36 tmp40 = tmp38 - tmp39 tmp41 = tmp35 * tmp40 tmp42 = tmp1 - tmp41 tmp43 = tmp42 / tmp35 tmp44 = triton_helpers.maximum(tmp43, tmp10) tmp45 = libdevice.sqrt(tmp44) tmp46 = tmp36 - tmp45 tmp48 = tmp46 <= tmp47 tmp49 = tmp48.to(tl.int64) tmp50 = tmp33 + tmp49 tmp52 = 4.0 tmp53 = tmp51 / tmp52 tmp55 = tmp54 / tmp52 tmp56 = tmp53 * tmp53 tmp57 = tmp55 - tmp56 tmp58 = tmp52 * tmp57 tmp59 = tmp1 - tmp58 tmp60 = tmp59 / tmp52 tmp61 = triton_helpers.maximum(tmp60, tmp10) tmp62 = libdevice.sqrt(tmp61) tmp63 = tmp53 - tmp62 tmp65 = tmp63 <= tmp64 tmp66 = tmp65.to(tl.int64) tmp67 = tmp50 + tmp66 tl.store(out_ptr0 + x0, tmp67, xmask) @triton.jit def triton_poi_fused_clamp_div_gather_mul_pow_rsub_sqrt_sub_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tl.full([1], 1, tl.int64) tmp3 = tmp1 - tmp2 tmp4 = tl.full([XBLOCK], 4, tl.int32) tmp5 = tmp3 + tmp4 tmp6 = tmp3 < 0 tmp7 = tl.where(tmp6, tmp5, tmp3) tl.device_assert((0 <= tmp7) & (tmp7 < 4) | ~xmask, 'index out of bounds: 0 <= tmp7 < 4') tmp9 = tl.load(in_ptr2 + (tmp7 + 4 * x1), xmask, eviction_policy= 'evict_last') tmp10 = 1 + tmp7 tmp11 = tmp10.to(tl.float32) tmp12 = tmp9 / tmp11 tmp13 = tl.load(in_ptr3 + (tmp7 + 4 * x1), xmask, eviction_policy= 'evict_last') tmp14 = tmp13 / tmp11 tmp15 = tmp12 * tmp12 tmp16 = tmp14 - tmp15 tmp17 = tmp11 * tmp16 tmp18 = 1.0 tmp19 = tmp18 - tmp17 tmp20 = tmp19 / tmp11 tmp21 = 0.0 tmp22 = triton_helpers.maximum(tmp20, tmp21) tmp23 = libdevice.sqrt(tmp22) tmp24 = tmp12 - tmp23 tmp25 = tmp0 - tmp24 tmp26 = triton_helpers.maximum(tmp25, tmp21) tmp27 = tmp26 * tmp26 tl.store(out_ptr0 + x2, tmp27, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_per_fused_cumsum_div_max_pow_sort_sub_0[grid(64)](arg0_1, buf0, buf1, buf3, buf4, 64, 4, XBLOCK=8, num_warps=2, num_stages=1) del arg0_1 buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.int64) triton_poi_fused_clamp_div_le_mul_pow_rsub_sqrt_sub_sum_1[grid(64)]( buf4, buf3, buf1, buf5, 64, XBLOCK=64, num_warps=1, num_stages=1) buf6 = buf1 del buf1 triton_poi_fused_clamp_div_gather_mul_pow_rsub_sqrt_sub_2[grid(256)]( buf0, buf5, buf4, buf3, buf6, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf0 del buf3 del buf4 del buf5 return buf6, def _make_ix_like(X, dim): d = X.size(dim) rho = torch.arange(1, d + 1, device=X.device, dtype=X.dtype) view = [1] * X.dim() view[0] = -1 return rho.view(view).transpose(0, dim) def _roll_last(X, dim): if dim == -1: return X elif dim < 0: dim = X.dim() - dim perm = [i for i in range(X.dim()) if i != dim] + [dim] return X.permute(perm) def _entmax_threshold_and_support(X, dim=-1, k=None): """Core computation for 1.5-entmax: optimal threshold and support size. Parameters ---------- X : torch.Tensor The input tensor to compute thresholds over. dim : int The dimension along which to apply 1.5-entmax. k : int or None number of largest elements to partial-sort over. For optimal performance, should be slightly bigger than the expected number of nonzeros in the solution. If the solution is more than k-sparse, this function is recursively called with a 2*k schedule. If `None`, full sorting is performed from the beginning. Returns ------- tau : torch.Tensor like `X`, with all but the `dim` dimension intact the threshold value for each vector support_size : torch LongTensor, shape like `tau` the number of nonzeros in each vector. """ if k is None or k >= X.shape[dim]: Xsrt, _ = torch.sort(X, dim=dim, descending=True) else: Xsrt, _ = torch.topk(X, k=k, dim=dim) rho = _make_ix_like(Xsrt, dim) mean = Xsrt.cumsum(dim) / rho mean_sq = (Xsrt ** 2).cumsum(dim) / rho ss = rho * (mean_sq - mean ** 2) delta = (1 - ss) / rho delta_nz = torch.clamp(delta, 0) tau = mean - torch.sqrt(delta_nz) support_size = (tau <= Xsrt).sum(dim).unsqueeze(dim) tau_star = tau.gather(dim, support_size - 1) if k is not None and k < X.shape[dim]: unsolved = (support_size == k).squeeze(dim) if torch.any(unsolved): X_ = _roll_last(X, dim)[unsolved] tau_, ss_ = _entmax_threshold_and_support(X_, dim=-1, k=2 * k) _roll_last(tau_star, dim)[unsolved] = tau_ _roll_last(support_size, dim)[unsolved] = ss_ return tau_star, support_size def entmax15(X, dim=-1, k=None): """1.5-entmax: normalizing sparse transform (a la softmax). Solves the optimization problem: max_p <x, p> - H_1.5(p) s.t. p >= 0, sum(p) == 1. where H_1.5(p) is the Tsallis alpha-entropy with alpha=1.5. Parameters ---------- X : torch.Tensor The input tensor. dim : int The dimension along which to apply 1.5-entmax. k : int or None number of largest elements to partial-sort over. For optimal performance, should be slightly bigger than the expected number of nonzeros in the solution. If the solution is more than k-sparse, this function is recursively called with a 2*k schedule. If `None`, full sorting is performed from the beginning. Returns ------- P : torch tensor, same shape as X The projection result, such that P.sum(dim=dim) == 1 elementwise. """ return Entmax15Function.apply(X, dim, k) class Entmax15Function(Function): @classmethod def forward(cls, ctx, X, dim=0, k=None): ctx.dim = dim max_val, _ = X.max(dim=dim, keepdim=True) X = X - max_val X = X / 2 tau_star, _ = _entmax_threshold_and_support(X, dim=dim, k=k) Y = torch.clamp(X - tau_star, min=0) ** 2 ctx.save_for_backward(Y) return Y @classmethod def backward(cls, ctx, dY): Y, = ctx.saved_tensors gppr = Y.sqrt() dX = dY * gppr q = dX.sum(ctx.dim) / gppr.sum(ctx.dim) q = q.unsqueeze(ctx.dim) dX -= q * gppr return dX, None, None class Entmax15New(nn.Module): def __init__(self, dim=-1, k=None): """1.5-entmax: normalizing sparse transform (a la softmax). Solves the optimization problem: max_p <x, p> - H_1.5(p) s.t. p >= 0, sum(p) == 1. where H_1.5(p) is the Tsallis alpha-entropy with alpha=1.5. Parameters ---------- dim : int The dimension along which to apply 1.5-entmax. k : int or None number of largest elements to partial-sort over. For optimal performance, should be slightly bigger than the expected number of nonzeros in the solution. If the solution is more than k-sparse, this function is recursively called with a 2*k schedule. If `None`, full sorting is performed from the beginning. """ self.dim = dim self.k = k super(Entmax15New, self).__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Sologa/awesome-align
Entmax15
false
14,428
[ "BSD-3-Clause" ]
173
62eaae7eac9bac06c10627fac6cc942c07a50e64
https://github.com/Sologa/awesome-align/tree/62eaae7eac9bac06c10627fac6cc942c07a50e64
CustomSoftplus
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/mh/cmhyq4x4i6pwnc5hicb7gcbca4dhq7s2fsdwerlyyztp64z5hxgf.py # Topologically Sorted Source Nodes: [exp, add, result], Original ATen: [aten.exp, aten.add, aten.log] # Source node to ATen node mapping: # add => add # exp => exp # result => log # Graph fragment: # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%arg0_1,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%exp, 1), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add,), kwargs = {}) triton_poi_fused_add_exp_log_0 = async_compile.triton('triton_poi_fused_add_exp_log_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_exp_log_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_exp_log_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl_math.exp(tmp0) tmp2 = 1.0 tmp3 = tmp1 + tmp2 tmp4 = tl_math.log(tmp3) tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [exp, add, result], Original ATen: [aten.exp, aten.add, aten.log] stream0 = get_raw_stream(0) triton_poi_fused_add_exp_log_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.data class Softplus(torch.autograd.Function): @staticmethod def forward(ctx, i): result = torch.log(1 + torch.exp(i)) ctx.save_for_backward(i) return result @staticmethod def backward(ctx, grad_output): return grad_output * torch.sigmoid(ctx.saved_variables[0]) class CustomSoftplus(nn.Module): def forward(self, input_tensor): return Softplus.apply(input_tensor) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_exp_log_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl_math.exp(tmp0) tmp2 = 1.0 tmp3 = tmp1 + tmp2 tmp4 = tl_math.log(tmp3) tl.store(out_ptr0 + x0, tmp4, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_exp_log_0[grid(256)](arg0_1, buf0, 256, XBLOCK =256, num_warps=4, num_stages=1) del arg0_1 return buf0, class Softplus(torch.autograd.Function): @staticmethod def forward(ctx, i): result = torch.log(1 + torch.exp(i)) ctx.save_for_backward(i) return result @staticmethod def backward(ctx, grad_output): return grad_output * torch.sigmoid(ctx.saved_variables[0]) class CustomSoftplusNew(nn.Module): def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
SortAnon/BVAE-TTS
CustomSoftplus
false
14,429
[ "MIT" ]
138
69c2ee0c8bf30fe6133cfa8be68a36916f15bcff
https://github.com/SortAnon/BVAE-TTS/tree/69c2ee0c8bf30fe6133cfa8be68a36916f15bcff
Sparsemax
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/nk/cnkmgeqruamtgccvbn4zkgty33cqveg7s4ow6q4qrojcnzzpb3wy.py # Topologically Sorted Source Nodes: [max_1, X, sort, cumsum], Original ATen: [aten.max, aten.sub, aten.sort, aten.cumsum] # Source node to ATen node mapping: # X => sub # cumsum => cumsum # max_1 => max_1 # sort => sort # Graph fragment: # %max_1 : [num_users=1] = call_function[target=torch.ops.aten.max.dim](args = (%arg0_1, -1, True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %getitem), kwargs = {}) # %sort : [num_users=1] = call_function[target=torch.ops.aten.sort.default](args = (%sub, -1, True), kwargs = {}) # %cumsum : [num_users=1] = call_function[target=torch.ops.aten.cumsum.default](args = (%getitem_2, -1), kwargs = {}) triton_per_fused_cumsum_max_sort_sub_0 = async_compile.triton('triton_per_fused_cumsum_max_sort_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton.jit def _triton_helper_fn_add0(arg0_0, arg1_0): tmp0 = arg0_0 + arg1_0 return tmp0 @triton_heuristics.persistent_reduction( size_hints=[64, 4], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_cumsum_max_sort_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_cumsum_max_sort_sub_0(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 64 rnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (4*x0)), xmask, other=0.0) tmp1 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = r1 tmp10 = tmp9.to(tl.int16) tmp11 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK]) tmp12 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK]) tmp13, tmp14, = triton_helpers.sort_with_index(tmp11, tmp12, None, 1, stable=False, descending=True) tmp15 = tmp13.to(tl.float32) tmp16 = tl.broadcast_to(tmp15, [XBLOCK, RBLOCK]) tmp17, = tl.associative_scan((tmp16,), 1, _triton_helper_fn_add0) tl.store(out_ptr0 + (r1 + (4*x0)), tmp8, xmask) tl.store(out_ptr1 + (r1 + (4*x0)), tmp13, xmask) tl.store(out_ptr2 + (r1 + (4*x0)), tmp17, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/uc/cuc2f2cgz6j7wqohouz3uu6ir7263uhsfcodyhv3lka5vxtu4ewc.py # Topologically Sorted Source Nodes: [mul, topk_cumsum, support, sum_1], Original ATen: [aten.mul, aten.sub, aten.gt, aten.sum] # Source node to ATen node mapping: # mul => mul_1 # sum_1 => sum_1 # support => gt # topk_cumsum => sub_1 # Graph fragment: # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%permute, %getitem_2), kwargs = {}) # %sub_1 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%cumsum, 1), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Tensor](args = (%mul_1, %sub_1), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%gt, [-1]), kwargs = {}) triton_poi_fused_gt_mul_sub_sum_1 = async_compile.triton('triton_poi_fused_gt_mul_sub_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i64', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_gt_mul_sub_sum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_gt_mul_sub_sum_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp18 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp26 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp1 * tmp0 tmp4 = tmp3 - tmp1 tmp5 = tmp2 > tmp4 tmp6 = tmp5.to(tl.int64) tmp8 = 2.0 tmp9 = tmp8 * tmp7 tmp11 = tmp10 - tmp1 tmp12 = tmp9 > tmp11 tmp13 = tmp12.to(tl.int64) tmp14 = tmp6 + tmp13 tmp16 = 3.0 tmp17 = tmp16 * tmp15 tmp19 = tmp18 - tmp1 tmp20 = tmp17 > tmp19 tmp21 = tmp20.to(tl.int64) tmp22 = tmp14 + tmp21 tmp24 = 4.0 tmp25 = tmp24 * tmp23 tmp27 = tmp26 - tmp1 tmp28 = tmp25 > tmp27 tmp29 = tmp28.to(tl.int64) tmp30 = tmp22 + tmp29 tl.store(out_ptr0 + (x0), tmp30, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/v4/cv4frpxvm4rhejbwxhericho6gutfmihwrgomlmqytuxrptdu7cn.py # Topologically Sorted Source Nodes: [topk_cumsum, sub_2, tau, tau_1, sub_3, output], Original ATen: [aten.sub, aten.gather, aten.div, aten.clamp] # Source node to ATen node mapping: # output => clamp_min # sub_2 => sub_2 # sub_3 => sub_3 # tau => gather # tau_1 => div # topk_cumsum => sub_1 # Graph fragment: # %sub_1 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%cumsum, 1), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%unsqueeze, 