entry_point
stringlengths 1
65
| original_triton_code
stringlengths 4.5k
619k
| python_code
stringlengths 208
60.9k
| triton_code
stringlengths 1.15k
275k
| repo_name
stringlengths 7
115
| module_name
stringlengths 1
65
| synthetic
bool 1
class | uuid
int64 0
18.5k
| licenses
listlengths 1
6
| stars
int64 0
19.8k
| sha
stringlengths 40
40
| repo_link
stringlengths 72
180
|
---|---|---|---|---|---|---|---|---|---|---|---|
TOP1_max | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/um/cum65j23qchrjf5dndblqgbw6zomhgwfj2obfidtgy7b5j3zwklm.py
# Topologically Sorted Source Nodes: [logit_softmax], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# logit_softmax => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg0_1, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/si/csie65enqxks4y2i3a2mnlbgxmoxanxds5ktdojn3gmobsxoxxbu.py
# Topologically Sorted Source Nodes: [logit_softmax, sub, diff, sigmoid, pow_1, sigmoid_1, add, mul, loss], Original ATen: [aten._softmax, aten.sub, aten.neg, aten.sigmoid, aten.pow, aten.add, aten.mul, aten.mean]
# Source node to ATen node mapping:
# add => add
# diff => neg
# logit_softmax => div, sum_1
# loss => mean
# mul => mul
# pow_1 => pow_1
# sigmoid => sigmoid
# sigmoid_1 => sigmoid_1
# sub => sub_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%expand, %arg0_1), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sub_1,), kwargs = {})
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%neg,), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg0_1, 2), kwargs = {})
# %sigmoid_1 : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%pow_1,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sigmoid, %sigmoid_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %add), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%mul,), kwargs = {})
triton_per_fused__softmax_add_mean_mul_neg_pow_sigmoid_sub_1 = async_compile.triton('triton_per_fused__softmax_add_mean_mul_neg_pow_sigmoid_sub_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_add_mean_mul_neg_pow_sigmoid_sub_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__softmax_add_mean_mul_neg_pow_sigmoid_sub_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
r1 = (rindex // 4)
tmp0 = tl.load(in_ptr0 + (r2), None)
tmp1 = tl.load(in_ptr0 + (4*r1), None, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*r1)), None, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*r1)), None, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*r1)), None, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr1 + (5*r1), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr1 + (r2), None)
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tmp11 = tmp9 - tmp10
tmp12 = -tmp11
tmp13 = tl.sigmoid(tmp12)
tmp14 = tmp10 * tmp10
tmp15 = tl.sigmoid(tmp14)
tmp16 = tmp13 + tmp15
tmp17 = tmp8 * tmp16
tmp18 = tl.broadcast_to(tmp17, [XBLOCK, RBLOCK])
tmp20 = tl.sum(tmp18, 1)[:, None]
tmp21 = 16.0
tmp22 = tmp20 / tmp21
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp22, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [logit_softmax], Original ATen: [aten._softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__softmax_0.run(arg0_1, buf0, 16, grid=grid(16), stream=stream0)
buf1 = empty_strided_cuda((), (), torch.float32)
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [logit_softmax, sub, diff, sigmoid, pow_1, sigmoid_1, add, mul, loss], Original ATen: [aten._softmax, aten.sub, aten.neg, aten.sigmoid, aten.pow, aten.add, aten.mul, aten.mean]
triton_per_fused__softmax_add_mean_mul_neg_pow_sigmoid_sub_1.run(buf2, buf0, arg0_1, 1, 16, grid=grid(1), stream=stream0)
del arg0_1
del buf0
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class TOP1_max(nn.Module):
def __init__(self):
super(TOP1_max, self).__init__()
def forward(self, logit):
logit_softmax = F.softmax(logit, dim=1)
diff = -(logit.diag().view(-1, 1).expand_as(logit) - logit)
loss = torch.mean(logit_softmax * (torch.sigmoid(diff) + torch.
sigmoid(logit ** 2)))
return loss
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_per_fused__softmax_add_mean_mul_neg_pow_sigmoid_sub_1(in_out_ptr0,
in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
r1 = rindex // 4
tmp0 = tl.load(in_ptr0 + r2, None)
tmp1 = tl.load(in_ptr0 + 4 * r1, None, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * r1), None, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * r1), None, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * r1), None, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr1 + 5 * r1, None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr1 + r2, None)
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tmp11 = tmp9 - tmp10
tmp12 = -tmp11
tmp13 = tl.sigmoid(tmp12)
tmp14 = tmp10 * tmp10
tmp15 = tl.sigmoid(tmp14)
tmp16 = tmp13 + tmp15
tmp17 = tmp8 * tmp16
tmp18 = tl.broadcast_to(tmp17, [XBLOCK, RBLOCK])
tmp20 = tl.sum(tmp18, 1)[:, None]
tmp21 = 16.0
tmp22 = tmp20 / tmp21
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp22, None)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__softmax_0[grid(16)](arg0_1, buf0, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf1 = empty_strided_cuda((), (), torch.float32)
buf2 = buf1
del buf1
triton_per_fused__softmax_add_mean_mul_neg_pow_sigmoid_sub_1[grid(1)](
buf2, buf0, arg0_1, 1, 16, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
del buf0
return buf2,
class TOP1_maxNew(nn.Module):
def __init__(self):
super(TOP1_maxNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| hungthanhpham94/GRU4REC-pytorch | TOP1_max | false | 15,553 | [
"Apache-2.0"
]
| 184 | 666b84264c4afae757fe55c6997dcf0a4da1d44e | https://github.com/hungthanhpham94/GRU4REC-pytorch/tree/666b84264c4afae757fe55c6997dcf0a4da1d44e |
ConvolutionModule | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/bs/cbstxeghddltznr7shuzsnth6ngv6mnftr2w7pqzzm5flm72plbl.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x_1 => convolution
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_2, %primals_3, [1], [0], [1], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (16*x1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x1 + (4*y0)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/xd/cxdkgesb6qc4hbcvbeerj4gwfolzo6uujsc7nr7gmmdljjywjmd6.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x_1 => convolution
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_2, %primals_3, [1], [0], [1], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 4) % 8
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/2f/c2fbrnmwutoz3lg6i3ej5xgc7434bcb7tt67cl3pv4byjybrp5cg.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.glu]
# Source node to ATen node mapping:
# x_2 => glu
# Graph fragment:
# %glu : [num_users=2] = call_function[target=torch.ops.aten.glu.default](args = (%convolution, 1), kwargs = {})
triton_poi_fused_glu_2 = async_compile.triton('triton_poi_fused_glu_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_glu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_glu_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = (xindex // 16)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (32*x1)), xmask)
tmp1 = tl.load(in_ptr0 + (16 + x0 + (32*x1)), xmask)
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tl.store(out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/br/cbrspj634eg2bbs7vljhmrm74hrxshk4iwow2n6gl43bcvltbocl.py
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x_3 => convolution_1
# Graph fragment:
# %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%glu, %primals_4, %primals_5, [1], [0], [1], False, [0], 4), kwargs = {})
triton_poi_fused_convolution_3 = async_compile.triton('triton_poi_fused_convolution_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 4) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/rz/crznhq7nfh5rcx6pvqbf3sjg2iedanxrp6n6uqq3gdf2c4dkwsjb.py
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# x_5 => add, clone, rsqrt, var_mean
# Graph fragment:
# %clone : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%permute_1,), kwargs = {memory_format: torch.contiguous_format})
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%clone, [2]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
triton_poi_fused_native_layer_norm_4 = async_compile.triton('triton_poi_fused_native_layer_norm_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_4(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (16*x1)), xmask)
tmp1 = tl.load(in_ptr0 + (4 + x0 + (16*x1)), xmask)
tmp3 = tl.load(in_ptr0 + (8 + x0 + (16*x1)), xmask)
tmp5 = tl.load(in_ptr0 + (12 + x0 + (16*x1)), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + (x2), tmp8, xmask)
tl.store(out_ptr1 + (x2), tmp23, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ac/caco4bolpuottiggpde2pfpdegtdihvqokvccpojwffpok2ar6b6.py
# Topologically Sorted Source Nodes: [x_5, sigmoid, x_7, x_8], Original ATen: [aten.native_layer_norm, aten.sigmoid, aten.mul, aten.convolution]
# Source node to ATen node mapping:
# sigmoid => sigmoid
# x_5 => add, add_1, clone, mul, mul_1, rsqrt, sub, var_mean
# x_7 => mul_2
# x_8 => convolution_2
# Graph fragment:
# %clone : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%permute_1,), kwargs = {memory_format: torch.contiguous_format})
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%clone, [2]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clone, %getitem_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_6), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_7), kwargs = {})
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%permute_2,), kwargs = {})
# %mul_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%permute_2, %sigmoid), kwargs = {})
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%mul_2, %primals_8, %primals_9, [1], [0], [1], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_mul_native_layer_norm_sigmoid_5 = async_compile.triton('triton_poi_fused_convolution_mul_native_layer_norm_sigmoid_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_mul_native_layer_norm_sigmoid_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_mul_native_layer_norm_sigmoid_5(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr1, out_ptr2, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y1 = (yindex // 4)
y0 = yindex % 4
tmp0 = tl.load(in_ptr0 + (x2 + (4*y3)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x2 + (4*y1)), xmask & ymask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x2 + (4*y1)), xmask & ymask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (y0), ymask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tmp9 = tl.sigmoid(tmp8)
tmp10 = tmp8 * tmp9
tl.store(out_ptr1 + (y0 + (4*x2) + (16*y1)), tmp10, xmask & ymask)
tl.store(out_ptr2 + (x2 + (4*y3)), tmp10, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (8, 4, 1), (4, 1, 1))
assert_size_stride(primals_3, (8, ), (1, ))
assert_size_stride(primals_4, (4, 1, 1), (1, 1, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, ), (1, ))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_9, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(primals_1, buf0, 16, 4, grid=grid(16, 4), stream=stream0)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf1, (4, 8, 4), (32, 4, 1))
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf2, primals_3, 128, grid=grid(128), stream=stream0)
del primals_3
buf3 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.glu]
triton_poi_fused_glu_2.run(buf2, buf3, 64, grid=grid(64), stream=stream0)
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=4, bias=None)
assert_size_stride(buf4, (4, 4, 4), (16, 4, 1))
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution]
triton_poi_fused_convolution_3.run(buf5, primals_5, 64, grid=grid(64), stream=stream0)
del primals_5
buf6 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
buf7 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_4.run(buf5, buf6, buf7, 16, grid=grid(16), stream=stream0)
buf9 = empty_strided_cuda((4, 4, 4), (16, 1, 4), torch.float32)
buf10 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_5, sigmoid, x_7, x_8], Original ATen: [aten.native_layer_norm, aten.sigmoid, aten.mul, aten.convolution]
triton_poi_fused_convolution_mul_native_layer_norm_sigmoid_5.run(buf5, buf6, buf7, primals_6, primals_7, buf9, buf10, 16, 4, grid=grid(16, 4), stream=stream0)
del buf6
del buf7
# Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.convolution]
buf11 = extern_kernels.convolution(buf10, primals_8, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf11, (4, 4, 4), (16, 4, 1))
del buf10
buf12 = buf11; del buf11 # reuse
# Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.convolution]
triton_poi_fused_convolution_3.run(buf12, primals_9, 64, grid=grid(64), stream=stream0)
del primals_9
return (reinterpret_tensor(buf12, (4, 4, 4), (1, 16, 4), 0), primals_2, primals_4, primals_6, primals_7, primals_8, reinterpret_tensor(primals_1, (4, 4, 4), (4, 1, 16), 0), buf2, buf3, buf5, buf9, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((8, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 1, 1), (1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import Tensor
from torch import nn
class Swish(torch.nn.Module):
"""Construct an Swish object."""
def forward(self, x: 'Tensor') ->Tensor:
"""Return Swich activation function."""
return x * torch.sigmoid(x)
class ConvolutionModule(nn.Module):
"""ConvolutionModule in Conformer model.
Modified from https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/conformer/convolution.py
Args:
channels (int): The number of channels of conv layers.
kernel_size (int): Kernerl size of conv layers.
bias (bool): Whether to use bias in conv layers (default=True).
"""
def __init__(self, channels: 'int', kernel_size: 'int', bias: 'bool'=True
) ->None:
"""Construct an ConvolutionModule object."""
super(ConvolutionModule, self).__init__()
assert (kernel_size - 1) % 2 == 0
self.pointwise_conv1 = nn.Conv1d(channels, 2 * channels,
kernel_size=1, stride=1, padding=0, bias=bias)
self.depthwise_conv = nn.Conv1d(channels, channels, kernel_size,
stride=1, padding=(kernel_size - 1) // 2, groups=channels, bias
=bias)
self.norm = nn.LayerNorm(channels)
self.pointwise_conv2 = nn.Conv1d(channels, channels, kernel_size=1,
stride=1, padding=0, bias=bias)
self.activation = Swish()
def forward(self, x: 'Tensor') ->Tensor:
"""Compute convolution module.
Args:
x: Input tensor (#time, batch, channels).
Returns:
Tensor: Output tensor (#time, batch, channels).
"""
x = x.permute(1, 2, 0)
x = self.pointwise_conv1(x)
x = nn.functional.glu(x, dim=1)
x = self.depthwise_conv(x)
x = x.permute(0, 2, 1)
x = self.norm(x)
x = x.permute(0, 2, 1)
x = self.activation(x)
x = self.pointwise_conv2(x)
return x.permute(2, 0, 1)
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'channels': 4, 'kernel_size': 1}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
from torch import Tensor
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 16 * x1), xmask & ymask, eviction_policy
='evict_last')
tl.store(out_ptr0 + (x1 + 4 * y0), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 4 % 8
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
@triton.jit
def triton_poi_fused_glu_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = xindex // 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 32 * x1), xmask)
tmp1 = tl.load(in_ptr0 + (16 + x0 + 32 * x1), xmask)
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tl.store(out_ptr0 + x2, tmp3, xmask)
@triton.jit
def triton_poi_fused_convolution_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 4 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
@triton.jit
def triton_poi_fused_native_layer_norm_4(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 16 * x1), xmask)
tmp1 = tl.load(in_ptr0 + (4 + x0 + 16 * x1), xmask)
tmp3 = tl.load(in_ptr0 + (8 + x0 + 16 * x1), xmask)
tmp5 = tl.load(in_ptr0 + (12 + x0 + 16 * x1), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + x2, tmp8, xmask)
tl.store(out_ptr1 + x2, tmp23, xmask)
@triton.jit
def triton_poi_fused_convolution_mul_native_layer_norm_sigmoid_5(in_ptr0,
in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr1, out_ptr2, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y1 = yindex // 4
y0 = yindex % 4
tmp0 = tl.load(in_ptr0 + (x2 + 4 * y3), xmask & ymask, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr1 + (x2 + 4 * y1), xmask & ymask, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr2 + (x2 + 4 * y1), xmask & ymask, eviction_policy=
'evict_last')
tmp5 = tl.load(in_ptr3 + y0, ymask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tmp9 = tl.sigmoid(tmp8)
tmp10 = tmp8 * tmp9
tl.store(out_ptr1 + (y0 + 4 * x2 + 16 * y1), tmp10, xmask & ymask)
tl.store(out_ptr2 + (x2 + 4 * y3), tmp10, xmask & ymask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (8, 4, 1), (4, 1, 1))
assert_size_stride(primals_3, (8,), (1,))
assert_size_stride(primals_4, (4, 1, 1), (1, 1, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4,), (1,))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_9, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(16, 4)](primals_1, buf0, 16, 4,
XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1)
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,),
padding=(0,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf1, (4, 8, 4), (32, 4, 1))
buf2 = buf1
del buf1
triton_poi_fused_convolution_1[grid(128)](buf2, primals_3, 128,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_3
buf3 = buf0
del buf0
triton_poi_fused_glu_2[grid(64)](buf2, buf3, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1,),
padding=(0,), dilation=(1,), transposed=False, output_padding=(
0,), groups=4, bias=None)
assert_size_stride(buf4, (4, 4, 4), (16, 4, 1))
buf5 = buf4
del buf4
triton_poi_fused_convolution_3[grid(64)](buf5, primals_5, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del primals_5
buf6 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
buf7 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
triton_poi_fused_native_layer_norm_4[grid(16)](buf5, buf6, buf7, 16,
XBLOCK=16, num_warps=1, num_stages=1)
buf9 = empty_strided_cuda((4, 4, 4), (16, 1, 4), torch.float32)
buf10 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_convolution_mul_native_layer_norm_sigmoid_5[grid(
16, 4)](buf5, buf6, buf7, primals_6, primals_7, buf9, buf10, 16,
4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1)
del buf6
del buf7
buf11 = extern_kernels.convolution(buf10, primals_8, stride=(1,),
padding=(0,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf11, (4, 4, 4), (16, 4, 1))
del buf10
buf12 = buf11
del buf11
triton_poi_fused_convolution_3[grid(64)](buf12, primals_9, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del primals_9
return (reinterpret_tensor(buf12, (4, 4, 4), (1, 16, 4), 0), primals_2,
primals_4, primals_6, primals_7, primals_8, reinterpret_tensor(
primals_1, (4, 4, 4), (4, 1, 16), 0), buf2, buf3, buf5, buf9)
class Swish(torch.nn.Module):
"""Construct an Swish object."""
def forward(self, x: 'Tensor') ->Tensor:
"""Return Swich activation function."""
return x * torch.sigmoid(x)
class ConvolutionModuleNew(nn.Module):
"""ConvolutionModule in Conformer model.
Modified from https://github.com/espnet/espnet/blob/master/espnet/nets/pytorch_backend/conformer/convolution.py
Args:
channels (int): The number of channels of conv layers.
kernel_size (int): Kernerl size of conv layers.
bias (bool): Whether to use bias in conv layers (default=True).
"""
def __init__(self, channels: 'int', kernel_size: 'int', bias: 'bool'=True
) ->None:
"""Construct an ConvolutionModule object."""
super(ConvolutionModuleNew, self).__init__()
assert (kernel_size - 1) % 2 == 0
self.pointwise_conv1 = nn.Conv1d(channels, 2 * channels,
kernel_size=1, stride=1, padding=0, bias=bias)
self.depthwise_conv = nn.Conv1d(channels, channels, kernel_size,
stride=1, padding=(kernel_size - 1) // 2, groups=channels, bias
=bias)
self.norm = nn.LayerNorm(channels)
self.pointwise_conv2 = nn.Conv1d(channels, channels, kernel_size=1,
stride=1, padding=0, bias=bias)
self.activation = Swish()
def forward(self, input_0):
primals_2 = self.pointwise_conv1.weight
primals_3 = self.pointwise_conv1.bias
primals_4 = self.depthwise_conv.weight
primals_5 = self.depthwise_conv.bias
primals_6 = self.norm.weight
primals_7 = self.norm.bias
primals_8 = self.pointwise_conv2.weight
primals_9 = self.pointwise_conv2.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0]
| huangruizhe/icefall | ConvolutionModule | false | 15,554 | [
"Apache-2.0"
]
| 173 | ea8af0ee9af5169d93f8f389ffebbc27a1d9e82a | https://github.com/huangruizhe/icefall/tree/ea8af0ee9af5169d93f8f389ffebbc27a1d9e82a |
UnetGeneratorWBC | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/gw/cgwvngevezyioi33llipcuwltuqtivozkg4knqbabc42x3aygqlb.py
# Topologically Sorted Source Nodes: [x0, x0_1], Original ATen: [aten.convolution, aten.leaky_relu]
# Source node to ATen node mapping:
# x0 => convolution
# x0_1 => gt, mul, where
# Graph fragment:
# %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [3, 3], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.2), kwargs = {})
# %where : [num_users=3] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul), kwargs = {})
triton_poi_fused_convolution_leaky_relu_0 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[524288],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 524288
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 4096) % 32
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + (x3), tmp4, None)
tl.store(out_ptr1 + (x3), tmp7, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/y7/cy777jgdwthlbkse64s42g7ydx4nwt2i6xs2vudjee3suuzjxvpl.py
# Topologically Sorted Source Nodes: [x1, x1_1], Original ATen: [aten.convolution, aten.leaky_relu]
# Source node to ATen node mapping:
# x1 => convolution_1
# x1_1 => gt_1, mul_1, where_1
# Graph fragment:
# %convolution_1 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where, %primals_4, %primals_5, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_1 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_1, 0), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_1, 0.2), kwargs = {})
# %where_1 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %convolution_1, %mul_1), kwargs = {})
triton_poi_fused_convolution_leaky_relu_1 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 131072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 1024) % 32
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + (x3), tmp4, None)
tl.store(out_ptr1 + (x3), tmp7, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/wi/cwilhwmrmn5re6wis6cj3sphepuvsbozh5l3iow7ctwufykeb3jf.py
# Topologically Sorted Source Nodes: [x1_2, x1_3], Original ATen: [aten.convolution, aten.leaky_relu]
# Source node to ATen node mapping:
# x1_2 => convolution_2
# x1_3 => gt_2, mul_2, where_2
# Graph fragment:
# %convolution_2 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where_1, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_2 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_2, 0), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_2, 0.2), kwargs = {})
# %where_2 : [num_users=3] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %convolution_2, %mul_2), kwargs = {})
triton_poi_fused_convolution_leaky_relu_2 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 262144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 1024) % 64
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + (x3), tmp4, None)
tl.store(out_ptr1 + (x3), tmp7, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/bq/cbqwgsft46anyaberrnsnpto5bf6l3muvr3es3vesr2x4sbybzat.py
# Topologically Sorted Source Nodes: [x2, x2_1], Original ATen: [aten.convolution, aten.leaky_relu]
# Source node to ATen node mapping:
# x2 => convolution_3
# x2_1 => gt_3, mul_3, where_3
# Graph fragment:
# %convolution_3 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where_2, %primals_8, %primals_9, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_3 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_3, 0), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_3, 0.2), kwargs = {})
# %where_3 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_3, %convolution_3, %mul_3), kwargs = {})
triton_poi_fused_convolution_leaky_relu_3 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_3(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 256) % 64
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + (x3), tmp4, None)
tl.store(out_ptr1 + (x3), tmp7, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/nt/cntd42ytyx73ifo3kbz7syyzhetuaz5cp4rjzlg37ux3mf2ubiwv.py
# Topologically Sorted Source Nodes: [x2_2, x2_3], Original ATen: [aten.convolution, aten.leaky_relu]
# Source node to ATen node mapping:
# x2_2 => convolution_4
# x2_3 => gt_4, mul_4, where_4
# Graph fragment:
# %convolution_4 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where_3, %primals_10, %primals_11, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_4 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_4, 0), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_4, 0.2), kwargs = {})
# %where_4 : [num_users=3] = call_function[target=torch.ops.aten.where.self](args = (%gt_4, %convolution_4, %mul_4), kwargs = {})
triton_poi_fused_convolution_leaky_relu_4 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_4(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 131072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 256) % 128
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + (x3), tmp4, None)
tl.store(out_ptr1 + (x3), tmp7, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/o3/co3pxvq53tvirz3typh7asw4u2dfxg7zlp6xxkiuh7ul35wc4ss5.py
# Topologically Sorted Source Nodes: [x, add], Original ATen: [aten.convolution, aten.add]
# Source node to ATen node mapping:
# add => add
# x => convolution_6
# Graph fragment:
# %convolution_6 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%where_5, %primals_14, %primals_15, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_6, %where_4), kwargs = {})
triton_poi_fused_add_convolution_5 = async_compile.triton('triton_poi_fused_add_convolution_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_5(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 131072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 256) % 128
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x3), None)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/36/c36kbsybwkqfchsvfcgaqk3vm7pynyotvx4fmns6laha3z5bawa2.py
# Topologically Sorted Source Nodes: [x2_5, x2_6], Original ATen: [aten.convolution, aten.leaky_relu]
# Source node to ATen node mapping:
# x2_5 => convolution_13
# x2_6 => gt_9
# Graph fragment:
# %convolution_13 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%add_3, %primals_28, %primals_29, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_9 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_13, 0), kwargs = {})
triton_poi_fused_convolution_leaky_relu_6 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_6(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 256) % 64
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tl.store(out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/td/ctdrp5ezackwofdeuxqvqz32izlgnkvqm7rnuz2nzwh4uzhxiowl.py
# Topologically Sorted Source Nodes: [x3], Original ATen: [aten._to_copy]
# Source node to ATen node mapping:
# x3 => convert_element_type_1
# Graph fragment:
# %convert_element_type_1 : [num_users=5] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view, torch.int64), kwargs = {})
triton_poi_fused__to_copy_7 = async_compile.triton('triton_poi_fused__to_copy_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_7(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tl.store(out_ptr0 + (x0), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/fc/cfcabq2vqzy3iz7bxnnbm7sq7lldaoyihnc4gimded2qojurbycz.py
# Topologically Sorted Source Nodes: [x3], Original ATen: [aten.add, aten.clamp]
# Source node to ATen node mapping:
# x3 => add_5, clamp_max
# Graph fragment:
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_1, 1), kwargs = {})
# %clamp_max : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add_5, 15), kwargs = {})
triton_poi_fused_add_clamp_8 = async_compile.triton('triton_poi_fused_add_clamp_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_clamp_8(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tmp9 = tl.full([1], 1, tl.int64)
tmp10 = tmp8 + tmp9
tmp11 = tl.full([1], 15, tl.int64)
tmp12 = triton_helpers.minimum(tmp10, tmp11)
tl.store(out_ptr0 + (x0), tmp12, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/vo/cvouxmv6vnqawiy4bdpo3y3dimvux4f7bcikotwqjiwwpribkyjq.py
# Topologically Sorted Source Nodes: [x3], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp]
# Source node to ATen node mapping:
# x3 => add_4, clamp_max_2, clamp_min, clamp_min_2, convert_element_type, iota, mul_10, sub, sub_2
# Graph fragment:
# %iota : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (32,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota, torch.float32), kwargs = {})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type, 0.5), kwargs = {})
# %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_4, 0.5), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_10, 0.5), kwargs = {})
# %clamp_min : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub, 0.0), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min, %convert_element_type_3), kwargs = {})
# %clamp_min_2 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_2, 0.0), kwargs = {})
# %clamp_max_2 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_2, 1.0), kwargs = {})
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_9 = async_compile.triton('triton_poi_fused__to_copy_add_arange_clamp_mul_sub_9', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_clamp_mul_sub_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_9(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 - tmp9
tmp11 = triton_helpers.maximum(tmp10, tmp6)
tmp12 = 1.0
tmp13 = triton_helpers.minimum(tmp11, tmp12)
tl.store(out_ptr0 + (x0), tmp13, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/d5/cd53eup67y3n3p7ulsdg3zppoucltqa7gidwfxwb24ija5s5jfhj.py
# Topologically Sorted Source Nodes: [x2_5, x2_6, x3, add_4], Original ATen: [aten.convolution, aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul, aten.add]
# Source node to ATen node mapping:
# add_4 => add_11
# x2_5 => convolution_13
# x2_6 => mul_9, where_9
# x3 => _unsafe_index, _unsafe_index_1, _unsafe_index_2, _unsafe_index_3, add_10, add_8, add_9, mul_12, mul_13, mul_14, sub_3, sub_4, sub_6
# Graph fragment:
# %convolution_13 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%add_3, %primals_28, %primals_29, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %mul_9 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_13, 0.2), kwargs = {})
# %where_9 : [num_users=4] = call_function[target=torch.ops.aten.where.self](args = (%gt_9, %convolution_13, %mul_9), kwargs = {})
# %_unsafe_index : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_9, [None, None, %convert_element_type_1, %convert_element_type_3]), kwargs = {})
# %_unsafe_index_1 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_9, [None, None, %convert_element_type_1, %clamp_max_1]), kwargs = {})
# %_unsafe_index_2 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_9, [None, None, %clamp_max, %convert_element_type_3]), kwargs = {})
# %_unsafe_index_3 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_9, [None, None, %clamp_max, %clamp_max_1]), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_1, %_unsafe_index), kwargs = {})
# %mul_12 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, %clamp_max_2), kwargs = {})
# %add_8 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index, %mul_12), kwargs = {})
# %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_3, %_unsafe_index_2), kwargs = {})
# %mul_13 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_4, %clamp_max_2), kwargs = {})
# %add_9 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_2, %mul_13), kwargs = {})
# %sub_6 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_9, %add_8), kwargs = {})
# %mul_14 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_6, %clamp_max_3), kwargs = {})
# %add_10 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_8, %mul_14), kwargs = {})
# %add_11 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_10, %where_2), kwargs = {})
triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_10 = async_compile.triton('triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_10', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*i64', 3: '*i1', 4: '*fp32', 5: '*fp32', 6: '*i64', 7: '*i64', 8: '*fp32', 9: '*fp32', 10: '*fp32', 11: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_10', 'mutated_arg_names': ['in_out_ptr1'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_10(in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, xnumel, XBLOCK : tl.constexpr):
xnumel = 262144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 32) % 32
x0 = xindex % 32
x6 = (xindex // 1024)
x2 = (xindex // 1024) % 64
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr4 + (x2), None, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr5 + (x1), None, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr6 + (x0), None, eviction_policy='evict_last')
tmp35 = tl.load(in_ptr7 + (x0), None, eviction_policy='evict_last')
tmp47 = tl.load(in_ptr8 + (x1), None, eviction_policy='evict_last')
tmp50 = tl.load(in_ptr9 + (x4), None)
tmp1 = tl.full([XBLOCK], 16, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr2 + (tmp8 + (16*tmp4) + (256*x6)), None, eviction_policy='evict_last').to(tl.int1)
tmp10 = tl.load(in_ptr3 + (tmp8 + (16*tmp4) + (256*x6)), None, eviction_policy='evict_last')
tmp12 = tmp10 + tmp11
tmp13 = 0.2
tmp14 = tmp12 * tmp13
tmp15 = tl.where(tmp9, tmp12, tmp14)
tmp17 = tmp16 + tmp1
tmp18 = tmp16 < 0
tmp19 = tl.where(tmp18, tmp17, tmp16)
tmp20 = tl.load(in_ptr2 + (tmp8 + (16*tmp19) + (256*x6)), None, eviction_policy='evict_last').to(tl.int1)
tmp21 = tl.load(in_ptr3 + (tmp8 + (16*tmp19) + (256*x6)), None, eviction_policy='evict_last')
tmp22 = tmp21 + tmp11
tmp23 = tmp22 * tmp13
tmp24 = tl.where(tmp20, tmp22, tmp23)
tmp26 = tmp25 + tmp1
tmp27 = tmp25 < 0
tmp28 = tl.where(tmp27, tmp26, tmp25)
tmp29 = tl.load(in_ptr2 + (tmp28 + (16*tmp19) + (256*x6)), None, eviction_policy='evict_last').to(tl.int1)
tmp30 = tl.load(in_ptr3 + (tmp28 + (16*tmp19) + (256*x6)), None, eviction_policy='evict_last')
tmp31 = tmp30 + tmp11
tmp32 = tmp31 * tmp13
tmp33 = tl.where(tmp29, tmp31, tmp32)
tmp34 = tmp33 - tmp24
tmp36 = tmp34 * tmp35
tmp37 = tmp24 + tmp36
tmp38 = tl.load(in_ptr2 + (tmp28 + (16*tmp4) + (256*x6)), None, eviction_policy='evict_last').to(tl.int1)
tmp39 = tl.load(in_ptr3 + (tmp28 + (16*tmp4) + (256*x6)), None, eviction_policy='evict_last')
tmp40 = tmp39 + tmp11
tmp41 = tmp40 * tmp13
tmp42 = tl.where(tmp38, tmp40, tmp41)
tmp43 = tmp42 - tmp15
tmp44 = tmp43 * tmp35
tmp45 = tmp15 + tmp44
tmp46 = tmp45 - tmp37
tmp48 = tmp46 * tmp47
tmp49 = tmp37 + tmp48
tmp51 = tmp49 + tmp50
tl.store(in_out_ptr1 + (x4), tmp51, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/nh/cnhz73dqed6cl6dlnceqye6xa5zjywghhhptl7exw6krhwittx43.py
# Topologically Sorted Source Nodes: [x3_3, x3_4], Original ATen: [aten.convolution, aten.leaky_relu]
# Source node to ATen node mapping:
# x3_3 => convolution_15
# x3_4 => gt_11
# Graph fragment:
# %convolution_15 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where_10, %primals_32, %primals_33, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_11 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_15, 0), kwargs = {})
triton_poi_fused_convolution_leaky_relu_11 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_11', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_11', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_11(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 131072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 1024) % 32
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tl.store(out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/n7/cn7upxt5tdf2w6q4ieqa2ydqyy7kfdidi2hatnlcsac7tgb4oakb.py
# Topologically Sorted Source Nodes: [x4], Original ATen: [aten._to_copy]
# Source node to ATen node mapping:
# x4 => convert_element_type_5
# Graph fragment:
# %convert_element_type_5 : [num_users=5] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view_2, torch.int64), kwargs = {})
triton_poi_fused__to_copy_12 = async_compile.triton('triton_poi_fused__to_copy_12', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_12', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_12(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tl.store(out_ptr0 + (x0), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ug/cugyooc5uup6rrbbzk5gfmqerbrgnmz65mpwd66i64dwszhz2zj6.py
# Topologically Sorted Source Nodes: [x4], Original ATen: [aten.add, aten.clamp]
# Source node to ATen node mapping:
# x4 => add_13, clamp_max_4
# Graph fragment:
# %add_13 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_5, 1), kwargs = {})
# %clamp_max_4 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add_13, 31), kwargs = {})
triton_poi_fused_add_clamp_13 = async_compile.triton('triton_poi_fused_add_clamp_13', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_13', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_clamp_13(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tmp9 = tl.full([1], 1, tl.int64)
tmp10 = tmp8 + tmp9
tmp11 = tl.full([1], 31, tl.int64)
tmp12 = triton_helpers.minimum(tmp10, tmp11)
tl.store(out_ptr0 + (x0), tmp12, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/sa/csaenjpfs2ibym6vfqnkqfrjtds3rwefrtm3led3uajintjlhowu.py
# Topologically Sorted Source Nodes: [x4], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp]
# Source node to ATen node mapping:
# x4 => add_12, clamp_max_6, clamp_min_4, clamp_min_6, convert_element_type_4, iota_2, mul_17, sub_7, sub_9
# Graph fragment:
# %iota_2 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (64,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %convert_element_type_4 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota_2, torch.float32), kwargs = {})
# %add_12 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_4, 0.5), kwargs = {})
# %mul_17 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_12, 0.5), kwargs = {})
# %sub_7 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_17, 0.5), kwargs = {})
# %clamp_min_4 : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_7, 0.0), kwargs = {})
# %sub_9 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min_4, %convert_element_type_7), kwargs = {})
# %clamp_min_6 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_9, 0.0), kwargs = {})
# %clamp_max_6 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_6, 1.0), kwargs = {})
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_14 = async_compile.triton('triton_poi_fused__to_copy_add_arange_clamp_mul_sub_14', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_clamp_mul_sub_14', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_14(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 - tmp9
tmp11 = triton_helpers.maximum(tmp10, tmp6)
tmp12 = 1.0
tmp13 = triton_helpers.minimum(tmp11, tmp12)
tl.store(out_ptr0 + (x0), tmp13, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/vq/cvq7jaoihubzyc3htqykwscfqbwhwucijydjogji3rebspwkmkok.py
# Topologically Sorted Source Nodes: [x3_3, x3_4, x4, add_5], Original ATen: [aten.convolution, aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul, aten.add]
# Source node to ATen node mapping:
# add_5 => add_19
# x3_3 => convolution_15
# x3_4 => mul_16, where_11
# x4 => _unsafe_index_4, _unsafe_index_5, _unsafe_index_6, _unsafe_index_7, add_16, add_17, add_18, mul_19, mul_20, mul_21, sub_10, sub_11, sub_13
# Graph fragment:
# %convolution_15 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where_10, %primals_32, %primals_33, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %mul_16 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_15, 0.2), kwargs = {})
# %where_11 : [num_users=4] = call_function[target=torch.ops.aten.where.self](args = (%gt_11, %convolution_15, %mul_16), kwargs = {})
# %_unsafe_index_4 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_11, [None, None, %convert_element_type_5, %convert_element_type_7]), kwargs = {})
# %_unsafe_index_5 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_11, [None, None, %convert_element_type_5, %clamp_max_5]), kwargs = {})
# %_unsafe_index_6 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_11, [None, None, %clamp_max_4, %convert_element_type_7]), kwargs = {})
# %_unsafe_index_7 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_11, [None, None, %clamp_max_4, %clamp_max_5]), kwargs = {})
# %sub_10 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_5, %_unsafe_index_4), kwargs = {})
# %mul_19 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_10, %clamp_max_6), kwargs = {})
# %add_16 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_4, %mul_19), kwargs = {})
# %sub_11 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_7, %_unsafe_index_6), kwargs = {})
# %mul_20 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_11, %clamp_max_6), kwargs = {})
# %add_17 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_6, %mul_20), kwargs = {})
# %sub_13 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_17, %add_16), kwargs = {})
# %mul_21 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_13, %clamp_max_7), kwargs = {})
# %add_18 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_16, %mul_21), kwargs = {})
# %add_19 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_18, %where), kwargs = {})
triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_15 = async_compile.triton('triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_15', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[524288],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*i64', 3: '*i1', 4: '*fp32', 5: '*fp32', 6: '*i64', 7: '*i64', 8: '*fp32', 9: '*fp32', 10: '*fp32', 11: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_15', 'mutated_arg_names': ['in_out_ptr1'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_15(in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, xnumel, XBLOCK : tl.constexpr):
xnumel = 524288
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 64) % 64
x0 = xindex % 64
x6 = (xindex // 4096)
x2 = (xindex // 4096) % 32
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr4 + (x2), None, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr5 + (x1), None, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr6 + (x0), None, eviction_policy='evict_last')
tmp35 = tl.load(in_ptr7 + (x0), None, eviction_policy='evict_last')
tmp47 = tl.load(in_ptr8 + (x1), None, eviction_policy='evict_last')
tmp50 = tl.load(in_ptr9 + (x4), None)
tmp1 = tl.full([XBLOCK], 32, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr2 + (tmp8 + (32*tmp4) + (1024*x6)), None, eviction_policy='evict_last').to(tl.int1)
tmp10 = tl.load(in_ptr3 + (tmp8 + (32*tmp4) + (1024*x6)), None, eviction_policy='evict_last')
tmp12 = tmp10 + tmp11
tmp13 = 0.2
tmp14 = tmp12 * tmp13
tmp15 = tl.where(tmp9, tmp12, tmp14)
tmp17 = tmp16 + tmp1
tmp18 = tmp16 < 0
tmp19 = tl.where(tmp18, tmp17, tmp16)
tmp20 = tl.load(in_ptr2 + (tmp8 + (32*tmp19) + (1024*x6)), None, eviction_policy='evict_last').to(tl.int1)
tmp21 = tl.load(in_ptr3 + (tmp8 + (32*tmp19) + (1024*x6)), None, eviction_policy='evict_last')
tmp22 = tmp21 + tmp11
tmp23 = tmp22 * tmp13
tmp24 = tl.where(tmp20, tmp22, tmp23)
tmp26 = tmp25 + tmp1
tmp27 = tmp25 < 0
tmp28 = tl.where(tmp27, tmp26, tmp25)
tmp29 = tl.load(in_ptr2 + (tmp28 + (32*tmp19) + (1024*x6)), None, eviction_policy='evict_last').to(tl.int1)
tmp30 = tl.load(in_ptr3 + (tmp28 + (32*tmp19) + (1024*x6)), None, eviction_policy='evict_last')
tmp31 = tmp30 + tmp11
tmp32 = tmp31 * tmp13
tmp33 = tl.where(tmp29, tmp31, tmp32)
tmp34 = tmp33 - tmp24
tmp36 = tmp34 * tmp35
tmp37 = tmp24 + tmp36
tmp38 = tl.load(in_ptr2 + (tmp28 + (32*tmp4) + (1024*x6)), None, eviction_policy='evict_last').to(tl.int1)
tmp39 = tl.load(in_ptr3 + (tmp28 + (32*tmp4) + (1024*x6)), None, eviction_policy='evict_last')
tmp40 = tmp39 + tmp11
tmp41 = tmp40 * tmp13
tmp42 = tl.where(tmp38, tmp40, tmp41)
tmp43 = tmp42 - tmp15
tmp44 = tmp43 * tmp35
tmp45 = tmp15 + tmp44
tmp46 = tmp45 - tmp37
tmp48 = tmp46 * tmp47
tmp49 = tmp37 + tmp48
tmp51 = tmp49 + tmp50
tl.store(in_out_ptr1 + (x4), tmp51, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ki/cki2vrnwdugk2zkhahqrj6v4aab4payqhmqn2ctuag7gunvshgtn.py
# Topologically Sorted Source Nodes: [x4_3], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x4_3 => convolution_17
# Graph fragment:
# %convolution_17 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%where_12, %primals_36, %primals_37, [1, 1], [3, 3], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_16 = async_compile.triton('triton_poi_fused_convolution_16', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_16', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_16(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 49152
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 4096) % 3
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37 = args
args.clear()
assert_size_stride(primals_1, (32, 3, 7, 7), (147, 49, 7, 1))
assert_size_stride(primals_2, (32, ), (1, ))
assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_4, (32, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_5, (32, ), (1, ))
assert_size_stride(primals_6, (64, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_7, (64, ), (1, ))
assert_size_stride(primals_8, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_9, (64, ), (1, ))
assert_size_stride(primals_10, (128, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_11, (128, ), (1, ))
assert_size_stride(primals_12, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_13, (128, ), (1, ))
assert_size_stride(primals_14, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_15, (128, ), (1, ))
assert_size_stride(primals_16, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_17, (128, ), (1, ))
assert_size_stride(primals_18, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_19, (128, ), (1, ))
assert_size_stride(primals_20, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_21, (128, ), (1, ))
assert_size_stride(primals_22, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_23, (128, ), (1, ))
assert_size_stride(primals_24, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_25, (128, ), (1, ))
assert_size_stride(primals_26, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_27, (128, ), (1, ))
assert_size_stride(primals_28, (64, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_29, (64, ), (1, ))
assert_size_stride(primals_30, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_31, (64, ), (1, ))
assert_size_stride(primals_32, (32, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_33, (32, ), (1, ))
assert_size_stride(primals_34, (32, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_35, (32, ), (1, ))
assert_size_stride(primals_36, (3, 32, 7, 7), (1568, 49, 7, 1))
assert_size_stride(primals_37, (3, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x0], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 32, 64, 64), (131072, 4096, 64, 1))
buf1 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool)
buf2 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [x0, x0_1], Original ATen: [aten.convolution, aten.leaky_relu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_leaky_relu_0.run(buf0, primals_2, buf1, buf2, 524288, grid=grid(524288), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [x1], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(buf2, primals_4, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 32, 32, 32), (32768, 1024, 32, 1))
buf4 = empty_strided_cuda((4, 32, 32, 32), (32768, 1024, 32, 1), torch.bool)
buf5 = empty_strided_cuda((4, 32, 32, 32), (32768, 1024, 32, 1), torch.float32)
# Topologically Sorted Source Nodes: [x1, x1_1], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_1.run(buf3, primals_5, buf4, buf5, 131072, grid=grid(131072), stream=stream0)
del primals_5
# Topologically Sorted Source Nodes: [x1_2], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(buf5, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 64, 32, 32), (65536, 1024, 32, 1))
buf7 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.bool)
buf8 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.float32)
# Topologically Sorted Source Nodes: [x1_2, x1_3], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_2.run(buf6, primals_7, buf7, buf8, 262144, grid=grid(262144), stream=stream0)
del primals_7
# Topologically Sorted Source Nodes: [x2], Original ATen: [aten.convolution]
buf9 = extern_kernels.convolution(buf8, primals_8, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf9, (4, 64, 16, 16), (16384, 256, 16, 1))
buf10 = empty_strided_cuda((4, 64, 16, 16), (16384, 256, 16, 1), torch.bool)
buf11 = empty_strided_cuda((4, 64, 16, 16), (16384, 256, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [x2, x2_1], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_3.run(buf9, primals_9, buf10, buf11, 65536, grid=grid(65536), stream=stream0)
del buf9
del primals_9
# Topologically Sorted Source Nodes: [x2_2], Original ATen: [aten.convolution]
buf12 = extern_kernels.convolution(buf11, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 128, 16, 16), (32768, 256, 16, 1))
buf13 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.bool)
buf14 = reinterpret_tensor(buf3, (4, 128, 16, 16), (32768, 256, 16, 1), 0); del buf3 # reuse
# Topologically Sorted Source Nodes: [x2_2, x2_3], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_4.run(buf12, primals_11, buf13, buf14, 131072, grid=grid(131072), stream=stream0)
del primals_11
# Topologically Sorted Source Nodes: [conv2d_5], Original ATen: [aten.convolution]
buf15 = extern_kernels.convolution(buf14, primals_12, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf15, (4, 128, 16, 16), (32768, 256, 16, 1))
buf16 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.bool)
buf17 = buf12; del buf12 # reuse
# Topologically Sorted Source Nodes: [conv2d_5, leaky_relu_5], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_4.run(buf15, primals_13, buf16, buf17, 131072, grid=grid(131072), stream=stream0)
del primals_13
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf18 = extern_kernels.convolution(buf17, primals_14, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf18, (4, 128, 16, 16), (32768, 256, 16, 1))
buf19 = buf18; del buf18 # reuse
# Topologically Sorted Source Nodes: [x, add], Original ATen: [aten.convolution, aten.add]
triton_poi_fused_add_convolution_5.run(buf19, primals_15, buf14, 131072, grid=grid(131072), stream=stream0)
del primals_15
# Topologically Sorted Source Nodes: [conv2d_7], Original ATen: [aten.convolution]
buf20 = extern_kernels.convolution(buf19, primals_16, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf20, (4, 128, 16, 16), (32768, 256, 16, 1))
buf21 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.bool)
buf22 = buf15; del buf15 # reuse
# Topologically Sorted Source Nodes: [conv2d_7, leaky_relu_6], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_4.run(buf20, primals_17, buf21, buf22, 131072, grid=grid(131072), stream=stream0)
del primals_17
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution]
buf23 = extern_kernels.convolution(buf22, primals_18, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf23, (4, 128, 16, 16), (32768, 256, 16, 1))
buf24 = buf23; del buf23 # reuse
# Topologically Sorted Source Nodes: [x_1, add_1], Original ATen: [aten.convolution, aten.add]
triton_poi_fused_add_convolution_5.run(buf24, primals_19, buf19, 131072, grid=grid(131072), stream=stream0)
del primals_19
# Topologically Sorted Source Nodes: [conv2d_9], Original ATen: [aten.convolution]
buf25 = extern_kernels.convolution(buf24, primals_20, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf25, (4, 128, 16, 16), (32768, 256, 16, 1))
buf26 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.bool)
buf27 = buf20; del buf20 # reuse
# Topologically Sorted Source Nodes: [conv2d_9, leaky_relu_7], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_4.run(buf25, primals_21, buf26, buf27, 131072, grid=grid(131072), stream=stream0)
del primals_21
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution]
buf28 = extern_kernels.convolution(buf27, primals_22, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf28, (4, 128, 16, 16), (32768, 256, 16, 1))
buf29 = buf28; del buf28 # reuse
# Topologically Sorted Source Nodes: [x_2, add_2], Original ATen: [aten.convolution, aten.add]
triton_poi_fused_add_convolution_5.run(buf29, primals_23, buf24, 131072, grid=grid(131072), stream=stream0)
del primals_23
# Topologically Sorted Source Nodes: [conv2d_11], Original ATen: [aten.convolution]
buf30 = extern_kernels.convolution(buf29, primals_24, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf30, (4, 128, 16, 16), (32768, 256, 16, 1))
buf31 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.bool)
buf32 = buf25; del buf25 # reuse
# Topologically Sorted Source Nodes: [conv2d_11, leaky_relu_8], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_4.run(buf30, primals_25, buf31, buf32, 131072, grid=grid(131072), stream=stream0)
del buf30
del primals_25
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution]
buf33 = extern_kernels.convolution(buf32, primals_26, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf33, (4, 128, 16, 16), (32768, 256, 16, 1))
buf34 = buf33; del buf33 # reuse
# Topologically Sorted Source Nodes: [x_3, x2_4], Original ATen: [aten.convolution, aten.add]
triton_poi_fused_add_convolution_5.run(buf34, primals_27, buf29, 131072, grid=grid(131072), stream=stream0)
del primals_27
# Topologically Sorted Source Nodes: [x2_5], Original ATen: [aten.convolution]
buf35 = extern_kernels.convolution(buf34, primals_28, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf35, (4, 64, 16, 16), (16384, 256, 16, 1))
buf36 = empty_strided_cuda((4, 64, 16, 16), (16384, 256, 16, 1), torch.bool)
# Topologically Sorted Source Nodes: [x2_5, x2_6], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_6.run(buf35, primals_29, buf36, 65536, grid=grid(65536), stream=stream0)
buf37 = empty_strided_cuda((32, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [x3], Original ATen: [aten._to_copy]
triton_poi_fused__to_copy_7.run(buf37, 32, grid=grid(32), stream=stream0)
buf38 = empty_strided_cuda((32, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [x3], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_8.run(buf38, 32, grid=grid(32), stream=stream0)
buf39 = empty_strided_cuda((32, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [x3], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp]
triton_poi_fused__to_copy_7.run(buf39, 32, grid=grid(32), stream=stream0)
buf40 = empty_strided_cuda((32, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [x3], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_8.run(buf40, 32, grid=grid(32), stream=stream0)
buf43 = empty_strided_cuda((32, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [x3], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp]
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_9.run(buf43, 32, grid=grid(32), stream=stream0)
buf45 = empty_strided_cuda((32, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [x3], Original ATen: [aten.sub, aten.clamp]
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_9.run(buf45, 32, grid=grid(32), stream=stream0)
buf42 = buf6; del buf6 # reuse
buf46 = buf42; del buf42 # reuse
buf47 = buf46; del buf46 # reuse
# Topologically Sorted Source Nodes: [x2_5, x2_6, x3, add_4], Original ATen: [aten.convolution, aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul, aten.add]
triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_10.run(buf47, buf38, buf39, buf36, buf35, primals_29, buf37, buf40, buf43, buf45, buf8, 262144, grid=grid(262144), stream=stream0)
del buf35
del primals_29
# Topologically Sorted Source Nodes: [x3_1], Original ATen: [aten.convolution]
buf48 = extern_kernels.convolution(buf47, primals_30, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf48, (4, 64, 32, 32), (65536, 1024, 32, 1))
buf49 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.bool)
buf50 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.float32)
# Topologically Sorted Source Nodes: [x3_1, x3_2], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_2.run(buf48, primals_31, buf49, buf50, 262144, grid=grid(262144), stream=stream0)
del buf48
del primals_31
# Topologically Sorted Source Nodes: [x3_3], Original ATen: [aten.convolution]
buf51 = extern_kernels.convolution(buf50, primals_32, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf51, (4, 32, 32, 32), (32768, 1024, 32, 1))
buf52 = empty_strided_cuda((4, 32, 32, 32), (32768, 1024, 32, 1), torch.bool)
# Topologically Sorted Source Nodes: [x3_3, x3_4], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_11.run(buf51, primals_33, buf52, 131072, grid=grid(131072), stream=stream0)
buf53 = empty_strided_cuda((64, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [x4], Original ATen: [aten._to_copy]
triton_poi_fused__to_copy_12.run(buf53, 64, grid=grid(64), stream=stream0)
buf54 = empty_strided_cuda((64, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [x4], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_13.run(buf54, 64, grid=grid(64), stream=stream0)
buf55 = empty_strided_cuda((64, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [x4], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp]
triton_poi_fused__to_copy_12.run(buf55, 64, grid=grid(64), stream=stream0)
buf56 = empty_strided_cuda((64, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [x4], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_13.run(buf56, 64, grid=grid(64), stream=stream0)
buf59 = empty_strided_cuda((64, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [x4], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp]
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_14.run(buf59, 64, grid=grid(64), stream=stream0)
buf61 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [x4], Original ATen: [aten.sub, aten.clamp]
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_14.run(buf61, 64, grid=grid(64), stream=stream0)
buf58 = buf0; del buf0 # reuse
buf62 = buf58; del buf58 # reuse
buf63 = buf62; del buf62 # reuse
# Topologically Sorted Source Nodes: [x3_3, x3_4, x4, add_5], Original ATen: [aten.convolution, aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul, aten.add]
triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_15.run(buf63, buf54, buf55, buf52, buf51, primals_33, buf53, buf56, buf59, buf61, buf2, 524288, grid=grid(524288), stream=stream0)
del buf51
del primals_33
# Topologically Sorted Source Nodes: [x4_1], Original ATen: [aten.convolution]
buf64 = extern_kernels.convolution(buf63, primals_34, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf64, (4, 32, 64, 64), (131072, 4096, 64, 1))
buf65 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool)
buf66 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [x4_1, x4_2], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_0.run(buf64, primals_35, buf65, buf66, 524288, grid=grid(524288), stream=stream0)
del buf64
del primals_35
# Topologically Sorted Source Nodes: [x4_3], Original ATen: [aten.convolution]
buf67 = extern_kernels.convolution(buf66, primals_36, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf67, (4, 3, 64, 64), (12288, 4096, 64, 1))
buf68 = buf67; del buf67 # reuse
# Topologically Sorted Source Nodes: [x4_3], Original ATen: [aten.convolution]
triton_poi_fused_convolution_16.run(buf68, primals_37, 49152, grid=grid(49152), stream=stream0)
del primals_37
return (buf68, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, primals_20, primals_22, primals_24, primals_26, primals_28, primals_30, primals_32, primals_34, primals_36, buf1, buf2, buf4, buf5, buf7, buf8, buf10, buf11, buf13, buf14, buf16, buf17, buf19, buf21, buf22, buf24, buf26, buf27, buf29, buf31, buf32, buf34, buf36, buf37, buf38, buf39, buf40, buf43, buf45, buf47, buf49, buf50, buf52, buf53, buf54, buf55, buf56, buf59, buf61, buf63, buf65, buf66, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((32, 3, 7, 7), (147, 49, 7, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((32, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((64, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((128, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_17 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_18 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_19 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_20 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_21 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_22 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_23 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_24 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_25 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_26 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_27 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_28 = rand_strided((64, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_29 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_30 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_31 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_32 = rand_strided((32, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_33 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_34 = rand_strided((32, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_35 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_36 = rand_strided((3, 32, 7, 7), (1568, 49, 7, 1), device='cuda:0', dtype=torch.float32)
primals_37 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch.nn import functional as F
import torch.nn as nn
def tf_2xupsample_bilinear(x):
b, c, h, w = x.shape
out = torch.zeros(b, c, h * 2, w * 2)
out[:, :, ::2, ::2] = x
padded = F.pad(x, (0, 1, 0, 1), mode='replicate')
out[:, :, 1::2, ::2] = (padded[:, :, :-1, :-1] + padded[:, :, 1:, :-1]) / 2
out[:, :, ::2, 1::2] = (padded[:, :, :-1, :-1] + padded[:, :, :-1, 1:]) / 2
out[:, :, 1::2, 1::2] = (padded[:, :, :-1, :-1] + padded[:, :, 1:, 1:]) / 2
return out
def tf_same_padding(x, k_size=3):
j = k_size // 2
return F.pad(x, (j - 1, j, j - 1, j))
class Upsample(nn.Module):
"""Upsamples a given multi-channel 1D (temporal), 2D (spatial) or 3D (volumetric) data.
The input data is assumed to be of the form
`minibatch x channels x [optional depth] x [optional height] x width`.
Args:
size (int or Tuple[int] or Tuple[int, int] or Tuple[int, int, int], optional):
output spatial sizes
scale_factor (float or Tuple[float] or Tuple[float, float] or Tuple[float, float, float], optional):
multiplier for spatial size. Has to match input size if it is a tuple.
mode (str, optional): the upsampling algorithm: one of ``'nearest'``,
``'linear'``, ``'bilinear'``, ``'bicubic'`` and ``'trilinear'``.
Default: ``'nearest'``
align_corners (bool, optional): if ``True``, the corner pixels of the input
and output tensors are aligned, and thus preserving the values at
those pixels. This only has effect when :attr:`mode` is
``'linear'``, ``'bilinear'``, or ``'trilinear'``. Default: ``False``
"""
def __init__(self, size=None, scale_factor=None, mode='nearest',
align_corners=None):
super(Upsample, self).__init__()
if isinstance(scale_factor, tuple):
self.scale_factor = tuple(float(factor) for factor in scale_factor)
else:
self.scale_factor = float(scale_factor) if scale_factor else None
self.mode = mode
self.size = size
self.align_corners = align_corners
def forward(self, x):
return nn.functional.interpolate(x, size=self.size, scale_factor=
self.scale_factor, mode=self.mode, align_corners=self.align_corners
)
def extra_repr(self):
if self.scale_factor is not None:
info = 'scale_factor=' + str(self.scale_factor)
else:
info = 'size=' + str(self.size)
info += ', mode=' + self.mode
return info
class ResBlock(nn.Module):
def __init__(self, in_nf, out_nf=32, slope=0.2):
super().__init__()
self.conv1 = nn.Conv2d(in_nf, out_nf, 3, 1, padding=1)
self.conv2 = nn.Conv2d(out_nf, out_nf, 3, 1, padding=1)
self.leaky_relu = nn.LeakyReLU(negative_slope=0.2, inplace=False)
def forward(self, inputs):
x = self.conv2(self.leaky_relu(self.conv1(inputs)))
return x + inputs
class Upsample_2xBil_TF(nn.Module):
def __init__(self):
super(Upsample_2xBil_TF, self).__init__()
def forward(self, x):
return tf_2xupsample_bilinear(x)
class UnetGeneratorWBC(nn.Module):
""" UNet Generator as used in Learning to Cartoonize Using White-box
Cartoon Representations for image to image translation
https://systemerrorwang.github.io/White-box-Cartoonization/paper/06791.pdf
https://systemerrorwang.github.io/White-box-Cartoonization/paper/06791-supp.pdf
"""
def __init__(self, nf=32, mode='pt', slope=0.2):
super(UnetGeneratorWBC, self).__init__()
self.mode = mode
self.conv = nn.Conv2d(3, nf, 7, 1, padding=3)
if mode == 'tf':
self.conv_1 = nn.Conv2d(nf, nf, 3, stride=2, padding=0)
else:
self.conv_1 = nn.Conv2d(nf, nf, 3, stride=2, padding=1)
self.conv_2 = nn.Conv2d(nf, nf * 2, 3, 1, padding=1)
if mode == 'tf':
self.conv_3 = nn.Conv2d(nf * 2, nf * 2, 3, stride=2, padding=0)
else:
self.conv_3 = nn.Conv2d(nf * 2, nf * 2, 3, stride=2, padding=1)
self.conv_4 = nn.Conv2d(nf * 2, nf * 4, 3, 1, padding=1)
self.block_0 = ResBlock(nf * 4, nf * 4, slope=slope)
self.block_1 = ResBlock(nf * 4, nf * 4, slope=slope)
self.block_2 = ResBlock(nf * 4, nf * 4, slope=slope)
self.block_3 = ResBlock(nf * 4, nf * 4, slope=slope)
self.conv_5 = nn.Conv2d(nf * 4, nf * 2, 3, 1, padding=1)
self.conv_6 = nn.Conv2d(nf * 2, nf * 2, 3, 1, padding=1)
self.conv_7 = nn.Conv2d(nf * 2, nf, 3, 1, padding=1)
self.conv_8 = nn.Conv2d(nf, nf, 3, 1, padding=1)
self.conv_9 = nn.Conv2d(nf, 3, 7, 1, padding=3)
self.leaky_relu = nn.LeakyReLU(negative_slope=slope, inplace=False)
if mode == 'tf':
self.upsample = Upsample_2xBil_TF()
else:
self.upsample = Upsample(scale_factor=2, mode='bilinear',
align_corners=False)
def forward(self, x):
x0 = self.conv(x)
x0 = self.leaky_relu(x0)
if self.mode == 'tf':
x1 = self.conv_1(tf_same_padding(x0))
else:
x1 = self.conv_1(x0)
x1 = self.leaky_relu(x1)
x1 = self.conv_2(x1)
x1 = self.leaky_relu(x1)
if self.mode == 'tf':
x2 = self.conv_3(tf_same_padding(x1))
else:
x2 = self.conv_3(x1)
x2 = self.leaky_relu(x2)
x2 = self.conv_4(x2)
x2 = self.leaky_relu(x2)
x2 = self.block_3(self.block_2(self.block_1(self.block_0(x2))))
x2 = self.conv_5(x2)
x2 = self.leaky_relu(x2)
x3 = self.upsample(x2)
x3 = self.conv_6(x3 + x1)
x3 = self.leaky_relu(x3)
x3 = self.conv_7(x3)
x3 = self.leaky_relu(x3)
x4 = self.upsample(x3)
x4 = self.conv_8(x4 + x0)
x4 = self.leaky_relu(x4)
x4 = self.conv_9(x4)
return x4
def get_inputs():
return [torch.rand([4, 3, 64, 64])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch.nn import functional as F
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4096 % 32
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + x3, tmp4, None)
tl.store(out_ptr1 + x3, tmp7, None)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 1024 % 32
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + x3, tmp4, None)
tl.store(out_ptr1 + x3, tmp7, None)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_2(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 1024 % 64
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + x3, tmp4, None)
tl.store(out_ptr1 + x3, tmp7, None)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_3(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 256 % 64
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + x3, tmp4, None)
tl.store(out_ptr1 + x3, tmp7, None)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_4(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 256 % 128
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + x3, tmp4, None)
tl.store(out_ptr1 + x3, tmp7, None)
@triton.jit
def triton_poi_fused_add_convolution_5(in_out_ptr0, in_ptr0, in_ptr1,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 256 % 128
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + x3, None)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_6(in_ptr0, in_ptr1, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 256 % 64
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tl.store(out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused__to_copy_7(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tl.store(out_ptr0 + x0, tmp8, xmask)
@triton.jit
def triton_poi_fused_add_clamp_8(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tmp9 = tl.full([1], 1, tl.int64)
tmp10 = tmp8 + tmp9
tmp11 = tl.full([1], 15, tl.int64)
tmp12 = triton_helpers.minimum(tmp10, tmp11)
tl.store(out_ptr0 + x0, tmp12, xmask)
@triton.jit
def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_9(out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 - tmp9
tmp11 = triton_helpers.maximum(tmp10, tmp6)
tmp12 = 1.0
tmp13 = triton_helpers.minimum(tmp11, tmp12)
tl.store(out_ptr0 + x0, tmp13, xmask)
@triton.jit
def triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_10(
in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5,
in_ptr6, in_ptr7, in_ptr8, in_ptr9, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 32 % 32
x0 = xindex % 32
x6 = xindex // 1024
x2 = xindex // 1024 % 64
x4 = xindex
tmp0 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr4 + x2, None, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr5 + x1, None, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr6 + x0, None, eviction_policy='evict_last')
tmp35 = tl.load(in_ptr7 + x0, None, eviction_policy='evict_last')
tmp47 = tl.load(in_ptr8 + x1, None, eviction_policy='evict_last')
tmp50 = tl.load(in_ptr9 + x4, None)
tmp1 = tl.full([XBLOCK], 16, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr2 + (tmp8 + 16 * tmp4 + 256 * x6), None,
eviction_policy='evict_last').to(tl.int1)
tmp10 = tl.load(in_ptr3 + (tmp8 + 16 * tmp4 + 256 * x6), None,
eviction_policy='evict_last')
tmp12 = tmp10 + tmp11
tmp13 = 0.2
tmp14 = tmp12 * tmp13
tmp15 = tl.where(tmp9, tmp12, tmp14)
tmp17 = tmp16 + tmp1
tmp18 = tmp16 < 0
tmp19 = tl.where(tmp18, tmp17, tmp16)
tmp20 = tl.load(in_ptr2 + (tmp8 + 16 * tmp19 + 256 * x6), None,
eviction_policy='evict_last').to(tl.int1)
tmp21 = tl.load(in_ptr3 + (tmp8 + 16 * tmp19 + 256 * x6), None,
eviction_policy='evict_last')
tmp22 = tmp21 + tmp11
tmp23 = tmp22 * tmp13
tmp24 = tl.where(tmp20, tmp22, tmp23)
tmp26 = tmp25 + tmp1
tmp27 = tmp25 < 0
tmp28 = tl.where(tmp27, tmp26, tmp25)
tmp29 = tl.load(in_ptr2 + (tmp28 + 16 * tmp19 + 256 * x6), None,
eviction_policy='evict_last').to(tl.int1)
tmp30 = tl.load(in_ptr3 + (tmp28 + 16 * tmp19 + 256 * x6), None,
eviction_policy='evict_last')
tmp31 = tmp30 + tmp11
tmp32 = tmp31 * tmp13
tmp33 = tl.where(tmp29, tmp31, tmp32)
tmp34 = tmp33 - tmp24
tmp36 = tmp34 * tmp35
tmp37 = tmp24 + tmp36
tmp38 = tl.load(in_ptr2 + (tmp28 + 16 * tmp4 + 256 * x6), None,
eviction_policy='evict_last').to(tl.int1)
tmp39 = tl.load(in_ptr3 + (tmp28 + 16 * tmp4 + 256 * x6), None,
eviction_policy='evict_last')
tmp40 = tmp39 + tmp11
tmp41 = tmp40 * tmp13
tmp42 = tl.where(tmp38, tmp40, tmp41)
tmp43 = tmp42 - tmp15
tmp44 = tmp43 * tmp35
tmp45 = tmp15 + tmp44
tmp46 = tmp45 - tmp37
tmp48 = tmp46 * tmp47
tmp49 = tmp37 + tmp48
tmp51 = tmp49 + tmp50
tl.store(in_out_ptr1 + x4, tmp51, None)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_11(in_ptr0, in_ptr1, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 1024 % 32
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tl.store(out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused__to_copy_12(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tl.store(out_ptr0 + x0, tmp8, xmask)
@triton.jit
def triton_poi_fused_add_clamp_13(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tmp9 = tl.full([1], 1, tl.int64)
tmp10 = tmp8 + tmp9
tmp11 = tl.full([1], 31, tl.int64)
tmp12 = triton_helpers.minimum(tmp10, tmp11)
tl.store(out_ptr0 + x0, tmp12, xmask)
@triton.jit
def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_14(out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 - tmp9
tmp11 = triton_helpers.maximum(tmp10, tmp6)
tmp12 = 1.0
tmp13 = triton_helpers.minimum(tmp11, tmp12)
tl.store(out_ptr0 + x0, tmp13, xmask)
@triton.jit
def triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_15(
in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5,
in_ptr6, in_ptr7, in_ptr8, in_ptr9, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 64 % 64
x0 = xindex % 64
x6 = xindex // 4096
x2 = xindex // 4096 % 32
x4 = xindex
tmp0 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr4 + x2, None, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr5 + x1, None, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr6 + x0, None, eviction_policy='evict_last')
tmp35 = tl.load(in_ptr7 + x0, None, eviction_policy='evict_last')
tmp47 = tl.load(in_ptr8 + x1, None, eviction_policy='evict_last')
tmp50 = tl.load(in_ptr9 + x4, None)
tmp1 = tl.full([XBLOCK], 32, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr2 + (tmp8 + 32 * tmp4 + 1024 * x6), None,
eviction_policy='evict_last').to(tl.int1)
tmp10 = tl.load(in_ptr3 + (tmp8 + 32 * tmp4 + 1024 * x6), None,
eviction_policy='evict_last')
tmp12 = tmp10 + tmp11
tmp13 = 0.2
tmp14 = tmp12 * tmp13
tmp15 = tl.where(tmp9, tmp12, tmp14)
tmp17 = tmp16 + tmp1
tmp18 = tmp16 < 0
tmp19 = tl.where(tmp18, tmp17, tmp16)
tmp20 = tl.load(in_ptr2 + (tmp8 + 32 * tmp19 + 1024 * x6), None,
eviction_policy='evict_last').to(tl.int1)
tmp21 = tl.load(in_ptr3 + (tmp8 + 32 * tmp19 + 1024 * x6), None,
eviction_policy='evict_last')
tmp22 = tmp21 + tmp11
tmp23 = tmp22 * tmp13
tmp24 = tl.where(tmp20, tmp22, tmp23)
tmp26 = tmp25 + tmp1
tmp27 = tmp25 < 0
tmp28 = tl.where(tmp27, tmp26, tmp25)
tmp29 = tl.load(in_ptr2 + (tmp28 + 32 * tmp19 + 1024 * x6), None,
eviction_policy='evict_last').to(tl.int1)
tmp30 = tl.load(in_ptr3 + (tmp28 + 32 * tmp19 + 1024 * x6), None,
eviction_policy='evict_last')
tmp31 = tmp30 + tmp11
tmp32 = tmp31 * tmp13
tmp33 = tl.where(tmp29, tmp31, tmp32)
tmp34 = tmp33 - tmp24
tmp36 = tmp34 * tmp35
tmp37 = tmp24 + tmp36
tmp38 = tl.load(in_ptr2 + (tmp28 + 32 * tmp4 + 1024 * x6), None,
eviction_policy='evict_last').to(tl.int1)
tmp39 = tl.load(in_ptr3 + (tmp28 + 32 * tmp4 + 1024 * x6), None,
eviction_policy='evict_last')
tmp40 = tmp39 + tmp11
tmp41 = tmp40 * tmp13
tmp42 = tl.where(tmp38, tmp40, tmp41)
tmp43 = tmp42 - tmp15
tmp44 = tmp43 * tmp35
tmp45 = tmp15 + tmp44
tmp46 = tmp45 - tmp37
tmp48 = tmp46 * tmp47
tmp49 = tmp37 + tmp48
tmp51 = tmp49 + tmp50
tl.store(in_out_ptr1 + x4, tmp51, None)
@triton.jit
def triton_poi_fused_convolution_16(in_out_ptr0, in_ptr0, xnumel, XBLOCK:
tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4096 % 3
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17,
primals_18, primals_19, primals_20, primals_21, primals_22,
primals_23, primals_24, primals_25, primals_26, primals_27,
primals_28, primals_29, primals_30, primals_31, primals_32,
primals_33, primals_34, primals_35, primals_36, primals_37) = args
args.clear()
assert_size_stride(primals_1, (32, 3, 7, 7), (147, 49, 7, 1))
assert_size_stride(primals_2, (32,), (1,))
assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_4, (32, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_5, (32,), (1,))
assert_size_stride(primals_6, (64, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_7, (64,), (1,))
assert_size_stride(primals_8, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_9, (64,), (1,))
assert_size_stride(primals_10, (128, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_11, (128,), (1,))
assert_size_stride(primals_12, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_13, (128,), (1,))
assert_size_stride(primals_14, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_15, (128,), (1,))
assert_size_stride(primals_16, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_17, (128,), (1,))
assert_size_stride(primals_18, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_19, (128,), (1,))
assert_size_stride(primals_20, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_21, (128,), (1,))
assert_size_stride(primals_22, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_23, (128,), (1,))
assert_size_stride(primals_24, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_25, (128,), (1,))
assert_size_stride(primals_26, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_27, (128,), (1,))
assert_size_stride(primals_28, (64, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_29, (64,), (1,))
assert_size_stride(primals_30, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_31, (64,), (1,))
assert_size_stride(primals_32, (32, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_33, (32,), (1,))
assert_size_stride(primals_34, (32, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_35, (32,), (1,))
assert_size_stride(primals_36, (3, 32, 7, 7), (1568, 49, 7, 1))
assert_size_stride(primals_37, (3,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(3, 3), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 32, 64, 64), (131072, 4096, 64, 1))
buf1 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1),
torch.bool)
buf2 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_leaky_relu_0[grid(524288)](buf0,
primals_2, buf1, buf2, 524288, XBLOCK=512, num_warps=8,
num_stages=1)
del primals_2
buf3 = extern_kernels.convolution(buf2, primals_4, stride=(2, 2),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 32, 32, 32), (32768, 1024, 32, 1))
buf4 = empty_strided_cuda((4, 32, 32, 32), (32768, 1024, 32, 1),
torch.bool)
buf5 = empty_strided_cuda((4, 32, 32, 32), (32768, 1024, 32, 1),
torch.float32)
triton_poi_fused_convolution_leaky_relu_1[grid(131072)](buf3,
primals_5, buf4, buf5, 131072, XBLOCK=1024, num_warps=4,
num_stages=1)
del primals_5
buf6 = extern_kernels.convolution(buf5, primals_6, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 64, 32, 32), (65536, 1024, 32, 1))
buf7 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1),
torch.bool)
buf8 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1),
torch.float32)
triton_poi_fused_convolution_leaky_relu_2[grid(262144)](buf6,
primals_7, buf7, buf8, 262144, XBLOCK=1024, num_warps=4,
num_stages=1)
del primals_7
buf9 = extern_kernels.convolution(buf8, primals_8, stride=(2, 2),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf9, (4, 64, 16, 16), (16384, 256, 16, 1))
buf10 = empty_strided_cuda((4, 64, 16, 16), (16384, 256, 16, 1),
torch.bool)
buf11 = empty_strided_cuda((4, 64, 16, 16), (16384, 256, 16, 1),
torch.float32)
triton_poi_fused_convolution_leaky_relu_3[grid(65536)](buf9,
primals_9, buf10, buf11, 65536, XBLOCK=512, num_warps=4,
num_stages=1)
del buf9
del primals_9
buf12 = extern_kernels.convolution(buf11, primals_10, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 128, 16, 16), (32768, 256, 16, 1))
buf13 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1),
torch.bool)
buf14 = reinterpret_tensor(buf3, (4, 128, 16, 16), (32768, 256, 16,
1), 0)
del buf3
triton_poi_fused_convolution_leaky_relu_4[grid(131072)](buf12,
primals_11, buf13, buf14, 131072, XBLOCK=1024, num_warps=4,
num_stages=1)
del primals_11
buf15 = extern_kernels.convolution(buf14, primals_12, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf15, (4, 128, 16, 16), (32768, 256, 16, 1))
buf16 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1),
torch.bool)
buf17 = buf12
del buf12
triton_poi_fused_convolution_leaky_relu_4[grid(131072)](buf15,
primals_13, buf16, buf17, 131072, XBLOCK=1024, num_warps=4,
num_stages=1)
del primals_13
buf18 = extern_kernels.convolution(buf17, primals_14, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf18, (4, 128, 16, 16), (32768, 256, 16, 1))
buf19 = buf18
del buf18
triton_poi_fused_add_convolution_5[grid(131072)](buf19, primals_15,
buf14, 131072, XBLOCK=512, num_warps=8, num_stages=1)
del primals_15
buf20 = extern_kernels.convolution(buf19, primals_16, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf20, (4, 128, 16, 16), (32768, 256, 16, 1))
buf21 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1),
torch.bool)
buf22 = buf15
del buf15
triton_poi_fused_convolution_leaky_relu_4[grid(131072)](buf20,
primals_17, buf21, buf22, 131072, XBLOCK=1024, num_warps=4,
num_stages=1)
del primals_17
buf23 = extern_kernels.convolution(buf22, primals_18, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf23, (4, 128, 16, 16), (32768, 256, 16, 1))
buf24 = buf23
del buf23
triton_poi_fused_add_convolution_5[grid(131072)](buf24, primals_19,
buf19, 131072, XBLOCK=512, num_warps=8, num_stages=1)
del primals_19
buf25 = extern_kernels.convolution(buf24, primals_20, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf25, (4, 128, 16, 16), (32768, 256, 16, 1))
buf26 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1),
torch.bool)
buf27 = buf20
del buf20
triton_poi_fused_convolution_leaky_relu_4[grid(131072)](buf25,
primals_21, buf26, buf27, 131072, XBLOCK=1024, num_warps=4,
num_stages=1)
del primals_21
buf28 = extern_kernels.convolution(buf27, primals_22, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf28, (4, 128, 16, 16), (32768, 256, 16, 1))
buf29 = buf28
del buf28
triton_poi_fused_add_convolution_5[grid(131072)](buf29, primals_23,
buf24, 131072, XBLOCK=512, num_warps=8, num_stages=1)
del primals_23
buf30 = extern_kernels.convolution(buf29, primals_24, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf30, (4, 128, 16, 16), (32768, 256, 16, 1))
buf31 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1),
torch.bool)
buf32 = buf25
del buf25
triton_poi_fused_convolution_leaky_relu_4[grid(131072)](buf30,
primals_25, buf31, buf32, 131072, XBLOCK=1024, num_warps=4,
num_stages=1)
del buf30
del primals_25
buf33 = extern_kernels.convolution(buf32, primals_26, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf33, (4, 128, 16, 16), (32768, 256, 16, 1))
buf34 = buf33
del buf33
triton_poi_fused_add_convolution_5[grid(131072)](buf34, primals_27,
buf29, 131072, XBLOCK=512, num_warps=8, num_stages=1)
del primals_27
buf35 = extern_kernels.convolution(buf34, primals_28, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf35, (4, 64, 16, 16), (16384, 256, 16, 1))
buf36 = empty_strided_cuda((4, 64, 16, 16), (16384, 256, 16, 1),
torch.bool)
triton_poi_fused_convolution_leaky_relu_6[grid(65536)](buf35,
primals_29, buf36, 65536, XBLOCK=512, num_warps=4, num_stages=1)
buf37 = empty_strided_cuda((32, 1), (1, 1), torch.int64)
triton_poi_fused__to_copy_7[grid(32)](buf37, 32, XBLOCK=32,
num_warps=1, num_stages=1)
buf38 = empty_strided_cuda((32, 1), (1, 1), torch.int64)
triton_poi_fused_add_clamp_8[grid(32)](buf38, 32, XBLOCK=32,
num_warps=1, num_stages=1)
buf39 = empty_strided_cuda((32,), (1,), torch.int64)
triton_poi_fused__to_copy_7[grid(32)](buf39, 32, XBLOCK=32,
num_warps=1, num_stages=1)
buf40 = empty_strided_cuda((32,), (1,), torch.int64)
triton_poi_fused_add_clamp_8[grid(32)](buf40, 32, XBLOCK=32,
num_warps=1, num_stages=1)
buf43 = empty_strided_cuda((32,), (1,), torch.float32)
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_9[grid(32)](buf43,
32, XBLOCK=32, num_warps=1, num_stages=1)
buf45 = empty_strided_cuda((32, 1), (1, 1), torch.float32)
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_9[grid(32)](buf45,
32, XBLOCK=32, num_warps=1, num_stages=1)
buf42 = buf6
del buf6
buf46 = buf42
del buf42
buf47 = buf46
del buf46
triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_10[
grid(262144)](buf47, buf38, buf39, buf36, buf35, primals_29,
buf37, buf40, buf43, buf45, buf8, 262144, XBLOCK=512, num_warps
=8, num_stages=1)
del buf35
del primals_29
buf48 = extern_kernels.convolution(buf47, primals_30, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf48, (4, 64, 32, 32), (65536, 1024, 32, 1))
buf49 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1),
torch.bool)
buf50 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1),
torch.float32)
triton_poi_fused_convolution_leaky_relu_2[grid(262144)](buf48,
primals_31, buf49, buf50, 262144, XBLOCK=1024, num_warps=4,
num_stages=1)
del buf48
del primals_31
buf51 = extern_kernels.convolution(buf50, primals_32, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf51, (4, 32, 32, 32), (32768, 1024, 32, 1))
buf52 = empty_strided_cuda((4, 32, 32, 32), (32768, 1024, 32, 1),
torch.bool)
triton_poi_fused_convolution_leaky_relu_11[grid(131072)](buf51,
primals_33, buf52, 131072, XBLOCK=1024, num_warps=4, num_stages=1)
buf53 = empty_strided_cuda((64, 1), (1, 1), torch.int64)
triton_poi_fused__to_copy_12[grid(64)](buf53, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf54 = empty_strided_cuda((64, 1), (1, 1), torch.int64)
triton_poi_fused_add_clamp_13[grid(64)](buf54, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf55 = empty_strided_cuda((64,), (1,), torch.int64)
triton_poi_fused__to_copy_12[grid(64)](buf55, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf56 = empty_strided_cuda((64,), (1,), torch.int64)
triton_poi_fused_add_clamp_13[grid(64)](buf56, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf59 = empty_strided_cuda((64,), (1,), torch.float32)
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_14[grid(64)](buf59,
64, XBLOCK=64, num_warps=1, num_stages=1)
buf61 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_14[grid(64)](buf61,
64, XBLOCK=64, num_warps=1, num_stages=1)
buf58 = buf0
del buf0
buf62 = buf58
del buf58
buf63 = buf62
del buf62
triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_15[
grid(524288)](buf63, buf54, buf55, buf52, buf51, primals_33,
buf53, buf56, buf59, buf61, buf2, 524288, XBLOCK=512, num_warps
=8, num_stages=1)
del buf51
del primals_33
buf64 = extern_kernels.convolution(buf63, primals_34, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf64, (4, 32, 64, 64), (131072, 4096, 64, 1))
buf65 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1),
torch.bool)
buf66 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1),
torch.float32)
triton_poi_fused_convolution_leaky_relu_0[grid(524288)](buf64,
primals_35, buf65, buf66, 524288, XBLOCK=512, num_warps=8,
num_stages=1)
del buf64
del primals_35
buf67 = extern_kernels.convolution(buf66, primals_36, stride=(1, 1),
padding=(3, 3), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf67, (4, 3, 64, 64), (12288, 4096, 64, 1))
buf68 = buf67
del buf67
triton_poi_fused_convolution_16[grid(49152)](buf68, primals_37,
49152, XBLOCK=256, num_warps=4, num_stages=1)
del primals_37
return (buf68, primals_1, primals_3, primals_4, primals_6, primals_8,
primals_10, primals_12, primals_14, primals_16, primals_18,
primals_20, primals_22, primals_24, primals_26, primals_28,
primals_30, primals_32, primals_34, primals_36, buf1, buf2, buf4,
buf5, buf7, buf8, buf10, buf11, buf13, buf14, buf16, buf17, buf19,
buf21, buf22, buf24, buf26, buf27, buf29, buf31, buf32, buf34,
buf36, buf37, buf38, buf39, buf40, buf43, buf45, buf47, buf49,
buf50, buf52, buf53, buf54, buf55, buf56, buf59, buf61, buf63,
buf65, buf66)
def tf_2xupsample_bilinear(x):
b, c, h, w = x.shape
out = torch.zeros(b, c, h * 2, w * 2)
out[:, :, ::2, ::2] = x
padded = F.pad(x, (0, 1, 0, 1), mode='replicate')
out[:, :, 1::2, ::2] = (padded[:, :, :-1, :-1] + padded[:, :, 1:, :-1]) / 2
out[:, :, ::2, 1::2] = (padded[:, :, :-1, :-1] + padded[:, :, :-1, 1:]) / 2
out[:, :, 1::2, 1::2] = (padded[:, :, :-1, :-1] + padded[:, :, 1:, 1:]) / 2
return out
def tf_same_padding(x, k_size=3):
j = k_size // 2
return F.pad(x, (j - 1, j, j - 1, j))
class Upsample(nn.Module):
"""Upsamples a given multi-channel 1D (temporal), 2D (spatial) or 3D (volumetric) data.