1), kwargs = {}) # %gather : [num_users=1] = call_function[target=torch.ops.aten.gather.default](args = (%sub_1, -1, %sub_2), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%gather, %unsqueeze), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %div), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_3, 0), kwargs = {}) triton_poi_fused_clamp_div_gather_sub_2 = async_compile.triton('triton_poi_fused_clamp_div_gather_sub_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_div_gather_sub_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clamp_div_gather_sub_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tl.full([1], 1, tl.int64) tmp3 = tmp1 - tmp2 tmp4 = tl.full([XBLOCK], 4, tl.int32) tmp5 = tmp3 + tmp4 tmp6 = tmp3 < 0 tmp7 = tl.where(tmp6, tmp5, tmp3) tl.device_assert(((0 <= tmp7) & (tmp7 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp7 < 4") tmp9 = tl.load(in_ptr2 + (tmp7 + (4*x1)), xmask, eviction_policy='evict_last') tmp10 = 1.0 tmp11 = tmp9 - tmp10 tmp12 = tmp1.to(tl.float32) tmp13 = tmp11 / tmp12 tmp14 = tmp0 - tmp13 tmp15 = 0.0 tmp16 = triton_helpers.maximum(tmp14, tmp15) tl.store(out_ptr0 + (x2), tmp16, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [max_1, X, sort, cumsum], Original ATen: [aten.max, aten.sub, aten.sort, aten.cumsum] stream0 = get_raw_stream(0) triton_per_fused_cumsum_max_sort_sub_0.run(arg0_1, buf0, buf1, buf3, 64, 4, grid=grid(64), stream=stream0) del arg0_1 buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.int64) # Topologically Sorted Source Nodes: [mul, topk_cumsum, support, sum_1], Original ATen: [aten.mul, aten.sub, aten.gt, aten.sum] triton_poi_fused_gt_mul_sub_sum_1.run(buf1, buf3, buf4, 64, grid=grid(64), stream=stream0) buf5 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [topk_cumsum, sub_2, tau, tau_1, sub_3, output], Original ATen: [aten.sub, aten.gather, aten.div, aten.clamp] triton_poi_fused_clamp_div_gather_sub_2.run(buf0, buf4, buf3, buf5, 256, grid=grid(256), stream=stream0) del buf0 del buf3 del buf4 return (buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.autograd import Function import torch from torch import nn def _make_ix_like(X, dim): d = X.size(dim) rho = torch.arange(1, d + 1, device=X.device, dtype=X.dtype) view = [1] * X.dim() view[0] = -1 return rho.view(view).transpose(0, dim) def _roll_last(X, dim): if dim == -1: return X elif dim < 0: dim = X.dim() - dim perm = [i for i in range(X.dim()) if i != dim] + [dim] return X.permute(perm) def _sparsemax_threshold_and_support(X, dim=-1, k=None): """Core computation for sparsemax: optimal threshold and support size. Parameters ---------- X : torch.Tensor The input tensor to compute thresholds over. dim : int The dimension along which to apply sparsemax. k : int or None number of largest elements to partial-sort over. For optimal performance, should be slightly bigger than the expected number of nonzeros in the solution. If the solution is more than k-sparse, this function is recursively called with a 2*k schedule. If `None`, full sorting is performed from the beginning. Returns ------- tau : torch.Tensor like `X`, with all but the `dim` dimension intact the threshold value for each vector support_size : torch LongTensor, shape like `tau` the number of nonzeros in each vector. """ if k is None or k >= X.shape[dim]: topk, _ = torch.sort(X, dim=dim, descending=True) else: topk, _ = torch.topk(X, k=k, dim=dim) topk_cumsum = topk.cumsum(dim) - 1 rhos = _make_ix_like(topk, dim) support = rhos * topk > topk_cumsum support_size = support.sum(dim=dim).unsqueeze(dim) tau = topk_cumsum.gather(dim, support_size - 1) tau /= support_size if k is not None and k < X.shape[dim]: unsolved = (support_size == k).squeeze(dim) if torch.any(unsolved): in_ = _roll_last(X, dim)[unsolved] tau_, ss_ = _sparsemax_threshold_and_support(in_, dim=-1, k=2 * k) _roll_last(tau, dim)[unsolved] = tau_ _roll_last(support_size, dim)[unsolved] = ss_ return tau, support_size def sparsemax(X, dim=-1, k=None): """sparsemax: normalizing sparse transform (a la softmax). Solves the projection: min_p ||x - p||_2 s.t. p >= 0, sum(p) == 1. Parameters ---------- X : torch.Tensor The input tensor. dim : int The dimension along which to apply sparsemax. k : int or None number of largest elements to partial-sort over. For optimal performance, should be slightly bigger than the expected number of nonzeros in the solution. If the solution is more than k-sparse, this function is recursively called with a 2*k schedule. If `None`, full sorting is performed from the beginning. Returns ------- P : torch tensor, same shape as X The projection result, such that P.sum(dim=dim) == 1 elementwise. """ return SparsemaxFunction.apply(X, dim, k) class SparsemaxFunction(Function): @classmethod def forward(cls, ctx, X, dim=-1, k=None): ctx.dim = dim max_val, _ = X.max(dim=dim, keepdim=True) X = X - max_val tau, supp_size = _sparsemax_threshold_and_support(X, dim=dim, k=k) output = torch.clamp(X - tau, min=0) ctx.save_for_backward(supp_size, output) return output @classmethod def backward(cls, ctx, grad_output): supp_size, output = ctx.saved_tensors dim = ctx.dim grad_input = grad_output.clone() grad_input[output == 0] = 0 v_hat = grad_input.sum(dim=dim) / supp_size.squeeze() v_hat = v_hat.unsqueeze(dim) grad_input = torch.where(output != 0, grad_input - v_hat, grad_input) return grad_input, None, None class Sparsemax(nn.Module): def __init__(self, dim=-1, k=None): """sparsemax: normalizing sparse transform (a la softmax). Solves the projection: min_p ||x - p||_2 s.t. p >= 0, sum(p) == 1. Parameters ---------- dim : int The dimension along which to apply sparsemax. k : int or None number of largest elements to partial-sort over. For optimal performance, should be slightly bigger than the expected number of nonzeros in the solution. If the solution is more than k-sparse, this function is recursively called with a 2*k schedule. If `None`, full sorting is performed from the beginning. """ self.dim = dim self.k = k super(Sparsemax, self).__init__() def forward(self, X): return sparsemax(X, dim=self.dim, k=self.k) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch.autograd import Function from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def _triton_helper_fn_add0(arg0_0, arg1_0): tmp0 = arg0_0 + arg1_0 return tmp0 @triton.jit def triton_per_fused_cumsum_max_sort_sub_0(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 64 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 4 * x0), xmask, other=0.0) tmp1 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = r1 tmp10 = tmp9.to(tl.int16) tmp11 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK]) tmp12 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK]) tmp13, _tmp14 = triton_helpers.sort_with_index(tmp11, tmp12, None, 1, stable=False, descending=True) tmp15 = tmp13.to(tl.float32) tmp16 = tl.broadcast_to(tmp15, [XBLOCK, RBLOCK]) tmp17, = tl.associative_scan((tmp16,), 1, _triton_helper_fn_add0) tl.store(out_ptr0 + (r1 + 4 * x0), tmp8, xmask) tl.store(out_ptr1 + (r1 + 4 * x0), tmp13, xmask) tl.store(out_ptr2 + (r1 + 4 * x0), tmp17, xmask) @triton.jit def triton_poi_fused_gt_mul_sub_sum_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp15 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp18 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp23 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp26 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp1 = 1.0 tmp2 = tmp1 * tmp0 tmp4 = tmp3 - tmp1 tmp5 = tmp2 > tmp4 tmp6 = tmp5.to(tl.int64) tmp8 = 2.0 tmp9 = tmp8 * tmp7 tmp11 = tmp10 - tmp1 tmp12 = tmp9 > tmp11 tmp13 = tmp12.to(tl.int64) tmp14 = tmp6 + tmp13 tmp16 = 3.0 tmp17 = tmp16 * tmp15 tmp19 = tmp18 - tmp1 tmp20 = tmp17 > tmp19 tmp21 = tmp20.to(tl.int64) tmp22 = tmp14 + tmp21 tmp24 = 4.0 tmp25 = tmp24 * tmp23 tmp27 = tmp26 - tmp1 tmp28 = tmp25 > tmp27 tmp29 = tmp28.to(tl.int64) tmp30 = tmp22 + tmp29 tl.store(out_ptr0 + x0, tmp30, xmask) @triton.jit def triton_poi_fused_clamp_div_gather_sub_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tl.full([1], 1, tl.int64) tmp3 = tmp1 - tmp2 tmp4 = tl.full([XBLOCK], 4, tl.int32) tmp5 = tmp3 + tmp4 tmp6 = tmp3 < 0 tmp7 = tl.where(tmp6, tmp5, tmp3) tl.device_assert((0 <= tmp7) & (tmp7 < 4) | ~xmask, 'index out of bounds: 0 <= tmp7 < 4') tmp9 = tl.load(in_ptr2 + (tmp7 + 4 * x1), xmask, eviction_policy= 'evict_last') tmp10 = 1.0 tmp11 = tmp9 - tmp10 tmp12 = tmp1.to(tl.float32) tmp13 = tmp11 / tmp12 tmp14 = tmp0 - tmp13 tmp15 = 0.0 tmp16 = triton_helpers.maximum(tmp14, tmp15) tl.store(out_ptr0 + x2, tmp16, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_per_fused_cumsum_max_sort_sub_0[grid(64)](arg0_1, buf0, buf1, buf3, 64, 4, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.int64) triton_poi_fused_gt_mul_sub_sum_1[grid(64)](buf1, buf3, buf4, 64, XBLOCK=64, num_warps=1, num_stages=1) buf5 = buf1 del buf1 triton_poi_fused_clamp_div_gather_sub_2[grid(256)](buf0, buf4, buf3, buf5, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf0 del buf3 del buf4 return buf5, def _make_ix_like(X, dim): d = X.size(dim) rho = torch.arange(1, d + 1, device=X.device, dtype=X.dtype) view = [1] * X.dim() view[0] = -1 return rho.view(view).transpose(0, dim) def _roll_last(X, dim): if dim == -1: return X elif dim < 0: dim = X.dim() - dim perm = [i for i in range(X.dim()) if i != dim] + [dim] return X.permute(perm) def _sparsemax_threshold_and_support(X, dim=-1, k=None): """Core computation for sparsemax: optimal threshold and support size. Parameters ---------- X : torch.Tensor The input tensor to compute thresholds over. dim : int The dimension along which to apply sparsemax. k : int or None number of largest elements to partial-sort over. For optimal performance, should be slightly bigger than the expected number of nonzeros in the solution. If the solution is more than k-sparse, this function is recursively called with a 2*k schedule. If `None`, full sorting is performed from the beginning. Returns ------- tau : torch.Tensor like `X`, with all but the `dim` dimension intact the threshold value for each vector support_size : torch LongTensor, shape like `tau` the number of nonzeros in each vector. """ if k is None or k >= X.shape[dim]: topk, _ = torch.sort(X, dim=dim, descending=True) else: topk, _ = torch.topk(X, k=k, dim=dim) topk_cumsum = topk.cumsum(dim) - 1 rhos = _make_ix_like(topk, dim) support = rhos * topk > topk_cumsum support_size = support.sum(dim=dim).unsqueeze(dim) tau = topk_cumsum.gather(dim, support_size - 1) tau /= support_size if k is not None and k < X.shape[dim]: unsolved = (support_size == k).squeeze(dim) if torch.any(unsolved): in_ = _roll_last(X, dim)[unsolved] tau_, ss_ = _sparsemax_threshold_and_support(in_, dim=-1, k=2 * k) _roll_last(tau, dim)[unsolved] = tau_ _roll_last(support_size, dim)[unsolved] = ss_ return tau, support_size def sparsemax(X, dim=-1, k=None): """sparsemax: normalizing sparse transform (a la softmax). Solves the projection: min_p ||x - p||_2 s.t. p >= 0, sum(p) == 1. Parameters ---------- X : torch.Tensor The input tensor. dim : int The dimension along which to apply sparsemax. k : int or None number of largest elements to partial-sort over. For optimal performance, should be slightly bigger than the expected number of nonzeros in the solution. If the solution is more than k-sparse, this function is recursively called with a 2*k schedule. If `None`, full sorting is performed from the beginning. Returns ------- P : torch tensor, same shape as X The projection result, such that P.sum(dim=dim) == 1 elementwise. """ return SparsemaxFunction.apply(X, dim, k) class SparsemaxFunction(Function): @classmethod def forward(cls, ctx, X, dim=-1, k=None): ctx.dim = dim max_val, _ = X.max(dim=dim, keepdim=True) X = X - max_val tau, supp_size = _sparsemax_threshold_and_support(X, dim=dim, k=k) output = torch.clamp(X - tau, min=0) ctx.save_for_backward(supp_size, output) return output @classmethod def backward(cls, ctx, grad_output): supp_size, output = ctx.saved_tensors dim = ctx.dim grad_input = grad_output.clone() grad_input[output == 0] = 0 v_hat = grad_input.sum(dim=dim) / supp_size.squeeze() v_hat = v_hat.unsqueeze(dim) grad_input = torch.where(output != 0, grad_input - v_hat, grad_input) return grad_input, None, None class SparsemaxNew(nn.Module): def __init__(self, dim=-1, k=None): """sparsemax: normalizing sparse transform (a la softmax). Solves the projection: min_p ||x - p||_2 s.t. p >= 0, sum(p) == 1. Parameters ---------- dim : int The dimension along which to apply sparsemax. k : int or None number of largest elements to partial-sort over. For optimal performance, should be slightly bigger than the expected number of nonzeros in the solution. If the solution is more than k-sparse, this function is recursively called with a 2*k schedule. If `None`, full sorting is performed from the beginning. """ self.dim = dim self.k = k super(SparsemaxNew, self).__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Sologa/awesome-align