The input data is assumed to be of the form
`minibatch x channels x [optional depth] x [optional height] x width`.
Args:
size (int or Tuple[int] or Tuple[int, int] or Tuple[int, int, int], optional):
output spatial sizes
scale_factor (float or Tuple[float] or Tuple[float, float] or Tuple[float, float, float], optional):
multiplier for spatial size. Has to match input size if it is a tuple.
mode (str, optional): the upsampling algorithm: one of ``'nearest'``,
``'linear'``, ``'bilinear'``, ``'bicubic'`` and ``'trilinear'``.
Default: ``'nearest'``
align_corners (bool, optional): if ``True``, the corner pixels of the input
and output tensors are aligned, and thus preserving the values at
those pixels. This only has effect when :attr:`mode` is
``'linear'``, ``'bilinear'``, or ``'trilinear'``. Default: ``False``
"""
def __init__(self, size=None, scale_factor=None, mode='nearest',
align_corners=None):
super(Upsample, self).__init__()
if isinstance(scale_factor, tuple):
self.scale_factor = tuple(float(factor) for factor in scale_factor)
else:
self.scale_factor = float(scale_factor) if scale_factor else None
self.mode = mode
self.size = size
self.align_corners = align_corners
def forward(self, x):
return nn.functional.interpolate(x, size=self.size, scale_factor=
self.scale_factor, mode=self.mode, align_corners=self.align_corners
)
def extra_repr(self):
if self.scale_factor is not None:
info = 'scale_factor=' + str(self.scale_factor)
else:
info = 'size=' + str(self.size)
info += ', mode=' + self.mode
return info
class ResBlock(nn.Module):
def __init__(self, in_nf, out_nf=32, slope=0.2):
super().__init__()
self.conv1 = nn.Conv2d(in_nf, out_nf, 3, 1, padding=1)
self.conv2 = nn.Conv2d(out_nf, out_nf, 3, 1, padding=1)
self.leaky_relu = nn.LeakyReLU(negative_slope=0.2, inplace=False)
def forward(self, inputs):
x = self.conv2(self.leaky_relu(self.conv1(inputs)))
return x + inputs
class Upsample_2xBil_TF(nn.Module):
def __init__(self):
super(Upsample_2xBil_TF, self).__init__()
def forward(self, x):
return tf_2xupsample_bilinear(x)
class UnetGeneratorWBCNew(nn.Module):
""" UNet Generator as used in Learning to Cartoonize Using White-box
Cartoon Representations for image to image translation
https://systemerrorwang.github.io/White-box-Cartoonization/paper/06791.pdf
https://systemerrorwang.github.io/White-box-Cartoonization/paper/06791-supp.pdf
"""
def __init__(self, nf=32, mode='pt', slope=0.2):
super(UnetGeneratorWBCNew, self).__init__()
self.mode = mode
self.conv = nn.Conv2d(3, nf, 7, 1, padding=3)
if mode == 'tf':
self.conv_1 = nn.Conv2d(nf, nf, 3, stride=2, padding=0)
else:
self.conv_1 = nn.Conv2d(nf, nf, 3, stride=2, padding=1)
self.conv_2 = nn.Conv2d(nf, nf * 2, 3, 1, padding=1)
if mode == 'tf':
self.conv_3 = nn.Conv2d(nf * 2, nf * 2, 3, stride=2, padding=0)
else:
self.conv_3 = nn.Conv2d(nf * 2, nf * 2, 3, stride=2, padding=1)
self.conv_4 = nn.Conv2d(nf * 2, nf * 4, 3, 1, padding=1)
self.block_0 = ResBlock(nf * 4, nf * 4, slope=slope)
self.block_1 = ResBlock(nf * 4, nf * 4, slope=slope)
self.block_2 = ResBlock(nf * 4, nf * 4, slope=slope)
self.block_3 = ResBlock(nf * 4, nf * 4, slope=slope)
self.conv_5 = nn.Conv2d(nf * 4, nf * 2, 3, 1, padding=1)
self.conv_6 = nn.Conv2d(nf * 2, nf * 2, 3, 1, padding=1)
self.conv_7 = nn.Conv2d(nf * 2, nf, 3, 1, padding=1)
self.conv_8 = nn.Conv2d(nf, nf, 3, 1, padding=1)
self.conv_9 = nn.Conv2d(nf, 3, 7, 1, padding=3)
self.leaky_relu = nn.LeakyReLU(negative_slope=slope, inplace=False)
if mode == 'tf':
self.upsample = Upsample_2xBil_TF()
else:
self.upsample = Upsample(scale_factor=2, mode='bilinear',
align_corners=False)
def forward(self, input_0):
primals_1 = self.conv.weight
primals_2 = self.conv.bias
primals_4 = self.conv_1.weight
primals_5 = self.conv_1.bias
primals_6 = self.conv_2.weight
primals_7 = self.conv_2.bias
primals_8 = self.conv_3.weight
primals_9 = self.conv_3.bias
primals_10 = self.conv_4.weight
primals_11 = self.conv_4.bias
primals_12 = self.block_0.conv1.weight
primals_13 = self.block_0.conv1.bias
primals_14 = self.block_0.conv2.weight
primals_15 = self.block_0.conv2.bias
primals_16 = self.block_1.conv1.weight
primals_17 = self.block_1.conv1.bias
primals_18 = self.block_1.conv2.weight
primals_19 = self.block_1.conv2.bias
primals_20 = self.block_2.conv1.weight
primals_21 = self.block_2.conv1.bias
primals_22 = self.block_2.conv2.weight
primals_23 = self.block_2.conv2.bias
primals_24 = self.block_3.conv1.weight
primals_25 = self.block_3.conv1.bias
primals_26 = self.block_3.conv2.weight
primals_27 = self.block_3.conv2.bias
primals_28 = self.conv_5.weight
primals_29 = self.conv_5.bias
primals_30 = self.conv_6.weight
primals_31 = self.conv_6.bias
primals_32 = self.conv_7.weight
primals_33 = self.conv_7.bias
primals_34 = self.conv_8.weight
primals_35 = self.conv_8.bias
primals_36 = self.conv_9.weight
primals_37 = self.conv_9.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17, primals_18, primals_19,
primals_20, primals_21, primals_22, primals_23, primals_24,
primals_25, primals_26, primals_27, primals_28, primals_29,
primals_30, primals_31, primals_32, primals_33, primals_34,
primals_35, primals_36, primals_37])
return output[0]
| grofit/traiNNer | UnetGeneratorWBC | false | 15,555 | [
"Apache-2.0"
]
| 78 | 12d006fd44ed304e4178839c53b1f3d95ca25dcb | https://github.com/grofit/traiNNer/tree/12d006fd44ed304e4178839c53b1f3d95ca25dcb |
IOUloss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/in/cinwj7sv5v7wr35grnxco6x2u333pkogkh4ixr63euwbqwyfjen7.py
# Topologically Sorted Source Nodes: [area_p, area_g, add_2, truediv_2, add, truediv_3, add_1, br, truediv, sub, truediv_1, sub_1, tl, sub_2, prod_3, lt, type_1, en, area_i, sub_3, add_3, iou, pow_1, loss], Original ATen: [aten.prod, aten.add, aten.div, aten.minimum, aten.sub, aten.maximum, aten.lt, aten._to_copy, aten.mul, aten.pow, aten.rsub]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# add_2 => add_2
# add_3 => add_3
# area_g => prod_1
# area_i => mul
# area_p => prod
# br => minimum
# en => prod_2
# iou => div_4
# loss => sub_4
# lt => lt
# pow_1 => pow_1
# prod_3 => prod_3
# sub => sub
# sub_1 => sub_1
# sub_2 => sub_2
# sub_3 => sub_3
# tl => maximum
# truediv => div
# truediv_1 => div_1
# truediv_2 => div_2
# truediv_3 => div_3
# type_1 => convert_element_type
# Graph fragment:
# %prod : [num_users=1] = call_function[target=torch.ops.aten.prod.dim_int](args = (%slice_18, 1), kwargs = {})
# %prod_1 : [num_users=1] = call_function[target=torch.ops.aten.prod.dim_int](args = (%slice_20, 1), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%prod, %prod_1), kwargs = {})
# %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%slice_12, 2), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%slice_10, %div_2), kwargs = {})
# %div_3 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%slice_16, 2), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%slice_14, %div_3), kwargs = {})
# %minimum : [num_users=2] = call_function[target=torch.ops.aten.minimum.default](args = (%add, %add_1), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%slice_4, 2), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%slice_2, %div), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%slice_8, 2), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%slice_6, %div_1), kwargs = {})
# %maximum : [num_users=2] = call_function[target=torch.ops.aten.maximum.default](args = (%sub, %sub_1), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum, %maximum), kwargs = {})
# %prod_3 : [num_users=1] = call_function[target=torch.ops.aten.prod.dim_int](args = (%sub_2, 1), kwargs = {})
# %lt : [num_users=1] = call_function[target=torch.ops.aten.lt.Tensor](args = (%maximum, %minimum), kwargs = {})
# %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%lt, torch.float32), kwargs = {})
# %prod_2 : [num_users=1] = call_function[target=torch.ops.aten.prod.dim_int](args = (%convert_element_type, 1), kwargs = {})
# %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%prod_3, %prod_2), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_2, %mul), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub_3, 1e-16), kwargs = {})
# %div_4 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, %add_3), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%div_4, 2), kwargs = {})
# %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %pow_1), kwargs = {})
triton_poi_fused__to_copy_add_div_lt_maximum_minimum_mul_pow_prod_rsub_sub_0 = async_compile.triton('triton_poi_fused__to_copy_add_div_lt_maximum_minimum_mul_pow_prod_rsub_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_div_lt_maximum_minimum_mul_pow_prod_rsub_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_add_div_lt_maximum_minimum_mul_pow_prod_rsub_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp18 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = tmp0 + tmp3
tmp7 = tmp6 * tmp2
tmp8 = tmp5 + tmp7
tmp9 = triton_helpers.minimum(tmp4, tmp8)
tmp10 = tmp0 - tmp3
tmp11 = tmp5 - tmp7
tmp12 = triton_helpers.maximum(tmp10, tmp11)
tmp13 = tmp9 - tmp12
tmp16 = tmp15 * tmp2
tmp17 = tmp14 + tmp16
tmp20 = tmp19 * tmp2
tmp21 = tmp18 + tmp20
tmp22 = triton_helpers.minimum(tmp17, tmp21)
tmp23 = tmp14 - tmp16
tmp24 = tmp18 - tmp20
tmp25 = triton_helpers.maximum(tmp23, tmp24)
tmp26 = tmp22 - tmp25
tmp27 = tmp13 * tmp26
tmp28 = tmp12 < tmp9
tmp29 = tmp28.to(tl.float32)
tmp30 = tmp25 < tmp22
tmp31 = tmp30.to(tl.float32)
tmp32 = tmp29 * tmp31
tmp33 = tmp27 * tmp32
tmp34 = tmp1 * tmp15
tmp35 = tmp6 * tmp19
tmp36 = tmp34 + tmp35
tmp37 = tmp36 - tmp33
tmp38 = 1e-16
tmp39 = tmp37 + tmp38
tmp40 = tmp33 / tmp39
tmp41 = tmp40 * tmp40
tmp42 = 1.0
tmp43 = tmp42 - tmp41
tl.store(in_out_ptr0 + (x0), tmp43, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, ), (1, ), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [area_p, area_g, add_2, truediv_2, add, truediv_3, add_1, br, truediv, sub, truediv_1, sub_1, tl, sub_2, prod_3, lt, type_1, en, area_i, sub_3, add_3, iou, pow_1, loss], Original ATen: [aten.prod, aten.add, aten.div, aten.minimum, aten.sub, aten.maximum, aten.lt, aten._to_copy, aten.mul, aten.pow, aten.rsub]
stream0 = get_raw_stream(0)
triton_poi_fused__to_copy_add_div_lt_maximum_minimum_mul_pow_prod_rsub_sub_0.run(buf1, arg0_1, arg1_1, 64, grid=grid(64), stream=stream0)
del arg0_1
del arg1_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.utils.data
class IOUloss(nn.Module):
def __init__(self, reduction='none', loss_type='iou'):
super(IOUloss, self).__init__()
self.reduction = reduction
self.loss_type = loss_type
def forward(self, pred, target):
assert pred.shape[0] == target.shape[0]
pred = pred.view(-1, 4)
target = target.view(-1, 4)
tl = torch.max(pred[:, :2] - pred[:, 2:] / 2, target[:, :2] -
target[:, 2:] / 2)
br = torch.min(pred[:, :2] + pred[:, 2:] / 2, target[:, :2] +
target[:, 2:] / 2)
area_p = torch.prod(pred[:, 2:], 1)
area_g = torch.prod(target[:, 2:], 1)
en = (tl < br).type(tl.type()).prod(dim=1)
area_i = torch.prod(br - tl, 1) * en
iou = area_i / (area_p + area_g - area_i + 1e-16)
if self.loss_type == 'iou':
loss = 1 - iou ** 2
elif self.loss_type == 'giou':
c_tl = torch.min(pred[:, :2] - pred[:, 2:] / 2, target[:, :2] -
target[:, 2:] / 2)
c_br = torch.max(pred[:, :2] + pred[:, 2:] / 2, target[:, :2] +
target[:, 2:] / 2)
area_c = torch.prod(c_br - c_tl, 1)
giou = iou - (area_c - area_i) / area_c.clamp(1e-16)
loss = 1 - giou.clamp(min=-1.0, max=1.0)
if self.reduction == 'mean':
loss = loss.mean()
elif self.reduction == 'sum':
loss = loss.sum()
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__to_copy_add_div_lt_maximum_minimum_mul_pow_prod_rsub_sub_0(
in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp15 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp18 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp19 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = tmp0 + tmp3
tmp7 = tmp6 * tmp2
tmp8 = tmp5 + tmp7
tmp9 = triton_helpers.minimum(tmp4, tmp8)
tmp10 = tmp0 - tmp3
tmp11 = tmp5 - tmp7
tmp12 = triton_helpers.maximum(tmp10, tmp11)
tmp13 = tmp9 - tmp12
tmp16 = tmp15 * tmp2
tmp17 = tmp14 + tmp16
tmp20 = tmp19 * tmp2
tmp21 = tmp18 + tmp20
tmp22 = triton_helpers.minimum(tmp17, tmp21)
tmp23 = tmp14 - tmp16
tmp24 = tmp18 - tmp20
tmp25 = triton_helpers.maximum(tmp23, tmp24)
tmp26 = tmp22 - tmp25
tmp27 = tmp13 * tmp26
tmp28 = tmp12 < tmp9
tmp29 = tmp28.to(tl.float32)
tmp30 = tmp25 < tmp22
tmp31 = tmp30.to(tl.float32)
tmp32 = tmp29 * tmp31
tmp33 = tmp27 * tmp32
tmp34 = tmp1 * tmp15
tmp35 = tmp6 * tmp19
tmp36 = tmp34 + tmp35
tmp37 = tmp36 - tmp33
tmp38 = 1e-16
tmp39 = tmp37 + tmp38
tmp40 = tmp33 / tmp39
tmp41 = tmp40 * tmp40
tmp42 = 1.0
tmp43 = tmp42 - tmp41
tl.store(in_out_ptr0 + x0, tmp43, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64,), (1,), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused__to_copy_add_div_lt_maximum_minimum_mul_pow_prod_rsub_sub_0[
grid(64)](buf1, arg0_1, arg1_1, 64, XBLOCK=64, num_warps=1,
num_stages=1)
del arg0_1
del arg1_1
return buf1,
class IOUlossNew(nn.Module):
def __init__(self, reduction='none', loss_type='iou'):
super(IOUlossNew, self).__init__()
self.reduction = reduction
self.loss_type = loss_type
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| hyperfraise/ByteTrack | IOUloss | false | 15,556 | [
"MIT"
]
| 1,039 | d742a3321c14a7412f024f2218142c7441c1b699 | https://github.com/hyperfraise/ByteTrack/tree/d742a3321c14a7412f024f2218142c7441c1b699 |
MyBCEWithLogitsLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/c3/cc3j4xsmholcbofryz75xbfltykrfgfeagghvr3wqj3ici6vkcjz.py
# Topologically Sorted Source Nodes: [labels, binary_cross_entropy_with_logits, values], Original ATen: [aten.cat, aten.binary_cross_entropy_with_logits]
# Source node to ATen node mapping:
# binary_cross_entropy_with_logits => abs_1, exp, full_default_2, log1p, mean, minimum, mul, neg, sub, sub_1, sub_2
# labels => cat_1
# values => cat
# Graph fragment:
# %cat_1 : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%full_default, %full_default_1], -1), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %cat_1), kwargs = {})
# %cat : [num_users=3] = call_function[target=torch.ops.aten.cat.default](args = ([%arg0_1, %arg1_1], -1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %cat), kwargs = {})
# %full_default_2 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %minimum : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%full_default_2, %cat), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%cat,), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%abs_1,), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg,), kwargs = {})
# %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum, %log1p), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %sub_1), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub_2,), kwargs = {})
triton_per_fused_binary_cross_entropy_with_logits_cat_0 = async_compile.triton('triton_per_fused_binary_cross_entropy_with_logits_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 512],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_binary_cross_entropy_with_logits_cat_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_binary_cross_entropy_with_logits_cat_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 512
RBLOCK: tl.constexpr = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex % 8
r1 = (rindex // 8)
tmp0 = r0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = 1.0
tmp6 = tl.full(tmp5.shape, 0.0, tmp5.dtype)
tmp7 = tl.where(tmp4, tmp5, tmp6)
tmp8 = tmp0 >= tmp3
tmp9 = tl.full([1], 8, tl.int64)
tmp10 = tmp0 < tmp9
tmp11 = 0.0
tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype)
tmp13 = tl.where(tmp8, tmp11, tmp12)
tmp14 = tl.where(tmp4, tmp7, tmp13)
tmp15 = tmp5 - tmp14
tmp16 = tl.load(in_ptr0 + (tl.broadcast_to((4*r1) + r0, [RBLOCK])), tmp4, eviction_policy='evict_last', other=0.0)
tmp17 = tl.load(in_ptr1 + (tl.broadcast_to((4*r1) + ((-4) + r0), [RBLOCK])), tmp8, eviction_policy='evict_last', other=0.0)
tmp18 = tl.where(tmp4, tmp16, tmp17)
tmp19 = tmp15 * tmp18
tmp20 = triton_helpers.minimum(tmp11, tmp18)
tmp21 = tl_math.abs(tmp18)
tmp22 = -tmp21
tmp23 = tl_math.exp(tmp22)
tmp24 = libdevice.log1p(tmp23)
tmp25 = tmp20 - tmp24
tmp26 = tmp19 - tmp25
tmp27 = tl.broadcast_to(tmp26, [RBLOCK])
tmp29 = triton_helpers.promote_to_tensor(tl.sum(tmp27, 0))
tmp30 = 512.0
tmp31 = tmp29 / tmp30
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp31, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [labels, binary_cross_entropy_with_logits, values], Original ATen: [aten.cat, aten.binary_cross_entropy_with_logits]
stream0 = get_raw_stream(0)
triton_per_fused_binary_cross_entropy_with_logits_cat_0.run(buf1, arg0_1, arg1_1, 1, 512, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.utils.data
import torch
import torch.nn as nn
class MyBCEWithLogitsLoss(nn.Module):
def __init__(self):
nn.Module.__init__(self)
self.m = nn.BCEWithLogitsLoss()
def forward(self, positives, negatives):
values = torch.cat((positives, negatives), dim=-1)
labels = torch.cat((positives.new_ones(positives.size()), negatives
.new_zeros(negatives.size())), dim=-1)
return self.m(values, labels)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.utils.data
import torch
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_binary_cross_entropy_with_logits_cat_0(in_out_ptr0,
in_ptr0, in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 512
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex % 8
r1 = rindex // 8
tmp0 = r0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = 1.0
tmp6 = tl.full(tmp5.shape, 0.0, tmp5.dtype)
tmp7 = tl.where(tmp4, tmp5, tmp6)
tmp8 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp11 = 0.0
tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype)
tmp13 = tl.where(tmp8, tmp11, tmp12)
tmp14 = tl.where(tmp4, tmp7, tmp13)
tmp15 = tmp5 - tmp14
tmp16 = tl.load(in_ptr0 + tl.broadcast_to(4 * r1 + r0, [RBLOCK]), tmp4,
eviction_policy='evict_last', other=0.0)
tmp17 = tl.load(in_ptr1 + tl.broadcast_to(4 * r1 + (-4 + r0), [RBLOCK]),
tmp8, eviction_policy='evict_last', other=0.0)
tmp18 = tl.where(tmp4, tmp16, tmp17)
tmp19 = tmp15 * tmp18
tmp20 = triton_helpers.minimum(tmp11, tmp18)
tmp21 = tl_math.abs(tmp18)
tmp22 = -tmp21
tmp23 = tl_math.exp(tmp22)
tmp24 = libdevice.log1p(tmp23)
tmp25 = tmp20 - tmp24
tmp26 = tmp19 - tmp25
tmp27 = tl.broadcast_to(tmp26, [RBLOCK])
tmp29 = triton_helpers.promote_to_tensor(tl.sum(tmp27, 0))
tmp30 = 512.0
tmp31 = tmp29 / tmp30
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp31, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_binary_cross_entropy_with_logits_cat_0[grid(1)](buf1,
arg0_1, arg1_1, 1, 512, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf1,
class MyBCEWithLogitsLossNew(nn.Module):
def __init__(self):
nn.Module.__init__(self)
self.m = nn.BCEWithLogitsLoss()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| huoxusg/ScenarioMeta | MyBCEWithLogitsLoss | false | 15,557 | [
"MIT"
]
| 79 | ce753da45a3d46ac08961ffc71b2131ae3f7e551 | https://github.com/huoxusg/ScenarioMeta/tree/ce753da45a3d46ac08961ffc71b2131ae3f7e551 |
LayerNorm | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/3n/c3nvixp65c5in7rfhk46ir3grsaboyrs4my6jyzv5mwmau3tkh7l.py
# Topologically Sorted Source Nodes: [mean, std, sub, add, out, mul, out_1], Original ATen: [aten.mean, aten.std, aten.sub, aten.add, aten.div, aten.mul]
# Source node to ATen node mapping:
# add => add
# mean => mean
# mul => mul
# out => div
# out_1 => add_1
# std => sqrt, var
# sub => sub
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [-1], True), kwargs = {})
# %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%primals_1, [-1]), kwargs = {correction: 1.0, keepdim: True})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%var,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %mean), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sqrt, 1e-12), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %add), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %div), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %primals_3), kwargs = {})
triton_poi_fused_add_div_mean_mul_std_sub_0 = async_compile.triton('triton_poi_fused_add_div_mean_mul_std_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mean_mul_std_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_mean_mul_std_sub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp2 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp30 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp8 = tmp6 + tmp7
tmp9 = 4.0
tmp10 = tmp8 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp2 - tmp10
tmp13 = tmp12 * tmp12
tmp14 = tmp3 - tmp10
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp10
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp7 - tmp10
tmp21 = tmp20 * tmp20
tmp22 = tmp19 + tmp21
tmp23 = 3.0
tmp24 = tmp22 / tmp23
tmp25 = libdevice.sqrt(tmp24)
tmp26 = 1e-12
tmp27 = tmp25 + tmp26
tmp28 = tmp11 / tmp27
tmp29 = tmp0 * tmp28
tmp31 = tmp29 + tmp30
tl.store(out_ptr0 + (x2), tmp31, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mean, std, sub, add, out, mul, out_1], Original ATen: [aten.mean, aten.std, aten.sub, aten.add, aten.div, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_add_div_mean_mul_std_sub_0.run(primals_2, primals_1, primals_3, buf0, 256, grid=grid(256), stream=stream0)
del primals_2
del primals_3
return (buf0, primals_1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
class LayerNorm(nn.Module):
def __init__(self, d_model, eps=1e-12):
super(LayerNorm, self).__init__()
self.gamma = nn.Parameter(torch.ones(d_model))
self.beta = nn.Parameter(torch.zeros(d_model))
self.eps = eps
def forward(self, x):
mean = x.mean(-1, keepdim=True)
std = x.std(-1, keepdim=True)
out = (x - mean) / (std + self.eps)
out = self.gamma * out + self.beta
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'d_model': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_div_mean_mul_std_sub_0(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp2 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp30 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp8 = tmp6 + tmp7
tmp9 = 4.0
tmp10 = tmp8 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp2 - tmp10
tmp13 = tmp12 * tmp12
tmp14 = tmp3 - tmp10
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp10
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp7 - tmp10
tmp21 = tmp20 * tmp20
tmp22 = tmp19 + tmp21
tmp23 = 3.0
tmp24 = tmp22 / tmp23
tmp25 = libdevice.sqrt(tmp24)
tmp26 = 1e-12
tmp27 = tmp25 + tmp26
tmp28 = tmp11 / tmp27
tmp29 = tmp0 * tmp28
tmp31 = tmp29 + tmp30
tl.store(out_ptr0 + x2, tmp31, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_div_mean_mul_std_sub_0[grid(256)](primals_2,
primals_1, primals_3, buf0, 256, XBLOCK=128, num_warps=4,
num_stages=1)
del primals_2
del primals_3
return buf0, primals_1
class LayerNormNew(nn.Module):
def __init__(self, d_model, eps=1e-12):
super(LayerNormNew, self).__init__()
self.gamma = nn.Parameter(torch.ones(d_model))
self.beta = nn.Parameter(torch.zeros(d_model))
self.eps = eps
def forward(self, input_0):
primals_2 = self.gamma
primals_3 = self.beta
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| hyunwoongko/transformer | LayerNorm | false | 15,558 | [
"Apache-2.0"
]
| 233 | 8f7aaa19d37b088c156db0512868127ba9bf1a0f | https://github.com/hyunwoongko/transformer/tree/8f7aaa19d37b088c156db0512868127ba9bf1a0f |
KeyValue | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/pw/cpw5jgywzg5ntkknxkt5orxsrrr5zq7a6eoteboi3ba7zrcxj2p7.py
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv2d => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(buf1, primals_2, 256, grid=grid(256), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(primals_3, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
triton_poi_fused_convolution_0.run(buf3, primals_5, 256, grid=grid(256), stream=stream0)
del primals_5
return (buf1, buf3, primals_1, primals_3, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn
import torch.utils.data.dataset
class KeyValue(torch.nn.Module):
def __init__(self, indim, keydim, valdim):
super(KeyValue, self).__init__()
self.key_conv = torch.nn.Conv2d(indim, keydim, kernel_size=3,
padding=1, stride=1)
self.value_conv = torch.nn.Conv2d(indim, valdim, kernel_size=3,
padding=1, stride=1)
def forward(self, x):
return self.key_conv(x), self.value_conv(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'indim': 4, 'keydim': 4, 'valdim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn
import torch.utils.data.dataset
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(256)](buf1, primals_2, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = extern_kernels.convolution(primals_3, primals_4, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_0[grid(256)](buf3, primals_5, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
return buf1, buf3, primals_1, primals_3, primals_4
class KeyValueNew(torch.nn.Module):
def __init__(self, indim, keydim, valdim):
super(KeyValueNew, self).__init__()
self.key_conv = torch.nn.Conv2d(indim, keydim, kernel_size=3,
padding=1, stride=1)
self.value_conv = torch.nn.Conv2d(indim, valdim, kernel_size=3,
padding=1, stride=1)
def forward(self, input_0):
primals_1 = self.key_conv.weight
primals_2 = self.key_conv.bias
primals_4 = self.value_conv.weight
primals_5 = self.value_conv.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0], output[1]
| hzxie/RMNet | KeyValue | false | 15,559 | [
"MIT"
]
| 66 | 32a16f9c9473463a41dd6e95f72b06dd830fc1eb | https://github.com/hzxie/RMNet/tree/32a16f9c9473463a41dd6e95f72b06dd830fc1eb |
Self_Attn | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/qr/cqrgwdggq2kvhq263j7o4pmn4bkmrd5vzgknhcpaooni4njmigdn.py
# Topologically Sorted Source Nodes: [attention], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# attention => amax, div, exp, sub, sum_1
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%bmm, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%bmm, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_per_fused__softmax_0 = async_compile.triton('triton_per_fused__softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[64, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__softmax_0(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 64
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, float("-inf"))
tmp4 = triton_helpers.max2(tmp3, 1)[:, None]
tmp5 = tmp0 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.where(xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tmp11 = tmp6 / tmp10
tl.store(out_ptr2 + (r1 + (16*x0)), tmp11, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/tl/ctl6ce6nf7h3wfzpzd43tfjlokcda3ipusjw4xa6jdfks44ycnlb.py
# Topologically Sorted Source Nodes: [mul, out_2], Original ATen: [aten.mul, aten.add]
# Source node to ATen node mapping:
# mul => mul
# out_2 => add
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_5, %view_3), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %primals_1), kwargs = {})
triton_poi_fused_add_mul_1 = async_compile.triton('triton_poi_fused_add_mul_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (0))
tmp1 = tl.broadcast_to(tmp0, [XBLOCK])
tmp2 = tl.load(in_ptr1 + (x0), xmask)
tmp4 = tl.load(in_ptr2 + (x0), xmask)
tmp3 = tmp1 * tmp2
tmp5 = tmp3 + tmp4
tl.store(out_ptr0 + (x0), tmp5, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_3, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_5, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(primals_1, primals_3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1))
buf2 = empty_strided_cuda((4, 16, 16), (256, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [energy], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf0, (4, 16, 4), (64, 1, 16), 0), reinterpret_tensor(buf1, (4, 4, 16), (64, 16, 1), 0), out=buf2)
buf5 = empty_strided_cuda((4, 16, 16), (256, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [attention], Original ATen: [aten._softmax]
stream0 = get_raw_stream(0)
triton_per_fused__softmax_0.run(buf2, buf5, 64, 16, grid=grid(64), stream=stream0)
del buf2
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(primals_1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 4, 4, 4), (64, 16, 4, 1))
buf7 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf6, (4, 4, 16), (64, 16, 1), 0), reinterpret_tensor(buf5, (4, 16, 16), (256, 1, 16), 0), out=buf7)
buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, out_2], Original ATen: [aten.mul, aten.add]
triton_poi_fused_add_mul_1.run(primals_5, buf7, primals_1, buf8, 256, grid=grid(256), stream=stream0)
return (buf8, buf5, primals_1, primals_2, primals_3, primals_4, primals_5, buf5, buf7, reinterpret_tensor(buf6, (4, 16, 4), (64, 1, 16), 0), reinterpret_tensor(buf0, (4, 4, 16), (64, 16, 1), 0), reinterpret_tensor(buf1, (4, 16, 4), (64, 1, 16), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
class Self_Attn(nn.Module):
""" Self attention Layer"""
def __init__(self, in_dim, activation):
super(Self_Attn, self).__init__()
self.chanel_in = in_dim
self.activation = activation
if in_dim >= 8:
self.query_conv = nn.Conv2d(in_channels=in_dim, out_channels=
in_dim // 8, kernel_size=1, bias=False)
self.key_conv = nn.Conv2d(in_channels=in_dim, out_channels=
in_dim // 8, kernel_size=1, bias=False)
else:
self.query_conv = nn.Conv2d(in_channels=in_dim, out_channels=
in_dim, kernel_size=1, bias=False)
self.key_conv = nn.Conv2d(in_channels=in_dim, out_channels=
in_dim, kernel_size=1, bias=False)
self.value_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim,
kernel_size=1, bias=False)
self.gamma = nn.Parameter(torch.zeros(1))
self.softmax = nn.Softmax(dim=-1)
def forward(self, x):
"""
inputs :
x : input feature maps( B X C X W X H)
returns :
out : self attention value + input feature
attention: B X N X N (N is Width*Height)
"""
m_batchsize, C, width, height = x.size()
proj_query = self.query_conv(x).view(m_batchsize, -1, width * height
).permute(0, 2, 1)
proj_key = self.key_conv(x).view(m_batchsize, -1, width * height)
energy = torch.bmm(proj_query, proj_key)
attention = self.softmax(energy)
proj_value = self.value_conv(x).view(m_batchsize, -1, width * height)
out = torch.bmm(proj_value, attention.permute(0, 2, 1))
out = out.view(m_batchsize, C, width, height)
out = self.gamma * out + x
return out, attention
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_dim': 4, 'activation': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused__softmax_0(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK:
tl.constexpr):
xnumel = 64
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, float('-inf'))
tmp4 = triton_helpers.max2(tmp3, 1)[:, None]
tmp5 = tmp0 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.where(xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tmp11 = tmp6 / tmp10
tl.store(out_ptr2 + (r1 + 16 * x0), tmp11, xmask)
@triton.jit
def triton_poi_fused_add_mul_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK])
tmp2 = tl.load(in_ptr1 + x0, xmask)
tmp4 = tl.load(in_ptr2 + x0, xmask)
tmp3 = tmp1 * tmp2
tmp5 = tmp3 + tmp4
tl.store(out_ptr0 + x0, tmp5, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_3, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_5, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = extern_kernels.convolution(primals_1, primals_3, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1))
buf2 = empty_strided_cuda((4, 16, 16), (256, 16, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf0, (4, 16, 4), (64, 1, 16),
0), reinterpret_tensor(buf1, (4, 4, 16), (64, 16, 1), 0), out=buf2)
buf5 = empty_strided_cuda((4, 16, 16), (256, 16, 1), torch.float32)
get_raw_stream(0)
triton_per_fused__softmax_0[grid(64)](buf2, buf5, 64, 16, XBLOCK=32,
num_warps=4, num_stages=1)
del buf2
buf6 = extern_kernels.convolution(primals_1, primals_4, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 4, 4, 4), (64, 16, 4, 1))
buf7 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf6, (4, 4, 16), (64, 16, 1),
0), reinterpret_tensor(buf5, (4, 16, 16), (256, 1, 16), 0), out
=buf7)
buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_add_mul_1[grid(256)](primals_5, buf7, primals_1,
buf8, 256, XBLOCK=256, num_warps=4, num_stages=1)
return (buf8, buf5, primals_1, primals_2, primals_3, primals_4,
primals_5, buf5, buf7, reinterpret_tensor(buf6, (4, 16, 4), (64, 1,
16), 0), reinterpret_tensor(buf0, (4, 4, 16), (64, 16, 1), 0),
reinterpret_tensor(buf1, (4, 16, 4), (64, 1, 16), 0))
class Self_AttnNew(nn.Module):
""" Self attention Layer"""
def __init__(self, in_dim, activation):
super(Self_AttnNew, self).__init__()
self.chanel_in = in_dim
self.activation = activation
if in_dim >= 8:
self.query_conv = nn.Conv2d(in_channels=in_dim, out_channels=
in_dim // 8, kernel_size=1, bias=False)
self.key_conv = nn.Conv2d(in_channels=in_dim, out_channels=
in_dim // 8, kernel_size=1, bias=False)
else:
self.query_conv = nn.Conv2d(in_channels=in_dim, out_channels=
in_dim, kernel_size=1, bias=False)
self.key_conv = nn.Conv2d(in_channels=in_dim, out_channels=
in_dim, kernel_size=1, bias=False)
self.value_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim,
kernel_size=1, bias=False)
self.gamma = nn.Parameter(torch.zeros(1))
self.softmax = nn.Softmax(dim=-1)
def forward(self, input_0):
primals_5 = self.gamma
primals_2 = self.query_conv.weight
primals_3 = self.key_conv.weight
primals_4 = self.value_conv.weight
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0], output[1]
| hugovk/EnAET | Self_Attn | false | 15,560 | [
"MIT"
]
| 87 | 596a1be95f4ebfc5fc4f372f251e66fb03e23b5a | https://github.com/hugovk/EnAET/tree/596a1be95f4ebfc5fc4f372f251e66fb03e23b5a |
QueryEncoder | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/v7/cv7zazascu4rpkkwoxbiwk6c2le2e6wshdhae73bmaoapelvwguv.py
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# out => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/rn/crnqz7p4p2tzqanql5i55teqzlggwe7o5pppywh36vjdillkofmn.py
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# out_1 => relu_1
# Graph fragment:
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 640
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 10
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ss/cssvdrvkgclh6c5w5cukr6dcrvn4dzdgpjhbv53i23ab3s42pjws.py
# Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# out_2 => relu_2
# Graph fragment:
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_5,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_2, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_relu_threshold_backward_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 8
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (16, 4), (4, 1))
assert_size_stride(primals_2, (16, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (10, 16), (16, 1))
assert_size_stride(primals_5, (10, ), (1, ))
assert_size_stride(primals_6, (8, 10), (10, 1))
assert_size_stride(primals_7, (8, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 16), (16, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 16), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 16), (256, 64, 16, 1), 0); del buf0 # reuse
buf8 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.bool)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf8, 1024, grid=grid(1024), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 10), (10, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 16), (16, 1), 0), reinterpret_tensor(primals_4, (16, 10), (1, 16), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 10), (160, 40, 10, 1), 0); del buf2 # reuse
buf7 = empty_strided_cuda((4, 4, 4, 10), (160, 40, 10, 1), torch.bool)
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_1.run(buf3, primals_5, buf7, 640, grid=grid(640), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 8), (8, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf3, (64, 10), (10, 1), 0), reinterpret_tensor(primals_6, (10, 8), (1, 10), 0), out=buf4)
buf5 = reinterpret_tensor(buf4, (4, 4, 4, 8), (128, 32, 8, 1), 0); del buf4 # reuse
buf6 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.bool)
# Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_2.run(buf5, primals_7, buf6, 512, grid=grid(512), stream=stream0)
del primals_7
return (buf5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 16), (16, 1), 0), reinterpret_tensor(buf3, (64, 10), (10, 1), 0), buf6, primals_6, buf7, primals_4, buf8, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((10, 16), (16, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((8, 10), (10, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
import torch.nn.functional as F
class QueryEncoder(nn.Module):
def __init__(self, input_size):
super(QueryEncoder, self).__init__()
self.fc1 = nn.Linear(input_size, 16)
self.fc2 = nn.Linear(16, 10)
self.fc3 = nn.Linear(10, 8)
def forward(self, x):
out = F.relu(self.fc1(x))
out = F.relu(self.fc2(out))
out = F.relu(self.fc3(out))
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 640
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 10
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 8
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (16, 4), (4, 1))
assert_size_stride(primals_2, (16,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (10, 16), (16, 1))
assert_size_stride(primals_5, (10,), (1,))
assert_size_stride(primals_6, (8, 10), (10, 1))
assert_size_stride(primals_7, (8,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 16), (16, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 16), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 16), (256, 64, 16, 1), 0)
del buf0
buf8 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(1024)](buf1,
primals_2, buf8, 1024, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 10), (10, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 16), (16, 1), 0),
reinterpret_tensor(primals_4, (16, 10), (1, 16), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 10), (160, 40, 10, 1), 0)
del buf2
buf7 = empty_strided_cuda((4, 4, 4, 10), (160, 40, 10, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_1[grid(640)](buf3,
primals_5, buf7, 640, XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 8), (8, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf3, (64, 10), (10, 1), 0),
reinterpret_tensor(primals_6, (10, 8), (1, 10), 0), out=buf4)
buf5 = reinterpret_tensor(buf4, (4, 4, 4, 8), (128, 32, 8, 1), 0)
del buf4
buf6 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_2[grid(512)](buf5,
primals_7, buf6, 512, XBLOCK=256, num_warps=4, num_stages=1)
del primals_7
return buf5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 16), (16, 1), 0), reinterpret_tensor(
buf3, (64, 10), (10, 1), 0), buf6, primals_6, buf7, primals_4, buf8
class QueryEncoderNew(nn.Module):
def __init__(self, input_size):
super(QueryEncoderNew, self).__init__()
self.fc1 = nn.Linear(input_size, 16)
self.fc2 = nn.Linear(16, 10)
self.fc3 = nn.Linear(10, 8)
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_6 = self.fc3.weight
primals_7 = self.fc3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| huyi-work/UnifiedEmbeddingModel | QueryEncoder | false | 15,561 | [
"MIT"
]
| 50 | 85c8442122213d1f1b1027df0fd34f428259aaa4 | https://github.com/huyi-work/UnifiedEmbeddingModel/tree/85c8442122213d1f1b1027df0fd34f428259aaa4 |
MyHingeLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/qh/cqhfyzfwdmsyvtz4ex2bvq5zt6r6pdh524utuobgadyxkxusvpgw.py
# Topologically Sorted Source Nodes: [margin_ranking_loss], Original ATen: [aten.neg, aten.sub, aten.mul, aten.add, aten.clamp_min, aten.mean]
# Source node to ATen node mapping:
# margin_ranking_loss => add, clamp_min, full_default, mean, mul, sub
# Graph fragment:
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], -1.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%full_default, %sub), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Scalar](args = (%mul, 0.0), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add, 0), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%clamp_min,), kwargs = {})
triton_per_fused_add_clamp_min_mean_mul_neg_sub_0 = async_compile.triton('triton_per_fused_add_clamp_min_mean_mul_neg_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_clamp_min_mean_mul_neg_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_clamp_min_mean_mul_neg_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr1 + (r0), None)
tmp2 = tmp0 - tmp1
tmp3 = -1.0
tmp4 = tmp3 * tmp2
tmp5 = 0.0
tmp6 = tmp4 + tmp5
tmp7 = triton_helpers.maximum(tmp6, tmp5)
tmp8 = tl.broadcast_to(tmp7, [RBLOCK])
tmp10 = triton_helpers.promote_to_tensor(tl.sum(tmp8, 0))
tmp11 = 256.0
tmp12 = tmp10 / tmp11
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp12, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [margin_ranking_loss], Original ATen: [aten.neg, aten.sub, aten.mul, aten.add, aten.clamp_min, aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_add_clamp_min_mean_mul_neg_sub_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.utils.data
import torch
import torch.nn as nn
class MyHingeLoss(nn.Module):
def __init__(self, margin=0.0):
nn.Module.__init__(self)
self.m = nn.MarginRankingLoss(margin=margin)
def forward(self, positives, negatives):
labels = positives.new_ones(positives.size())
return self.m(positives, negatives, labels)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.utils.data
import torch
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_clamp_min_mean_mul_neg_sub_0(in_out_ptr0, in_ptr0,
in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp2 = tmp0 - tmp1
tmp3 = -1.0
tmp4 = tmp3 * tmp2
tmp5 = 0.0
tmp6 = tmp4 + tmp5
tmp7 = triton_helpers.maximum(tmp6, tmp5)
tmp8 = tl.broadcast_to(tmp7, [RBLOCK])
tmp10 = triton_helpers.promote_to_tensor(tl.sum(tmp8, 0))
tmp11 = 256.0
tmp12 = tmp10 / tmp11
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp12, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_add_clamp_min_mean_mul_neg_sub_0[grid(1)](buf1,
arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf1,
class MyHingeLossNew(nn.Module):
def __init__(self, margin=0.0):
nn.Module.__init__(self)
self.m = nn.MarginRankingLoss(margin=margin)
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| huoxusg/ScenarioMeta | MyHingeLoss | false | 15,562 | [
"MIT"
]
| 79 | ce753da45a3d46ac08961ffc71b2131ae3f7e551 | https://github.com/huoxusg/ScenarioMeta/tree/ce753da45a3d46ac08961ffc71b2131ae3f7e551 |
DocumentEncoder | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/d4/cd4rmmsd46lha6l4ut5a6nmc4wf52z3irm2fxiokbhgjhmlh75hj.py
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# out => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 768
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 12
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/jm/cjmjqfjv2ijia2nagoscrnh2gu57uuxti5zfjtxbtxgqzk2qxxoh.py
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# out_1 => relu_1
# Graph fragment:
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 8
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (12, 4), (4, 1))
assert_size_stride(primals_2, (12, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (8, 12), (12, 1))
assert_size_stride(primals_5, (8, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 12), (12, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 12), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 12), (192, 48, 12, 1), 0); del buf0 # reuse
buf5 = empty_strided_cuda((4, 4, 4, 12), (192, 48, 12, 1), torch.bool)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf5, 768, grid=grid(768), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 8), (8, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 12), (12, 1), 0), reinterpret_tensor(primals_4, (12, 8), (1, 12), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 8), (128, 32, 8, 1), 0); del buf2 # reuse
buf4 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.bool)
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_1.run(buf3, primals_5, buf4, 512, grid=grid(512), stream=stream0)
del primals_5
return (buf3, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 12), (12, 1), 0), buf4, primals_4, buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((8, 12), (12, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
import torch.nn.functional as F
class DocumentEncoder(nn.Module):
def __init__(self, input_size, hidden_layer_sizes=(100,), activation=(
'relu',), solver='adam'):
super(DocumentEncoder, self).__init__()
self.fc1 = nn.Linear(input_size, 12)
self.fc2 = nn.Linear(12, 8)
def forward(self, x):
out = F.relu(self.fc1(x))
out = F.relu(self.fc2(out))
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 768
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 12
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 8
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (12, 4), (4, 1))
assert_size_stride(primals_2, (12,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (8, 12), (12, 1))
assert_size_stride(primals_5, (8,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 12), (12, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 12), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 12), (192, 48, 12, 1), 0)
del buf0
buf5 = empty_strided_cuda((4, 4, 4, 12), (192, 48, 12, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(768)](buf1,
primals_2, buf5, 768, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 8), (8, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 12), (12, 1), 0),
reinterpret_tensor(primals_4, (12, 8), (1, 12), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 8), (128, 32, 8, 1), 0)
del buf2
buf4 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_1[grid(512)](buf3,
primals_5, buf4, 512, XBLOCK=128, num_warps=4, num_stages=1)
del primals_5
return buf3, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 12), (12, 1), 0
), buf4, primals_4, buf5
class DocumentEncoderNew(nn.Module):
def __init__(self, input_size, hidden_layer_sizes=(100,), activation=(
'relu',), solver='adam'):
super(DocumentEncoderNew, self).__init__()
self.fc1 = nn.Linear(input_size, 12)
self.fc2 = nn.Linear(12, 8)
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| huyi-work/UnifiedEmbeddingModel | DocumentEncoder | false | 15,563 | [
"MIT"
]
| 50 | 85c8442122213d1f1b1027df0fd34f428259aaa4 | https://github.com/huyi-work/UnifiedEmbeddingModel/tree/85c8442122213d1f1b1027df0fd34f428259aaa4 |
PositionalEncodingImageBoxes | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/6v/c6v26bzj5suh57pyv3djjfxngyhxlny37iu4wnnshs3spcqoel6r.py
# Topologically Sorted Source Nodes: [s_infos], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# s_infos => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_2, %unsqueeze], 2), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 80
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 5
x1 = (xindex // 5)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 5, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr0 + (2 + (4*x1)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.load(in_ptr0 + (4*x1), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tmp9 - tmp10
tmp12 = tl.load(in_ptr0 + (3 + (4*x1)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp13 = tl.load(in_ptr0 + (1 + (4*x1)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp14 = tmp12 - tmp13
tmp15 = tmp11 * tmp14
tmp16 = tl.full(tmp15.shape, 0.0, tmp15.dtype)
tmp17 = tl.where(tmp6, tmp15, tmp16)
tmp18 = tl.where(tmp4, tmp5, tmp17)
tl.store(out_ptr0 + (x2), tmp18, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/2n/c2nya3vdojqbttoxo4f6ncvbrl4znsuobhwp6cm4yysq5s5bwoyq.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.add]
# Source node to ATen node mapping:
# x => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %expand), kwargs = {})
triton_poi_fused_add_1 = async_compile.triton('triton_poi_fused_add_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x1 = (xindex // 4) % 4
x2 = (xindex // 16)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x0 + (4*x2) + (16*x1)), xmask)
tmp2 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tl.store(out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 5), (5, 1))
assert_size_stride(primals_4, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 5), (20, 5, 1), torch.float32)
# Topologically Sorted Source Nodes: [s_infos], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_2, buf0, 80, grid=grid(80), stream=stream0)
del primals_2
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf0, (16, 5), (5, 1), 0), reinterpret_tensor(primals_3, (5, 4), (1, 5), 0), out=buf1)
del primals_3
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.add]
triton_poi_fused_add_1.run(primals_1, buf1, primals_4, buf2, 64, grid=grid(64), stream=stream0)
del buf1
del primals_1
del primals_4
return (buf2, reinterpret_tensor(buf0, (16, 5), (5, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 5), (5, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn as nn
import torch.nn.init
from torchvision import models as models
class PositionalEncodingImageBoxes(nn.Module):
def __init__(self, d_model, mode='project-and-sum'):
super().__init__()
self.mode = mode
if mode == 'project-and-sum':
self.map = nn.Linear(5, d_model)
elif mode == 'concat-and-process':
self.map = nn.Sequential(nn.Linear(d_model + 5, d_model), nn.
ReLU(), nn.Linear(d_model, d_model))
def forward(self, x, boxes):
bs = x.shape[1]
area = (boxes[:, :, 2] - boxes[:, :, 0]) * (boxes[:, :, 3] - boxes[
:, :, 1])
area = area.unsqueeze(2)
s_infos = torch.cat([boxes, area], dim=2)
if self.mode == 'project-and-sum':
ct = self.map(s_infos).permute(1, 0, 2)
x = x + ct.expand(-1, bs, -1)
elif self.mode == 'concat-and-process':
x = torch.cat([x, s_infos.permute(1, 0, 2)], dim=2)
x = self.map(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'d_model': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn as nn
import torch.nn.init
from torchvision import models as models
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 80
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 5
x1 = xindex // 5
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 5, tl.int64)
tmp9 = tl.load(in_ptr0 + (2 + 4 * x1), tmp6 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp10 = tl.load(in_ptr0 + 4 * x1, tmp6 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp11 = tmp9 - tmp10
tmp12 = tl.load(in_ptr0 + (3 + 4 * x1), tmp6 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp13 = tl.load(in_ptr0 + (1 + 4 * x1), tmp6 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp14 = tmp12 - tmp13
tmp15 = tmp11 * tmp14
tmp16 = tl.full(tmp15.shape, 0.0, tmp15.dtype)
tmp17 = tl.where(tmp6, tmp15, tmp16)
tmp18 = tl.where(tmp4, tmp5, tmp17)
tl.store(out_ptr0 + x2, tmp18, xmask)
@triton.jit
def triton_poi_fused_add_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x1 = xindex // 4 % 4
x2 = xindex // 16
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + (x0 + 4 * x2 + 16 * x1), xmask)
tmp2 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tl.store(out_ptr0 + x3, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 5), (5, 1))
assert_size_stride(primals_4, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 5), (20, 5, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(80)](primals_2, buf0, 80, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_2
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf0, (16, 5), (5, 1), 0),
reinterpret_tensor(primals_3, (5, 4), (1, 5), 0), out=buf1)
del primals_3
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_add_1[grid(64)](primals_1, buf1, primals_4, buf2,
64, XBLOCK=64, num_warps=1, num_stages=1)
del buf1
del primals_1
del primals_4
return buf2, reinterpret_tensor(buf0, (16, 5), (5, 1), 0)
class PositionalEncodingImageBoxesNew(nn.Module):
def __init__(self, d_model, mode='project-and-sum'):
super().__init__()
self.mode = mode
if mode == 'project-and-sum':
self.map = nn.Linear(5, d_model)
elif mode == 'concat-and-process':
self.map = nn.Sequential(nn.Linear(d_model + 5, d_model), nn.
ReLU(), nn.Linear(d_model, d_model))
def forward(self, input_0, input_1):
primals_3 = self.map.weight
primals_4 = self.map.bias
primals_1 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
| huylb314/TERAN | PositionalEncodingImageBoxes | false | 15,564 | [
"Apache-2.0"
]
| 46 | f6a380db423e75fcdaa6ef44f1a79d293a38efba | https://github.com/huylb314/TERAN/tree/f6a380db423e75fcdaa6ef44f1a79d293a38efba |
AdaptiveConcatPool3d | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/sv/csvi7f2qpt54ykwu7pbxnhqoxtinm2x3sjcrf6kq576fofrncaaf.py
# Topologically Sorted Source Nodes: [adaptive_avg_pool3d], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# adaptive_avg_pool3d => mean
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%arg0_1, [-1, -2, -3], True), kwargs = {})
triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_0(in_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 64.0
tmp6 = tmp4 / tmp5
tl.store(out_ptr1 + (2*x0), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/qj/cqjtxzssuduwfzjbyrfqreobk52hkgaxbk5rs54grivqrgxkwpie.py
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%mean, %getitem], 1), kwargs = {})
triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tl.store(out_ptr0 + (2*x0), tmp0, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [adaptive_max_pool3d], Original ATen: [aten.adaptive_max_pool3d]
buf0 = torch.ops.aten.adaptive_max_pool3d.default(arg0_1, [1, 1, 1])
buf1 = buf0[0]
del buf0
buf6 = empty_strided_cuda((4, 2, 1, 1), (2, 1, 1, 1), torch.float32)
buf4 = reinterpret_tensor(buf6, (4, 1, 1, 1), (2, 1, 1, 1), 0) # alias
# Topologically Sorted Source Nodes: [adaptive_avg_pool3d], Original ATen: [aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_mean_0.run(arg0_1, buf4, 4, 64, grid=grid(4), stream=stream0)
del arg0_1
buf5 = reinterpret_tensor(buf6, (4, 1, 1, 1), (2, 1, 1, 1), 1) # alias
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
triton_poi_fused_cat_1.run(buf1, buf5, 4, grid=grid(4), stream=stream0)
del buf1
return (buf6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class AdaptiveConcatPool3d(nn.Module):
def forward(self, x):
return torch.cat((F.adaptive_avg_pool3d(x, 1), F.
adaptive_max_pool3d(x, 1)), dim=1)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_mean_0(in_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.
constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 64.0
tmp6 = tmp4 / tmp5
tl.store(out_ptr1 + 2 * x0, tmp6, xmask)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tl.store(out_ptr0 + 2 * x0, tmp0, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = torch.ops.aten.adaptive_max_pool3d.default(arg0_1, [1, 1, 1])
buf1 = buf0[0]
del buf0
buf6 = empty_strided_cuda((4, 2, 1, 1), (2, 1, 1, 1), torch.float32)
buf4 = reinterpret_tensor(buf6, (4, 1, 1, 1), (2, 1, 1, 1), 0)
get_raw_stream(0)
triton_per_fused_mean_0[grid(4)](arg0_1, buf4, 4, 64, XBLOCK=1,
num_warps=2, num_stages=1)
del arg0_1
buf5 = reinterpret_tensor(buf6, (4, 1, 1, 1), (2, 1, 1, 1), 1)
triton_poi_fused_cat_1[grid(4)](buf1, buf5, 4, XBLOCK=4, num_warps=
1, num_stages=1)
del buf1
return buf6,
class AdaptiveConcatPool3dNew(nn.Module):
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| i-pan/kaggle-melanoma | AdaptiveConcatPool3d | false | 15,565 | [
"MIT"
]
| 68 | caaec0d7e9cafc7b405eb86e7fdf00107d89e1d9 | https://github.com/i-pan/kaggle-melanoma/tree/caaec0d7e9cafc7b405eb86e7fdf00107d89e1d9 |
MultiHeadAttention | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/x2/cx2hdvwyo7m5jvhhvtugzxqvmy6z4nsfhkkjhvgzbbm3cb6dsum2.py
# Topologically Sorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
# Graph fragment:
# %mul_scalar : [num_users=1] = call_function[target=torch.ops.aten.mul.Scalar](args = (%permute_default, 1.0), kwargs = {})
# %clone_default : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_default,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + (x2 + (4*y3)), tmp4, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/5j/c5jll3kxtd32cl7pwubrb5oky2mtzckfgip2xbwad7crvvp4zk4r.py
# Topologically Sorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
# Graph fragment:
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_default_2, [-1], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_default_2, %amax_default), kwargs = {})
# %exp_default : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_tensor,), kwargs = {})
triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/kt/cktnex5febczl2ac6zugjmcksgsd5kjdufazv65vtepuwob3cb7a.py
# Topologically Sorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
# Graph fragment:
# %sum_dim_int_list : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_default, [-1], True), kwargs = {})
# %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_default, %sum_dim_int_list), kwargs = {})
# %eq_scalar : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%view_default_2, -inf), kwargs = {})
# %logical_not_default : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%eq_scalar,), kwargs = {})
# %any_dim : [num_users=1] = call_function[target=torch.ops.aten.any.dim](args = (%logical_not_default, -1, True), kwargs = {})
# %logical_not_default_1 : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%any_dim,), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %where_self : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%logical_not_default_1, %full_default, %div_tensor), kwargs = {})
triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp18 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr1 + (x2), xmask)
tmp26 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp29 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp31 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp1 = float("-inf")
tmp2 = tmp0 == tmp1
tmp3 = tmp2 == 0
tmp4 = tmp3.to(tl.int64)
tmp5 = (tmp4 != 0)
tmp7 = tmp6 == tmp1
tmp8 = tmp7 == 0
tmp9 = tmp8.to(tl.int64)
tmp10 = (tmp9 != 0)
tmp11 = tmp5 | tmp10
tmp13 = tmp12 == tmp1
tmp14 = tmp13 == 0
tmp15 = tmp14.to(tl.int64)
tmp16 = (tmp15 != 0)
tmp17 = tmp11 | tmp16
tmp19 = tmp18 == tmp1
tmp20 = tmp19 == 0
tmp21 = tmp20.to(tl.int64)
tmp22 = (tmp21 != 0)
tmp23 = tmp17 | tmp22
tmp24 = tmp23 == 0
tmp28 = tmp26 + tmp27
tmp30 = tmp28 + tmp29
tmp32 = tmp30 + tmp31
tmp33 = tmp25 / tmp32
tmp34 = 0.0
tmp35 = tl.where(tmp24, tmp34, tmp33)
tl.store(out_ptr0 + (x2), tmp35, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/vv/cvvnhithjvmvhfjufxwwzclfobkrgbyyteg66hp24r675f7elw4c.py
# Topologically Sorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
# Graph fragment:
# %clone_default_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_default_3,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_3(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/6t/c6t5a5ere3lqjiu7zh3uu4oxmpdoujdaqqmeunxqapgzo4m74uav.py
# Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# contiguous => clone_3
# Graph fragment:
# %clone_3 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4, ), (1, ))
assert_size_stride(primals_9, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_10, (4, 4), (4, 1))
assert_size_stride(primals_11, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
del primals_4
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_9, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf2)
del primals_7
buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
stream0 = get_raw_stream(0)
triton_poi_fused_0.run(buf0, primals_2, buf3, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_2
buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_0.run(buf1, primals_5, buf4, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_5
buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_1.run(buf5, buf6, 256, grid=grid(256), stream=stream0)
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_2.run(buf5, buf6, buf7, 256, grid=grid(256), stream=stream0)
del buf5
del buf6
buf8 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_3.run(buf2, primals_8, buf8, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_8
buf9 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 0), 0), out=buf9)
buf10 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone]
triton_poi_fused_clone_4.run(buf9, buf10, 16, 4, grid=grid(16, 4), stream=stream0)
buf11 = reinterpret_tensor(buf9, (16, 4), (4, 1), 0); del buf9 # reuse
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_11, reinterpret_tensor(buf10, (16, 4), (4, 1), 0), reinterpret_tensor(primals_10, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf11)
del primals_11
return (reinterpret_tensor(buf11, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_9, (16, 4), (4, 1), 0), buf7, reinterpret_tensor(buf8, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0), reinterpret_tensor(buf10, (16, 4), (4, 1), 0), primals_10, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
from torch import nn
class ScaleDotProductAttention(nn.Module):
"""
compute scale dot product attention
Query : given sentence that we focused on (decoder)
Key : every sentence to check relationship with Qeury(encoder)
Value : every sentence same with Key (encoder)
"""
def __init__(self):
super(ScaleDotProductAttention, self).__init__()
self.softmax = nn.Softmax(dim=-1)
def forward(self, q, k, v, mask=None, e=1e-12):
_batch_size, _head, _length, d_tensor = k.size()
k_t = k.transpose(2, 3)
score = q @ k_t / math.sqrt(d_tensor)
if mask is not None:
score = score.masked_fill(mask == 0, -e)
score = self.softmax(score)
v = score @ v
return v, score
class MultiHeadAttention(nn.Module):
def __init__(self, d_model, n_head):
super(MultiHeadAttention, self).__init__()
self.n_head = n_head
self.attention = ScaleDotProductAttention()
self.w_q = nn.Linear(d_model, d_model)
self.w_k = nn.Linear(d_model, d_model)
self.w_v = nn.Linear(d_model, d_model)
self.w_concat = nn.Linear(d_model, d_model)
def forward(self, q, k, v, mask=None):
q, k, v = self.w_q(q), self.w_k(k), self.w_v(v)
q, k, v = self.split(q), self.split(k), self.split(v)
out, _attention = self.attention(q, k, v, mask=mask)
out = self.concat(out)
out = self.w_concat(out)
return out
def split(self, tensor):
"""
split tensor by number of head
:param tensor: [batch_size, length, d_model]
:return: [batch_size, head, length, d_tensor]
"""
batch_size, length, d_model = tensor.size()
d_tensor = d_model // self.n_head
tensor = tensor.view(batch_size, length, self.n_head, d_tensor
).transpose(1, 2)
return tensor
def concat(self, tensor):
"""
inverse function of self.split(tensor : torch.Tensor)
:param tensor: [batch_size, head, length, d_tensor]
:return: [batch_size, length, d_model]
"""
batch_size, head, length, d_tensor = tensor.size()
d_model = head * d_tensor
tensor = tensor.transpose(1, 2).contiguous().view(batch_size,
length, d_model)
return tensor
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4])
]
def get_init_inputs():
return [[], {'d_model': 4, 'n_head': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import math
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK:
tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + (x2 + 4 * y3), tmp4, xmask & ymask)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp18 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp25 = tl.load(in_ptr1 + x2, xmask)
tmp26 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp29 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp31 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp1 = float('-inf')
tmp2 = tmp0 == tmp1
tmp3 = tmp2 == 0
tmp4 = tmp3.to(tl.int64)
tmp5 = tmp4 != 0
tmp7 = tmp6 == tmp1
tmp8 = tmp7 == 0
tmp9 = tmp8.to(tl.int64)
tmp10 = tmp9 != 0
tmp11 = tmp5 | tmp10
tmp13 = tmp12 == tmp1
tmp14 = tmp13 == 0
tmp15 = tmp14.to(tl.int64)
tmp16 = tmp15 != 0
tmp17 = tmp11 | tmp16
tmp19 = tmp18 == tmp1
tmp20 = tmp19 == 0
tmp21 = tmp20.to(tl.int64)
tmp22 = tmp21 != 0
tmp23 = tmp17 | tmp22
tmp24 = tmp23 == 0
tmp28 = tmp26 + tmp27
tmp30 = tmp28 + tmp29
tmp32 = tmp30 + tmp31
tmp33 = tmp25 / tmp32
tmp34 = 0.0
tmp35 = tl.where(tmp24, tmp34, tmp33)
tl.store(out_ptr0 + x2, tmp35, xmask)
@triton.jit
def triton_poi_fused_3(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK:
tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4,), (1,))
assert_size_stride(primals_9, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_10, (4, 4), (4, 1))
assert_size_stride(primals_11, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
del primals_4
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_9, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf2)
del primals_7
buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_0[grid(16, 4)](buf0, primals_2, buf3, 16, 4,
XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1)
del primals_2
buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0)
del buf0
triton_poi_fused_0[grid(16, 4)](buf1, primals_5, buf4, 16, 4,
XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1)
del primals_5
buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0),
0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_1[grid(256)](buf5, buf6, 256, XBLOCK=128,
num_warps=4, num_stages=1)
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_2[grid(256)](buf5, buf6, buf7, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del buf5
del buf6
buf8 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf1
triton_poi_fused_3[grid(16, 4)](buf2, primals_8, buf8, 16, 4,
XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1)
del primals_8
buf9 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0)
del buf2
extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 0), 0), out=buf9)
buf10 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
triton_poi_fused_clone_4[grid(16, 4)](buf9, buf10, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
buf11 = reinterpret_tensor(buf9, (16, 4), (4, 1), 0)
del buf9
extern_kernels.addmm(primals_11, reinterpret_tensor(buf10, (16, 4),
(4, 1), 0), reinterpret_tensor(primals_10, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf11)
del primals_11
return reinterpret_tensor(buf11, (4, 4, 4), (16, 4, 1), 0
), reinterpret_tensor(primals_3, (16, 4), (4, 1), 0
), reinterpret_tensor(primals_6, (16, 4), (4, 1), 0
), reinterpret_tensor(primals_9, (16, 4), (4, 1), 0
), buf7, reinterpret_tensor(buf8, (16, 1, 4), (4, 1, 1), 0
), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0
), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0
), reinterpret_tensor(buf10, (16, 4), (4, 1), 0), primals_10
class ScaleDotProductAttention(nn.Module):
"""
compute scale dot product attention
Query : given sentence that we focused on (decoder)
Key : every sentence to check relationship with Qeury(encoder)
Value : every sentence same with Key (encoder)
"""
def __init__(self):
super(ScaleDotProductAttention, self).__init__()
self.softmax = nn.Softmax(dim=-1)
def forward(self, q, k, v, mask=None, e=1e-12):
_batch_size, _head, _length, d_tensor = k.size()
k_t = k.transpose(2, 3)
score = q @ k_t / math.sqrt(d_tensor)
if mask is not None:
score = score.masked_fill(mask == 0, -e)
score = self.softmax(score)
v = score @ v
return v, score
class MultiHeadAttentionNew(nn.Module):
def __init__(self, d_model, n_head):
super(MultiHeadAttentionNew, self).__init__()
self.n_head = n_head
self.attention = ScaleDotProductAttention()
self.w_q = nn.Linear(d_model, d_model)
self.w_k = nn.Linear(d_model, d_model)
self.w_v = nn.Linear(d_model, d_model)
self.w_concat = nn.Linear(d_model, d_model)
def split(self, tensor):
"""
split tensor by number of head
:param tensor: [batch_size, length, d_model]
:return: [batch_size, head, length, d_tensor]
"""
batch_size, length, d_model = tensor.size()
d_tensor = d_model // self.n_head
tensor = tensor.view(batch_size, length, self.n_head, d_tensor
).transpose(1, 2)
return tensor
def concat(self, tensor):
"""
inverse function of self.split(tensor : torch.Tensor)
:param tensor: [batch_size, head, length, d_tensor]
:return: [batch_size, length, d_model]
"""
batch_size, head, length, d_tensor = tensor.size()
d_model = head * d_tensor
tensor = tensor.transpose(1, 2).contiguous().view(batch_size,
length, d_model)
return tensor
def forward(self, input_0, input_1, input_2):
primals_1 = self.w_q.weight
primals_2 = self.w_q.bias
primals_4 = self.w_k.weight
primals_5 = self.w_k.bias
primals_7 = self.w_v.weight
primals_8 = self.w_v.bias
primals_10 = self.w_concat.weight
primals_11 = self.w_concat.bias
primals_3 = input_0
primals_6 = input_1
primals_9 = input_2
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11])
return output[0]
| hyunwoongko/transformer | MultiHeadAttention | false | 15,566 | [
"Apache-2.0"
]
| 233 | 8f7aaa19d37b088c156db0512868127ba9bf1a0f | https://github.com/hyunwoongko/transformer/tree/8f7aaa19d37b088c156db0512868127ba9bf1a0f |
ChannelAttentionBlock | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/3m/c3mxgkf4weymbmbgydi4j4i6eycdz2flzbf3jce3eapte2aqyfta.py
# Topologically Sorted Source Nodes: [affinity_new], Original ATen: [aten.sub]
# Source node to ATen node mapping:
# affinity_new => sub
# Graph fragment:
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%expand_2, %bmm), kwargs = {})
triton_poi_fused_sub_0 = async_compile.triton('triton_poi_fused_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (x2), xmask)
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp6 = triton_helpers.maximum(tmp4, tmp5)
tmp8 = tmp6 - tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/hz/chzi3aam26mikdhljz5x7jlqazm7kpktzeptsf36thgfhsg7ub6a.py
# Topologically Sorted Source Nodes: [affinity_new_1], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# affinity_new_1 => amax, exp, sub_1
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%sub, [-1], True), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/em/cem6qbxwbiqnjqybzk5arf2obt5uggy4qs7otwwpovvnrhvdc6h4.py
# Topologically Sorted Source Nodes: [affinity_new_1], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# affinity_new_1 => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/j4/cj4f6qdb45emg4zrdv5vzxtw2vswpyt2rqyalr6mxgomzeyk55j5.py
# Topologically Sorted Source Nodes: [mul, out], Original ATen: [aten.mul, aten.add]
# Source node to ATen node mapping:
# mul => mul
# out => add
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %view_9), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %primals_1), kwargs = {})
triton_poi_fused_add_mul_3 = async_compile.triton('triton_poi_fused_add_mul_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_3(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (0))
tmp1 = tl.broadcast_to(tmp0, [XBLOCK])
tmp2 = tl.load(in_ptr1 + (x0), xmask)
tmp4 = tl.load(in_ptr2 + (x0), xmask)
tmp3 = tmp1 * tmp2
tmp5 = tmp3 + tmp4
tl.store(out_ptr0 + (x0), tmp5, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [affinity], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(primals_1, (4, 4, 16), (64, 16, 1), 0), reinterpret_tensor(primals_1, (4, 16, 4), (64, 1, 16), 0), out=buf0)
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [affinity_new], Original ATen: [aten.sub]
stream0 = get_raw_stream(0)
triton_poi_fused_sub_0.run(buf0, buf1, 64, grid=grid(64), stream=stream0)
buf2 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [affinity_new_1], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf1, buf2, 64, grid=grid(64), stream=stream0)
buf3 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [affinity_new_1], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf2, buf3, 64, grid=grid(64), stream=stream0)
del buf2
buf4 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [affinity_new_1, weights], Original ATen: [aten._softmax, aten.bmm]
extern_kernels.bmm(buf3, reinterpret_tensor(primals_1, (4, 4, 16), (64, 16, 1), 0), out=buf4)
del buf3
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, out], Original ATen: [aten.mul, aten.add]
triton_poi_fused_add_mul_3.run(primals_2, buf4, primals_1, buf5, 256, grid=grid(256), stream=stream0)
del primals_1
del primals_2
return (buf5, buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class ChannelAttentionBlock(nn.Module):
def __init__(self, in_channels):
super(ChannelAttentionBlock, self).__init__()
self.gamma = nn.Parameter(torch.zeros(1))
self.softmax = nn.Softmax(dim=-1)
def forward(self, x):
"""
:param x: input( B x C x H x W )
:return: affinity value + x
"""
B, C, H, W = x.size()
proj_query = x.view(B, C, -1)
proj_key = x.view(B, C, -1).permute(0, 2, 1)
affinity = torch.matmul(proj_query, proj_key)
affinity_new = torch.max(affinity, -1, keepdim=True)[0].expand_as(
affinity) - affinity
affinity_new = self.softmax(affinity_new)
proj_value = x.view(B, C, -1)
weights = torch.matmul(affinity_new, proj_value)
weights = weights.view(B, C, H, W)
out = self.gamma * weights + x
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + x2, xmask)
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp6 = triton_helpers.maximum(tmp4, tmp5)
tmp8 = tmp6 - tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_add_mul_3(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK])
tmp2 = tl.load(in_ptr1 + x0, xmask)
tmp4 = tl.load(in_ptr2 + x0, xmask)
tmp3 = tmp1 * tmp2
tmp5 = tmp3 + tmp4
tl.store(out_ptr0 + x0, tmp5, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(primals_1, (4, 4, 16), (64,
16, 1), 0), reinterpret_tensor(primals_1, (4, 16, 4), (64, 1,
16), 0), out=buf0)
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_sub_0[grid(64)](buf0, buf1, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf2 = buf0
del buf0
triton_poi_fused__softmax_1[grid(64)](buf1, buf2, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf3 = buf1
del buf1
triton_poi_fused__softmax_2[grid(64)](buf2, buf3, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del buf2
buf4 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32)
extern_kernels.bmm(buf3, reinterpret_tensor(primals_1, (4, 4, 16),
(64, 16, 1), 0), out=buf4)
del buf3
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_add_mul_3[grid(256)](primals_2, buf4, primals_1,
buf5, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_1
del primals_2
return buf5, buf4
class ChannelAttentionBlockNew(nn.Module):
def __init__(self, in_channels):
super(ChannelAttentionBlockNew, self).__init__()
self.gamma = nn.Parameter(torch.zeros(1))
self.softmax = nn.Softmax(dim=-1)
def forward(self, input_0):
primals_2 = self.gamma
primals_1 = input_0
output = call([primals_1, primals_2])
return output[0]
| iMED-Lab/ROSE | ChannelAttentionBlock | false | 15,567 | [
"Apache-2.0"
]
| 64 | 8d99a2a06fc645410b1d388193b3148404e61230 | https://github.com/iMED-Lab/ROSE/tree/8d99a2a06fc645410b1d388193b3148404e61230 |
focal_loss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/ne/cneynae57lxndthtme4xlezd6u3ffewiuh42jsuualvvnwldxbwz.py
# Topologically Sorted Source Nodes: [gt_oh, mul, pt], Original ATen: [aten.cat, aten.mul, aten.sum]
# Source node to ATen node mapping:
# gt_oh => cat
# mul => mul
# pt => sum_1
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%arg0_1, %sub], 1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%cat, %arg1_1), kwargs = {})
# %sum_1 : [num_users=4] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {})
triton_per_fused_cat_mul_sum_0 = async_compile.triton('triton_per_fused_cat_mul_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[64, 8],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_cat_mul_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_cat_mul_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 64
rnumel = 8
RBLOCK: tl.constexpr = 8
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x0 = xindex % 16
x1 = (xindex // 16)
x3 = xindex
tmp15 = tl.load(in_ptr1 + (x0 + (16*r2) + (128*x1)), xmask, other=0.0)
tmp0 = r2
tmp1 = tl.full([1, 1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1, 1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (16*r2) + (64*x1)), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1, 1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr0 + (x0 + (16*((-4) + r2)) + (64*x1)), tmp6 & xmask, other=0.0)
tmp10 = 1.0
tmp11 = tmp10 - tmp9
tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype)
tmp13 = tl.where(tmp6, tmp11, tmp12)
tmp14 = tl.where(tmp4, tmp5, tmp13)
tmp16 = tmp14 * tmp15
tmp17 = tl.broadcast_to(tmp16, [XBLOCK, RBLOCK])
tmp19 = tl.where(xmask, tmp17, 0)
tmp20 = tl.sum(tmp19, 1)[:, None]
tl.store(out_ptr0 + (x3), tmp20, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/67/c67jtviypa3dlp64hpsbmasm7trrz63flcujadx4zrbjguwc7sv4.py
# Topologically Sorted Source Nodes: [sub_1, pow_1, mul_1, ge, float_2, mul_2, lt, float_3, mul_3, result, le, float_4, mul_4, gt, float_5, mul_5, result_1, log2, focal_map, loss], Original ATen: [aten.rsub, aten.pow, aten.mul, aten.ge, aten._to_copy, aten.lt, aten.add, aten.le, aten.gt, aten.log2, aten.mean]
# Source node to ATen node mapping:
# float_2 => convert_element_type
# float_3 => convert_element_type_1
# float_4 => convert_element_type_2
# float_5 => convert_element_type_3
# focal_map => mul_6
# ge => ge
# gt => gt
# le => le
# log2 => log2
# loss => mean
# lt => lt
# mul_1 => mul_1
# mul_2 => mul_2
# mul_3 => mul_3
# mul_4 => mul_4
# mul_5 => mul_5
# pow_1 => pow_1
# result => add
# result_1 => add_1
# sub_1 => sub_1
# Graph fragment:
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %sum_1), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_1, 2.0), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, -0.25), kwargs = {})
# %ge : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%sum_1, 1e-12), kwargs = {})
# %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%ge, torch.float32), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type, %sum_1), kwargs = {})
# %lt : [num_users=1] = call_function[target=torch.ops.aten.lt.Scalar](args = (%sum_1, 1e-12), kwargs = {})
# %convert_element_type_1 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%lt, torch.float32), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type_1, 1e-12), kwargs = {})
# %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %mul_3), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%add, 1.0), kwargs = {})
# %convert_element_type_2 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%le, torch.float32), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type_2, %add), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add, 1.0), kwargs = {})
# %convert_element_type_3 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%gt, torch.float32), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type_3, 1.0), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, %mul_5), kwargs = {})
# %log2 : [num_users=1] = call_function[target=torch.ops.aten.log2.default](args = (%add_1,), kwargs = {})
# %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %log2), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%mul_6,), kwargs = {})
triton_per_fused__to_copy_add_ge_gt_le_log2_lt_mean_mul_pow_rsub_1 = async_compile.triton('triton_per_fused__to_copy_add_ge_gt_le_log2_lt_mean_mul_pow_rsub_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__to_copy_add_ge_gt_le_log2_lt_mean_mul_pow_rsub_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__to_copy_add_ge_gt_le_log2_lt_mean_mul_pow_rsub_1(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = 1.0
tmp2 = tmp1 - tmp0
tmp3 = tmp2 * tmp2
tmp4 = -0.25
tmp5 = tmp3 * tmp4
tmp6 = 1e-12
tmp7 = tmp0 >= tmp6
tmp8 = tmp7.to(tl.float32)
tmp9 = tmp8 * tmp0
tmp10 = tmp0 < tmp6
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp11 * tmp6
tmp13 = tmp9 + tmp12
tmp14 = tmp13 <= tmp1
tmp15 = tmp14.to(tl.float32)
tmp16 = tmp15 * tmp13
tmp17 = tmp13 > tmp1
tmp18 = tmp17.to(tl.float32)
tmp19 = tmp18 * tmp1
tmp20 = tmp16 + tmp19
tmp21 = libdevice.log2(tmp20)
tmp22 = tmp5 * tmp21
tmp23 = tl.broadcast_to(tmp22, [XBLOCK, RBLOCK])
tmp25 = tl.sum(tmp23, 1)[:, None]
tmp26 = 64.0
tmp27 = tmp25 / tmp26
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp27, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 8, 4, 4), (128, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [gt_oh, mul, pt], Original ATen: [aten.cat, aten.mul, aten.sum]
stream0 = get_raw_stream(0)
triton_per_fused_cat_mul_sum_0.run(arg0_1, arg1_1, buf0, 64, 8, grid=grid(64), stream=stream0)
del arg0_1
del arg1_1
buf1 = empty_strided_cuda((), (), torch.float32)
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [sub_1, pow_1, mul_1, ge, float_2, mul_2, lt, float_3, mul_3, result, le, float_4, mul_4, gt, float_5, mul_5, result_1, log2, focal_map, loss], Original ATen: [aten.rsub, aten.pow, aten.mul, aten.ge, aten._to_copy, aten.lt, aten.add, aten.le, aten.gt, aten.log2, aten.mean]
triton_per_fused__to_copy_add_ge_gt_le_log2_lt_mean_mul_pow_rsub_1.run(buf2, buf0, 1, 64, grid=grid(1), stream=stream0)
del buf0
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 8, 4, 4), (128, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
def clip_by_tensor(t, t_min, t_max):
"""
clip_by_tensor
:param t: tensor
:param t_min: min
:param t_max: max
:return: cliped tensor
"""
t = t.float()
result = (t >= t_min).float() * t + (t < t_min).float() * t_min
result = (result <= t_max).float() * result + (result > t_max).float(
) * t_max
return result
class focal_loss(nn.Module):
def __init__(self, alpha=0.25, gamma=2.0, size_average=True):
super(focal_loss, self).__init__()
self.alpha = alpha
self.gamma = gamma
self.size_average = size_average
def forward(self, pred, gt):
gt_oh = torch.cat((gt, 1.0 - gt), dim=1)
pt = (gt_oh * pred).sum(1)
focal_map = -self.alpha * torch.pow(1.0 - pt, self.gamma) * torch.log2(
clip_by_tensor(pt, 1e-12, 1.0))
if self.size_average:
loss = focal_map.mean()
else:
loss = focal_map.sum()
return loss
def get_inputs():
return [torch.rand([4, 8, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_cat_mul_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel,
rnumel, XBLOCK: tl.constexpr):
xnumel = 64
RBLOCK: tl.constexpr = 8
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x0 = xindex % 16
x1 = xindex // 16
x3 = xindex
tmp15 = tl.load(in_ptr1 + (x0 + 16 * r2 + 128 * x1), xmask, other=0.0)
tmp0 = r2
tl.full([1, 1], 0, tl.int64)
tmp3 = tl.full([1, 1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 16 * r2 + 64 * x1), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1, 1], 8, tl.int64)
tmp9 = tl.load(in_ptr0 + (x0 + 16 * (-4 + r2) + 64 * x1), tmp6 & xmask,
other=0.0)
tmp10 = 1.0
tmp11 = tmp10 - tmp9
tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype)
tmp13 = tl.where(tmp6, tmp11, tmp12)
tmp14 = tl.where(tmp4, tmp5, tmp13)
tmp16 = tmp14 * tmp15
tmp17 = tl.broadcast_to(tmp16, [XBLOCK, RBLOCK])
tmp19 = tl.where(xmask, tmp17, 0)
tmp20 = tl.sum(tmp19, 1)[:, None]
tl.store(out_ptr0 + x3, tmp20, xmask)
@triton.jit
def triton_per_fused__to_copy_add_ge_gt_le_log2_lt_mean_mul_pow_rsub_1(
in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = 1.0
tmp2 = tmp1 - tmp0
tmp3 = tmp2 * tmp2
tmp4 = -0.25
tmp5 = tmp3 * tmp4
tmp6 = 1e-12
tmp7 = tmp0 >= tmp6
tmp8 = tmp7.to(tl.float32)
tmp9 = tmp8 * tmp0
tmp10 = tmp0 < tmp6
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp11 * tmp6
tmp13 = tmp9 + tmp12
tmp14 = tmp13 <= tmp1
tmp15 = tmp14.to(tl.float32)
tmp16 = tmp15 * tmp13
tmp17 = tmp13 > tmp1
tmp18 = tmp17.to(tl.float32)
tmp19 = tmp18 * tmp1
tmp20 = tmp16 + tmp19
tmp21 = libdevice.log2(tmp20)
tmp22 = tmp5 * tmp21
tmp23 = tl.broadcast_to(tmp22, [XBLOCK, RBLOCK])
tmp25 = tl.sum(tmp23, 1)[:, None]
tmp26 = 64.0
tmp27 = tmp25 / tmp26
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp27, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 8, 4, 4), (128, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_per_fused_cat_mul_sum_0[grid(64)](arg0_1, arg1_1, buf0, 64,
8, XBLOCK=8, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
buf1 = empty_strided_cuda((), (), torch.float32)
buf2 = buf1
del buf1
triton_per_fused__to_copy_add_ge_gt_le_log2_lt_mean_mul_pow_rsub_1[grid
(1)](buf2, buf0, 1, 64, XBLOCK=1, num_warps=2, num_stages=1)
del buf0
return buf2,
def clip_by_tensor(t, t_min, t_max):
"""
clip_by_tensor
:param t: tensor
:param t_min: min
:param t_max: max
:return: cliped tensor
"""
t = t.float()
result = (t >= t_min).float() * t + (t < t_min).float() * t_min
result = (result <= t_max).float() * result + (result > t_max).float(
) * t_max
return result
class focal_lossNew(nn.Module):
def __init__(self, alpha=0.25, gamma=2.0, size_average=True):
super(focal_lossNew, self).__init__()
self.alpha = alpha
self.gamma = gamma
self.size_average = size_average
def forward(self, input_0, input_1):
arg1_1 = input_0
arg0_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| iMED-Lab/ROSE | focal_loss | false | 15,568 | [
"Apache-2.0"
]
| 64 | 8d99a2a06fc645410b1d388193b3148404e61230 | https://github.com/iMED-Lab/ROSE/tree/8d99a2a06fc645410b1d388193b3148404e61230 |
DenseCrossEntropy | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/nr/cnrkptzsuv7qm3ss6i6xgoxkou23z76h2vmwqkwz2zkgpdbxhedc.py
# Topologically Sorted Source Nodes: [logprobs], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# logprobs => amax, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg0_1, [-1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %amax), kwargs = {})
triton_poi_fused__log_softmax_0 = async_compile.triton('triton_poi_fused__log_softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/nb/cnbdxy34iv6vkig4bfuqrxbegug3ek6lhyugevz3qctt7efdvtge.py
# Topologically Sorted Source Nodes: [logprobs, neg, loss, loss_1, mean], Original ATen: [aten._log_softmax, aten.neg, aten.mul, aten.sum, aten.mean]
# Source node to ATen node mapping:
# logprobs => exp, log, sub_1, sum_1
# loss => mul
# loss_1 => sum_2
# mean => mean
# neg => neg
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sub_1,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%neg, %arg1_1), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [-1]), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sum_2,), kwargs = {})
triton_per_fused__log_softmax_mean_mul_neg_sum_1 = async_compile.triton('triton_per_fused__log_softmax_mean_mul_neg_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 64],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax_mean_mul_neg_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__log_softmax_mean_mul_neg_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (4*r0), None, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*r0)), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (2 + (4*r0)), None, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (3 + (4*r0)), None, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr1 + (4*r0), None, eviction_policy='evict_last')
tmp18 = tl.load(in_ptr1 + (1 + (4*r0)), None, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr1 + (2 + (4*r0)), None, eviction_policy='evict_last')
tmp28 = tl.load(in_ptr1 + (3 + (4*r0)), None, eviction_policy='evict_last')
tmp1 = tl_math.exp(tmp0)
tmp3 = tl_math.exp(tmp2)
tmp4 = tmp1 + tmp3
tmp6 = tl_math.exp(tmp5)
tmp7 = tmp4 + tmp6
tmp9 = tl_math.exp(tmp8)
tmp10 = tmp7 + tmp9
tmp11 = tl_math.log(tmp10)
tmp12 = tmp0 - tmp11
tmp13 = -tmp12
tmp15 = tmp13 * tmp14
tmp16 = tmp2 - tmp11
tmp17 = -tmp16
tmp19 = tmp17 * tmp18
tmp20 = tmp15 + tmp19
tmp21 = tmp5 - tmp11
tmp22 = -tmp21
tmp24 = tmp22 * tmp23
tmp25 = tmp20 + tmp24
tmp26 = tmp8 - tmp11
tmp27 = -tmp26
tmp29 = tmp27 * tmp28
tmp30 = tmp25 + tmp29
tmp31 = tl.broadcast_to(tmp30, [XBLOCK, RBLOCK])
tmp33 = tl.sum(tmp31, 1)[:, None]
tmp34 = 64.0
tmp35 = tmp33 / tmp34
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp35, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [logprobs], Original ATen: [aten._log_softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__log_softmax_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
buf2 = empty_strided_cuda((), (), torch.float32)
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [logprobs, neg, loss, loss_1, mean], Original ATen: [aten._log_softmax, aten.neg, aten.mul, aten.sum, aten.mean]
triton_per_fused__log_softmax_mean_mul_neg_sum_1.run(buf3, buf0, arg1_1, 1, 64, grid=grid(1), stream=stream0)
del arg1_1
del buf0
return (buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class DenseCrossEntropy(nn.Module):
def forward(self, x, target):
x = x.float()
target = target.float()
logprobs = torch.nn.functional.log_softmax(x, dim=-1)
loss = -logprobs * target
loss = loss.sum(-1)
return loss.mean()
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_per_fused__log_softmax_mean_mul_neg_sum_1(in_out_ptr0, in_ptr0,
in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + 4 * r0, None, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * r0), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (2 + 4 * r0), None, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (3 + 4 * r0), None, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr1 + 4 * r0, None, eviction_policy='evict_last')
tmp18 = tl.load(in_ptr1 + (1 + 4 * r0), None, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr1 + (2 + 4 * r0), None, eviction_policy='evict_last')
tmp28 = tl.load(in_ptr1 + (3 + 4 * r0), None, eviction_policy='evict_last')
tmp1 = tl_math.exp(tmp0)
tmp3 = tl_math.exp(tmp2)
tmp4 = tmp1 + tmp3
tmp6 = tl_math.exp(tmp5)
tmp7 = tmp4 + tmp6
tmp9 = tl_math.exp(tmp8)
tmp10 = tmp7 + tmp9
tmp11 = tl_math.log(tmp10)
tmp12 = tmp0 - tmp11
tmp13 = -tmp12
tmp15 = tmp13 * tmp14
tmp16 = tmp2 - tmp11
tmp17 = -tmp16
tmp19 = tmp17 * tmp18
tmp20 = tmp15 + tmp19
tmp21 = tmp5 - tmp11
tmp22 = -tmp21
tmp24 = tmp22 * tmp23
tmp25 = tmp20 + tmp24
tmp26 = tmp8 - tmp11
tmp27 = -tmp26
tmp29 = tmp27 * tmp28
tmp30 = tmp25 + tmp29
tmp31 = tl.broadcast_to(tmp30, [XBLOCK, RBLOCK])
tmp33 = tl.sum(tmp31, 1)[:, None]
tmp34 = 64.0
tmp35 = tmp33 / tmp34
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp35, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__log_softmax_0[grid(256)](arg0_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
buf2 = empty_strided_cuda((), (), torch.float32)
buf3 = buf2
del buf2
triton_per_fused__log_softmax_mean_mul_neg_sum_1[grid(1)](buf3,
buf0, arg1_1, 1, 64, XBLOCK=1, num_warps=2, num_stages=1)
del arg1_1
del buf0
return buf3,
class DenseCrossEntropyNew(nn.Module):
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| i-pan/kaggle-melanoma | DenseCrossEntropy | false | 15,569 | [
"MIT"
]
| 68 | caaec0d7e9cafc7b405eb86e7fdf00107d89e1d9 | https://github.com/i-pan/kaggle-melanoma/tree/caaec0d7e9cafc7b405eb86e7fdf00107d89e1d9 |
MemoryReader | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/dp/cdpmccknapqvvgtchshc2fyeubc3a3eh3lrh2rtxfzhvnmuwd6fv.py
# Topologically Sorted Source Nodes: [p_2], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# p_2 => exp, sum_1
# Graph fragment:
# %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%bmm, 1), kwargs = {})
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [1], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {})
# %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 2.0), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
triton_per_fused__softmax_0 = async_compile.triton('triton_per_fused__softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[64, 64],
reduction_hint=ReductionHint.OUTER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__softmax_0(in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 64
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x0 = xindex % 16
x1 = (xindex // 16)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (16*r2) + (1024*x1)), xmask, other=0.0)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.where(xmask, tmp3, float("-inf"))
tmp6 = triton_helpers.max2(tmp5, 1)[:, None]
tmp7 = tmp2 - tmp6
tmp8 = 0.5
tmp9 = tmp7 * tmp8
tmp10 = tl_math.exp(tmp9)
tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK])
tmp13 = tl.where(xmask, tmp11, 0)
tmp14 = tl.sum(tmp13, 1)[:, None]
tl.store(out_ptr0 + (x3), tmp6, xmask)
tl.store(out_ptr1 + (x3), tmp14, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ff/cff3jepeo2yaw3w74iivgvpvjrblyfivcvczyhwpc4ijsshha5bq.py
# Topologically Sorted Source Nodes: [p_2], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# p_2 => div_1, exp
# Graph fragment:
# %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%bmm, 1), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {})
# %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 2.0), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {})
# %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 1024)
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp3 = tl.load(in_ptr0 + (x0 + (16*x2)), None, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (x0 + (16*x2)), None, eviction_policy='evict_last')
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp2 - tmp3
tmp5 = 0.5
tmp6 = tmp4 * tmp5
tmp7 = tl_math.exp(tmp6)
tmp9 = tmp7 / tmp8
tl.store(in_out_ptr0 + (x3), tmp9, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/4h/c4hkph5umniqpjt3giq5z7cknag37udrmtgmkv45l2qrrtiur432.py
# Topologically Sorted Source Nodes: [mem_val], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# mem_val => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%view_3, %arg3_1], 1), kwargs = {})
triton_poi_fused_cat_2 = async_compile.triton('triton_poi_fused_cat_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 16) % 8
x0 = xindex % 16
x2 = (xindex // 128)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (16*x1) + (64*x2)), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + (x0 + (16*((-4) + x1)) + (64*x2)), tmp6 & xmask, other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x3), tmp10, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1, arg3_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 64, 16), (1024, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [p], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(arg0_1, (4, 64, 4), (256, 1, 64), 0), reinterpret_tensor(arg2_1, (4, 4, 16), (64, 16, 1), 0), out=buf0)
del arg0_1
del arg2_1
buf1 = empty_strided_cuda((4, 1, 16), (16, 64, 1), torch.float32)
buf2 = empty_strided_cuda((4, 1, 16), (16, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [p_2], Original ATen: [aten._softmax]
stream0 = get_raw_stream(0)
triton_per_fused__softmax_0.run(buf0, buf1, buf2, 64, 64, grid=grid(64), stream=stream0)
buf3 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [p_2], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf3, buf1, buf2, 4096, grid=grid(4096), stream=stream0)
del buf1
del buf2
buf4 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [mem], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(arg1_1, (4, 4, 64), (256, 64, 1), 0), buf3, out=buf4)
del arg1_1
buf5 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mem_val], Original ATen: [aten.cat]
triton_poi_fused_cat_2.run(buf4, arg3_1, buf5, 512, grid=grid(512), stream=stream0)
del arg3_1
del buf4
return (buf5, buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg3_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1, arg3_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
import torch.nn
import torch.nn.functional as F
import torch.utils.data.dataset
class MemoryReader(torch.nn.Module):
def __init__(self):
super(MemoryReader, self).__init__()
def forward(self, m_key, m_val, q_key, q_val):
B, D_e, T, H, W = m_key.size()
_, D_o, _, _, _ = m_val.size()
mi = m_key.view(B, D_e, T * H * W)
mi = torch.transpose(mi, 1, 2)
qi = q_key.view(B, D_e, H * W)
p = torch.bmm(mi, qi)
p = p / math.sqrt(D_e)
p = F.softmax(p, dim=1)
mo = m_val.view(B, D_o, T * H * W)
mem = torch.bmm(mo, p)
mem = mem.view(B, D_o, H, W)
mem_val = torch.cat([mem, q_val], dim=1)
return mem_val, p
def get_inputs():
return [torch.rand([4, 4, 4, 4, 4]), torch.rand([4, 4, 4, 4, 4]), torch
.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn
import torch.utils.data.dataset
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused__softmax_0(in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel,
XBLOCK: tl.constexpr):
xnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x0 = xindex % 16
x1 = xindex // 16
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 16 * r2 + 1024 * x1), xmask, other=0.0)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.where(xmask, tmp3, float('-inf'))
tmp6 = triton_helpers.max2(tmp5, 1)[:, None]
tmp7 = tmp2 - tmp6
tmp8 = 0.5
tmp9 = tmp7 * tmp8
tmp10 = tl_math.exp(tmp9)
tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK])
tmp13 = tl.where(xmask, tmp11, 0)
tmp14 = tl.sum(tmp13, 1)[:, None]
tl.store(out_ptr0 + x3, tmp6, xmask)
tl.store(out_ptr1 + x3, tmp14, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 16
x2 = xindex // 1024
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp3 = tl.load(in_ptr0 + (x0 + 16 * x2), None, eviction_policy='evict_last'
)
tmp8 = tl.load(in_ptr1 + (x0 + 16 * x2), None, eviction_policy='evict_last'
)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp2 - tmp3
tmp5 = 0.5
tmp6 = tmp4 * tmp5
tmp7 = tl_math.exp(tmp6)
tmp9 = tmp7 / tmp8
tl.store(in_out_ptr0 + x3, tmp9, None)
@triton.jit
def triton_poi_fused_cat_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 16 % 8
x0 = xindex % 16
x2 = xindex // 128
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 16 * x1 + 64 * x2), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (x0 + 16 * (-4 + x1) + 64 * x2), tmp6 & xmask,
other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x3, tmp10, xmask)
def call(args):
arg0_1, arg1_1, arg2_1, arg3_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 64, 16), (1024, 16, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(arg0_1, (4, 64, 4), (256, 1,
64), 0), reinterpret_tensor(arg2_1, (4, 4, 16), (64, 16, 1), 0),
out=buf0)
del arg0_1
del arg2_1
buf1 = empty_strided_cuda((4, 1, 16), (16, 64, 1), torch.float32)
buf2 = empty_strided_cuda((4, 1, 16), (16, 64, 1), torch.float32)
get_raw_stream(0)
triton_per_fused__softmax_0[grid(64)](buf0, buf1, buf2, 64, 64,
XBLOCK=32, num_warps=8, num_stages=1)
buf3 = buf0
del buf0
triton_poi_fused__softmax_1[grid(4096)](buf3, buf1, buf2, 4096,
XBLOCK=256, num_warps=4, num_stages=1)
del buf1
del buf2
buf4 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(arg1_1, (4, 4, 64), (256, 64,
1), 0), buf3, out=buf4)
del arg1_1
buf5 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.float32)
triton_poi_fused_cat_2[grid(512)](buf4, arg3_1, buf5, 512, XBLOCK=
256, num_warps=4, num_stages=1)
del arg3_1
del buf4
return buf5, buf3
class MemoryReaderNew(torch.nn.Module):
def __init__(self):
super(MemoryReaderNew, self).__init__()
def forward(self, input_0, input_1, input_2, input_3):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
arg3_1 = input_3
output = call([arg0_1, arg1_1, arg2_1, arg3_1])
return output[0], output[1]
| hzxie/RMNet | MemoryReader | false | 15,570 | [
"MIT"
]
| 66 | 32a16f9c9473463a41dd6e95f72b06dd830fc1eb | https://github.com/hzxie/RMNet/tree/32a16f9c9473463a41dd6e95f72b06dd830fc1eb |
BPRLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/ck/ccklyplxynf7ncsnabxozxqkfsrbet5puchxu3imcgwf3hutcs5x.py
# Topologically Sorted Source Nodes: [log_sigmoid, diff, mean, loss], Original ATen: [aten.log_sigmoid_forward, aten.sub, aten.mean, aten.neg]
# Source node to ATen node mapping:
# diff => sub
# log_sigmoid => abs_1, exp, full_default, log1p, minimum, neg, sub_1
# loss => neg_1
# mean => mean
# Graph fragment:
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%expand, %arg0_1), kwargs = {})
# %minimum : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%full_default, %sub), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%abs_1,), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg,), kwargs = {})
# %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum, %log1p), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub_1,), kwargs = {})
# %neg_1 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%mean,), kwargs = {})
triton_per_fused_log_sigmoid_forward_mean_neg_sub_0 = async_compile.triton('triton_per_fused_log_sigmoid_forward_mean_neg_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_log_sigmoid_forward_mean_neg_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_log_sigmoid_forward_mean_neg_sub_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = (rindex // 4)
r2 = rindex
tmp0 = tl.load(in_ptr0 + (5*r1), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (r2), None)
tmp2 = tmp0 - tmp1
tmp3 = 0.0
tmp4 = triton_helpers.minimum(tmp3, tmp2)
tmp5 = tl_math.abs(tmp2)
tmp6 = -tmp5
tmp7 = tl_math.exp(tmp6)
tmp8 = libdevice.log1p(tmp7)
tmp9 = tmp4 - tmp8
tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK])
tmp12 = tl.sum(tmp10, 1)[:, None]
tmp13 = 16.0
tmp14 = tmp12 / tmp13
tmp15 = -tmp14
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp15, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [log_sigmoid, diff, mean, loss], Original ATen: [aten.log_sigmoid_forward, aten.sub, aten.mean, aten.neg]
stream0 = get_raw_stream(0)
triton_per_fused_log_sigmoid_forward_mean_neg_sub_0.run(buf1, arg0_1, 1, 16, grid=grid(1), stream=stream0)
del arg0_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class BPRLoss(nn.Module):
def __init__(self):
super(BPRLoss, self).__init__()
def forward(self, logit):
"""
Args:
logit (BxB): Variable that stores the logits for the items in the mini-batch
The first dimension corresponds to the batches, and the second
dimension corresponds to sampled number of items to evaluate
"""
diff = logit.diag().view(-1, 1).expand_as(logit) - logit
loss = -torch.mean(F.logsigmoid(diff))
return loss
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_log_sigmoid_forward_mean_neg_sub_0(in_out_ptr0,
in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex // 4
r2 = rindex
tmp0 = tl.load(in_ptr0 + 5 * r1, None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + r2, None)
tmp2 = tmp0 - tmp1
tmp3 = 0.0
tmp4 = triton_helpers.minimum(tmp3, tmp2)
tmp5 = tl_math.abs(tmp2)
tmp6 = -tmp5
tmp7 = tl_math.exp(tmp6)
tmp8 = libdevice.log1p(tmp7)
tmp9 = tmp4 - tmp8
tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK])
tmp12 = tl.sum(tmp10, 1)[:, None]
tmp13 = 16.0
tmp14 = tmp12 / tmp13
tmp15 = -tmp14
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp15, None)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_log_sigmoid_forward_mean_neg_sub_0[grid(1)](buf1,
arg0_1, 1, 16, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
return buf1,
class BPRLossNew(nn.Module):
def __init__(self):
super(BPRLossNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| hungthanhpham94/GRU4REC-pytorch | BPRLoss | false | 15,571 | [
"Apache-2.0"
]
| 184 | 666b84264c4afae757fe55c6997dcf0a4da1d44e | https://github.com/hungthanhpham94/GRU4REC-pytorch/tree/666b84264c4afae757fe55c6997dcf0a4da1d44e |
LossFunction | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/4j/c4jyrv6avqwus435iorvqp6itypporaux7xhtuefxd5zfayh26gq.py
# Topologically Sorted Source Nodes: [sub, diff, sigmoid, mean, pow_1, sigmoid_1, mean_1, loss], Original ATen: [aten.sub, aten.neg, aten.sigmoid, aten.mean, aten.pow, aten.add]
# Source node to ATen node mapping:
# diff => neg
# loss => add
# mean => mean
# mean_1 => mean_1
# pow_1 => pow_1
# sigmoid => sigmoid
# sigmoid_1 => sigmoid_1
# sub => sub
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%expand, %arg0_1), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sub,), kwargs = {})
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%neg,), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sigmoid,), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg0_1, 2), kwargs = {})
# %sigmoid_1 : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%pow_1,), kwargs = {})
# %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sigmoid_1,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean, %mean_1), kwargs = {})
triton_per_fused_add_mean_neg_pow_sigmoid_sub_0 = async_compile.triton('triton_per_fused_add_mean_neg_pow_sigmoid_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mean_neg_pow_sigmoid_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_mean_neg_pow_sigmoid_sub_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = (rindex // 4)
r2 = rindex
tmp0 = tl.load(in_ptr0 + (5*r1), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (r2), None)
tmp2 = tmp0 - tmp1
tmp3 = -tmp2
tmp4 = tl.sigmoid(tmp3)
tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK])
tmp7 = tl.sum(tmp5, 1)[:, None]
tmp8 = tmp1 * tmp1
tmp9 = tl.sigmoid(tmp8)
tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK])
tmp12 = tl.sum(tmp10, 1)[:, None]
tmp13 = 16.0
tmp14 = tmp7 / tmp13
tmp15 = tmp12 / tmp13
tmp16 = tmp14 + tmp15
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp16, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf2 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [sub, diff, sigmoid, mean, pow_1, sigmoid_1, mean_1, loss], Original ATen: [aten.sub, aten.neg, aten.sigmoid, aten.mean, aten.pow, aten.add]
stream0 = get_raw_stream(0)
triton_per_fused_add_mean_neg_pow_sigmoid_sub_0.run(buf2, arg0_1, 1, 16, grid=grid(1), stream=stream0)
del arg0_1
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.nn.functional as F
class BPRLoss(nn.Module):
def __init__(self):
super(BPRLoss, self).__init__()
def forward(self, logit):
"""
Args:
logit (BxB): Variable that stores the logits for the items in the mini-batch
The first dimension corresponds to the batches, and the second
dimension corresponds to sampled number of items to evaluate
"""
diff = logit.diag().view(-1, 1).expand_as(logit) - logit
loss = -torch.mean(F.logsigmoid(diff))
return loss
class BPR_max(nn.Module):
def __init__(self):
super(BPR_max, self).__init__()
def forward(self, logit):
logit_softmax = F.softmax(logit, dim=1)
diff = logit.diag().view(-1, 1).expand_as(logit) - logit
loss = -torch.log(torch.mean(logit_softmax * torch.sigmoid(diff)))
return loss
class SampledCrossEntropyLoss(nn.Module):
""" CrossEntropyLoss with n_classes = batch_size = the number of samples in the session-parallel mini-batch """
def __init__(self, use_cuda):
"""
Args:
use_cuda (bool): whether to use cuda or not
"""
super(SampledCrossEntropyLoss, self).__init__()
self.xe_loss = nn.CrossEntropyLoss()
self.use_cuda = use_cuda
def forward(self, logit):
batch_size = logit.size(1)
target = Variable(torch.arange(batch_size).long())
if self.use_cuda:
target = target
return self.xe_loss(logit, target)
class TOP1Loss(nn.Module):
def __init__(self):
super(TOP1Loss, self).__init__()
def forward(self, logit):
"""
Args:
logit (BxB): Variable that stores the logits for the items in the mini-batch
The first dimension corresponds to the batches, and the second
dimension corresponds to sampled number of items to evaluate
"""
diff = -(logit.diag().view(-1, 1).expand_as(logit) - logit)
loss = torch.sigmoid(diff).mean() + torch.sigmoid(logit ** 2).mean()
return loss
class TOP1_max(nn.Module):
def __init__(self):
super(TOP1_max, self).__init__()
def forward(self, logit):
logit_softmax = F.softmax(logit, dim=1)
diff = -(logit.diag().view(-1, 1).expand_as(logit) - logit)
loss = torch.mean(logit_softmax * (torch.sigmoid(diff) + torch.
sigmoid(logit ** 2)))
return loss
class LossFunction(nn.Module):
def __init__(self, loss_type='TOP1', use_cuda=False):
""" An abstract loss function that can supports custom loss functions compatible with PyTorch."""
super(LossFunction, self).__init__()
self.loss_type = loss_type
self.use_cuda = use_cuda
if loss_type == 'CrossEntropy':
self._loss_fn = SampledCrossEntropyLoss(use_cuda)
elif loss_type == 'TOP1':
self._loss_fn = TOP1Loss()
elif loss_type == 'BPR':
self._loss_fn = BPRLoss()
elif loss_type == 'TOP1-max':
self._loss_fn = TOP1_max()
elif loss_type == 'BPR-max':
self._loss_fn = BPR_max()
else:
raise NotImplementedError
def forward(self, logit):
return self._loss_fn(logit)
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
from torch.autograd import Variable
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_mean_neg_pow_sigmoid_sub_0(in_out_ptr0, in_ptr0,
xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex // 4
r2 = rindex
tmp0 = tl.load(in_ptr0 + 5 * r1, None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + r2, None)
tmp2 = tmp0 - tmp1
tmp3 = -tmp2
tmp4 = tl.sigmoid(tmp3)
tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK])
tmp7 = tl.sum(tmp5, 1)[:, None]
tmp8 = tmp1 * tmp1
tmp9 = tl.sigmoid(tmp8)
tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK])
tmp12 = tl.sum(tmp10, 1)[:, None]
tmp13 = 16.0
tmp14 = tmp7 / tmp13
tmp15 = tmp12 / tmp13
tmp16 = tmp14 + tmp15
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp16, None)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf2 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_add_mean_neg_pow_sigmoid_sub_0[grid(1)](buf2,
arg0_1, 1, 16, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
return buf2,
class BPRLoss(nn.Module):
def __init__(self):
super(BPRLoss, self).__init__()
def forward(self, logit):
"""
Args:
logit (BxB): Variable that stores the logits for the items in the mini-batch
The first dimension corresponds to the batches, and the second
dimension corresponds to sampled number of items to evaluate
"""
diff = logit.diag().view(-1, 1).expand_as(logit) - logit
loss = -torch.mean(F.logsigmoid(diff))
return loss
class BPR_max(nn.Module):
def __init__(self):
super(BPR_max, self).__init__()
def forward(self, logit):
logit_softmax = F.softmax(logit, dim=1)
diff = logit.diag().view(-1, 1).expand_as(logit) - logit
loss = -torch.log(torch.mean(logit_softmax * torch.sigmoid(diff)))
return loss
class SampledCrossEntropyLoss(nn.Module):
""" CrossEntropyLoss with n_classes = batch_size = the number of samples in the session-parallel mini-batch """
def __init__(self, use_cuda):
"""
Args:
use_cuda (bool): whether to use cuda or not
"""
super(SampledCrossEntropyLoss, self).__init__()
self.xe_loss = nn.CrossEntropyLoss()
self.use_cuda = use_cuda
def forward(self, logit):
batch_size = logit.size(1)
target = Variable(torch.arange(batch_size).long())
if self.use_cuda:
target = target
return self.xe_loss(logit, target)
class TOP1Loss(nn.Module):
def __init__(self):
super(TOP1Loss, self).__init__()
def forward(self, logit):
"""
Args:
logit (BxB): Variable that stores the logits for the items in the mini-batch
The first dimension corresponds to the batches, and the second
dimension corresponds to sampled number of items to evaluate
"""
diff = -(logit.diag().view(-1, 1).expand_as(logit) - logit)
loss = torch.sigmoid(diff).mean() + torch.sigmoid(logit ** 2).mean()
return loss
class TOP1_max(nn.Module):
def __init__(self):
super(TOP1_max, self).__init__()
def forward(self, logit):
logit_softmax = F.softmax(logit, dim=1)
diff = -(logit.diag().view(-1, 1).expand_as(logit) - logit)
loss = torch.mean(logit_softmax * (torch.sigmoid(diff) + torch.
sigmoid(logit ** 2)))
return loss
class LossFunctionNew(nn.Module):
def __init__(self, loss_type='TOP1', use_cuda=False):
""" An abstract loss function that can supports custom loss functions compatible with PyTorch."""
super(LossFunctionNew, self).__init__()
self.loss_type = loss_type
self.use_cuda = use_cuda
if loss_type == 'CrossEntropy':
self._loss_fn = SampledCrossEntropyLoss(use_cuda)
elif loss_type == 'TOP1':
self._loss_fn = TOP1Loss()
elif loss_type == 'BPR':
self._loss_fn = BPRLoss()
elif loss_type == 'TOP1-max':
self._loss_fn = TOP1_max()
elif loss_type == 'BPR-max':
self._loss_fn = BPR_max()
else:
raise NotImplementedError
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| hungthanhpham94/GRU4REC-pytorch | LossFunction | false | 15,572 | [
"Apache-2.0"
]
| 184 | 666b84264c4afae757fe55c6997dcf0a4da1d44e | https://github.com/hungthanhpham94/GRU4REC-pytorch/tree/666b84264c4afae757fe55c6997dcf0a4da1d44e |
GEGLU | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/g3/cg3jxrez5zd4oyrbdxcja37kso4ls6az3z6q5iucel6jjkrpi3th.py
# Topologically Sorted Source Nodes: [gelu, mul], Original ATen: [aten.gelu, aten.mul]
# Source node to ATen node mapping:
# gelu => add, erf, mul, mul_1, mul_2
# mul => mul_3
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem_1, 0.5), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem_1, 0.7071067811865476), kwargs = {})
# %erf : [num_users=1] = call_function[target=torch.ops.aten.erf.default](args = (%mul_1,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%erf, 1), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %add), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %getitem), kwargs = {})
triton_poi_fused_gelu_mul_0 = async_compile.triton('triton_poi_fused_gelu_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_gelu_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_gelu_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2
x1 = (xindex // 2)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 + x0 + (4*x1)), xmask)
tmp9 = tl.load(in_ptr0 + (x0 + (4*x1)), xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 0.7071067811865476
tmp4 = tmp0 * tmp3
tmp5 = libdevice.erf(tmp4)
tmp6 = 1.0
tmp7 = tmp5 + tmp6
tmp8 = tmp2 * tmp7
tmp10 = tmp8 * tmp9
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.float32)
# Topologically Sorted Source Nodes: [gelu, mul], Original ATen: [aten.gelu, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_gelu_mul_0.run(arg0_1, buf0, 128, grid=grid(128), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
from torch import nn
class GEGLU(nn.Module):
def forward(self, x):
x, gates = x.chunk(2, dim=-1)
return F.gelu(gates) * x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_gelu_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2
x1 = xindex // 2
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 + x0 + 4 * x1), xmask)
tmp9 = tl.load(in_ptr0 + (x0 + 4 * x1), xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 0.7071067811865476
tmp4 = tmp0 * tmp3
tmp5 = libdevice.erf(tmp4)
tmp6 = 1.0
tmp7 = tmp5 + tmp6
tmp8 = tmp2 * tmp7
tmp10 = tmp8 * tmp9
tl.store(out_ptr0 + x2, tmp10, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_gelu_mul_0[grid(128)](arg0_1, buf0, 128, XBLOCK=
128, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class GEGLUNew(nn.Module):
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| idolumbantobing/vit-pytorch | GEGLU | false | 15,573 | [
"MIT"
]
| 9,373 | eb70d8dca041cc387b3e1f72d965d8814eeab29a | https://github.com/idolumbantobing/vit-pytorch/tree/eb70d8dca041cc387b3e1f72d965d8814eeab29a |
BPRLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/hm/chmtok3ojlkswgdc3rnpioxgr7rgsuu2fp4ddatnexiwlnp33kp5.py
# Topologically Sorted Source Nodes: [log_sigmoid, sub, mean, neg], Original ATen: [aten.log_sigmoid_forward, aten.sub, aten.mean, aten.neg]
# Source node to ATen node mapping:
# log_sigmoid => abs_1, exp, full_default, log1p, minimum, neg, sub_1
# mean => mean
# neg => neg_1
# sub => sub
# Graph fragment:
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {})
# %minimum : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%full_default, %sub), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%abs_1,), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg,), kwargs = {})
# %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum, %log1p), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub_1,), kwargs = {})
# %neg_1 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%mean,), kwargs = {})
triton_per_fused_log_sigmoid_forward_mean_neg_sub_0 = async_compile.triton('triton_per_fused_log_sigmoid_forward_mean_neg_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_log_sigmoid_forward_mean_neg_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_log_sigmoid_forward_mean_neg_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr1 + (r0), None)
tmp2 = tmp0 - tmp1
tmp3 = 0.0
tmp4 = triton_helpers.minimum(tmp3, tmp2)
tmp5 = tl_math.abs(tmp2)
tmp6 = -tmp5
tmp7 = tl_math.exp(tmp6)
tmp8 = libdevice.log1p(tmp7)
tmp9 = tmp4 - tmp8
tmp10 = tl.broadcast_to(tmp9, [RBLOCK])
tmp12 = triton_helpers.promote_to_tensor(tl.sum(tmp10, 0))
tmp13 = 256.0
tmp14 = tmp12 / tmp13
tmp15 = -tmp14
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp15, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [log_sigmoid, sub, mean, neg], Original ATen: [aten.log_sigmoid_forward, aten.sub, aten.mean, aten.neg]
stream0 = get_raw_stream(0)
triton_per_fused_log_sigmoid_forward_mean_neg_sub_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.utils.data
import torch
import torch.nn as nn
class BPRLoss(nn.Module):
def __init__(self):
nn.Module.__init__(self)
self.m = nn.LogSigmoid()
def forward(self, positives, negatives):
return -self.m(positives - negatives).mean()
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.utils.data
import torch
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_log_sigmoid_forward_mean_neg_sub_0(in_out_ptr0,
in_ptr0, in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp2 = tmp0 - tmp1
tmp3 = 0.0
tmp4 = triton_helpers.minimum(tmp3, tmp2)
tmp5 = tl_math.abs(tmp2)
tmp6 = -tmp5
tmp7 = tl_math.exp(tmp6)
tmp8 = libdevice.log1p(tmp7)
tmp9 = tmp4 - tmp8
tmp10 = tl.broadcast_to(tmp9, [RBLOCK])
tmp12 = triton_helpers.promote_to_tensor(tl.sum(tmp10, 0))
tmp13 = 256.0
tmp14 = tmp12 / tmp13
tmp15 = -tmp14
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp15, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_log_sigmoid_forward_mean_neg_sub_0[grid(1)](buf1,
arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf1,
class BPRLossNew(nn.Module):
def __init__(self):
nn.Module.__init__(self)
self.m = nn.LogSigmoid()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| huoxusg/ScenarioMeta | BPRLoss | false | 15,574 | [
"MIT"
]
| 79 | ce753da45a3d46ac08961ffc71b2131ae3f7e551 | https://github.com/huoxusg/ScenarioMeta/tree/ce753da45a3d46ac08961ffc71b2131ae3f7e551 |
SirenLayer | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/ej/cejzhnnynxtkiot2qt7feea4bkwhxo5g2qmtwe2jbyvjefkkzt6m.py
# Topologically Sorted Source Nodes: [mul, out_1], Original ATen: [aten.mul, aten.sin]
# Source node to ATen node mapping:
# mul => mul
# out_1 => sin
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 30.0), kwargs = {})
# %sin : [num_users=1] = call_function[target=torch.ops.aten.sin.default](args = (%mul,), kwargs = {})
triton_poi_fused_mul_sin_0 = async_compile.triton('triton_poi_fused_mul_sin_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sin_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_sin_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 30.0
tmp2 = tmp0 * tmp1
tmp3 = tl_math.sin(tmp2)
tl.store(out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, out_1], Original ATen: [aten.mul, aten.sin]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_sin_0.run(buf0, buf1, 256, grid=grid(256), stream=stream0)
return (buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
from math import sqrt
class Sine(nn.Module):
"""Sine activation with scaling.
Args:
w0 (float): Omega_0 parameter from SIREN paper.
"""
def __init__(self, w0=1.0):
super().__init__()
self.w0 = w0
def forward(self, x):
return torch.sin(self.w0 * x)
class SirenLayer(nn.Module):
"""Implements a single SIREN layer.
Args:
dim_in (int): Dimension of input.
dim_out (int): Dimension of output.
w0 (float):
c (float): c value from SIREN paper used for weight initialization.
is_first (bool): Whether this is first layer of model.
use_bias (bool):
activation (torch.nn.Module): Activation function. If None, defaults to
Sine activation.
"""
def __init__(self, dim_in, dim_out, w0=30.0, c=6.0, is_first=False,
use_bias=True, activation=None):
super().__init__()
self.dim_in = dim_in
self.is_first = is_first
self.linear = nn.Linear(dim_in, dim_out, bias=use_bias)
w_std = 1 / dim_in if self.is_first else sqrt(c / dim_in) / w0
nn.init.uniform_(self.linear.weight, -w_std, w_std)
if use_bias:
nn.init.uniform_(self.linear.bias, -w_std, w_std)
self.activation = Sine(w0) if activation is None else activation
def forward(self, x):
out = self.linear(x)
out = self.activation(out)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'dim_in': 4, 'dim_out': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch import nn
from math import sqrt
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_sin_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 30.0
tmp2 = tmp0 * tmp1
tmp3 = tl_math.sin(tmp2)
tl.store(out_ptr0 + x0, tmp3, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64,
4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_sin_0[grid(256)](buf0, buf1, 256, XBLOCK=256,
num_warps=4, num_stages=1)
return buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0
class Sine(nn.Module):
"""Sine activation with scaling.
Args:
w0 (float): Omega_0 parameter from SIREN paper.
"""
def __init__(self, w0=1.0):
super().__init__()
self.w0 = w0
def forward(self, x):
return torch.sin(self.w0 * x)
class SirenLayerNew(nn.Module):
"""Implements a single SIREN layer.
Args:
dim_in (int): Dimension of input.
dim_out (int): Dimension of output.
w0 (float):
c (float): c value from SIREN paper used for weight initialization.
is_first (bool): Whether this is first layer of model.
use_bias (bool):
activation (torch.nn.Module): Activation function. If None, defaults to
Sine activation.
"""
def __init__(self, dim_in, dim_out, w0=30.0, c=6.0, is_first=False,
use_bias=True, activation=None):
super().__init__()
self.dim_in = dim_in
self.is_first = is_first
self.linear = nn.Linear(dim_in, dim_out, bias=use_bias)
w_std = 1 / dim_in if self.is_first else sqrt(c / dim_in) / w0
nn.init.uniform_(self.linear.weight, -w_std, w_std)
if use_bias:
nn.init.uniform_(self.linear.bias, -w_std, w_std)
self.activation = Sine(w0) if activation is None else activation
def forward(self, input_0):
primals_1 = self.linear.weight
primals_2 = self.linear.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| idgmatrix/coin | SirenLayer | false | 15,575 | [
"MIT"
]
| 84 | 2f2df0614ed4fc866d4b7715ee206081e08b9424 | https://github.com/idgmatrix/coin/tree/2f2df0614ed4fc866d4b7715ee206081e08b9424 |
PEG | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/gu/cguvq7dzmhomcchbxvk4mcgrc7aszgsh5ytmkbdn727ju3aina23.py
# Topologically Sorted Source Nodes: [conv2d, add], Original ATen: [aten.convolution, aten.add]
# Source node to ATen node mapping:
# add => add
# conv2d => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 4), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution, %primals_3), kwargs = {})
triton_poi_fused_add_convolution_0 = async_compile.triton('triton_poi_fused_add_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x3), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 1, 3, 3), (9, 9, 3, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [conv2d, add], Original ATen: [aten.convolution, aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_convolution_0.run(buf1, primals_2, primals_3, 256, grid=grid(256), stream=stream0)
del primals_2
return (buf1, primals_1, primals_3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
class Residual(nn.Module):
def __init__(self, fn):
super().__init__()
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(x, **kwargs) + x
class PEG(nn.Module):
def __init__(self, dim, kernel_size=3):
super().__init__()
self.proj = Residual(nn.Conv2d(dim, dim, kernel_size=kernel_size,
padding=kernel_size // 2, groups=dim, stride=1))
def forward(self, x):
return self.proj(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
@triton.jit
def triton_poi_fused_add_convolution_0(in_out_ptr0, in_ptr0, in_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + x3, xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tl.store(in_out_ptr0 + x3, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 1, 3, 3), (9, 9, 3, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_add_convolution_0[grid(256)](buf1, primals_2,
primals_3, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
return buf1, primals_1, primals_3
class Residual(nn.Module):
def __init__(self, fn):
super().__init__()
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(x, **kwargs) + x
class PEGNew(nn.Module):
def __init__(self, dim, kernel_size=3):
super().__init__()
self.proj = Residual(nn.Conv2d(dim, dim, kernel_size=kernel_size,
padding=kernel_size // 2, groups=dim, stride=1))
def forward(self, input_0):
primals_1 = self.proj.fn.weight
primals_2 = self.proj.fn.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| idolumbantobing/vit-pytorch | PEG | false | 15,576 | [
"MIT"
]
| 9,373 | eb70d8dca041cc387b3e1f72d965d8814eeab29a | https://github.com/idolumbantobing/vit-pytorch/tree/eb70d8dca041cc387b3e1f72d965d8814eeab29a |
Probability | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/dp/cdpkjbtryjvxn7ivdisyfd4mshfsifxtokfuthevt7duqevlgoub.py
# Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid, aten.sigmoid_backward]
# Source node to ATen node mapping:
# sigmoid => sigmoid
# Graph fragment:
# %sigmoid : [num_users=3] = call_function[target=torch.ops.aten.sigmoid.default](args = (%squeeze,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %sub), kwargs = {})
triton_poi_fused_sigmoid_sigmoid_backward_0 = async_compile.triton('triton_poi_fused_sigmoid_sigmoid_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_sigmoid_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sigmoid_sigmoid_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 64)
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tmp4 = 1.0
tmp5 = tmp4 - tmp3
tmp6 = tmp3 * tmp5
tl.store(in_out_ptr0 + (x2), tmp3, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 1, 1, 1), (4, 1, 1, 1, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv3d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(reinterpret_tensor(primals_3, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), primals_1, stride=(1, 1, 1), padding=(0, 0, 0), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None)
assert_size_stride(buf0, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1))
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid, aten.sigmoid_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_sigmoid_sigmoid_backward_0.run(buf1, primals_2, buf2, 256, grid=grid(256), stream=stream0)
del primals_2
return (reinterpret_tensor(buf1, (64, 4), (4, 1), 0), primals_1, reinterpret_tensor(primals_3, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 1, 1, 1), (4, 1, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class Probability(nn.Module):
"""A layer that predicts the probabilities
"""
def __init__(self, n_primitives, input_channels, make_dense=False):
super(Probability, self).__init__()
self._n_primitives = n_primitives
self._make_dense = make_dense
if self._make_dense:
self._fc = nn.Conv3d(input_channels, input_channels, 1)
self._nonlin = nn.LeakyReLU(0.2, True)
self._probability_layer = nn.Conv3d(input_channels, self.
_n_primitives, 1)
def forward(self, X):
if self._make_dense:
X = self._nonlin(self._fc(X))
probs = torch.sigmoid(self._probability_layer(X)).view(-1, self.
_n_primitives)
return probs
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'n_primitives': 4, 'input_channels': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_sigmoid_sigmoid_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 64
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tmp4 = 1.0
tmp5 = tmp4 - tmp3
tmp6 = tmp3 * tmp5
tl.store(in_out_ptr0 + x2, tmp3, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 1, 1, 1), (4, 1, 1, 1, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(reinterpret_tensor(primals_3, (1,
4, 4, 4, 4), (256, 64, 16, 4, 1), 0), primals_1, stride=(1, 1,
1), padding=(0, 0, 0), dilation=(1, 1, 1), transposed=False,
output_padding=(0, 0, 0), groups=1, bias=None)
assert_size_stride(buf0, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1))
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_sigmoid_sigmoid_backward_0[grid(256)](buf1,
primals_2, buf2, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
return reinterpret_tensor(buf1, (64, 4), (4, 1), 0
), primals_1, reinterpret_tensor(primals_3, (1, 4, 4, 4, 4), (256,
64, 16, 4, 1), 0), buf2
class ProbabilityNew(nn.Module):
"""A layer that predicts the probabilities
"""
def __init__(self, n_primitives, input_channels, make_dense=False):
super(ProbabilityNew, self).__init__()
self._n_primitives = n_primitives
self._make_dense = make_dense
if self._make_dense:
self._fc = nn.Conv3d(input_channels, input_channels, 1)
self._nonlin = nn.LeakyReLU(0.2, True)
self._probability_layer = nn.Conv3d(input_channels, self.