Sparsemax
false
14,430
[ "BSD-3-Clause" ]
173
62eaae7eac9bac06c10627fac6cc942c07a50e64
https://github.com/Sologa/awesome-align/tree/62eaae7eac9bac06c10627fac6cc942c07a50e64
ResNetClassifier
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/l3/cl35tzbhrd24dhunkbb6gjs54aklpyr46oikqhoylcgmkcmhujil.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.mean] # Source node to ATen node mapping: # x_1 => mean # Graph fragment: # %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%view, [-1]), kwargs = {}) triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.mean] stream0 = get_raw_stream(0) triton_per_fused_mean_0.run(buf1, primals_1, 16, 16, grid=grid(16), stream=stream0) del primals_1 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_3, buf1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_2 del primals_3 return (buf2, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class ResNetClassifier(nn.Module): def __init__(self, n_class, len_feature): super().__init__() self.len_feature = len_feature self.classifier = nn.Linear(self.len_feature, n_class) def forward(self, x): x = x.view(x.size(0), x.size(1), -1) x = x.mean(dim=-1) x = self.classifier(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'n_class': 4, 'len_feature': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp6, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_mean_0[grid(16)](buf1, primals_1, 16, 16, XBLOCK=1, num_warps=2, num_stages=1) del primals_1 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_3, buf1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_2 del primals_3 return buf2, buf1 class ResNetClassifierNew(nn.Module): def __init__(self, n_class, len_feature): super().__init__() self.len_feature = len_feature self.classifier = nn.Linear(self.len_feature, n_class) def forward(self, input_0): primals_2 = self.classifier.weight primals_3 = self.classifier.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
Starrah/THU-SuperMoon
ResNetClassifier
false
14,431
[ "MIT" ]
64
1e6b8ccc207f789fb8426806251cc3d4e1cca35a
https://github.com/Starrah/THU-SuperMoon/tree/1e6b8ccc207f789fb8426806251cc3d4e1cca35a
CoreNetwork
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/sf/csfkqsknybmr6wr4qghsq2q5fkm44yw64vallsxwzclanv6zrtso.py # Topologically Sorted Source Nodes: [add, h_t], Original ATen: [aten.add, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # add => add # h_t => relu # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %view_3), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_add_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_add_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*i1', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_relu_threshold_backward_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x2), xmask) tmp4 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp7 = tl.full([1], 0, tl.int32) tmp8 = triton_helpers.maximum(tmp7, tmp6) tmp9 = 0.0 tmp10 = tmp8 <= tmp9 tl.store(in_out_ptr0 + (x2), tmp8, xmask) tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [add, h_t], Original ATen: [aten.add, aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_add_relu_threshold_backward_0.run(buf2, primals_2, buf1, primals_5, buf3, 256, grid=grid(256), stream=stream0) del buf1 del primals_2 del primals_5 return (buf2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class CoreNetwork(nn.Module): """The core network. An RNN that maintains an internal state by integrating information extracted from the history of past observations. It encodes the agent's knowledge of the environment through a state vector `h_t` that gets updated at every time step `t`. Concretely, it takes the glimpse representation `g_t` as input, and combines it with its internal state `h_t_prev` at the previous time step, to produce the new internal state `h_t` at the current time step. In other words: `h_t = relu( fc(h_t_prev) + fc(g_t) )` Args: input_size: input size of the rnn. hidden_size: hidden size of the rnn. g_t: a 2D tensor of shape (B, hidden_size). The glimpse representation returned by the glimpse network for the current timestep `t`. h_t_prev: a 2D tensor of shape (B, hidden_size). The hidden state vector for the previous timestep `t-1`. Returns: h_t: a 2D tensor of shape (B, hidden_size). The hidden state vector for the current timestep `t`. """ def __init__(self, input_size, hidden_size): super().__init__() self.input_size = input_size self.hidden_size = hidden_size self.i2h = nn.Linear(input_size, hidden_size) self.h2h = nn.Linear(hidden_size, hidden_size) def forward(self, g_t, h_t_prev): h1 = self.i2h(g_t) h2 = self.h2h(h_t_prev) h_t = F.relu(h1 + h2) return h_t def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4, 'hidden_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_relu_threshold_backward_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x2, xmask) tmp4 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp7 = tl.full([1], 0, tl.int32) tmp8 = triton_helpers.maximum(tmp7, tmp6) tmp9 = 0.0 tmp10 = tmp8 <= tmp9 tl.store(in_out_ptr0 + x2, tmp8, xmask) tl.store(out_ptr0 + x2, tmp10, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_add_relu_threshold_backward_0[grid(256)](buf2, primals_2, buf1, primals_5, buf3, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf1 del primals_2 del primals_5 return buf2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), buf3 class CoreNetworkNew(nn.Module): """The core network. An RNN that maintains an internal state by integrating information extracted from the history of past observations. It encodes the agent's knowledge of the environment through a state vector `h_t` that gets updated at every time step `t`. Concretely, it takes the glimpse representation `g_t` as input, and combines it with its internal state `h_t_prev` at the previous time step, to produce the new internal state `h_t` at the current time step. In other words: `h_t = relu( fc(h_t_prev) + fc(g_t) )` Args: input_size: input size of the rnn. hidden_size: hidden size of the rnn. g_t: a 2D tensor of shape (B, hidden_size). The glimpse representation returned by the glimpse network for the current timestep `t`. h_t_prev: a 2D tensor of shape (B, hidden_size). The hidden state vector for the previous timestep `t-1`. Returns: h_t: a 2D tensor of shape (B, hidden_size). The hidden state vector for the current timestep `t`. """ def __init__(self, input_size, hidden_size): super().__init__() self.input_size = input_size self.hidden_size = hidden_size self.i2h = nn.Linear(input_size, hidden_size) self.h2h = nn.Linear(hidden_size, hidden_size) def forward(self, input_0, input_1): primals_1 = self.i2h.weight primals_2 = self.i2h.bias primals_4 = self.h2h.weight primals_5 = self.h2h.bias primals_3 = input_0 primals_6 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
SmirnovKol/recurrent-visual-attention
CoreNetwork
false
14,432
[ "MIT" ]
463
4cb8d9e768ae35f38439278bb8a7b4d6b253a537
https://github.com/SmirnovKol/recurrent-visual-attention/tree/4cb8d9e768ae35f38439278bb8a7b4d6b253a537
BertSelfAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/x2/cx2hdvwyo7m5jvhhvtugzxqvmy6z4nsfhkkjhvgzbbm3cb6dsum2.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %mul_scalar : [num_users=1] = call_function[target=torch.ops.aten.mul.Scalar](args = (%permute_default, 1.0), kwargs = {}) # %clone_default : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_default,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + (x2 + (4*y3)), tmp4, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/5j/c5jll3kxtd32cl7pwubrb5oky2mtzckfgip2xbwad7crvvp4zk4r.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_default_2, [-1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_default_2, %amax_default), kwargs = {}) # %exp_default : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_tensor,), kwargs = {}) triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/kt/cktnex5febczl2ac6zugjmcksgsd5kjdufazv65vtepuwob3cb7a.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %sum_dim_int_list : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_default, [-1], True), kwargs = {}) # %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_default, %sum_dim_int_list), kwargs = {}) # %eq_scalar : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%view_default_2, -inf), kwargs = {}) # %logical_not_default : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%eq_scalar,), kwargs = {}) # %any_dim : [num_users=1] = call_function[target=torch.ops.aten.any.dim](args = (%logical_not_default, -1, True), kwargs = {}) # %logical_not_default_1 : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%any_dim,), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_self : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%logical_not_default_1, %full_default, %div_tensor), kwargs = {}) triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp18 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp25 = tl.load(in_ptr1 + (x2), xmask) tmp26 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp29 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp31 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp1 = float("-inf") tmp2 = tmp0 == tmp1 tmp3 = tmp2 == 0 tmp4 = tmp3.to(tl.int64) tmp5 = (tmp4 != 0) tmp7 = tmp6 == tmp1 tmp8 = tmp7 == 0 tmp9 = tmp8.to(tl.int64) tmp10 = (tmp9 != 0) tmp11 = tmp5 | tmp10 tmp13 = tmp12 == tmp1 tmp14 = tmp13 == 0 tmp15 = tmp14.to(tl.int64) tmp16 = (tmp15 != 0) tmp17 = tmp11 | tmp16 tmp19 = tmp18 == tmp1 tmp20 = tmp19 == 0 tmp21 = tmp20.to(tl.int64) tmp22 = (tmp21 != 0) tmp23 = tmp17 | tmp22 tmp24 = tmp23 == 0 tmp28 = tmp26 + tmp27 tmp30 = tmp28 + tmp29 tmp32 = tmp30 + tmp31 tmp33 = tmp25 / tmp32 tmp34 = 0.0 tmp35 = tl.where(tmp24, tmp34, tmp33) tl.store(out_ptr0 + (x2), tmp35, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/vv/cvvnhithjvmvhfjufxwwzclfobkrgbyyteg66hp24r675f7elw4c.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %clone_default_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_default_3,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_3(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/6t/c6t5a5ere3lqjiu7zh3uu4oxmpdoujdaqqmeunxqapgzo4m74uav.py # Topologically Sorted Source Nodes: [context_layer_1], Original ATen: [aten.clone] # Source node to ATen node mapping: # context_layer_1 => clone_4 # Graph fragment: # %clone_4 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf2) del primals_6 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(buf0, primals_2, buf3, 16, 4, grid=grid(16, 4), stream=stream0) del primals_2 buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_0.run(buf1, primals_5, buf4, 16, 4, grid=grid(16, 4), stream=stream0) del primals_5 buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(buf5, buf6, 256, grid=grid(256), stream=stream0) buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(buf5, buf6, buf7, 256, grid=grid(256), stream=stream0) del buf5 del buf6 buf8 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_3.run(buf2, primals_7, buf8, 16, 4, grid=grid(16, 4), stream=stream0) del primals_7 buf9 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 0), 0), out=buf9) buf10 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [context_layer_1], Original ATen: [aten.clone] triton_poi_fused_clone_4.run(buf9, buf10, 16, 4, grid=grid(16, 4), stream=stream0) del buf9 return (reinterpret_tensor(buf10, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), buf7, reinterpret_tensor(buf8, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import math import torch from torch import nn class BertSelfAttention(nn.Module): def __init__(self, config): super().