_n_primitives, 1)
def forward(self, input_0):
primals_1 = self._probability_layer.weight
primals_2 = self._probability_layer.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| ianhuang0630/CSQ | Probability | false | 15,577 | [
"MIT"
]
| 98 | 5f1fe99a8d9da73692643b3911d675dce269a03d | https://github.com/ianhuang0630/CSQ/tree/5f1fe99a8d9da73692643b3911d675dce269a03d |
Mlp | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/tx/ctxovrltdhpfxjn2zu2smrgoqxlijsvlahl3ehyzgagcnkhtwqrh.py
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.gelu]
# Source node to ATen node mapping:
# x => convolution
# x_1 => add, erf, mul, mul_1, mul_2
# Graph fragment:
# %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.5), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.7071067811865476), kwargs = {})
# %erf : [num_users=1] = call_function[target=torch.ops.aten.erf.default](args = (%mul_1,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%erf, 1), kwargs = {})
# %mul_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %add), kwargs = {})
triton_poi_fused_convolution_gelu_0 = async_compile.triton('triton_poi_fused_convolution_gelu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_gelu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_gelu_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.5
tmp4 = tmp2 * tmp3
tmp5 = 0.7071067811865476
tmp6 = tmp2 * tmp5
tmp7 = libdevice.erf(tmp6)
tmp8 = 1.0
tmp9 = tmp7 + tmp8
tmp10 = tmp4 * tmp9
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
tl.store(out_ptr0 + (x3), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/32/c32v7egt4mupqssam3gmac2qgv3ujprjybthsgweflmot256qqw7.py
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x_3 => convolution_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%mul_2, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0; del buf0 # reuse
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.gelu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_gelu_0.run(buf1, primals_2, buf2, 256, grid=grid(256), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1))
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf4, primals_5, 256, grid=grid(256), stream=stream0)
del primals_5
return (buf4, primals_1, primals_3, primals_4, buf1, buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.utils.data
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data.distributed
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None,
act_layer=nn.GELU, drop=0.0):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.act = act_layer()
self.drop = nn.Dropout(drop)
self.fc1 = nn.Conv2d(in_features, hidden_features, 1, 1)
self.fc2 = nn.Conv2d(hidden_features, out_features, 1, 1)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_features': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.utils.data
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data.distributed
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_convolution_gelu_0(in_out_ptr0, in_ptr0, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.5
tmp4 = tmp2 * tmp3
tmp5 = 0.7071067811865476
tmp6 = tmp2 * tmp5
tmp7 = libdevice.erf(tmp6)
tmp8 = 1.0
tmp9 = tmp7 + tmp8
tmp10 = tmp4 * tmp9
tl.store(in_out_ptr0 + x3, tmp2, xmask)
tl.store(out_ptr0 + x3, tmp10, xmask)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0
del buf0
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_gelu_0[grid(256)](buf1, primals_2,
buf2, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1))
buf4 = buf3
del buf3
triton_poi_fused_convolution_1[grid(256)](buf4, primals_5, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_5
return buf4, primals_1, primals_3, primals_4, buf1, buf2
class MlpNew(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None,
act_layer=nn.GELU, drop=0.0):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.act = act_layer()
self.drop = nn.Dropout(drop)
self.fc1 = nn.Conv2d(in_features, hidden_features, 1, 1)
self.fc2 = nn.Conv2d(hidden_features, out_features, 1, 1)
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| iamhankai/ghostnet | Mlp | false | 15,578 | [
"BSD-3-Clause"
]
| 220 | 1262dacffdea62f9983ef0231177aea720e25f12 | https://github.com/iamhankai/ghostnet/tree/1262dacffdea62f9983ef0231177aea720e25f12 |
GatedLinearUnit | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/wp/cwpwnsjfvi6lu3xgthsshkid7ebhcurkbfso2xethav3xnsobjki.py
# Topologically Sorted Source Nodes: [x, glu], Original ATen: [aten.cat, aten.glu]
# Source node to ATen node mapping:
# glu => glu
# x => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%arg0_1, %arg1_1], 1), kwargs = {})
# %glu : [num_users=1] = call_function[target=torch.ops.aten.glu.default](args = (%cat, 1), kwargs = {})
triton_poi_fused_cat_glu_0 = async_compile.triton('triton_poi_fused_cat_glu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_glu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_glu_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 16) % 4
x0 = xindex % 16
x2 = (xindex // 64)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (16*x1) + (64*x2)), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + (x0 + (16*((-4) + x1)) + (64*x2)), tmp6 & xmask, other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tmp11 = 4 + x1
tmp12 = tmp11 >= tmp1
tmp13 = tmp11 < tmp3
tmp14 = tl.load(in_ptr0 + (x0 + (16*(4 + x1)) + (64*x2)), tmp13 & xmask, other=0.0)
tmp15 = tmp11 >= tmp3
tmp16 = tmp11 < tmp7
tmp17 = tl.load(in_ptr1 + (x0 + (16*x1) + (64*x2)), tmp15 & xmask, other=0.0)
tmp18 = tl.where(tmp13, tmp14, tmp17)
tmp19 = tl.sigmoid(tmp18)
tmp20 = tmp10 * tmp19
tl.store(out_ptr0 + (x3), tmp20, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x, glu], Original ATen: [aten.cat, aten.glu]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_glu_0.run(arg0_1, arg1_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch as th
import torch.nn.functional as F
class GatedLinearUnit(nn.Module):
def forward(self, x, mask):
x = th.cat((x, mask), 1)
return F.glu(x, 1)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_cat_glu_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 16 % 4
x0 = xindex % 16
x2 = xindex // 64
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 16 * x1 + 64 * x2), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (x0 + 16 * (-4 + x1) + 64 * x2), tmp6 & xmask,
other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tmp11 = 4 + x1
tmp13 = tmp11 < tmp3
tmp14 = tl.load(in_ptr0 + (x0 + 16 * (4 + x1) + 64 * x2), tmp13 & xmask,
other=0.0)
tmp15 = tmp11 >= tmp3
tmp17 = tl.load(in_ptr1 + (x0 + 16 * x1 + 64 * x2), tmp15 & xmask,
other=0.0)
tmp18 = tl.where(tmp13, tmp14, tmp17)
tmp19 = tl.sigmoid(tmp18)
tmp20 = tmp10 * tmp19
tl.store(out_ptr0 + x3, tmp20, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_glu_0[grid(256)](arg0_1, arg1_1, buf0, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class GatedLinearUnitNew(nn.Module):
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| iamshant/mmt | GatedLinearUnit | false | 15,579 | [
"Apache-2.0"
]
| 201 | 2716e9037f2d59e9aadd92d607bcf753f0146946 | https://github.com/iamshant/mmt/tree/2716e9037f2d59e9aadd92d607bcf753f0146946 |
ReduceDim | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/hb/chbhiaabilrxfybu2ffrrnkpdqbtolbw723vatlywaxvb4btkitd.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.div]
# Source node to ATen node mapping:
# x_1 => div
# Graph fragment:
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_1, %expand), kwargs = {})
triton_poi_fused_div_0 = async_compile.triton('triton_poi_fused_div_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-12
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tl.store(out_ptr0 + (x2), tmp15, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_div_0.run(buf0, buf1, 256, grid=grid(256), stream=stream0)
return (buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class ReduceDim(nn.Module):
def __init__(self, input_dimension, output_dimension):
super(ReduceDim, self).__init__()
self.fc = nn.Linear(input_dimension, output_dimension)
def forward(self, x):
x = self.fc(x)
x = F.normalize(x, dim=-1)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_dimension': 4, 'output_dimension': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-12
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tl.store(out_ptr0 + x2, tmp15, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64,
4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_div_0[grid(256)](buf0, buf1, 256, XBLOCK=256,
num_warps=4, num_stages=1)
return buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0
class ReduceDimNew(nn.Module):
def __init__(self, input_dimension, output_dimension):
super(ReduceDimNew, self).__init__()
self.fc = nn.Linear(input_dimension, output_dimension)
def forward(self, input_0):
primals_1 = self.fc.weight
primals_2 = self.fc.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| iamshant/mmt | ReduceDim | false | 15,580 | [
"Apache-2.0"
]
| 201 | 2716e9037f2d59e9aadd92d607bcf753f0146946 | https://github.com/iamshant/mmt/tree/2716e9037f2d59e9aadd92d607bcf753f0146946 |
L2Norm | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/jl/cjlxnxxaiarviom2nt4mvz43fs6igit2tnfokz3h6ianosaulkoi.py
# Topologically Sorted Source Nodes: [norm, norm_1, truediv], Original ATen: [aten.linalg_vector_norm, aten.clamp, aten.div]
# Source node to ATen node mapping:
# norm => pow_1, pow_2, sum_1
# norm_1 => clamp_min
# truediv => div
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg0_1, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1], True), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%pow_2, 1e-06), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, %clamp_min), kwargs = {})
triton_poi_fused_clamp_div_linalg_vector_norm_0 = async_compile.triton('triton_poi_fused_clamp_div_linalg_vector_norm_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_div_linalg_vector_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clamp_div_linalg_vector_norm_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-06
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tl.store(out_ptr0 + (x3), tmp15, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [norm, norm_1, truediv], Original ATen: [aten.linalg_vector_norm, aten.clamp, aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_clamp_div_linalg_vector_norm_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
class L2Norm(nn.Module):
def forward(self, x, eps=1e-06):
norm = x.norm(dim=1, keepdim=True).clamp(min=eps)
return x / norm
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_clamp_div_linalg_vector_norm_0(in_ptr0, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp9 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-06
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tl.store(out_ptr0 + x3, tmp15, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clamp_div_linalg_vector_norm_0[grid(256)](arg0_1,
buf0, 256, XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class L2NormNew(nn.Module):
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| idolumbantobing/vit-pytorch | L2Norm | false | 15,581 | [
"MIT"
]
| 9,373 | eb70d8dca041cc387b3e1f72d965d8814eeab29a | https://github.com/idolumbantobing/vit-pytorch/tree/eb70d8dca041cc387b3e1f72d965d8814eeab29a |
BilinearWithBias | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/xz/cxzjk6yy2isy7nprnh2tiaplinhhvllxls4fwoenxjxhvqwssa2k.py
# Topologically Sorted Source Nodes: [result, result_1, result_2], Original ATen: [aten.add]
# Source node to ATen node mapping:
# result => add
# result_1 => add_1
# result_2 => add_2
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_2, %primals_2), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %view_4), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %view_6), kwargs = {})
triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x2), xmask)
tmp5 = tl.load(in_ptr2 + (x2), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tl.store(in_out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [result], Original ATen: [aten._trilinear]
buf0 = torch.ops.aten._trilinear.default(reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), primals_1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), [1, 3], [0], [1, 2], [2, 3])
del primals_1
buf1 = buf0
del buf0
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf2)
del primals_5
buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf3)
del primals_6
buf4 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [result, result_1, result_2], Original ATen: [aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_0.run(buf4, primals_2, buf2, buf3, 256, grid=grid(256), stream=stream0)
del buf2
del buf3
del primals_2
return (buf4, primals_3, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from torch.nn import Module
import math
import torch
from torch.nn.parameter import Parameter
import torch.nn.functional as F
from torch.nn.modules import Module
class BilinearWithBias(Module):
def __init__(self, in1_features, in2_features, out_features):
super(BilinearWithBias, self).__init__()
self.in1_features = in1_features
self.in2_features = in2_features
self.out_features = out_features
self.W = Parameter(torch.Tensor(out_features, in1_features,
in2_features))
self.V1 = Parameter(torch.Tensor(out_features, in1_features))
self.V2 = Parameter(torch.Tensor(out_features, in2_features))
self.bias = Parameter(torch.Tensor(out_features))
self.reset_parameters()
def reset_parameters(self):
stdv = 1.0 / math.sqrt(self.W.size(1))
self.W.data.uniform_(-stdv, stdv)
self.V1.data.uniform_(-stdv, stdv)
self.V2.data.uniform_(-stdv, stdv)
self.bias.data.uniform_(-stdv, stdv)
def forward(self, input1, input2):
result = F.bilinear(input1, input2, self.W, self.bias)
result += F.linear(input1, self.V1, None)
result += F.linear(input2, self.V2, None)
return result
def extra_repr(self):
return ('in1_features={}, in2_features={}, out_features={}, bias={}'
.format(self.in1_features, self.in2_features, self.out_features,
self.bias is not None))
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in1_features': 4, 'in2_features': 4, 'out_features': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch.nn import Module
import math
from torch.nn.parameter import Parameter
from torch.nn.modules import Module
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + x2, xmask)
tmp5 = tl.load(in_ptr2 + x2, xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tl.store(in_out_ptr0 + x2, tmp6, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = torch.ops.aten._trilinear.default(reinterpret_tensor(
primals_4, (64, 4), (4, 1), 0), primals_1, reinterpret_tensor(
primals_3, (64, 4), (4, 1), 0), [1, 3], [0], [1, 2], [2, 3])
del primals_1
buf1 = buf0
del buf0
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_4, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf2)
del primals_5
buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf3)
del primals_6
buf4 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf1
get_raw_stream(0)
triton_poi_fused_add_0[grid(256)](buf4, primals_2, buf2, buf3, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del buf2
del buf3
del primals_2
return buf4, primals_3, primals_4
class BilinearWithBiasNew(Module):
def __init__(self, in1_features, in2_features, out_features):
super(BilinearWithBiasNew, self).__init__()
self.in1_features = in1_features
self.in2_features = in2_features
self.out_features = out_features
self.W = Parameter(torch.Tensor(out_features, in1_features,
in2_features))
self.V1 = Parameter(torch.Tensor(out_features, in1_features))
self.V2 = Parameter(torch.Tensor(out_features, in2_features))
self.bias = Parameter(torch.Tensor(out_features))
self.reset_parameters()
def reset_parameters(self):
stdv = 1.0 / math.sqrt(self.W.size(1))
self.W.data.uniform_(-stdv, stdv)
self.V1.data.uniform_(-stdv, stdv)
self.V2.data.uniform_(-stdv, stdv)
self.bias.data.uniform_(-stdv, stdv)
def extra_repr(self):
return ('in1_features={}, in2_features={}, out_features={}, bias={}'
.format(self.in1_features, self.in2_features, self.out_features,
self.bias is not None))
def forward(self, input_0, input_1):
primals_1 = self.W
primals_5 = self.V1
primals_6 = self.V2
primals_2 = self.bias
primals_3 = input_0
primals_4 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0]
| ianyfan/depccg | BilinearWithBias | false | 15,582 | [
"MIT"
]
| 75 | dda01a72ad09ee36fb5d626a473cc2a0d267c57b | https://github.com/ianyfan/depccg/tree/dda01a72ad09ee36fb5d626a473cc2a0d267c57b |
Refine | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/jg/cjgnubdxm4tyjfyqnumqhgae42q67lqz4dxxko5y4lv6u3gljj5i.py
# Topologically Sorted Source Nodes: [conv2d, relu], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d => convolution
# relu => relu
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 256) % 4
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/mf/cmfu2mlh5mq36z23nfedydhpylhljw2l4jtjz7vlps6wpyzzqx2y.py
# Topologically Sorted Source Nodes: [r, relu_1], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# r => convolution_1
# relu_1 => relu_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {})
triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 256) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/fm/cfmgrwn4ghwlqlsybggpei3z2f5o74jr5fw6sp53sbrladfauueg.py
# Topologically Sorted Source Nodes: [conv2d, r_1, s, interpolate, m, relu_2], Original ATen: [aten.convolution, aten.add, aten.arange, aten._to_copy, aten.mul, aten.sub, aten.clamp, aten._unsafe_index, aten.relu]
# Source node to ATen node mapping:
# conv2d => convolution
# interpolate => _unsafe_index, _unsafe_index_1, _unsafe_index_2, _unsafe_index_3, add_1, add_5, add_6, add_7, clamp_max_2, clamp_max_3, clamp_min, clamp_min_2, clamp_min_3, convert_element_type, convert_element_type_1, convert_element_type_3, iota, mul, mul_2, mul_3, mul_4, sub, sub_2, sub_3, sub_4, sub_5, sub_6
# m => add_8
# r_1 => convolution_2
# relu_2 => relu_2
# s => add
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution, %convolution_2), kwargs = {})
# %iota : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (16,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota, torch.float32), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type, 0.5), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_1, 0.5), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, 0.5), kwargs = {})
# %clamp_min : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub, 0.0), kwargs = {})
# %convert_element_type_1 : [num_users=4] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view, torch.int64), kwargs = {})
# %convert_element_type_3 : [num_users=4] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%clamp_min, torch.int64), kwargs = {})
# %_unsafe_index : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_8, [None, None, %convert_element_type_1, %convert_element_type_3]), kwargs = {})
# %_unsafe_index_1 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_8, [None, None, %convert_element_type_1, %clamp_max_1]), kwargs = {})
# %_unsafe_index_2 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_8, [None, None, %clamp_max, %convert_element_type_3]), kwargs = {})
# %_unsafe_index_3 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_8, [None, None, %clamp_max, %clamp_max_1]), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min, %convert_element_type_3), kwargs = {})
# %clamp_min_2 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_2, 0.0), kwargs = {})
# %clamp_max_2 : [num_users=2] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_2, 1.0), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_1, %_unsafe_index), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, %clamp_max_2), kwargs = {})
# %add_5 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index, %mul_2), kwargs = {})
# %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_3, %_unsafe_index_2), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_4, %clamp_max_2), kwargs = {})
# %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_2, %mul_3), kwargs = {})
# %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %convert_element_type_1), kwargs = {})
# %clamp_min_3 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_5, 0.0), kwargs = {})
# %clamp_max_3 : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_3, 1.0), kwargs = {})
# %sub_6 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_6, %add_5), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_6, %clamp_max_3), kwargs = {})
# %add_7 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_5, %mul_4), kwargs = {})
# %add_8 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %add_7), kwargs = {})
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_8,), kwargs = {})
triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_convolution_mul_relu_sub_2 = async_compile.triton('triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_convolution_mul_relu_sub_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_convolution_mul_relu_sub_2', 'mutated_arg_names': ['in_out_ptr1'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_convolution_mul_relu_sub_2(in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 16) % 16
x0 = xindex % 16
x2 = (xindex // 256)
x6 = xindex
x4 = (xindex // 256) % 4
tmp44 = tl.load(in_out_ptr1 + (x6), None)
tmp45 = tl.load(in_ptr1 + (x4), None, eviction_policy='evict_last')
tmp47 = tl.load(in_ptr2 + (x6), None)
tmp48 = tl.load(in_ptr3 + (x4), None, eviction_policy='evict_last')
tmp0 = x1
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tmp9 = tl.full([1], 1, tl.int64)
tmp10 = tmp8 + tmp9
tmp11 = tl.full([1], 7, tl.int64)
tmp12 = triton_helpers.minimum(tmp10, tmp11)
tmp13 = x0
tmp14 = tmp13.to(tl.float32)
tmp15 = tmp14 + tmp2
tmp16 = tmp15 * tmp2
tmp17 = tmp16 - tmp2
tmp18 = triton_helpers.maximum(tmp17, tmp6)
tmp19 = tmp18.to(tl.int32)
tmp20 = tmp19 + tmp9
tmp21 = triton_helpers.minimum(tmp20, tmp11)
tmp22 = tl.load(in_ptr0 + (tmp21 + (8*tmp12) + (64*x2)), None, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr0 + (tmp19 + (8*tmp12) + (64*x2)), None, eviction_policy='evict_last')
tmp24 = tmp22 - tmp23
tmp25 = tmp19.to(tl.float32)
tmp26 = tmp18 - tmp25
tmp27 = triton_helpers.maximum(tmp26, tmp6)
tmp28 = 1.0
tmp29 = triton_helpers.minimum(tmp27, tmp28)
tmp30 = tmp24 * tmp29
tmp31 = tmp23 + tmp30
tmp32 = tl.load(in_ptr0 + (tmp19 + (8*tmp8) + (64*x2)), None, eviction_policy='evict_last')
tmp33 = tl.load(in_ptr0 + (tmp21 + (8*tmp8) + (64*x2)), None, eviction_policy='evict_last')
tmp34 = tmp33 - tmp32
tmp35 = tmp34 * tmp29
tmp36 = tmp32 + tmp35
tmp37 = tmp31 - tmp36
tmp38 = tmp8.to(tl.float32)
tmp39 = tmp7 - tmp38
tmp40 = triton_helpers.maximum(tmp39, tmp6)
tmp41 = triton_helpers.minimum(tmp40, tmp28)
tmp42 = tmp37 * tmp41
tmp43 = tmp36 + tmp42
tmp46 = tmp44 + tmp45
tmp49 = tmp47 + tmp48
tmp50 = tmp46 + tmp49
tmp51 = tmp50 + tmp43
tmp52 = tl.full([1], 0, tl.int32)
tmp53 = triton_helpers.maximum(tmp52, tmp51)
tl.store(in_out_ptr1 + (x6), tmp51, None)
tl.store(out_ptr0 + (x6), tmp53, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/km/ckm7daw76nxvwgch5affc2xskzazq5qoijt6z6tywwmtpngjzpcx.py
# Topologically Sorted Source Nodes: [r_3, m_1], Original ATen: [aten.convolution, aten.add]
# Source node to ATen node mapping:
# m_1 => add_9
# r_3 => convolution_4
# Graph fragment:
# %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_3, %primals_11, %primals_12, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %add_9 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_8, %convolution_4), kwargs = {})
triton_poi_fused_add_convolution_3 = async_compile.triton('triton_poi_fused_add_convolution_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_3(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 256) % 4
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_out_ptr0 + (x3), None)
tmp2 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 16, 16), (1024, 256, 16, 1))
assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, 4, 8, 8), (256, 64, 8, 1))
assert_size_stride(primals_9, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_10, (4, ), (1, ))
assert_size_stride(primals_11, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_12, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 16, 16), (1024, 256, 16, 1))
buf1 = empty_strided_cuda((4, 4, 16, 16), (1024, 256, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d, relu], Original ATen: [aten.convolution, aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_relu_0.run(buf0, primals_2, buf1, 4096, grid=grid(4096), stream=stream0)
# Topologically Sorted Source Nodes: [r], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 16, 16), (1024, 256, 16, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [r, relu_1], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_1.run(buf3, primals_5, 4096, grid=grid(4096), stream=stream0)
del primals_5
# Topologically Sorted Source Nodes: [r_1], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 4, 16, 16), (1024, 256, 16, 1))
buf8 = buf0; del buf0 # reuse
buf9 = empty_strided_cuda((4, 4, 16, 16), (1024, 256, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d, r_1, s, interpolate, m, relu_2], Original ATen: [aten.convolution, aten.add, aten.arange, aten._to_copy, aten.mul, aten.sub, aten.clamp, aten._unsafe_index, aten.relu]
triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_convolution_mul_relu_sub_2.run(buf8, primals_8, primals_2, buf4, primals_7, buf9, 4096, grid=grid(4096), stream=stream0)
del buf4
del primals_2
del primals_7
del primals_8
# Topologically Sorted Source Nodes: [r_2], Original ATen: [aten.convolution]
buf10 = extern_kernels.convolution(buf9, primals_9, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 4, 16, 16), (1024, 256, 16, 1))
buf11 = buf10; del buf10 # reuse
# Topologically Sorted Source Nodes: [r_2, relu_3], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_1.run(buf11, primals_10, 4096, grid=grid(4096), stream=stream0)
del primals_10
# Topologically Sorted Source Nodes: [r_3], Original ATen: [aten.convolution]
buf12 = extern_kernels.convolution(buf11, primals_11, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 4, 16, 16), (1024, 256, 16, 1))
buf13 = buf12; del buf12 # reuse
# Topologically Sorted Source Nodes: [r_3, m_1], Original ATen: [aten.convolution, aten.add]
triton_poi_fused_add_convolution_3.run(buf13, buf8, primals_12, 4096, grid=grid(4096), stream=stream0)
del buf8
del primals_12
return (buf13, primals_1, primals_3, primals_4, primals_6, primals_9, primals_11, buf1, buf3, buf9, buf11, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 16, 16), (1024, 256, 16, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 4, 8, 8), (256, 64, 8, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn
import torch.nn.functional as F
import torch.utils.data.dataset
class ResBlock(torch.nn.Module):
def __init__(self, indim, outdim=None, stride=1):
super(ResBlock, self).__init__()
if outdim is None:
outdim = indim
if indim == outdim and stride == 1:
self.downsample = None
else:
self.downsample = torch.nn.Conv2d(indim, outdim, kernel_size=3,
padding=1, stride=stride)
self.conv1 = torch.nn.Conv2d(indim, outdim, kernel_size=3, padding=
1, stride=stride)
self.conv2 = torch.nn.Conv2d(outdim, outdim, kernel_size=3, padding=1)
def forward(self, x):
r = self.conv1(F.relu(x))
r = self.conv2(F.relu(r))
if self.downsample is not None:
x = self.downsample(x)
return x + r
class Refine(torch.nn.Module):
def __init__(self, inplanes, planes, scale_factor=2):
super(Refine, self).__init__()
self.convFS = torch.nn.Conv2d(inplanes, planes, kernel_size=3,
padding=1, stride=1)
self.ResFS = ResBlock(planes, planes)
self.ResMM = ResBlock(planes, planes)
self.scale_factor = scale_factor
def forward(self, f, pm):
s = self.ResFS(self.convFS(f))
m = s + F.interpolate(pm, scale_factor=self.scale_factor, mode=
'bilinear', align_corners=False)
m = self.ResMM(m)
return m
def get_inputs():
return [torch.rand([4, 4, 16, 16]), torch.rand([4, 4, 8, 8])]
def get_init_inputs():
return [[], {'inplanes': 4, 'planes': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn
import torch.nn.functional as F
import torch.utils.data.dataset
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_convolution_relu_0(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 256 % 4
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 256 % 4
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_convolution_mul_relu_sub_2(
in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 16 % 16
x0 = xindex % 16
x2 = xindex // 256
x6 = xindex
x4 = xindex // 256 % 4
tmp44 = tl.load(in_out_ptr1 + x6, None)
tmp45 = tl.load(in_ptr1 + x4, None, eviction_policy='evict_last')
tmp47 = tl.load(in_ptr2 + x6, None)
tmp48 = tl.load(in_ptr3 + x4, None, eviction_policy='evict_last')
tmp0 = x1
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tmp9 = tl.full([1], 1, tl.int64)
tmp10 = tmp8 + tmp9
tmp11 = tl.full([1], 7, tl.int64)
tmp12 = triton_helpers.minimum(tmp10, tmp11)
tmp13 = x0
tmp14 = tmp13.to(tl.float32)
tmp15 = tmp14 + tmp2
tmp16 = tmp15 * tmp2
tmp17 = tmp16 - tmp2
tmp18 = triton_helpers.maximum(tmp17, tmp6)
tmp19 = tmp18.to(tl.int32)
tmp20 = tmp19 + tmp9
tmp21 = triton_helpers.minimum(tmp20, tmp11)
tmp22 = tl.load(in_ptr0 + (tmp21 + 8 * tmp12 + 64 * x2), None,
eviction_policy='evict_last')
tmp23 = tl.load(in_ptr0 + (tmp19 + 8 * tmp12 + 64 * x2), None,
eviction_policy='evict_last')
tmp24 = tmp22 - tmp23
tmp25 = tmp19.to(tl.float32)
tmp26 = tmp18 - tmp25
tmp27 = triton_helpers.maximum(tmp26, tmp6)
tmp28 = 1.0
tmp29 = triton_helpers.minimum(tmp27, tmp28)
tmp30 = tmp24 * tmp29
tmp31 = tmp23 + tmp30
tmp32 = tl.load(in_ptr0 + (tmp19 + 8 * tmp8 + 64 * x2), None,
eviction_policy='evict_last')
tmp33 = tl.load(in_ptr0 + (tmp21 + 8 * tmp8 + 64 * x2), None,
eviction_policy='evict_last')
tmp34 = tmp33 - tmp32
tmp35 = tmp34 * tmp29
tmp36 = tmp32 + tmp35
tmp37 = tmp31 - tmp36
tmp38 = tmp8.to(tl.float32)
tmp39 = tmp7 - tmp38
tmp40 = triton_helpers.maximum(tmp39, tmp6)
tmp41 = triton_helpers.minimum(tmp40, tmp28)
tmp42 = tmp37 * tmp41
tmp43 = tmp36 + tmp42
tmp46 = tmp44 + tmp45
tmp49 = tmp47 + tmp48
tmp50 = tmp46 + tmp49
tmp51 = tmp50 + tmp43
tmp52 = tl.full([1], 0, tl.int32)
tmp53 = triton_helpers.maximum(tmp52, tmp51)
tl.store(in_out_ptr1 + x6, tmp51, None)
tl.store(out_ptr0 + x6, tmp53, None)
@triton.jit
def triton_poi_fused_add_convolution_3(in_out_ptr0, in_ptr0, in_ptr1,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 256 % 4
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_out_ptr0 + x3, None)
tmp2 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tl.store(in_out_ptr0 + x3, tmp4, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12
) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 16, 16), (1024, 256, 16, 1))
assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4, 4, 8, 8), (256, 64, 8, 1))
assert_size_stride(primals_9, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_10, (4,), (1,))
assert_size_stride(primals_11, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_12, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 16, 16), (1024, 256, 16, 1))
buf1 = empty_strided_cuda((4, 4, 16, 16), (1024, 256, 16, 1), torch
.float32)
get_raw_stream(0)
triton_poi_fused_convolution_relu_0[grid(4096)](buf0, primals_2,
buf1, 4096, XBLOCK=256, num_warps=4, num_stages=1)
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 16, 16), (1024, 256, 16, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_relu_1[grid(4096)](buf3, primals_5,
4096, XBLOCK=128, num_warps=4, num_stages=1)
del primals_5
buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 4, 16, 16), (1024, 256, 16, 1))
buf8 = buf0
del buf0
buf9 = empty_strided_cuda((4, 4, 16, 16), (1024, 256, 16, 1), torch
.float32)
triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_convolution_mul_relu_sub_2[
grid(4096)](buf8, primals_8, primals_2, buf4, primals_7, buf9,
4096, XBLOCK=256, num_warps=4, num_stages=1)
del buf4
del primals_2
del primals_7
del primals_8
buf10 = extern_kernels.convolution(buf9, primals_9, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 4, 16, 16), (1024, 256, 16, 1))
buf11 = buf10
del buf10
triton_poi_fused_convolution_relu_1[grid(4096)](buf11, primals_10,
4096, XBLOCK=128, num_warps=4, num_stages=1)
del primals_10
buf12 = extern_kernels.convolution(buf11, primals_11, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 4, 16, 16), (1024, 256, 16, 1))
buf13 = buf12
del buf12
triton_poi_fused_add_convolution_3[grid(4096)](buf13, buf8,
primals_12, 4096, XBLOCK=256, num_warps=4, num_stages=1)
del buf8
del primals_12
return (buf13, primals_1, primals_3, primals_4, primals_6, primals_9,
primals_11, buf1, buf3, buf9, buf11)
class ResBlock(torch.nn.Module):
def __init__(self, indim, outdim=None, stride=1):
super(ResBlock, self).__init__()
if outdim is None:
outdim = indim
if indim == outdim and stride == 1:
self.downsample = None
else:
self.downsample = torch.nn.Conv2d(indim, outdim, kernel_size=3,
padding=1, stride=stride)
self.conv1 = torch.nn.Conv2d(indim, outdim, kernel_size=3, padding=
1, stride=stride)
self.conv2 = torch.nn.Conv2d(outdim, outdim, kernel_size=3, padding=1)
def forward(self, x):
r = self.conv1(F.relu(x))
r = self.conv2(F.relu(r))
if self.downsample is not None:
x = self.downsample(x)
return x + r
class RefineNew(torch.nn.Module):
def __init__(self, inplanes, planes, scale_factor=2):
super(RefineNew, self).__init__()
self.convFS = torch.nn.Conv2d(inplanes, planes, kernel_size=3,
padding=1, stride=1)
self.ResFS = ResBlock(planes, planes)
self.ResMM = ResBlock(planes, planes)
self.scale_factor = scale_factor
def forward(self, input_0, input_1):
primals_1 = self.convFS.weight
primals_2 = self.convFS.bias
primals_4 = self.ResFS.conv1.weight
primals_5 = self.ResFS.conv1.bias
primals_6 = self.ResFS.conv2.weight
primals_7 = self.ResFS.conv2.bias
primals_9 = self.ResMM.conv1.weight
primals_10 = self.ResMM.conv1.bias
primals_11 = self.ResMM.conv2.weight
primals_12 = self.ResMM.conv2.bias
primals_3 = input_0
primals_8 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12])
return output[0]
| hzxie/RMNet | Refine | false | 15,583 | [
"MIT"
]
| 66 | 32a16f9c9473463a41dd6e95f72b06dd830fc1eb | https://github.com/hzxie/RMNet/tree/32a16f9c9473463a41dd6e95f72b06dd830fc1eb |
Bilinear | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/55/c556jlky4dn3zysohrmkzzgx6ib2mru2umit7utahhvakbnltdhb.py
# Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# matmul_1 => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 64
x2 = (xindex // 256)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x3), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/c5/cc5niyk56fa3m2oc45eqgnf3eeposiu56eefgo6q2ozqlq3nwxnc.py
# Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# matmul_1 => clone_1
# Graph fragment:
# %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_1,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x2 = (xindex // 64)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (16*x2)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x3), tmp0, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), primals_1, out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(buf0, buf1, 1024, grid=grid(1024), stream=stream0)
del buf0
buf2 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.clone]
triton_poi_fused_clone_1.run(primals_3, buf2, 1024, grid=grid(1024), stream=stream0)
del primals_3
buf3 = empty_strided_cuda((64, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf1, (64, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf2, (64, 4, 4), (16, 4, 1), 0), out=buf3)
del buf1
return (reinterpret_tensor(buf3, (1024, 1), (1, 1), 0), reinterpret_tensor(buf2, (64, 4, 4), (16, 1, 4), 0), reinterpret_tensor(primals_2, (4, 64), (1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class Bilinear(nn.Module):
def __init__(self, size):
super(Bilinear, self).__init__()
self.size = size
self.mat = nn.Parameter(torch.FloatTensor(self.size, self.size))
self.reset_parameters()
def reset_parameters(self):
params = [p for p in self.parameters() if p.requires_grad]
for i, param in enumerate(params):
param.data.normal_()
def forward(self, vector1, vector2):
bma = torch.matmul(vector1, self.mat).unsqueeze(1)
ba = torch.matmul(bma, vector2.unsqueeze(2)).view(-1, 1)
return ba
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 64
x2 = xindex // 256
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + x3, tmp0, xmask)
@triton.jit
def triton_poi_fused_clone_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x2 = xindex // 64
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + x3, tmp0, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0),
primals_1, out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(1024)](buf0, buf1, 1024, XBLOCK=256,
num_warps=4, num_stages=1)
del buf0
buf2 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
triton_poi_fused_clone_1[grid(1024)](primals_3, buf2, 1024, XBLOCK=
128, num_warps=4, num_stages=1)
del primals_3
buf3 = empty_strided_cuda((64, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf1, (64, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf2, (64, 4, 4), (16, 4, 1), 0), out=buf3)
del buf1
return reinterpret_tensor(buf3, (1024, 1), (1, 1), 0), reinterpret_tensor(
buf2, (64, 4, 4), (16, 1, 4), 0), reinterpret_tensor(primals_2, (4,
64), (1, 4), 0)
class BilinearNew(nn.Module):
def __init__(self, size):
super(BilinearNew, self).__init__()
self.size = size
self.mat = nn.Parameter(torch.FloatTensor(self.size, self.size))
self.reset_parameters()
def reset_parameters(self):
params = [p for p in self.parameters() if p.requires_grad]
for i, param in enumerate(params):
param.data.normal_()
def forward(self, input_0, input_1):
primals_1 = self.mat
primals_2 = input_0
primals_3 = input_1
output = call([primals_1, primals_2, primals_3])
return output[0]
| iesl/diora-public | Bilinear | false | 15,584 | [
"Apache-2.0"
]
| 81 | 110b9b0881907ec049dd60cd93ff6ef084582b3b | https://github.com/iesl/diora-public/tree/110b9b0881907ec049dd60cd93ff6ef084582b3b |
Sine | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/tf/ctf5awjfqwzm4jd56ww7cds6w5n2srw3typs5gf4q4uka7u7nllb.py
# Topologically Sorted Source Nodes: [mul, sin], Original ATen: [aten.mul, aten.sin]
# Source node to ATen node mapping:
# mul => mul
# sin => sin
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 1.0), kwargs = {})
# %sin : [num_users=1] = call_function[target=torch.ops.aten.sin.default](args = (%mul,), kwargs = {})
triton_poi_fused_mul_sin_0 = async_compile.triton('triton_poi_fused_mul_sin_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sin_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_sin_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp3 = tl_math.sin(tmp2)
tl.store(out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, sin], Original ATen: [aten.mul, aten.sin]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_sin_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
class Sine(nn.Module):
"""Sine activation with scaling.
Args:
w0 (float): Omega_0 parameter from SIREN paper.
"""
def __init__(self, w0=1.0):
super().__init__()
self.w0 = w0
def forward(self, x):
return torch.sin(self.w0 * x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mul_sin_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp3 = tl_math.sin(tmp2)
tl.store(out_ptr0 + x0, tmp3, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_sin_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class SineNew(nn.Module):
"""Sine activation with scaling.
Args:
w0 (float): Omega_0 parameter from SIREN paper.
"""
def __init__(self, w0=1.0):
super().__init__()
self.w0 = w0
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| idgmatrix/coin | Sine | false | 15,585 | [
"MIT"
]
| 84 | 2f2df0614ed4fc866d4b7715ee206081e08b9424 | https://github.com/idgmatrix/coin/tree/2f2df0614ed4fc866d4b7715ee206081e08b9424 |
ArcFaceLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/7a/c7apwvavaesl5cfrehuxm5to533a2iuf3n3ogillaxlkpycsdxh5.py
# Topologically Sorted Source Nodes: [one_hot, labels, gt, mul, pow_1, sub, sine, mul_1, phi, sub_2, phi_1, mul_2, sub_3, mul_3, output], Original ATen: [aten.arange, aten.eq, aten._to_copy, aten.gt, aten.mul, aten.pow, aten.rsub, aten.sqrt, aten.sub, aten.where, aten.add]
# Source node to ATen node mapping:
# gt => gt
# labels => convert_element_type_2
# mul => mul
# mul_1 => mul_1
# mul_2 => mul_2
# mul_3 => mul_3
# one_hot => convert_element_type_1, eq, iota
# output => add
# phi => sub_1
# phi_1 => where
# pow_1 => pow_1
# sine => sqrt
# sub => sub
# sub_2 => sub_2
# sub_3 => sub_3
# Graph fragment:
# %iota : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (4,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Tensor](args = (%unsqueeze, %iota), kwargs = {})
# %convert_element_type_1 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%eq, torch.int64), kwargs = {})
# %convert_element_type_2 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%convert_element_type_1, torch.float32), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%arg1_1, -0.8775825618903726), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, 0.8775825618903728), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg1_1, 2), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %pow_1), kwargs = {})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%sub,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sqrt, 0.479425538604203), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %mul_1), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, 0.23971276930210156), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %sub_1, %sub_2), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type_2, %where), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %convert_element_type_2), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, %arg1_1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %mul_3), kwargs = {})
# %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 1), kwargs = {})
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {})
triton_poi_fused__to_copy_add_arange_eq_gt_mul_pow_rsub_sqrt_sub_where_0 = async_compile.triton('triton_poi_fused__to_copy_add_arange_eq_gt_mul_pow_rsub_sqrt_sub_where_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_eq_gt_mul_pow_rsub_sqrt_sub_where_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_add_arange_eq_gt_mul_pow_rsub_sqrt_sub_where_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp6 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp30 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp50 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp70 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp1 = tmp0.to(tl.int64)
tmp2 = tl.full([1], 0, tl.int64)
tmp3 = tmp1 == tmp2
tmp4 = tmp3.to(tl.int64)
tmp5 = tmp4.to(tl.float32)
tmp7 = -0.8775825618903726
tmp8 = tmp6 > tmp7
tmp9 = 0.8775825618903728
tmp10 = tmp6 * tmp9
tmp11 = tmp6 * tmp6
tmp12 = 1.0
tmp13 = tmp12 - tmp11
tmp14 = libdevice.sqrt(tmp13)
tmp15 = 0.479425538604203
tmp16 = tmp14 * tmp15
tmp17 = tmp10 - tmp16
tmp18 = 0.23971276930210156
tmp19 = tmp6 - tmp18
tmp20 = tl.where(tmp8, tmp17, tmp19)
tmp21 = tmp5 * tmp20
tmp22 = tmp12 - tmp5
tmp23 = tmp22 * tmp6
tmp24 = tmp21 + tmp23
tmp25 = tmp24 * tmp12
tmp26 = tl.full([1], 1, tl.int64)
tmp27 = tmp1 == tmp26
tmp28 = tmp27.to(tl.int64)
tmp29 = tmp28.to(tl.float32)
tmp31 = tmp30 > tmp7
tmp32 = tmp30 * tmp9
tmp33 = tmp30 * tmp30
tmp34 = tmp12 - tmp33
tmp35 = libdevice.sqrt(tmp34)
tmp36 = tmp35 * tmp15
tmp37 = tmp32 - tmp36
tmp38 = tmp30 - tmp18
tmp39 = tl.where(tmp31, tmp37, tmp38)
tmp40 = tmp29 * tmp39
tmp41 = tmp12 - tmp29
tmp42 = tmp41 * tmp30
tmp43 = tmp40 + tmp42
tmp44 = tmp43 * tmp12
tmp45 = triton_helpers.maximum(tmp25, tmp44)
tmp46 = tl.full([1], 2, tl.int64)
tmp47 = tmp1 == tmp46
tmp48 = tmp47.to(tl.int64)
tmp49 = tmp48.to(tl.float32)
tmp51 = tmp50 > tmp7
tmp52 = tmp50 * tmp9
tmp53 = tmp50 * tmp50
tmp54 = tmp12 - tmp53
tmp55 = libdevice.sqrt(tmp54)
tmp56 = tmp55 * tmp15
tmp57 = tmp52 - tmp56
tmp58 = tmp50 - tmp18
tmp59 = tl.where(tmp51, tmp57, tmp58)
tmp60 = tmp49 * tmp59
tmp61 = tmp12 - tmp49
tmp62 = tmp61 * tmp50
tmp63 = tmp60 + tmp62
tmp64 = tmp63 * tmp12
tmp65 = triton_helpers.maximum(tmp45, tmp64)
tmp66 = tl.full([1], 3, tl.int64)
tmp67 = tmp1 == tmp66
tmp68 = tmp67.to(tl.int64)
tmp69 = tmp68.to(tl.float32)
tmp71 = tmp70 > tmp7
tmp72 = tmp70 * tmp9
tmp73 = tmp70 * tmp70
tmp74 = tmp12 - tmp73
tmp75 = libdevice.sqrt(tmp74)
tmp76 = tmp75 * tmp15
tmp77 = tmp72 - tmp76
tmp78 = tmp70 - tmp18
tmp79 = tl.where(tmp71, tmp77, tmp78)
tmp80 = tmp69 * tmp79
tmp81 = tmp12 - tmp69
tmp82 = tmp81 * tmp70
tmp83 = tmp80 + tmp82
tmp84 = tmp83 * tmp12
tmp85 = triton_helpers.maximum(tmp65, tmp84)
tl.store(out_ptr0 + (x2), tmp85, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/6x/c6x3fg3we4n4algoqat36kvbtuge7r4rhjpnwwhmkt5eatpcwk2u.py
# Topologically Sorted Source Nodes: [one_hot, labels, gt, mul, pow_1, sub, sine, mul_1, phi, sub_2, phi_1, mul_2, sub_3, mul_3, output], Original ATen: [aten.arange, aten.eq, aten._to_copy, aten.gt, aten.mul, aten.pow, aten.rsub, aten.sqrt, aten.sub, aten.where, aten.add]
# Source node to ATen node mapping:
# gt => gt
# labels => convert_element_type_2
# mul => mul
# mul_1 => mul_1
# mul_2 => mul_2
# mul_3 => mul_3
# one_hot => convert_element_type_1, eq, iota
# output => add
# phi => sub_1
# phi_1 => where
# pow_1 => pow_1
# sine => sqrt
# sub => sub
# sub_2 => sub_2
# sub_3 => sub_3
# Graph fragment:
# %iota : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (4,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Tensor](args = (%unsqueeze, %iota), kwargs = {})
# %convert_element_type_1 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%eq, torch.int64), kwargs = {})
# %convert_element_type_2 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%convert_element_type_1, torch.float32), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%arg1_1, -0.8775825618903726), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, 0.8775825618903728), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg1_1, 2), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %pow_1), kwargs = {})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%sub,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sqrt, 0.479425538604203), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %mul_1), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, 0.23971276930210156), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %sub_1, %sub_2), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type_2, %where), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %convert_element_type_2), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, %arg1_1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %mul_3), kwargs = {})
# %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 1), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {})
# %mul_tensor_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_tensor, 30.0), kwargs = {})
triton_poi_fused__to_copy_add_arange_eq_gt_mul_pow_rsub_sqrt_sub_where_1 = async_compile.triton('triton_poi_fused__to_copy_add_arange_eq_gt_mul_pow_rsub_sqrt_sub_where_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_eq_gt_mul_pow_rsub_sqrt_sub_where_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_add_arange_eq_gt_mul_pow_rsub_sqrt_sub_where_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = (xindex // 4)
x0 = xindex % 4
x4 = xindex % 256
x5 = xindex
tmp0 = tl.load(in_ptr0 + (x3), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr1 + (x4), xmask, eviction_policy='evict_last')
tmp26 = tl.load(in_ptr2 + (x3), xmask, eviction_policy='evict_last')
tmp1 = tmp0.to(tl.int64)
tmp2 = x0
tmp3 = tmp1 == tmp2
tmp4 = tmp3.to(tl.int64)
tmp5 = tmp4.to(tl.float32)
tmp7 = -0.8775825618903726
tmp8 = tmp6 > tmp7
tmp9 = 0.8775825618903728
tmp10 = tmp6 * tmp9
tmp11 = tmp6 * tmp6
tmp12 = 1.0
tmp13 = tmp12 - tmp11
tmp14 = libdevice.sqrt(tmp13)
tmp15 = 0.479425538604203
tmp16 = tmp14 * tmp15
tmp17 = tmp10 - tmp16
tmp18 = 0.23971276930210156
tmp19 = tmp6 - tmp18
tmp20 = tl.where(tmp8, tmp17, tmp19)
tmp21 = tmp5 * tmp20
tmp22 = tmp12 - tmp5
tmp23 = tmp22 * tmp6
tmp24 = tmp21 + tmp23
tmp25 = tmp24 * tmp12
tmp27 = tmp25 - tmp26
tmp28 = 30.0
tmp29 = tmp27 * tmp28
tl.store(out_ptr0 + (x5), tmp29, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/7x/c7xdjer5hlbnudvp2d4wwrri7wcurrrsixwwjajvqypxu7r7knhd.py
# Topologically Sorted Source Nodes: [one_hot, labels, logprobs, neg, loss, loss_1, loss_2], Original ATen: [aten.arange, aten.eq, aten._to_copy, aten._log_softmax, aten.neg, aten.mul, aten.sum, aten.mean]
# Source node to ATen node mapping:
# labels => convert_element_type_2
# logprobs => exp, log, sub_5, sum_1
# loss => mul_5
# loss_1 => sum_2
# loss_2 => mean
# neg => neg
# one_hot => convert_element_type_1, eq, iota
# Graph fragment:
# %iota : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (4,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Tensor](args = (%unsqueeze, %iota), kwargs = {})
# %convert_element_type_1 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%eq, torch.int64), kwargs = {})
# %convert_element_type_2 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%convert_element_type_1, torch.float32), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%mul_tensor_1,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
# %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor_1, %log), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sub_5,), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%neg, %convert_element_type_2), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_5, [-1]), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sum_2,), kwargs = {})
triton_red_fused__log_softmax__to_copy_arange_eq_mean_mul_neg_sum_2 = async_compile.triton('triton_red_fused__log_softmax__to_copy_arange_eq_mean_mul_neg_sum_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused__log_softmax__to_copy_arange_eq_mean_mul_neg_sum_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused__log_softmax__to_copy_arange_eq_mean_mul_neg_sum_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 1
rnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rbase = tl.arange(0, RBLOCK)[None, :]
_tmp46 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r0 = rindex
tmp0 = tl.load(in_ptr0 + (4*r0), rmask, eviction_policy='evict_last', other=0.0)
tmp2 = tl.load(in_ptr0 + (1 + (4*r0)), rmask, eviction_policy='evict_last', other=0.0)
tmp5 = tl.load(in_ptr0 + (2 + (4*r0)), rmask, eviction_policy='evict_last', other=0.0)
tmp8 = tl.load(in_ptr0 + (3 + (4*r0)), rmask, eviction_policy='evict_last', other=0.0)
tmp14 = tl.load(in_ptr1 + (r0), rmask, eviction_policy='evict_first', other=0.0)
tmp1 = tl_math.exp(tmp0)
tmp3 = tl_math.exp(tmp2)
tmp4 = tmp1 + tmp3
tmp6 = tl_math.exp(tmp5)
tmp7 = tmp4 + tmp6
tmp9 = tl_math.exp(tmp8)
tmp10 = tmp7 + tmp9
tmp11 = tl_math.log(tmp10)
tmp12 = tmp0 - tmp11
tmp13 = -tmp12
tmp15 = tmp14.to(tl.int64)
tmp16 = tl.full([1, 1], 0, tl.int64)
tmp17 = tmp15 == tmp16
tmp18 = tmp17.to(tl.int64)
tmp19 = tmp18.to(tl.float32)
tmp20 = tmp13 * tmp19
tmp21 = tmp2 - tmp11
tmp22 = -tmp21
tmp23 = tl.full([1, 1], 1, tl.int64)
tmp24 = tmp15 == tmp23
tmp25 = tmp24.to(tl.int64)
tmp26 = tmp25.to(tl.float32)
tmp27 = tmp22 * tmp26
tmp28 = tmp20 + tmp27
tmp29 = tmp5 - tmp11
tmp30 = -tmp29
tmp31 = tl.full([1, 1], 2, tl.int64)
tmp32 = tmp15 == tmp31
tmp33 = tmp32.to(tl.int64)
tmp34 = tmp33.to(tl.float32)
tmp35 = tmp30 * tmp34
tmp36 = tmp28 + tmp35
tmp37 = tmp8 - tmp11
tmp38 = -tmp37
tmp39 = tl.full([1, 1], 3, tl.int64)
tmp40 = tmp15 == tmp39
tmp41 = tmp40.to(tl.int64)
tmp42 = tmp41.to(tl.float32)
tmp43 = tmp38 * tmp42
tmp44 = tmp36 + tmp43
tmp45 = tl.broadcast_to(tmp44, [XBLOCK, RBLOCK])
tmp47 = _tmp46 + tmp45
_tmp46 = tl.where(rmask, tmp47, _tmp46)
tmp46 = tl.sum(_tmp46, 1)[:, None]
tmp48 = 256.0
tmp49 = tmp46 / tmp48
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp49, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4, 1), (64, 16, 4, 1, 256), torch.float32)
# Topologically Sorted Source Nodes: [one_hot, labels, gt, mul, pow_1, sub, sine, mul_1, phi, sub_2, phi_1, mul_2, sub_3, mul_3, output], Original ATen: [aten.arange, aten.eq, aten._to_copy, aten.gt, aten.mul, aten.pow, aten.rsub, aten.sqrt, aten.sub, aten.where, aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused__to_copy_add_arange_eq_gt_mul_pow_rsub_sqrt_sub_where_0.run(arg0_1, arg1_1, buf0, 256, grid=grid(256), stream=stream0)
buf1 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [one_hot, labels, gt, mul, pow_1, sub, sine, mul_1, phi, sub_2, phi_1, mul_2, sub_3, mul_3, output], Original ATen: [aten.arange, aten.eq, aten._to_copy, aten.gt, aten.mul, aten.pow, aten.rsub, aten.sqrt, aten.sub, aten.where, aten.add]
triton_poi_fused__to_copy_add_arange_eq_gt_mul_pow_rsub_sqrt_sub_where_1.run(arg0_1, arg1_1, buf0, buf1, 1024, grid=grid(1024), stream=stream0)
del arg1_1
del buf0
buf3 = empty_strided_cuda((), (), torch.float32)
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [one_hot, labels, logprobs, neg, loss, loss_1, loss_2], Original ATen: [aten.arange, aten.eq, aten._to_copy, aten._log_softmax, aten.neg, aten.mul, aten.sum, aten.mean]
triton_red_fused__log_softmax__to_copy_arange_eq_mean_mul_neg_sum_2.run(buf4, buf1, arg0_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del buf1
return (buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
import torch.nn as nn
import torch.nn.functional as F
class DenseCrossEntropy(nn.Module):
def forward(self, x, target):
x = x.float()
target = target.float()
logprobs = torch.nn.functional.log_softmax(x, dim=-1)
loss = -logprobs * target
loss = loss.sum(-1)
return loss.mean()
class ArcFaceLoss(nn.Module):
def __init__(self, s=30.0, m=0.5):
super().__init__()
self.crit = DenseCrossEntropy()
self.s = s
self.cos_m = math.cos(m)
self.sin_m = math.sin(m)
self.th = math.cos(math.pi - m)
self.mm = math.sin(math.pi - m) * m
def forward(self, logits, labels):
labels = F.one_hot(labels.long(), logits.size(1)).float()
logits = logits.float()
cosine = logits
sine = torch.sqrt(1.0 - torch.pow(cosine, 2))
phi = cosine * self.cos_m - sine * self.sin_m
phi = torch.where(cosine > self.th, phi, cosine - self.mm)
output = labels * phi + (1.0 - labels) * cosine
output *= self.s
loss = self.crit(output, labels)
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__to_copy_add_arange_eq_gt_mul_pow_rsub_sqrt_sub_where_0(
in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp6 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp30 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp50 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp70 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp1 = tmp0.to(tl.int64)
tmp2 = tl.full([1], 0, tl.int64)
tmp3 = tmp1 == tmp2
tmp4 = tmp3.to(tl.int64)
tmp5 = tmp4.to(tl.float32)
tmp7 = -0.8775825618903726
tmp8 = tmp6 > tmp7
tmp9 = 0.8775825618903728
tmp10 = tmp6 * tmp9
tmp11 = tmp6 * tmp6
tmp12 = 1.0
tmp13 = tmp12 - tmp11
tmp14 = libdevice.sqrt(tmp13)
tmp15 = 0.479425538604203
tmp16 = tmp14 * tmp15
tmp17 = tmp10 - tmp16
tmp18 = 0.23971276930210156
tmp19 = tmp6 - tmp18
tmp20 = tl.where(tmp8, tmp17, tmp19)
tmp21 = tmp5 * tmp20
tmp22 = tmp12 - tmp5
tmp23 = tmp22 * tmp6
tmp24 = tmp21 + tmp23
tmp25 = tmp24 * tmp12
tmp26 = tl.full([1], 1, tl.int64)
tmp27 = tmp1 == tmp26
tmp28 = tmp27.to(tl.int64)
tmp29 = tmp28.to(tl.float32)
tmp31 = tmp30 > tmp7
tmp32 = tmp30 * tmp9
tmp33 = tmp30 * tmp30
tmp34 = tmp12 - tmp33
tmp35 = libdevice.sqrt(tmp34)
tmp36 = tmp35 * tmp15
tmp37 = tmp32 - tmp36
tmp38 = tmp30 - tmp18
tmp39 = tl.where(tmp31, tmp37, tmp38)
tmp40 = tmp29 * tmp39
tmp41 = tmp12 - tmp29
tmp42 = tmp41 * tmp30
tmp43 = tmp40 + tmp42
tmp44 = tmp43 * tmp12
tmp45 = triton_helpers.maximum(tmp25, tmp44)
tmp46 = tl.full([1], 2, tl.int64)
tmp47 = tmp1 == tmp46
tmp48 = tmp47.to(tl.int64)
tmp49 = tmp48.to(tl.float32)
tmp51 = tmp50 > tmp7
tmp52 = tmp50 * tmp9
tmp53 = tmp50 * tmp50
tmp54 = tmp12 - tmp53
tmp55 = libdevice.sqrt(tmp54)
tmp56 = tmp55 * tmp15
tmp57 = tmp52 - tmp56
tmp58 = tmp50 - tmp18
tmp59 = tl.where(tmp51, tmp57, tmp58)
tmp60 = tmp49 * tmp59
tmp61 = tmp12 - tmp49
tmp62 = tmp61 * tmp50
tmp63 = tmp60 + tmp62
tmp64 = tmp63 * tmp12
tmp65 = triton_helpers.maximum(tmp45, tmp64)
tmp66 = tl.full([1], 3, tl.int64)
tmp67 = tmp1 == tmp66
tmp68 = tmp67.to(tl.int64)
tmp69 = tmp68.to(tl.float32)
tmp71 = tmp70 > tmp7
tmp72 = tmp70 * tmp9
tmp73 = tmp70 * tmp70
tmp74 = tmp12 - tmp73
tmp75 = libdevice.sqrt(tmp74)
tmp76 = tmp75 * tmp15
tmp77 = tmp72 - tmp76
tmp78 = tmp70 - tmp18
tmp79 = tl.where(tmp71, tmp77, tmp78)
tmp80 = tmp69 * tmp79
tmp81 = tmp12 - tmp69
tmp82 = tmp81 * tmp70
tmp83 = tmp80 + tmp82
tmp84 = tmp83 * tmp12
tmp85 = triton_helpers.maximum(tmp65, tmp84)
tl.store(out_ptr0 + x2, tmp85, xmask)
@triton.jit
def triton_poi_fused__to_copy_add_arange_eq_gt_mul_pow_rsub_sqrt_sub_where_1(
in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex // 4
x0 = xindex % 4
x4 = xindex % 256
x5 = xindex
tmp0 = tl.load(in_ptr0 + x3, xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr1 + x4, xmask, eviction_policy='evict_last')
tmp26 = tl.load(in_ptr2 + x3, xmask, eviction_policy='evict_last')
tmp1 = tmp0.to(tl.int64)
tmp2 = x0
tmp3 = tmp1 == tmp2
tmp4 = tmp3.to(tl.int64)
tmp5 = tmp4.to(tl.float32)
tmp7 = -0.8775825618903726
tmp8 = tmp6 > tmp7
tmp9 = 0.8775825618903728
tmp10 = tmp6 * tmp9
tmp11 = tmp6 * tmp6
tmp12 = 1.0
tmp13 = tmp12 - tmp11
tmp14 = libdevice.sqrt(tmp13)
tmp15 = 0.479425538604203
tmp16 = tmp14 * tmp15
tmp17 = tmp10 - tmp16
tmp18 = 0.23971276930210156
tmp19 = tmp6 - tmp18
tmp20 = tl.where(tmp8, tmp17, tmp19)
tmp21 = tmp5 * tmp20
tmp22 = tmp12 - tmp5
tmp23 = tmp22 * tmp6
tmp24 = tmp21 + tmp23
tmp25 = tmp24 * tmp12
tmp27 = tmp25 - tmp26
tmp28 = 30.0
tmp29 = tmp27 * tmp28
tl.store(out_ptr0 + x5, tmp29, xmask)
@triton.jit
def triton_red_fused__log_softmax__to_copy_arange_eq_mean_mul_neg_sum_2(
in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr,
RBLOCK: tl.constexpr):
rnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rbase = tl.arange(0, RBLOCK)[None, :]
_tmp46 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r0 = rindex
tmp0 = tl.load(in_ptr0 + 4 * r0, rmask, eviction_policy=
'evict_last', other=0.0)
tmp2 = tl.load(in_ptr0 + (1 + 4 * r0), rmask, eviction_policy=
'evict_last', other=0.0)
tmp5 = tl.load(in_ptr0 + (2 + 4 * r0), rmask, eviction_policy=
'evict_last', other=0.0)
tmp8 = tl.load(in_ptr0 + (3 + 4 * r0), rmask, eviction_policy=
'evict_last', other=0.0)
tmp14 = tl.load(in_ptr1 + r0, rmask, eviction_policy='evict_first',
other=0.0)
tmp1 = tl_math.exp(tmp0)
tmp3 = tl_math.exp(tmp2)
tmp4 = tmp1 + tmp3
tmp6 = tl_math.exp(tmp5)
tmp7 = tmp4 + tmp6
tmp9 = tl_math.exp(tmp8)
tmp10 = tmp7 + tmp9
tmp11 = tl_math.log(tmp10)
tmp12 = tmp0 - tmp11
tmp13 = -tmp12
tmp15 = tmp14.to(tl.int64)
tmp16 = tl.full([1, 1], 0, tl.int64)
tmp17 = tmp15 == tmp16
tmp18 = tmp17.to(tl.int64)
tmp19 = tmp18.to(tl.float32)
tmp20 = tmp13 * tmp19
tmp21 = tmp2 - tmp11
tmp22 = -tmp21
tmp23 = tl.full([1, 1], 1, tl.int64)
tmp24 = tmp15 == tmp23
tmp25 = tmp24.to(tl.int64)
tmp26 = tmp25.to(tl.float32)
tmp27 = tmp22 * tmp26
tmp28 = tmp20 + tmp27
tmp29 = tmp5 - tmp11
tmp30 = -tmp29
tmp31 = tl.full([1, 1], 2, tl.int64)
tmp32 = tmp15 == tmp31
tmp33 = tmp32.to(tl.int64)
tmp34 = tmp33.to(tl.float32)
tmp35 = tmp30 * tmp34
tmp36 = tmp28 + tmp35
tmp37 = tmp8 - tmp11
tmp38 = -tmp37
tmp39 = tl.full([1, 1], 3, tl.int64)
tmp40 = tmp15 == tmp39
tmp41 = tmp40.to(tl.int64)
tmp42 = tmp41.to(tl.float32)
tmp43 = tmp38 * tmp42
tmp44 = tmp36 + tmp43
tmp45 = tl.broadcast_to(tmp44, [XBLOCK, RBLOCK])
tmp47 = _tmp46 + tmp45
_tmp46 = tl.where(rmask, tmp47, _tmp46)
tmp46 = tl.sum(_tmp46, 1)[:, None]
tmp48 = 256.0
tmp49 = tmp46 / tmp48
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp49, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4, 1), (64, 16, 4, 1, 256),
torch.float32)
get_raw_stream(0)
triton_poi_fused__to_copy_add_arange_eq_gt_mul_pow_rsub_sqrt_sub_where_0[
grid(256)](arg0_1, arg1_1, buf0, 256, XBLOCK=256, num_warps=4,
num_stages=1)
buf1 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
triton_poi_fused__to_copy_add_arange_eq_gt_mul_pow_rsub_sqrt_sub_where_1[
grid(1024)](arg0_1, arg1_1, buf0, buf1, 1024, XBLOCK=256,
num_warps=4, num_stages=1)
del arg1_1
del buf0
buf3 = empty_strided_cuda((), (), torch.float32)
buf4 = buf3
del buf3
triton_red_fused__log_softmax__to_copy_arange_eq_mean_mul_neg_sum_2[
grid(1)](buf4, buf1, arg0_1, 1, 256, XBLOCK=1, RBLOCK=256,
num_warps=8, num_stages=1)
del arg0_1
del buf1
return buf4,
class DenseCrossEntropy(nn.Module):
def forward(self, x, target):
x = x.float()
target = target.float()
logprobs = torch.nn.functional.log_softmax(x, dim=-1)
loss = -logprobs * target
loss = loss.sum(-1)
return loss.mean()
class ArcFaceLossNew(nn.Module):
def __init__(self, s=30.0, m=0.5):
super().__init__()
self.crit = DenseCrossEntropy()
self.s = s
self.cos_m = math.cos(m)
self.sin_m = math.sin(m)
self.th = math.cos(math.pi - m)
self.mm = math.sin(math.pi - m) * m
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| i-pan/kaggle-melanoma | ArcFaceLoss | false | 15,586 | [
"MIT"
]
| 68 | caaec0d7e9cafc7b405eb86e7fdf00107d89e1d9 | https://github.com/i-pan/kaggle-melanoma/tree/caaec0d7e9cafc7b405eb86e7fdf00107d89e1d9 |
A2CCritic | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/v7/cv7zazascu4rpkkwoxbiwk6c2le2e6wshdhae73bmaoapelvwguv.py
# Topologically Sorted Source Nodes: [v], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# v => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (16, 4), (4, 1))
assert_size_stride(primals_2, (16, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (16, 16), (16, 1))
assert_size_stride(primals_5, (16, ), (1, ))
assert_size_stride(primals_6, (1, 16), (16, 1))
assert_size_stride(primals_7, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 16), (16, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 16), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 16), (256, 64, 16, 1), 0); del buf0 # reuse
buf7 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.bool)
# Topologically Sorted Source Nodes: [v], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf7, 1024, grid=grid(1024), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 16), (16, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 16), (16, 1), 0), reinterpret_tensor(primals_4, (16, 16), (1, 16), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 16), (256, 64, 16, 1), 0); del buf2 # reuse
buf6 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.bool)
# Topologically Sorted Source Nodes: [v_1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_0.run(buf3, primals_5, buf6, 1024, grid=grid(1024), stream=stream0)
del primals_5
buf5 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [v_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 16), (16, 1), 0), reinterpret_tensor(primals_6, (16, 1), (1, 16), 0), alpha=1, beta=1, out=buf5)
del primals_7
return (reinterpret_tensor(buf5, (4, 4, 4, 1), (16, 4, 1, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 16), (16, 1), 0), reinterpret_tensor(buf3, (64, 16), (16, 1), 0), primals_6, buf6, primals_4, buf7, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((16, 16), (16, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((1, 16), (16, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch as t
import torch.nn as nn
class A2CCritic(nn.Module):
def __init__(self, state_dim):
super().__init__()
self.fc1 = nn.Linear(state_dim, 16)
self.fc2 = nn.Linear(16, 16)
self.fc3 = nn.Linear(16, 1)
def forward(self, state):
v = t.relu(self.fc1(state))
v = t.relu(self.fc2(v))
v = self.fc3(v)
return v
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'state_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (16, 4), (4, 1))
assert_size_stride(primals_2, (16,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (16, 16), (16, 1))
assert_size_stride(primals_5, (16,), (1,))
assert_size_stride(primals_6, (1, 16), (16, 1))
assert_size_stride(primals_7, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 16), (16, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 16), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 16), (256, 64, 16, 1), 0)
del buf0
buf7 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(1024)](buf1,
primals_2, buf7, 1024, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 16), (16, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 16), (16, 1), 0),
reinterpret_tensor(primals_4, (16, 16), (1, 16), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 16), (256, 64, 16, 1), 0)
del buf2
buf6 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_0[grid(1024)](buf3,
primals_5, buf6, 1024, XBLOCK=128, num_warps=4, num_stages=1)
del primals_5
buf5 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 16),
(16, 1), 0), reinterpret_tensor(primals_6, (16, 1), (1, 16), 0),
alpha=1, beta=1, out=buf5)
del primals_7
return reinterpret_tensor(buf5, (4, 4, 4, 1), (16, 4, 1, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 16), (16, 1), 0), reinterpret_tensor(
buf3, (64, 16), (16, 1), 0), primals_6, buf6, primals_4, buf7
class A2CCriticNew(nn.Module):
def __init__(self, state_dim):
super().__init__()
self.fc1 = nn.Linear(state_dim, 16)
self.fc2 = nn.Linear(16, 16)
self.fc3 = nn.Linear(16, 1)
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_6 = self.fc3.weight
primals_7 = self.fc3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| iffiX/machin | A2CCritic | false | 15,587 | [
"MIT"
]
| 287 | 7fa986b1bafdefff117d6ff73d14644a5488de9d | https://github.com/iffiX/machin/tree/7fa986b1bafdefff117d6ff73d14644a5488de9d |
FCDiscriminator_Local | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/fl/cflskeukqjcpn5pfynzkpwyovblowpewl3lyqiwirncoqacxcylo.py
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.leaky_relu]
# Source node to ATen node mapping:
# x => convolution
# x_1 => gt, mul, where
# Graph fragment:
# %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.2), kwargs = {})
# %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul), kwargs = {})
triton_poi_fused_convolution_leaky_relu_0 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 262144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 1024) % 64
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(in_out_ptr0 + (x3), tmp7, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/fi/cfik3ekgqfui53hs3oovko4x7tlh4b2wbgnht32gjrarwmhugyng.py
# Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.convolution, aten.leaky_relu]
# Source node to ATen node mapping:
# x_2 => convolution_1
# x_3 => gt_1, mul_1, where_1
# Graph fragment:
# %convolution_1 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where, %primals_4, %primals_5, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_1, 0), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_1, 0.2), kwargs = {})
# %where_1 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %convolution_1, %mul_1), kwargs = {})
triton_poi_fused_convolution_leaky_relu_1 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 131072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 256) % 128
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(in_out_ptr0 + (x3), tmp7, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ed/cedb4xkhtn35e7lnqetrdwsyqvpftp56fehphd4yymgaavex4aka.py
# Topologically Sorted Source Nodes: [x_4, x_5], Original ATen: [aten.convolution, aten.leaky_relu]
# Source node to ATen node mapping:
# x_4 => convolution_2
# x_5 => gt_2, mul_2, where_2
# Graph fragment:
# %convolution_2 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where_1, %primals_6, %primals_7, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_2 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_2, 0), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_2, 0.2), kwargs = {})
# %where_2 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %convolution_2, %mul_2), kwargs = {})
triton_poi_fused_convolution_leaky_relu_2 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 64) % 256
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(in_out_ptr0 + (x3), tmp7, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ph/cphfx5wnqdugekcdmyeg73cngdywe4fginxeyzcoy5xm3z4od7mg.py
# Topologically Sorted Source Nodes: [x_7], Original ATen: [aten._to_copy]
# Source node to ATen node mapping:
# x_7 => convert_element_type_1
# Graph fragment:
# %convert_element_type_1 : [num_users=5] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view, torch.int64), kwargs = {})
triton_poi_fused__to_copy_3 = async_compile.triton('triton_poi_fused__to_copy_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_3(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 0.03125
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tl.store(out_ptr0 + (x0), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/3o/c3o4uajkewu6qyc66xflyuksmmby5v32vqapwzcayeyqwwbkbwso.py
# Topologically Sorted Source Nodes: [x_7], Original ATen: [aten.add, aten.clamp]
# Source node to ATen node mapping:
# x_7 => add_1, clamp_max
# Graph fragment:
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_1, 1), kwargs = {})
# %clamp_max : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add_1, 3), kwargs = {})
triton_poi_fused_add_clamp_4 = async_compile.triton('triton_poi_fused_add_clamp_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_clamp_4(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 0.03125
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tmp10 = tl.full([1], 1, tl.int64)
tmp11 = tmp9 + tmp10
tmp12 = tl.full([1], 3, tl.int64)
tmp13 = triton_helpers.minimum(tmp11, tmp12)
tl.store(out_ptr0 + (x0), tmp13, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ws/cwso2rxgceddmtxuew2lra3lztnaeykovsdoxmmd7fbhf5lp7xzh.py
# Topologically Sorted Source Nodes: [x_7], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp]
# Source node to ATen node mapping:
# x_7 => add, clamp_max_2, clamp_min, clamp_min_2, convert_element_type, iota, mul_3, sub, sub_2
# Graph fragment:
# %iota : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (128,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota, torch.float32), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type, 0.5), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 0.03125), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_3, 0.5), kwargs = {})
# %clamp_min : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub, 0.0), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min, %convert_element_type_3), kwargs = {})
# %clamp_min_2 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_2, 0.0), kwargs = {})
# %clamp_max_2 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_2, 1.0), kwargs = {})
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_5 = async_compile.triton('triton_poi_fused__to_copy_add_arange_clamp_mul_sub_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_clamp_mul_sub_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_5(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 0.03125
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tmp10 = tmp9.to(tl.float32)
tmp11 = tmp8 - tmp10
tmp12 = triton_helpers.maximum(tmp11, tmp7)
tmp13 = 1.0
tmp14 = triton_helpers.minimum(tmp12, tmp13)
tl.store(out_ptr0 + (x0), tmp14, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/4q/c4qd57e774c3owuapgpru55m2em7nhzfm67zwrbsgrrm4eyauuku.py
# Topologically Sorted Source Nodes: [x_6, x_7], Original ATen: [aten.convolution, aten._unsafe_index, aten.sub, aten.mul, aten.add]
# Source node to ATen node mapping:
# x_6 => convolution_3
# x_7 => _unsafe_index, _unsafe_index_1, _unsafe_index_2, _unsafe_index_3, add_4, add_5, add_6, mul_5, mul_6, mul_7, sub_3, sub_4, sub_6
# Graph fragment:
# %convolution_3 : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%where_2, %primals_8, %primals_9, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %_unsafe_index : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_3, [None, None, %convert_element_type_1, %convert_element_type_3]), kwargs = {})
# %_unsafe_index_1 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_3, [None, None, %convert_element_type_1, %clamp_max_1]), kwargs = {})
# %_unsafe_index_2 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_3, [None, None, %clamp_max, %convert_element_type_3]), kwargs = {})
# %_unsafe_index_3 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_3, [None, None, %clamp_max, %clamp_max_1]), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_1, %_unsafe_index), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, %clamp_max_2), kwargs = {})
# %add_4 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index, %mul_5), kwargs = {})
# %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_3, %_unsafe_index_2), kwargs = {})
# %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_4, %clamp_max_2), kwargs = {})
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_2, %mul_6), kwargs = {})
# %sub_6 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_5, %add_4), kwargs = {})
# %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_6, %clamp_max_3), kwargs = {})
# %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_4, %mul_7), kwargs = {})
triton_poi_fused__unsafe_index_add_convolution_mul_sub_6 = async_compile.triton('triton_poi_fused__unsafe_index_add_convolution_mul_sub_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*i64', 3: '*fp32', 4: '*fp32', 5: '*i64', 6: '*fp32', 7: '*i64', 8: '*fp32', 9: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_add_convolution_mul_sub_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__unsafe_index_add_convolution_mul_sub_6(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 128) % 128
x0 = xindex % 128
x2 = (xindex // 16384)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + (0))
tmp11 = tl.broadcast_to(tmp10, [XBLOCK])
tmp13 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last')
tmp20 = tl.load(in_ptr5 + (x0), None, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr6 + (x1), None, eviction_policy='evict_last')
tmp35 = tl.load(in_ptr7 + (x1), None, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 4, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr2 + (tmp8 + (4*tmp4) + (16*x2)), None, eviction_policy='evict_last')
tmp12 = tmp9 + tmp11
tmp14 = tmp13 + tmp1
tmp15 = tmp13 < 0
tmp16 = tl.where(tmp15, tmp14, tmp13)
tmp17 = tl.load(in_ptr2 + (tmp16 + (4*tmp4) + (16*x2)), None, eviction_policy='evict_last')
tmp18 = tmp17 + tmp11
tmp19 = tmp18 - tmp12
tmp21 = tmp19 * tmp20
tmp22 = tmp12 + tmp21
tmp24 = tmp23 + tmp1
tmp25 = tmp23 < 0
tmp26 = tl.where(tmp25, tmp24, tmp23)
tmp27 = tl.load(in_ptr2 + (tmp8 + (4*tmp26) + (16*x2)), None, eviction_policy='evict_last')
tmp28 = tmp27 + tmp11
tmp29 = tl.load(in_ptr2 + (tmp16 + (4*tmp26) + (16*x2)), None, eviction_policy='evict_last')
tmp30 = tmp29 + tmp11
tmp31 = tmp30 - tmp28
tmp32 = tmp31 * tmp20
tmp33 = tmp28 + tmp32
tmp34 = tmp33 - tmp22
tmp36 = tmp34 * tmp35
tmp37 = tmp22 + tmp36
tl.store(in_out_ptr0 + (x3), tmp37, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (64, 2052, 4, 4), (32832, 16, 4, 1))
assert_size_stride(primals_2, (64, ), (1, ))
assert_size_stride(primals_3, (4, 2052, 64, 64), (8404992, 4096, 64, 1))
assert_size_stride(primals_4, (128, 64, 4, 4), (1024, 16, 4, 1))
assert_size_stride(primals_5, (128, ), (1, ))
assert_size_stride(primals_6, (256, 128, 4, 4), (2048, 16, 4, 1))
assert_size_stride(primals_7, (256, ), (1, ))
assert_size_stride(primals_8, (1, 256, 4, 4), (4096, 16, 4, 1))
assert_size_stride(primals_9, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 64, 32, 32), (65536, 1024, 32, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.leaky_relu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_leaky_relu_0.run(buf1, primals_2, 262144, grid=grid(262144), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 128, 16, 16), (32768, 256, 16, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_1.run(buf3, primals_5, 131072, grid=grid(131072), stream=stream0)
del primals_5
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf3, primals_6, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 256, 8, 8), (16384, 64, 8, 1))
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [x_4, x_5], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_2.run(buf5, primals_7, 65536, grid=grid(65536), stream=stream0)
del primals_7
# Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(buf5, primals_8, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 1, 4, 4), (16, 16, 4, 1))
buf7 = empty_strided_cuda((128, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [x_7], Original ATen: [aten._to_copy]
triton_poi_fused__to_copy_3.run(buf7, 128, grid=grid(128), stream=stream0)
buf8 = empty_strided_cuda((128, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [x_7], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_4.run(buf8, 128, grid=grid(128), stream=stream0)
buf9 = empty_strided_cuda((128, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [x_7], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp]
triton_poi_fused__to_copy_3.run(buf9, 128, grid=grid(128), stream=stream0)
buf10 = empty_strided_cuda((128, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [x_7], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_4.run(buf10, 128, grid=grid(128), stream=stream0)
buf11 = empty_strided_cuda((128, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [x_7], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp]
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_5.run(buf11, 128, grid=grid(128), stream=stream0)
buf13 = empty_strided_cuda((128, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_7], Original ATen: [aten.sub, aten.clamp]
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_5.run(buf13, 128, grid=grid(128), stream=stream0)
buf14 = empty_strided_cuda((4, 1, 128, 128), (16384, 65536, 128, 1), torch.float32)
buf15 = reinterpret_tensor(buf14, (4, 1, 128, 128), (16384, 16384, 128, 1), 0); del buf14 # reuse
# Topologically Sorted Source Nodes: [x_6, x_7], Original ATen: [aten.convolution, aten._unsafe_index, aten.sub, aten.mul, aten.add]
triton_poi_fused__unsafe_index_add_convolution_mul_sub_6.run(buf15, buf7, buf9, buf6, primals_9, buf10, buf11, buf8, buf13, 65536, grid=grid(65536), stream=stream0)
del buf6
del primals_9
return (buf15, primals_1, primals_3, primals_4, primals_6, primals_8, buf1, buf3, buf5, buf7, buf8, buf9, buf10, buf11, buf13, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((64, 2052, 4, 4), (32832, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 2052, 64, 64), (8404992, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((128, 64, 4, 4), (1024, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((256, 128, 4, 4), (2048, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((1, 256, 4, 4), (4096, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class FCDiscriminator_Local(nn.Module):
def __init__(self, num_classes, ndf=64):
super(FCDiscriminator_Local, self).__init__()
self.conv1 = nn.Conv2d(num_classes + 2048, ndf, kernel_size=4,
stride=2, padding=1)
self.conv2 = nn.Conv2d(ndf, ndf * 2, kernel_size=4, stride=2, padding=1
)
self.conv3 = nn.Conv2d(ndf * 2, ndf * 4, kernel_size=4, stride=2,
padding=1)
self.classifier = nn.Conv2d(ndf * 4, 1, kernel_size=4, stride=2,
padding=1)
self.leaky_relu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
self.up_sample = nn.Upsample(scale_factor=32, mode='bilinear')
def forward(self, x):
x = self.conv1(x)
x = self.leaky_relu(x)
x = self.conv2(x)
x = self.leaky_relu(x)
x = self.conv3(x)
x = self.leaky_relu(x)
x = self.classifier(x)
x = self.up_sample(x)
return x
def get_inputs():
return [torch.rand([4, 2052, 64, 64])]
def get_init_inputs():
return [[], {'num_classes': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_leaky_relu_0(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 1024 % 64
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(in_out_ptr0 + x3, tmp7, None)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_1(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 256 % 128
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(in_out_ptr0 + x3, tmp7, None)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_2(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 64 % 256
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(in_out_ptr0 + x3, tmp7, None)
@triton.jit
def triton_poi_fused__to_copy_3(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 0.03125
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tl.store(out_ptr0 + x0, tmp9, xmask)
@triton.jit
def triton_poi_fused_add_clamp_4(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 0.03125
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tmp10 = tl.full([1], 1, tl.int64)
tmp11 = tmp9 + tmp10
tmp12 = tl.full([1], 3, tl.int64)
tmp13 = triton_helpers.minimum(tmp11, tmp12)
tl.store(out_ptr0 + x0, tmp13, xmask)
@triton.jit
def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_5(out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 0.03125
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tmp10 = tmp9.to(tl.float32)
tmp11 = tmp8 - tmp10
tmp12 = triton_helpers.maximum(tmp11, tmp7)
tmp13 = 1.0
tmp14 = triton_helpers.minimum(tmp12, tmp13)
tl.store(out_ptr0 + x0, tmp14, xmask)
@triton.jit
def triton_poi_fused__unsafe_index_add_convolution_mul_sub_6(in_out_ptr0,
in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 128 % 128
x0 = xindex % 128
x2 = xindex // 16384
x3 = xindex
tmp0 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + 0)
tmp11 = tl.broadcast_to(tmp10, [XBLOCK])
tmp13 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last')
tmp20 = tl.load(in_ptr5 + x0, None, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr6 + x1, None, eviction_policy='evict_last')
tmp35 = tl.load(in_ptr7 + x1, None, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 4, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr2 + (tmp8 + 4 * tmp4 + 16 * x2), None,
eviction_policy='evict_last')
tmp12 = tmp9 + tmp11
tmp14 = tmp13 + tmp1
tmp15 = tmp13 < 0
tmp16 = tl.where(tmp15, tmp14, tmp13)
tmp17 = tl.load(in_ptr2 + (tmp16 + 4 * tmp4 + 16 * x2), None,
eviction_policy='evict_last')
tmp18 = tmp17 + tmp11
tmp19 = tmp18 - tmp12
tmp21 = tmp19 * tmp20
tmp22 = tmp12 + tmp21
tmp24 = tmp23 + tmp1
tmp25 = tmp23 < 0
tmp26 = tl.where(tmp25, tmp24, tmp23)
tmp27 = tl.load(in_ptr2 + (tmp8 + 4 * tmp26 + 16 * x2), None,
eviction_policy='evict_last')
tmp28 = tmp27 + tmp11
tmp29 = tl.load(in_ptr2 + (tmp16 + 4 * tmp26 + 16 * x2), None,
eviction_policy='evict_last')
tmp30 = tmp29 + tmp11
tmp31 = tmp30 - tmp28
tmp32 = tmp31 * tmp20
tmp33 = tmp28 + tmp32
tmp34 = tmp33 - tmp22
tmp36 = tmp34 * tmp35
tmp37 = tmp22 + tmp36
tl.store(in_out_ptr0 + x3, tmp37, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (64, 2052, 4, 4), (32832, 16, 4, 1))
assert_size_stride(primals_2, (64,), (1,))
assert_size_stride(primals_3, (4, 2052, 64, 64), (8404992, 4096, 64, 1))
assert_size_stride(primals_4, (128, 64, 4, 4), (1024, 16, 4, 1))
assert_size_stride(primals_5, (128,), (1,))
assert_size_stride(primals_6, (256, 128, 4, 4), (2048, 16, 4, 1))
assert_size_stride(primals_7, (256,), (1,))
assert_size_stride(primals_8, (1, 256, 4, 4), (4096, 16, 4, 1))
assert_size_stride(primals_9, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(2,
2), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 64, 32, 32), (65536, 1024, 32, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_leaky_relu_0[grid(262144)](buf1,
primals_2, 262144, XBLOCK=512, num_warps=8, num_stages=1)
del primals_2
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(2, 2),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 128, 16, 16), (32768, 256, 16, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_leaky_relu_1[grid(131072)](buf3,
primals_5, 131072, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_5
buf4 = extern_kernels.convolution(buf3, primals_6, stride=(2, 2),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 256, 8, 8), (16384, 64, 8, 1))
buf5 = buf4
del buf4
triton_poi_fused_convolution_leaky_relu_2[grid(65536)](buf5,
primals_7, 65536, XBLOCK=512, num_warps=4, num_stages=1)
del primals_7
buf6 = extern_kernels.convolution(buf5, primals_8, stride=(2, 2),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 1, 4, 4), (16, 16, 4, 1))
buf7 = empty_strided_cuda((128, 1), (1, 1), torch.int64)
triton_poi_fused__to_copy_3[grid(128)](buf7, 128, XBLOCK=128,
num_warps=4, num_stages=1)
buf8 = empty_strided_cuda((128, 1), (1, 1), torch.int64)
triton_poi_fused_add_clamp_4[grid(128)](buf8, 128, XBLOCK=128,
num_warps=4, num_stages=1)
buf9 = empty_strided_cuda((128,), (1,), torch.int64)
triton_poi_fused__to_copy_3[grid(128)](buf9, 128, XBLOCK=128,
num_warps=4, num_stages=1)
buf10 = empty_strided_cuda((128,), (1,), torch.int64)
triton_poi_fused_add_clamp_4[grid(128)](buf10, 128, XBLOCK=128,
num_warps=4, num_stages=1)
buf11 = empty_strided_cuda((128,), (1,), torch.float32)
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_5[grid(128)](buf11,
128, XBLOCK=128, num_warps=4, num_stages=1)
buf13 = empty_strided_cuda((128, 1), (1, 1), torch.float32)
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_5[grid(128)](buf13,
128, XBLOCK=128, num_warps=4, num_stages=1)
buf14 = empty_strided_cuda((4, 1, 128, 128), (16384, 65536, 128, 1),
torch.float32)
buf15 = reinterpret_tensor(buf14, (4, 1, 128, 128), (16384, 16384,
128, 1), 0)
del buf14
triton_poi_fused__unsafe_index_add_convolution_mul_sub_6[grid(65536)](
buf15, buf7, buf9, buf6, primals_9, buf10, buf11, buf8, buf13,
65536, XBLOCK=256, num_warps=4, num_stages=1)
del buf6
del primals_9
return (buf15, primals_1, primals_3, primals_4, primals_6, primals_8,
buf1, buf3, buf5, buf7, buf8, buf9, buf10, buf11, buf13)
class FCDiscriminator_LocalNew(nn.Module):
def __init__(self, num_classes, ndf=64):
super(FCDiscriminator_LocalNew, self).__init__()
self.conv1 = nn.Conv2d(num_classes + 2048, ndf, kernel_size=4,
stride=2, padding=1)
self.conv2 = nn.Conv2d(ndf, ndf * 2, kernel_size=4, stride=2, padding=1
)
self.conv3 = nn.Conv2d(ndf * 2, ndf * 4, kernel_size=4, stride=2,
padding=1)
self.classifier = nn.Conv2d(ndf * 4, 1, kernel_size=4, stride=2,
padding=1)
self.leaky_relu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
self.up_sample = nn.Upsample(scale_factor=32, mode='bilinear')
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_6 = self.conv3.weight
primals_7 = self.conv3.bias
primals_8 = self.classifier.weight
primals_9 = self.classifier.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0]
| gabriel-tjio/ASH | FCDiscriminator_Local | false | 15,588 | [
"MIT"
]
| 300 | 40ae044a7ca1809f91ba89671d223a96eda327da | https://github.com/gabriel-tjio/ASH/tree/40ae044a7ca1809f91ba89671d223a96eda327da |
A2CActorDisc | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/wn/cwnbny2g2c4hzf4klds4ngvg6nqtj6s4fbxcgkvzmot3mq2igc6c.py
# Topologically Sorted Source Nodes: [a], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# a => relu
# Graph fragment:
# %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_2), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {})
triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ts/ctscnzvbagjv4t25zui245b3recij5udu7nvujnr5rixcyo7elc6.py
# Topologically Sorted Source Nodes: [probs], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# probs => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%addmm_2, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%addmm_2, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/k6/ck6fz3qsfeqgn5jtm4ugikmu7cwvvlq3jpttijbb5kdniicwtyz6.py
# Topologically Sorted Source Nodes: [probs], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# probs => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (16, 4), (4, 1))
assert_size_stride(primals_2, (16, ), (1, ))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (16, 16), (16, 1))
assert_size_stride(primals_5, (16, ), (1, ))
assert_size_stride(primals_6, (4, 16), (16, 1))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 16), (16, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 16), (1, 4), 0), out=buf0)
del primals_1
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [a], Original ATen: [aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_0.run(buf1, primals_2, 64, grid=grid(64), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((4, 16), (16, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf1, reinterpret_tensor(primals_4, (16, 16), (1, 16), 0), out=buf2)
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [a_1], Original ATen: [aten.relu]
triton_poi_fused_relu_0.run(buf3, primals_5, 64, grid=grid(64), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, buf3, reinterpret_tensor(primals_6, (16, 4), (1, 16), 0), alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [probs], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf4, buf5, 16, grid=grid(16), stream=stream0)
buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [probs], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf5, buf6, 16, grid=grid(16), stream=stream0)
buf7 = buf5; del buf5 # reuse
# Topologically Sorted Source Nodes: [sum_1, truediv], Original ATen: [aten.sum, aten.div]
triton_poi_fused__softmax_2.run(buf6, buf7, 16, grid=grid(16), stream=stream0)
del buf6
# Topologically Sorted Source Nodes: [multinomial], Original ATen: [aten.multinomial]
buf8 = torch.ops.aten.multinomial.default(buf7, 1, True)
buf9 = buf8
del buf8
return (reinterpret_tensor(buf9, (4, ), (1, ), 0), buf7, primals_3, buf1, buf3, buf4, primals_6, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((16, 16), (16, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 16), (16, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch.distributions import Categorical
import torch as t
import torch.nn as nn
class A2CActorDisc(nn.Module):
def __init__(self, state_dim, action_num):
super().__init__()
self.fc1 = nn.Linear(state_dim, 16)
self.fc2 = nn.Linear(16, 16)
self.fc3 = nn.Linear(16, action_num)
def forward(self, state, action=None):
a = t.relu(self.fc1(state))
a = t.relu(self.fc2(a))
probs = t.softmax(self.fc3(a), dim=1)
dist = Categorical(probs=probs)
act = action if action is not None else dist.sample()
act_entropy = dist.entropy()
act_log_prob = dist.log_prob(act.flatten())
return act, act_log_prob, act_entropy
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {'state_dim': 4, 'action_num': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (16, 4), (4, 1))
assert_size_stride(primals_2, (16,), (1,))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (16, 16), (16, 1))
assert_size_stride(primals_5, (16,), (1,))
assert_size_stride(primals_6, (4, 16), (16, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 16), (16, 1), torch.float32)
extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 16),
(1, 4), 0), out=buf0)
del primals_1
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_relu_0[grid(64)](buf1, primals_2, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((4, 16), (16, 1), torch.float32)
extern_kernels.mm(buf1, reinterpret_tensor(primals_4, (16, 16), (1,
16), 0), out=buf2)
buf3 = buf2
del buf2
triton_poi_fused_relu_0[grid(64)](buf3, primals_5, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_7, buf3, reinterpret_tensor(primals_6,
(16, 4), (1, 16), 0), alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused__softmax_1[grid(16)](buf4, buf5, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused__softmax_2[grid(16)](buf5, buf6, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf7 = buf5
del buf5
triton_poi_fused__softmax_2[grid(16)](buf6, buf7, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del buf6
buf8 = torch.ops.aten.multinomial.default(buf7, 1, True)
buf9 = buf8
del buf8
return reinterpret_tensor(buf9, (4,), (1,), 0
), buf7, primals_3, buf1, buf3, buf4, primals_6, primals_4
class A2CActorDiscNew(nn.Module):
def __init__(self, state_dim, action_num):
super().__init__()
self.fc1 = nn.Linear(state_dim, 16)
self.fc2 = nn.Linear(16, 16)
self.fc3 = nn.Linear(16, action_num)
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_6 = self.fc3.weight
primals_7 = self.fc3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0], output[1], output[2]
| iffiX/machin | A2CActorDisc | false | 15,589 | [
"MIT"
]
| 287 | 7fa986b1bafdefff117d6ff73d14644a5488de9d | https://github.com/iffiX/machin/tree/7fa986b1bafdefff117d6ff73d14644a5488de9d |
LanguageModelCriterion | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/bk/cbkgxpfet2dg3ve2mpd5dry3yx3ra22ygcjs5fecs2h77kxz2vko.py
# Topologically Sorted Source Nodes: [gather, neg, output, sum_1, sum_2, output_1], Original ATen: [aten.gather, aten.neg, aten.mul, aten.sum, aten.div]
# Source node to ATen node mapping:
# gather => gather
# neg => neg
# output => mul
# output_1 => div
# sum_1 => sum_1
# sum_2 => sum_2
# Graph fragment:
# %gather : [num_users=1] = call_function[target=torch.ops.aten.gather.default](args = (%view, 1, %view_1), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%gather,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%neg, %view_2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%view_2,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %sum_2), kwargs = {})
triton_per_fused_div_gather_mul_neg_sum_0 = async_compile.triton('triton_per_fused_div_gather_mul_neg_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*i64', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=(4,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_gather_mul_neg_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_div_gather_mul_neg_sum_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp9 = tl.load(in_ptr2 + (r0), None)
tmp1 = tl.full([XBLOCK, RBLOCK], 4, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tl.device_assert((0 <= tmp4) & (tmp4 < 4), "index out of bounds: 0 <= tmp4 < 4")
tmp6 = tl.load(in_ptr1 + (tmp4 + (4*r0)), None, eviction_policy='evict_last')
tmp7 = -tmp6
tmp8 = tmp7.to(tl.float32)
tmp10 = tmp8 * tmp9
tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK])
tmp13 = tl.sum(tmp11, 1)[:, None]
tmp14 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK])
tmp16 = tl.sum(tmp14, 1)[:, None]
tmp17 = tmp13 / tmp16
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp17, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg1_1, (4, 4), (4, 1))
assert_size_stride(arg2_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf2 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [gather, neg, output, sum_1, sum_2, output_1], Original ATen: [aten.gather, aten.neg, aten.mul, aten.sum, aten.div]
stream0 = get_raw_stream(0)
triton_per_fused_div_gather_mul_neg_sum_0.run(buf2, arg1_1, arg0_1, arg2_1, 1, 16, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
del arg2_1
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.int64)
arg1_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.int64)
arg2_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
from torch.autograd import *
def to_contiguous(tensor):
if tensor.is_contiguous():
return tensor
else:
return tensor.contiguous()
class LanguageModelCriterion(nn.Module):
def __init__(self):
super(LanguageModelCriterion, self).__init__()
def forward(self, input, target, mask):
target = target[:, :input.size(1)]
mask = mask[:, :input.size(1)]
input = to_contiguous(input).view(-1, input.size(2))
target = to_contiguous(target).view(-1, 1)
mask = to_contiguous(mask).view(-1, 1)
output = -input.gather(1, target) * mask
output = torch.sum(output) / torch.sum(mask)
return output
def get_inputs():
return [torch.ones([4, 4, 4], dtype=torch.int64), torch.ones([4, 4],
dtype=torch.int64), torch.rand([4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
from torch.autograd import *
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_div_gather_mul_neg_sum_0(in_out_ptr0, in_ptr0, in_ptr1,
in_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp9 = tl.load(in_ptr2 + r0, None)
tmp1 = tl.full([XBLOCK, RBLOCK], 4, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tl.device_assert((0 <= tmp4) & (tmp4 < 4),
'index out of bounds: 0 <= tmp4 < 4')
tmp6 = tl.load(in_ptr1 + (tmp4 + 4 * r0), None, eviction_policy=
'evict_last')
tmp7 = -tmp6
tmp8 = tmp7.to(tl.float32)
tmp10 = tmp8 * tmp9
tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK])
tmp13 = tl.sum(tmp11, 1)[:, None]
tmp14 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK])
tmp16 = tl.sum(tmp14, 1)[:, None]
tmp17 = tmp13 / tmp16
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp17, None)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg1_1, (4, 4), (4, 1))
assert_size_stride(arg2_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf2 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_div_gather_mul_neg_sum_0[grid(1)](buf2, arg1_1,
arg0_1, arg2_1, 1, 16, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
del arg2_1
return buf2,
def to_contiguous(tensor):
if tensor.is_contiguous():
return tensor
else:
return tensor.contiguous()
class LanguageModelCriterionNew(nn.Module):
def __init__(self):
super(LanguageModelCriterionNew, self).__init__()
def forward(self, input_0, input_1, input_2):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
output = call([arg0_1, arg1_1, arg2_1])
return output[0]
| ifty1987/PORL | LanguageModelCriterion | false | 15,590 | [
"MIT"
]
| 61 | 979d5462b5c74bcca8013d9c54d86b676d3e2d43 | https://github.com/ifty1987/PORL/tree/979d5462b5c74bcca8013d9c54d86b676d3e2d43 |
AffineConstantFlow | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/n3/cn3wlek7bl5jirlp73pieiarvuadnzcb6uy5z3ieztq35hnq6trv.py
# Topologically Sorted Source Nodes: [exp, mul, z], Original ATen: [aten.exp, aten.mul, aten.add]
# Source node to ATen node mapping:
# exp => exp
# mul => mul
# z => add
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%primals_1,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_3, %exp), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %primals_2), kwargs = {})
triton_poi_fused_add_exp_mul_0 = async_compile.triton('triton_poi_fused_add_exp_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_exp_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_exp_mul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tl_math.exp(tmp1)
tmp3 = tmp0 * tmp2
tmp5 = tmp3 + tmp4
tl.store(out_ptr0 + (x2), tmp5, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/hj/chjctndcct3uy5zpfj56qun4jpqjq3jp7qekxbult5tkzhebqoca.py
# Topologically Sorted Source Nodes: [log_det], Original ATen: [aten.sum]
# Source node to ATen node mapping:
# log_det => sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%primals_1, [1]), kwargs = {})
triton_per_fused_sum_1 = async_compile.triton('triton_per_fused_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 4],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_sum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_sum_1(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.sum(tmp1, 1)[:, None]
tl.store(out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp3, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (1, 4), (4, 1))
assert_size_stride(primals_2, (1, 4), (4, 1))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [exp, mul, z], Original ATen: [aten.exp, aten.mul, aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_exp_mul_0.run(primals_3, primals_1, primals_2, buf0, 256, grid=grid(256), stream=stream0)
del primals_2
buf1 = empty_strided_cuda((1, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [log_det], Original ATen: [aten.sum]
triton_per_fused_sum_1.run(primals_1, buf1, 1, 4, grid=grid(1), stream=stream0)
return (buf0, buf1, primals_1, primals_3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
class AffineConstantFlow(nn.Module):
"""
Scales + Shifts the flow by (learned) constants per dimension.