__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( 'The hidden size (%d) is not a multiple of the number of attention heads (%d)' % (config.hidden_size, config.num_attention_heads)) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config. num_attention_heads) self.all_head_size = (self.num_attention_heads * self. attention_head_size) self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self. attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, hidden_states, attention_mask=None): mixed_query_layer = self.query(hidden_states) mixed_key_layer = self.key(hidden_states) mixed_value_layer = self.value(hidden_states) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self. attention_head_size) if attention_mask is not None: attention_scores = attention_scores + attention_mask attention_probs = nn.Softmax(dim=-1)(attention_scores) attention_probs = self.dropout(attention_probs) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self. all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = context_layer return outputs def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'config': _mock_config(hidden_size=4, num_attention_heads= 4, attention_probs_dropout_prob=0.5)}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + (x2 + 4 * y3), tmp4, xmask & ymask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp18 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp25 = tl.load(in_ptr1 + x2, xmask) tmp26 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp29 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp31 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp1 = float('-inf') tmp2 = tmp0 == tmp1 tmp3 = tmp2 == 0 tmp4 = tmp3.to(tl.int64) tmp5 = tmp4 != 0 tmp7 = tmp6 == tmp1 tmp8 = tmp7 == 0 tmp9 = tmp8.to(tl.int64) tmp10 = tmp9 != 0 tmp11 = tmp5 | tmp10 tmp13 = tmp12 == tmp1 tmp14 = tmp13 == 0 tmp15 = tmp14.to(tl.int64) tmp16 = tmp15 != 0 tmp17 = tmp11 | tmp16 tmp19 = tmp18 == tmp1 tmp20 = tmp19 == 0 tmp21 = tmp20.to(tl.int64) tmp22 = tmp21 != 0 tmp23 = tmp17 | tmp22 tmp24 = tmp23 == 0 tmp28 = tmp26 + tmp27 tmp30 = tmp28 + tmp29 tmp32 = tmp30 + tmp31 tmp33 = tmp25 / tmp32 tmp34 = 0.0 tmp35 = tl.where(tmp24, tmp34, tmp33) tl.store(out_ptr0 + x2, tmp35, xmask) @triton.jit def triton_poi_fused_3(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf2) del primals_6 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_0[grid(16, 4)](buf0, primals_2, buf3, 16, 4, XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1) del primals_2 buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0) del buf0 triton_poi_fused_0[grid(16, 4)](buf1, primals_5, buf4, 16, 4, XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1) del primals_5 buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_1[grid(256)](buf5, buf6, 256, XBLOCK=128, num_warps=4, num_stages=1) buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_2[grid(256)](buf5, buf6, buf7, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf5 del buf6 buf8 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf1 triton_poi_fused_3[grid(16, 4)](buf2, primals_7, buf8, 16, 4, XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1) del primals_7 buf9 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0) del buf2 extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 0), 0), out=buf9) buf10 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) triton_poi_fused_clone_4[grid(16, 4)](buf9, buf10, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) del buf9 return reinterpret_tensor(buf10, (4, 4, 4), (16, 4, 1), 0 ), reinterpret_tensor(primals_3, (16, 4), (4, 1), 0 ), buf7, reinterpret_tensor(buf8, (16, 1, 4), (4, 1, 1), 0 ), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0 ), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0) class BertSelfAttentionNew(nn.Module): def __init__(self, config): super().__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( 'The hidden size (%d) is not a multiple of the number of attention heads (%d)' % (config.hidden_size, config.num_attention_heads)) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config. num_attention_heads) self.all_head_size = (self.num_attention_heads * self. attention_head_size) self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self. attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, input_0): primals_1 = self.query.weight primals_2 = self.query.bias primals_4 = self.key.weight primals_5 = self.key.bias primals_6 = self.value.weight primals_7 = self.value.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
Sologa/awesome-align
BertSelfAttention
false
14,433
[ "BSD-3-Clause" ]
173
62eaae7eac9bac06c10627fac6cc942c07a50e64
https://github.com/Sologa/awesome-align/tree/62eaae7eac9bac06c10627fac6cc942c07a50e64
UpsampleNet
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/ne/cnexudftgk5ct7lbihyed7zhdhy2jyqqxp4thioe5wcxkpbn3aga.py # Topologically Sorted Source Nodes: [_weight_norm], Original ATen: [aten._weight_norm_interface] # Source node to ATen node mapping: # _weight_norm => div, mul, pow_1, pow_2, sum_1 # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_2, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1, 2], True), kwargs = {}) # %pow_2 : [num_users=2] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_1, %pow_2), kwargs = {}) # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %div), kwargs = {}) triton_per_fused__weight_norm_interface_0 = async_compile.triton('triton_per_fused__weight_norm_interface_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 32], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__weight_norm_interface_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__weight_norm_interface_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 32 RBLOCK: tl.constexpr = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (32*x0)), xmask, other=0.0) tmp7 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp1 = tmp0 * tmp0 tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp4 = tl.where(xmask, tmp2, 0) tmp5 = tl.sum(tmp4, 1)[:, None] tmp6 = libdevice.sqrt(tmp5) tmp8 = tmp7 / tmp6 tmp9 = tmp0 * tmp8 tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp6, xmask) tl.store(out_ptr0 + (r1 + (32*x0)), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/32/c32v7egt4mupqssam3gmac2qgv3ujprjybthsgweflmot256qqw7.py # Topologically Sorted Source Nodes: [outputs], Original ATen: [aten.convolution] # Source node to ATen node mapping: # outputs => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_4, %mul, %primals_3, [4], [2], [1], True, [0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 1, 1), (1, 1, 1)) assert_size_stride(primals_2, (4, 4, 8), (32, 8, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 1), (1, 4, 4), torch.float32) buf1 = reinterpret_tensor(buf0, (4, 1, 1), (1, 1, 1), 0); del buf0 # reuse buf2 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [_weight_norm], Original ATen: [aten._weight_norm_interface] stream0 = get_raw_stream(0) triton_per_fused__weight_norm_interface_0.run(buf1, primals_2, primals_1, buf2, 4, 32, grid=grid(4), stream=stream0) # Topologically Sorted Source Nodes: [outputs], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(primals_4, buf2, stride=(4,), padding=(2,), dilation=(1,), transposed=True, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 16), (64, 16, 1)) buf4 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [outputs], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf4, primals_3, 256, grid=grid(256), stream=stream0) del primals_3 return (buf4, buf2, primals_1, primals_2, primals_4, buf1, buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 1, 1), (1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 8), (32, 8, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from torch.nn.utils import weight_norm class UpsampleNet(nn.Module): def __init__(self, input_size, output_size, upsample_factor): super(UpsampleNet, self).__init__() self.input_size = input_size self.output_size = output_size self.upsample_factor = upsample_factor layer = nn.ConvTranspose1d(input_size, output_size, upsample_factor * 2, upsample_factor, padding=upsample_factor // 2) self.layer = weight_norm(layer) def forward(self, inputs): outputs = self.layer(inputs) outputs = outputs[:, :, :inputs.size(-1) * self.upsample_factor] return outputs def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4, 'output_size': 4, 'upsample_factor': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn from torch.nn.utils import weight_norm assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused__weight_norm_interface_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 RBLOCK: tl.constexpr = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 32 * x0), xmask, other=0.0) tmp7 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp1 = tmp0 * tmp0 tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp4 = tl.where(xmask, tmp2, 0) tmp5 = tl.sum(tmp4, 1)[:, None] tmp6 = libdevice.sqrt(tmp5) tmp8 = tmp7 / tmp6 tmp9 = tmp0 * tmp8 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp6, xmask) tl.store(out_ptr0 + (r1 + 32 * x0), tmp9, xmask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 1, 1), (1, 1, 1)) assert_size_stride(primals_2, (4, 4, 8), (32, 8, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 1), (1, 4, 4), torch.float32) buf1 = reinterpret_tensor(buf0, (4, 1, 1), (1, 1, 1), 0) del buf0 buf2 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) get_raw_stream(0) triton_per_fused__weight_norm_interface_0[grid(4)](buf1, primals_2, primals_1, buf2, 4, 32, XBLOCK=1, num_warps=2, num_stages=1) buf3 = extern_kernels.convolution(primals_4, buf2, stride=(4,), padding=(2,), dilation=(1,), transposed=True, output_padding=(0 ,), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 16), (64, 16, 1)) buf4 = buf3 del buf3 triton_poi_fused_convolution_1[grid(256)](buf4, primals_3, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_3 return buf4, buf2, primals_1, primals_2, primals_4, buf1, buf2 class UpsampleNetNew(nn.Module): def __init__(self, input_size, output_size, upsample_factor): super(UpsampleNetNew, self).__init__() self.input_size = input_size self.output_size = output_size self.upsample_factor = upsample_factor layer = nn.ConvTranspose1d(input_size, output_size, upsample_factor * 2, upsample_factor, padding=upsample_factor // 2) self.layer = weight_norm(layer) def forward(self, input_0): primals_3 = self.layer.bias primals_1 = self.layer.weight_g primals_2 = self.layer.weight_v primals_4 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
SolomidHero/EA-SVC
UpsampleNet
false
14,434
[ "MIT" ]
88
23a0a9d9c0e9670dd7c777d56b00883d84c23237
https://github.com/SolomidHero/EA-SVC/tree/23a0a9d9c0e9670dd7c777d56b00883d84c23237
BasicModulationBlock
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/an/cankwq3o4lhc2dnogcgqlnauehioeeknxoi7ick6tzq3ht2xroxz.py # Topologically Sorted Source Nodes: [mul, outputs, outputs_1], Original ATen: [aten.mul, aten.add, aten.leaky_relu] # Source node to ATen node mapping: # mul => mul # outputs => add # outputs_1 => gt, mul_1, where # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %primals_2), kwargs = {}) # %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %primals_3), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add, 0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 0.2), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %add, %mul_1), kwargs = {}) triton_poi_fused_add_leaky_relu_mul_0 = async_compile.triton('triton_poi_fused_add_leaky_relu_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_leaky_relu_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_leaky_relu_mul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp3 = tl.load(in_ptr2 + (x0), xmask) tmp2 = tmp0 * tmp1 tmp4 = tmp2 + tmp3 tmp5 = 0.0 tmp6 = tmp4 > tmp5 tmp7 = 0.2 tmp8 = tmp4 * tmp7 tmp9 = tl.where(tmp6, tmp4, tmp8) tl.store(out_ptr0 + (x0), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/2m/c2mt7vvxypcyg4roj4r3bns7fqblbouce2ybektelf7rsc62boym.py # Topologically Sorted Source Nodes: [outputs_2], Original ATen: [aten.convolution] # Source node to ATen node mapping: # outputs_2 => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%unsqueeze, %primals_4, %primals_5, [1], [1], [1], False, [0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4, 3), (12, 3, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, outputs, outputs_1], Original ATen: [aten.mul, aten.add, aten.leaky_relu] stream0 = get_raw_stream(0) triton_poi_fused_add_leaky_relu_mul_0.run(primals_1, primals_2, primals_3, buf0, 16, grid=grid(16), stream=stream0) del primals_1 del primals_2 del primals_3 # Topologically Sorted Source Nodes: [outputs_2], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(reinterpret_tensor(buf0, (1, 4, 4), (0, 4, 1), 0), primals_4, stride=(1,), padding=(1,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf1, (1, 4, 4), (16, 4, 1)) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [outputs_2], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf2, primals_5, 16, grid=grid(16), stream=stream0) del primals_5 return (reinterpret_tensor(buf2, (4, 4), (4, 1), 0), primals_4, reinterpret_tensor(buf0, (1, 4, 4), (16, 4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 3), (12, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class BaseModule(torch.nn.Module): def __init__(self): super(BaseModule, self).__init__() @property def nparams(self): return sum(p.numel() for p in self.parameters() if p.requires_grad) class Conv1dWithInitialization(BaseModule): def __init__(self, **kwargs): super(Conv1dWithInitialization, self).__init__() self.conv1d = torch.nn.Conv1d(**kwargs) torch.nn.init.orthogonal_(self.conv1d.weight.data, gain=1) def forward(self, x): return self.conv1d(x) class FeatureWiseAffine(BaseModule): def __init__(self): super(FeatureWiseAffine, self).__init__() def forward(self, x, scale, shift): outputs = scale * x + shift return outputs class BasicModulationBlock(BaseModule): """ Linear modulation part of UBlock, represented by sequence of the following layers: - Feature-wise Affine - LReLU - 3x1 Conv """ def __init__(self, n_channels, dilation): super(BasicModulationBlock, self).