In NICE paper there is a Scaling layer which is a special case of this where t is None
"""
def __init__(self, dim, scale=True, shift=True):
super().__init__()
self.s = nn.Parameter(torch.randn(1, dim, requires_grad=True)
) if scale else None
self.t = nn.Parameter(torch.randn(1, dim, requires_grad=True)
) if shift else None
def forward(self, x):
s = self.s if self.s is not None else x.new_zeros(x.size())
t = self.t if self.t is not None else x.new_zeros(x.size())
z = x * torch.exp(s) + t
log_det = torch.sum(s, dim=1)
return z, log_det
def backward(self, z):
s = self.s if self.s is not None else z.new_zeros(z.size())
t = self.t if self.t is not None else z.new_zeros(z.size())
x = (z - t) * torch.exp(-s)
log_det = torch.sum(-s, dim=1)
return x, log_det
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'dim': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_exp_mul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp2 = tl_math.exp(tmp1)
tmp3 = tmp0 * tmp2
tmp5 = tmp3 + tmp4
tl.store(out_ptr0 + x2, tmp5, xmask)
@triton.jit
def triton_per_fused_sum_1(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl.
constexpr):
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.sum(tmp1, 1)[:, None]
tl.store(out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp3, None)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (1, 4), (4, 1))
assert_size_stride(primals_2, (1, 4), (4, 1))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_exp_mul_0[grid(256)](primals_3, primals_1,
primals_2, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf1 = empty_strided_cuda((1,), (1,), torch.float32)
triton_per_fused_sum_1[grid(1)](primals_1, buf1, 1, 4, XBLOCK=1,
num_warps=2, num_stages=1)
return buf0, buf1, primals_1, primals_3
class AffineConstantFlowNew(nn.Module):
"""
Scales + Shifts the flow by (learned) constants per dimension.
In NICE paper there is a Scaling layer which is a special case of this where t is None
"""
def __init__(self, dim, scale=True, shift=True):
super().__init__()
self.s = nn.Parameter(torch.randn(1, dim, requires_grad=True)
) if scale else None
self.t = nn.Parameter(torch.randn(1, dim, requires_grad=True)
) if shift else None
def backward(self, z):
s = self.s if self.s is not None else z.new_zeros(z.size())
t = self.t if self.t is not None else z.new_zeros(z.size())
x = (z - t) * torch.exp(-s)
log_det = torch.sum(-s, dim=1)
return x, log_det
def forward(self, input_0):
primals_1 = self.s
primals_2 = self.t
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0], output[1]
| ilkhem/icebeem | AffineConstantFlow | false | 15,591 | [
"MIT"
]
| 48 | 0077f0120c83bcc6d9b199b831485c42bed2401f | https://github.com/ilkhem/icebeem/tree/0077f0120c83bcc6d9b199b831485c42bed2401f |
SomeQNet | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/v7/cv7zazascu4rpkkwoxbiwk6c2le2e6wshdhae73bmaoapelvwguv.py
# Topologically Sorted Source Nodes: [a], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# a => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (16, 4), (4, 1))
assert_size_stride(primals_2, (16, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (16, 16), (16, 1))
assert_size_stride(primals_5, (16, ), (1, ))
assert_size_stride(primals_6, (4, 16), (16, 1))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 16), (16, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 16), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 16), (256, 64, 16, 1), 0); del buf0 # reuse
buf6 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.bool)
# Topologically Sorted Source Nodes: [a], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf6, 1024, grid=grid(1024), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 16), (16, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 16), (16, 1), 0), reinterpret_tensor(primals_4, (16, 16), (1, 16), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 16), (256, 64, 16, 1), 0); del buf2 # reuse
buf5 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.bool)
# Topologically Sorted Source Nodes: [a_1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_0.run(buf3, primals_5, buf5, 1024, grid=grid(1024), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 16), (16, 1), 0), reinterpret_tensor(primals_6, (16, 4), (1, 16), 0), alpha=1, beta=1, out=buf4)
del primals_7
return (reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 16), (16, 1), 0), reinterpret_tensor(buf3, (64, 16), (16, 1), 0), primals_6, buf5, primals_4, buf6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((16, 16), (16, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 16), (16, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch as t
import torch.nn as nn
class SomeQNet(nn.Module):
def __init__(self, state_dim, action_num):
super().__init__()
self.fc1 = nn.Linear(state_dim, 16)
self.fc2 = nn.Linear(16, 16)
self.fc3 = nn.Linear(16, action_num)
def forward(self, state):
a = t.relu(self.fc1(state))
a = t.relu(self.fc2(a))
return self.fc3(a)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'state_dim': 4, 'action_num': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (16, 4), (4, 1))
assert_size_stride(primals_2, (16,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (16, 16), (16, 1))
assert_size_stride(primals_5, (16,), (1,))
assert_size_stride(primals_6, (4, 16), (16, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 16), (16, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 16), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 16), (256, 64, 16, 1), 0)
del buf0
buf6 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(1024)](buf1,
primals_2, buf6, 1024, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 16), (16, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 16), (16, 1), 0),
reinterpret_tensor(primals_4, (16, 16), (1, 16), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 16), (256, 64, 16, 1), 0)
del buf2
buf5 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_0[grid(1024)](buf3,
primals_5, buf5, 1024, XBLOCK=128, num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 16),
(16, 1), 0), reinterpret_tensor(primals_6, (16, 4), (1, 16), 0),
alpha=1, beta=1, out=buf4)
del primals_7
return reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 16), (16, 1), 0), reinterpret_tensor(
buf3, (64, 16), (16, 1), 0), primals_6, buf5, primals_4, buf6
class SomeQNetNew(nn.Module):
def __init__(self, state_dim, action_num):
super().__init__()
self.fc1 = nn.Linear(state_dim, 16)
self.fc2 = nn.Linear(16, 16)
self.fc3 = nn.Linear(16, action_num)
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_6 = self.fc3.weight
primals_7 = self.fc3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| iffiX/machin | SomeQNet | false | 15,592 | [
"MIT"
]
| 287 | 7fa986b1bafdefff117d6ff73d14644a5488de9d | https://github.com/iffiX/machin/tree/7fa986b1bafdefff117d6ff73d14644a5488de9d |
ScaledDotProductAttention | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/fz/cfzmg4qtw6jgry4nhlwopodzjz62ll3n3ykfox77hwd2crdnlh2w.py
# Topologically Sorted Source Nodes: [attn_1], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# attn_1 => exp
# Graph fragment:
# %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%bmm, 1), kwargs = {})
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {})
# %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 2.0), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {})
triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp3 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp6 = tmp5 * tmp1
tmp7 = triton_helpers.maximum(tmp4, tmp6)
tmp9 = tmp8 * tmp1
tmp10 = triton_helpers.maximum(tmp7, tmp9)
tmp12 = tmp11 * tmp1
tmp13 = triton_helpers.maximum(tmp10, tmp12)
tmp14 = tmp2 - tmp13
tmp15 = 0.5
tmp16 = tmp14 * tmp15
tmp17 = tl_math.exp(tmp16)
tl.store(out_ptr0 + (x2), tmp17, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/kj/ckjtlefzavjukjsytvkak6ek26zmzexpcbnlwelx4k5kascjxlf3.py
# Topologically Sorted Source Nodes: [attn_1], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# attn_1 => div_1, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [bmm], Original ATen: [aten.bmm]
extern_kernels.bmm(arg1_1, reinterpret_tensor(arg0_1, (4, 4, 4), (16, 1, 4), 0), out=buf0)
del arg0_1
del arg1_1
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [attn_1], Original ATen: [aten._softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__softmax_0.run(buf0, buf1, 64, grid=grid(64), stream=stream0)
buf2 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [attn_1], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf1, buf2, 64, grid=grid(64), stream=stream0)
buf3 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.bmm]
extern_kernels.bmm(buf2, arg2_1, out=buf3)
del arg2_1
return (buf3, buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.optim.lr_scheduler
import torch.nn as nn
class ScaledDotProductAttention(nn.Module):
def __init__(self, d_model, attention_dropout=0.1):
super(ScaledDotProductAttention, self).__init__()
self.temper = d_model ** 0.5
self.dropout = nn.Dropout(attention_dropout)
self.softmax = nn.Softmax(dim=-1)
def forward(self, q, k, v, attn_mask=None):
attn = torch.bmm(q, k.transpose(1, 2)) / self.temper
if attn_mask is not None:
assert attn_mask.size() == attn.size(
), 'Attention mask shape {} mismatch with Attention logit tensor shape {}.'.format(
attn_mask.size(), attn.size())
attn.data.masked_fill_(attn_mask, -float('inf'))
attn = self.softmax(attn)
attn = self.dropout(attn)
output = torch.bmm(attn, v)
return output, attn
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4])
]
def get_init_inputs():
return [[], {'d_model': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.optim.lr_scheduler
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp6 = tmp5 * tmp1
tmp7 = triton_helpers.maximum(tmp4, tmp6)
tmp9 = tmp8 * tmp1
tmp10 = triton_helpers.maximum(tmp7, tmp9)
tmp12 = tmp11 * tmp1
tmp13 = triton_helpers.maximum(tmp10, tmp12)
tmp14 = tmp2 - tmp13
tmp15 = 0.5
tmp16 = tmp14 * tmp15
tmp17 = tl_math.exp(tmp16)
tl.store(out_ptr0 + x2, tmp17, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(arg1_1, reinterpret_tensor(arg0_1, (4, 4, 4), (
16, 1, 4), 0), out=buf0)
del arg0_1
del arg1_1
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__softmax_0[grid(64)](buf0, buf1, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf2 = buf0
del buf0
triton_poi_fused__softmax_1[grid(64)](buf1, buf2, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf3 = buf1
del buf1
extern_kernels.bmm(buf2, arg2_1, out=buf3)
del arg2_1
return buf3, buf2
class ScaledDotProductAttentionNew(nn.Module):
def __init__(self, d_model, attention_dropout=0.1):
super(ScaledDotProductAttentionNew, self).__init__()
self.temper = d_model ** 0.5
self.dropout = nn.Dropout(attention_dropout)
self.softmax = nn.Softmax(dim=-1)
def forward(self, input_0, input_1, input_2):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
output = call([arg0_1, arg1_1, arg2_1])
return output[0], output[1]
| interrogator/self-attentive-parser | ScaledDotProductAttention | false | 15,593 | [
"MIT"
]
| 88 | 660d0161cb6ec6455d1525d029ff09362dcf7faf | https://github.com/interrogator/self-attentive-parser/tree/660d0161cb6ec6455d1525d029ff09362dcf7faf |
QNet | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/v7/cv7zazascu4rpkkwoxbiwk6c2le2e6wshdhae73bmaoapelvwguv.py
# Topologically Sorted Source Nodes: [a], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# a => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/xf/cxf4na4u2jaehhvves35mikpqe7m3jl2pikqdmab7ftwzhsdy3qk.py
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# softmax => amax, div, exp, sub, sum_1
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_6, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_6, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_per_fused__softmax_1 = async_compile.triton('triton_per_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[256, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__softmax_1(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 256
rnumel = 10
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = rindex < rnumel
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (10*x0)), rmask & xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(rmask & xmask, tmp1, float("-inf"))
tmp4 = triton_helpers.max2(tmp3, 1)[:, None]
tmp5 = tmp0 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.where(rmask & xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tmp11 = tmp6 / tmp10
tl.store(out_ptr2 + (r1 + (10*x0)), tmp11, rmask & xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (16, 4), (4, 1))
assert_size_stride(primals_2, (16, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (16, 16), (16, 1))
assert_size_stride(primals_5, (16, ), (1, ))
assert_size_stride(primals_6, (40, 16), (16, 1))
assert_size_stride(primals_7, (40, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 16), (16, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 16), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 16), (256, 64, 16, 1), 0); del buf0 # reuse
buf9 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.bool)
# Topologically Sorted Source Nodes: [a], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf9, 1024, grid=grid(1024), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 16), (16, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 16), (16, 1), 0), reinterpret_tensor(primals_4, (16, 16), (1, 16), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 16), (256, 64, 16, 1), 0); del buf2 # reuse
buf8 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.bool)
# Topologically Sorted Source Nodes: [a_1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_0.run(buf3, primals_5, buf8, 1024, grid=grid(1024), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 40), (40, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 16), (16, 1), 0), reinterpret_tensor(primals_6, (16, 40), (1, 16), 0), alpha=1, beta=1, out=buf4)
del primals_7
buf7 = empty_strided_cuda((64, 4, 10), (40, 10, 1), torch.float32)
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
triton_per_fused__softmax_1.run(buf4, buf7, 256, 10, grid=grid(256), stream=stream0)
del buf4
return (buf7, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 16), (16, 1), 0), reinterpret_tensor(buf3, (64, 16), (16, 1), 0), buf7, primals_6, buf8, primals_4, buf9, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((16, 16), (16, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((40, 16), (16, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((40, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch as t
import torch.nn as nn
class QNet(nn.Module):
def __init__(self, state_dim, action_num, atom_num=10):
super().__init__()
self.fc1 = nn.Linear(state_dim, 16)
self.fc2 = nn.Linear(16, 16)
self.fc3 = nn.Linear(16, action_num * atom_num)
self.action_num = action_num
self.atom_num = atom_num
def forward(self, state):
a = t.relu(self.fc1(state))
a = t.relu(self.fc2(a))
return t.softmax(self.fc3(a).view(-1, self.action_num, self.
atom_num), dim=-1)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'state_dim': 4, 'action_num': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_per_fused__softmax_1(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK:
tl.constexpr):
xnumel = 256
rnumel = 10
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
rmask = rindex < rnumel
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 10 * x0), rmask & xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(rmask & xmask, tmp1, float('-inf'))
tmp4 = triton_helpers.max2(tmp3, 1)[:, None]
tmp5 = tmp0 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.where(rmask & xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tmp11 = tmp6 / tmp10
tl.store(out_ptr2 + (r1 + 10 * x0), tmp11, rmask & xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (16, 4), (4, 1))
assert_size_stride(primals_2, (16,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (16, 16), (16, 1))
assert_size_stride(primals_5, (16,), (1,))
assert_size_stride(primals_6, (40, 16), (16, 1))
assert_size_stride(primals_7, (40,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 16), (16, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 16), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 16), (256, 64, 16, 1), 0)
del buf0
buf9 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(1024)](buf1,
primals_2, buf9, 1024, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 16), (16, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 16), (16, 1), 0),
reinterpret_tensor(primals_4, (16, 16), (1, 16), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 16), (256, 64, 16, 1), 0)
del buf2
buf8 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_0[grid(1024)](buf3,
primals_5, buf8, 1024, XBLOCK=128, num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 40), (40, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 16),
(16, 1), 0), reinterpret_tensor(primals_6, (16, 40), (1, 16), 0
), alpha=1, beta=1, out=buf4)
del primals_7
buf7 = empty_strided_cuda((64, 4, 10), (40, 10, 1), torch.float32)
triton_per_fused__softmax_1[grid(256)](buf4, buf7, 256, 10, XBLOCK=
32, num_warps=4, num_stages=1)
del buf4
return buf7, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 16), (16, 1), 0), reinterpret_tensor(
buf3, (64, 16), (16, 1), 0), buf7, primals_6, buf8, primals_4, buf9
class QNetNew(nn.Module):
def __init__(self, state_dim, action_num, atom_num=10):
super().__init__()
self.fc1 = nn.Linear(state_dim, 16)
self.fc2 = nn.Linear(16, 16)
self.fc3 = nn.Linear(16, action_num * atom_num)
self.action_num = action_num
self.atom_num = atom_num
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_6 = self.fc3.weight
primals_7 = self.fc3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| iffiX/machin | QNet | false | 15,594 | [
"MIT"
]
| 287 | 7fa986b1bafdefff117d6ff73d14644a5488de9d | https://github.com/iffiX/machin/tree/7fa986b1bafdefff117d6ff73d14644a5488de9d |
LinearExcitability | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/bh/cbhpcgxjg3mwo4dulstw5ie26none2yzi5sysdzl34cu6pyah4fg.py
# Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.add, aten.view]
# Source node to ATen node mapping:
# output_1 => add, view_3
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %primals_2), kwargs = {})
# %view_3 : [num_users=1] = call_function[target=torch.ops.aten.reshape.default](args = (%view_2, [4, 4, 4, 4]), kwargs = {})
triton_poi_fused_add_view_0 = async_compile.triton('triton_poi_fused_add_view_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_view_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_view_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x4), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x4), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.add, aten.view]
stream0 = get_raw_stream(0)
triton_poi_fused_add_view_0.run(buf2, primals_2, 256, grid=grid(256), stream=stream0)
del primals_2
return (buf2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
from torch import nn
from torch.nn.parameter import Parameter
def linearExcitability(input, weight, excitability=None, bias=None):
"""Applies a linear transformation to the incoming data: :math:`y = c(xA^T) + b`.
Shape:
- input: :math:`(N, *, in_features)`
- weight: :math:`(out_features, in_features)`
- excitability: :math:`(out_features)`
- bias: :math:`(out_features)`
- output: :math:`(N, *, out_features)`
(NOTE: `*` means any number of additional dimensions)"""
if excitability is not None:
output = input.matmul(weight.t()) * excitability
else:
output = input.matmul(weight.t())
if bias is not None:
output += bias
return output
class LinearExcitability(nn.Module):
"""Module for a linear transformation with multiplicative excitability-parameter (i.e., learnable) and/or -buffer.
Args:
in_features: size of each input sample
out_features: size of each output sample
bias: if 'False', layer will not learn an additive bias-parameter (DEFAULT=True)
excitability: if 'True', layer will learn a multiplicative excitability-parameter (DEFAULT=False)
excit_buffer: if 'True', layer will have excitability-buffer whose value can be set (DEFAULT=False)
Shape:
- input: :math:`(N, *, in_features)` where `*` means any number of additional dimensions
- output: :math:`(N, *, out_features)` where all but the last dimension are the same shape as the input.
Attributes:
weight: the learnable weights of the module of shape (out_features x in_features)
excitability: the learnable multiplication terms (out_features)
bias: the learnable bias of the module of shape (out_features)
excit_buffer: fixed multiplication variable (out_features)"""
def __init__(self, in_features, out_features, bias=True, excitability=
False, excit_buffer=False):
super(LinearExcitability, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = Parameter(torch.Tensor(out_features, in_features))
if excitability:
self.excitability = Parameter(torch.Tensor(out_features))
else:
self.register_parameter('excitability', None)
if bias:
self.bias = Parameter(torch.Tensor(out_features))
else:
self.register_parameter('bias', None)
if excit_buffer:
buffer = torch.Tensor(out_features).uniform_(1, 1)
self.register_buffer('excit_buffer', buffer)
else:
self.register_buffer('excit_buffer', None)
self.reset_parameters()
def reset_parameters(self):
"""Modifies the parameters "in-place" to initialize / reset them at appropriate values."""
stdv = 1.0 / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
if self.excitability is not None:
self.excitability.data.uniform_(1, 1)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def forward(self, input):
"""Running this model's forward step requires/returns:
-[input]: [batch_size]x[...]x[in_features]
-[output]: [batch_size]x[...]x[hidden_features]"""
if self.excit_buffer is None:
excitability = self.excitability
elif self.excitability is None:
excitability = self.excit_buffer
else:
excitability = self.excitability * self.excit_buffer
return linearExcitability(input, self.weight, excitability, self.bias)
def __repr__(self):
return self.__class__.__name__ + '(' + 'in_features=' + str(self.
in_features) + ', out_features=' + str(self.out_features) + ')'
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_features': 4, 'out_features': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import math
from torch import nn
from torch.nn.parameter import Parameter
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_view_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x4, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x4, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
buf2 = buf1
del buf1
get_raw_stream(0)
triton_poi_fused_add_view_0[grid(256)](buf2, primals_2, 256, XBLOCK
=256, num_warps=4, num_stages=1)
del primals_2
return buf2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0)
def linearExcitability(input, weight, excitability=None, bias=None):
"""Applies a linear transformation to the incoming data: :math:`y = c(xA^T) + b`.
Shape:
- input: :math:`(N, *, in_features)`
- weight: :math:`(out_features, in_features)`
- excitability: :math:`(out_features)`
- bias: :math:`(out_features)`
- output: :math:`(N, *, out_features)`
(NOTE: `*` means any number of additional dimensions)"""
if excitability is not None:
output = input.matmul(weight.t()) * excitability
else:
output = input.matmul(weight.t())
if bias is not None:
output += bias
return output
class LinearExcitabilityNew(nn.Module):
"""Module for a linear transformation with multiplicative excitability-parameter (i.e., learnable) and/or -buffer.
Args:
in_features: size of each input sample
out_features: size of each output sample
bias: if 'False', layer will not learn an additive bias-parameter (DEFAULT=True)
excitability: if 'True', layer will learn a multiplicative excitability-parameter (DEFAULT=False)
excit_buffer: if 'True', layer will have excitability-buffer whose value can be set (DEFAULT=False)
Shape:
- input: :math:`(N, *, in_features)` where `*` means any number of additional dimensions
- output: :math:`(N, *, out_features)` where all but the last dimension are the same shape as the input.
Attributes:
weight: the learnable weights of the module of shape (out_features x in_features)
excitability: the learnable multiplication terms (out_features)
bias: the learnable bias of the module of shape (out_features)
excit_buffer: fixed multiplication variable (out_features)"""
def __init__(self, in_features, out_features, bias=True, excitability=
False, excit_buffer=False):
super(LinearExcitabilityNew, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = Parameter(torch.Tensor(out_features, in_features))
if excitability:
self.excitability = Parameter(torch.Tensor(out_features))
else:
self.register_parameter('excitability', None)
if bias:
self.bias = Parameter(torch.Tensor(out_features))
else:
self.register_parameter('bias', None)
if excit_buffer:
buffer = torch.Tensor(out_features).uniform_(1, 1)
self.register_buffer('excit_buffer', buffer)
else:
self.register_buffer('excit_buffer', None)
self.reset_parameters()
def reset_parameters(self):
"""Modifies the parameters "in-place" to initialize / reset them at appropriate values."""
stdv = 1.0 / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
if self.excitability is not None:
self.excitability.data.uniform_(1, 1)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def __repr__(self):
return self.__class__.__name__ + '(' + 'in_features=' + str(self.
in_features) + ', out_features=' + str(self.out_features) + ')'
def forward(self, input_0):
primals_1 = self.weight
primals_2 = self.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| ifgovh/continual-learning | LinearExcitability | false | 15,595 | [
"MIT"
]
| 891 | 21822801934ad68ca311c1c30ae49cdbd7ca53ed | https://github.com/ifgovh/continual-learning/tree/21822801934ad68ca311c1c30ae49cdbd7ca53ed |
A2CActorCont | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/v7/cv7zazascu4rpkkwoxbiwk6c2le2e6wshdhae73bmaoapelvwguv.py
# Topologically Sorted Source Nodes: [a], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# a => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/oz/coz2vvm7j43dgp2scg63a7xyihnzn7xcwkbiwytoo3i3naiahfwp.py
# Topologically Sorted Source Nodes: [tanh, mu], Original ATen: [aten.tanh, aten.mul]
# Source node to ATen node mapping:
# mu => mul
# tanh => tanh
# Graph fragment:
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%view_5,), kwargs = {})
# %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%tanh, 2.0), kwargs = {})
triton_poi_fused_mul_tanh_1 = async_compile.triton('triton_poi_fused_mul_tanh_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_tanh_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_tanh_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = libdevice.tanh(tmp0)
tmp2 = 2.0
tmp3 = tmp1 * tmp2
tl.store(out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/vn/cvnduo4s466rgfr5qur2ih4vzvlqu5mjrir76fxacpwhzg7t533r.py
# Topologically Sorted Source Nodes: [sigma, log, action_entropy], Original ATen: [aten.softplus, aten.log, aten.add]
# Source node to ATen node mapping:
# action_entropy => add
# log => log
# sigma => exp, gt, log1p, where
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%view_7,), kwargs = {})
# %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_7, 20), kwargs = {})
# %where : [num_users=3] = call_function[target=torch.ops.aten.where.self](args = (%gt, %view_7, %log1p), kwargs = {})
# %log : [num_users=2] = call_function[target=torch.ops.aten.log.default](args = (%where,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%log, 1.4189385332046727), kwargs = {})
triton_poi_fused_add_log_softplus_2 = async_compile.triton('triton_poi_fused_add_log_softplus_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_log_softplus_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_log_softplus_2(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 20.0
tmp2 = tmp0 > tmp1
tmp3 = tl_math.exp(tmp0)
tmp4 = libdevice.log1p(tmp3)
tmp5 = tl.where(tmp2, tmp0, tmp4)
tmp6 = tl_math.log(tmp5)
tmp7 = 1.4189385332046727
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + (x0), tmp5, xmask)
tl.store(out_ptr1 + (x0), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/5x/c5xxopo7kvrfl7zh4iho33rpirl2hnwrmhemgvjglcq7m3e6yekh.py
# Topologically Sorted Source Nodes: [log, action_1, var, sub, pow_2, neg, mul_1, truediv, sub_1, action_log_prob], Original ATen: [aten.log, aten.clamp, aten.pow, aten.sub, aten.neg, aten.mul, aten.div]
# Source node to ATen node mapping:
# action_1 => clamp_max, clamp_min
# action_log_prob => sub_2
# log => log
# mul_1 => mul_1
# neg => neg
# pow_2 => pow_2
# sub => sub
# sub_1 => sub_1
# truediv => div
# var => pow_1
# Graph fragment:
# %log : [num_users=2] = call_function[target=torch.ops.aten.log.default](args = (%where,), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%normal, -4), kwargs = {})
# %clamp_max : [num_users=2] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 4), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%where, 2), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_max, %mul), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%pow_2,), kwargs = {})
# %mul_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, 2), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%neg, %mul_1), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%div, %log), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub_1, 0.9189385332046727), kwargs = {})
triton_poi_fused_clamp_div_log_mul_neg_pow_sub_3 = async_compile.triton('triton_poi_fused_clamp_div_log_mul_neg_pow_sub_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_div_log_mul_neg_pow_sub_3', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clamp_div_log_mul_neg_pow_sub_3(in_out_ptr0, in_out_ptr1, in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp5 = tl.load(in_out_ptr1 + (x0), xmask)
tmp7 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = -4.0
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp3 = 4.0
tmp4 = triton_helpers.minimum(tmp2, tmp3)
tmp6 = tmp4 - tmp5
tmp8 = tmp7 * tmp7
tmp9 = 2.0
tmp10 = tmp8 * tmp9
tmp11 = tmp6 * tmp6
tmp12 = -tmp11
tmp13 = tmp12 / tmp10
tmp14 = tl_math.log(tmp7)
tmp15 = tmp13 - tmp14
tmp16 = 0.9189385332046727
tmp17 = tmp15 - tmp16
tl.store(in_out_ptr0 + (x0), tmp4, xmask)
tl.store(in_out_ptr1 + (x0), tmp6, xmask)
tl.store(out_ptr0 + (x0), tmp10, xmask)
tl.store(out_ptr1 + (x0), tmp17, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (16, 4), (4, 1))
assert_size_stride(primals_2, (16, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (16, 16), (16, 1))
assert_size_stride(primals_5, (16, ), (1, ))
assert_size_stride(primals_6, (4, 16), (16, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, 16), (16, 1))
assert_size_stride(primals_9, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 16), (16, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 16), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 16), (256, 64, 16, 1), 0); del buf0 # reuse
buf16 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.bool)
# Topologically Sorted Source Nodes: [a], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf16, 1024, grid=grid(1024), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 16), (16, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 16), (16, 1), 0), reinterpret_tensor(primals_4, (16, 16), (1, 16), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 16), (256, 64, 16, 1), 0); del buf2 # reuse
buf15 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.bool)
# Topologically Sorted Source Nodes: [a_1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_0.run(buf3, primals_5, buf15, 1024, grid=grid(1024), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 16), (16, 1), 0), reinterpret_tensor(primals_6, (16, 4), (1, 16), 0), alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_3], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_9, reinterpret_tensor(buf3, (64, 16), (16, 1), 0), reinterpret_tensor(primals_8, (16, 4), (1, 16), 0), alpha=1, beta=1, out=buf5)
del primals_9
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [tanh, mu], Original ATen: [aten.tanh, aten.mul]
triton_poi_fused_mul_tanh_1.run(buf4, buf6, 256, grid=grid(256), stream=stream0)
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sigma, log, action_entropy], Original ATen: [aten.softplus, aten.log, aten.add]
triton_poi_fused_add_log_softplus_2.run(buf5, buf7, buf10, 256, grid=grid(256), stream=stream0)
# Topologically Sorted Source Nodes: [tanh, mu, sigma, action], Original ATen: [aten.tanh, aten.mul, aten.softplus, aten.normal]
buf8 = torch.ops.aten.normal.Tensor_Tensor(buf6, buf7)
buf9 = buf8
del buf8
buf11 = buf9; del buf9 # reuse
buf12 = buf6; del buf6 # reuse
buf13 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf14 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [log, action_1, var, sub, pow_2, neg, mul_1, truediv, sub_1, action_log_prob], Original ATen: [aten.log, aten.clamp, aten.pow, aten.sub, aten.neg, aten.mul, aten.div]
triton_poi_fused_clamp_div_log_mul_neg_pow_sub_3.run(buf11, buf12, buf7, buf13, buf14, 256, grid=grid(256), stream=stream0)
del buf7
return (buf11, buf14, buf10, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 16), (16, 1), 0), reinterpret_tensor(buf3, (64, 16), (16, 1), 0), buf4, buf5, buf12, buf13, primals_8, primals_6, buf15, primals_4, buf16, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((16, 16), (16, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 16), (16, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 16), (16, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch as t
import torch.nn as nn
from torch.distributions import Normal
import torch.nn.functional as F
class A2CActorCont(nn.Module):
def __init__(self, state_dim, action_dim, action_range):
super().__init__()
self.fc1 = nn.Linear(state_dim, 16)
self.fc2 = nn.Linear(16, 16)
self.mu_head = nn.Linear(16, action_dim)
self.sigma_head = nn.Linear(16, action_dim)
self.action_range = action_range
def forward(self, state, action=None):
a = t.relu(self.fc1(state))
a = t.relu(self.fc2(a))
mu = 2.0 * t.tanh(self.mu_head(a))
sigma = F.softplus(self.sigma_head(a))
dist = Normal(mu, sigma)
action = action if action is not None else dist.sample()
action_entropy = dist.entropy()
action = action.clamp(-self.action_range, self.action_range)
action_log_prob = dist.log_prob(action)
return action, action_log_prob, action_entropy
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'state_dim': 4, 'action_dim': 4, 'action_range': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused_mul_tanh_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = libdevice.tanh(tmp0)
tmp2 = 2.0
tmp3 = tmp1 * tmp2
tl.store(out_ptr0 + x0, tmp3, xmask)
@triton.jit
def triton_poi_fused_add_log_softplus_2(in_ptr0, out_ptr0, out_ptr1, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 20.0
tmp2 = tmp0 > tmp1
tmp3 = tl_math.exp(tmp0)
tmp4 = libdevice.log1p(tmp3)
tmp5 = tl.where(tmp2, tmp0, tmp4)
tmp6 = tl_math.log(tmp5)
tmp7 = 1.4189385332046727
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + x0, tmp5, xmask)
tl.store(out_ptr1 + x0, tmp8, xmask)
@triton.jit
def triton_poi_fused_clamp_div_log_mul_neg_pow_sub_3(in_out_ptr0,
in_out_ptr1, in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp5 = tl.load(in_out_ptr1 + x0, xmask)
tmp7 = tl.load(in_ptr0 + x0, xmask)
tmp1 = -4.0
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp3 = 4.0
tmp4 = triton_helpers.minimum(tmp2, tmp3)
tmp6 = tmp4 - tmp5
tmp8 = tmp7 * tmp7
tmp9 = 2.0
tmp10 = tmp8 * tmp9
tmp11 = tmp6 * tmp6
tmp12 = -tmp11
tmp13 = tmp12 / tmp10
tmp14 = tl_math.log(tmp7)
tmp15 = tmp13 - tmp14
tmp16 = 0.9189385332046727
tmp17 = tmp15 - tmp16
tl.store(in_out_ptr0 + x0, tmp4, xmask)
tl.store(in_out_ptr1 + x0, tmp6, xmask)
tl.store(out_ptr0 + x0, tmp10, xmask)
tl.store(out_ptr1 + x0, tmp17, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (16, 4), (4, 1))
assert_size_stride(primals_2, (16,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (16, 16), (16, 1))
assert_size_stride(primals_5, (16,), (1,))
assert_size_stride(primals_6, (4, 16), (16, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4, 16), (16, 1))
assert_size_stride(primals_9, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 16), (16, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 16), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 16), (256, 64, 16, 1), 0)
del buf0
buf16 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(1024)](buf1,
primals_2, buf16, 1024, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 16), (16, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 16), (16, 1), 0),
reinterpret_tensor(primals_4, (16, 16), (1, 16), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 16), (256, 64, 16, 1), 0)
del buf2
buf15 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_0[grid(1024)](buf3,
primals_5, buf15, 1024, XBLOCK=128, num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 16),
(16, 1), 0), reinterpret_tensor(primals_6, (16, 4), (1, 16), 0),
alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_9, reinterpret_tensor(buf3, (64, 16),
(16, 1), 0), reinterpret_tensor(primals_8, (16, 4), (1, 16), 0),
alpha=1, beta=1, out=buf5)
del primals_9
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_mul_tanh_1[grid(256)](buf4, buf6, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_add_log_softplus_2[grid(256)](buf5, buf7, buf10,
256, XBLOCK=256, num_warps=4, num_stages=1)
buf8 = torch.ops.aten.normal.Tensor_Tensor(buf6, buf7)
buf9 = buf8
del buf8
buf11 = buf9
del buf9
buf12 = buf6
del buf6
buf13 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf14 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_clamp_div_log_mul_neg_pow_sub_3[grid(256)](buf11,
buf12, buf7, buf13, buf14, 256, XBLOCK=128, num_warps=4,
num_stages=1)
del buf7
return buf11, buf14, buf10, reinterpret_tensor(primals_3, (64, 4), (4,
1), 0), reinterpret_tensor(buf1, (64, 16), (16, 1), 0
), reinterpret_tensor(buf3, (64, 16), (16, 1), 0
), buf4, buf5, buf12, buf13, primals_8, primals_6, buf15, primals_4, buf16
class A2CActorContNew(nn.Module):
def __init__(self, state_dim, action_dim, action_range):
super().__init__()
self.fc1 = nn.Linear(state_dim, 16)
self.fc2 = nn.Linear(16, 16)
self.mu_head = nn.Linear(16, action_dim)
self.sigma_head = nn.Linear(16, action_dim)
self.action_range = action_range
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_6 = self.mu_head.weight
primals_7 = self.mu_head.bias
primals_8 = self.sigma_head.weight
primals_9 = self.sigma_head.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0], output[1], output[2]
| iffiX/machin | A2CActorCont | false | 15,596 | [
"MIT"
]
| 287 | 7fa986b1bafdefff117d6ff73d14644a5488de9d | https://github.com/iffiX/machin/tree/7fa986b1bafdefff117d6ff73d14644a5488de9d |
ActorDiscrete | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/v7/cv7zazascu4rpkkwoxbiwk6c2le2e6wshdhae73bmaoapelvwguv.py
# Topologically Sorted Source Nodes: [a], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# a => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/xk/cxkugsynlmnyrjhah42fewrhwovuvurnuv2qimo2qhxq27wjmq7q.py
# Topologically Sorted Source Nodes: [a_2], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# a_2 => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_5, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_5, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x3), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/jf/cjfzp64ny4hf7wdw5wptah3hqv5fcsh5rrw4brz7uxcy6ad57n7h.py
# Topologically Sorted Source Nodes: [a_2], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# a_2 => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (16, 4), (4, 1))
assert_size_stride(primals_2, (16, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (16, 16), (16, 1))
assert_size_stride(primals_5, (16, ), (1, ))
assert_size_stride(primals_6, (4, 16), (16, 1))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 16), (16, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 16), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 16), (256, 64, 16, 1), 0); del buf0 # reuse
buf8 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.bool)
# Topologically Sorted Source Nodes: [a], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf8, 1024, grid=grid(1024), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 16), (16, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 16), (16, 1), 0), reinterpret_tensor(primals_4, (16, 16), (1, 16), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 16), (256, 64, 16, 1), 0); del buf2 # reuse
buf7 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.bool)
# Topologically Sorted Source Nodes: [a_1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_0.run(buf3, primals_5, buf7, 1024, grid=grid(1024), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 16), (16, 1), 0), reinterpret_tensor(primals_6, (16, 4), (1, 16), 0), alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [a_2], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf4, buf5, 256, grid=grid(256), stream=stream0)
buf6 = reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf4 # reuse
# Topologically Sorted Source Nodes: [a_2], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf5, buf6, 256, grid=grid(256), stream=stream0)
del buf5
return (buf6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 16), (16, 1), 0), reinterpret_tensor(buf3, (64, 16), (16, 1), 0), buf6, primals_6, buf7, primals_4, buf8, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((16, 16), (16, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 16), (16, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch as t
import torch.nn as nn
class ActorDiscrete(nn.Module):
def __init__(self, state_dim, action_dim):
super().__init__()
self.fc1 = nn.Linear(state_dim, 16)
self.fc2 = nn.Linear(16, 16)
self.fc3 = nn.Linear(16, action_dim)
def forward(self, state):
a = t.relu(self.fc1(state))
a = t.relu(self.fc2(a))
a = t.softmax(self.fc3(a), dim=1)
return a
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'state_dim': 4, 'action_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x3, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x3, tmp8, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (16, 4), (4, 1))
assert_size_stride(primals_2, (16,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (16, 16), (16, 1))
assert_size_stride(primals_5, (16,), (1,))
assert_size_stride(primals_6, (4, 16), (16, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 16), (16, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 16), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 16), (256, 64, 16, 1), 0)
del buf0
buf8 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(1024)](buf1,
primals_2, buf8, 1024, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 16), (16, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 16), (16, 1), 0),
reinterpret_tensor(primals_4, (16, 16), (1, 16), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 16), (256, 64, 16, 1), 0)
del buf2
buf7 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_0[grid(1024)](buf3,
primals_5, buf7, 1024, XBLOCK=128, num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 16),
(16, 1), 0), reinterpret_tensor(primals_6, (16, 4), (1, 16), 0),
alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused__softmax_1[grid(256)](buf4, buf5, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf6 = reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf4
triton_poi_fused__softmax_2[grid(256)](buf5, buf6, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del buf5
return buf6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 16), (16, 1), 0), reinterpret_tensor(
buf3, (64, 16), (16, 1), 0), buf6, primals_6, buf7, primals_4, buf8
class ActorDiscreteNew(nn.Module):
def __init__(self, state_dim, action_dim):
super().__init__()
self.fc1 = nn.Linear(state_dim, 16)
self.fc2 = nn.Linear(16, 16)
self.fc3 = nn.Linear(16, action_dim)
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_6 = self.fc3.weight
primals_7 = self.fc3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| iffiX/machin | ActorDiscrete | false | 15,597 | [
"MIT"
]
| 287 | 7fa986b1bafdefff117d6ff73d14644a5488de9d | https://github.com/iffiX/machin/tree/7fa986b1bafdefff117d6ff73d14644a5488de9d |
PARALoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/vx/cvxcl3fnrdj34q7bem2fatjy6q7uxbduiujt6au3gvcokr5md6h4.py
# Topologically Sorted Source Nodes: [binary_cross_entropy, gt, entity_mask_1, mul, sum_3, ne, sum_2], Original ATen: [aten.binary_cross_entropy, aten.gt, aten._to_copy, aten.mul, aten.sum, aten.ne]
# Source node to ATen node mapping:
# binary_cross_entropy => full_default, full_default_1, log, log1p, maximum, maximum_1, mul, mul_1, neg, sub, sub_1
# entity_mask_1 => convert_element_type
# gt => gt
# mul => mul_2
# ne => ne
# sum_2 => sum_2
# sum_3 => sum_3
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, 1), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%arg1_1,), kwargs = {})
# %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%neg,), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -100), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %maximum : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%log1p, %full_default), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %maximum), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%arg1_1,), kwargs = {})
# %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -100), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %maximum_1 : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%log, %full_default_1), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %maximum_1), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %mul_1), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view, 0), kwargs = {})
# %convert_element_type : [num_users=2] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%gt, torch.float32), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %convert_element_type), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_2, [2, 3]), kwargs = {})
# %ne : [num_users=1] = call_function[target=torch.ops.aten.ne.Scalar](args = (%convert_element_type, 0), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%ne, [2, 3]), kwargs = {})
triton_per_fused__to_copy_binary_cross_entropy_gt_mul_ne_sum_0 = async_compile.triton('triton_per_fused__to_copy_binary_cross_entropy_gt_mul_ne_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i64', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__to_copy_binary_cross_entropy_gt_mul_ne_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__to_copy_binary_cross_entropy_gt_mul_ne_sum_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x3 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (r2 + (16*x3)), xmask, other=0.0)
tmp3 = tl.load(in_ptr1 + (r2 + (16*x3)), xmask, other=0.0)
tmp13 = tl.load(in_ptr0 + (r2 + (64*x1)), xmask, eviction_policy='evict_last', other=0.0)
tmp14 = tl.load(in_ptr0 + (16 + r2 + (64*x1)), xmask, eviction_policy='evict_last', other=0.0)
tmp16 = tl.load(in_ptr0 + (32 + r2 + (64*x1)), xmask, eviction_policy='evict_last', other=0.0)
tmp18 = tl.load(in_ptr0 + (48 + r2 + (64*x1)), xmask, eviction_policy='evict_last', other=0.0)
tmp1 = 1.0
tmp2 = tmp0 - tmp1
tmp4 = -tmp3
tmp5 = libdevice.log1p(tmp4)
tmp6 = -100.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp2 * tmp7
tmp9 = tl_math.log(tmp3)
tmp10 = triton_helpers.maximum(tmp9, tmp6)
tmp11 = tmp0 * tmp10
tmp12 = tmp8 - tmp11
tmp15 = tmp13 + tmp14
tmp17 = tmp15 + tmp16
tmp19 = tmp17 + tmp18
tmp20 = 0.0
tmp21 = tmp19 > tmp20
tmp22 = tmp21.to(tl.float32)
tmp23 = tmp12 * tmp22
tmp24 = tl.broadcast_to(tmp23, [XBLOCK, RBLOCK])
tmp26 = tl.where(xmask, tmp24, 0)
tmp27 = tl.sum(tmp26, 1)[:, None]
tmp28 = tmp22 != tmp20
tmp29 = tmp28.to(tl.int64)
tmp30 = tl.broadcast_to(tmp29, [XBLOCK, RBLOCK])
tmp32 = tl.where(xmask, tmp30, 0)
tmp33 = tl.sum(tmp32, 1)[:, None]
tl.store(out_ptr0 + (x3), tmp27, xmask)
tl.store(out_ptr1 + (x3), tmp33, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/hl/chlg7s7uveniidga5uls4k2575fvvanducukpzhe7xojrdctbdg6.py
# Topologically Sorted Source Nodes: [entity_sum, truediv, loss], Original ATen: [aten._to_copy, aten.div, aten.mean]
# Source node to ATen node mapping:
# entity_sum => convert_element_type_1
# loss => mean
# truediv => div
# Graph fragment:
# %convert_element_type_1 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%sum_2, torch.float32), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_3, %convert_element_type_1), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%div,), kwargs = {})
triton_per_fused__to_copy_div_mean_1 = async_compile.triton('triton_per_fused__to_copy_div_mean_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i64', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__to_copy_div_mean_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__to_copy_div_mean_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr1 + (r0), None)
tmp2 = tmp1.to(tl.float32)
tmp3 = tmp0 / tmp2
tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp6 = tl.sum(tmp4, 1)[:, None]
tmp7 = 16.0
tmp8 = tmp6 / tmp7
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp8, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.int64)
# Topologically Sorted Source Nodes: [binary_cross_entropy, gt, entity_mask_1, mul, sum_3, ne, sum_2], Original ATen: [aten.binary_cross_entropy, aten.gt, aten._to_copy, aten.mul, aten.sum, aten.ne]
stream0 = get_raw_stream(0)
triton_per_fused__to_copy_binary_cross_entropy_gt_mul_ne_sum_0.run(arg0_1, arg1_1, buf0, buf1, 16, 16, grid=grid(16), stream=stream0)
del arg0_1
del arg1_1
buf2 = empty_strided_cuda((), (), torch.float32)
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [entity_sum, truediv, loss], Original ATen: [aten._to_copy, aten.div, aten.mean]
triton_per_fused__to_copy_div_mean_1.run(buf3, buf0, buf1, 1, 16, grid=grid(1), stream=stream0)
del buf0
del buf1
return (buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class PARALoss(nn.Module):
"""
Softmax classifier for sentence-level relation extraction.
"""
def __init__(self):
"""
Args:
sentence_encoder: encoder for sentences
num_class: number of classes
id2rel: dictionary of id -> relation name mapping
"""
super().__init__()
def forward(self, score, predicate_one_hot_labels):
entity_mask = predicate_one_hot_labels.sum(dim=1, keepdim=True
).repeat_interleave(score.shape[1], dim=1)
entity_mask = (entity_mask > 0).float()
entity_sum = (entity_mask != 0).sum(dim=(2, 3)).float()
loss = ((F.binary_cross_entropy(score, predicate_one_hot_labels,
reduction='none') * entity_mask).sum(dim=(2, 3)) / entity_sum
).mean()
if loss.item() < 0:
None
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused__to_copy_binary_cross_entropy_gt_mul_ne_sum_0(in_ptr0,
in_ptr1, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x3 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + (r2 + 16 * x3), xmask, other=0.0)
tmp3 = tl.load(in_ptr1 + (r2 + 16 * x3), xmask, other=0.0)
tmp13 = tl.load(in_ptr0 + (r2 + 64 * x1), xmask, eviction_policy=
'evict_last', other=0.0)
tmp14 = tl.load(in_ptr0 + (16 + r2 + 64 * x1), xmask, eviction_policy=
'evict_last', other=0.0)
tmp16 = tl.load(in_ptr0 + (32 + r2 + 64 * x1), xmask, eviction_policy=
'evict_last', other=0.0)
tmp18 = tl.load(in_ptr0 + (48 + r2 + 64 * x1), xmask, eviction_policy=
'evict_last', other=0.0)
tmp1 = 1.0
tmp2 = tmp0 - tmp1
tmp4 = -tmp3
tmp5 = libdevice.log1p(tmp4)
tmp6 = -100.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp2 * tmp7
tmp9 = tl_math.log(tmp3)
tmp10 = triton_helpers.maximum(tmp9, tmp6)
tmp11 = tmp0 * tmp10
tmp12 = tmp8 - tmp11
tmp15 = tmp13 + tmp14
tmp17 = tmp15 + tmp16
tmp19 = tmp17 + tmp18
tmp20 = 0.0
tmp21 = tmp19 > tmp20
tmp22 = tmp21.to(tl.float32)
tmp23 = tmp12 * tmp22
tmp24 = tl.broadcast_to(tmp23, [XBLOCK, RBLOCK])
tmp26 = tl.where(xmask, tmp24, 0)
tmp27 = tl.sum(tmp26, 1)[:, None]
tmp28 = tmp22 != tmp20
tmp29 = tmp28.to(tl.int64)
tmp30 = tl.broadcast_to(tmp29, [XBLOCK, RBLOCK])
tmp32 = tl.where(xmask, tmp30, 0)
tmp33 = tl.sum(tmp32, 1)[:, None]
tl.store(out_ptr0 + x3, tmp27, xmask)
tl.store(out_ptr1 + x3, tmp33, xmask)
@triton.jit
def triton_per_fused__to_copy_div_mean_1(in_out_ptr0, in_ptr0, in_ptr1,
xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp2 = tmp1.to(tl.float32)
tmp3 = tmp0 / tmp2
tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp6 = tl.sum(tmp4, 1)[:, None]
tmp7 = 16.0
tmp8 = tmp6 / tmp7
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp8, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.int64)
get_raw_stream(0)
triton_per_fused__to_copy_binary_cross_entropy_gt_mul_ne_sum_0[grid(16)
](arg0_1, arg1_1, buf0, buf1, 16, 16, XBLOCK=8, num_warps=2,
num_stages=1)
del arg0_1
del arg1_1
buf2 = empty_strided_cuda((), (), torch.float32)
buf3 = buf2
del buf2
triton_per_fused__to_copy_div_mean_1[grid(1)](buf3, buf0, buf1, 1,
16, XBLOCK=1, num_warps=2, num_stages=1)
del buf0
del buf1
return buf3,
class PARALossNew(nn.Module):
"""
Softmax classifier for sentence-level relation extraction.
"""
def __init__(self):
"""
Args:
sentence_encoder: encoder for sentences
num_class: number of classes
id2rel: dictionary of id -> relation name mapping
"""
super().__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| igorvlnascimento/redn | PARALoss | false | 15,598 | [
"MIT"
]
| 100 | f40f19a0fdfbb11a7987996d520716a05bafd77b | https://github.com/igorvlnascimento/redn/tree/f40f19a0fdfbb11a7987996d520716a05bafd77b |
Critic | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/ky/cky64l574tkwxzjewzevqyhty73x4t3q4p6d2tu2humfvstjwiaa.py
# Topologically Sorted Source Nodes: [v], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# v => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 2048
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 32
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (32, 4), (4, 1))
assert_size_stride(primals_2, (32, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (32, 32), (32, 1))
assert_size_stride(primals_5, (32, ), (1, ))
assert_size_stride(primals_6, (1, 32), (32, 1))
assert_size_stride(primals_7, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 32), (32, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 32), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 32), (512, 128, 32, 1), 0); del buf0 # reuse
buf7 = empty_strided_cuda((4, 4, 4, 32), (512, 128, 32, 1), torch.bool)
# Topologically Sorted Source Nodes: [v], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf7, 2048, grid=grid(2048), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 32), (32, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 32), (32, 1), 0), reinterpret_tensor(primals_4, (32, 32), (1, 32), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 32), (512, 128, 32, 1), 0); del buf2 # reuse
buf6 = empty_strided_cuda((4, 4, 4, 32), (512, 128, 32, 1), torch.bool)
# Topologically Sorted Source Nodes: [v_1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_0.run(buf3, primals_5, buf6, 2048, grid=grid(2048), stream=stream0)
del primals_5
buf5 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [v_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 32), (32, 1), 0), reinterpret_tensor(primals_6, (32, 1), (1, 32), 0), alpha=1, beta=1, out=buf5)
del primals_7
return (reinterpret_tensor(buf5, (4, 4, 4, 1), (16, 4, 1, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 32), (32, 1), 0), reinterpret_tensor(buf3, (64, 32), (32, 1), 0), primals_6, buf6, primals_4, buf7, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((32, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((32, 32), (32, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((1, 32), (32, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch as t
import torch.nn as nn
class Critic(nn.Module):
def __init__(self, state_dim):
super().__init__()
self.fc1 = nn.Linear(state_dim, 32)
self.fc2 = nn.Linear(32, 32)
self.fc3 = nn.Linear(32, 1)
def forward(self, state):
v = t.relu(self.fc1(state))
v = t.relu(self.fc2(v))
v = self.fc3(v)
return v
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'state_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 32
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (32, 4), (4, 1))
assert_size_stride(primals_2, (32,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (32, 32), (32, 1))
assert_size_stride(primals_5, (32,), (1,))
assert_size_stride(primals_6, (1, 32), (32, 1))
assert_size_stride(primals_7, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 32), (32, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 32), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 32), (512, 128, 32, 1), 0)
del buf0
buf7 = empty_strided_cuda((4, 4, 4, 32), (512, 128, 32, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(2048)](buf1,
primals_2, buf7, 2048, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 32), (32, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 32), (32, 1), 0),
reinterpret_tensor(primals_4, (32, 32), (1, 32), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 32), (512, 128, 32, 1), 0)
del buf2
buf6 = empty_strided_cuda((4, 4, 4, 32), (512, 128, 32, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_0[grid(2048)](buf3,
primals_5, buf6, 2048, XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
buf5 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 32),
(32, 1), 0), reinterpret_tensor(primals_6, (32, 1), (1, 32), 0),
alpha=1, beta=1, out=buf5)
del primals_7
return reinterpret_tensor(buf5, (4, 4, 4, 1), (16, 4, 1, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 32), (32, 1), 0), reinterpret_tensor(
buf3, (64, 32), (32, 1), 0), primals_6, buf6, primals_4, buf7
class CriticNew(nn.Module):
def __init__(self, state_dim):
super().__init__()
self.fc1 = nn.Linear(state_dim, 32)
self.fc2 = nn.Linear(32, 32)
self.fc3 = nn.Linear(32, 1)
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_6 = self.fc3.weight
primals_7 = self.fc3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| iffiX/machin | Critic | false | 15,599 | [
"MIT"
]
| 287 | 7fa986b1bafdefff117d6ff73d14644a5488de9d | https://github.com/iffiX/machin/tree/7fa986b1bafdefff117d6ff73d14644a5488de9d |
DDPGActorCont | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/v7/cv7zazascu4rpkkwoxbiwk6c2le2e6wshdhae73bmaoapelvwguv.py
# Topologically Sorted Source Nodes: [a], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# a => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/cp/ccp5m5apf7ka2skqyfxhf2df54c52qocprpycry7jrzoptyjvbti.py
# Topologically Sorted Source Nodes: [tanh, a_2], Original ATen: [aten.tanh, aten.mul]
# Source node to ATen node mapping:
# a_2 => mul
# tanh => tanh
# Graph fragment:
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%view_5,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%tanh, 4), kwargs = {})
triton_poi_fused_mul_tanh_1 = async_compile.triton('triton_poi_fused_mul_tanh_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_tanh_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_tanh_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = libdevice.tanh(tmp0)
tmp2 = 4.0
tmp3 = tmp1 * tmp2
tl.store(out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (16, 4), (4, 1))
assert_size_stride(primals_2, (16, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (16, 16), (16, 1))
assert_size_stride(primals_5, (16, ), (1, ))
assert_size_stride(primals_6, (4, 16), (16, 1))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 16), (16, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 16), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 16), (256, 64, 16, 1), 0); del buf0 # reuse
buf7 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.bool)
# Topologically Sorted Source Nodes: [a], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf7, 1024, grid=grid(1024), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 16), (16, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 16), (16, 1), 0), reinterpret_tensor(primals_4, (16, 16), (1, 16), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 16), (256, 64, 16, 1), 0); del buf2 # reuse
buf6 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.bool)
# Topologically Sorted Source Nodes: [a_1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_0.run(buf3, primals_5, buf6, 1024, grid=grid(1024), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 16), (16, 1), 0), reinterpret_tensor(primals_6, (16, 4), (1, 16), 0), alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [tanh, a_2], Original ATen: [aten.tanh, aten.mul]
triton_poi_fused_mul_tanh_1.run(buf4, buf5, 256, grid=grid(256), stream=stream0)
return (buf5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 16), (16, 1), 0), reinterpret_tensor(buf3, (64, 16), (16, 1), 0), buf4, primals_6, buf6, primals_4, buf7, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((16, 16), (16, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 16), (16, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch as t
import torch.nn as nn
class DDPGActorCont(nn.Module):
def __init__(self, state_dim, action_dim, action_range):
super().__init__()
self.fc1 = nn.Linear(state_dim, 16)
self.fc2 = nn.Linear(16, 16)
self.fc3 = nn.Linear(16, action_dim)
self.action_range = action_range
def forward(self, state):
a = t.relu(self.fc1(state))
a = t.relu(self.fc2(a))
a = t.tanh(self.fc3(a)) * self.action_range
return a
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'state_dim': 4, 'action_dim': 4, 'action_range': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused_mul_tanh_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = libdevice.tanh(tmp0)
tmp2 = 4.0
tmp3 = tmp1 * tmp2
tl.store(out_ptr0 + x0, tmp3, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (16, 4), (4, 1))
assert_size_stride(primals_2, (16,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (16, 16), (16, 1))
assert_size_stride(primals_5, (16,), (1,))
assert_size_stride(primals_6, (4, 16), (16, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 16), (16, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 16), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 16), (256, 64, 16, 1), 0)
del buf0
buf7 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(1024)](buf1,
primals_2, buf7, 1024, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 16), (16, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 16), (16, 1), 0),
reinterpret_tensor(primals_4, (16, 16), (1, 16), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 16), (256, 64, 16, 1), 0)
del buf2
buf6 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_0[grid(1024)](buf3,
primals_5, buf6, 1024, XBLOCK=128, num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 16),
(16, 1), 0), reinterpret_tensor(primals_6, (16, 4), (1, 16), 0),
alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_mul_tanh_1[grid(256)](buf4, buf5, 256, XBLOCK=256,
num_warps=4, num_stages=1)
return buf5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 16), (16, 1), 0), reinterpret_tensor(
buf3, (64, 16), (16, 1), 0), buf4, primals_6, buf6, primals_4, buf7
class DDPGActorContNew(nn.Module):
def __init__(self, state_dim, action_dim, action_range):
super().__init__()
self.fc1 = nn.Linear(state_dim, 16)
self.fc2 = nn.Linear(16, 16)
self.fc3 = nn.Linear(16, action_dim)
self.action_range = action_range
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_6 = self.fc3.weight
primals_7 = self.fc3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| iffiX/machin | DDPGActorCont | false | 15,600 | [
"MIT"
]
| 287 | 7fa986b1bafdefff117d6ff73d14644a5488de9d | https://github.com/iffiX/machin/tree/7fa986b1bafdefff117d6ff73d14644a5488de9d |
MultiHeadAttention | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/rh/crhy6nilvaajphuuoyup37xl4ncuiyrcb3fnt5aboux6wyvcg7ie.py
# Topologically Sorted Source Nodes: [attn_score], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# attn_score => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 16], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (64*y1)), xmask & ymask)
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + (16*y3)), tmp2, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
del primals_2
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
del primals_4
buf2 = empty_strided_cuda((4, 4, 16, 1), (64, 16, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [attn_score], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(buf0, primals_3, buf2, 16, 16, grid=grid(16, 16), stream=stream0)
del primals_3
buf3 = reinterpret_tensor(buf0, (4, 4, 1, 16), (64, 16, 16, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [attn_score], Original ATen: [aten.clone]
triton_poi_fused_clone_0.run(buf1, primals_5, buf3, 16, 16, grid=grid(16, 16), stream=stream0)
del buf1
del primals_5
buf4 = empty_strided_cuda((16, 16, 16), (256, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [attn_score], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf2, (16, 16, 1), (16, 1, 0), 0), reinterpret_tensor(buf3, (16, 1, 16), (16, 0, 1), 0), out=buf4)
return (reinterpret_tensor(buf4, (4, 4, 16, 16), (1024, 256, 16, 1), 0), reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(buf2, (16, 1, 16), (16, 1, 1), 0), reinterpret_tensor(buf3, (16, 16, 1), (16, 1, 16), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import numpy as np
class MultiHeadAttention(torch.nn.Module):
def __init__(self, input_size, output_size, num_heads,
output_attentions=False):
super(MultiHeadAttention, self).__init__()
self.output_attentions = output_attentions
self.num_heads = num_heads
self.d_model_size = input_size
self.depth = int(output_size / self.num_heads)
self.Wq = torch.nn.Linear(input_size, output_size)
self.Wk = torch.nn.Linear(input_size, output_size)
def split_into_heads(self, x, batch_size):
x = x.reshape(batch_size, -1, self.num_heads, self.depth)
return x.permute([0, 2, 1, 3])
def forward(self, k, q):
batch_size = q.shape[0]
q = self.Wq(q)
k = self.Wk(k)
q = self.split_into_heads(q, batch_size)
k = self.split_into_heads(k, batch_size)
attn_score = torch.matmul(q, k.permute(0, 1, 3, 2))
attn_score = attn_score / np.sqrt(k.shape[-1])
return attn_score
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_size': 4, 'output_size': 4, 'num_heads': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 64 * y1), xmask & ymask)
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + 16 * y3), tmp2, xmask & ymask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
del primals_2
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
del primals_4
buf2 = empty_strided_cuda((4, 4, 16, 1), (64, 16, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(16, 16)](buf0, primals_3, buf2, 16,
16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1)
del primals_3
buf3 = reinterpret_tensor(buf0, (4, 4, 1, 16), (64, 16, 16, 1), 0)
del buf0
triton_poi_fused_clone_0[grid(16, 16)](buf1, primals_5, buf3, 16,
16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1)
del buf1
del primals_5
buf4 = empty_strided_cuda((16, 16, 16), (256, 16, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf2, (16, 16, 1), (16, 1, 0),
0), reinterpret_tensor(buf3, (16, 1, 16), (16, 0, 1), 0), out=buf4)
return reinterpret_tensor(buf4, (4, 4, 16, 16), (1024, 256, 16, 1), 0
), reinterpret_tensor(primals_1, (64, 4), (4, 1), 0
), reinterpret_tensor(primals_6, (64, 4), (4, 1), 0
), reinterpret_tensor(buf2, (16, 1, 16), (16, 1, 1), 0
), reinterpret_tensor(buf3, (16, 16, 1), (16, 1, 16), 0)
class MultiHeadAttentionNew(torch.nn.Module):
def __init__(self, input_size, output_size, num_heads,
output_attentions=False):
super(MultiHeadAttentionNew, self).__init__()
self.output_attentions = output_attentions
self.num_heads = num_heads
self.d_model_size = input_size
self.depth = int(output_size / self.num_heads)
self.Wq = torch.nn.Linear(input_size, output_size)
self.Wk = torch.nn.Linear(input_size, output_size)
def split_into_heads(self, x, batch_size):
x = x.reshape(batch_size, -1, self.num_heads, self.depth)
return x.permute([0, 2, 1, 3])
def forward(self, input_0, input_1):
primals_2 = self.Wq.weight
primals_3 = self.Wq.bias
primals_4 = self.Wk.weight
primals_5 = self.Wk.bias
primals_1 = input_0
primals_6 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0]
| igorvlnascimento/redn | MultiHeadAttention | false | 15,601 | [
"MIT"
]
| 100 | f40f19a0fdfbb11a7987996d520716a05bafd77b | https://github.com/igorvlnascimento/redn/tree/f40f19a0fdfbb11a7987996d520716a05bafd77b |
ConvD | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/an/canrhnl6bbwh3lnyjbievv7ybpz4xcjzr7vrfmp5ygr4gjarptzk.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.native_group_norm]
# Source node to ATen node mapping:
# x_1 => add, rsqrt, var_mean
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [2, 3]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
triton_poi_fused_native_group_norm_0 = async_compile.triton('triton_poi_fused_native_group_norm_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_group_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_group_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + (x0), tmp8, xmask)
tl.store(out_ptr1 + (x0), tmp23, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/jw/cjw4xu4zpjeiqhktl7ruk5qy54q45spgtjyrwaexgvknaa4jjivg.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.native_group_norm]
# Source node to ATen node mapping:
# x_1 => add_1, mul_1
# Graph fragment:
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %unsqueeze_6), kwargs = {})
# %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %unsqueeze_3), kwargs = {})
triton_poi_fused_native_group_norm_1 = async_compile.triton('triton_poi_fused_native_group_norm_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_group_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_group_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x4 = (xindex // 4)
x1 = (xindex // 4) % 4
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x4), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x4), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/3t/c3tdglbaql6qtfaztzifhtar75nj34aa4su44msu6div3rdbcnb3.py
# Topologically Sorted Source Nodes: [y_1, add, relu_1], Original ATen: [aten.native_group_norm, aten.add, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# add => add_6
# relu_1 => relu_1
# y_1 => add_5, mul_5
# Graph fragment:
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_5, %unsqueeze_20), kwargs = {})
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_5, %unsqueeze_17), kwargs = {})
# %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %add_5), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_6,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {})
triton_poi_fused_add_native_group_norm_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_add_native_group_norm_relu_threshold_backward_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*i1', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_group_norm_relu_threshold_backward_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_native_group_norm_relu_threshold_backward_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x4 = (xindex // 4)
x1 = (xindex // 4) % 4
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x3), xmask)
tmp2 = tl.load(in_ptr2 + (x4), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr3 + (x4), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr4 + (x1), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr5 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 - tmp2
tmp5 = tmp3 * tmp4
tmp7 = tmp5 * tmp6
tmp9 = tmp7 + tmp8
tmp10 = tmp0 + tmp9
tmp11 = tl.full([1], 0, tl.int32)
tmp12 = triton_helpers.maximum(tmp11, tmp10)
tmp13 = 0.0
tmp14 = tmp12 <= tmp13
tl.store(out_ptr0 + (x3), tmp12, xmask)
tl.store(out_ptr1 + (x3), tmp14, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10 = args
args.clear()
assert_size_stride(primals_1, (4, 8, 4, 4), (128, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 3, 3, 3), (108, 27, 9, 3, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (4, 4, 3, 3, 3), (108, 27, 9, 3, 1))
assert_size_stride(primals_6, (4, ), (1, ))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, 4, 3, 3, 3), (108, 27, 9, 3, 1))
assert_size_stride(primals_9, (4, ), (1, ))
assert_size_stride(primals_10, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.max_pool3d_with_indices]
buf0 = torch.ops.aten.max_pool3d_with_indices.default(primals_1, [2, 2, 2], [2, 2, 2])
del primals_1
buf1 = buf0[0]
del buf0
# Topologically Sorted Source Nodes: [conv3d], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(reinterpret_tensor(buf1, (1, 4, 4, 2, 2), (64, 16, 4, 2, 1), 0), primals_2, stride=(1, 1, 1), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None)
assert_size_stride(buf3, (1, 4, 4, 2, 2), (64, 16, 4, 2, 1))
buf4 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf5 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.native_group_norm]
stream0 = get_raw_stream(0)
triton_poi_fused_native_group_norm_0.run(buf3, buf4, buf5, 16, grid=grid(16), stream=stream0)
buf6 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.native_group_norm]
triton_poi_fused_native_group_norm_1.run(buf3, buf4, buf5, primals_3, primals_4, buf6, 64, grid=grid(64), stream=stream0)
del primals_4
# Topologically Sorted Source Nodes: [conv3d_2], Original ATen: [aten.convolution]
buf7 = extern_kernels.convolution(reinterpret_tensor(buf6, (1, 4, 4, 2, 2), (64, 16, 4, 2, 1), 0), primals_8, stride=(1, 1, 1), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None)
assert_size_stride(buf7, (1, 4, 4, 2, 2), (64, 16, 4, 2, 1))
buf8 = buf5; del buf5 # reuse
buf9 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [y_1], Original ATen: [aten.native_group_norm]
triton_poi_fused_native_group_norm_0.run(buf7, buf8, buf9, 16, grid=grid(16), stream=stream0)
buf10 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
buf11 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.bool)
# Topologically Sorted Source Nodes: [y_1, add, relu_1], Original ATen: [aten.native_group_norm, aten.add, aten.relu, aten.threshold_backward]
triton_poi_fused_add_native_group_norm_relu_threshold_backward_2.run(buf6, buf7, buf8, buf9, primals_9, primals_10, buf10, buf11, 64, grid=grid(64), stream=stream0)
del buf8
del buf9
del primals_10
return (buf10, primals_2, primals_3, primals_8, primals_9, reinterpret_tensor(buf1, (1, 4, 4, 2, 2), (64, 16, 4, 2, 1), 0), buf3, reinterpret_tensor(buf6, (1, 4, 4, 2, 2), (64, 16, 4, 2, 1), 0), buf7, buf11, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 8, 4, 4), (128, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 3, 3, 3), (108, 27, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4, 3, 3, 3), (108, 27, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 4, 3, 3, 3), (108, 27, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.parallel
import torch.optim
def normalization(planes, norm='gn'):
if norm == 'bn':
m = nn.BatchNorm3d(planes)
elif norm == 'gn':
m = nn.GroupNorm(4, planes)
elif norm == 'in':
m = nn.InstanceNorm3d(planes)
else:
raise ValueError('normalization type {} is not supported'.format(norm))
return m
class ConvD(nn.Module):
def __init__(self, inplanes, planes, dropout=0.0, norm='gn', first=False):
super(ConvD, self).__init__()
self.first = first
self.maxpool = nn.MaxPool3d(2, 2)
self.dropout = dropout
self.relu = nn.ReLU(inplace=True)
self.conv1 = nn.Conv3d(inplanes, planes, 3, 1, 1, bias=False)
self.bn1 = normalization(planes, norm)
self.conv2 = nn.Conv3d(planes, planes, 3, 1, 1, bias=False)
self.bn2 = normalization(planes, norm)
self.conv3 = nn.Conv3d(planes, planes, 3, 1, 1, bias=False)
self.bn3 = normalization(planes, norm)
def forward(self, x):
if not self.first:
x = self.maxpool(x)
x = self.bn1(self.conv1(x))
y = self.relu(self.bn2(self.conv2(x)))
if self.dropout > 0:
y = F.dropout3d(y, self.dropout)
y = self.bn3(self.conv3(x))
return self.relu(x + y)
def get_inputs():
return [torch.rand([4, 8, 4, 4])]
def get_init_inputs():
return [[], {'inplanes': 4, 'planes': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
import torch.nn.parallel
import torch.optim
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_native_group_norm_0(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + x0, tmp8, xmask)
tl.store(out_ptr1 + x0, tmp23, xmask)
@triton.jit
def triton_poi_fused_native_group_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x4 = xindex // 4
x1 = xindex // 4 % 4
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x4, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + x4, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + x3, tmp8, xmask)
@triton.jit
def triton_poi_fused_add_native_group_norm_relu_threshold_backward_2(in_ptr0,
in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, out_ptr1, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x4 = xindex // 4
x1 = xindex // 4 % 4
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x3, xmask)
tmp2 = tl.load(in_ptr2 + x4, xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr3 + x4, xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr4 + x1, xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr5 + x1, xmask, eviction_policy='evict_last')
tmp3 = tmp1 - tmp2
tmp5 = tmp3 * tmp4
tmp7 = tmp5 * tmp6
tmp9 = tmp7 + tmp8
tmp10 = tmp0 + tmp9
tmp11 = tl.full([1], 0, tl.int32)
tmp12 = triton_helpers.maximum(tmp11, tmp10)
tmp13 = 0.0
tmp14 = tmp12 <= tmp13
tl.store(out_ptr0 + x3, tmp12, xmask)
tl.store(out_ptr1 + x3, tmp14, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10) = args
args.clear()
assert_size_stride(primals_1, (4, 8, 4, 4), (128, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 3, 3, 3), (108, 27, 9, 3, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4, 4, 3, 3, 3), (108, 27, 9, 3, 1))
assert_size_stride(primals_6, (4,), (1,))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4, 4, 3, 3, 3), (108, 27, 9, 3, 1))
assert_size_stride(primals_9, (4,), (1,))
assert_size_stride(primals_10, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = torch.ops.aten.max_pool3d_with_indices.default(primals_1, [2,
2, 2], [2, 2, 2])
del primals_1
buf1 = buf0[0]
del buf0
buf3 = extern_kernels.convolution(reinterpret_tensor(buf1, (1, 4, 4,
2, 2), (64, 16, 4, 2, 1), 0), primals_2, stride=(1, 1, 1),
padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False,
output_padding=(0, 0, 0), groups=1, bias=None)
assert_size_stride(buf3, (1, 4, 4, 2, 2), (64, 16, 4, 2, 1))
buf4 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf5 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
get_raw_stream(0)
triton_poi_fused_native_group_norm_0[grid(16)](buf3, buf4, buf5, 16,
XBLOCK=16, num_warps=1, num_stages=1)
buf6 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
triton_poi_fused_native_group_norm_1[grid(64)](buf3, buf4, buf5,
primals_3, primals_4, buf6, 64, XBLOCK=64, num_warps=1,
num_stages=1)
del primals_4
buf7 = extern_kernels.convolution(reinterpret_tensor(buf6, (1, 4, 4,
2, 2), (64, 16, 4, 2, 1), 0), primals_8, stride=(1, 1, 1),
padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False,
output_padding=(0, 0, 0), groups=1, bias=None)
assert_size_stride(buf7, (1, 4, 4, 2, 2), (64, 16, 4, 2, 1))
buf8 = buf5
del buf5
buf9 = buf4
del buf4
triton_poi_fused_native_group_norm_0[grid(16)](buf7, buf8, buf9, 16,
XBLOCK=16, num_warps=1, num_stages=1)
buf10 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
buf11 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.bool)
triton_poi_fused_add_native_group_norm_relu_threshold_backward_2[grid
(64)](buf6, buf7, buf8, buf9, primals_9, primals_10, buf10,
buf11, 64, XBLOCK=64, num_warps=1, num_stages=1)
del buf8
del buf9
del primals_10
return (buf10, primals_2, primals_3, primals_8, primals_9,
reinterpret_tensor(buf1, (1, 4, 4, 2, 2), (64, 16, 4, 2, 1), 0),
buf3, reinterpret_tensor(buf6, (1, 4, 4, 2, 2), (64, 16, 4, 2, 1),
0), buf7, buf11)
def normalization(planes, norm='gn'):
if norm == 'bn':
m = nn.BatchNorm3d(planes)
elif norm == 'gn':
m = nn.GroupNorm(4, planes)
elif norm == 'in':
m = nn.InstanceNorm3d(planes)
else:
raise ValueError('normalization type {} is not supported'.format(norm))
return m
class ConvDNew(nn.Module):
def __init__(self, inplanes, planes, dropout=0.0, norm='gn', first=False):
super(ConvDNew, self).__init__()
self.first = first
self.maxpool = nn.MaxPool3d(2, 2)
self.dropout = dropout
self.relu = nn.ReLU(inplace=True)
self.conv1 = nn.Conv3d(inplanes, planes, 3, 1, 1, bias=False)
self.bn1 = normalization(planes, norm)
self.conv2 = nn.Conv3d(planes, planes, 3, 1, 1, bias=False)
self.bn2 = normalization(planes, norm)
self.conv3 = nn.Conv3d(planes, planes, 3, 1, 1, bias=False)
self.bn3 = normalization(planes, norm)
def forward(self, input_0):
primals_2 = self.conv1.weight
primals_3 = self.bn1.weight
primals_4 = self.bn1.bias
primals_5 = self.conv2.weight
primals_6 = self.bn2.weight
primals_7 = self.bn2.bias
primals_8 = self.conv3.weight
primals_9 = self.bn3.weight
primals_10 = self.bn3.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9, primals_10])
return output[0]
| ieee820/BraTS2018-tumor-segmentation | ConvD | false | 15,602 | [
"MIT"
]
| 157 | 22e1a22909a0c21503b5ef5fc6860a1e1131e851 | https://github.com/ieee820/BraTS2018-tumor-segmentation/tree/22e1a22909a0c21503b5ef5fc6860a1e1131e851 |
DDPGCritic | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/ms/cmsuzohbg5nq52jnvirovzkvykrzzko5xomu7zyu5e5u2lhegppw.py
# Topologically Sorted Source Nodes: [state_action], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# state_action => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = (xindex // 8)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/l4/cl4b2qmegciihafkh7hzuy52pdx4j53yd4lmklixpticbzk2nyq2.py
# Topologically Sorted Source Nodes: [q], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# q => relu
# Graph fragment:
# %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_4), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {})
triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (16, 8), (8, 1))
assert_size_stride(primals_4, (16, ), (1, ))
assert_size_stride(primals_5, (16, 16), (16, 1))
assert_size_stride(primals_6, (16, ), (1, ))
assert_size_stride(primals_7, (1, 16), (16, 1))
assert_size_stride(primals_8, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
# Topologically Sorted Source Nodes: [state_action], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 32, grid=grid(32), stream=stream0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 16), (16, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf0, reinterpret_tensor(primals_3, (8, 16), (1, 8), 0), out=buf1)
del primals_3
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [q], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf2, primals_4, 64, grid=grid(64), stream=stream0)
del primals_4
buf3 = empty_strided_cuda((4, 16), (16, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf2, reinterpret_tensor(primals_5, (16, 16), (1, 16), 0), out=buf3)
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [q_1], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf4, primals_6, 64, grid=grid(64), stream=stream0)
del primals_6
buf6 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [q_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_8, buf4, reinterpret_tensor(primals_7, (16, 1), (1, 16), 0), alpha=1, beta=1, out=buf6)
del primals_8
return (buf6, buf0, buf2, buf4, primals_7, primals_5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((16, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((16, 16), (16, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, 16), (16, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch as t
import torch.nn as nn
class DDPGCritic(nn.Module):
def __init__(self, state_dim, action_dim):
super().__init__()
self.fc1 = nn.Linear(state_dim + action_dim, 16)
self.fc2 = nn.Linear(16, 16)
self.fc3 = nn.Linear(16, 1)
def forward(self, state, action):
state_action = t.cat([state, action], 1)
q = t.relu(self.fc1(state_action))
q = t.relu(self.fc2(q))
q = self.fc3(q)
return q
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'state_dim': 4, 'action_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x2, tmp10, xmask)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (16, 8), (8, 1))
assert_size_stride(primals_4, (16,), (1,))
assert_size_stride(primals_5, (16, 16), (16, 1))
assert_size_stride(primals_6, (16,), (1,))
assert_size_stride(primals_7, (1, 16), (16, 1))
assert_size_stride(primals_8, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(32)](primals_1, primals_2, buf0, 32,
XBLOCK=32, num_warps=1, num_stages=1)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 16), (16, 1), torch.float32)
extern_kernels.mm(buf0, reinterpret_tensor(primals_3, (8, 16), (1,
8), 0), out=buf1)
del primals_3
buf2 = buf1
del buf1
triton_poi_fused_relu_1[grid(64)](buf2, primals_4, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_4
buf3 = empty_strided_cuda((4, 16), (16, 1), torch.float32)
extern_kernels.mm(buf2, reinterpret_tensor(primals_5, (16, 16), (1,
16), 0), out=buf3)
buf4 = buf3
del buf3
triton_poi_fused_relu_1[grid(64)](buf4, primals_6, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_6
buf6 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_8, buf4, reinterpret_tensor(primals_7,
(16, 1), (1, 16), 0), alpha=1, beta=1, out=buf6)
del primals_8
return buf6, buf0, buf2, buf4, primals_7, primals_5
class DDPGCriticNew(nn.Module):
def __init__(self, state_dim, action_dim):
super().__init__()
self.fc1 = nn.Linear(state_dim + action_dim, 16)
self.fc2 = nn.Linear(16, 16)
self.fc3 = nn.Linear(16, 1)
def forward(self, input_0, input_1):
primals_3 = self.fc1.weight
primals_4 = self.fc1.bias
primals_5 = self.fc2.weight
primals_6 = self.fc2.bias
primals_7 = self.fc3.weight
primals_8 = self.fc3.bias
primals_1 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8])
return output[0]
| iffiX/machin | DDPGCritic | false | 15,603 | [
"MIT"
]
| 287 | 7fa986b1bafdefff117d6ff73d14644a5488de9d | https://github.com/iffiX/machin/tree/7fa986b1bafdefff117d6ff73d14644a5488de9d |
RNN | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/nc/cnc6a3vkphurm472zdavmn3qnff4lmaezxs63jlllw2kks2e62a4.py
# Topologically Sorted Source Nodes: [input_combined], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# input_combined => cat
# Graph fragment:
# %cat : [num_users=3] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2, %primals_3], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 12
x1 = (xindex // 12)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tl.load(in_ptr2 + ((4*x1) + ((-8) + x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0)
tmp15 = tl.where(tmp9, tmp10, tmp14)
tmp16 = tl.where(tmp4, tmp5, tmp15)
tl.store(out_ptr0 + (x2), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ih/cihkol22ojnmrk724q4odcm6ilz575wmbnulie74gzdcgue24tib.py
# Topologically Sorted Source Nodes: [output_combined], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# output_combined => cat_1
# Graph fragment:
# %cat_1 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%addmm, %addmm_1], 1), kwargs = {})
triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tl.store(out_ptr0 + (x0 + (8*x1)), tmp0, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 12), (12, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 12), (12, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, 8), (8, 1))
assert_size_stride(primals_9, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 12), (12, 1), torch.float32)
# Topologically Sorted Source Nodes: [input_combined], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_1, primals_2, primals_3, buf0, 48, grid=grid(48), stream=stream0)
del primals_1
del primals_2
del primals_3
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [hidden], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, buf0, reinterpret_tensor(primals_4, (12, 4), (1, 12), 0), alpha=1, beta=1, out=buf1)
del primals_4
del primals_5
buf4 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
buf2 = reinterpret_tensor(buf4, (4, 4), (8, 1), 4) # alias
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, buf0, reinterpret_tensor(primals_6, (12, 4), (1, 12), 0), alpha=1, beta=1, out=buf2)
del primals_6
del primals_7
buf3 = reinterpret_tensor(buf4, (4, 4), (8, 1), 0) # alias
# Topologically Sorted Source Nodes: [output_combined], Original ATen: [aten.cat]
triton_poi_fused_cat_1.run(buf1, buf3, 16, grid=grid(16), stream=stream0)
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_9, buf4, reinterpret_tensor(primals_8, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf5)
del primals_9
return (buf5, buf1, buf0, buf4, primals_8, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 12), (12, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 12), (12, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
from torch.autograd import Variable
class RNN(nn.Module):
def __init__(self, category_size, input_size, hidden_size, output_size):
super(RNN, self).__init__()
self.category_size = category_size
self.input_size = input_size
self.hidden_size = hidden_size
self.output_size = output_size
self.i2h = nn.Linear(category_size + input_size + hidden_size,
hidden_size)
self.i2o = nn.Linear(category_size + input_size + hidden_size,
output_size)
self.o2o = nn.Linear(hidden_size + output_size, output_size)
self.softmax = nn.LogSoftmax()
def forward(self, category, input, hidden):
input_combined = torch.cat((category, input, hidden), 1)
hidden = self.i2h(input_combined)
output = self.i2o(input_combined)
output_combined = torch.cat((hidden, output), 1)
output = self.o2o(output_combined)
return output, hidden
def init_hidden(self):
return Variable(torch.zeros(1, self.hidden_size))
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'category_size': 4, 'input_size': 4, 'hidden_size': 4,
'output_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
from torch.autograd import Variable
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 12
x1 = xindex // 12
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp9 & xmask,
eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tl.full([1], 12, tl.int64)
tmp14 = tl.load(in_ptr2 + (4 * x1 + (-8 + x0)), tmp11 & xmask,
eviction_policy='evict_last', other=0.0)
tmp15 = tl.where(tmp9, tmp10, tmp14)
tmp16 = tl.where(tmp4, tmp5, tmp15)
tl.store(out_ptr0 + x2, tmp16, xmask)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tl.store(out_ptr0 + (x0 + 8 * x1), tmp0, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 12), (12, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 12), (12, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4, 8), (8, 1))
assert_size_stride(primals_9, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 12), (12, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(48)](primals_1, primals_2, primals_3,
buf0, 48, XBLOCK=64, num_warps=1, num_stages=1)
del primals_1
del primals_2
del primals_3
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, buf0, reinterpret_tensor(primals_4,
(12, 4), (1, 12), 0), alpha=1, beta=1, out=buf1)
del primals_4
del primals_5
buf4 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
buf2 = reinterpret_tensor(buf4, (4, 4), (8, 1), 4)
extern_kernels.addmm(primals_7, buf0, reinterpret_tensor(primals_6,
(12, 4), (1, 12), 0), alpha=1, beta=1, out=buf2)
del primals_6
del primals_7
buf3 = reinterpret_tensor(buf4, (4, 4), (8, 1), 0)
triton_poi_fused_cat_1[grid(16)](buf1, buf3, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_9, buf4, reinterpret_tensor(primals_8,
(8, 4), (1, 8), 0), alpha=1, beta=1, out=buf5)
del primals_9
return buf5, buf1, buf0, buf4, primals_8
class RNNNew(nn.Module):
def __init__(self, category_size, input_size, hidden_size, output_size):
super(RNNNew, self).__init__()
self.category_size = category_size
self.input_size = input_size
self.hidden_size = hidden_size
self.output_size = output_size
self.i2h = nn.Linear(category_size + input_size + hidden_size,
hidden_size)
self.i2o = nn.Linear(category_size + input_size + hidden_size,
output_size)
self.o2o = nn.Linear(hidden_size + output_size, output_size)
self.softmax = nn.LogSoftmax()
def init_hidden(self):
return Variable(torch.zeros(1, self.hidden_size))
def forward(self, input_0, input_1, input_2):
primals_4 = self.i2h.weight
primals_5 = self.i2h.bias
primals_6 = self.i2o.weight
primals_7 = self.i2o.bias
primals_8 = self.o2o.weight
primals_9 = self.o2o.bias
primals_1 = input_0
primals_2 = input_1
primals_3 = input_2
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0], output[1]
| igorwood/practical-pytorch | RNN | false | 15,604 | [
"MIT"
]
| 4,847 | c08fc28ba1f7d6838c3938076cc1b03d90dccace | https://github.com/igorwood/practical-pytorch/tree/c08fc28ba1f7d6838c3938076cc1b03d90dccace |
ConvTanh | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/wl/cwldpc2k6v7rbizd6tlddleva3alwxblabsherkqjtef5e45djwk.py
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.reflection_pad2d]
# Source node to ATen node mapping:
# out => _unsafe_index, _unsafe_index_1
# Graph fragment:
# %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %sub_1, None]), kwargs = {})
# %_unsafe_index_1 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index, [None, None, None, %sub_1]), kwargs = {})
triton_poi_fused_reflection_pad2d_0 = async_compile.triton('triton_poi_fused_reflection_pad2d_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_reflection_pad2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_reflection_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = (xindex // 8) % 8
x2 = (xindex // 64)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (15 + ((-1)*(tl_math.abs((-3) + (tl_math.abs((-2) + x0))))) + ((-4)*(tl_math.abs((-3) + (tl_math.abs((-2) + x1))))) + (16*x2)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x3), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/vz/cvzcqsxnsqz6tc5jdqfkuc5pov23bdmlq3vuteuag67sd74aw463.py
# Topologically Sorted Source Nodes: [out_1, truediv, tanh, mul, add], Original ATen: [aten.convolution, aten.div, aten.tanh, aten.mul, aten.add]
# Source node to ATen node mapping:
# add => add
# mul => mul
# out_1 => convolution
# tanh => tanh
# truediv => div
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%convolution, 255), kwargs = {})
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%div,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%tanh, 150), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 127.5), kwargs = {})
triton_poi_fused_add_convolution_div_mul_tanh_1 = async_compile.triton('triton_poi_fused_add_convolution_div_mul_tanh_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_div_mul_tanh_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_div_mul_tanh_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 25) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.00392156862745098
tmp4 = tmp2 * tmp3
tmp5 = libdevice.tanh(tmp4)
tmp6 = 150.0
tmp7 = tmp5 * tmp6
tmp8 = 127.5
tmp9 = tmp7 + tmp8
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
tl.store(out_ptr0 + (x3), tmp9, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.reflection_pad2d]
stream0 = get_raw_stream(0)
triton_poi_fused_reflection_pad2d_0.run(primals_1, buf0, 1024, grid=grid(1024), stream=stream0)
del primals_1
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 5, 5), (100, 25, 5, 1))
buf2 = buf1; del buf1 # reuse
buf3 = empty_strided_cuda((4, 4, 5, 5), (100, 25, 5, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_1, truediv, tanh, mul, add], Original ATen: [aten.convolution, aten.div, aten.tanh, aten.mul, aten.add]
triton_poi_fused_add_convolution_div_mul_tanh_1.run(buf2, primals_3, buf3, 400, grid=grid(400), stream=stream0)
del primals_3
return (buf3, primals_2, buf0, buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import numpy as np
class ConvLayer(torch.nn.Module):
"""Reflection padded convolution layer."""