__init__() self.featurewise_affine = FeatureWiseAffine() self.leaky_relu = torch.nn.LeakyReLU(0.2) self.convolution = Conv1dWithInitialization(in_channels=n_channels, out_channels=n_channels, kernel_size=3, stride=1, padding= dilation, dilation=dilation) def forward(self, x, scale, shift): outputs = self.featurewise_affine(x, scale, shift) outputs = self.leaky_relu(outputs) outputs = self.convolution(outputs) return outputs def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'n_channels': 4, 'dilation': 1}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_leaky_relu_mul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp3 = tl.load(in_ptr2 + x0, xmask) tmp2 = tmp0 * tmp1 tmp4 = tmp2 + tmp3 tmp5 = 0.0 tmp6 = tmp4 > tmp5 tmp7 = 0.2 tmp8 = tmp4 * tmp7 tmp9 = tl.where(tmp6, tmp4, tmp8) tl.store(out_ptr0 + x0, tmp9, xmask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4, 3), (12, 3, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_leaky_relu_mul_0[grid(16)](primals_1, primals_2, primals_3, buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_1 del primals_2 del primals_3 buf1 = extern_kernels.convolution(reinterpret_tensor(buf0, (1, 4, 4 ), (0, 4, 1), 0), primals_4, stride=(1,), padding=(1,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf1, (1, 4, 4), (16, 4, 1)) buf2 = buf1 del buf1 triton_poi_fused_convolution_1[grid(16)](buf2, primals_5, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_5 return reinterpret_tensor(buf2, (4, 4), (4, 1), 0 ), primals_4, reinterpret_tensor(buf0, (1, 4, 4), (16, 4, 1), 0) class BaseModule(torch.nn.Module): def __init__(self): super(BaseModule, self).__init__() @property def nparams(self): return sum(p.numel() for p in self.parameters() if p.requires_grad) class Conv1dWithInitialization(BaseModule): def __init__(self, **kwargs): super(Conv1dWithInitialization, self).__init__() self.conv1d = torch.nn.Conv1d(**kwargs) torch.nn.init.orthogonal_(self.conv1d.weight.data, gain=1) def forward(self, x): return self.conv1d(x) class FeatureWiseAffine(BaseModule): def __init__(self): super(FeatureWiseAffine, self).__init__() def forward(self, x, scale, shift): outputs = scale * x + shift return outputs class BasicModulationBlockNew(BaseModule): """ Linear modulation part of UBlock, represented by sequence of the following layers: - Feature-wise Affine - LReLU - 3x1 Conv """ def __init__(self, n_channels, dilation): super(BasicModulationBlockNew, self).__init__() self.featurewise_affine = FeatureWiseAffine() self.leaky_relu = torch.nn.LeakyReLU(0.2) self.convolution = Conv1dWithInitialization(in_channels=n_channels, out_channels=n_channels, kernel_size=3, stride=1, padding= dilation, dilation=dilation) def forward(self, input_0, input_1, input_2): primals_4 = self.convolution.conv1d.weight primals_5 = self.convolution.conv1d.bias primals_1 = input_0 primals_2 = input_1 primals_3 = input_2 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
Seungwoo0326/WaveGrad2-1
BasicModulationBlock
false
14,435
[ "MIT" ]
45
3b202201348449b89353f28bce1596ca7939a810
https://github.com/Seungwoo0326/WaveGrad2-1/tree/3b202201348449b89353f28bce1596ca7939a810
LocationNetwork
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/z5/cz5bgdo2gmhnnmtf6w7lrjkvliacxo7nomq7mbmjquxqyxqgt5bj.py # Topologically Sorted Source Nodes: [feat], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # feat => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 2 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/dd/cddxwex7cwfprervbfeycuuplj36x3rh67cnh5kc3z7udvmaw5a5.py # Topologically Sorted Source Nodes: [mu, mul, l_t, log_scale, sub, pow_2, neg, mul_1, truediv, sub_1, log_pi, log_pi_1], Original ATen: [aten.tanh, aten.mul, aten.add, aten.log, aten.sub, aten.pow, aten.neg, aten.div, aten.sum] # Source node to ATen node mapping: # l_t => add # log_pi => sub_2 # log_pi_1 => sum_1 # log_scale => full_default # mu => tanh # mul => mul # mul_1 => full_default_1 # neg => neg # pow_2 => pow_2 # sub => sub # sub_1 => sub_1 # truediv => div # Graph fragment: # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%view_3,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%normal_functional, %expand), kwargs = {}) # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%tanh, %mul), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 1.3862943649291992), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %tanh), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%pow_2,), kwargs = {}) # %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 32.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%neg, %full_default_1), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%div, %full_default), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub_1, 0.9189385332046727), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%sub_2, [1]), kwargs = {}) triton_poi_fused_add_div_log_mul_neg_pow_sub_sum_tanh_1 = async_compile.triton('triton_poi_fused_add_div_log_mul_neg_pow_sub_sum_tanh_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_log_mul_neg_pow_sub_sum_tanh_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_log_mul_neg_pow_sub_sum_tanh_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask) tmp2 = tl.load(in_ptr1 + (x0 + (64*x1)), xmask) tmp15 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask) tmp17 = tl.load(in_ptr1 + (16 + x0 + (64*x1)), xmask) tmp27 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask) tmp29 = tl.load(in_ptr1 + (32 + x0 + (64*x1)), xmask) tmp39 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask) tmp41 = tl.load(in_ptr1 + (48 + x0 + (64*x1)), xmask) tmp1 = libdevice.tanh(tmp0) tmp3 = 4.0 tmp4 = tmp2 * tmp3 tmp5 = tmp1 + tmp4 tmp6 = tmp5 - tmp1 tmp7 = tmp6 * tmp6 tmp8 = -tmp7 tmp9 = 0.03125 tmp10 = tmp8 * tmp9 tmp11 = 1.3862943649291992 tmp12 = tmp10 - tmp11 tmp13 = 0.9189385332046727 tmp14 = tmp12 - tmp13 tmp16 = libdevice.tanh(tmp15) tmp18 = tmp17 * tmp3 tmp19 = tmp16 + tmp18 tmp20 = tmp19 - tmp16 tmp21 = tmp20 * tmp20 tmp22 = -tmp21 tmp23 = tmp22 * tmp9 tmp24 = tmp23 - tmp11 tmp25 = tmp24 - tmp13 tmp26 = tmp14 + tmp25 tmp28 = libdevice.tanh(tmp27) tmp30 = tmp29 * tmp3 tmp31 = tmp28 + tmp30 tmp32 = tmp31 - tmp28 tmp33 = tmp32 * tmp32 tmp34 = -tmp33 tmp35 = tmp34 * tmp9 tmp36 = tmp35 - tmp11 tmp37 = tmp36 - tmp13 tmp38 = tmp26 + tmp37 tmp40 = libdevice.tanh(tmp39) tmp42 = tmp41 * tmp3 tmp43 = tmp40 + tmp42 tmp44 = tmp43 - tmp40 tmp45 = tmp44 * tmp44 tmp46 = -tmp45 tmp47 = tmp46 * tmp9 tmp48 = tmp47 - tmp11 tmp49 = tmp48 - tmp13 tmp50 = tmp38 + tmp49 tl.store(out_ptr0 + (x2), tmp50, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/wa/cwablyx4r3ifgi7p3ugkmqxfsyq2clouhpzo5gpw6wrj2fjncf4s.py # Topologically Sorted Source Nodes: [mu, mul, l_t, l_t_2], Original ATen: [aten.tanh, aten.mul, aten.add, aten.clamp] # Source node to ATen node mapping: # l_t => add # l_t_2 => clamp_max, clamp_min # mu => tanh # mul => mul # Graph fragment: # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%view_3,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%normal_functional, %expand), kwargs = {}) # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%tanh, %mul), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add, -1), kwargs = {}) # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 1), kwargs = {}) triton_poi_fused_add_clamp_mul_tanh_2 = async_compile.triton('triton_poi_fused_add_clamp_mul_tanh_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_mul_tanh_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_clamp_mul_tanh_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp2 = tl.load(in_ptr1 + (x0), xmask) tmp1 = libdevice.tanh(tmp0) tmp3 = 4.0 tmp4 = tmp2 * tmp3 tmp5 = tmp1 + tmp4 tmp6 = -1.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = 1.0 tmp9 = triton_helpers.minimum(tmp7, tmp8) tl.store(out_ptr0 + (x0), tmp9, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (2, 4), (4, 1)) assert_size_stride(primals_3, (2, ), (1, )) assert_size_stride(primals_4, (4, 2), (2, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 2), (2, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 2), (1, 4), 0), out=buf0) del primals_2 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 2), (32, 8, 2, 1), 0); del buf0 # reuse buf8 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.bool) # Topologically Sorted Source Nodes: [feat], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_3, buf8, 128, grid=grid(128), stream=stream0) del primals_3 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 2), (2, 1), 0), reinterpret_tensor(primals_4, (2, 4), (1, 2), 0), alpha=1, beta=1, out=buf2) del primals_5 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [eps], Original ATen: [aten.normal_functional] buf4 = torch.ops.aten.normal_functional.default(buf3) buf5 = buf4 del buf4 buf6 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mu, mul, l_t, log_scale, sub, pow_2, neg, mul_1, truediv, sub_1, log_pi, log_pi_1], Original ATen: [aten.tanh, aten.mul, aten.add, aten.log, aten.sub, aten.pow, aten.neg, aten.div, aten.sum] triton_poi_fused_add_div_log_mul_neg_pow_sub_sum_tanh_1.run(buf2, buf5, buf6, 64, grid=grid(64), stream=stream0) buf7 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [mu, mul, l_t, l_t_2], Original ATen: [aten.tanh, aten.mul, aten.add, aten.clamp] triton_poi_fused_add_clamp_mul_tanh_2.run(buf2, buf5, buf7, 256, grid=grid(256), stream=stream0) return (buf6, buf7, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 2), (2, 1), 0), buf2, buf5, primals_4, buf8, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((2, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 2), (2, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F from torch.distributions import Normal class LocationNetwork(nn.Module): """The location network. Uses the internal state `h_t` of the core network to produce the location coordinates `l_t` for the next time step. Concretely, feeds the hidden state `h_t` through a fc layer followed by a tanh to clamp the output beween [-1, 1]. This produces a 2D vector of means used to parametrize a two-component Gaussian with a fixed variance from which the location coordinates `l_t` for the next time step are sampled. Hence, the location `l_t` is chosen stochastically from a distribution conditioned on an affine transformation of the hidden state vector `h_t`. Args: input_size: input size of the fc layer. output_size: output size of the fc layer. std: standard deviation of the normal distribution. h_t: the hidden state vector of the core network for the current time step `t`. Returns: mu: a 2D vector of shape (B, 2). l_t: a 2D vector of shape (B, 2). """ def __init__(self, input_size, output_size, std): super().__init__() self.std = std hid_size = input_size // 2 self.fc = nn.Linear(input_size, hid_size) self.fc_lt = nn.Linear(hid_size, output_size) def forward(self, h_t): feat = F.relu(self.fc(h_t.detach())) mu = torch.tanh(self.fc_lt(feat)) l_t = torch.distributions.Normal(mu, self.std).rsample() l_t = l_t.detach() log_pi = Normal(mu, self.std).log_prob(l_t) log_pi = torch.sum(log_pi, dim=1) l_t = torch.clamp(l_t, -1, 1) return log_pi, l_t def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4, 'output_size': 4, 'std': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 2 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_add_div_log_mul_neg_pow_sub_sum_tanh_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask) tmp2 = tl.load(in_ptr1 + (x0 + 64 * x1), xmask) tmp15 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask) tmp17 = tl.load(in_ptr1 + (16 + x0 + 64 * x1), xmask) tmp27 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask) tmp29 = tl.load(in_ptr1 + (32 + x0 + 64 * x1), xmask) tmp39 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask) tmp41 = tl.load(in_ptr1 + (48 + x0 + 64 * x1), xmask) tmp1 = libdevice.tanh(tmp0) tmp3 = 4.0 tmp4 = tmp2 * tmp3 tmp5 = tmp1 + tmp4 tmp6 = tmp5 - tmp1 tmp7 = tmp6 * tmp6 tmp8 = -tmp7 tmp9 = 0.03125 tmp10 = tmp8 * tmp9 tmp11 = 1.3862943649291992 tmp12 = tmp10 - tmp11 tmp13 = 0.9189385332046727 tmp14 = tmp12 - tmp13 tmp16 = libdevice.tanh(tmp15) tmp18 = tmp17 * tmp3 tmp19 = tmp16 + tmp18 tmp20 = tmp19 - tmp16 tmp21 = tmp20 * tmp20 tmp22 = -tmp21 tmp23 = tmp22 * tmp9 tmp24 = tmp23 - tmp11 tmp25 = tmp24 - tmp13 tmp26 = tmp14 + tmp25 tmp28 = libdevice.tanh(tmp27) tmp30 = tmp29 * tmp3 tmp31 = tmp28 + tmp30 tmp32 = tmp31 - tmp28 tmp33 = tmp32 * tmp32 tmp34 = -tmp33 tmp35 = tmp34 * tmp9 tmp36 = tmp35 - tmp11 tmp37 = tmp36 - tmp13 tmp38 = tmp26 + tmp37 tmp40 = libdevice.tanh(tmp39) tmp42 = tmp41 * tmp3 tmp43 = tmp40 + tmp42 tmp44 = tmp43 - tmp40 tmp45 = tmp44 * tmp44 tmp46 = -tmp45 tmp47 = tmp46 * tmp9 tmp48 = tmp47 - tmp11 tmp49 = tmp48 - tmp13 tmp50 = tmp38 + tmp49 tl.store(out_ptr0 + x2, tmp50, xmask) @triton.jit def triton_poi_fused_add_clamp_mul_tanh_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp2 = tl.load(in_ptr1 + x0, xmask) tmp1 = libdevice.tanh(tmp0) tmp3 = 4.0 tmp4 = tmp2 * tmp3 tmp5 = tmp1 + tmp4 tmp6 = -1.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = 1.0 tmp9 = triton_helpers.minimum(tmp7, tmp8) tl.store(out_ptr0 + x0, tmp9, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (2, 4), (4, 1)) assert_size_stride(primals_3, (2,), (1,)) assert_size_stride(primals_4, (4, 2), (2, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 2), (2, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 2), (1, 4), 0), out=buf0) del primals_2 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 2), (32, 8, 2, 1), 0) del buf0 buf8 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(128)](buf1, primals_3, buf8, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_3 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 2), ( 2, 1), 0), reinterpret_tensor(primals_4, (2, 4), (1, 2), 0), alpha=1, beta=1, out=buf2) del primals_5 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf4 = torch.ops.aten.normal_functional.default(buf3) buf5 = buf4 del buf4 buf6 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_add_div_log_mul_neg_pow_sub_sum_tanh_1[grid(64)](buf2, buf5, buf6, 64, XBLOCK=64, num_warps=1, num_stages=1) buf7 = buf3 del buf3 triton_poi_fused_add_clamp_mul_tanh_2[grid(256)](buf2, buf5, buf7, 256, XBLOCK=256, num_warps=4, num_stages=1) return buf6, buf7, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 2), (2, 1), 0 ), buf2, buf5, primals_4, buf8 class LocationNetworkNew(nn.Module): """The location network. Uses the internal state `h_t` of the core network to produce the location coordinates `l_t` for the next time step. Concretely, feeds the hidden state `h_t` through a fc layer followed by a tanh to clamp the output beween [-1, 1]. This produces a 2D vector of means used to parametrize a two-component Gaussian with a fixed variance from which the location coordinates `l_t` for the next time step are sampled. Hence, the location `l_t` is chosen stochastically from a distribution conditioned on an affine transformation of the hidden state vector `h_t`. Args: input_size: input size of the fc layer. output_size: output size of the fc layer. std: standard deviation of the normal distribution. h_t: the hidden state vector of the core network for the current time step `t`. Returns: mu: a 2D vector of shape (B, 2). l_t: a 2D vector of shape (B, 2). """ def __init__(self, input_size, output_size, std): super().__init__() self.std = std hid_size = input_size // 2 self.fc = nn.Linear(input_size, hid_size) self.fc_lt = nn.Linear(hid_size, output_size) def forward(self, input_0): primals_2 = self.fc.weight primals_3 = self.fc.bias primals_4 = self.fc_lt.weight primals_5 = self.fc_lt.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0], output[1]
SmirnovKol/recurrent-visual-attention
LocationNetwork
false
14,436
[ "MIT" ]
463
4cb8d9e768ae35f38439278bb8a7b4d6b253a537
https://github.com/SmirnovKol/recurrent-visual-attention/tree/4cb8d9e768ae35f38439278bb8a7b4d6b253a537
BertSelfAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/7c/c7c7bmvdtfwg2cjdph3ycnfts3mkxkveriaohpvvm4wxz2v7zwbx.py # Topologically Sorted Source Nodes: [truediv, attention_scores], Original ATen: [aten.div, aten.clone] # Source node to ATen node mapping: # attention_scores => clone # truediv => div # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%permute_3, 1.0), kwargs = {}) # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_div_0 = async_compile.triton('triton_poi_fused_clone_div_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_div_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_div_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + (x2 + (4*y3)), tmp4, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/mh/cmhet4vfl4jlxtge4zzaaa2nugvxpr5f4ge7rs72qwe2aow7vxwy.py # Topologically Sorted Source Nodes: [attention_scores], Original ATen: [aten.clone] # Source node to ATen node mapping: # attention_scores => clone_1 # Graph fragment: # %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_1,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_1(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/bu/cbubelqeoww7ampzilu6lqphc5fxxqf2yxfj45rtivz4wp57ceae.py # Topologically Sorted Source Nodes: [attention_scores_1, attention_probs], Original ATen: [aten.add, aten._softmax] # Source node to ATen node mapping: # attention_probs => amax, exp, sub, sum_1 # attention_scores_1 => add # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_11, %primals_8), kwargs = {}) # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%add, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) triton_poi_fused__softmax_add_2 = async_compile.triton('triton_poi_fused__softmax_add_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_add_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_add_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_ptr0 + (4*x2), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + (4*x2)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x2)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = triton_helpers.maximum(tmp2, tmp5) tmp9 = tmp7 + tmp8 tmp10 = triton_helpers.maximum(tmp6, tmp9) tmp13 = tmp11 + tmp12 tmp14 = triton_helpers.maximum(tmp10, tmp13) tmp15 = tmp2 - tmp14 tmp16 = tl_math.exp(tmp15) tmp17 = tmp5 - tmp14 tmp18 = tl_math.exp(tmp17) tmp19 = tmp16 + tmp18 tmp20 = tmp9 - tmp14 tmp21 = tl_math.exp(tmp20) tmp22 = tmp19 + tmp21 tmp23 = tmp13 - tmp14 tmp24 = tl_math.exp(tmp23) tmp25 = tmp22 + tmp24 tl.store(out_ptr0 + (x2), tmp14, xmask) tl.store(out_ptr1 + (x2), tmp25, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/u5/cu5p6jgcm6ljitzcfwqluhe7ucotlr7modnmx5avc7lwxpq2ec6c.py # Topologically Sorted Source Nodes: [attention_scores_1, attention_probs], Original ATen: [aten.add, aten._softmax] # Source node to ATen node mapping: # attention_probs => amax, div_1, exp, sub # attention_scores_1 => add # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_11, %primals_8), kwargs = {}) # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%add, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_add_3 = async_compile.triton('triton_poi_fused__softmax_add_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_add_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_add_3(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x4 = xindex % 64 x5 = (xindex // 4) tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x4), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x5), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr2 + (x5), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp5 = tl_math.exp(tmp4) tmp7 = tmp5 / tmp6 tl.store(in_out_ptr0 + (x3), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/6t/c6t5a5ere3lqjiu7zh3uu4oxmpdoujdaqqmeunxqapgzo4m74uav.py # Topologically Sorted Source Nodes: [context_layer_1], Original ATen: [aten.clone] # Source node to ATen node mapping: # context_layer_1 => clone_4 # Graph fragment: # %clone_4 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf2) del primals_6 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [truediv, attention_scores], Original ATen: [aten.div, aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_div_0.run(buf0, primals_2, buf3, 16, 4, grid=grid(16, 4), stream=stream0) del primals_2 buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [attention_scores], Original ATen: [aten.clone] triton_poi_fused_clone_1.run(buf1, primals_5, buf4, 16, 4, grid=grid(16, 4), stream=stream0) del primals_5 buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [attention_scores], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 64), 0); del buf1 # reuse buf7 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) # Topologically Sorted Source Nodes: [attention_scores_1, attention_probs], Original ATen: [aten.add, aten._softmax] triton_poi_fused__softmax_add_2.run(buf5, primals_8, buf6, buf7, 64, grid=grid(64), stream=stream0) buf8 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse # Topologically Sorted Source Nodes: [attention_scores_1, attention_probs], Original ATen: [aten.add, aten._softmax] triton_poi_fused__softmax_add_3.run(buf8, primals_8, buf6, buf7, 256, grid=grid(256), stream=stream0) del primals_8 buf9 = reinterpret_tensor(buf7, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf7 # reuse # Topologically Sorted Source Nodes: [context_layer], Original ATen: [aten.clone] triton_poi_fused_clone_1.run(buf2, primals_7, buf9, 16, 4, grid=grid(16, 4), stream=stream0) del primals_7 buf10 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [context_layer], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf8, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf9, (16, 4, 1), (4, 1, 0), 0), out=buf10) buf11 = reinterpret_tensor(buf6, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf6 # reuse # Topologically Sorted Source Nodes: [context_layer_1], Original ATen: [aten.clone] triton_poi_fused_clone_4.run(buf10, buf11, 16, 4, grid=grid(16, 4), stream=stream0) del buf10 return (reinterpret_tensor(buf11, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), buf8, reinterpret_tensor(buf9, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import math import torch from torch import nn import torch.utils.data class BertSelfAttention(nn.Module): def __init__(self, config): super(BertSelfAttention, self).__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( 'The hidden size (%d) is not a multiple of the number of attention heads (%d)' % (config.hidden_size, config.num_attention_heads)) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config. num_attention_heads) self.all_head_size = (self.num_attention_heads * self. attention_head_size) self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): sz = x.size()[:-1] + (self.num_attention_heads, self. attention_head_size) x = x.view(*sz) return x.permute(0, 2, 1, 3) def forward(self, hidden_states, attention_mask, history_states=None): if history_states is None: mixed_query_layer = self.query(hidden_states) mixed_key_layer = self.key(hidden_states) mixed_value_layer = self.value(hidden_states) else: x_states = torch.cat((history_states, hidden_states), dim=1) mixed_query_layer = self.query(hidden_states) mixed_key_layer = self.key(x_states) mixed_value_layer = self.value(x_states) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) attention_scores = torch.matmul(query_layer / math.sqrt(self. attention_head_size), key_layer.transpose(-1, -2)) attention_scores = attention_scores + attention_mask attention_probs = nn.Softmax(dim=-1)(attention_scores) attention_probs = self.dropout(attention_probs) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self. all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) return context_layer def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'config': _mock_config(hidden_size=4, num_attention_heads= 4, attention_probs_dropout_prob=0.5)}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch import nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_div_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + (x2 + 4 * y3), tmp4, xmask & ymask) @triton.jit def triton_poi_fused_clone_1(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask) @triton.jit def triton_poi_fused__softmax_add_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_ptr0 + 4 * x2, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x2), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + 4 * x2), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = triton_helpers.maximum(tmp2, tmp5) tmp9 = tmp7 + tmp8 tmp10 = triton_helpers.maximum(tmp6, tmp9) tmp13 = tmp11 + tmp12 tmp14 = triton_helpers.maximum(tmp10, tmp13) tmp15 = tmp2 - tmp14 tmp16 = tl_math.exp(tmp15) tmp17 = tmp5 - tmp14 tmp18 = tl_math.exp(tmp17) tmp19 = tmp16 + tmp18 tmp20 = tmp9 - tmp14 tmp21 = tl_math.exp(tmp20) tmp22 = tmp19 + tmp21 tmp23 = tmp13 - tmp14 tmp24 = tl_math.exp(tmp23) tmp25 = tmp22 + tmp24 tl.store(out_ptr0 + x2, tmp14, xmask) tl.store(out_ptr1 + x2, tmp25, xmask) @triton.jit def triton_poi_fused__softmax_add_3(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x4 = xindex % 64 x5 = xindex // 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x4, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x5, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr2 + x5, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp5 = tl_math.exp(tmp4) tmp7 = tmp5 / tmp6 tl.store(in_out_ptr0 + x3, tmp7, xmask) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf2) del primals_6 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_div_0[grid(16, 4)](buf0, primals_2, buf3, 16, 4, XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1) del primals_2 buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0) del buf0 triton_poi_fused_clone_1[grid(16, 4)](buf1, primals_5, buf4, 16, 4, XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1) del primals_5 buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 64), 0) del buf1 buf7 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) triton_poi_fused__softmax_add_2[grid(64)](buf5, primals_8, buf6, buf7, 64, XBLOCK=64, num_warps=1, num_stages=1) buf8 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf5 triton_poi_fused__softmax_add_3[grid(256)](buf8, primals_8, buf6, buf7, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_8 buf9 = reinterpret_tensor(buf7, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf7 triton_poi_fused_clone_1[grid(16, 4)](buf2, primals_7, buf9, 16, 4, XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1) del primals_7 buf10 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0) del buf2 extern_kernels.bmm(reinterpret_tensor(buf8, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf9, (16, 4, 1), (4, 1, 0), 0), out=buf10) buf11 = reinterpret_tensor(buf6, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf6 triton_poi_fused_clone_4[grid(16, 4)](buf10, buf11, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) del buf10 return reinterpret_tensor(buf11, (4, 4, 4), (16, 4, 1), 0 ), reinterpret_tensor(primals_3, (16, 4), (4, 1), 0 ), buf8, reinterpret_tensor(buf9, (16, 1, 4), (4, 1, 1), 0 ), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0 ), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0) class BertSelfAttentionNew(nn.Module): def __init__(self, config): super(BertSelfAttentionNew, self).