def __init__(self, in_channels, out_channels, kernel_size, stride, bias
=True):
super(ConvLayer, self).__init__()
reflection_padding = int(np.floor(kernel_size / 2))
self.reflection_pad = torch.nn.ReflectionPad2d(reflection_padding)
self.conv2d = torch.nn.Conv2d(in_channels, out_channels,
kernel_size, stride=stride, bias=bias)
def forward(self, x):
out = self.reflection_pad(x)
out = self.conv2d(out)
return out
class ConvTanh(ConvLayer):
def __init__(self, in_channels, out_channels, kernel_size, stride):
super(ConvTanh, self).__init__(in_channels, out_channels,
kernel_size, stride)
self.tanh = torch.nn.Tanh()
def forward(self, x):
out = super(ConvTanh, self).forward(x)
return self.tanh(out / 255) * 150 + 255 / 2
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4,
'stride': 1}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import numpy as np
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_reflection_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = xindex // 8 % 8
x2 = xindex // 64
x3 = xindex
tmp0 = tl.load(in_ptr0 + (15 + -1 * tl_math.abs(-3 + tl_math.abs(-2 +
x0)) + -4 * tl_math.abs(-3 + tl_math.abs(-2 + x1)) + 16 * x2),
xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + x3, tmp0, xmask)
@triton.jit
def triton_poi_fused_add_convolution_div_mul_tanh_1(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 25 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.00392156862745098
tmp4 = tmp2 * tmp3
tmp5 = libdevice.tanh(tmp4)
tmp6 = 150.0
tmp7 = tmp5 * tmp6
tmp8 = 127.5
tmp9 = tmp7 + tmp8
tl.store(in_out_ptr0 + x3, tmp2, xmask)
tl.store(out_ptr0 + x3, tmp9, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_reflection_pad2d_0[grid(1024)](primals_1, buf0,
1024, XBLOCK=128, num_warps=4, num_stages=1)
del primals_1
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 5, 5), (100, 25, 5, 1))
buf2 = buf1
del buf1
buf3 = empty_strided_cuda((4, 4, 5, 5), (100, 25, 5, 1), torch.float32)
triton_poi_fused_add_convolution_div_mul_tanh_1[grid(400)](buf2,
primals_3, buf3, 400, XBLOCK=128, num_warps=4, num_stages=1)
del primals_3
return buf3, primals_2, buf0, buf2
class ConvLayer(torch.nn.Module):
"""Reflection padded convolution layer."""
def __init__(self, in_channels, out_channels, kernel_size, stride, bias
=True):
super(ConvLayer, self).__init__()
reflection_padding = int(np.floor(kernel_size / 2))
self.reflection_pad = torch.nn.ReflectionPad2d(reflection_padding)
self.conv2d = torch.nn.Conv2d(in_channels, out_channels,
kernel_size, stride=stride, bias=bias)
def forward(self, x):
out = self.reflection_pad(x)
out = self.conv2d(out)
return out
class ConvTanhNew(ConvLayer):
def __init__(self, in_channels, out_channels, kernel_size, stride):
super(ConvTanhNew, self).__init__(in_channels, out_channels,
kernel_size, stride)
self.tanh = torch.nn.Tanh()
def forward(self, input_0):
primals_1 = self.conv2d.weight
primals_3 = self.conv2d.bias
primals_2 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| irsisyphus/reconet | ConvTanh | false | 15,605 | [
"MIT"
]
| 56 | 863acf8dde4d45c8521634af27878fe04f3b2e56 | https://github.com/irsisyphus/reconet/tree/863acf8dde4d45c8521634af27878fe04f3b2e56 |
BertSelfAttention | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/dk/cdk4odz276xorciau5ehgl7f3s2mgkf3hrye6xep6kzubczdeqqy.py
# Topologically Sorted Source Nodes: [attention_scores], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# attention_scores => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/fh/cfhydrwaejluqurspx2dvattjq4qiiexqog4gfsdmfob43r5rnk5.py
# Topologically Sorted Source Nodes: [attention_scores_1, attention_scores_2, attention_probs], Original ATen: [aten.div, aten.add, aten._softmax]
# Source node to ATen node mapping:
# attention_probs => amax, exp, sub, sum_1
# attention_scores_1 => div
# attention_scores_2 => add
# Graph fragment:
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_11, 1.0), kwargs = {})
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%div, %primals_8), kwargs = {})
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%add, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
triton_poi_fused__softmax_add_div_1 = async_compile.triton('triton_poi_fused__softmax_add_div_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_add_div_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_add_div_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_ptr0 + (4*x2), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + (4*x2)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr0 + (2 + (4*x2)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr0 + (3 + (4*x2)), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp5 * tmp1
tmp8 = tmp6 + tmp7
tmp9 = triton_helpers.maximum(tmp4, tmp8)
tmp11 = tmp10 * tmp1
tmp13 = tmp11 + tmp12
tmp14 = triton_helpers.maximum(tmp9, tmp13)
tmp16 = tmp15 * tmp1
tmp18 = tmp16 + tmp17
tmp19 = triton_helpers.maximum(tmp14, tmp18)
tmp20 = tmp4 - tmp19
tmp21 = tl_math.exp(tmp20)
tmp22 = tmp8 - tmp19
tmp23 = tl_math.exp(tmp22)
tmp24 = tmp21 + tmp23
tmp25 = tmp13 - tmp19
tmp26 = tl_math.exp(tmp25)
tmp27 = tmp24 + tmp26
tmp28 = tmp18 - tmp19
tmp29 = tl_math.exp(tmp28)
tmp30 = tmp27 + tmp29
tl.store(out_ptr0 + (x2), tmp19, xmask)
tl.store(out_ptr1 + (x2), tmp30, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/g6/cg65jkqmchbdahuikqawep5p32pz7fmy6cfvgzohspjy5l4iqhrs.py
# Topologically Sorted Source Nodes: [attention_scores_1, attention_scores_2, attention_probs], Original ATen: [aten.div, aten.add, aten._softmax]
# Source node to ATen node mapping:
# attention_probs => amax, div_1, exp, sub
# attention_scores_1 => div
# attention_scores_2 => add
# Graph fragment:
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_11, 1.0), kwargs = {})
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%div, %primals_8), kwargs = {})
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%add, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_add_div_2 = async_compile.triton('triton_poi_fused__softmax_add_div_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_add_div_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_add_div_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x4 = xindex % 64
x5 = (xindex // 4)
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp3 = tl.load(in_ptr0 + (x4), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (x5), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr2 + (x5), xmask, eviction_policy='evict_last')
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 - tmp5
tmp7 = tl_math.exp(tmp6)
tmp9 = tmp7 / tmp8
tl.store(in_out_ptr0 + (x3), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/xt/cxtkkmujo4ytg6ycpz5lk5livtstr63pg5nsf5ijewjbtrfrqx6k.py
# Topologically Sorted Source Nodes: [context_layer_1], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# context_layer_1 => clone_4
# Graph fragment:
# %clone_4 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_3 = async_compile.triton('triton_poi_fused_clone_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
del primals_4
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf2)
del primals_6
buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [attention_scores], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(buf0, primals_2, buf3, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_2
buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [attention_scores], Original ATen: [aten.clone]
triton_poi_fused_clone_0.run(buf1, primals_5, buf4, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_5
buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [attention_scores], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5)
buf6 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 64), 0); del buf1 # reuse
buf7 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
# Topologically Sorted Source Nodes: [attention_scores_1, attention_scores_2, attention_probs], Original ATen: [aten.div, aten.add, aten._softmax]
triton_poi_fused__softmax_add_div_1.run(buf5, primals_8, buf6, buf7, 64, grid=grid(64), stream=stream0)
buf8 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse
# Topologically Sorted Source Nodes: [attention_scores_1, attention_scores_2, attention_probs], Original ATen: [aten.div, aten.add, aten._softmax]
triton_poi_fused__softmax_add_div_2.run(buf8, primals_8, buf6, buf7, 256, grid=grid(256), stream=stream0)
del primals_8
buf9 = reinterpret_tensor(buf7, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf7 # reuse
# Topologically Sorted Source Nodes: [context_layer], Original ATen: [aten.clone]
triton_poi_fused_clone_0.run(buf2, primals_7, buf9, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_7
buf10 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [context_layer], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf8, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf9, (16, 4, 1), (4, 1, 0), 0), out=buf10)
buf11 = reinterpret_tensor(buf6, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf6 # reuse
# Topologically Sorted Source Nodes: [context_layer_1], Original ATen: [aten.clone]
triton_poi_fused_clone_3.run(buf10, buf11, 16, 4, grid=grid(16, 4), stream=stream0)
del buf10
return (reinterpret_tensor(buf11, (4, 4, 4), (16, 4, 1), 0), buf8, reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), buf8, reinterpret_tensor(buf9, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from _paritybench_helpers import _mock_config
import math
import torch
from torch import nn
class BertSelfAttention(nn.Module):
def __init__(self, config):
super(BertSelfAttention, self).__init__()
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
'The hidden size (%d) is not a multiple of the number of attention heads (%d)'
% (config.hidden_size, config.num_attention_heads))
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.
num_attention_heads)
self.all_head_size = (self.num_attention_heads * self.
attention_head_size)
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.
attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, hidden_states, attention_mask, join_mask=None,
only_cls_output=False):
global last_attn_output
if only_cls_output:
mixed_query_layer = self.query(hidden_states[:, :1])
else:
mixed_query_layer = self.query(hidden_states)
query_layer = self.transpose_for_scores(mixed_query_layer)
mixed_key_layer = self.key(hidden_states)
key_layer = self.transpose_for_scores(mixed_key_layer)
mixed_value_layer = self.value(hidden_states)
value_layer = self.transpose_for_scores(mixed_value_layer)
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1,
-2))
attention_scores = attention_scores / math.sqrt(self.
attention_head_size)
attention_scores = attention_scores + attention_mask
if join_mask is not None:
attention_scores = attention_scores + join_mask
attention_probs = nn.Softmax(dim=-1)(attention_scores)
last_attn_output = attention_probs
attention_probs = self.dropout(attention_probs)
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.
all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
return context_layer
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'config': _mock_config(hidden_size=4, num_attention_heads=
4, attention_probs_dropout_prob=0.5)}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask)
@triton.jit
def triton_poi_fused__softmax_add_div_1(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_ptr0 + 4 * x2, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + 4 * x2), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr0 + (2 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp12 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp15 = tl.load(in_ptr0 + (3 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp17 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp5 * tmp1
tmp8 = tmp6 + tmp7
tmp9 = triton_helpers.maximum(tmp4, tmp8)
tmp11 = tmp10 * tmp1
tmp13 = tmp11 + tmp12
tmp14 = triton_helpers.maximum(tmp9, tmp13)
tmp16 = tmp15 * tmp1
tmp18 = tmp16 + tmp17
tmp19 = triton_helpers.maximum(tmp14, tmp18)
tmp20 = tmp4 - tmp19
tmp21 = tl_math.exp(tmp20)
tmp22 = tmp8 - tmp19
tmp23 = tl_math.exp(tmp22)
tmp24 = tmp21 + tmp23
tmp25 = tmp13 - tmp19
tmp26 = tl_math.exp(tmp25)
tmp27 = tmp24 + tmp26
tmp28 = tmp18 - tmp19
tmp29 = tl_math.exp(tmp28)
tmp30 = tmp27 + tmp29
tl.store(out_ptr0 + x2, tmp19, xmask)
tl.store(out_ptr1 + x2, tmp30, xmask)
@triton.jit
def triton_poi_fused__softmax_add_div_2(in_out_ptr0, in_ptr0, in_ptr1,
in_ptr2, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x4 = xindex % 64
x5 = xindex // 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp3 = tl.load(in_ptr0 + x4, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + x5, xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr2 + x5, xmask, eviction_policy='evict_last')
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 - tmp5
tmp7 = tl_math.exp(tmp6)
tmp9 = tmp7 / tmp8
tl.store(in_out_ptr0 + x3, tmp9, xmask)
@triton.jit
def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
del primals_4
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf2)
del primals_6
buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(16, 4)](buf0, primals_2, buf3, 16, 4,
XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1)
del primals_2
buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0)
del buf0
triton_poi_fused_clone_0[grid(16, 4)](buf1, primals_5, buf4, 16, 4,
XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1)
del primals_5
buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0),
0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5)
buf6 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 64), 0)
del buf1
buf7 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
triton_poi_fused__softmax_add_div_1[grid(64)](buf5, primals_8, buf6,
buf7, 64, XBLOCK=64, num_warps=1, num_stages=1)
buf8 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf5
triton_poi_fused__softmax_add_div_2[grid(256)](buf8, primals_8,
buf6, buf7, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_8
buf9 = reinterpret_tensor(buf7, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf7
triton_poi_fused_clone_0[grid(16, 4)](buf2, primals_7, buf9, 16, 4,
XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1)
del primals_7
buf10 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0)
del buf2
extern_kernels.bmm(reinterpret_tensor(buf8, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf9, (16, 4, 1), (4, 1, 0), 0), out=buf10)
buf11 = reinterpret_tensor(buf6, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf6
triton_poi_fused_clone_3[grid(16, 4)](buf10, buf11, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
del buf10
return reinterpret_tensor(buf11, (4, 4, 4), (16, 4, 1), 0
), buf8, reinterpret_tensor(primals_3, (16, 4), (4, 1), 0
), buf8, reinterpret_tensor(buf9, (16, 1, 4), (4, 1, 1), 0
), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0
), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0)
class BertSelfAttentionNew(nn.Module):
def __init__(self, config):
super(BertSelfAttentionNew, self).__init__()
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
'The hidden size (%d) is not a multiple of the number of attention heads (%d)'
% (config.hidden_size, config.num_attention_heads))
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.
num_attention_heads)
self.all_head_size = (self.num_attention_heads * self.
attention_head_size)
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.
attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, input_0, input_1):
primals_1 = self.query.weight
primals_2 = self.query.bias
primals_4 = self.key.weight
primals_5 = self.key.bias
primals_6 = self.value.weight
primals_7 = self.value.bias
primals_3 = input_0
primals_8 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8])
return output[0]
| Georgetown-IR-Lab/OpenNIR | BertSelfAttention | false | 15,606 | [
"MIT"
]
| 140 | 7d93e8643fe311e3e9c7a0678efe9775fd80485e | https://github.com/Georgetown-IR-Lab/OpenNIR/tree/7d93e8643fe311e3e9c7a0678efe9775fd80485e |
EncoderLayer | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/dk/cdk4odz276xorciau5ehgl7f3s2mgkf3hrye6xep6kzubczdeqqy.py
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# matmul => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/2o/c2o2llmyrykuiqz2vmequib33h6nytps3whqgce22o2g5scibly5.py
# Topologically Sorted Source Nodes: [eq], Original ATen: [aten.eq]
# Source node to ATen node mapping:
# eq => eq
# Graph fragment:
# %eq : [num_users=2] = call_function[target=torch.ops.aten.eq.Scalar](args = (%primals_8, 0), kwargs = {})
triton_poi_fused_eq_1 = async_compile.triton('triton_poi_fused_eq_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_eq_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_eq_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.0
tmp2 = tmp0 == tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/o5/co573jghpsgwii3wnb7y3w22lxjiunotw6vddbx7av2np6rah5jb.py
# Topologically Sorted Source Nodes: [score, score_1, score_2], Original ATen: [aten.div, aten.masked_fill, aten._softmax]
# Source node to ATen node mapping:
# score => div
# score_1 => full_default, where
# score_2 => amax, exp, sub, sum_1
# Graph fragment:
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_11, 1.0), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -9.999999960041972e-13), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default, %div), kwargs = {})
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
triton_poi_fused__softmax_div_masked_fill_2 = async_compile.triton('triton_poi_fused__softmax_div_masked_fill_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*i1', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_div_masked_fill_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_div_masked_fill_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last').to(tl.int1)
tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1)
tmp7 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1)
tmp12 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1)
tmp17 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = 1.0
tmp3 = tmp1 * tmp2
tmp4 = -9.999999960041972e-13
tmp5 = tl.where(tmp0, tmp4, tmp3)
tmp8 = tmp7 * tmp2
tmp9 = tl.where(tmp6, tmp4, tmp8)
tmp10 = triton_helpers.maximum(tmp5, tmp9)
tmp13 = tmp12 * tmp2
tmp14 = tl.where(tmp11, tmp4, tmp13)
tmp15 = triton_helpers.maximum(tmp10, tmp14)
tmp18 = tmp17 * tmp2
tmp19 = tl.where(tmp16, tmp4, tmp18)
tmp20 = triton_helpers.maximum(tmp15, tmp19)
tmp21 = tmp5 - tmp20
tmp22 = tl_math.exp(tmp21)
tmp23 = tmp9 - tmp20
tmp24 = tl_math.exp(tmp23)
tmp25 = tmp22 + tmp24
tmp26 = tmp14 - tmp20
tmp27 = tl_math.exp(tmp26)
tmp28 = tmp25 + tmp27
tmp29 = tmp19 - tmp20
tmp30 = tl_math.exp(tmp29)
tmp31 = tmp28 + tmp30
tl.store(out_ptr0 + (x0), tmp20, xmask)
tl.store(out_ptr1 + (x0), tmp31, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/2x/c2xsgcwo27vv7slg7wvwk3fzjkzvdewl467nc5kfhpke7xsqdxm2.py
# Topologically Sorted Source Nodes: [score, score_1, score_2], Original ATen: [aten.div, aten.masked_fill, aten._softmax]
# Source node to ATen node mapping:
# score => div
# score_1 => full_default, where
# score_2 => amax, div_1, exp, sub
# Graph fragment:
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_11, 1.0), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -9.999999960041972e-13), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default, %div), kwargs = {})
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_div_masked_fill_3 = async_compile.triton('triton_poi_fused__softmax_div_masked_fill_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_div_masked_fill_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_div_masked_fill_3(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask).to(tl.int1)
tmp1 = tl.load(in_out_ptr0 + (x2), xmask)
tmp6 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp2 = 1.0
tmp3 = tmp1 * tmp2
tmp4 = -9.999999960041972e-13
tmp5 = tl.where(tmp0, tmp4, tmp3)
tmp7 = tmp5 - tmp6
tmp8 = tl_math.exp(tmp7)
tmp10 = tmp8 / tmp9
tl.store(in_out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/6t/c6t5a5ere3lqjiu7zh3uu4oxmpdoujdaqqmeunxqapgzo4m74uav.py
# Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# contiguous => clone_3
# Graph fragment:
# %clone_3 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/fg/cfg62xnfd2na47n3hctdzlpfcvczlkflaohphcxjlwyfhlbc4s2g.py
# Topologically Sorted Source Nodes: [add, mean, std], Original ATen: [aten.add, aten.mean, aten.std]
# Source node to ATen node mapping:
# add => add
# mean => mean
# std => var
# Graph fragment:
# %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_17, %primals_1), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%add, [-1], True), kwargs = {})
# %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%add, [-1]), kwargs = {correction: 1.0, keepdim: True})
triton_poi_fused_add_mean_std_5 = async_compile.triton('triton_poi_fused_add_mean_std_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mean_std_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mean_std_5(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 + tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 + tmp12
tmp14 = tmp10 + tmp13
tmp15 = 4.0
tmp16 = tmp14 / tmp15
tmp17 = tmp2 - tmp16
tmp18 = tmp17 * tmp17
tmp19 = tmp5 - tmp16
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp22 = tmp9 - tmp16
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp25 = tmp13 - tmp16
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = 3.0
tmp29 = tmp27 / tmp28
tl.store(in_out_ptr0 + (x0), tmp29, xmask)
tl.store(out_ptr0 + (x0), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/5m/c5mcoxxppgtes6dabd6co4mvrvhiorizcnjyngtaf36ux55myzdu.py
# Topologically Sorted Source Nodes: [add, mean, std, sub, add_1, out_1, mul, out_2], Original ATen: [aten.add, aten.mean, aten.std, aten.sub, aten.div, aten.mul]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# mean => mean
# mul => mul
# out_1 => div_2
# out_2 => add_2
# std => sqrt
# sub => sub_1
# Graph fragment:
# %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_17, %primals_1), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%add, [-1], True), kwargs = {})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%var,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %mean), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sqrt, 1e-12), kwargs = {})
# %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_1, %add_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_11, %div_2), kwargs = {})
# %add_2 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %primals_12), kwargs = {})
triton_poi_fused_add_div_mean_mul_std_sub_6 = async_compile.triton('triton_poi_fused_add_div_mean_mul_std_sub_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mean_mul_std_sub_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_mean_mul_std_sub_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp2 = tl.load(in_ptr2 + (x2), xmask)
tmp4 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr4 + (x1), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 - tmp4
tmp7 = libdevice.sqrt(tmp6)
tmp8 = 1e-12
tmp9 = tmp7 + tmp8
tmp10 = tmp5 / tmp9
tmp11 = tmp0 * tmp10
tmp13 = tmp11 + tmp12
tl.store(out_ptr0 + (x2), tmp13, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/u4/cu4mvhweewrefdurxuza5qfbqlwomkc67kmxkkaurh6luaf2e2fz.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x_2 => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_19,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_7 = async_compile.triton('triton_poi_fused_relu_threshold_backward_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_7(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/nn/cnnbj7icg3u4gfdofpzdhggwowyp2etfyt3fb2uoi37ho5n4hkgk.py
# Topologically Sorted Source Nodes: [add_3], Original ATen: [aten.add]
# Source node to ATen node mapping:
# add_3 => add_3
# Graph fragment:
# %add_3 : [num_users=4] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_21, %add_2), kwargs = {})
triton_poi_fused_add_8 = async_compile.triton('triton_poi_fused_add_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_8', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_8(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x2), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ti/ctirq4b2onhni2w7bstwgwa2kxkhz6e7zchct77zg7cilsm3jgbh.py
# Topologically Sorted Source Nodes: [mean_2, std_2, sub_1, add_4, out_3, mul_1, out_4], Original ATen: [aten.mean, aten.std, aten.sub, aten.add, aten.div, aten.mul]
# Source node to ATen node mapping:
# add_4 => add_4
# mean_2 => mean_1
# mul_1 => mul_1
# out_3 => div_3
# out_4 => add_5
# std_2 => sqrt_1, var_1
# sub_1 => sub_2
# Graph fragment:
# %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%add_3, [-1], True), kwargs = {})
# %var_1 : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%add_3, [-1]), kwargs = {correction: 1.0, keepdim: True})
# %sqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%var_1,), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_3, %mean_1), kwargs = {})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sqrt_1, 1e-12), kwargs = {})
# %div_3 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_2, %add_4), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_17, %div_3), kwargs = {})
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_18), kwargs = {})
triton_poi_fused_add_div_mean_mul_std_sub_9 = async_compile.triton('triton_poi_fused_add_div_mean_mul_std_sub_9', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mean_mul_std_sub_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_mean_mul_std_sub_9(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp2 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp30 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp8 = tmp6 + tmp7
tmp9 = 4.0
tmp10 = tmp8 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp2 - tmp10
tmp13 = tmp12 * tmp12
tmp14 = tmp3 - tmp10
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp10
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp7 - tmp10
tmp21 = tmp20 * tmp20
tmp22 = tmp19 + tmp21
tmp23 = 3.0
tmp24 = tmp22 / tmp23
tmp25 = libdevice.sqrt(tmp24)
tmp26 = 1e-12
tmp27 = tmp25 + tmp26
tmp28 = tmp11 / tmp27
tmp29 = tmp0 * tmp28
tmp31 = tmp29 + tmp30
tl.store(out_ptr0 + (x2), tmp31, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_9, (4, 4), (4, 1))
assert_size_stride(primals_10, (4, ), (1, ))
assert_size_stride(primals_11, (4, ), (1, ))
assert_size_stride(primals_12, (4, ), (1, ))
assert_size_stride(primals_13, (4, 4), (4, 1))
assert_size_stride(primals_14, (4, ), (1, ))
assert_size_stride(primals_15, (4, 4), (4, 1))
assert_size_stride(primals_16, (4, ), (1, ))
assert_size_stride(primals_17, (4, ), (1, ))
assert_size_stride(primals_18, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
del primals_2
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
del primals_4
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf2)
del primals_6
buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(buf0, primals_3, buf3, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_3
buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone]
triton_poi_fused_clone_0.run(buf1, primals_5, buf4, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_5
buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [eq], Original ATen: [aten.eq]
triton_poi_fused_eq_1.run(primals_8, buf6, 256, grid=grid(256), stream=stream0)
del primals_8
buf7 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 64), 0); del buf1 # reuse
buf8 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
# Topologically Sorted Source Nodes: [score, score_1, score_2], Original ATen: [aten.div, aten.masked_fill, aten._softmax]
triton_poi_fused__softmax_div_masked_fill_2.run(buf6, buf5, buf7, buf8, 64, grid=grid(64), stream=stream0)
buf9 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse
# Topologically Sorted Source Nodes: [score, score_1, score_2], Original ATen: [aten.div, aten.masked_fill, aten._softmax]
triton_poi_fused__softmax_div_masked_fill_3.run(buf9, buf6, buf7, buf8, 256, grid=grid(256), stream=stream0)
buf10 = reinterpret_tensor(buf8, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf8 # reuse
# Topologically Sorted Source Nodes: [v_1], Original ATen: [aten.clone]
triton_poi_fused_clone_0.run(buf2, primals_7, buf10, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_7
buf11 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [v_1], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf9, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf10, (16, 4, 1), (4, 1, 0), 0), out=buf11)
buf12 = reinterpret_tensor(buf7, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf7 # reuse
# Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone]
triton_poi_fused_clone_4.run(buf11, buf12, 16, 4, grid=grid(16, 4), stream=stream0)
buf13 = reinterpret_tensor(buf11, (16, 4), (4, 1), 0); del buf11 # reuse
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_10, reinterpret_tensor(buf12, (16, 4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf13)
del primals_10
buf14 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
buf15 = buf14; del buf14 # reuse
buf16 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
# Topologically Sorted Source Nodes: [add, mean, std], Original ATen: [aten.add, aten.mean, aten.std]
triton_poi_fused_add_mean_std_5.run(buf15, buf13, primals_1, buf16, 16, grid=grid(16), stream=stream0)
buf17 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, mean, std, sub, add_1, out_1, mul, out_2], Original ATen: [aten.add, aten.mean, aten.std, aten.sub, aten.div, aten.mul]
triton_poi_fused_add_div_mean_mul_std_sub_6.run(primals_11, buf13, primals_1, buf16, buf15, primals_12, buf17, 64, grid=grid(64), stream=stream0)
del buf15
del buf16
del primals_12
buf18 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf17, (16, 4), (4, 1), 0), reinterpret_tensor(primals_13, (4, 4), (1, 4), 0), out=buf18)
buf19 = reinterpret_tensor(buf18, (4, 4, 4), (16, 4, 1), 0); del buf18 # reuse
buf23 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_7.run(buf19, primals_14, buf23, 64, grid=grid(64), stream=stream0)
del primals_14
buf20 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf19, (16, 4), (4, 1), 0), reinterpret_tensor(primals_15, (4, 4), (1, 4), 0), out=buf20)
buf21 = reinterpret_tensor(buf20, (4, 4, 4), (16, 4, 1), 0); del buf20 # reuse
# Topologically Sorted Source Nodes: [add_3], Original ATen: [aten.add]
triton_poi_fused_add_8.run(buf21, primals_16, buf17, 64, grid=grid(64), stream=stream0)
del primals_16
buf22 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mean_2, std_2, sub_1, add_4, out_3, mul_1, out_4], Original ATen: [aten.mean, aten.std, aten.sub, aten.add, aten.div, aten.mul]
triton_poi_fused_add_div_mean_mul_std_sub_9.run(primals_17, buf21, primals_18, buf22, 64, grid=grid(64), stream=stream0)
del primals_18
return (buf22, primals_1, primals_11, primals_17, buf6, buf9, reinterpret_tensor(buf12, (16, 4), (4, 1), 0), buf13, reinterpret_tensor(buf17, (16, 4), (4, 1), 0), reinterpret_tensor(buf19, (16, 4), (4, 1), 0), buf21, primals_15, buf23, primals_13, primals_9, reinterpret_tensor(buf10, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_17 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_18 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
from torch import nn
class LayerNorm(nn.Module):
def __init__(self, d_model, eps=1e-12):
super(LayerNorm, self).__init__()
self.gamma = nn.Parameter(torch.ones(d_model))
self.beta = nn.Parameter(torch.zeros(d_model))
self.eps = eps
def forward(self, x):
mean = x.mean(-1, keepdim=True)
std = x.std(-1, keepdim=True)
out = (x - mean) / (std + self.eps)
out = self.gamma * out + self.beta
return out
class ScaleDotProductAttention(nn.Module):
"""
compute scale dot product attention
Query : given sentence that we focused on (decoder)
Key : every sentence to check relationship with Qeury(encoder)
Value : every sentence same with Key (encoder)
"""
def __init__(self):
super(ScaleDotProductAttention, self).__init__()
self.softmax = nn.Softmax(dim=-1)
def forward(self, q, k, v, mask=None, e=1e-12):
_batch_size, _head, _length, d_tensor = k.size()
k_t = k.transpose(2, 3)
score = q @ k_t / math.sqrt(d_tensor)
if mask is not None:
score = score.masked_fill(mask == 0, -e)
score = self.softmax(score)
v = score @ v
return v, score
class MultiHeadAttention(nn.Module):
def __init__(self, d_model, n_head):
super(MultiHeadAttention, self).__init__()
self.n_head = n_head
self.attention = ScaleDotProductAttention()
self.w_q = nn.Linear(d_model, d_model)
self.w_k = nn.Linear(d_model, d_model)
self.w_v = nn.Linear(d_model, d_model)
self.w_concat = nn.Linear(d_model, d_model)
def forward(self, q, k, v, mask=None):
q, k, v = self.w_q(q), self.w_k(k), self.w_v(v)
q, k, v = self.split(q), self.split(k), self.split(v)
out, _attention = self.attention(q, k, v, mask=mask)
out = self.concat(out)
out = self.w_concat(out)
return out
def split(self, tensor):
"""
split tensor by number of head
:param tensor: [batch_size, length, d_model]
:return: [batch_size, head, length, d_tensor]
"""
batch_size, length, d_model = tensor.size()
d_tensor = d_model // self.n_head
tensor = tensor.view(batch_size, length, self.n_head, d_tensor
).transpose(1, 2)
return tensor
def concat(self, tensor):
"""
inverse function of self.split(tensor : torch.Tensor)
:param tensor: [batch_size, head, length, d_tensor]
:return: [batch_size, length, d_model]
"""
batch_size, head, length, d_tensor = tensor.size()
d_model = head * d_tensor
tensor = tensor.transpose(1, 2).contiguous().view(batch_size,
length, d_model)
return tensor
class PositionwiseFeedForward(nn.Module):
def __init__(self, d_model, hidden, drop_prob=0.1):
super(PositionwiseFeedForward, self).__init__()
self.linear1 = nn.Linear(d_model, hidden)
self.linear2 = nn.Linear(hidden, d_model)
self.relu = nn.ReLU()
self.dropout = nn.Dropout(p=drop_prob)
def forward(self, x):
x = self.linear1(x)
x = self.relu(x)
x = self.dropout(x)
x = self.linear2(x)
return x
class EncoderLayer(nn.Module):
def __init__(self, d_model, ffn_hidden, n_head, drop_prob):
super(EncoderLayer, self).__init__()
self.attention = MultiHeadAttention(d_model=d_model, n_head=n_head)
self.norm1 = LayerNorm(d_model=d_model)
self.dropout1 = nn.Dropout(p=drop_prob)
self.ffn = PositionwiseFeedForward(d_model=d_model, hidden=
ffn_hidden, drop_prob=drop_prob)
self.norm2 = LayerNorm(d_model=d_model)
self.dropout2 = nn.Dropout(p=drop_prob)
def forward(self, x, s_mask):
_x = x
x = self.attention(q=x, k=x, v=x, mask=s_mask)
x = self.norm1(x + _x)
x = self.dropout1(x)
_x = x
x = self.ffn(x)
x = self.norm2(x + _x)
x = self.dropout2(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'d_model': 4, 'ffn_hidden': 4, 'n_head': 4, 'drop_prob': 0.5}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import math
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask)
@triton.jit
def triton_poi_fused_eq_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.0
tmp2 = tmp0 == tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused__softmax_div_masked_fill_2(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last').to(tl
.int1)
tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last'
).to(tl.int1)
tmp7 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
).to(tl.int1)
tmp12 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp16 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
).to(tl.int1)
tmp17 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp2 = 1.0
tmp3 = tmp1 * tmp2
tmp4 = -9.999999960041972e-13
tmp5 = tl.where(tmp0, tmp4, tmp3)
tmp8 = tmp7 * tmp2
tmp9 = tl.where(tmp6, tmp4, tmp8)
tmp10 = triton_helpers.maximum(tmp5, tmp9)
tmp13 = tmp12 * tmp2
tmp14 = tl.where(tmp11, tmp4, tmp13)
tmp15 = triton_helpers.maximum(tmp10, tmp14)
tmp18 = tmp17 * tmp2
tmp19 = tl.where(tmp16, tmp4, tmp18)
tmp20 = triton_helpers.maximum(tmp15, tmp19)
tmp21 = tmp5 - tmp20
tmp22 = tl_math.exp(tmp21)
tmp23 = tmp9 - tmp20
tmp24 = tl_math.exp(tmp23)
tmp25 = tmp22 + tmp24
tmp26 = tmp14 - tmp20
tmp27 = tl_math.exp(tmp26)
tmp28 = tmp25 + tmp27
tmp29 = tmp19 - tmp20
tmp30 = tl_math.exp(tmp29)
tmp31 = tmp28 + tmp30
tl.store(out_ptr0 + x0, tmp20, xmask)
tl.store(out_ptr1 + x0, tmp31, xmask)
@triton.jit
def triton_poi_fused__softmax_div_masked_fill_3(in_out_ptr0, in_ptr0,
in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask).to(tl.int1)
tmp1 = tl.load(in_out_ptr0 + x2, xmask)
tmp6 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp2 = 1.0
tmp3 = tmp1 * tmp2
tmp4 = -9.999999960041972e-13
tmp5 = tl.where(tmp0, tmp4, tmp3)
tmp7 = tmp5 - tmp6
tmp8 = tl_math.exp(tmp7)
tmp10 = tmp8 / tmp9
tl.store(in_out_ptr0 + x2, tmp10, xmask)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_add_mean_std_5(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 + tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 + tmp12
tmp14 = tmp10 + tmp13
tmp15 = 4.0
tmp16 = tmp14 / tmp15
tmp17 = tmp2 - tmp16
tmp18 = tmp17 * tmp17
tmp19 = tmp5 - tmp16
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp22 = tmp9 - tmp16
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp25 = tmp13 - tmp16
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = 3.0
tmp29 = tmp27 / tmp28
tl.store(in_out_ptr0 + x0, tmp29, xmask)
tl.store(out_ptr0 + x0, tmp16, xmask)
@triton.jit
def triton_poi_fused_add_div_mean_mul_std_sub_6(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp2 = tl.load(in_ptr2 + x2, xmask)
tmp4 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr4 + x1, xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 - tmp4
tmp7 = libdevice.sqrt(tmp6)
tmp8 = 1e-12
tmp9 = tmp7 + tmp8
tmp10 = tmp5 / tmp9
tmp11 = tmp0 * tmp10
tmp13 = tmp11 + tmp12
tl.store(out_ptr0 + x2, tmp13, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_7(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused_add_8(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK:
tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + x2, xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_add_div_mean_mul_std_sub_9(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp2 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp30 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp8 = tmp6 + tmp7
tmp9 = 4.0
tmp10 = tmp8 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp2 - tmp10
tmp13 = tmp12 * tmp12
tmp14 = tmp3 - tmp10
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp10
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp7 - tmp10
tmp21 = tmp20 * tmp20
tmp22 = tmp19 + tmp21
tmp23 = 3.0
tmp24 = tmp22 / tmp23
tmp25 = libdevice.sqrt(tmp24)
tmp26 = 1e-12
tmp27 = tmp25 + tmp26
tmp28 = tmp11 / tmp27
tmp29 = tmp0 * tmp28
tmp31 = tmp29 + tmp30
tl.store(out_ptr0 + x2, tmp31, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17, primals_18
) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_9, (4, 4), (4, 1))
assert_size_stride(primals_10, (4,), (1,))
assert_size_stride(primals_11, (4,), (1,))
assert_size_stride(primals_12, (4,), (1,))
assert_size_stride(primals_13, (4, 4), (4, 1))
assert_size_stride(primals_14, (4,), (1,))
assert_size_stride(primals_15, (4, 4), (4, 1))
assert_size_stride(primals_16, (4,), (1,))
assert_size_stride(primals_17, (4,), (1,))
assert_size_stride(primals_18, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
del primals_2
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
del primals_4
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf2)
del primals_6
buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(16, 4)](buf0, primals_3, buf3, 16, 4,
XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1)
del primals_3
buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0)
del buf0
triton_poi_fused_clone_0[grid(16, 4)](buf1, primals_5, buf4, 16, 4,
XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1)
del primals_5
buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0),
0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_eq_1[grid(256)](primals_8, buf6, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_8
buf7 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 64), 0)
del buf1
buf8 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
triton_poi_fused__softmax_div_masked_fill_2[grid(64)](buf6, buf5,
buf7, buf8, 64, XBLOCK=64, num_warps=1, num_stages=1)
buf9 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf5
triton_poi_fused__softmax_div_masked_fill_3[grid(256)](buf9, buf6,
buf7, buf8, 256, XBLOCK=256, num_warps=4, num_stages=1)
buf10 = reinterpret_tensor(buf8, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf8
triton_poi_fused_clone_0[grid(16, 4)](buf2, primals_7, buf10, 16, 4,
XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1)
del primals_7
buf11 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0)
del buf2
extern_kernels.bmm(reinterpret_tensor(buf9, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf10, (16, 4, 1), (4, 1, 0), 0), out=buf11)
buf12 = reinterpret_tensor(buf7, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf7
triton_poi_fused_clone_4[grid(16, 4)](buf11, buf12, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
buf13 = reinterpret_tensor(buf11, (16, 4), (4, 1), 0)
del buf11
extern_kernels.addmm(primals_10, reinterpret_tensor(buf12, (16, 4),
(4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf13)
del primals_10
buf14 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
buf15 = buf14
del buf14
buf16 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
triton_poi_fused_add_mean_std_5[grid(16)](buf15, buf13, primals_1,
buf16, 16, XBLOCK=16, num_warps=1, num_stages=1)
buf17 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_add_div_mean_mul_std_sub_6[grid(64)](primals_11,
buf13, primals_1, buf16, buf15, primals_12, buf17, 64, XBLOCK=
64, num_warps=1, num_stages=1)
del buf15
del buf16
del primals_12
buf18 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf17, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_13, (4, 4), (1, 4), 0), out=buf18)
buf19 = reinterpret_tensor(buf18, (4, 4, 4), (16, 4, 1), 0)
del buf18
buf23 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_7[grid(64)](buf19,
primals_14, buf23, 64, XBLOCK=64, num_warps=1, num_stages=1)
del primals_14
buf20 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf19, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_15, (4, 4), (1, 4), 0), out=buf20)
buf21 = reinterpret_tensor(buf20, (4, 4, 4), (16, 4, 1), 0)
del buf20
triton_poi_fused_add_8[grid(64)](buf21, primals_16, buf17, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del primals_16
buf22 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_add_div_mean_mul_std_sub_9[grid(64)](primals_17,
buf21, primals_18, buf22, 64, XBLOCK=64, num_warps=1, num_stages=1)
del primals_18
return (buf22, primals_1, primals_11, primals_17, buf6, buf9,
reinterpret_tensor(buf12, (16, 4), (4, 1), 0), buf13,
reinterpret_tensor(buf17, (16, 4), (4, 1), 0), reinterpret_tensor(
buf19, (16, 4), (4, 1), 0), buf21, primals_15, buf23, primals_13,
primals_9, reinterpret_tensor(buf10, (16, 1, 4), (4, 1, 1), 0),
reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0),
reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0))
class LayerNorm(nn.Module):
def __init__(self, d_model, eps=1e-12):
super(LayerNorm, self).__init__()
self.gamma = nn.Parameter(torch.ones(d_model))
self.beta = nn.Parameter(torch.zeros(d_model))
self.eps = eps
def forward(self, x):
mean = x.mean(-1, keepdim=True)
std = x.std(-1, keepdim=True)
out = (x - mean) / (std + self.eps)
out = self.gamma * out + self.beta
return out
class ScaleDotProductAttention(nn.Module):
"""
compute scale dot product attention
Query : given sentence that we focused on (decoder)
Key : every sentence to check relationship with Qeury(encoder)
Value : every sentence same with Key (encoder)
"""
def __init__(self):
super(ScaleDotProductAttention, self).__init__()
self.softmax = nn.Softmax(dim=-1)
def forward(self, q, k, v, mask=None, e=1e-12):
_batch_size, _head, _length, d_tensor = k.size()
k_t = k.transpose(2, 3)
score = q @ k_t / math.sqrt(d_tensor)
if mask is not None:
score = score.masked_fill(mask == 0, -e)
score = self.softmax(score)
v = score @ v
return v, score
class MultiHeadAttention(nn.Module):
def __init__(self, d_model, n_head):
super(MultiHeadAttention, self).__init__()
self.n_head = n_head
self.attention = ScaleDotProductAttention()
self.w_q = nn.Linear(d_model, d_model)
self.w_k = nn.Linear(d_model, d_model)
self.w_v = nn.Linear(d_model, d_model)
self.w_concat = nn.Linear(d_model, d_model)
def forward(self, q, k, v, mask=None):
q, k, v = self.w_q(q), self.w_k(k), self.w_v(v)
q, k, v = self.split(q), self.split(k), self.split(v)
out, _attention = self.attention(q, k, v, mask=mask)
out = self.concat(out)
out = self.w_concat(out)
return out
def split(self, tensor):
"""
split tensor by number of head
:param tensor: [batch_size, length, d_model]
:return: [batch_size, head, length, d_tensor]
"""
batch_size, length, d_model = tensor.size()
d_tensor = d_model // self.n_head
tensor = tensor.view(batch_size, length, self.n_head, d_tensor
).transpose(1, 2)
return tensor
def concat(self, tensor):
"""
inverse function of self.split(tensor : torch.Tensor)
:param tensor: [batch_size, head, length, d_tensor]
:return: [batch_size, length, d_model]
"""
batch_size, head, length, d_tensor = tensor.size()
d_model = head * d_tensor
tensor = tensor.transpose(1, 2).contiguous().view(batch_size,
length, d_model)
return tensor
class PositionwiseFeedForward(nn.Module):
def __init__(self, d_model, hidden, drop_prob=0.1):
super(PositionwiseFeedForward, self).__init__()
self.linear1 = nn.Linear(d_model, hidden)
self.linear2 = nn.Linear(hidden, d_model)
self.relu = nn.ReLU()
self.dropout = nn.Dropout(p=drop_prob)
def forward(self, x):
x = self.linear1(x)
x = self.relu(x)
x = self.dropout(x)
x = self.linear2(x)
return x
class EncoderLayerNew(nn.Module):
def __init__(self, d_model, ffn_hidden, n_head, drop_prob):
super(EncoderLayerNew, self).__init__()
self.attention = MultiHeadAttention(d_model=d_model, n_head=n_head)
self.norm1 = LayerNorm(d_model=d_model)
self.dropout1 = nn.Dropout(p=drop_prob)
self.ffn = PositionwiseFeedForward(d_model=d_model, hidden=
ffn_hidden, drop_prob=drop_prob)
self.norm2 = LayerNorm(d_model=d_model)
self.dropout2 = nn.Dropout(p=drop_prob)
def forward(self, input_0, input_1):
primals_2 = self.attention.w_q.weight
primals_3 = self.attention.w_q.bias
primals_4 = self.attention.w_k.weight
primals_5 = self.attention.w_k.bias
primals_6 = self.attention.w_v.weight
primals_7 = self.attention.w_v.bias
primals_9 = self.attention.w_concat.weight
primals_10 = self.attention.w_concat.bias
primals_11 = self.norm1.gamma
primals_12 = self.norm1.beta
primals_13 = self.ffn.linear1.weight
primals_14 = self.ffn.linear1.bias
primals_15 = self.ffn.linear2.weight
primals_16 = self.ffn.linear2.bias
primals_17 = self.norm2.gamma
primals_18 = self.norm2.beta
primals_1 = input_0
primals_8 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17, primals_18])
return output[0]
| hyunwoongko/transformer | EncoderLayer | false | 15,607 | [
"Apache-2.0"
]
| 233 | 8f7aaa19d37b088c156db0512868127ba9bf1a0f | https://github.com/hyunwoongko/transformer/tree/8f7aaa19d37b088c156db0512868127ba9bf1a0f |
LogTaylorSoftmaxV1 | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/r6/cr6ocvxfjxow5s4kin6vqqavmh2lni5a6c625ncnv7uuaieyvbux.py
# Topologically Sorted Source Nodes: [fn, truediv, fn_1, pow_2, truediv_1, fn_2, sum_1, out, out_1], Original ATen: [aten.ones_like, aten.div, aten.add, aten.pow, aten.sum, aten.log]
# Source node to ATen node mapping:
# fn => full_default
# fn_1 => add
# fn_2 => add_1
# out => div_2
# out_1 => log
# pow_2 => pow_2
# sum_1 => sum_1
# truediv => div
# truediv_1 => div_1
# Graph fragment:
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 1), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, 1.0), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%full_default, %div), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg0_1, 2), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%pow_2, 2.0), kwargs = {})
# %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %div_1), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%add_1, [1], True), kwargs = {})
# %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_1, %sum_1), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%div_2,), kwargs = {})
triton_poi_fused_add_div_log_ones_like_pow_sum_0 = async_compile.triton('triton_poi_fused_add_div_log_ones_like_pow_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_log_ones_like_pow_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_log_ones_like_pow_sum_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp8 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp21 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp28 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp3 = tmp1 + tmp2
tmp4 = tmp0 * tmp0
tmp5 = 0.5
tmp6 = tmp4 * tmp5
tmp7 = tmp3 + tmp6
tmp9 = tmp8 * tmp1
tmp10 = tmp1 + tmp9
tmp11 = tmp8 * tmp8
tmp12 = tmp11 * tmp5
tmp13 = tmp10 + tmp12
tmp15 = tmp14 * tmp1
tmp16 = tmp1 + tmp15
tmp17 = tmp14 * tmp14
tmp18 = tmp17 * tmp5
tmp19 = tmp16 + tmp18
tmp20 = tmp13 + tmp19
tmp22 = tmp21 * tmp1
tmp23 = tmp1 + tmp22
tmp24 = tmp21 * tmp21
tmp25 = tmp24 * tmp5
tmp26 = tmp23 + tmp25
tmp27 = tmp20 + tmp26
tmp29 = tmp28 * tmp1
tmp30 = tmp1 + tmp29
tmp31 = tmp28 * tmp28
tmp32 = tmp31 * tmp5
tmp33 = tmp30 + tmp32
tmp34 = tmp27 + tmp33
tmp35 = tmp7 / tmp34
tmp36 = tl_math.log(tmp35)
tl.store(in_out_ptr0 + (x3), tmp36, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [fn, truediv, fn_1, pow_2, truediv_1, fn_2, sum_1, out, out_1], Original ATen: [aten.ones_like, aten.div, aten.add, aten.pow, aten.sum, aten.log]
stream0 = get_raw_stream(0)
triton_poi_fused_add_div_log_ones_like_pow_sum_0.run(buf1, arg0_1, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
def taylor_softmax_v1(x, dim=1, n=4, use_log=False):
assert n % 2 == 0 and n > 0
fn = torch.ones_like(x)
denor = 1.0
for i in range(1, n + 1):
denor *= i
fn = fn + x.pow(i) / denor
out = fn / fn.sum(dim=dim, keepdims=True)
if use_log:
out = out.log()
return out
class LogTaylorSoftmaxV1(nn.Module):
def __init__(self, dim=1, n=2):
super(LogTaylorSoftmaxV1, self).__init__()
assert n % 2 == 0
self.dim = dim
self.n = n
def forward(self, x):
return taylor_softmax_v1(x, self.dim, self.n, use_log=True)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_div_log_ones_like_pow_sum_0(in_out_ptr0, in_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp8 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp14 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp21 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp28 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp3 = tmp1 + tmp2
tmp4 = tmp0 * tmp0
tmp5 = 0.5
tmp6 = tmp4 * tmp5
tmp7 = tmp3 + tmp6
tmp9 = tmp8 * tmp1
tmp10 = tmp1 + tmp9
tmp11 = tmp8 * tmp8
tmp12 = tmp11 * tmp5
tmp13 = tmp10 + tmp12
tmp15 = tmp14 * tmp1
tmp16 = tmp1 + tmp15
tmp17 = tmp14 * tmp14
tmp18 = tmp17 * tmp5
tmp19 = tmp16 + tmp18
tmp20 = tmp13 + tmp19
tmp22 = tmp21 * tmp1
tmp23 = tmp1 + tmp22
tmp24 = tmp21 * tmp21
tmp25 = tmp24 * tmp5
tmp26 = tmp23 + tmp25
tmp27 = tmp20 + tmp26
tmp29 = tmp28 * tmp1
tmp30 = tmp1 + tmp29
tmp31 = tmp28 * tmp28
tmp32 = tmp31 * tmp5
tmp33 = tmp30 + tmp32
tmp34 = tmp27 + tmp33
tmp35 = tmp7 / tmp34
tmp36 = tl_math.log(tmp35)
tl.store(in_out_ptr0 + x3, tmp36, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_add_div_log_ones_like_pow_sum_0[grid(256)](buf1,
arg0_1, 256, XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
return buf1,
def taylor_softmax_v1(x, dim=1, n=4, use_log=False):
assert n % 2 == 0 and n > 0
fn = torch.ones_like(x)
denor = 1.0
for i in range(1, n + 1):
denor *= i
fn = fn + x.pow(i) / denor
out = fn / fn.sum(dim=dim, keepdims=True)
if use_log:
out = out.log()
return out
class LogTaylorSoftmaxV1New(nn.Module):
def __init__(self, dim=1, n=2):
super(LogTaylorSoftmaxV1New, self).__init__()
assert n % 2 == 0
self.dim = dim
self.n = n
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| ishine/DeepKE | LogTaylorSoftmaxV1 | false | 15,608 | [
"MIT"
]
| 676 | 75bcfb3e045bb2197ac5c0847693c2a647f76576 | https://github.com/ishine/DeepKE/tree/75bcfb3e045bb2197ac5c0847693c2a647f76576 |
DecoderLayer | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/dk/cdk4odz276xorciau5ehgl7f3s2mgkf3hrye6xep6kzubczdeqqy.py
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# matmul => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/2o/c2o2llmyrykuiqz2vmequib33h6nytps3whqgce22o2g5scibly5.py
# Topologically Sorted Source Nodes: [eq], Original ATen: [aten.eq]
# Source node to ATen node mapping:
# eq => eq
# Graph fragment:
# %eq : [num_users=2] = call_function[target=torch.ops.aten.eq.Scalar](args = (%primals_8, 0), kwargs = {})
triton_poi_fused_eq_1 = async_compile.triton('triton_poi_fused_eq_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_eq_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_eq_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.0
tmp2 = tmp0 == tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/o5/co573jghpsgwii3wnb7y3w22lxjiunotw6vddbx7av2np6rah5jb.py
# Topologically Sorted Source Nodes: [score, score_1, score_2], Original ATen: [aten.div, aten.masked_fill, aten._softmax]
# Source node to ATen node mapping:
# score => div
# score_1 => full_default, where
# score_2 => amax, exp, sub, sum_1
# Graph fragment:
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_11, 1.0), kwargs = {})
# %full_default : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([], -9.999999960041972e-13), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default, %div), kwargs = {})
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
triton_poi_fused__softmax_div_masked_fill_2 = async_compile.triton('triton_poi_fused__softmax_div_masked_fill_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*i1', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_div_masked_fill_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_div_masked_fill_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last').to(tl.int1)
tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1)
tmp7 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1)
tmp12 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1)
tmp17 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = 1.0
tmp3 = tmp1 * tmp2
tmp4 = -9.999999960041972e-13
tmp5 = tl.where(tmp0, tmp4, tmp3)
tmp8 = tmp7 * tmp2
tmp9 = tl.where(tmp6, tmp4, tmp8)
tmp10 = triton_helpers.maximum(tmp5, tmp9)
tmp13 = tmp12 * tmp2
tmp14 = tl.where(tmp11, tmp4, tmp13)
tmp15 = triton_helpers.maximum(tmp10, tmp14)
tmp18 = tmp17 * tmp2
tmp19 = tl.where(tmp16, tmp4, tmp18)
tmp20 = triton_helpers.maximum(tmp15, tmp19)
tmp21 = tmp5 - tmp20
tmp22 = tl_math.exp(tmp21)
tmp23 = tmp9 - tmp20
tmp24 = tl_math.exp(tmp23)
tmp25 = tmp22 + tmp24
tmp26 = tmp14 - tmp20
tmp27 = tl_math.exp(tmp26)
tmp28 = tmp25 + tmp27
tmp29 = tmp19 - tmp20
tmp30 = tl_math.exp(tmp29)
tmp31 = tmp28 + tmp30
tl.store(out_ptr0 + (x0), tmp20, xmask)
tl.store(out_ptr1 + (x0), tmp31, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/2x/c2xsgcwo27vv7slg7wvwk3fzjkzvdewl467nc5kfhpke7xsqdxm2.py
# Topologically Sorted Source Nodes: [score, score_1, score_2], Original ATen: [aten.div, aten.masked_fill, aten._softmax]
# Source node to ATen node mapping:
# score => div
# score_1 => full_default, where
# score_2 => amax, div_1, exp, sub
# Graph fragment:
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_11, 1.0), kwargs = {})
# %full_default : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([], -9.999999960041972e-13), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default, %div), kwargs = {})
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_div_masked_fill_3 = async_compile.triton('triton_poi_fused__softmax_div_masked_fill_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_div_masked_fill_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_div_masked_fill_3(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask).to(tl.int1)
tmp1 = tl.load(in_out_ptr0 + (x2), xmask)
tmp6 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp2 = 1.0
tmp3 = tmp1 * tmp2
tmp4 = -9.999999960041972e-13
tmp5 = tl.where(tmp0, tmp4, tmp3)
tmp7 = tmp5 - tmp6
tmp8 = tl_math.exp(tmp7)
tmp10 = tmp8 / tmp9
tl.store(in_out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/6t/c6t5a5ere3lqjiu7zh3uu4oxmpdoujdaqqmeunxqapgzo4m74uav.py
# Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# contiguous => clone_3
# Graph fragment:
# %clone_3 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/fg/cfg62xnfd2na47n3hctdzlpfcvczlkflaohphcxjlwyfhlbc4s2g.py
# Topologically Sorted Source Nodes: [add, mean, std], Original ATen: [aten.add, aten.mean, aten.std]
# Source node to ATen node mapping:
# add => add
# mean => mean
# std => var
# Graph fragment:
# %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_17, %primals_1), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%add, [-1], True), kwargs = {})
# %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%add, [-1]), kwargs = {correction: 1.0, keepdim: True})
triton_poi_fused_add_mean_std_5 = async_compile.triton('triton_poi_fused_add_mean_std_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mean_std_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mean_std_5(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 + tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 + tmp12
tmp14 = tmp10 + tmp13
tmp15 = 4.0
tmp16 = tmp14 / tmp15
tmp17 = tmp2 - tmp16
tmp18 = tmp17 * tmp17
tmp19 = tmp5 - tmp16
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp22 = tmp9 - tmp16
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp25 = tmp13 - tmp16
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = 3.0
tmp29 = tmp27 / tmp28
tl.store(in_out_ptr0 + (x0), tmp29, xmask)
tl.store(out_ptr0 + (x0), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/5m/c5mcoxxppgtes6dabd6co4mvrvhiorizcnjyngtaf36ux55myzdu.py
# Topologically Sorted Source Nodes: [add, mean, std, sub, add_1, out_1, mul, out_2], Original ATen: [aten.add, aten.mean, aten.std, aten.sub, aten.div, aten.mul]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# mean => mean
# mul => mul
# out_1 => div_2
# out_2 => add_2
# std => sqrt
# sub => sub_1
# Graph fragment:
# %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_17, %primals_1), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%add, [-1], True), kwargs = {})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%var,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %mean), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sqrt, 1e-12), kwargs = {})
# %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_1, %add_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_11, %div_2), kwargs = {})
# %add_2 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %primals_12), kwargs = {})
triton_poi_fused_add_div_mean_mul_std_sub_6 = async_compile.triton('triton_poi_fused_add_div_mean_mul_std_sub_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mean_mul_std_sub_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_mean_mul_std_sub_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp2 = tl.load(in_ptr2 + (x2), xmask)
tmp4 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr4 + (x1), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 - tmp4
tmp7 = libdevice.sqrt(tmp6)
tmp8 = 1e-12
tmp9 = tmp7 + tmp8
tmp10 = tmp5 / tmp9
tmp11 = tmp0 * tmp10
tmp13 = tmp11 + tmp12
tl.store(out_ptr0 + (x2), tmp13, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/u6/cu6cquvlwzfwu4v7r3jxylwoleoxnkfo2k23kwu7m6nmrzu4lozu.py
# Topologically Sorted Source Nodes: [add_3], Original ATen: [aten.add]
# Source node to ATen node mapping:
# add_3 => add_3
# Graph fragment:
# %add_3 : [num_users=4] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_35, %add_2), kwargs = {})
triton_poi_fused_add_7 = async_compile.triton('triton_poi_fused_add_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_7(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x2), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/62/c627jkddio2djllbdjutdzic7baked2cofgxzb22remkmnnchexe.py
# Topologically Sorted Source Nodes: [mean_2, std_2, sub_1, add_4, out_4, mul_1, out_5], Original ATen: [aten.mean, aten.std, aten.sub, aten.add, aten.div, aten.mul]
# Source node to ATen node mapping:
# add_4 => add_4
# mean_2 => mean_1
# mul_1 => mul_1
# out_4 => div_5
# out_5 => add_5
# std_2 => sqrt_1, var_1
# sub_1 => sub_3
# Graph fragment:
# %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%add_3, [-1], True), kwargs = {})
# %var_1 : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%add_3, [-1]), kwargs = {correction: 1.0, keepdim: True})
# %sqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%var_1,), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_3, %mean_1), kwargs = {})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sqrt_1, 1e-12), kwargs = {})
# %div_5 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_3, %add_4), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_23, %div_5), kwargs = {})
# %add_5 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_24), kwargs = {})
triton_poi_fused_add_div_mean_mul_std_sub_8 = async_compile.triton('triton_poi_fused_add_div_mean_mul_std_sub_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mean_mul_std_sub_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_mean_mul_std_sub_8(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp2 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp30 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp8 = tmp6 + tmp7
tmp9 = 4.0
tmp10 = tmp8 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp2 - tmp10
tmp13 = tmp12 * tmp12
tmp14 = tmp3 - tmp10
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp10
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp7 - tmp10
tmp21 = tmp20 * tmp20
tmp22 = tmp19 + tmp21
tmp23 = 3.0
tmp24 = tmp22 / tmp23
tmp25 = libdevice.sqrt(tmp24)
tmp26 = 1e-12
tmp27 = tmp25 + tmp26
tmp28 = tmp11 / tmp27
tmp29 = tmp0 * tmp28
tmp31 = tmp29 + tmp30
tl.store(out_ptr0 + (x2), tmp31, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/5s/c5sz7jq4tmcun7rcsmmfeqrom6cicyxjx2pclothphxo54ygxlxu.py
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x_3 => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_37,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_9 = async_compile.triton('triton_poi_fused_relu_threshold_backward_9', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_9', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_9(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_9, (4, 4), (4, 1))
assert_size_stride(primals_10, (4, ), (1, ))
assert_size_stride(primals_11, (4, ), (1, ))
assert_size_stride(primals_12, (4, ), (1, ))
assert_size_stride(primals_13, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_14, (4, 4), (4, 1))
assert_size_stride(primals_15, (4, ), (1, ))
assert_size_stride(primals_16, (4, 4), (4, 1))
assert_size_stride(primals_17, (4, ), (1, ))
assert_size_stride(primals_18, (4, 4), (4, 1))
assert_size_stride(primals_19, (4, ), (1, ))
assert_size_stride(primals_20, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_21, (4, 4), (4, 1))
assert_size_stride(primals_22, (4, ), (1, ))
assert_size_stride(primals_23, (4, ), (1, ))
assert_size_stride(primals_24, (4, ), (1, ))
assert_size_stride(primals_25, (4, 4), (4, 1))
assert_size_stride(primals_26, (4, ), (1, ))
assert_size_stride(primals_27, (4, 4), (4, 1))
assert_size_stride(primals_28, (4, ), (1, ))
assert_size_stride(primals_29, (4, ), (1, ))
assert_size_stride(primals_30, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
del primals_2
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
del primals_4
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf2)
del primals_6
buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(buf0, primals_3, buf3, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_3
buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone]
triton_poi_fused_clone_0.run(buf1, primals_5, buf4, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_5
buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [eq], Original ATen: [aten.eq]
triton_poi_fused_eq_1.run(primals_8, buf6, 256, grid=grid(256), stream=stream0)
del primals_8
buf7 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 64), 0); del buf1 # reuse
buf8 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
# Topologically Sorted Source Nodes: [score, score_1, score_2], Original ATen: [aten.div, aten.masked_fill, aten._softmax]
triton_poi_fused__softmax_div_masked_fill_2.run(buf6, buf5, buf7, buf8, 64, grid=grid(64), stream=stream0)
buf9 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse
# Topologically Sorted Source Nodes: [score, score_1, score_2], Original ATen: [aten.div, aten.masked_fill, aten._softmax]
triton_poi_fused__softmax_div_masked_fill_3.run(buf9, buf6, buf7, buf8, 256, grid=grid(256), stream=stream0)
buf10 = reinterpret_tensor(buf8, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf8 # reuse
# Topologically Sorted Source Nodes: [v_1], Original ATen: [aten.clone]
triton_poi_fused_clone_0.run(buf2, primals_7, buf10, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_7
buf11 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [v_1], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf9, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf10, (16, 4, 1), (4, 1, 0), 0), out=buf11)
buf12 = reinterpret_tensor(buf7, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf7 # reuse
# Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone]
triton_poi_fused_clone_4.run(buf11, buf12, 16, 4, grid=grid(16, 4), stream=stream0)
buf13 = reinterpret_tensor(buf11, (16, 4), (4, 1), 0); del buf11 # reuse
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_10, reinterpret_tensor(buf12, (16, 4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf13)
del primals_10
buf14 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
buf15 = buf14; del buf14 # reuse
buf16 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
# Topologically Sorted Source Nodes: [add, mean, std], Original ATen: [aten.add, aten.mean, aten.std]
triton_poi_fused_add_mean_std_5.run(buf15, buf13, primals_1, buf16, 16, grid=grid(16), stream=stream0)
buf17 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, mean, std, sub, add_1, out_1, mul, out_2], Original ATen: [aten.add, aten.mean, aten.std, aten.sub, aten.div, aten.mul]
triton_poi_fused_add_div_mean_mul_std_sub_6.run(primals_11, buf13, primals_1, buf16, buf15, primals_12, buf17, 64, grid=grid(64), stream=stream0)
del buf15
del buf16
del primals_12