__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( 'The hidden size (%d) is not a multiple of the number of attention heads (%d)' % (config.hidden_size, config.num_attention_heads)) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config. num_attention_heads) self.all_head_size = (self.num_attention_heads * self. attention_head_size) self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): sz = x.size()[:-1] + (self.num_attention_heads, self. attention_head_size) x = x.view(*sz) return x.permute(0, 2, 1, 3) def forward(self, input_0, input_1): primals_1 = self.query.weight primals_2 = self.query.bias primals_4 = self.key.weight primals_5 = self.key.bias primals_6 = self.value.weight primals_7 = self.value.bias primals_3 = input_0 primals_8 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return output[0]
SofanHe/UnilmChatchitRobot
BertSelfAttention
false
14,437
[ "Apache-2.0" ]
115
7232d01326ed04ae17cbeb73ce681f30b4391933
https://github.com/SofanHe/UnilmChatchitRobot/tree/7232d01326ed04ae17cbeb73ce681f30b4391933
SeparableConvBlock
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/sr/csrhhqsexdcor6gq6tz4dawxblhadgekinzxxkt33uwojltligp6.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x_1 => convolution_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%convolution, %primals_3, %primals_4, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 1, 4, 4), (16, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_4, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1)) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 1, 1), (4, 1, 1, 1)) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf2, primals_4, 16, grid=grid(16), stream=stream0) del primals_4 return (buf2, primals_1, primals_2, primals_3, buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 1, 4, 4), (16, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.utils.data import torch.nn.functional as F from itertools import product as product from math import sqrt as sqrt class Conv2dSamePadding(torch.nn.Conv2d): """ A wrapper around :class:`torch.nn.Conv2d` to support "SAME" padding mode and more features. """ def __init__(self, *args, **kwargs): """ Extra keyword arguments supported in addition to those in `torch.nn.Conv2d`: Args: norm (nn.Module, optional): a normalization layer activation (callable(Tensor) -> Tensor): a callable activation function It assumes that norm layer is used before activation. """ norm = kwargs.pop('norm', None) activation = kwargs.pop('activation', None) self.padding_method = kwargs.pop('padding', None) if self.padding_method is None: if len(args) >= 5: self.padding_method = args[4] else: self.padding_method = 0 if isinstance(self.padding_method, str): if self.padding_method.upper() == 'SAME': super().__init__(*args, **kwargs, padding=0) if isinstance(self.stride, int): self.stride = [self.stride] * 2 elif len(self.stride) == 1: self.stride = [self.stride[0]] * 2 if isinstance(self.kernel_size, int): self.kernel_size = [self.kernel_size] * 2 elif len(self.kernel_size) == 1: self.kernel_size = [self.kernel_size[0]] * 2 if isinstance(self.dilation, int): self.dilation = [self.dilation] * 2 elif len(self.dilation) == 1: self.dilation = [self.dilation[0]] * 2 else: raise ValueError('Unknown padding method: {}'.format(self. padding_method)) else: super().__init__(*args, **kwargs, padding=self.padding_method) self.norm = norm self.activation = activation def forward(self, x): if isinstance(self.padding_method, str): if self.padding_method.upper() == 'SAME': input_h, input_w = x.shape[-2:] stride_h, stride_w = self.stride kernel_size_h, kernel_size_w = self.kernel_size dilation_h, dilation_w = self.dilation output_h = math.ceil(input_h / stride_h) output_w = math.ceil(input_w / stride_w) padding_needed_h = max(0, (output_h - 1) * stride_h + ( kernel_size_h - 1) * dilation_h + 1 - input_h) padding_needed_w = max(0, (output_w - 1) * stride_w + ( kernel_size_w - 1) * dilation_w + 1 - input_w) left = padding_needed_w // 2 right = padding_needed_w - left top = padding_needed_h // 2 bottom = padding_needed_h - top x = F.pad(x, [left, right, top, bottom]) else: raise ValueError('Unknown padding method: {}'.format(self. padding_method)) x = super().forward(x) if self.norm is not None: x = self.norm(x) if self.activation is not None: x = self.activation(x) return x class SeparableConvBlock(torch.nn.Module): """ Depthwise seperable convolution block. """ def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, bias=True, norm=None, activation=None): """ Args: in_channels (int): the number of input tensor channels. out_channels (int):the number of output tensor channels. kernel_size (int): the kernel size. stride (int or tuple or list): the stride. bias (bool): if `True`, the pointwise conv applies bias. apply_bn (bool): if `True`, apply BN layer after conv layer. norm (nn.Module, optional): a normalization layer activation (callable(Tensor) -> Tensor): a callable activation function It assumes that norm layer is used before activation. """ super(SeparableConvBlock, self).__init__() self.norm = norm self.activation = activation self.depthwise = Conv2dSamePadding(in_channels=in_channels, out_channels=in_channels, kernel_size=kernel_size, stride= stride, padding=padding, dilation=dilation, groups=in_channels, bias=False) self.pointwise = Conv2dSamePadding(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0, dilation=1, groups=1, bias=bias) if bias: self.bias = self.pointwise.bias def forward(self, inputs): x = self.depthwise(inputs) x = self.pointwise(x) if self.norm is not None: x = self.norm(x) if self.activation is not None: x = self.activation(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import math import torch.utils.data import torch.nn.functional as F from itertools import product as product from math import sqrt as sqrt assert_size_stride = torch._C._dynamo.guards.assert_size_stride @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 1, 4, 4), (16, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_4, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1)) buf1 = extern_kernels.convolution(buf0, primals_3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 1, 1), (4, 1, 1, 1)) buf2 = buf1 del buf1 get_raw_stream(0) triton_poi_fused_convolution_0[grid(16)](buf2, primals_4, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_4 return buf2, primals_1, primals_2, primals_3, buf0 class Conv2dSamePadding(torch.nn.Conv2d): """ A wrapper around :class:`torch.nn.Conv2d` to support "SAME" padding mode and more features. """ def __init__(self, *args, **kwargs): """ Extra keyword arguments supported in addition to those in `torch.nn.Conv2d`: Args: norm (nn.Module, optional): a normalization layer activation (callable(Tensor) -> Tensor): a callable activation function It assumes that norm layer is used before activation. """ norm = kwargs.pop('norm', None) activation = kwargs.pop('activation', None) self.padding_method = kwargs.pop('padding', None) if self.padding_method is None: if len(args) >= 5: self.padding_method = args[4] else: self.padding_method = 0 if isinstance(self.padding_method, str): if self.padding_method.upper() == 'SAME': super().__init__(*args, **kwargs, padding=0) if isinstance(self.stride, int): self.stride = [self.stride] * 2 elif len(self.stride) == 1: self.stride = [self.stride[0]] * 2 if isinstance(self.kernel_size, int): self.kernel_size = [self.kernel_size] * 2 elif len(self.kernel_size) == 1: self.kernel_size = [self.kernel_size[0]] * 2 if isinstance(self.dilation, int): self.dilation = [self.dilation] * 2 elif len(self.dilation) == 1: self.dilation = [self.dilation[0]] * 2 else: raise ValueError('Unknown padding method: {}'.format(self. padding_method)) else: super().__init__(*args, **kwargs, padding=self.padding_method) self.norm = norm self.activation = activation def forward(self, x): if isinstance(self.padding_method, str): if self.padding_method.upper() == 'SAME': input_h, input_w = x.shape[-2:] stride_h, stride_w = self.stride kernel_size_h, kernel_size_w = self.kernel_size dilation_h, dilation_w = self.dilation output_h = math.ceil(input_h / stride_h) output_w = math.ceil(input_w / stride_w) padding_needed_h = max(0, (output_h - 1) * stride_h + ( kernel_size_h - 1) * dilation_h + 1 - input_h) padding_needed_w = max(0, (output_w - 1) * stride_w + ( kernel_size_w - 1) * dilation_w + 1 - input_w) left = padding_needed_w // 2 right = padding_needed_w - left top = padding_needed_h // 2 bottom = padding_needed_h - top x = F.pad(x, [left, right, top, bottom]) else: raise ValueError('Unknown padding method: {}'.format(self. padding_method)) x = super().forward(x) if self.norm is not None: x = self.norm(x) if self.activation is not None: x = self.activation(x) return x class SeparableConvBlockNew(torch.nn.Module): """ Depthwise seperable convolution block. """ def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, bias=True, norm=None, activation=None): """ Args: in_channels (int): the number of input tensor channels. out_channels (int):the number of output tensor channels. kernel_size (int): the kernel size. stride (int or tuple or list): the stride. bias (bool): if `True`, the pointwise conv applies bias. apply_bn (bool): if `True`, apply BN layer after conv layer. norm (nn.Module, optional): a normalization layer activation (callable(Tensor) -> Tensor): a callable activation function It assumes that norm layer is used before activation. """ super(SeparableConvBlockNew, self).__init__() self.norm = norm self.activation = activation self.depthwise = Conv2dSamePadding(in_channels=in_channels, out_channels=in_channels, kernel_size=kernel_size, stride= stride, padding=padding, dilation=dilation, groups=in_channels, bias=False) self.pointwise = Conv2dSamePadding(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0, dilation=1, groups=1, bias=bias) if bias: self.bias = self.pointwise.bias def forward(self, input_0): primals_4 = self.bias primals_1 = self.depthwise.weight primals_3 = self.pointwise.weight primals_2 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
StevenGrove/DynamicHead
SeparableConvBlock
false
14,438
[ "Apache-2.0" ]
69
d62aa84e1d1c6a0c74d46258ad77b11413c10bef
https://github.com/StevenGrove/DynamicHead/tree/d62aa84e1d1c6a0c74d46258ad77b11413c10bef
CategoricalAccuracy