buf18 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf17, (16, 4), (4, 1), 0), reinterpret_tensor(primals_14, (4, 4), (1, 4), 0), out=buf18)
buf19 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_13, (16, 4), (4, 1), 0), reinterpret_tensor(primals_16, (4, 4), (1, 4), 0), out=buf19)
del primals_16
buf20 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_13, (16, 4), (4, 1), 0), reinterpret_tensor(primals_18, (4, 4), (1, 4), 0), out=buf20)
del primals_18
buf21 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul_2], Original ATen: [aten.clone]
triton_poi_fused_clone_0.run(buf18, primals_15, buf21, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_15
buf22 = reinterpret_tensor(buf18, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf18 # reuse
# Topologically Sorted Source Nodes: [matmul_2], Original ATen: [aten.clone]
triton_poi_fused_clone_0.run(buf19, primals_17, buf22, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_17
buf23 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul_2], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf21, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf22, (16, 1, 4), (4, 0, 1), 0), out=buf23)
buf24 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [eq_1], Original ATen: [aten.eq]
triton_poi_fused_eq_1.run(primals_20, buf24, 256, grid=grid(256), stream=stream0)
del primals_20
buf25 = reinterpret_tensor(buf19, (4, 4, 4, 1), (16, 4, 1, 64), 0); del buf19 # reuse
buf26 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
# Topologically Sorted Source Nodes: [score_1, score_3, score_4, score_5], Original ATen: [aten.masked_fill, aten.div, aten._softmax]
triton_poi_fused__softmax_div_masked_fill_2.run(buf24, buf23, buf25, buf26, 64, grid=grid(64), stream=stream0)
buf27 = reinterpret_tensor(buf23, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf23 # reuse
# Topologically Sorted Source Nodes: [score_1, score_3, score_4, score_5], Original ATen: [aten.masked_fill, aten.div, aten._softmax]
triton_poi_fused__softmax_div_masked_fill_3.run(buf27, buf24, buf25, buf26, 256, grid=grid(256), stream=stream0)
buf28 = reinterpret_tensor(buf26, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf26 # reuse
# Topologically Sorted Source Nodes: [v_3], Original ATen: [aten.clone]
triton_poi_fused_clone_0.run(buf20, primals_19, buf28, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_19
buf29 = reinterpret_tensor(buf20, (16, 4, 1), (4, 1, 1), 0); del buf20 # reuse
# Topologically Sorted Source Nodes: [v_3], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf27, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf28, (16, 4, 1), (4, 1, 0), 0), out=buf29)
buf30 = reinterpret_tensor(buf25, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf25 # reuse
# Topologically Sorted Source Nodes: [contiguous_1], Original ATen: [aten.clone]
triton_poi_fused_clone_4.run(buf29, buf30, 16, 4, grid=grid(16, 4), stream=stream0)
buf31 = reinterpret_tensor(buf29, (16, 4), (4, 1), 0); del buf29 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf30, (16, 4), (4, 1), 0), reinterpret_tensor(primals_21, (4, 4), (1, 4), 0), out=buf31)
buf32 = reinterpret_tensor(buf31, (4, 4, 4), (16, 4, 1), 0); del buf31 # reuse
# Topologically Sorted Source Nodes: [add_3], Original ATen: [aten.add]
triton_poi_fused_add_7.run(buf32, primals_22, buf17, 64, grid=grid(64), stream=stream0)
del primals_22
buf33 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mean_2, std_2, sub_1, add_4, out_4, mul_1, out_5], Original ATen: [aten.mean, aten.std, aten.sub, aten.add, aten.div, aten.mul]
triton_poi_fused_add_div_mean_mul_std_sub_8.run(primals_23, buf32, primals_24, buf33, 64, grid=grid(64), stream=stream0)
del primals_24
buf34 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf33, (16, 4), (4, 1), 0), reinterpret_tensor(primals_25, (4, 4), (1, 4), 0), out=buf34)
buf35 = reinterpret_tensor(buf34, (4, 4, 4), (16, 4, 1), 0); del buf34 # reuse
buf39 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_9.run(buf35, primals_26, buf39, 64, grid=grid(64), stream=stream0)
del primals_26
buf36 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf35, (16, 4), (4, 1), 0), reinterpret_tensor(primals_27, (4, 4), (1, 4), 0), out=buf36)
buf37 = reinterpret_tensor(buf36, (4, 4, 4), (16, 4, 1), 0); del buf36 # reuse
# Topologically Sorted Source Nodes: [add_6], Original ATen: [aten.add]
triton_poi_fused_add_7.run(buf37, primals_28, buf33, 64, grid=grid(64), stream=stream0)
del primals_28
buf38 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mean_4, std_4, sub_2, add_7, out_6, mul_2, out_7], Original ATen: [aten.mean, aten.std, aten.sub, aten.add, aten.div, aten.mul]
triton_poi_fused_add_div_mean_mul_std_sub_8.run(primals_29, buf37, primals_30, buf38, 64, grid=grid(64), stream=stream0)
del primals_30
return (buf38, primals_1, primals_11, primals_23, primals_29, buf6, buf9, reinterpret_tensor(buf12, (16, 4), (4, 1), 0), buf13, reinterpret_tensor(buf17, (16, 4), (4, 1), 0), reinterpret_tensor(primals_13, (16, 4), (4, 1), 0), buf24, buf27, reinterpret_tensor(buf30, (16, 4), (4, 1), 0), buf32, reinterpret_tensor(buf33, (16, 4), (4, 1), 0), reinterpret_tensor(buf35, (16, 4), (4, 1), 0), buf37, primals_27, buf39, primals_25, primals_21, reinterpret_tensor(buf28, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf21, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf22, (16, 4, 1), (4, 1, 4), 0), primals_14, primals_9, reinterpret_tensor(buf10, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_17 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_18 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_19 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_20 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_21 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_22 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_23 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_24 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_25 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_26 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_27 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_28 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_29 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_30 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
from torch import nn
class LayerNorm(nn.Module):
def __init__(self, d_model, eps=1e-12):
super(LayerNorm, self).__init__()
self.gamma = nn.Parameter(torch.ones(d_model))
self.beta = nn.Parameter(torch.zeros(d_model))
self.eps = eps
def forward(self, x):
mean = x.mean(-1, keepdim=True)
std = x.std(-1, keepdim=True)
out = (x - mean) / (std + self.eps)
out = self.gamma * out + self.beta
return out
class ScaleDotProductAttention(nn.Module):
"""
compute scale dot product attention
Query : given sentence that we focused on (decoder)
Key : every sentence to check relationship with Qeury(encoder)
Value : every sentence same with Key (encoder)
"""
def __init__(self):
super(ScaleDotProductAttention, self).__init__()
self.softmax = nn.Softmax(dim=-1)
def forward(self, q, k, v, mask=None, e=1e-12):
_batch_size, _head, _length, d_tensor = k.size()
k_t = k.transpose(2, 3)
score = q @ k_t / math.sqrt(d_tensor)
if mask is not None:
score = score.masked_fill(mask == 0, -e)
score = self.softmax(score)
v = score @ v
return v, score
class MultiHeadAttention(nn.Module):
def __init__(self, d_model, n_head):
super(MultiHeadAttention, self).__init__()
self.n_head = n_head
self.attention = ScaleDotProductAttention()
self.w_q = nn.Linear(d_model, d_model)
self.w_k = nn.Linear(d_model, d_model)
self.w_v = nn.Linear(d_model, d_model)
self.w_concat = nn.Linear(d_model, d_model)
def forward(self, q, k, v, mask=None):
q, k, v = self.w_q(q), self.w_k(k), self.w_v(v)
q, k, v = self.split(q), self.split(k), self.split(v)
out, _attention = self.attention(q, k, v, mask=mask)
out = self.concat(out)
out = self.w_concat(out)
return out
def split(self, tensor):
"""
split tensor by number of head
:param tensor: [batch_size, length, d_model]
:return: [batch_size, head, length, d_tensor]
"""
batch_size, length, d_model = tensor.size()
d_tensor = d_model // self.n_head
tensor = tensor.view(batch_size, length, self.n_head, d_tensor
).transpose(1, 2)
return tensor
def concat(self, tensor):
"""
inverse function of self.split(tensor : torch.Tensor)
:param tensor: [batch_size, head, length, d_tensor]
:return: [batch_size, length, d_model]
"""
batch_size, head, length, d_tensor = tensor.size()
d_model = head * d_tensor
tensor = tensor.transpose(1, 2).contiguous().view(batch_size,
length, d_model)
return tensor
class PositionwiseFeedForward(nn.Module):
def __init__(self, d_model, hidden, drop_prob=0.1):
super(PositionwiseFeedForward, self).__init__()
self.linear1 = nn.Linear(d_model, hidden)
self.linear2 = nn.Linear(hidden, d_model)
self.relu = nn.ReLU()
self.dropout = nn.Dropout(p=drop_prob)
def forward(self, x):
x = self.linear1(x)
x = self.relu(x)
x = self.dropout(x)
x = self.linear2(x)
return x
class DecoderLayer(nn.Module):
def __init__(self, d_model, ffn_hidden, n_head, drop_prob):
super(DecoderLayer, self).__init__()
self.self_attention = MultiHeadAttention(d_model=d_model, n_head=n_head
)
self.norm1 = LayerNorm(d_model=d_model)
self.dropout1 = nn.Dropout(p=drop_prob)
self.enc_dec_attention = MultiHeadAttention(d_model=d_model, n_head
=n_head)
self.norm2 = LayerNorm(d_model=d_model)
self.dropout2 = nn.Dropout(p=drop_prob)
self.ffn = PositionwiseFeedForward(d_model=d_model, hidden=
ffn_hidden, drop_prob=drop_prob)
self.norm3 = LayerNorm(d_model=d_model)
self.dropout3 = nn.Dropout(p=drop_prob)
def forward(self, dec, enc, t_mask, s_mask):
_x = dec
x = self.self_attention(q=dec, k=dec, v=dec, mask=t_mask)
x = self.norm1(x + _x)
x = self.dropout1(x)
if enc is not None:
_x = x
x = self.enc_dec_attention(q=x, k=enc, v=enc, mask=s_mask)
x = self.norm2(x + _x)
x = self.dropout2(x)
_x = x
x = self.ffn(x)
x = self.norm3(x + _x)
x = self.dropout3(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4,
4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'d_model': 4, 'ffn_hidden': 4, 'n_head': 4, 'drop_prob': 0.5}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import math
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask)
@triton.jit
def triton_poi_fused_eq_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.0
tmp2 = tmp0 == tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused__softmax_div_masked_fill_2(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last').to(tl
.int1)
tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last'
).to(tl.int1)
tmp7 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
).to(tl.int1)
tmp12 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp16 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
).to(tl.int1)
tmp17 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp2 = 1.0
tmp3 = tmp1 * tmp2
tmp4 = -9.999999960041972e-13
tmp5 = tl.where(tmp0, tmp4, tmp3)
tmp8 = tmp7 * tmp2
tmp9 = tl.where(tmp6, tmp4, tmp8)
tmp10 = triton_helpers.maximum(tmp5, tmp9)
tmp13 = tmp12 * tmp2
tmp14 = tl.where(tmp11, tmp4, tmp13)
tmp15 = triton_helpers.maximum(tmp10, tmp14)
tmp18 = tmp17 * tmp2
tmp19 = tl.where(tmp16, tmp4, tmp18)
tmp20 = triton_helpers.maximum(tmp15, tmp19)
tmp21 = tmp5 - tmp20
tmp22 = tl_math.exp(tmp21)
tmp23 = tmp9 - tmp20
tmp24 = tl_math.exp(tmp23)
tmp25 = tmp22 + tmp24
tmp26 = tmp14 - tmp20
tmp27 = tl_math.exp(tmp26)
tmp28 = tmp25 + tmp27
tmp29 = tmp19 - tmp20
tmp30 = tl_math.exp(tmp29)
tmp31 = tmp28 + tmp30
tl.store(out_ptr0 + x0, tmp20, xmask)
tl.store(out_ptr1 + x0, tmp31, xmask)
@triton.jit
def triton_poi_fused__softmax_div_masked_fill_3(in_out_ptr0, in_ptr0,
in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask).to(tl.int1)
tmp1 = tl.load(in_out_ptr0 + x2, xmask)
tmp6 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp2 = 1.0
tmp3 = tmp1 * tmp2
tmp4 = -9.999999960041972e-13
tmp5 = tl.where(tmp0, tmp4, tmp3)
tmp7 = tmp5 - tmp6
tmp8 = tl_math.exp(tmp7)
tmp10 = tmp8 / tmp9
tl.store(in_out_ptr0 + x2, tmp10, xmask)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_add_mean_std_5(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 + tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 + tmp12
tmp14 = tmp10 + tmp13
tmp15 = 4.0
tmp16 = tmp14 / tmp15
tmp17 = tmp2 - tmp16
tmp18 = tmp17 * tmp17
tmp19 = tmp5 - tmp16
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp22 = tmp9 - tmp16
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp25 = tmp13 - tmp16
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = 3.0
tmp29 = tmp27 / tmp28
tl.store(in_out_ptr0 + x0, tmp29, xmask)
tl.store(out_ptr0 + x0, tmp16, xmask)
@triton.jit
def triton_poi_fused_add_div_mean_mul_std_sub_6(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp2 = tl.load(in_ptr2 + x2, xmask)
tmp4 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr4 + x1, xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 - tmp4
tmp7 = libdevice.sqrt(tmp6)
tmp8 = 1e-12
tmp9 = tmp7 + tmp8
tmp10 = tmp5 / tmp9
tmp11 = tmp0 * tmp10
tmp13 = tmp11 + tmp12
tl.store(out_ptr0 + x2, tmp13, xmask)
@triton.jit
def triton_poi_fused_add_7(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK:
tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + x2, xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_add_div_mean_mul_std_sub_8(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp2 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp30 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp8 = tmp6 + tmp7
tmp9 = 4.0
tmp10 = tmp8 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp2 - tmp10
tmp13 = tmp12 * tmp12
tmp14 = tmp3 - tmp10
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp10
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp7 - tmp10
tmp21 = tmp20 * tmp20
tmp22 = tmp19 + tmp21
tmp23 = 3.0
tmp24 = tmp22 / tmp23
tmp25 = libdevice.sqrt(tmp24)
tmp26 = 1e-12
tmp27 = tmp25 + tmp26
tmp28 = tmp11 / tmp27
tmp29 = tmp0 * tmp28
tmp31 = tmp29 + tmp30
tl.store(out_ptr0 + x2, tmp31, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_9(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17,
primals_18, primals_19, primals_20, primals_21, primals_22,
primals_23, primals_24, primals_25, primals_26, primals_27,
primals_28, primals_29, primals_30) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_9, (4, 4), (4, 1))
assert_size_stride(primals_10, (4,), (1,))
assert_size_stride(primals_11, (4,), (1,))
assert_size_stride(primals_12, (4,), (1,))
assert_size_stride(primals_13, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_14, (4, 4), (4, 1))
assert_size_stride(primals_15, (4,), (1,))
assert_size_stride(primals_16, (4, 4), (4, 1))
assert_size_stride(primals_17, (4,), (1,))
assert_size_stride(primals_18, (4, 4), (4, 1))
assert_size_stride(primals_19, (4,), (1,))
assert_size_stride(primals_20, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_21, (4, 4), (4, 1))
assert_size_stride(primals_22, (4,), (1,))
assert_size_stride(primals_23, (4,), (1,))
assert_size_stride(primals_24, (4,), (1,))
assert_size_stride(primals_25, (4, 4), (4, 1))
assert_size_stride(primals_26, (4,), (1,))
assert_size_stride(primals_27, (4, 4), (4, 1))
assert_size_stride(primals_28, (4,), (1,))
assert_size_stride(primals_29, (4,), (1,))
assert_size_stride(primals_30, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
del primals_2
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
del primals_4
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf2)
del primals_6
buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(16, 4)](buf0, primals_3, buf3, 16, 4,
XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1)
del primals_3
buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0)
del buf0
triton_poi_fused_clone_0[grid(16, 4)](buf1, primals_5, buf4, 16, 4,
XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1)
del primals_5
buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0),
0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_eq_1[grid(256)](primals_8, buf6, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_8
buf7 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 64), 0)
del buf1
buf8 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
triton_poi_fused__softmax_div_masked_fill_2[grid(64)](buf6, buf5,
buf7, buf8, 64, XBLOCK=64, num_warps=1, num_stages=1)
buf9 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf5
triton_poi_fused__softmax_div_masked_fill_3[grid(256)](buf9, buf6,
buf7, buf8, 256, XBLOCK=256, num_warps=4, num_stages=1)
buf10 = reinterpret_tensor(buf8, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf8
triton_poi_fused_clone_0[grid(16, 4)](buf2, primals_7, buf10, 16, 4,
XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1)
del primals_7
buf11 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0)
del buf2
extern_kernels.bmm(reinterpret_tensor(buf9, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf10, (16, 4, 1), (4, 1, 0), 0), out=buf11)
buf12 = reinterpret_tensor(buf7, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf7
triton_poi_fused_clone_4[grid(16, 4)](buf11, buf12, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
buf13 = reinterpret_tensor(buf11, (16, 4), (4, 1), 0)
del buf11
extern_kernels.addmm(primals_10, reinterpret_tensor(buf12, (16, 4),
(4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf13)
del primals_10
buf14 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
buf15 = buf14
del buf14
buf16 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
triton_poi_fused_add_mean_std_5[grid(16)](buf15, buf13, primals_1,
buf16, 16, XBLOCK=16, num_warps=1, num_stages=1)
buf17 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_add_div_mean_mul_std_sub_6[grid(64)](primals_11,
buf13, primals_1, buf16, buf15, primals_12, buf17, 64, XBLOCK=
64, num_warps=1, num_stages=1)
del buf15
del buf16
del primals_12
buf18 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf17, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_14, (4, 4), (1, 4), 0), out=buf18)
buf19 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_13, (16, 4), (4, 1), 0
), reinterpret_tensor(primals_16, (4, 4), (1, 4), 0), out=buf19)
del primals_16
buf20 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_13, (16, 4), (4, 1), 0
), reinterpret_tensor(primals_18, (4, 4), (1, 4), 0), out=buf20)
del primals_18
buf21 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
triton_poi_fused_clone_0[grid(16, 4)](buf18, primals_15, buf21, 16,
4, XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1)
del primals_15
buf22 = reinterpret_tensor(buf18, (4, 4, 1, 4), (16, 4, 4, 1), 0)
del buf18
triton_poi_fused_clone_0[grid(16, 4)](buf19, primals_17, buf22, 16,
4, XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1)
del primals_17
buf23 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf21, (16, 4, 1), (4, 1, 0),
0), reinterpret_tensor(buf22, (16, 1, 4), (4, 0, 1), 0), out=buf23)
buf24 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_eq_1[grid(256)](primals_20, buf24, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_20
buf25 = reinterpret_tensor(buf19, (4, 4, 4, 1), (16, 4, 1, 64), 0)
del buf19
buf26 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
triton_poi_fused__softmax_div_masked_fill_2[grid(64)](buf24, buf23,
buf25, buf26, 64, XBLOCK=64, num_warps=1, num_stages=1)
buf27 = reinterpret_tensor(buf23, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf23
triton_poi_fused__softmax_div_masked_fill_3[grid(256)](buf27, buf24,
buf25, buf26, 256, XBLOCK=256, num_warps=4, num_stages=1)
buf28 = reinterpret_tensor(buf26, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf26
triton_poi_fused_clone_0[grid(16, 4)](buf20, primals_19, buf28, 16,
4, XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1)
del primals_19
buf29 = reinterpret_tensor(buf20, (16, 4, 1), (4, 1, 1), 0)
del buf20
extern_kernels.bmm(reinterpret_tensor(buf27, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf28, (16, 4, 1), (4, 1, 0), 0), out=buf29)
buf30 = reinterpret_tensor(buf25, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf25
triton_poi_fused_clone_4[grid(16, 4)](buf29, buf30, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
buf31 = reinterpret_tensor(buf29, (16, 4), (4, 1), 0)
del buf29
extern_kernels.mm(reinterpret_tensor(buf30, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_21, (4, 4), (1, 4), 0), out=buf31)
buf32 = reinterpret_tensor(buf31, (4, 4, 4), (16, 4, 1), 0)
del buf31
triton_poi_fused_add_7[grid(64)](buf32, primals_22, buf17, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del primals_22
buf33 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_add_div_mean_mul_std_sub_8[grid(64)](primals_23,
buf32, primals_24, buf33, 64, XBLOCK=64, num_warps=1, num_stages=1)
del primals_24
buf34 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf33, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_25, (4, 4), (1, 4), 0), out=buf34)
buf35 = reinterpret_tensor(buf34, (4, 4, 4), (16, 4, 1), 0)
del buf34
buf39 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_9[grid(64)](buf35,
primals_26, buf39, 64, XBLOCK=64, num_warps=1, num_stages=1)
del primals_26
buf36 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf35, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_27, (4, 4), (1, 4), 0), out=buf36)
buf37 = reinterpret_tensor(buf36, (4, 4, 4), (16, 4, 1), 0)
del buf36
triton_poi_fused_add_7[grid(64)](buf37, primals_28, buf33, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del primals_28
buf38 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_add_div_mean_mul_std_sub_8[grid(64)](primals_29,
buf37, primals_30, buf38, 64, XBLOCK=64, num_warps=1, num_stages=1)
del primals_30
return (buf38, primals_1, primals_11, primals_23, primals_29, buf6,
buf9, reinterpret_tensor(buf12, (16, 4), (4, 1), 0), buf13,
reinterpret_tensor(buf17, (16, 4), (4, 1), 0), reinterpret_tensor(
primals_13, (16, 4), (4, 1), 0), buf24, buf27, reinterpret_tensor(
buf30, (16, 4), (4, 1), 0), buf32, reinterpret_tensor(buf33, (16, 4
), (4, 1), 0), reinterpret_tensor(buf35, (16, 4), (4, 1), 0), buf37,
primals_27, buf39, primals_25, primals_21, reinterpret_tensor(buf28,
(16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf21, (16, 1, 4), (4,
1, 1), 0), reinterpret_tensor(buf22, (16, 4, 1), (4, 1, 4), 0),
primals_14, primals_9, reinterpret_tensor(buf10, (16, 1, 4), (4, 1,
1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0),
reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0))
class LayerNorm(nn.Module):
def __init__(self, d_model, eps=1e-12):
super(LayerNorm, self).__init__()
self.gamma = nn.Parameter(torch.ones(d_model))
self.beta = nn.Parameter(torch.zeros(d_model))
self.eps = eps
def forward(self, x):
mean = x.mean(-1, keepdim=True)
std = x.std(-1, keepdim=True)
out = (x - mean) / (std + self.eps)
out = self.gamma * out + self.beta
return out
class ScaleDotProductAttention(nn.Module):
"""
compute scale dot product attention
Query : given sentence that we focused on (decoder)
Key : every sentence to check relationship with Qeury(encoder)
Value : every sentence same with Key (encoder)
"""
def __init__(self):
super(ScaleDotProductAttention, self).__init__()
self.softmax = nn.Softmax(dim=-1)
def forward(self, q, k, v, mask=None, e=1e-12):
_batch_size, _head, _length, d_tensor = k.size()
k_t = k.transpose(2, 3)
score = q @ k_t / math.sqrt(d_tensor)
if mask is not None:
score = score.masked_fill(mask == 0, -e)
score = self.softmax(score)
v = score @ v
return v, score
class MultiHeadAttention(nn.Module):
def __init__(self, d_model, n_head):
super(MultiHeadAttention, self).__init__()
self.n_head = n_head
self.attention = ScaleDotProductAttention()
self.w_q = nn.Linear(d_model, d_model)
self.w_k = nn.Linear(d_model, d_model)
self.w_v = nn.Linear(d_model, d_model)
self.w_concat = nn.Linear(d_model, d_model)
def forward(self, q, k, v, mask=None):
q, k, v = self.w_q(q), self.w_k(k), self.w_v(v)
q, k, v = self.split(q), self.split(k), self.split(v)
out, _attention = self.attention(q, k, v, mask=mask)
out = self.concat(out)
out = self.w_concat(out)
return out
def split(self, tensor):
"""
split tensor by number of head
:param tensor: [batch_size, length, d_model]
:return: [batch_size, head, length, d_tensor]
"""
batch_size, length, d_model = tensor.size()
d_tensor = d_model // self.n_head
tensor = tensor.view(batch_size, length, self.n_head, d_tensor
).transpose(1, 2)
return tensor
def concat(self, tensor):
"""
inverse function of self.split(tensor : torch.Tensor)
:param tensor: [batch_size, head, length, d_tensor]
:return: [batch_size, length, d_model]
"""
batch_size, head, length, d_tensor = tensor.size()
d_model = head * d_tensor
tensor = tensor.transpose(1, 2).contiguous().view(batch_size,
length, d_model)
return tensor
class PositionwiseFeedForward(nn.Module):
def __init__(self, d_model, hidden, drop_prob=0.1):
super(PositionwiseFeedForward, self).__init__()
self.linear1 = nn.Linear(d_model, hidden)
self.linear2 = nn.Linear(hidden, d_model)
self.relu = nn.ReLU()
self.dropout = nn.Dropout(p=drop_prob)
def forward(self, x):
x = self.linear1(x)
x = self.relu(x)
x = self.dropout(x)
x = self.linear2(x)
return x
class DecoderLayerNew(nn.Module):
def __init__(self, d_model, ffn_hidden, n_head, drop_prob):
super(DecoderLayerNew, self).__init__()
self.self_attention = MultiHeadAttention(d_model=d_model, n_head=n_head
)
self.norm1 = LayerNorm(d_model=d_model)
self.dropout1 = nn.Dropout(p=drop_prob)
self.enc_dec_attention = MultiHeadAttention(d_model=d_model, n_head
=n_head)
self.norm2 = LayerNorm(d_model=d_model)
self.dropout2 = nn.Dropout(p=drop_prob)
self.ffn = PositionwiseFeedForward(d_model=d_model, hidden=
ffn_hidden, drop_prob=drop_prob)
self.norm3 = LayerNorm(d_model=d_model)
self.dropout3 = nn.Dropout(p=drop_prob)
def forward(self, input_0, input_1, input_2, input_3):
primals_2 = self.self_attention.w_q.weight
primals_3 = self.self_attention.w_q.bias
primals_4 = self.self_attention.w_k.weight
primals_5 = self.self_attention.w_k.bias
primals_6 = self.self_attention.w_v.weight
primals_7 = self.self_attention.w_v.bias
primals_9 = self.self_attention.w_concat.weight
primals_10 = self.self_attention.w_concat.bias
primals_11 = self.norm1.gamma
primals_12 = self.norm1.beta
primals_14 = self.enc_dec_attention.w_q.weight
primals_15 = self.enc_dec_attention.w_q.bias
primals_16 = self.enc_dec_attention.w_k.weight
primals_17 = self.enc_dec_attention.w_k.bias
primals_18 = self.enc_dec_attention.w_v.weight
primals_19 = self.enc_dec_attention.w_v.bias
primals_21 = self.enc_dec_attention.w_concat.weight
primals_22 = self.enc_dec_attention.w_concat.bias
primals_23 = self.norm2.gamma
primals_24 = self.norm2.beta
primals_25 = self.ffn.linear1.weight
primals_26 = self.ffn.linear1.bias
primals_27 = self.ffn.linear2.weight
primals_28 = self.ffn.linear2.bias
primals_29 = self.norm3.gamma
primals_30 = self.norm3.beta
primals_1 = input_0
primals_13 = input_1
primals_8 = input_2
primals_20 = input_3
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17, primals_18, primals_19,
primals_20, primals_21, primals_22, primals_23, primals_24,
primals_25, primals_26, primals_27, primals_28, primals_29,
primals_30])
return output[0]
| hyunwoongko/transformer | DecoderLayer | false | 15,609 | [
"Apache-2.0"
]
| 233 | 8f7aaa19d37b088c156db0512868127ba9bf1a0f | https://github.com/hyunwoongko/transformer/tree/8f7aaa19d37b088c156db0512868127ba9bf1a0f |
MLP | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/ev/cev4zkbvlangsiee7tifwya7hdg352udqaobloyxk3xzg2hl6t7m.py
# Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat_1 => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%relu, %relu_1], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 256
x1 = (xindex // 256)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 128, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((128*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tl.load(in_ptr1 + (x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full([1], 0, tl.int32)
tmp9 = triton_helpers.maximum(tmp8, tmp7)
tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype)
tmp11 = tl.where(tmp4, tmp9, tmp10)
tmp12 = tmp0 >= tmp3
tmp13 = tl.full([1], 256, tl.int64)
tmp14 = tmp0 < tmp13
tmp15 = tl.load(in_ptr2 + ((128*x1) + ((-128) + x0)), tmp12 & xmask, eviction_policy='evict_last', other=0.0)
tmp16 = tl.load(in_ptr3 + ((-128) + x0), tmp12 & xmask, eviction_policy='evict_last', other=0.0)
tmp17 = tmp15 + tmp16
tmp18 = triton_helpers.maximum(tmp8, tmp17)
tmp19 = tl.full(tmp18.shape, 0.0, tmp18.dtype)
tmp20 = tl.where(tmp12, tmp18, tmp19)
tmp21 = tl.where(tmp4, tmp11, tmp20)
tl.store(out_ptr0 + (x2), tmp21, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/y2/cy2lwgz7dq2q2z4ifepdde4l7vyyvrwcx4zjn2ezmtzcanvhv374.py
# Topologically Sorted Source Nodes: [tmp_2], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# tmp_2 => relu_2
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_8), kwargs = {})
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/vf/cvfeaikqpgjlmd42te4x666gwcwskdnlf3u7myjkpedcmt7nm4ad.py
# Topologically Sorted Source Nodes: [relu_3], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# relu_3 => relu_1
# Graph fragment:
# %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_5), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_relu_threshold_backward_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10 = args
args.clear()
assert_size_stride(primals_1, (128, 4), (4, 1))
assert_size_stride(primals_2, (128, ), (1, ))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (128, 4), (4, 1))
assert_size_stride(primals_5, (128, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (256, 256), (256, 1))
assert_size_stride(primals_8, (256, ), (1, ))
assert_size_stride(primals_9, (4, 256), (256, 1))
assert_size_stride(primals_10, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 128), (128, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 128), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 128), (128, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(primals_6, reinterpret_tensor(primals_4, (4, 128), (1, 4), 0), out=buf1)
del primals_4
buf2 = empty_strided_cuda((4, 256), (256, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(buf0, primals_2, buf1, primals_5, buf2, 1024, grid=grid(1024), stream=stream0)
buf3 = empty_strided_cuda((4, 256), (256, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf2, reinterpret_tensor(primals_7, (256, 256), (1, 256), 0), out=buf3)
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [tmp_2], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf4, primals_8, 1024, grid=grid(1024), stream=stream0)
del primals_8
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [tmp_3], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_10, buf4, reinterpret_tensor(primals_9, (256, 4), (1, 256), 0), alpha=1, beta=1, out=buf5)
del primals_10
buf6 = empty_strided_cuda((4, 128), (128, 1), torch.bool)
# Topologically Sorted Source Nodes: [relu_3], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_2.run(buf1, primals_5, buf6, 512, grid=grid(512), stream=stream0)
del buf1
del primals_5
buf7 = empty_strided_cuda((4, 128), (128, 1), torch.bool)
# Topologically Sorted Source Nodes: [relu_2], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_2.run(buf0, primals_2, buf7, 512, grid=grid(512), stream=stream0)
del buf0
del primals_2
return (buf5, primals_3, primals_6, buf2, buf4, primals_9, primals_7, buf6, buf7, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((128, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((128, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((256, 256), (256, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, 256), (256, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class MLP(nn.Module):
def __init__(self, left_channel, right_channel, out_channel):
super(MLP, self).__init__()
self.left = nn.Linear(left_channel, 128)
self.right = nn.Linear(right_channel, 128)
self.l1 = nn.Linear(256, 256)
self.l2 = nn.Linear(256, out_channel)
def forward(self, left, right):
left_res = self.left(left)
right_res = self.right(right)
tmp = torch.cat([left_res, right_res], dim=1)
tmp = torch.relu(tmp)
tmp = torch.relu(self.l1(tmp))
tmp = self.l2(tmp)
return tmp
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'left_channel': 4, 'right_channel': 4, 'out_channel': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 256
x1 = xindex // 256
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 128, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (128 * x1 + x0), tmp4 & xmask, eviction_policy
='evict_last', other=0.0)
tmp6 = tl.load(in_ptr1 + x0, tmp4 & xmask, eviction_policy='evict_last',
other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full([1], 0, tl.int32)
tmp9 = triton_helpers.maximum(tmp8, tmp7)
tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype)
tmp11 = tl.where(tmp4, tmp9, tmp10)
tmp12 = tmp0 >= tmp3
tl.full([1], 256, tl.int64)
tmp15 = tl.load(in_ptr2 + (128 * x1 + (-128 + x0)), tmp12 & xmask,
eviction_policy='evict_last', other=0.0)
tmp16 = tl.load(in_ptr3 + (-128 + x0), tmp12 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp17 = tmp15 + tmp16
tmp18 = triton_helpers.maximum(tmp8, tmp17)
tmp19 = tl.full(tmp18.shape, 0.0, tmp18.dtype)
tmp20 = tl.where(tmp12, tmp18, tmp19)
tmp21 = tl.where(tmp4, tmp11, tmp20)
tl.store(out_ptr0 + x2, tmp21, xmask)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_2(in_ptr0, in_ptr1, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10) = args
args.clear()
assert_size_stride(primals_1, (128, 4), (4, 1))
assert_size_stride(primals_2, (128,), (1,))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (128, 4), (4, 1))
assert_size_stride(primals_5, (128,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (256, 256), (256, 1))
assert_size_stride(primals_8, (256,), (1,))
assert_size_stride(primals_9, (4, 256), (256, 1))
assert_size_stride(primals_10, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 128), (128, 1), torch.float32)
extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 128),
(1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 128), (128, 1), torch.float32)
extern_kernels.mm(primals_6, reinterpret_tensor(primals_4, (4, 128),
(1, 4), 0), out=buf1)
del primals_4
buf2 = empty_strided_cuda((4, 256), (256, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(1024)](buf0, primals_2, buf1, primals_5,
buf2, 1024, XBLOCK=256, num_warps=4, num_stages=1)
buf3 = empty_strided_cuda((4, 256), (256, 1), torch.float32)
extern_kernels.mm(buf2, reinterpret_tensor(primals_7, (256, 256), (
1, 256), 0), out=buf3)
buf4 = buf3
del buf3
triton_poi_fused_relu_1[grid(1024)](buf4, primals_8, 1024, XBLOCK=
256, num_warps=4, num_stages=1)
del primals_8
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_10, buf4, reinterpret_tensor(primals_9,
(256, 4), (1, 256), 0), alpha=1, beta=1, out=buf5)
del primals_10
buf6 = empty_strided_cuda((4, 128), (128, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_2[grid(512)](buf1,
primals_5, buf6, 512, XBLOCK=128, num_warps=4, num_stages=1)
del buf1
del primals_5
buf7 = empty_strided_cuda((4, 128), (128, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_2[grid(512)](buf0,
primals_2, buf7, 512, XBLOCK=128, num_warps=4, num_stages=1)
del buf0
del primals_2
return (buf5, primals_3, primals_6, buf2, buf4, primals_9, primals_7,
buf6, buf7)
class MLPNew(nn.Module):
def __init__(self, left_channel, right_channel, out_channel):
super(MLPNew, self).__init__()
self.left = nn.Linear(left_channel, 128)
self.right = nn.Linear(right_channel, 128)
self.l1 = nn.Linear(256, 256)
self.l2 = nn.Linear(256, out_channel)
def forward(self, input_0, input_1):
primals_1 = self.left.weight
primals_2 = self.left.bias
primals_4 = self.right.weight
primals_5 = self.right.bias
primals_7 = self.l1.weight
primals_8 = self.l1.bias
primals_9 = self.l2.weight
primals_10 = self.l2.bias
primals_3 = input_0
primals_6 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9, primals_10])
return output[0]
| imxian/FlexTensor | MLP | false | 15,610 | [
"MIT"
]
| 135 | 311af3362856ea1b0073404fffad42c54585c205 | https://github.com/imxian/FlexTensor/tree/311af3362856ea1b0073404fffad42c54585c205 |
Invertible1x1Conv | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/2d/c2dur4cqvjdmojoen7nz625qbl3hymirj3ihsdj2scx7nk2xzzx5.py
# Topologically Sorted Source Nodes: [logdet, log_det_W], Original ATen: [aten.eq, aten.mul]
# Source node to ATen node mapping:
# log_det_W => mul
# logdet => eq
# Graph fragment:
# %eq : [num_users=2] = call_function[target=torch.ops.aten.eq.Scalar](args = (%getitem, -1.0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_1, 16), kwargs = {})
triton_poi_fused_eq_mul_0 = async_compile.triton('triton_poi_fused_eq_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_eq_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_eq_mul_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
tmp0 = tl.load(in_ptr0 + (0))
tmp1 = tl.broadcast_to(tmp0, [XBLOCK])
tmp4 = tl.load(in_out_ptr0 + (0))
tmp5 = tl.broadcast_to(tmp4, [XBLOCK])
tmp2 = -1.0
tmp3 = tmp1 == tmp2
tmp6 = float("nan")
tmp7 = tl.where(tmp3, tmp6, tmp5)
tmp8 = 16.0
tmp9 = tmp7 * tmp8
tl.store(out_ptr0 + (tl.full([XBLOCK], 0, tl.int32)), tmp3, None)
tl.store(in_out_ptr0 + (tl.full([XBLOCK], 0, tl.int32)), tmp9, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 1), (4, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [logdet], Original ATen: [aten._linalg_slogdet]
buf0 = torch.ops.aten._linalg_slogdet.default(reinterpret_tensor(primals_2, (1, 4, 4), (16, 4, 1), 0))
buf1 = buf0[0]
buf2 = buf0[1]
buf3 = buf0[2]
buf4 = buf0[3]
del buf0
buf5 = empty_strided_cuda((1, ), (1, ), torch.bool)
buf7 = reinterpret_tensor(buf2, (), (), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [logdet, log_det_W], Original ATen: [aten.eq, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_eq_mul_0.run(buf7, buf1, buf5, 1, grid=grid(1), stream=stream0)
del buf1
# Topologically Sorted Source Nodes: [z], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(primals_1, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf6, (4, 4, 4), (16, 4, 1))
return (buf6, buf7, primals_1, primals_2, buf3, buf4, buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch.nn import functional as F
from torch.autograd import Variable
import torch.utils.data
class Invertible1x1Conv(torch.nn.Module):
"""
The layer outputs both the convolution, and the log determinant
of its weight matrix. If reverse=True it does convolution with
inverse
"""
def __init__(self, c):
super(Invertible1x1Conv, self).__init__()
self.conv = torch.nn.Conv1d(c, c, kernel_size=1, stride=1, padding=
0, bias=False)
W = torch.qr(torch.FloatTensor(c, c).normal_())[0]
if torch.det(W) < 0:
W[:, 0] = -1 * W[:, 0]
W = W.view(c, c, 1)
W = W.contiguous()
self.conv.weight.data = W
def forward(self, z):
batch_size, _group_size, n_of_groups = z.size()
W = self.conv.weight.squeeze()
log_det_W = batch_size * n_of_groups * torch.logdet(W.unsqueeze(0).
float()).squeeze()
z = self.conv(z)
return z, log_det_W
def infer(self, z):
_batch_size, _group_size, _n_of_groups = z.size()
W = self.conv.weight.squeeze()
if not hasattr(self, 'W_inverse'):
W_inverse = W.float().inverse()
W_inverse = Variable(W_inverse[..., None])
if z.type() == 'torch.cuda.HalfTensor' or z.type(
) == 'torch.HalfTensor':
W_inverse = W_inverse.half()
self.W_inverse = W_inverse
z = F.conv1d(z, self.W_inverse, bias=None, stride=1, padding=0)
return z
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'c': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch.nn import functional as F
from torch.autograd import Variable
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_eq_mul_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
tmp0 = tl.load(in_ptr0 + 0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK])
tmp4 = tl.load(in_out_ptr0 + 0)
tmp5 = tl.broadcast_to(tmp4, [XBLOCK])
tmp2 = -1.0
tmp3 = tmp1 == tmp2
tmp6 = float('nan')
tmp7 = tl.where(tmp3, tmp6, tmp5)
tmp8 = 16.0
tmp9 = tmp7 * tmp8
tl.store(out_ptr0 + tl.full([XBLOCK], 0, tl.int32), tmp3, None)
tl.store(in_out_ptr0 + tl.full([XBLOCK], 0, tl.int32), tmp9, None)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 1), (4, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = torch.ops.aten._linalg_slogdet.default(reinterpret_tensor(
primals_2, (1, 4, 4), (16, 4, 1), 0))
buf1 = buf0[0]
buf2 = buf0[1]
buf3 = buf0[2]
buf4 = buf0[3]
del buf0
buf5 = empty_strided_cuda((1,), (1,), torch.bool)
buf7 = reinterpret_tensor(buf2, (), (), 0)
del buf2
get_raw_stream(0)
triton_poi_fused_eq_mul_0[grid(1)](buf7, buf1, buf5, 1, XBLOCK=1,
num_warps=1, num_stages=1)
del buf1
buf6 = extern_kernels.convolution(primals_1, primals_2, stride=(1,),
padding=(0,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf6, (4, 4, 4), (16, 4, 1))
return buf6, buf7, primals_1, primals_2, buf3, buf4, buf5
class Invertible1x1ConvNew(torch.nn.Module):
"""
The layer outputs both the convolution, and the log determinant
of its weight matrix. If reverse=True it does convolution with
inverse
"""
def __init__(self, c):
super(Invertible1x1ConvNew, self).__init__()
self.conv = torch.nn.Conv1d(c, c, kernel_size=1, stride=1, padding=
0, bias=False)
W = torch.qr(torch.FloatTensor(c, c).normal_())[0]
if torch.det(W) < 0:
W[:, 0] = -1 * W[:, 0]
W = W.view(c, c, 1)
W = W.contiguous()
self.conv.weight.data = W
def infer(self, z):
_batch_size, _group_size, _n_of_groups = z.size()
W = self.conv.weight.squeeze()
if not hasattr(self, 'W_inverse'):
W_inverse = W.float().inverse()
W_inverse = Variable(W_inverse[..., None])
if z.type() == 'torch.cuda.HalfTensor' or z.type(
) == 'torch.HalfTensor':
W_inverse = W_inverse.half()
self.W_inverse = W_inverse
z = F.conv1d(z, self.W_inverse, bias=None, stride=1, padding=0)
return z
def forward(self, input_0):
primals_2 = self.conv.weight
primals_1 = input_0
output = call([primals_1, primals_2])
return output[0], output[1]
| ishalyminov/shad_speech | Invertible1x1Conv | false | 15,611 | [
"MIT"
]
| 83 | e1345d2de929e150b2683190b127a837fbcb34f3 | https://github.com/ishalyminov/shad_speech/tree/e1345d2de929e150b2683190b127a837fbcb34f3 |
Loss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/vm/cvm6p4mzrssskfjvzwke6aufnaz5nvszfruppqojwix54vua6hiv.py
# Topologically Sorted Source Nodes: [sub, pow_1, sub_1, pow_2, add, mul, loss], Original ATen: [aten.sub, aten.pow, aten.add, aten.mul, aten.mean]
# Source node to ATen node mapping:
# add => add
# loss => mean
# mul => mul
# pow_1 => pow_1
# pow_2 => pow_2
# sub => sub
# sub_1 => sub_1
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg2_1, %arg3_1), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_1, 2), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_1, %pow_2), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, %arg4_1), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%mul,), kwargs = {})
triton_per_fused_add_mean_mul_pow_sub_0 = async_compile.triton('triton_per_fused_add_mean_mul_pow_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {6: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 7), equal_to_1=(6,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mean_mul_pow_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 5, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_mean_mul_pow_sub_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr1 + (r0), None)
tmp4 = tl.load(in_ptr2 + (r0), None)
tmp5 = tl.load(in_ptr3 + (r0), None)
tmp9 = tl.load(in_ptr4 + (r0), None)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp6 = tmp4 - tmp5
tmp7 = tmp6 * tmp6
tmp8 = tmp3 + tmp7
tmp10 = tmp8 * tmp9
tmp11 = tl.broadcast_to(tmp10, [RBLOCK])
tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0))
tmp14 = 256.0
tmp15 = tmp13 / tmp14
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp15, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1, arg3_1, arg4_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg4_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [sub, pow_1, sub_1, pow_2, add, mul, loss], Original ATen: [aten.sub, aten.pow, aten.add, aten.mul, aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_add_mean_mul_pow_sub_0.run(buf1, arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
del arg2_1
del arg3_1
del arg4_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg3_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg4_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.utils.data
class Loss(nn.Module):
def __init__(self):
super(Loss, self).__init__()
def forward(self, gt_region, gt_affinity, pred_region, pred_affinity,
conf_map):
loss = torch.mean(((gt_region - pred_region).pow(2) + (gt_affinity -
pred_affinity).pow(2)) * conf_map)
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_mean_mul_pow_sub_0(in_out_ptr0, in_ptr0, in_ptr1,
in_ptr2, in_ptr3, in_ptr4, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp4 = tl.load(in_ptr2 + r0, None)
tmp5 = tl.load(in_ptr3 + r0, None)
tmp9 = tl.load(in_ptr4 + r0, None)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp6 = tmp4 - tmp5
tmp7 = tmp6 * tmp6
tmp8 = tmp3 + tmp7
tmp10 = tmp8 * tmp9
tmp11 = tl.broadcast_to(tmp10, [RBLOCK])
tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0))
tmp14 = 256.0
tmp15 = tmp13 / tmp14
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp15, None)
def call(args):
arg0_1, arg1_1, arg2_1, arg3_1, arg4_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg4_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_add_mean_mul_pow_sub_0[grid(1)](buf1, arg0_1,
arg1_1, arg2_1, arg3_1, arg4_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
del arg2_1
del arg3_1
del arg4_1
return buf1,
class LossNew(nn.Module):
def __init__(self):
super(LossNew, self).__init__()
def forward(self, input_0, input_1, input_2, input_3, input_4):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
arg3_1 = input_3
arg4_1 = input_4
output = call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1])
return output[0]
| ishine/EasyOCR | Loss | false | 15,612 | [
"Apache-2.0"
]
| 56 | ab7cebb64482e5e50ee7a37fa50398b8cb7481c7 | https://github.com/ishine/EasyOCR/tree/ab7cebb64482e5e50ee7a37fa50398b8cb7481c7 |
BlockWidth1d | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/ym/cymybpze6odect7l4x4pfy77fcyxpuzttfun2ayxky7pqz3n2yth.py
# Topologically Sorted Source Nodes: [leaky_relu, x], Original ATen: [aten.leaky_relu, aten.add]
# Source node to ATen node mapping:
# leaky_relu => gt, mul, where
# x => add
# Graph fragment:
# %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%squeeze, 0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze, 0.01), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %squeeze, %mul), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_3, %where), kwargs = {})
triton_poi_fused_add_leaky_relu_0 = async_compile.triton('triton_poi_fused_add_leaky_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_leaky_relu_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr2 + (x2), xmask)
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp6 = 0.01
tmp7 = tmp2 * tmp6
tmp8 = tl.where(tmp4, tmp2, tmp7)
tmp9 = tmp5 + tmp8
tl.store(out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr1 + (x2), tmp9, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 5), (20, 5, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(reinterpret_tensor(primals_3, (1, 4, 4), (16, 4, 1), 0), primals_1, stride=(1,), padding=(2,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf0, (1, 4, 4), (16, 4, 1))
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.bool)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [leaky_relu, x], Original ATen: [aten.leaky_relu, aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_leaky_relu_0.run(buf0, primals_2, primals_3, buf1, buf2, 16, grid=grid(16), stream=stream0)
del buf0
del primals_2
return (buf2, primals_1, reinterpret_tensor(primals_3, (1, 4, 4), (16, 4, 1), 0), buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 5), (20, 5, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.utils.data
import torch.nn.functional as F
import torch.nn as nn
class BlockWidth1d(nn.Module):
def __init__(self, width) ->None:
super().__init__()
self.conv = nn.Conv1d(width, width, kernel_size=5, padding=2)
def forward(self, x):
x = x + F.leaky_relu(self.conv(x))
return x
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {'width': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.utils.data
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_leaky_relu_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr2 + x2, xmask)
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp6 = 0.01
tmp7 = tmp2 * tmp6
tmp8 = tl.where(tmp4, tmp2, tmp7)
tmp9 = tmp5 + tmp8
tl.store(out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr1 + x2, tmp9, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 5), (20, 5, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(reinterpret_tensor(primals_3, (1,
4, 4), (16, 4, 1), 0), primals_1, stride=(1,), padding=(2,),
dilation=(1,), transposed=False, output_padding=(0,), groups=1,
bias=None)
assert_size_stride(buf0, (1, 4, 4), (16, 4, 1))
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.bool)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_leaky_relu_0[grid(16)](buf0, primals_2,
primals_3, buf1, buf2, 16, XBLOCK=16, num_warps=1, num_stages=1)
del buf0
del primals_2
return buf2, primals_1, reinterpret_tensor(primals_3, (1, 4, 4), (16, 4,
1), 0), buf1
class BlockWidth1dNew(nn.Module):
def __init__(self, width) ->None:
super().__init__()
self.conv = nn.Conv1d(width, width, kernel_size=5, padding=2)
def forward(self, input_0):
primals_1 = self.conv.weight
primals_2 = self.conv.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| ishine/HiFiplusplus-pytorch | BlockWidth1d | false | 15,613 | [
"MIT"
]
| 69 | 8be0d0e0092d4f609c37bfbeede5a9ad9bd7470a | https://github.com/ishine/HiFiplusplus-pytorch/tree/8be0d0e0092d4f609c37bfbeede5a9ad9bd7470a |
PARALossSoftmax | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/zn/cznprkeuyccqrgaq2oqedmt6b75mnapuac3rarw7btkcaemyq7x5.py
# Topologically Sorted Source Nodes: [sum_3], Original ATen: [aten.sum]
# Source node to ATen node mapping:
# sum_3 => sum_3
# Graph fragment:
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%arg0_1, [2, 3]), kwargs = {})
triton_per_fused_sum_0 = async_compile.triton('triton_per_fused_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_sum_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/j7/cj77m2bzgkd6jk6t3eqsj57vmqyiw345xi2hoc3yj5ajgchquhtw.py
# Topologically Sorted Source Nodes: [mul, score], Original ATen: [aten.mul, aten.sum]
# Source node to ATen node mapping:
# mul => mul
# score => sum_2
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, %view), kwargs = {})
# %sum_2 : [num_users=2] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [2, 3]), kwargs = {})
triton_per_fused_mul_sum_1 = async_compile.triton('triton_per_fused_mul_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mul_sum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mul_sum_1(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x3 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (r2 + (16*x3)), xmask, other=0.0)
tmp1 = tl.load(in_ptr1 + (r2 + (64*x1)), xmask, eviction_policy='evict_last', other=0.0)
tmp2 = tl.load(in_ptr1 + (16 + r2 + (64*x1)), xmask, eviction_policy='evict_last', other=0.0)
tmp4 = tl.load(in_ptr1 + (32 + r2 + (64*x1)), xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tl.load(in_ptr1 + (48 + r2 + (64*x1)), xmask, eviction_policy='evict_last', other=0.0)
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 * tmp7
tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK])
tmp11 = tl.where(xmask, tmp9, 0)
tmp12 = tl.sum(tmp11, 1)[:, None]
tl.store(out_ptr0 + (x3), tmp12, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/gd/cgdq755g3clp3t5icrbudwx4ir4xygtoz6ug4jo2euegtyg5mdnp.py
# Topologically Sorted Source Nodes: [loss], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# loss => amax, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%sum_2, [1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sum_2, %amax), kwargs = {})
triton_poi_fused__log_softmax_2 = async_compile.triton('triton_poi_fused__log_softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/g7/cg7zqcudvkdhfi4dqltqxwoll2w7m6pdkmngtisjjnrxjomtzxby.py
# Topologically Sorted Source Nodes: [label, loss], Original ATen: [aten.argmax, aten.nll_loss_forward]
# Source node to ATen node mapping:
# label => argmax
# loss => convert_element_type, div, full_default_1, ne_1, ne_2, neg, sum_5, sum_6, where_1
# Graph fragment:
# %argmax : [num_users=4] = call_function[target=torch.ops.aten.argmax.default](args = (%sum_3, -1), kwargs = {})
# %ne_1 : [num_users=1] = call_function[target=torch.ops.aten.ne.Scalar](args = (%argmax, -100), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%squeeze,), kwargs = {})
# %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%ne_1, %neg, %full_default_1), kwargs = {})
# %sum_6 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%where_1,), kwargs = {})
# %ne_2 : [num_users=1] = call_function[target=torch.ops.aten.ne.Scalar](args = (%argmax, -100), kwargs = {})
# %sum_5 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%ne_2,), kwargs = {})
# %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%sum_5, torch.float32), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_6, %convert_element_type), kwargs = {})
triton_per_fused_argmax_nll_loss_forward_3 = async_compile.triton('triton_per_fused_argmax_nll_loss_forward_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 4],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_argmax_nll_loss_forward_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_argmax_nll_loss_forward_3(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (4*r0), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*r0)), None, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr0 + (2 + (4*r0)), None, eviction_policy='evict_last')
tmp32 = tl.load(in_ptr0 + (3 + (4*r0)), None, eviction_policy='evict_last')
tmp56 = tl.load(in_ptr1 + (4*r0), None, eviction_policy='evict_last')
tmp58 = tl.load(in_ptr1 + (1 + (4*r0)), None, eviction_policy='evict_last')
tmp61 = tl.load(in_ptr1 + (2 + (4*r0)), None, eviction_policy='evict_last')
tmp64 = tl.load(in_ptr1 + (3 + (4*r0)), None, eviction_policy='evict_last')
tmp2 = tmp0 > tmp1
tmp3 = tmp0 == tmp1
tmp4 = tmp0 != tmp0
tmp5 = tmp1 != tmp1
tmp6 = tmp4 > tmp5
tmp7 = tmp2 | tmp6
tmp8 = tmp4 & tmp5
tmp9 = tmp3 | tmp8
tmp10 = tl.full([1, 1], 0, tl.int64)
tmp11 = tl.full([1, 1], 1, tl.int64)
tmp12 = tmp10 < tmp11
tmp13 = tmp9 & tmp12
tmp14 = tmp7 | tmp13
tmp15 = tl.where(tmp14, tmp0, tmp1)
tmp16 = tl.where(tmp14, tmp10, tmp11)
tmp18 = tmp15 > tmp17
tmp19 = tmp15 == tmp17
tmp20 = tmp15 != tmp15
tmp21 = tmp17 != tmp17
tmp22 = tmp20 > tmp21
tmp23 = tmp18 | tmp22
tmp24 = tmp20 & tmp21
tmp25 = tmp19 | tmp24
tmp26 = tl.full([1, 1], 2, tl.int64)
tmp27 = tmp16 < tmp26
tmp28 = tmp25 & tmp27
tmp29 = tmp23 | tmp28
tmp30 = tl.where(tmp29, tmp15, tmp17)
tmp31 = tl.where(tmp29, tmp16, tmp26)
tmp33 = tmp30 > tmp32
tmp34 = tmp30 == tmp32
tmp35 = tmp30 != tmp30
tmp36 = tmp32 != tmp32
tmp37 = tmp35 > tmp36
tmp38 = tmp33 | tmp37
tmp39 = tmp35 & tmp36
tmp40 = tmp34 | tmp39
tmp41 = tl.full([1, 1], 3, tl.int64)
tmp42 = tmp31 < tmp41
tmp43 = tmp40 & tmp42
tmp44 = tmp38 | tmp43
tmp45 = tl.where(tmp44, tmp30, tmp32)
tmp46 = tl.where(tmp44, tmp31, tmp41)
tmp47 = tl.full([1, 1], -100, tl.int64)
tmp48 = tmp46 != tmp47
tmp49 = tl.where(tmp48, tmp46, tmp10)
tmp50 = tl.full([XBLOCK, RBLOCK], 4, tl.int32)
tmp51 = tmp49 + tmp50
tmp52 = tmp49 < 0
tmp53 = tl.where(tmp52, tmp51, tmp49)
tl.device_assert((0 <= tmp53) & (tmp53 < 4), "index out of bounds: 0 <= tmp53 < 4")
tmp55 = tl.load(in_ptr1 + (tmp53 + (4*r0)), None, eviction_policy='evict_last')
tmp57 = tl_math.exp(tmp56)
tmp59 = tl_math.exp(tmp58)
tmp60 = tmp57 + tmp59
tmp62 = tl_math.exp(tmp61)
tmp63 = tmp60 + tmp62
tmp65 = tl_math.exp(tmp64)
tmp66 = tmp63 + tmp65
tmp67 = tl_math.log(tmp66)
tmp68 = tmp55 - tmp67
tmp69 = -tmp68
tmp70 = 0.0
tmp71 = tl.where(tmp48, tmp69, tmp70)
tmp72 = tl.broadcast_to(tmp71, [XBLOCK, RBLOCK])
tmp74 = tl.sum(tmp72, 1)[:, None]
tmp75 = tmp48.to(tl.int64)
tmp76 = tl.broadcast_to(tmp75, [XBLOCK, RBLOCK])
tmp78 = tl.sum(tmp76, 1)[:, None]
tmp79 = tmp78.to(tl.float32)
tmp80 = tmp74 / tmp79
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp80, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sum_3], Original ATen: [aten.sum]
stream0 = get_raw_stream(0)
triton_per_fused_sum_0.run(arg0_1, buf0, 16, 16, grid=grid(16), stream=stream0)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, score], Original ATen: [aten.mul, aten.sum]
triton_per_fused_mul_sum_1.run(arg1_1, arg0_1, buf2, 16, 16, grid=grid(16), stream=stream0)
del arg0_1
del arg1_1
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [loss], Original ATen: [aten._log_softmax]
triton_poi_fused__log_softmax_2.run(buf2, buf3, 16, grid=grid(16), stream=stream0)
del buf2
buf4 = empty_strided_cuda((), (), torch.float32)
buf6 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [label, loss], Original ATen: [aten.argmax, aten.nll_loss_forward]
triton_per_fused_argmax_nll_loss_forward_3.run(buf6, buf0, buf3, 1, 4, grid=grid(1), stream=stream0)
del buf0
del buf3
return (buf6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class PARALossSoftmax(nn.Module):
"""
Softmax classifier for sentence-level relation extraction.
"""
def __init__(self):
"""
Args:
sentence_encoder: encoder for sentences
num_class: number of classes
id2rel: dictionary of id -> relation name mapping
"""
super().__init__()
def forward(self, score, predicate_one_hot_labels):
soft = True
if predicate_one_hot_labels.is_sparse:
predicate_one_hot_labels = predicate_one_hot_labels.to_dense()
if not soft:
entity_mask = predicate_one_hot_labels.sum(dim=1)
label = predicate_one_hot_labels.argmax(dim=1)
loss = F.cross_entropy(score, label, reduction='none')
loss = loss * entity_mask
loss = loss.sum(dim=(1, 2)) / entity_mask.sum(dim=(1, 2))
loss = loss.mean()
else:
entity_mask = predicate_one_hot_labels.sum(dim=1, keepdim=True
).repeat_interleave(score.shape[1], dim=1).float()
score = (score * entity_mask).sum(dim=(2, 3))
label = predicate_one_hot_labels.sum(dim=(2, 3)).argmax(dim=-1)
loss = F.cross_entropy(score, label)
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_sum_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl.
constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tl.store(out_ptr0 + x0, tmp4, xmask)
@triton.jit
def triton_per_fused_mul_sum_1(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel,
XBLOCK: tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x3 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + (r2 + 16 * x3), xmask, other=0.0)
tmp1 = tl.load(in_ptr1 + (r2 + 64 * x1), xmask, eviction_policy=
'evict_last', other=0.0)
tmp2 = tl.load(in_ptr1 + (16 + r2 + 64 * x1), xmask, eviction_policy=
'evict_last', other=0.0)
tmp4 = tl.load(in_ptr1 + (32 + r2 + 64 * x1), xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tl.load(in_ptr1 + (48 + r2 + 64 * x1), xmask, eviction_policy=
'evict_last', other=0.0)
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 * tmp7
tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK])
tmp11 = tl.where(xmask, tmp9, 0)
tmp12 = tl.sum(tmp11, 1)[:, None]
tl.store(out_ptr0 + x3, tmp12, xmask)
@triton.jit
def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_per_fused_argmax_nll_loss_forward_3(in_out_ptr0, in_ptr0,
in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + 4 * r0, None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * r0), None, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr0 + (2 + 4 * r0), None, eviction_policy='evict_last')
tmp32 = tl.load(in_ptr0 + (3 + 4 * r0), None, eviction_policy='evict_last')
tmp56 = tl.load(in_ptr1 + 4 * r0, None, eviction_policy='evict_last')
tmp58 = tl.load(in_ptr1 + (1 + 4 * r0), None, eviction_policy='evict_last')
tmp61 = tl.load(in_ptr1 + (2 + 4 * r0), None, eviction_policy='evict_last')
tmp64 = tl.load(in_ptr1 + (3 + 4 * r0), None, eviction_policy='evict_last')
tmp2 = tmp0 > tmp1
tmp3 = tmp0 == tmp1
tmp4 = tmp0 != tmp0
tmp5 = tmp1 != tmp1
tmp6 = tmp4 > tmp5
tmp7 = tmp2 | tmp6
tmp8 = tmp4 & tmp5
tmp9 = tmp3 | tmp8
tmp10 = tl.full([1, 1], 0, tl.int64)
tmp11 = tl.full([1, 1], 1, tl.int64)
tmp12 = tmp10 < tmp11
tmp13 = tmp9 & tmp12
tmp14 = tmp7 | tmp13
tmp15 = tl.where(tmp14, tmp0, tmp1)
tmp16 = tl.where(tmp14, tmp10, tmp11)
tmp18 = tmp15 > tmp17
tmp19 = tmp15 == tmp17
tmp20 = tmp15 != tmp15
tmp21 = tmp17 != tmp17
tmp22 = tmp20 > tmp21
tmp23 = tmp18 | tmp22
tmp24 = tmp20 & tmp21
tmp25 = tmp19 | tmp24
tmp26 = tl.full([1, 1], 2, tl.int64)
tmp27 = tmp16 < tmp26
tmp28 = tmp25 & tmp27
tmp29 = tmp23 | tmp28
tmp30 = tl.where(tmp29, tmp15, tmp17)
tmp31 = tl.where(tmp29, tmp16, tmp26)
tmp33 = tmp30 > tmp32
tmp34 = tmp30 == tmp32
tmp35 = tmp30 != tmp30
tmp36 = tmp32 != tmp32
tmp37 = tmp35 > tmp36
tmp38 = tmp33 | tmp37
tmp39 = tmp35 & tmp36
tmp40 = tmp34 | tmp39
tmp41 = tl.full([1, 1], 3, tl.int64)
tmp42 = tmp31 < tmp41
tmp43 = tmp40 & tmp42
tmp44 = tmp38 | tmp43
tl.where(tmp44, tmp30, tmp32)
tmp46 = tl.where(tmp44, tmp31, tmp41)
tmp47 = tl.full([1, 1], -100, tl.int64)
tmp48 = tmp46 != tmp47
tmp49 = tl.where(tmp48, tmp46, tmp10)
tmp50 = tl.full([XBLOCK, RBLOCK], 4, tl.int32)
tmp51 = tmp49 + tmp50
tmp52 = tmp49 < 0
tmp53 = tl.where(tmp52, tmp51, tmp49)
tl.device_assert((0 <= tmp53) & (tmp53 < 4),
'index out of bounds: 0 <= tmp53 < 4')
tmp55 = tl.load(in_ptr1 + (tmp53 + 4 * r0), None, eviction_policy=
'evict_last')
tmp57 = tl_math.exp(tmp56)
tmp59 = tl_math.exp(tmp58)
tmp60 = tmp57 + tmp59
tmp62 = tl_math.exp(tmp61)
tmp63 = tmp60 + tmp62
tmp65 = tl_math.exp(tmp64)
tmp66 = tmp63 + tmp65
tmp67 = tl_math.log(tmp66)
tmp68 = tmp55 - tmp67
tmp69 = -tmp68
tmp70 = 0.0
tmp71 = tl.where(tmp48, tmp69, tmp70)
tmp72 = tl.broadcast_to(tmp71, [XBLOCK, RBLOCK])
tmp74 = tl.sum(tmp72, 1)[:, None]
tmp75 = tmp48.to(tl.int64)
tmp76 = tl.broadcast_to(tmp75, [XBLOCK, RBLOCK])
tmp78 = tl.sum(tmp76, 1)[:, None]
tmp79 = tmp78.to(tl.float32)
tmp80 = tmp74 / tmp79
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp80, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_per_fused_sum_0[grid(16)](arg0_1, buf0, 16, 16, XBLOCK=8,
num_warps=2, num_stages=1)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_per_fused_mul_sum_1[grid(16)](arg1_1, arg0_1, buf2, 16, 16,
XBLOCK=8, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused__log_softmax_2[grid(16)](buf2, buf3, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del buf2
buf4 = empty_strided_cuda((), (), torch.float32)
buf6 = buf4
del buf4
triton_per_fused_argmax_nll_loss_forward_3[grid(1)](buf6, buf0,
buf3, 1, 4, XBLOCK=1, num_warps=2, num_stages=1)
del buf0
del buf3
return buf6,
class PARALossSoftmaxNew(nn.Module):
"""
Softmax classifier for sentence-level relation extraction.
"""
def __init__(self):
"""
Args:
sentence_encoder: encoder for sentences
num_class: number of classes
id2rel: dictionary of id -> relation name mapping
"""
super().__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| igorvlnascimento/redn | PARALossSoftmax | false | 15,614 | [
"MIT"
]
| 100 | f40f19a0fdfbb11a7987996d520716a05bafd77b | https://github.com/igorvlnascimento/redn/tree/f40f19a0fdfbb11a7987996d520716a05bafd77b |
AttDot | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/r6/cr6neze6yovkog6kjrk5k2db63h47ozkojywfys6karxe7dlumrz.py
# Topologically Sorted Source Nodes: [att_1], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# att_1 => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%bmm, [2], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%bmm, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/kj/ckjtlefzavjukjsytvkak6ek26zmzexpcbnlwelx4k5kascjxlf3.py
# Topologically Sorted Source Nodes: [att_1], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# att_1 => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [2], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ne/cne2lod64vzh6j6jjk6abpgpl22raxzbgn3z3om2mkjhjykhrnam.py
# Topologically Sorted Source Nodes: [max_1], Original ATen: [aten.max]
# Source node to ATen node mapping:
# max_1 => max_1
# Graph fragment:
# %max_1 : [num_users=1] = call_function[target=torch.ops.aten.max.dim](args = (%bmm, 2), kwargs = {})
triton_poi_fused_max_2 = async_compile.triton('triton_poi_fused_max_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp6 = triton_helpers.maximum(tmp4, tmp5)
tl.store(out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [att], Original ATen: [aten.bmm]
extern_kernels.bmm(arg1_1, reinterpret_tensor(arg0_1, (4, 4, 4), (16, 1, 4), 0), out=buf0)
del arg0_1
del arg1_1
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [att_1], Original ATen: [aten._softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__softmax_0.run(buf0, buf1, 64, grid=grid(64), stream=stream0)
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [att_1], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf1, buf2, 64, grid=grid(64), stream=stream0)
del buf1
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [max_1], Original ATen: [aten.max]
triton_poi_fused_max_2.run(buf0, buf3, 16, grid=grid(16), stream=stream0)
del buf0
return (buf2, reinterpret_tensor(buf3, (4, 1, 4), (4, 4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
class AttDot(torch.nn.Module):
"""
AttDot: Dot attention that can be used by the Alignment module.
"""
def __init__(self, softmax=True):
super().__init__()
self.softmax = softmax
def forward(self, query, y):
att = torch.bmm(query, y.transpose(2, 1))
sim = att.max(2)[0].unsqueeze(1)
if self.softmax:
att = F.softmax(att, dim=2)
return att, sim
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_max_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp6 = triton_helpers.maximum(tmp4, tmp5)
tl.store(out_ptr0 + x0, tmp6, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(arg1_1, reinterpret_tensor(arg0_1, (4, 4, 4), (
16, 1, 4), 0), out=buf0)
del arg0_1
del arg1_1
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__softmax_0[grid(64)](buf0, buf1, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused__softmax_1[grid(64)](buf1, buf2, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del buf1
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_max_2[grid(16)](buf0, buf3, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del buf0
return buf2, reinterpret_tensor(buf3, (4, 1, 4), (4, 4, 1), 0)
class AttDotNew(torch.nn.Module):
"""
AttDot: Dot attention that can be used by the Alignment module.