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/wx/cwxwvlntewdrqi2r4caciy5ht4jdvafnhtiqncr4lo4aegcb4imz.py # Topologically Sorted Source Nodes: [input_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # input_1 => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg0_1, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/6n/c6n4mk6gkfuei5kadg24pepevvypqe4v4z2p3nestrnxzlpxjovc.py # Topologically Sorted Source Nodes: [input_1, categorical_input], Original ATen: [aten._softmax, aten.argmax] # Source node to ATen node mapping: # categorical_input => argmax # input_1 => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) # %argmax : [num_users=1] = call_function[target=torch.ops.aten.argmax.default](args = (%div, -1), kwargs = {}) triton_poi_fused__softmax_argmax_1 = async_compile.triton('triton_poi_fused__softmax_argmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_argmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_argmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = tmp0 / tmp6 tmp8 = tmp1 / tmp6 tmp9 = tmp7 > tmp8 tmp10 = tmp7 == tmp8 tmp11 = tmp7 != tmp7 tmp12 = tmp8 != tmp8 tmp13 = tmp11 > tmp12 tmp14 = tmp9 | tmp13 tmp15 = tmp11 & tmp12 tmp16 = tmp10 | tmp15 tmp17 = tl.full([1], 0, tl.int64) tmp18 = tl.full([1], 1, tl.int64) tmp19 = tmp17 < tmp18 tmp20 = tmp16 & tmp19 tmp21 = tmp14 | tmp20 tmp22 = tl.where(tmp21, tmp7, tmp8) tmp23 = tl.where(tmp21, tmp17, tmp18) tmp24 = tmp3 / tmp6 tmp25 = tmp22 > tmp24 tmp26 = tmp22 == tmp24 tmp27 = tmp22 != tmp22 tmp28 = tmp24 != tmp24 tmp29 = tmp27 > tmp28 tmp30 = tmp25 | tmp29 tmp31 = tmp27 & tmp28 tmp32 = tmp26 | tmp31 tmp33 = tl.full([1], 2, tl.int64) tmp34 = tmp23 < tmp33 tmp35 = tmp32 & tmp34 tmp36 = tmp30 | tmp35 tmp37 = tl.where(tmp36, tmp22, tmp24) tmp38 = tl.where(tmp36, tmp23, tmp33) tmp39 = tmp5 / tmp6 tmp40 = tmp37 > tmp39 tmp41 = tmp37 == tmp39 tmp42 = tmp37 != tmp37 tmp43 = tmp39 != tmp39 tmp44 = tmp42 > tmp43 tmp45 = tmp40 | tmp44 tmp46 = tmp42 & tmp43 tmp47 = tmp41 | tmp46 tmp48 = tl.full([1], 3, tl.int64) tmp49 = tmp38 < tmp48 tmp50 = tmp47 & tmp49 tmp51 = tmp45 | tmp50 tmp52 = tl.where(tmp51, tmp37, tmp39) tmp53 = tl.where(tmp51, tmp38, tmp48) tl.store(out_ptr0 + (x0), tmp53, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/3z/c3zwwrchogbajhapnr3zoubqfkomrjbnx2yeaawz54rgddtdrylq.py # Topologically Sorted Source Nodes: [long_1, bool_acc, sum_1, truediv], Original ATen: [aten._to_copy, aten.eq, aten.sum, aten.div] # Source node to ATen node mapping: # bool_acc => eq # long_1 => convert_element_type # sum_1 => sum_2 # truediv => div_1 # Graph fragment: # %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%arg1_1, torch.int64), kwargs = {}) # %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Tensor](args = (%argmax, %convert_element_type), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%eq,), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_2, 256), kwargs = {}) triton_per_fused__to_copy_div_eq_sum_2 = async_compile.triton('triton_per_fused__to_copy_div_eq_sum_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__to_copy_div_eq_sum_2', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__to_copy_div_eq_sum_2(in_ptr0, in_ptr1, out_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex % 64 r2 = rindex tmp0 = tl.load(in_ptr0 + (r0), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (r2), None) tmp2 = tmp1.to(tl.int64) tmp3 = tmp0 == tmp2 tmp4 = tmp3.to(tl.int64) tmp5 = tl.broadcast_to(tmp4, [RBLOCK]) tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0)) tmp8 = tmp7.to(tl.float32) tmp9 = 0.00390625 tmp10 = tmp8 * tmp9 tl.store(out_ptr1 + (tl.full([1], 0, tl.int32)), tmp10, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [input_1], Original ATen: [aten._softmax] stream0 = get_raw_stream(0) triton_poi_fused__softmax_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.int64) # Topologically Sorted Source Nodes: [input_1, categorical_input], Original ATen: [aten._softmax, aten.argmax] triton_poi_fused__softmax_argmax_1.run(buf0, buf1, 64, grid=grid(64), stream=stream0) del buf0 buf3 = empty_strided_cuda((), (), torch.float32) # Topologically Sorted Source Nodes: [long_1, bool_acc, sum_1, truediv], Original ATen: [aten._to_copy, aten.eq, aten.sum, aten.div] triton_per_fused__to_copy_div_eq_sum_2.run(buf1, arg1_1, buf3, 1, 256, grid=grid(1), stream=stream0) del arg1_1 del buf1 return (buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class _Metric(torch.nn.Module): def __init__(self): super().__init__() def forward(self, input: 'torch.Tensor', target: 'torch.Tensor'): raise NotImplementedError() class Accuracy(_Metric): def __init__(self): super().__init__() def forward(self, input: 'torch.Tensor', target: 'torch.Tensor'): """ :param input: [B, L] :param target: [B, L] :return: """ bool_acc = input.long() == target.long() return bool_acc.sum() / bool_acc.numel() class CategoricalAccuracy(Accuracy): def __init__(self): super().__init__() def forward(self, input: 'torch.Tensor', target: 'torch.Tensor'): """ :param input: [B, T, V] :param target: [B, T] :return: """ input = input.softmax(-1) categorical_input = input.argmax(-1) return super().forward(categorical_input, target) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_argmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = tmp0 / tmp6 tmp8 = tmp1 / tmp6 tmp9 = tmp7 > tmp8 tmp10 = tmp7 == tmp8 tmp11 = tmp7 != tmp7 tmp12 = tmp8 != tmp8 tmp13 = tmp11 > tmp12 tmp14 = tmp9 | tmp13 tmp15 = tmp11 & tmp12 tmp16 = tmp10 | tmp15 tmp17 = tl.full([1], 0, tl.int64) tmp18 = tl.full([1], 1, tl.int64) tmp19 = tmp17 < tmp18 tmp20 = tmp16 & tmp19 tmp21 = tmp14 | tmp20 tmp22 = tl.where(tmp21, tmp7, tmp8) tmp23 = tl.where(tmp21, tmp17, tmp18) tmp24 = tmp3 / tmp6 tmp25 = tmp22 > tmp24 tmp26 = tmp22 == tmp24 tmp27 = tmp22 != tmp22 tmp28 = tmp24 != tmp24 tmp29 = tmp27 > tmp28 tmp30 = tmp25 | tmp29 tmp31 = tmp27 & tmp28 tmp32 = tmp26 | tmp31 tmp33 = tl.full([1], 2, tl.int64) tmp34 = tmp23 < tmp33 tmp35 = tmp32 & tmp34 tmp36 = tmp30 | tmp35 tmp37 = tl.where(tmp36, tmp22, tmp24) tmp38 = tl.where(tmp36, tmp23, tmp33) tmp39 = tmp5 / tmp6 tmp40 = tmp37 > tmp39 tmp41 = tmp37 == tmp39 tmp42 = tmp37 != tmp37 tmp43 = tmp39 != tmp39 tmp44 = tmp42 > tmp43 tmp45 = tmp40 | tmp44 tmp46 = tmp42 & tmp43 tmp47 = tmp41 | tmp46 tmp48 = tl.full([1], 3, tl.int64) tmp49 = tmp38 < tmp48 tmp50 = tmp47 & tmp49 tmp51 = tmp45 | tmp50 tl.where(tmp51, tmp37, tmp39) tmp53 = tl.where(tmp51, tmp38, tmp48) tl.store(out_ptr0 + x0, tmp53, xmask) @triton.jit def triton_per_fused__to_copy_div_eq_sum_2(in_ptr0, in_ptr1, out_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex % 64 r2 = rindex tmp0 = tl.load(in_ptr0 + r0, None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + r2, None) tmp2 = tmp1.to(tl.int64) tmp3 = tmp0 == tmp2 tmp4 = tmp3.to(tl.int64) tmp5 = tl.broadcast_to(tmp4, [RBLOCK]) tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0)) tmp8 = tmp7.to(tl.float32) tmp9 = 0.00390625 tmp10 = tmp8 * tmp9 tl.store(out_ptr1 + tl.full([1], 0, tl.int32), tmp10, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__softmax_0[grid(256)](arg0_1, buf0, 256, XBLOCK= 256, num_warps=4, num_stages=1) del arg0_1 buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.int64) triton_poi_fused__softmax_argmax_1[grid(64)](buf0, buf1, 64, XBLOCK =64, num_warps=1, num_stages=1) del buf0 buf3 = empty_strided_cuda((), (), torch.float32) triton_per_fused__to_copy_div_eq_sum_2[grid(1)](buf1, arg1_1, buf3, 1, 256, num_warps=2, num_stages=1) del arg1_1 del buf1 return buf3, class _Metric(torch.nn.Module): def __init__(self): super().__init__() def forward(self, input: 'torch.Tensor', target: 'torch.Tensor'): raise NotImplementedError() class Accuracy(_Metric): def __init__(self): super().__init__() def forward(self, input: 'torch.Tensor', target: 'torch.Tensor'): """ :param input: [B, L] :param target: [B, L] :return: """ bool_acc = input.long() == target.long() return bool_acc.sum() / bool_acc.numel() class CategoricalAccuracyNew(Accuracy): def __init__(self): super().__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
Stillerman/MusicTransformer-pytorch
CategoricalAccuracy
false
14,439
[ "MIT" ]
170
73abb7cab271beba042b7b6fc06a6a9aaee82e8c
https://github.com/Stillerman/MusicTransformer-pytorch/tree/73abb7cab271beba042b7b6fc06a6a9aaee82e8c
BCEFocalLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/d4/cd4wjwlvjhubos5vzvgogwhxmjy3rqsy65qc33fagabl2w43tnrm.py # Topologically Sorted Source Nodes: [ce_loss, p, mul, sub, sub_1, mul_1, p_t, sub_2, pow_1, loss, loss_1], Original ATen: [aten.binary_cross_entropy_with_logits, aten.sigmoid, aten.mul, aten.rsub, aten.add, aten.pow, aten.mean] # Source node to ATen node mapping: # ce_loss => abs_1, exp, full_default, log1p, minimum, mul, neg, sub, sub_1, sub_2 # loss => mul_3 # loss_1 => mean # mul => mul_1 # mul_1 => mul_2 # p => sigmoid # p_t => add # pow_1 => pow_1 # sub => sub_3 # sub_1 => sub_4 # sub_2 => sub_5 # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg1_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %arg0_1), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %minimum : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%full_default, %arg0_1), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%arg0_1,), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%abs_1,), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg,), kwargs = {}) # %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum, %log1p), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %sub_1), kwargs = {}) # %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%arg0_1,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %arg1_1), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {}) # %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg1_1), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, %sub_4), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %mul_2), kwargs = {}) # %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %add), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_5, 2.0), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %pow_1), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%mul_3,), kwargs = {}) triton_per_fused_add_binary_cross_entropy_with_logits_mean_mul_pow_rsub_sigmoid_0 = async_compile.triton('triton_per_fused_add_binary_cross_entropy_with_logits_mean_mul_pow_rsub_sigmoid_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_binary_cross_entropy_with_logits_mean_mul_pow_rsub_sigmoid_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_binary_cross_entropy_with_logits_mean_mul_pow_rsub_sigmoid_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp3 = tl.load(in_ptr1 + (r0), None) tmp1 = 1.0 tmp2 = tmp1 - tmp0 tmp4 = tmp2 * tmp3 tmp5 = 0.0 tmp6 = triton_helpers.minimum(tmp5, tmp3) tmp7 = tl_math.abs(tmp3) tmp8 = -tmp7 tmp9 = tl_math.exp(tmp8) tmp10 = libdevice.log1p(tmp9) tmp11 = tmp6 - tmp10 tmp12 = tmp4 - tmp11 tmp13 = tl.sigmoid(tmp3) tmp14 = tmp13 * tmp0 tmp15 = tmp1 - tmp13 tmp16 = tmp15 * tmp2 tmp17 = tmp14 + tmp16 tmp18 = tmp1 - tmp17 tmp19 = tmp18 * tmp18 tmp20 = tmp12 * tmp19 tmp21 = tl.broadcast_to(tmp20, [RBLOCK]) tmp23 = triton_helpers.promote_to_tensor(tl.sum(tmp21, 0)) tmp24 = 256.0 tmp25 = tmp23 / tmp24 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp25, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [ce_loss, p, mul, sub, sub_1, mul_1, p_t, sub_2, pow_1, loss, loss_1], Original ATen: [aten.binary_cross_entropy_with_logits, aten.sigmoid, aten.mul, aten.rsub, aten.add, aten.pow, aten.mean] stream0 = get_raw_stream(0) triton_per_fused_add_binary_cross_entropy_with_logits_mean_mul_pow_rsub_sigmoid_0.run(buf1, arg1_1, arg0_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.nn.functional as F class BCEFocalLoss(nn.Module): def __init__(self, alpha=-1, gamma=2.0, reduction='mean'): super(BCEFocalLoss, self).__init__() self.alpha = alpha self.gamma = gamma self.reduction = reduction def forward(self, inputs, targets): p = torch.sigmoid(inputs) ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction='none') p_t = p * targets + (1 - p) * (1 - targets) loss = ce_loss * (1 - p_t) ** self.gamma if self.alpha >= 0: alpha_t = self.alpha * targets + (1 - self.alpha) * (1 - targets) loss = alpha_t * loss if self.reduction == 'mean': loss = loss.mean() elif self.reduction == 'sum': loss = loss.sum() return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_binary_cross_entropy_with_logits_mean_mul_pow_rsub_sigmoid_0( in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp3 = tl.load(in_ptr1 + r0, None) tmp1 = 1.0 tmp2 = tmp1 - tmp0 tmp4 = tmp2 * tmp3 tmp5 = 0.0 tmp6 = triton_helpers.minimum(tmp5, tmp3) tmp7 = tl_math.abs(tmp3) tmp8 = -tmp7 tmp9 = tl_math.exp(tmp8) tmp10 = libdevice.log1p(tmp9) tmp11 = tmp6 - tmp10 tmp12 = tmp4 - tmp11 tmp13 = tl.sigmoid(tmp3) tmp14 = tmp13 * tmp0 tmp15 = tmp1 - tmp13 tmp16 = tmp15 * tmp2 tmp17 = tmp14 + tmp16 tmp18 = tmp1 - tmp17 tmp19 = tmp18 * tmp18 tmp20 = tmp12 * tmp19 tmp21 = tl.broadcast_to(tmp20, [RBLOCK]) tmp23 = triton_helpers.promote_to_tensor(tl.sum(tmp21, 0)) tmp24 = 256.0 tmp25 = tmp23 / tmp24 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp25, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_add_binary_cross_entropy_with_logits_mean_mul_pow_rsub_sigmoid_0[ grid(1)](buf1, arg1_1, arg0_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf1, class BCEFocalLossNew(nn.Module): def __init__(self, alpha=-1, gamma=2.0, reduction='mean'): super(BCEFocalLossNew, self).__init__() self.alpha = alpha self.gamma = gamma self.reduction = reduction def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
Stochastic-Adventure/ClinicalTransformerRelationExtraction
BCEFocalLoss
false
14,440
[ "MIT" ]
78
eef956bbfbd64b008014ef7cac5f818087816725
https://github.com/Stochastic-Adventure/ClinicalTransformerRelationExtraction/tree/eef956bbfbd64b008014ef7cac5f818087816725