"""
def __init__(self, softmax=True):
super().__init__()
self.softmax = softmax
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0], output[1]
| ishine/NISQA | AttDot | false | 15,615 | [
"MIT"
]
| 223 | 2c8917f30c4e4bbca3a48e9852301f1e2480a741 | https://github.com/ishine/NISQA/tree/2c8917f30c4e4bbca3a48e9852301f1e2480a741 |
AttentionPool | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/27/c275t2vpncl6pafo6t2kwqr5kwaoktccmgnmv6xrcz76kmgkhofr.py
# Topologically Sorted Source Nodes: [clamp, w], Original ATen: [aten.clamp, aten._softmax]
# Source node to ATen node mapping:
# clamp => clamp_max, clamp_min
# w => amax, exp, sub
# Graph fragment:
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%view_1, -15), kwargs = {})
# %clamp_max : [num_users=2] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 15), kwargs = {})
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%clamp_max, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_max, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_clamp_0 = async_compile.triton('triton_poi_fused__softmax_clamp_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_clamp_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_clamp_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 640
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 40
x2 = (xindex // 160)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp5 = tl.load(in_ptr0 + (x0 + (160*x2)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (40 + x0 + (160*x2)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (80 + x0 + (160*x2)), xmask, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr0 + (120 + x0 + (160*x2)), xmask, eviction_policy='evict_last')
tmp1 = -15.0
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp3 = 15.0
tmp4 = triton_helpers.minimum(tmp2, tmp3)
tmp6 = triton_helpers.maximum(tmp5, tmp1)
tmp7 = triton_helpers.minimum(tmp6, tmp3)
tmp9 = triton_helpers.maximum(tmp8, tmp1)
tmp10 = triton_helpers.minimum(tmp9, tmp3)
tmp11 = triton_helpers.maximum(tmp7, tmp10)
tmp13 = triton_helpers.maximum(tmp12, tmp1)
tmp14 = triton_helpers.minimum(tmp13, tmp3)
tmp15 = triton_helpers.maximum(tmp11, tmp14)
tmp17 = triton_helpers.maximum(tmp16, tmp1)
tmp18 = triton_helpers.minimum(tmp17, tmp3)
tmp19 = triton_helpers.maximum(tmp15, tmp18)
tmp20 = tmp4 - tmp19
tmp21 = tl_math.exp(tmp20)
tl.store(out_ptr0 + (x3), tmp21, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/sg/csgvann4wjz6mm4xekp5dkkwxvc2gxaxbssjhrscy6bgcliobzf3.py
# Topologically Sorted Source Nodes: [w], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# w => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 640
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 40
x2 = (xindex // 160)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (160*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (40 + x0 + (160*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (80 + x0 + (160*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (120 + x0 + (160*x2)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/7t/c7tkyoz5svq25hfreytwxls2vr6zvednv3q5sdsgn6hxzi425h43.py
# Topologically Sorted Source Nodes: [mul, sum_1, sum_2, add, detect], Original ATen: [aten.mul, aten.sum, aten.add, aten.div]
# Source node to ATen node mapping:
# add => add
# detect => div_1
# mul => mul
# sum_1 => sum_2
# sum_2 => sum_3
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_4, %div), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%div, [1]), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_3, 1e-07), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_2, %add), kwargs = {})
triton_poi_fused_add_div_mul_sum_2 = async_compile.triton('triton_poi_fused_add_div_mul_sum_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mul_sum_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_mul_sum_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 160
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 40
x1 = (xindex // 40)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (160*x1)), xmask)
tmp1 = tl.load(in_ptr1 + (x0 + (160*x1)), xmask)
tmp3 = tl.load(in_ptr0 + (40 + x0 + (160*x1)), xmask)
tmp4 = tl.load(in_ptr1 + (40 + x0 + (160*x1)), xmask)
tmp7 = tl.load(in_ptr0 + (80 + x0 + (160*x1)), xmask)
tmp8 = tl.load(in_ptr1 + (80 + x0 + (160*x1)), xmask)
tmp11 = tl.load(in_ptr0 + (120 + x0 + (160*x1)), xmask)
tmp12 = tl.load(in_ptr1 + (120 + x0 + (160*x1)), xmask)
tmp2 = tmp0 * tmp1
tmp5 = tmp3 * tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 * tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 * tmp12
tmp14 = tmp10 + tmp13
tmp15 = tmp1 + tmp4
tmp16 = tmp15 + tmp8
tmp17 = tmp16 + tmp12
tmp18 = 1e-07
tmp19 = tmp17 + tmp18
tmp20 = tmp14 / tmp19
tl.store(out_ptr0 + (x2), tmp20, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (10, 4), (4, 1))
assert_size_stride(primals_2, (10, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 4, 10), (160, 40, 10, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 10), (10, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 10), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4, 4, 10), (160, 40, 10, 1), torch.float32)
# Topologically Sorted Source Nodes: [clamp, w], Original ATen: [aten.clamp, aten._softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__softmax_clamp_0.run(buf0, buf1, 640, grid=grid(640), stream=stream0)
buf2 = empty_strided_cuda((4, 4, 4, 10), (160, 40, 10, 1), torch.float32)
# Topologically Sorted Source Nodes: [w], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf1, buf2, 640, grid=grid(640), stream=stream0)
del buf1
buf3 = empty_strided_cuda((4, 4, 10), (40, 10, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, sum_1, sum_2, add, detect], Original ATen: [aten.mul, aten.sum, aten.add, aten.div]
triton_poi_fused_add_div_mul_sum_2.run(primals_4, buf2, buf3, 160, grid=grid(160), stream=stream0)
del buf2
return (buf3, primals_4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((10, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4, 10), (160, 40, 10, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class AttentionPool(nn.Module):
"""docstring for AttentionPool"""
def __init__(self, inputdim, outputdim=10, pooldim=1, **kwargs):
super().__init__()
self.inputdim = inputdim
self.outputdim = outputdim
self.pooldim = pooldim
self.transform = nn.Linear(inputdim, outputdim)
self.activ = nn.Softmax(dim=self.pooldim)
self.eps = 1e-07
def forward(self, logits, decision):
w = self.activ(torch.clamp(self.transform(logits), -15, 15))
detect = (decision * w).sum(self.pooldim) / (w.sum(self.pooldim) +
self.eps)
return detect
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 10])]
def get_init_inputs():
return [[], {'inputdim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__softmax_clamp_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 640
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 40
x2 = xindex // 160
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp5 = tl.load(in_ptr0 + (x0 + 160 * x2), xmask, eviction_policy=
'evict_last')
tmp8 = tl.load(in_ptr0 + (40 + x0 + 160 * x2), xmask, eviction_policy=
'evict_last')
tmp12 = tl.load(in_ptr0 + (80 + x0 + 160 * x2), xmask, eviction_policy=
'evict_last')
tmp16 = tl.load(in_ptr0 + (120 + x0 + 160 * x2), xmask, eviction_policy
='evict_last')
tmp1 = -15.0
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp3 = 15.0
tmp4 = triton_helpers.minimum(tmp2, tmp3)
tmp6 = triton_helpers.maximum(tmp5, tmp1)
tmp7 = triton_helpers.minimum(tmp6, tmp3)
tmp9 = triton_helpers.maximum(tmp8, tmp1)
tmp10 = triton_helpers.minimum(tmp9, tmp3)
tmp11 = triton_helpers.maximum(tmp7, tmp10)
tmp13 = triton_helpers.maximum(tmp12, tmp1)
tmp14 = triton_helpers.minimum(tmp13, tmp3)
tmp15 = triton_helpers.maximum(tmp11, tmp14)
tmp17 = triton_helpers.maximum(tmp16, tmp1)
tmp18 = triton_helpers.minimum(tmp17, tmp3)
tmp19 = triton_helpers.maximum(tmp15, tmp18)
tmp20 = tmp4 - tmp19
tmp21 = tl_math.exp(tmp20)
tl.store(out_ptr0 + x3, tmp21, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 640
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 40
x2 = xindex // 160
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 160 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (40 + x0 + 160 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (80 + x0 + 160 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (120 + x0 + 160 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x3, tmp8, xmask)
@triton.jit
def triton_poi_fused_add_div_mul_sum_2(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 160
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 40
x1 = xindex // 40
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 160 * x1), xmask)
tmp1 = tl.load(in_ptr1 + (x0 + 160 * x1), xmask)
tmp3 = tl.load(in_ptr0 + (40 + x0 + 160 * x1), xmask)
tmp4 = tl.load(in_ptr1 + (40 + x0 + 160 * x1), xmask)
tmp7 = tl.load(in_ptr0 + (80 + x0 + 160 * x1), xmask)
tmp8 = tl.load(in_ptr1 + (80 + x0 + 160 * x1), xmask)
tmp11 = tl.load(in_ptr0 + (120 + x0 + 160 * x1), xmask)
tmp12 = tl.load(in_ptr1 + (120 + x0 + 160 * x1), xmask)
tmp2 = tmp0 * tmp1
tmp5 = tmp3 * tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 * tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 * tmp12
tmp14 = tmp10 + tmp13
tmp15 = tmp1 + tmp4
tmp16 = tmp15 + tmp8
tmp17 = tmp16 + tmp12
tmp18 = 1e-07
tmp19 = tmp17 + tmp18
tmp20 = tmp14 / tmp19
tl.store(out_ptr0 + x2, tmp20, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (10, 4), (4, 1))
assert_size_stride(primals_2, (10,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 4, 10), (160, 40, 10, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 10), (10, 1), torch.float32)
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64,
4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 10), (1, 4),
0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4, 4, 10), (160, 40, 10, 1), torch.
float32)
get_raw_stream(0)
triton_poi_fused__softmax_clamp_0[grid(640)](buf0, buf1, 640,
XBLOCK=256, num_warps=4, num_stages=1)
buf2 = empty_strided_cuda((4, 4, 4, 10), (160, 40, 10, 1), torch.
float32)
triton_poi_fused__softmax_1[grid(640)](buf1, buf2, 640, XBLOCK=256,
num_warps=4, num_stages=1)
del buf1
buf3 = empty_strided_cuda((4, 4, 10), (40, 10, 1), torch.float32)
triton_poi_fused_add_div_mul_sum_2[grid(160)](primals_4, buf2, buf3,
160, XBLOCK=256, num_warps=4, num_stages=1)
del buf2
return buf3, primals_4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), buf0
class AttentionPoolNew(nn.Module):
"""docstring for AttentionPool"""
def __init__(self, inputdim, outputdim=10, pooldim=1, **kwargs):
super().__init__()
self.inputdim = inputdim
self.outputdim = outputdim
self.pooldim = pooldim
self.transform = nn.Linear(inputdim, outputdim)
self.activ = nn.Softmax(dim=self.pooldim)
self.eps = 1e-07
def forward(self, input_0, input_1):
primals_1 = self.transform.weight
primals_2 = self.transform.bias
primals_3 = input_0
primals_4 = input_1
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
| ishine/AudioCaption | AttentionPool | false | 15,616 | [
"MIT"
]
| 76 | d121cba8247b96aeed9ff77d2fff073f93e0a63f | https://github.com/ishine/AudioCaption/tree/d121cba8247b96aeed9ff77d2fff073f93e0a63f |
Conv1DBlock | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/iu/ciuxern2omgit5ovksuiwlddxkww6e3pkid4q2h3sauzn5rbd35z.py
# Topologically Sorted Source Nodes: [conv_signal], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv_signal => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_2, %primals_3, [1], [1], [1], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/6c/c6cqxugbgswrmw4pii7c5vlscudue72oc47m5gfwyyzeumtz6se3.py
# Topologically Sorted Source Nodes: [conv_signal], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv_signal => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_2, %primals_3, [1], [1], [1], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 3) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv_signal], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(primals_1, buf0, 16, 4, grid=grid(16, 4), stream=stream0)
# Topologically Sorted Source Nodes: [conv_signal], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(1,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 3), (12, 3, 1))
del buf0
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [conv_signal], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf2, primals_3, 48, grid=grid(48), stream=stream0)
del primals_3
return (reinterpret_tensor(buf2, (4, 3, 4), (12, 1, 3), 0), primals_2, reinterpret_tensor(primals_1, (4, 4, 4), (16, 1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
import torch.nn as nn
class ConvNorm(nn.Module):
""" 1D Convolution """
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1,
padding=None, dilation=1, bias=True, w_init_gain='linear'):
super(ConvNorm, self).__init__()
if padding is None:
assert kernel_size % 2 == 1
padding = int(dilation * (kernel_size - 1) / 2)
self.conv = nn.Conv1d(in_channels, out_channels, kernel_size=
kernel_size, stride=stride, padding=padding, dilation=dilation,
bias=bias)
def forward(self, signal):
conv_signal = self.conv(signal)
return conv_signal
class Conv1DBlock(nn.Module):
""" 1D Convolutional Block """
def __init__(self, in_channels, out_channels, kernel_size, activation=
None, dropout=None):
super(Conv1DBlock, self).__init__()
self.conv_layer = nn.Sequential()
self.conv_layer.add_module('conv_layer', ConvNorm(in_channels,
out_channels, kernel_size=kernel_size, stride=1, padding=int((
kernel_size - 1) / 2), dilation=1, w_init_gain='tanh'))
if activation is not None:
self.conv_layer.add_module('activ', activation)
self.dropout = dropout
def forward(self, x, mask=None):
x = x.contiguous().transpose(1, 2)
x = self.conv_layer(x)
if self.dropout is not None:
x = F.dropout(x, self.dropout, self.training)
x = x.contiguous().transpose(1, 2)
if mask is not None:
x = x.masked_fill(mask.unsqueeze(-1), 0)
return x
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 3 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(16, 4)](primals_1, buf0, 16, 4,
XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1)
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,),
padding=(1,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 3), (12, 3, 1))
del buf0
buf2 = buf1
del buf1
triton_poi_fused_convolution_1[grid(48)](buf2, primals_3, 48,
XBLOCK=64, num_warps=1, num_stages=1)
del primals_3
return reinterpret_tensor(buf2, (4, 3, 4), (12, 1, 3), 0
), primals_2, reinterpret_tensor(primals_1, (4, 4, 4), (16, 1, 4), 0)
class ConvNorm(nn.Module):
""" 1D Convolution """
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1,
padding=None, dilation=1, bias=True, w_init_gain='linear'):
super(ConvNorm, self).__init__()
if padding is None:
assert kernel_size % 2 == 1
padding = int(dilation * (kernel_size - 1) / 2)
self.conv = nn.Conv1d(in_channels, out_channels, kernel_size=
kernel_size, stride=stride, padding=padding, dilation=dilation,
bias=bias)
def forward(self, signal):
conv_signal = self.conv(signal)
return conv_signal
class Conv1DBlockNew(nn.Module):
""" 1D Convolutional Block """
def __init__(self, in_channels, out_channels, kernel_size, activation=
None, dropout=None):
super(Conv1DBlockNew, self).__init__()
self.conv_layer = nn.Sequential()
self.conv_layer.add_module('conv_layer', ConvNorm(in_channels,
out_channels, kernel_size=kernel_size, stride=1, padding=int((
kernel_size - 1) / 2), dilation=1, w_init_gain='tanh'))
if activation is not None:
self.conv_layer.add_module('activ', activation)
self.dropout = dropout
def forward(self, input_0):
primals_1 = self.conv_layer.conv_layer.conv.weight
primals_3 = self.conv_layer.conv_layer.conv.bias
primals_2 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| ishine/FastPitchFormant | Conv1DBlock | false | 15,617 | [
"MIT"
]
| 54 | dd86032953be04fb526b658b19ecdc5600ff25a5 | https://github.com/ishine/FastPitchFormant/tree/dd86032953be04fb526b658b19ecdc5600ff25a5 |
TokenLearnedEncoding | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/ss/csszz4th2mhvwpdxwyoyl2r6rkpw3cxzwcjpezwwpgsunyl4k5o4.py
# Topologically Sorted Source Nodes: [token_lang], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# token_lang => full_default
# Graph fragment:
# %full_default : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([4, 4], 0), kwargs = {dtype: torch.int64, layout: torch.strided, device: cuda:0, pin_memory: False})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.full([1], 0, tl.int64)
tl.store(out_ptr0 + (x0), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/oh/coh3jd4nrm33bjlogyrcsmpcfybcqprq7iqpy6zpv2ozogth4dgl.py
# Topologically Sorted Source Nodes: [token_lang_emb, lang], Original ATen: [aten.embedding, aten.add]
# Source node to ATen node mapping:
# lang => add
# token_lang_emb => embedding
# Graph fragment:
# %embedding : [num_users=1] = call_function[target=torch.ops.aten.embedding.default](args = (%primals_2, %full_default), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %embedding), kwargs = {})
triton_poi_fused_add_embedding_1 = async_compile.triton('triton_poi_fused_add_embedding_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_embedding_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_embedding_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/a2/ca2sm3xqtoiadpjjwj33c7nwwnbzejd2q3c7sslpmeji2fxjabi2.py
# Topologically Sorted Source Nodes: [token_frames], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# token_frames => full_default_1
# Graph fragment:
# %full_default_1 : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([4, 4], 1), kwargs = {dtype: torch.int64, layout: torch.strided, device: cuda:0, pin_memory: False})
triton_poi_fused_mul_2 = async_compile.triton('triton_poi_fused_mul_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_2(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.full([1], 1, tl.int64)
tl.store(out_ptr0 + (x0), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/m5/cm5j2o7lxls3ogplcf3be3766qenopzddi56wtoelyaq5di6j67q.py
# Topologically Sorted Source Nodes: [token_frames_emb, frames], Original ATen: [aten.embedding, aten.add]
# Source node to ATen node mapping:
# frames => add_1
# token_frames_emb => embedding_1
# Graph fragment:
# %embedding_1 : [num_users=1] = call_function[target=torch.ops.aten.embedding.default](args = (%primals_2, %full_default_1), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_3, %embedding_1), kwargs = {})
triton_poi_fused_add_embedding_3 = async_compile.triton('triton_poi_fused_add_embedding_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_embedding_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_embedding_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (4 + x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/am/camxhdspxdmhrxoqg2m3sw2qsgylsvuulzenti46logsw53ipdke.py
# Topologically Sorted Source Nodes: [token_actions], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# token_actions => full_default_2
# Graph fragment:
# %full_default_2 : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([4, 4], 2), kwargs = {dtype: torch.int64, layout: torch.strided, device: cuda:0, pin_memory: False})
triton_poi_fused_mul_4 = async_compile.triton('triton_poi_fused_mul_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_4(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.full([1], 2, tl.int64)
tl.store(out_ptr0 + (x0), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/s5/cs5kuus3wuqwf7qpy27eyptcd3dpb5vdsw42dsfqg4jsejigb3kv.py
# Topologically Sorted Source Nodes: [token_actions_emb, actions], Original ATen: [aten.embedding, aten.add]
# Source node to ATen node mapping:
# actions => add_2
# token_actions_emb => embedding_2
# Graph fragment:
# %embedding_2 : [num_users=1] = call_function[target=torch.ops.aten.embedding.default](args = (%primals_2, %full_default_2), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_4, %embedding_2), kwargs = {})
triton_poi_fused_add_embedding_5 = async_compile.triton('triton_poi_fused_add_embedding_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_embedding_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_embedding_5(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (8 + x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (3, 4), (4, 1))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.int64)
# Topologically Sorted Source Nodes: [token_lang], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(buf0, 16, grid=grid(16), stream=stream0)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [token_lang_emb, lang], Original ATen: [aten.embedding, aten.add]
triton_poi_fused_add_embedding_1.run(primals_1, primals_2, buf1, 256, grid=grid(256), stream=stream0)
del primals_1
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.int64)
# Topologically Sorted Source Nodes: [token_frames], Original ATen: [aten.mul]
triton_poi_fused_mul_2.run(buf2, 16, grid=grid(16), stream=stream0)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [token_frames_emb, frames], Original ATen: [aten.embedding, aten.add]
triton_poi_fused_add_embedding_3.run(primals_3, primals_2, buf3, 256, grid=grid(256), stream=stream0)
del primals_3
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.int64)
# Topologically Sorted Source Nodes: [token_actions], Original ATen: [aten.mul]
triton_poi_fused_mul_4.run(buf4, 16, grid=grid(16), stream=stream0)
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [token_actions_emb, actions], Original ATen: [aten.embedding, aten.add]
triton_poi_fused_add_embedding_5.run(primals_4, primals_2, buf5, 256, grid=grid(256), stream=stream0)
del primals_2
del primals_4
return (buf1, buf3, buf5, buf1, buf3, buf5, buf0, buf2, buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((3, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
class TokenLearnedEncoding(nn.Module):
"""
Learned additive img/word/action token encoding implemented on top of nn.Embedding
"""
def __init__(self, d_model, vocab_size=3, init_range=0.1):
super().__init__()
self.emb = nn.Embedding(vocab_size, d_model)
self.emb.weight.data.uniform_(-init_range, init_range)
def forward(self, lang, frames, actions):
token_lang = torch.ones(lang.shape[:2], device=lang.device, dtype=
torch.long) * 0
token_lang_emb = self.emb(token_lang)
lang += token_lang_emb
token_frames = torch.ones(frames.shape[:2], device=frames.device,
dtype=torch.long) * 1
token_frames_emb = self.emb(token_frames)
frames += token_frames_emb
token_actions = torch.ones(actions.shape[:2], device=actions.device,
dtype=torch.long) * 2
token_actions_emb = self.emb(token_actions)
actions += token_actions_emb
return lang, frames, actions
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4])]
def get_init_inputs():
return [[], {'d_model': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mul_0(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.full([1], 0, tl.int64)
tl.store(out_ptr0 + x0, tmp0, xmask)
@triton.jit
def triton_poi_fused_add_embedding_1(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + x2, tmp2, xmask)
@triton.jit
def triton_poi_fused_mul_2(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.full([1], 1, tl.int64)
tl.store(out_ptr0 + x0, tmp0, xmask)
@triton.jit
def triton_poi_fused_add_embedding_3(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + (4 + x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + x2, tmp2, xmask)
@triton.jit
def triton_poi_fused_mul_4(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.full([1], 2, tl.int64)
tl.store(out_ptr0 + x0, tmp0, xmask)
@triton.jit
def triton_poi_fused_add_embedding_5(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + (8 + x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + x2, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (3, 4), (4, 1))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.int64)
get_raw_stream(0)
triton_poi_fused_mul_0[grid(16)](buf0, 16, XBLOCK=16, num_warps=1,
num_stages=1)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_add_embedding_1[grid(256)](primals_1, primals_2,
buf1, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_1
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.int64)
triton_poi_fused_mul_2[grid(16)](buf2, 16, XBLOCK=16, num_warps=1,
num_stages=1)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_add_embedding_3[grid(256)](primals_3, primals_2,
buf3, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_3
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.int64)
triton_poi_fused_mul_4[grid(16)](buf4, 16, XBLOCK=16, num_warps=1,
num_stages=1)
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_add_embedding_5[grid(256)](primals_4, primals_2,
buf5, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
del primals_4
return buf1, buf3, buf5, buf1, buf3, buf5, buf0, buf2, buf4
class TokenLearnedEncodingNew(nn.Module):
"""
Learned additive img/word/action token encoding implemented on top of nn.Embedding
"""
def __init__(self, d_model, vocab_size=3, init_range=0.1):
super().__init__()
self.emb = nn.Embedding(vocab_size, d_model)
self.emb.weight.data.uniform_(-init_range, init_range)
def forward(self, input_0, input_1, input_2):
primals_2 = self.emb.weight
primals_1 = input_0
primals_3 = input_1
primals_4 = input_2
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0], output[1], output[2]
| ishikasingh/teach | TokenLearnedEncoding | false | 15,618 | [
"MIT"
]
| 54 | 5554f02f55c22abfe5c2a749dbb24c13377726c8 | https://github.com/ishikasingh/teach/tree/5554f02f55c22abfe5c2a749dbb24c13377726c8 |
BlockWidth2d | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/d2/cd2tconmq3iudi5qedlivxwrhugdmyxrwcsahowzljjckuynlzcs.py
# Topologically Sorted Source Nodes: [conv2d, leaky_relu, x], Original ATen: [aten.convolution, aten.leaky_relu, aten.add]
# Source node to ATen node mapping:
# conv2d => convolution
# leaky_relu => gt, mul, where
# x => add
# Graph fragment:
# %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.01), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_3, %where), kwargs = {})
triton_poi_fused_add_convolution_leaky_relu_0 = async_compile.triton('triton_poi_fused_add_convolution_leaky_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_leaky_relu_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr2 + (x3), xmask)
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp6 = 0.01
tmp7 = tmp2 * tmp6
tmp8 = tl.where(tmp4, tmp2, tmp7)
tmp9 = tmp5 + tmp8
tl.store(out_ptr0 + (x3), tmp4, xmask)
tl.store(out_ptr1 + (x3), tmp9, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d, leaky_relu, x], Original ATen: [aten.convolution, aten.leaky_relu, aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_convolution_leaky_relu_0.run(buf0, primals_2, primals_3, buf1, buf2, 256, grid=grid(256), stream=stream0)
del buf0
del primals_2
return (buf2, primals_1, primals_3, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.utils.data
import torch.nn.functional as F
import torch.nn as nn
class BlockWidth2d(nn.Module):
def __init__(self, width) ->None:
super().__init__()
self.conv = nn.Conv2d(width, width, kernel_size=3, padding=1)
def forward(self, x):
x = x + F.leaky_relu(self.conv(x))
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'width': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.utils.data
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_convolution_leaky_relu_0(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr2 + x3, xmask)
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp6 = 0.01
tmp7 = tmp2 * tmp6
tmp8 = tl.where(tmp4, tmp2, tmp7)
tmp9 = tmp5 + tmp8
tl.store(out_ptr0 + x3, tmp4, xmask)
tl.store(out_ptr1 + x3, tmp9, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_convolution_leaky_relu_0[grid(256)](buf0,
primals_2, primals_3, buf1, buf2, 256, XBLOCK=128, num_warps=4,
num_stages=1)
del buf0
del primals_2
return buf2, primals_1, primals_3, buf1
class BlockWidth2dNew(nn.Module):
def __init__(self, width) ->None:
super().__init__()
self.conv = nn.Conv2d(width, width, kernel_size=3, padding=1)
def forward(self, input_0):
primals_1 = self.conv.weight
primals_2 = self.conv.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| ishine/HiFiplusplus-pytorch | BlockWidth2d | false | 15,619 | [
"MIT"
]
| 69 | 8be0d0e0092d4f609c37bfbeede5a9ad9bd7470a | https://github.com/ishine/HiFiplusplus-pytorch/tree/8be0d0e0092d4f609c37bfbeede5a9ad9bd7470a |
ApplyHardAttention | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/4r/c4rhpmkxb6xtdm7kdyhpanomycvjfbry7teath3emuqt62ckqbtf.py
# Topologically Sorted Source Nodes: [argmax], Original ATen: [aten.argmax]
# Source node to ATen node mapping:
# argmax => argmax
# Graph fragment:
# %argmax : [num_users=2] = call_function[target=torch.ops.aten.argmax.default](args = (%arg0_1, 2), kwargs = {})
triton_poi_fused_argmax_0 = async_compile.triton('triton_poi_fused_argmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_argmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_argmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (16*x1)), xmask)
tmp1 = tl.load(in_ptr0 + (4 + x0 + (16*x1)), xmask)
tmp17 = tl.load(in_ptr0 + (8 + x0 + (16*x1)), xmask)
tmp32 = tl.load(in_ptr0 + (12 + x0 + (16*x1)), xmask)
tmp2 = tmp0 > tmp1
tmp3 = tmp0 == tmp1
tmp4 = tmp0 != tmp0
tmp5 = tmp1 != tmp1
tmp6 = tmp4 > tmp5
tmp7 = tmp2 | tmp6
tmp8 = tmp4 & tmp5
tmp9 = tmp3 | tmp8
tmp10 = tl.full([1], 0, tl.int64)
tmp11 = tl.full([1], 1, tl.int64)
tmp12 = tmp10 < tmp11
tmp13 = tmp9 & tmp12
tmp14 = tmp7 | tmp13
tmp15 = tl.where(tmp14, tmp0, tmp1)
tmp16 = tl.where(tmp14, tmp10, tmp11)
tmp18 = tmp15 > tmp17
tmp19 = tmp15 == tmp17
tmp20 = tmp15 != tmp15
tmp21 = tmp17 != tmp17
tmp22 = tmp20 > tmp21
tmp23 = tmp18 | tmp22
tmp24 = tmp20 & tmp21
tmp25 = tmp19 | tmp24
tmp26 = tl.full([1], 2, tl.int64)
tmp27 = tmp16 < tmp26
tmp28 = tmp25 & tmp27
tmp29 = tmp23 | tmp28
tmp30 = tl.where(tmp29, tmp15, tmp17)
tmp31 = tl.where(tmp29, tmp16, tmp26)
tmp33 = tmp30 > tmp32
tmp34 = tmp30 == tmp32
tmp35 = tmp30 != tmp30
tmp36 = tmp32 != tmp32
tmp37 = tmp35 > tmp36
tmp38 = tmp33 | tmp37
tmp39 = tmp35 & tmp36
tmp40 = tmp34 | tmp39
tmp41 = tl.full([1], 3, tl.int64)
tmp42 = tmp31 < tmp41
tmp43 = tmp40 & tmp42
tmp44 = tmp38 | tmp43
tmp45 = tl.where(tmp44, tmp30, tmp32)
tmp46 = tl.where(tmp44, tmp31, tmp41)
tl.store(out_ptr0 + (x2), tmp46, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/52/c526gjfy5elu5kbtap5rzg44celhnhogq5yibduezar7pvylxzsq.py
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.index]
# Source node to ATen node mapping:
# y => index
# Graph fragment:
# %index : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%arg1_1, [%unsqueeze, %argmax]), kwargs = {})
triton_poi_fused_index_1 = async_compile.triton('triton_poi_fused_index_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_index_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_index_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = (xindex // 16)
x0 = xindex % 16
x2 = (xindex // 64) % 4
x5 = xindex
tmp0 = tl.load(in_ptr0 + (x4), xmask, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 4, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tl.device_assert(((0 <= tmp4) & (tmp4 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp4 < 4")
tmp6 = tl.load(in_ptr1 + (x0 + (16*tmp4) + (64*x2)), xmask)
tl.store(out_ptr0 + (x5), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.int64)
# Topologically Sorted Source Nodes: [argmax], Original ATen: [aten.argmax]
stream0 = get_raw_stream(0)
triton_poi_fused_argmax_0.run(arg0_1, buf0, 64, grid=grid(64), stream=stream0)
del arg0_1
buf1 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.index]
triton_poi_fused_index_1.run(buf0, arg1_1, buf1, 1024, grid=grid(1024), stream=stream0)
del arg1_1
return (buf1, buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
class ApplyHardAttention(torch.nn.Module):
"""
ApplyHardAttention: Apply hard attention for the purpose of time-alignment.
"""
def __init__(self):
super().__init__()
def forward(self, y, att):
self.idx = att.argmax(2)
y = y[torch.arange(y.shape[0]).unsqueeze(-1), self.idx]
return y
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_argmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 16 * x1), xmask)
tmp1 = tl.load(in_ptr0 + (4 + x0 + 16 * x1), xmask)
tmp17 = tl.load(in_ptr0 + (8 + x0 + 16 * x1), xmask)
tmp32 = tl.load(in_ptr0 + (12 + x0 + 16 * x1), xmask)
tmp2 = tmp0 > tmp1
tmp3 = tmp0 == tmp1
tmp4 = tmp0 != tmp0
tmp5 = tmp1 != tmp1
tmp6 = tmp4 > tmp5
tmp7 = tmp2 | tmp6
tmp8 = tmp4 & tmp5
tmp9 = tmp3 | tmp8
tmp10 = tl.full([1], 0, tl.int64)
tmp11 = tl.full([1], 1, tl.int64)
tmp12 = tmp10 < tmp11
tmp13 = tmp9 & tmp12
tmp14 = tmp7 | tmp13
tmp15 = tl.where(tmp14, tmp0, tmp1)
tmp16 = tl.where(tmp14, tmp10, tmp11)
tmp18 = tmp15 > tmp17
tmp19 = tmp15 == tmp17
tmp20 = tmp15 != tmp15
tmp21 = tmp17 != tmp17
tmp22 = tmp20 > tmp21
tmp23 = tmp18 | tmp22
tmp24 = tmp20 & tmp21
tmp25 = tmp19 | tmp24
tmp26 = tl.full([1], 2, tl.int64)
tmp27 = tmp16 < tmp26
tmp28 = tmp25 & tmp27
tmp29 = tmp23 | tmp28
tmp30 = tl.where(tmp29, tmp15, tmp17)
tmp31 = tl.where(tmp29, tmp16, tmp26)
tmp33 = tmp30 > tmp32
tmp34 = tmp30 == tmp32
tmp35 = tmp30 != tmp30
tmp36 = tmp32 != tmp32
tmp37 = tmp35 > tmp36
tmp38 = tmp33 | tmp37
tmp39 = tmp35 & tmp36
tmp40 = tmp34 | tmp39
tmp41 = tl.full([1], 3, tl.int64)
tmp42 = tmp31 < tmp41
tmp43 = tmp40 & tmp42
tmp44 = tmp38 | tmp43
tl.where(tmp44, tmp30, tmp32)
tmp46 = tl.where(tmp44, tmp31, tmp41)
tl.store(out_ptr0 + x2, tmp46, xmask)
@triton.jit
def triton_poi_fused_index_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex // 16
x0 = xindex % 16
x2 = xindex // 64 % 4
x5 = xindex
tmp0 = tl.load(in_ptr0 + x4, xmask, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 4, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tl.device_assert((0 <= tmp4) & (tmp4 < 4) | ~xmask,
'index out of bounds: 0 <= tmp4 < 4')
tmp6 = tl.load(in_ptr1 + (x0 + 16 * tmp4 + 64 * x2), xmask)
tl.store(out_ptr0 + x5, tmp6, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.int64)
get_raw_stream(0)
triton_poi_fused_argmax_0[grid(64)](arg0_1, buf0, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del arg0_1
buf1 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
triton_poi_fused_index_1[grid(1024)](buf0, arg1_1, buf1, 1024,
XBLOCK=256, num_warps=4, num_stages=1)
del arg1_1
return buf1, buf0
class ApplyHardAttentionNew(torch.nn.Module):
"""
ApplyHardAttention: Apply hard attention for the purpose of time-alignment.
"""
def __init__(self):
super().__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| ishine/NISQA | ApplyHardAttention | false | 15,620 | [
"MIT"
]
| 223 | 2c8917f30c4e4bbca3a48e9852301f1e2480a741 | https://github.com/ishine/NISQA/tree/2c8917f30c4e4bbca3a48e9852301f1e2480a741 |
EmissionModel | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/ta/ctad422aodkznkfj5u5toxraol574o7d7mrifa2cvlsjyf73kych.py
# Topologically Sorted Source Nodes: [sub, pow_2, neg, var, mul, truediv, log_scale, sub_1, out, mul_1, out_1], Original ATen: [aten.sub, aten.pow, aten.neg, aten.mul, aten.div, aten.log, aten.sum]
# Source node to ATen node mapping:
# log_scale => log
# mul => mul
# mul_1 => mul_2
# neg => neg
# out => sub_2
# out_1 => sum_1
# pow_2 => pow_2
# sub => sub
# sub_1 => sub_1
# truediv => div
# var => pow_1
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%unsqueeze, %arg0_1), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%pow_2,), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg1_1, 2), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, 2), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%neg, %mul), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%arg1_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%div, %log), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub_1, 0.9189385332046727), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %unsqueeze_2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_2, [2]), kwargs = {})
triton_poi_fused_div_log_mul_neg_pow_sub_sum_0 = async_compile.triton('triton_poi_fused_div_log_mul_neg_pow_sub_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_log_mul_neg_pow_sub_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 10, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_log_mul_neg_pow_sub_sum_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex % 256
x6 = xindex % 64
x3 = (xindex // 256)
x0 = xindex % 4
x7 = xindex
tmp0 = tl.load(in_ptr0 + (x4), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x6), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr2 + (x6), xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr3 + (x6 + (64*x3)), xmask, eviction_policy='evict_last')
tmp20 = tl.load(in_ptr1 + (64 + x6), xmask, eviction_policy='evict_last')
tmp24 = tl.load(in_ptr2 + (64 + x6), xmask, eviction_policy='evict_last')
tmp33 = tl.load(in_ptr1 + (128 + x6), xmask, eviction_policy='evict_last')
tmp37 = tl.load(in_ptr2 + (128 + x6), xmask, eviction_policy='evict_last')
tmp46 = tl.load(in_ptr1 + (192 + x6), xmask, eviction_policy='evict_last')
tmp50 = tl.load(in_ptr2 + (192 + x6), xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp4 = -tmp3
tmp6 = tmp5 * tmp5
tmp7 = 2.0
tmp8 = tmp6 * tmp7
tmp9 = tmp4 / tmp8
tmp10 = tl_math.log(tmp5)
tmp11 = tmp9 - tmp10
tmp12 = 0.9189385332046727
tmp13 = tmp11 - tmp12
tmp15 = x0
tmp16 = tmp15.to(tl.float32)
tmp17 = tmp16 < tmp14
tmp18 = tmp17.to(tl.float32)
tmp19 = tmp13 * tmp18
tmp21 = tmp0 - tmp20
tmp22 = tmp21 * tmp21
tmp23 = -tmp22
tmp25 = tmp24 * tmp24
tmp26 = tmp25 * tmp7
tmp27 = tmp23 / tmp26
tmp28 = tl_math.log(tmp24)
tmp29 = tmp27 - tmp28
tmp30 = tmp29 - tmp12
tmp31 = tmp30 * tmp18
tmp32 = tmp19 + tmp31
tmp34 = tmp0 - tmp33
tmp35 = tmp34 * tmp34
tmp36 = -tmp35
tmp38 = tmp37 * tmp37
tmp39 = tmp38 * tmp7
tmp40 = tmp36 / tmp39
tmp41 = tl_math.log(tmp37)
tmp42 = tmp40 - tmp41
tmp43 = tmp42 - tmp12
tmp44 = tmp43 * tmp18
tmp45 = tmp32 + tmp44
tmp47 = tmp0 - tmp46
tmp48 = tmp47 * tmp47
tmp49 = -tmp48
tmp51 = tmp50 * tmp50
tmp52 = tmp51 * tmp7
tmp53 = tmp49 / tmp52
tmp54 = tl_math.log(tmp50)
tmp55 = tmp53 - tmp54
tmp56 = tmp55 - tmp12
tmp57 = tmp56 * tmp18
tmp58 = tmp45 + tmp57
tl.store(out_ptr0 + (x7), tmp58, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1, arg3_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sub, pow_2, neg, var, mul, truediv, log_scale, sub_1, out, mul_1, out_1], Original ATen: [aten.sub, aten.pow, aten.neg, aten.mul, aten.div, aten.log, aten.sum]
stream0 = get_raw_stream(0)
triton_poi_fused_div_log_mul_neg_pow_sub_sum_0.run(arg2_1, arg0_1, arg1_1, arg3_1, buf0, 1024, grid=grid(1024), stream=stream0)
del arg0_1
del arg1_1
del arg2_1
del arg3_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg3_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1, arg3_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
import torch.distributions as tdist
class EmissionModel(nn.Module):
"""
Emission Model of the HMM, it represents the probability of emitting an observation based on the current state
"""
def __init__(self):
super(EmissionModel, self).__init__()
self.distribution_function = tdist.normal.Normal
def sample(self, means, stds):
"""
Draws a Sample from each distribution
"""
return self.distribution_function(means, stds).sample()
def forward(self, x_t, means, stds, state_lengths):
"""
Calculates the log probability of the the given data (x_t) being observed from states
Args:
x_t (float tensor) : observation at current time step
shape: (batch, feature_dim)
means (float tensor): means of the distributions of hidden states
shape: (batch, hidden_state, feature_dim)
stds (float tensor): standard deviations of the distributions of the hidden states
shape: (feature_dim) tdist.normal.Normal will broadcast to the shape needed
state_lengths (int tensor): Lengths of states in a batch
shape: (batch)
Returns:
out (float tensor): observation log likelihoods, expressing the probability of an observation
being generated from a state i
shape: (batch, hidden_state)
"""
T_max = means.shape[1]
emission_dists = self.distribution_function(means, stds)
x_t = x_t.unsqueeze(1)
out = emission_dists.log_prob(x_t)
mask_tensor = x_t.new_zeros(T_max)
state_lengths_mask = (torch.arange(T_max, out=mask_tensor).expand(
len(state_lengths), T_max) < state_lengths.unsqueeze(1)).unsqueeze(
2)
out = torch.sum(out * state_lengths_mask, dim=2)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch import nn
import torch.distributions as tdist
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_div_log_mul_neg_pow_sub_sum_0(in_ptr0, in_ptr1,
in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex % 256
x6 = xindex % 64
x3 = xindex // 256
x0 = xindex % 4
x7 = xindex
tmp0 = tl.load(in_ptr0 + x4, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x6, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr2 + x6, xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr3 + (x6 + 64 * x3), xmask, eviction_policy=
'evict_last')
tmp20 = tl.load(in_ptr1 + (64 + x6), xmask, eviction_policy='evict_last')
tmp24 = tl.load(in_ptr2 + (64 + x6), xmask, eviction_policy='evict_last')
tmp33 = tl.load(in_ptr1 + (128 + x6), xmask, eviction_policy='evict_last')
tmp37 = tl.load(in_ptr2 + (128 + x6), xmask, eviction_policy='evict_last')
tmp46 = tl.load(in_ptr1 + (192 + x6), xmask, eviction_policy='evict_last')
tmp50 = tl.load(in_ptr2 + (192 + x6), xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp4 = -tmp3
tmp6 = tmp5 * tmp5
tmp7 = 2.0
tmp8 = tmp6 * tmp7
tmp9 = tmp4 / tmp8
tmp10 = tl_math.log(tmp5)
tmp11 = tmp9 - tmp10
tmp12 = 0.9189385332046727
tmp13 = tmp11 - tmp12
tmp15 = x0
tmp16 = tmp15.to(tl.float32)
tmp17 = tmp16 < tmp14
tmp18 = tmp17.to(tl.float32)
tmp19 = tmp13 * tmp18
tmp21 = tmp0 - tmp20
tmp22 = tmp21 * tmp21
tmp23 = -tmp22
tmp25 = tmp24 * tmp24
tmp26 = tmp25 * tmp7
tmp27 = tmp23 / tmp26
tmp28 = tl_math.log(tmp24)
tmp29 = tmp27 - tmp28
tmp30 = tmp29 - tmp12
tmp31 = tmp30 * tmp18
tmp32 = tmp19 + tmp31
tmp34 = tmp0 - tmp33
tmp35 = tmp34 * tmp34
tmp36 = -tmp35
tmp38 = tmp37 * tmp37
tmp39 = tmp38 * tmp7
tmp40 = tmp36 / tmp39
tmp41 = tl_math.log(tmp37)
tmp42 = tmp40 - tmp41
tmp43 = tmp42 - tmp12
tmp44 = tmp43 * tmp18
tmp45 = tmp32 + tmp44
tmp47 = tmp0 - tmp46
tmp48 = tmp47 * tmp47
tmp49 = -tmp48
tmp51 = tmp50 * tmp50
tmp52 = tmp51 * tmp7
tmp53 = tmp49 / tmp52
tmp54 = tl_math.log(tmp50)
tmp55 = tmp53 - tmp54
tmp56 = tmp55 - tmp12
tmp57 = tmp56 * tmp18
tmp58 = tmp45 + tmp57
tl.store(out_ptr0 + x7, tmp58, xmask)
def call(args):
arg0_1, arg1_1, arg2_1, arg3_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_div_log_mul_neg_pow_sub_sum_0[grid(1024)](arg2_1,
arg0_1, arg1_1, arg3_1, buf0, 1024, XBLOCK=128, num_warps=4,
num_stages=1)
del arg0_1
del arg1_1
del arg2_1
del arg3_1
return buf0,
class EmissionModelNew(nn.Module):
"""
Emission Model of the HMM, it represents the probability of emitting an observation based on the current state
"""
def __init__(self):
super(EmissionModelNew, self).__init__()
self.distribution_function = tdist.normal.Normal
def sample(self, means, stds):
"""
Draws a Sample from each distribution
"""
return self.distribution_function(means, stds).sample()
def forward(self, input_0, input_1, input_2, input_3):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
arg3_1 = input_3
output = call([arg0_1, arg1_1, arg2_1, arg3_1])
return output[0]
| ishine/Neural-HMM | EmissionModel | false | 15,621 | [
"MIT"
]
| 66 | c0bc23ab88f831173d2d4db29a84503b80c5cdc4 | https://github.com/ishine/Neural-HMM/tree/c0bc23ab88f831173d2d4db29a84503b80c5cdc4 |
StyleEmbedAttention | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/ou/couxqv7vintblnrg2lfdegqx4yke3lcszey5igsejrw3hhnpsf6b.py
# Topologically Sorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
# Graph fragment:
# %mul_scalar : [num_users=1] = call_function[target=torch.ops.aten.mul.Scalar](args = (%view_7, 0.7071067811865476), kwargs = {})
triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = (xindex // 4)
x0 = xindex % 4
x1 = (xindex // 4) % 4
x2 = (xindex // 16)
x4 = xindex
tmp0 = x3
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x0) + (16*(x1 + (4*x2)))), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr0 + (1 + (4*x0) + (16*((-4) + x1 + (4*x2)))), tmp9 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr0 + (2 + (4*x0) + (16*((-8) + x1 + (4*x2)))), tmp14 & xmask, eviction_policy='evict_last', other=0.0)
tmp16 = tmp0 >= tmp12
tmp17 = tl.full([1], 16, tl.int64)
tmp18 = tmp0 < tmp17
tmp19 = tl.load(in_ptr0 + (3 + (4*x0) + (16*((-12) + x1 + (4*x2)))), tmp16 & xmask, eviction_policy='evict_last', other=0.0)
tmp20 = tl.where(tmp14, tmp15, tmp19)
tmp21 = tl.where(tmp9, tmp10, tmp20)
tmp22 = tl.where(tmp4, tmp5, tmp21)
tmp23 = 0.7071067811865476
tmp24 = tmp22 * tmp23
tl.store(out_ptr0 + (x4), tmp24, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/5j/c5jll3kxtd32cl7pwubrb5oky2mtzckfgip2xbwad7crvvp4zk4r.py
# Topologically Sorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
# Graph fragment:
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_default_2, [-1], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_default_2, %amax_default), kwargs = {})
# %exp_default : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_tensor,), kwargs = {})
triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/kt/cktnex5febczl2ac6zugjmcksgsd5kjdufazv65vtepuwob3cb7a.py
# Topologically Sorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
# Graph fragment:
# %sum_dim_int_list : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_default, [-1], True), kwargs = {})
# %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_default, %sum_dim_int_list), kwargs = {})
# %eq_scalar : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%view_default_2, -inf), kwargs = {})
# %logical_not_default : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%eq_scalar,), kwargs = {})
# %any_dim : [num_users=1] = call_function[target=torch.ops.aten.any.dim](args = (%logical_not_default, -1, True), kwargs = {})
# %logical_not_default_1 : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%any_dim,), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %where_self : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%logical_not_default_1, %full_default, %div_tensor), kwargs = {})
triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp18 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr1 + (x2), xmask)
tmp26 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp29 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp31 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp1 = float("-inf")
tmp2 = tmp0 == tmp1
tmp3 = tmp2 == 0
tmp4 = tmp3.to(tl.int64)
tmp5 = (tmp4 != 0)
tmp7 = tmp6 == tmp1
tmp8 = tmp7 == 0
tmp9 = tmp8.to(tl.int64)
tmp10 = (tmp9 != 0)
tmp11 = tmp5 | tmp10
tmp13 = tmp12 == tmp1
tmp14 = tmp13 == 0
tmp15 = tmp14.to(tl.int64)
tmp16 = (tmp15 != 0)
tmp17 = tmp11 | tmp16
tmp19 = tmp18 == tmp1
tmp20 = tmp19 == 0
tmp21 = tmp20.to(tl.int64)
tmp22 = (tmp21 != 0)
tmp23 = tmp17 | tmp22
tmp24 = tmp23 == 0
tmp28 = tmp26 + tmp27
tmp30 = tmp28 + tmp29
tmp32 = tmp30 + tmp31
tmp33 = tmp25 / tmp32
tmp34 = 0.0
tmp35 = tl.where(tmp24, tmp34, tmp33)
tl.store(out_ptr0 + (x2), tmp35, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/6c/c6crsaoqjud2stxgvkkhmj3xtbibdvvmoqvtaex6hnltwjzpbbxs.py
# Topologically Sorted Source Nodes: [values_1], Original ATen: [aten.stack]
# Source node to ATen node mapping:
# values_1 => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%getitem, %getitem_1, %getitem_2, %getitem_3],), kwargs = {})
triton_poi_fused_stack_3 = async_compile.triton('triton_poi_fused_stack_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_stack_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_stack_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4)
x0 = xindex % 4
x2 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x0) + (16*x1)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr0 + (1 + (4*x0) + (16*((-4) + x1))), tmp9 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr0 + (2 + (4*x0) + (16*((-8) + x1))), tmp14 & xmask, eviction_policy='evict_last', other=0.0)
tmp16 = tmp0 >= tmp12
tmp17 = tl.full([1], 16, tl.int64)
tmp18 = tmp0 < tmp17
tmp19 = tl.load(in_ptr0 + (3 + (4*x0) + (16*((-12) + x1))), tmp16 & xmask, eviction_policy='evict_last', other=0.0)
tmp20 = tl.where(tmp14, tmp15, tmp19)
tmp21 = tl.where(tmp9, tmp10, tmp20)
tmp22 = tl.where(tmp4, tmp5, tmp21)
tl.store(out_ptr0 + (x2), tmp22, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/kf/ckfsmw4uv7prnawl22cqmz365o6sisyjkumvplppudmq7gfh3p6f.py
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat => cat_3
# Graph fragment:
# %cat_3 : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%getitem_12, %getitem_13, %getitem_14, %getitem_15], 3), kwargs = {})
triton_poi_fused_cat_4 = async_compile.triton('triton_poi_fused_cat_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x1), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 2, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr0 + (16 + x1), tmp9 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 3, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr0 + (32 + x1), tmp14 & xmask, eviction_policy='evict_last', other=0.0)
tmp16 = tmp0 >= tmp12
tmp17 = tl.full([1], 4, tl.int64)
tmp18 = tmp0 < tmp17
tmp19 = tl.load(in_ptr0 + (48 + x1), tmp16 & xmask, eviction_policy='evict_last', other=0.0)
tmp20 = tl.where(tmp14, tmp15, tmp19)
tmp21 = tl.where(tmp9, tmp10, tmp20)
tmp22 = tl.where(tmp4, tmp5, tmp21)
tl.store(out_ptr0 + (x2), tmp22, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_5, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [values], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [querys], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_4, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf1)
del primals_3
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [keys], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf2)
del primals_5
buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
stream0 = get_raw_stream(0)
triton_poi_fused_0.run(buf1, buf3, 64, grid=grid(64), stream=stream0)
buf4 = reinterpret_tensor(buf1, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_0.run(buf2, buf4, 64, grid=grid(64), stream=stream0)
buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_1.run(buf5, buf6, 256, grid=grid(256), stream=stream0)
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_2.run(buf5, buf6, buf7, 256, grid=grid(256), stream=stream0)
del buf5
del buf6
buf8 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [values_1], Original ATen: [aten.stack]
triton_poi_fused_stack_3.run(buf0, buf8, 64, grid=grid(64), stream=stream0)
buf9 = reinterpret_tensor(buf0, (16, 4, 1), (4, 1, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 0), 0), out=buf9)
buf10 = empty_strided_cuda((1, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
triton_poi_fused_cat_4.run(buf9, buf10, 64, grid=grid(64), stream=stream0)
del buf9
return (reinterpret_tensor(buf10, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (16, 4), (4, 1), 0), buf7, reinterpret_tensor(buf8, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
import torch.nn as nn
class StyleEmbedAttention(nn.Module):
""" StyleEmbedAttention """
def __init__(self, query_dim, key_dim, num_units, num_heads):
super(StyleEmbedAttention, self).__init__()
self.num_units = num_units
self.num_heads = num_heads
self.key_dim = key_dim
self.W_query = nn.Linear(in_features=query_dim, out_features=
num_units, bias=False)
self.W_key = nn.Linear(in_features=key_dim, out_features=num_units,
bias=False)
self.W_value = nn.Linear(in_features=key_dim, out_features=
num_units, bias=False)
def forward(self, query, key_soft):
"""
input:
query --- [N, T_q, query_dim]
key_soft --- [N, T_k, key_dim]
output:
out --- [N, T_q, num_units]
"""
values = self.W_value(key_soft)
split_size = self.num_units // self.num_heads
values = torch.stack(torch.split(values, split_size, dim=2), dim=0)
out_soft = scores_soft = None
querys = self.W_query(query)
keys = self.W_key(key_soft)
querys = torch.stack(torch.split(querys, split_size, dim=2), dim=0)
keys = torch.stack(torch.split(keys, split_size, dim=2), dim=0)
scores_soft = torch.matmul(querys, keys.transpose(2, 3))
scores_soft = scores_soft / self.key_dim ** 0.5
scores_soft = F.softmax(scores_soft, dim=3)
out_soft = torch.matmul(scores_soft, values)
out_soft = torch.cat(torch.split(out_soft, 1, dim=0), dim=3).squeeze(0)
return out_soft
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'query_dim': 4, 'key_dim': 4, 'num_units': 4, 'num_heads': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex // 4
x0 = xindex % 4
x1 = xindex // 4 % 4
x2 = xindex // 16
x4 = xindex
tmp0 = x3
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x0 + 16 * (x1 + 4 * x2)), tmp4 & xmask,
eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr0 + (1 + 4 * x0 + 16 * (-4 + x1 + 4 * x2)), tmp9 &
xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr0 + (2 + 4 * x0 + 16 * (-8 + x1 + 4 * x2)), tmp14 &
xmask, eviction_policy='evict_last', other=0.0)
tmp16 = tmp0 >= tmp12
tl.full([1], 16, tl.int64)
tmp19 = tl.load(in_ptr0 + (3 + 4 * x0 + 16 * (-12 + x1 + 4 * x2)),
tmp16 & xmask, eviction_policy='evict_last', other=0.0)
tmp20 = tl.where(tmp14, tmp15, tmp19)
tmp21 = tl.where(tmp9, tmp10, tmp20)
tmp22 = tl.where(tmp4, tmp5, tmp21)
tmp23 = 0.7071067811865476
tmp24 = tmp22 * tmp23
tl.store(out_ptr0 + x4, tmp24, xmask)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp18 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp25 = tl.load(in_ptr1 + x2, xmask)
tmp26 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp29 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp31 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp1 = float('-inf')
tmp2 = tmp0 == tmp1
tmp3 = tmp2 == 0
tmp4 = tmp3.to(tl.int64)
tmp5 = tmp4 != 0
tmp7 = tmp6 == tmp1
tmp8 = tmp7 == 0
tmp9 = tmp8.to(tl.int64)
tmp10 = tmp9 != 0
tmp11 = tmp5 | tmp10
tmp13 = tmp12 == tmp1
tmp14 = tmp13 == 0
tmp15 = tmp14.to(tl.int64)
tmp16 = tmp15 != 0
tmp17 = tmp11 | tmp16
tmp19 = tmp18 == tmp1
tmp20 = tmp19 == 0
tmp21 = tmp20.to(tl.int64)
tmp22 = tmp21 != 0
tmp23 = tmp17 | tmp22
tmp24 = tmp23 == 0
tmp28 = tmp26 + tmp27
tmp30 = tmp28 + tmp29
tmp32 = tmp30 + tmp31
tmp33 = tmp25 / tmp32
tmp34 = 0.0
tmp35 = tl.where(tmp24, tmp34, tmp33)
tl.store(out_ptr0 + x2, tmp35, xmask)
@triton.jit
def triton_poi_fused_stack_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x0 = xindex % 4
x2 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x0 + 16 * x1), tmp4 & xmask,
eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr0 + (1 + 4 * x0 + 16 * (-4 + x1)), tmp9 & xmask,
eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr0 + (2 + 4 * x0 + 16 * (-8 + x1)), tmp14 & xmask,
eviction_policy='evict_last', other=0.0)
tmp16 = tmp0 >= tmp12
tl.full([1], 16, tl.int64)
tmp19 = tl.load(in_ptr0 + (3 + 4 * x0 + 16 * (-12 + x1)), tmp16 & xmask,
eviction_policy='evict_last', other=0.0)
tmp20 = tl.where(tmp14, tmp15, tmp19)
tmp21 = tl.where(tmp9, tmp10, tmp20)
tmp22 = tl.where(tmp4, tmp5, tmp21)
tl.store(out_ptr0 + x2, tmp22, xmask)
@triton.jit
def triton_poi_fused_cat_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + x1, tmp4 & xmask, eviction_policy='evict_last',
other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 2, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr0 + (16 + x1), tmp9 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 3, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr0 + (32 + x1), tmp14 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp16 = tmp0 >= tmp12
tl.full([1], 4, tl.int64)
tmp19 = tl.load(in_ptr0 + (48 + x1), tmp16 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp20 = tl.where(tmp14, tmp15, tmp19)
tmp21 = tl.where(tmp9, tmp10, tmp20)
tmp22 = tl.where(tmp4, tmp5, tmp21)
tl.store(out_ptr0 + x2, tmp22, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_5, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_4, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf1)
del primals_3
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf2)
del primals_5
buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_0[grid(64)](buf1, buf3, 64, XBLOCK=64, num_warps=1,
num_stages=1)
buf4 = reinterpret_tensor(buf1, (4, 4, 1, 4), (16, 4, 4, 1), 0)
del buf1
triton_poi_fused_0[grid(64)](buf2, buf4, 64, XBLOCK=64, num_warps=1,
num_stages=1)
buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0),
0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_1[grid(256)](buf5, buf6, 256, XBLOCK=128,
num_warps=4, num_stages=1)
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_2[grid(256)](buf5, buf6, buf7, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del buf5
del buf6
buf8 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0)
del buf2
triton_poi_fused_stack_3[grid(64)](buf0, buf8, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf9 = reinterpret_tensor(buf0, (16, 4, 1), (4, 1, 1), 0)
del buf0
extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 0), 0), out=buf9)
buf10 = empty_strided_cuda((1, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_cat_4[grid(64)](buf9, buf10, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del buf9
return reinterpret_tensor(buf10, (4, 4, 4), (16, 4, 1), 0
), reinterpret_tensor(primals_2, (16, 4), (4, 1), 0
), reinterpret_tensor(primals_4, (16, 4), (4, 1), 0
), buf7, reinterpret_tensor(buf8, (16, 1, 4), (4, 1, 1), 0
), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0
), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0)
class StyleEmbedAttentionNew(nn.Module):
""" StyleEmbedAttention """
def __init__(self, query_dim, key_dim, num_units, num_heads):
super(StyleEmbedAttentionNew, self).__init__()
self.num_units = num_units
self.num_heads = num_heads
self.key_dim = key_dim
self.W_query = nn.Linear(in_features=query_dim, out_features=
num_units, bias=False)
self.W_key = nn.Linear(in_features=key_dim, out_features=num_units,
bias=False)
self.W_value = nn.Linear(in_features=key_dim, out_features=
num_units, bias=False)
def forward(self, input_0, input_1):
primals_1 = self.W_query.weight
primals_3 = self.W_key.weight
primals_5 = self.W_value.weight
primals_2 = input_0
primals_4 = input_1
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| ishine/Comprehensive-Transformer-TTS | StyleEmbedAttention | false | 15,622 | [
"MIT"
]
| 147 | dca252cae50a18464ce2410aa85a21c557c72d7a | https://github.com/ishine/Comprehensive-Transformer-TTS/tree/dca252cae50a18464ce2410aa85a21c557c72d7a |
FCMinibatchStd | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/ez/cezdjrdvix4n53vkbgmmtm2rua3k3msqswxmqb3si4rfcbdzxlhu.py
# Topologically Sorted Source Nodes: [var, add, sqrt, mean, stddev], Original ATen: [aten.var, aten.add, aten.sqrt, aten.mean, aten.repeat]
# Source node to ATen node mapping:
# add => add
# mean => mean
# sqrt => sqrt
# stddev => repeat
# var => var
# Graph fragment:
# %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%primals_1, [0]), kwargs = {correction: 0})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%var, 1e-08), kwargs = {})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sqrt,), kwargs = {})
# %repeat : [num_users=1] = call_function[target=torch.ops.aten.repeat.default](args = (%view, [4, 1]), kwargs = {})
triton_per_fused_add_mean_repeat_sqrt_var_0 = async_compile.triton('triton_per_fused_add_mean_repeat_sqrt_var_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 4],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mean_repeat_sqrt_var_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_mean_repeat_sqrt_var_0(in_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr0 + (4 + r0), None)
tmp3 = tl.load(in_ptr0 + (8 + r0), None)
tmp5 = tl.load(in_ptr0 + (12 + r0), None)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-08
tmp22 = tmp20 + tmp21
tmp23 = libdevice.sqrt(tmp22)
tmp24 = tl.broadcast_to(tmp23, [XBLOCK, RBLOCK])
tmp26 = tl.sum(tmp24, 1)[:, None]
tmp27 = tmp26 / tmp7
tl.store(out_ptr1 + (tl.broadcast_to(5*r0, [XBLOCK, RBLOCK])), tmp27, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/hp/chpm5ld3wg3uvmetecc26mun2smu53ffg5jyudulvuzzwckpa5jr.py
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# out => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %repeat], 1), kwargs = {})
triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tl.store(out_ptr0 + (x0 + (5*x1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/hz/chz6avtnb6z6xf572b5bwtvotjrumcv4flf32djuzr3pgasfn64v.py
# Topologically Sorted Source Nodes: [mul_1], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul_1 => mul_1
# Graph fragment:
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_3, 0.4472135954999579), kwargs = {})
triton_poi_fused_mul_2 = async_compile.triton('triton_poi_fused_mul_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 20
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.4472135954999579
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/j6/cj6eachp67wcugtgllgoau4tiou4rdu3g6lqojrndwijsrudjn56.py
# Topologically Sorted Source Nodes: [add_1, leaky_relu, out_2], Original ATen: [aten.add, aten.leaky_relu, aten.mul]
# Source node to ATen node mapping:
# add_1 => add_1
# leaky_relu => gt, mul_2, where
# out_2 => mul_3
# Graph fragment:
# %add_1 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm, %view_1), kwargs = {})
# %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_1, 0), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_1, 0.2), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %add_1, %mul_2), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where, 1.4142135623730951), kwargs = {})
triton_poi_fused_add_leaky_relu_mul_3 = async_compile.triton('triton_poi_fused_add_leaky_relu_mul_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_leaky_relu_mul_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_leaky_relu_mul_3(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = 1.0
tmp3 = tmp1 * tmp2
tmp4 = tmp0 + tmp3
tmp5 = 0.0
tmp6 = tmp4 > tmp5
tmp7 = 0.2
tmp8 = tmp4 * tmp7
tmp9 = tl.where(tmp6, tmp4, tmp8)
tmp10 = 1.4142135623730951
tmp11 = tmp9 * tmp10
tl.store(out_ptr0 + (x2), tmp6, xmask)
tl.store(out_ptr1 + (x2), tmp11, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 5), (5, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf3 = empty_strided_cuda((4, 5), (5, 1), torch.float32)
buf2 = reinterpret_tensor(buf3, (4, 1), (5, 1), 4) # alias
# Topologically Sorted Source Nodes: [var, add, sqrt, mean, stddev], Original ATen: [aten.var, aten.add, aten.sqrt, aten.mean, aten.repeat]
stream0 = get_raw_stream(0)
triton_per_fused_add_mean_repeat_sqrt_var_0.run(primals_1, buf2, 1, 4, grid=grid(1), stream=stream0)
buf1 = reinterpret_tensor(buf3, (4, 4), (5, 1), 0) # alias
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.cat]
triton_poi_fused_cat_1.run(primals_1, buf1, 16, grid=grid(16), stream=stream0)
del primals_1
buf4 = empty_strided_cuda((4, 5), (5, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul_1], Original ATen: [aten.mul]
triton_poi_fused_mul_2.run(primals_3, buf4, 20, grid=grid(20), stream=stream0)
del primals_3
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.mm]
extern_kernels.mm(buf3, reinterpret_tensor(buf4, (5, 4), (1, 5), 0), out=buf5)
del buf4
buf6 = empty_strided_cuda((4, 4), (4, 1), torch.bool)
buf7 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add_1, leaky_relu, out_2], Original ATen: [aten.add, aten.leaky_relu, aten.mul]
triton_poi_fused_add_leaky_relu_mul_3.run(buf5, primals_2, buf6, buf7, 16, grid=grid(16), stream=stream0)
del buf5
del primals_2
return (buf7, buf3, buf6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 5), (5, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
from torch import nn
from torch.nn import functional as F
def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5):
rest_dim = [1] * (input.ndim - bias.ndim - 1)
if input.ndim == 3:
return F.leaky_relu(input + bias.view(1, *rest_dim, bias.shape[0]),
negative_slope=negative_slope) * scale
else:
return F.leaky_relu(input + bias.view(1, bias.shape[0], *rest_dim),
negative_slope=negative_slope) * scale
class EqualLinear(nn.Module):
def __init__(self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1,
activation=None):
super().__init__()
self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul))
if bias:
self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init))
else:
self.bias = None
self.activation = activation
self.scale = 1 / math.sqrt(in_dim) * lr_mul
self.lr_mul = lr_mul
def forward(self, input):
bias = self.bias * self.lr_mul if self.bias is not None else None
if self.activation:
out = F.linear(input, self.weight * self.scale)
out = fused_leaky_relu(out, bias)
else:
out = F.linear(input, self.weight * self.scale, bias=bias)
return out
def __repr__(self):
return (
f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})'
)
class FCMinibatchStd(nn.Module):
def __init__(self, in_channel, out_channel):
super().__init__()
self.fc = EqualLinear(in_channel + 1, out_channel, activation=
'fused_lrelu')
def forward(self, out):
stddev = torch.sqrt(out.var(0, unbiased=False) + 1e-08).mean().view(
1, 1).repeat(out.size(0), 1)
out = torch.cat([out, stddev], 1)
out = self.fc(out)
return out
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {'in_channel': 4, 'out_channel': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import math
from torch import nn
from torch.nn import functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_add_mean_repeat_sqrt_var_0(in_ptr0, out_ptr1, xnumel,
rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr0 + (4 + r0), None)
tmp3 = tl.load(in_ptr0 + (8 + r0), None)
tmp5 = tl.load(in_ptr0 + (12 + r0), None)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-08
tmp22 = tmp20 + tmp21
tmp23 = libdevice.sqrt(tmp22)
tmp24 = tl.broadcast_to(tmp23, [XBLOCK, RBLOCK])
tmp26 = tl.sum(tmp24, 1)[:, None]
tmp27 = tmp26 / tmp7
tl.store(out_ptr1 + tl.broadcast_to(5 * r0, [XBLOCK, RBLOCK]), tmp27, None)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tl.store(out_ptr0 + (x0 + 5 * x1), tmp0, xmask)
@triton.jit
def triton_poi_fused_mul_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 20
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.4472135954999579
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused_add_leaky_relu_mul_3(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = 1.0
tmp3 = tmp1 * tmp2
tmp4 = tmp0 + tmp3
tmp5 = 0.0
tmp6 = tmp4 > tmp5
tmp7 = 0.2
tmp8 = tmp4 * tmp7
tmp9 = tl.where(tmp6, tmp4, tmp8)
tmp10 = 1.4142135623730951
tmp11 = tmp9 * tmp10
tl.store(out_ptr0 + x2, tmp6, xmask)
tl.store(out_ptr1 + x2, tmp11, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 5), (5, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf3 = empty_strided_cuda((4, 5), (5, 1), torch.float32)
buf2 = reinterpret_tensor(buf3, (4, 1), (5, 1), 4)
get_raw_stream(0)
triton_per_fused_add_mean_repeat_sqrt_var_0[grid(1)](primals_1,
buf2, 1, 4, XBLOCK=1, num_warps=2, num_stages=1)
buf1 = reinterpret_tensor(buf3, (4, 4), (5, 1), 0)
triton_poi_fused_cat_1[grid(16)](primals_1, buf1, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_1
buf4 = empty_strided_cuda((4, 5), (5, 1), torch.float32)
triton_poi_fused_mul_2[grid(20)](primals_3, buf4, 20, XBLOCK=32,
num_warps=1, num_stages=1)
del primals_3
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf3, reinterpret_tensor(buf4, (5, 4), (1, 5), 0),
out=buf5)
del buf4
buf6 = empty_strided_cuda((4, 4), (4, 1), torch.bool)
buf7 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_add_leaky_relu_mul_3[grid(16)](buf5, primals_2,
buf6, buf7, 16, XBLOCK=16, num_warps=1, num_stages=1)
del buf5
del primals_2
return buf7, buf3, buf6
def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5):
rest_dim = [1] * (input.ndim - bias.ndim - 1)
if input.ndim == 3:
return F.leaky_relu(input + bias.view(1, *rest_dim, bias.shape[0]),
negative_slope=negative_slope) * scale
else:
return F.leaky_relu(input + bias.view(1, bias.shape[0], *rest_dim),
negative_slope=negative_slope) * scale
class EqualLinear(nn.Module):
def __init__(self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1,
activation=None):
super().__init__()
self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul))
if bias:
self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init))
else:
self.bias = None
self.activation = activation
self.scale = 1 / math.sqrt(in_dim) * lr_mul
self.lr_mul = lr_mul
def forward(self, input):
bias = self.bias * self.lr_mul if self.bias is not None else None
if self.activation:
out = F.linear(input, self.weight * self.scale)
out = fused_leaky_relu(out, bias)
else:
out = F.linear(input, self.weight * self.scale, bias=bias)
return out
def __repr__(self):
return (
f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})'
)
class FCMinibatchStdNew(nn.Module):
def __init__(self, in_channel, out_channel):
super().__init__()
self.fc = EqualLinear(in_channel + 1, out_channel, activation=
'fused_lrelu')
def forward(self, input_0):
primals_3 = self.fc.weight
primals_2 = self.fc.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| ishine/GANsNRoses | FCMinibatchStd | false | 15,623 | [
"MIT"
]
| 969 | 414e9e77c3df47d4ecf7941b5dcfdffec67403ee | https://github.com/ishine/GANsNRoses/tree/414e9e77c3df47d4ecf7941b5dcfdffec67403ee |
ModulatedConv2d | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/wi/cwiyl3lwwtancorrifw77xt3aqb4lermdintht45zvkj3bg54nbl.py
# Topologically Sorted Source Nodes: [mul_1], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul_1 => mul_1
# Graph fragment:
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_3, 0.5), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/2o/c2oqkq7zaubqmw7vuixxlseb2ff5jzqqbyczicxlmsahuxwdpdyp.py
# Topologically Sorted Source Nodes: [bias], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# bias => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, 1), kwargs = {})
triton_poi_fused_mul_1 = async_compile.triton('triton_poi_fused_mul_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ri/criuvsdl3sferb4bb6ci5zaps3wys7xxcpybz7vfo2ba4q7cuq6c.py
# Topologically Sorted Source Nodes: [mul_2, weight, pow_1, sum_1, add, demod, weight_1], Original ATen: [aten.mul, aten.pow, aten.sum, aten.add, aten.rsqrt]
# Source node to ATen node mapping:
# add => add
# demod => rsqrt
# mul_2 => mul_2
# pow_1 => pow_1
# sum_1 => sum_1
# weight => mul_3
# weight_1 => mul_4
# Graph fragment:
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_5, 0.125), kwargs = {})
# %mul_3 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %view), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%mul_3, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [2, 3, 4]), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, 1e-08), kwargs = {})
# %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_3, %view_1), kwargs = {})
triton_per_fused_add_mul_pow_rsqrt_sum_2 = async_compile.triton('triton_per_fused_add_mul_pow_rsqrt_sum_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 64],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mul_pow_rsqrt_sum_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_mul_pow_rsqrt_sum_2(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r5 = rindex
x0 = xindex % 4
r3 = (rindex // 16)
x1 = (xindex // 4)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (r5 + (64*x0)), xmask, eviction_policy='evict_last', other=0.0)
tmp3 = tl.load(in_ptr1 + (r3 + (4*x1)), xmask, eviction_policy='evict_last', other=0.0)
tmp1 = 0.125
tmp2 = tmp0 * tmp1
tmp4 = tmp2 * tmp3
tmp5 = tmp4 * tmp4
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = 1e-08
tmp11 = tmp9 + tmp10
tmp12 = libdevice.rsqrt(tmp11)
tmp13 = tmp4 * tmp12
tl.debug_barrier()
tl.store(in_out_ptr0 + (x4), tmp12, xmask)
tl.store(out_ptr0 + (r5 + (64*x4)), tmp13, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul_1], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(primals_3, buf0, 16, grid=grid(16), stream=stream0)
del primals_3
buf1 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [bias], Original ATen: [aten.mul]
triton_poi_fused_mul_1.run(primals_2, buf1, 4, grid=grid(4), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [bias, out], Original ATen: [aten.mul, aten.addmm]
extern_kernels.addmm(buf1, primals_4, reinterpret_tensor(buf0, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del buf1
buf3 = buf0; del buf0 # reuse
buf4 = buf3; del buf3 # reuse
buf5 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul_2, weight, pow_1, sum_1, add, demod, weight_1], Original ATen: [aten.mul, aten.pow, aten.sum, aten.add, aten.rsqrt]
triton_per_fused_add_mul_pow_rsqrt_sum_2.run(buf4, primals_5, buf2, buf5, 16, 64, grid=grid(16), stream=stream0)
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(reinterpret_tensor(primals_1, (1, 16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf5, (16, 4, 4, 4), (64, 16, 4, 1), 0), stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf6, (1, 16, 5, 5), (400, 25, 5, 1))
return (reinterpret_tensor(buf6, (4, 4, 5, 5), (100, 25, 5, 1), 0), primals_4, primals_5, buf2, buf4, reinterpret_tensor(buf5, (16, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_1, (1, 16, 4, 4), (256, 16, 4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((1, 4, 4, 4, 4), (256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
from torch import nn
from torch.nn import functional as F
def make_kernel(k):
k = torch.tensor(k, dtype=torch.float32)
if k.ndim == 1:
k = k[None, :] * k[:, None]
k /= k.sum()
return k
def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0,
pad_x1, pad_y0, pad_y1):
_, channel, in_h, in_w = input.shape
input = input.reshape(-1, in_h, in_w, 1)
_, in_h, in_w, minor = input.shape
kernel_h, kernel_w = kernel.shape
out = input.view(-1, in_h, 1, in_w, 1, minor)
out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
out = out.view(-1, in_h * up_y, in_w * up_x, minor)
out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0),
max(pad_y1, 0)])
out = out[:, max(-pad_y0, 0):out.shape[1] - max(-pad_y1, 0), max(-
pad_x0, 0):out.shape[2] - max(-pad_x1, 0), :]
out = out.permute(0, 3, 1, 2)
out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x +
pad_x0 + pad_x1])
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
out = F.conv2d(out, w)
out = out.reshape(-1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h +
1, in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1)
out = out.permute(0, 2, 3, 1)
out = out[:, ::down_y, ::down_x, :]
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
return out.view(-1, channel, out_h, out_w)
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
out = upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1
], pad[0], pad[1])
return out
def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5):
rest_dim = [1] * (input.ndim - bias.ndim - 1)
if input.ndim == 3:
return F.leaky_relu(input + bias.view(1, *rest_dim, bias.shape[0]),
negative_slope=negative_slope) * scale
else:
return F.leaky_relu(input + bias.view(1, bias.shape[0], *rest_dim),
negative_slope=negative_slope) * scale
class Blur(nn.Module):
def __init__(self, kernel, pad, upsample_factor=1):
super().__init__()
kernel = make_kernel(kernel)
if upsample_factor > 1:
kernel = kernel * upsample_factor ** 2
self.register_buffer('kernel', kernel)
self.pad = pad
def forward(self, input):
out = upfirdn2d(input, self.kernel, pad=self.pad)
return out
class EqualLinear(nn.Module):
def __init__(self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1,
activation=None):
super().__init__()
self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul))
if bias:
self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init))
else:
self.bias = None
self.activation = activation
self.scale = 1 / math.sqrt(in_dim) * lr_mul
self.lr_mul = lr_mul
def forward(self, input):
bias = self.bias * self.lr_mul if self.bias is not None else None
if self.activation:
out = F.linear(input, self.weight * self.scale)
out = fused_leaky_relu(out, bias)
else:
out = F.linear(input, self.weight * self.scale, bias=bias)
return out
def __repr__(self):
return (
f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})'
)
class ModulatedConv2d(nn.Module):
def __init__(self, in_channel, out_channel, kernel_size, style_dim,
use_style=True, demodulate=True, upsample=False, downsample=False,
blur_kernel=[1, 3, 3, 1]):
super().__init__()
self.eps = 1e-08
self.kernel_size = kernel_size
self.in_channel = in_channel
self.out_channel = out_channel
self.upsample = upsample
self.downsample = downsample
self.use_style = use_style
if upsample:
factor = 2
p = len(blur_kernel) - factor - (kernel_size - 1)
pad0 = (p + 1) // 2 + factor - 1
pad1 = p // 2 + 1
self.blur = Blur(blur_kernel, pad=(pad0, pad1), upsample_factor
=factor)
if downsample:
factor = 2
p = len(blur_kernel) - factor + (kernel_size - 1)
pad0 = (p + 1) // 2
pad1 = p // 2
self.blur = Blur(blur_kernel, pad=(pad0, pad1))
fan_in = in_channel * kernel_size ** 2
self.scale = 1 / math.sqrt(fan_in)
self.padding = kernel_size // 2
self.weight = nn.Parameter(torch.randn(1, out_channel, in_channel,
kernel_size, kernel_size))
if use_style:
self.modulation = EqualLinear(style_dim, in_channel, bias_init=1)
else:
self.modulation = nn.Parameter(torch.Tensor(1, 1, in_channel, 1,
1).fill_(1))
self.demodulate = demodulate
def __repr__(self):
return (
f'{self.__class__.__name__}({self.in_channel}, {self.out_channel}, {self.kernel_size}, upsample={self.upsample}, downsample={self.downsample})'
)
def forward(self, input, style):
batch, in_channel, height, width = input.shape
if self.use_style:
style = self.modulation(style).view(batch, 1, in_channel, 1, 1)
weight = self.scale * self.weight * style
else:
weight = self.scale * self.weight.expand(batch, -1, -1, -1, -1
) * self.modulation
if self.demodulate:
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-08)
weight = weight * demod.view(batch, self.out_channel, 1, 1, 1)
weight = weight.view(batch * self.out_channel, in_channel, self.
kernel_size, self.kernel_size)
if self.upsample:
input = input.view(1, batch * in_channel, height, width)
weight = weight.view(batch, self.out_channel, in_channel, self.
kernel_size, self.kernel_size)
weight = weight.transpose(1, 2).reshape(batch * in_channel,
self.out_channel, self.kernel_size, self.kernel_size)
out = F.conv_transpose2d(input, weight, padding=0, stride=2,
groups=batch)
_, _, height, width = out.shape
out = out.view(batch, self.out_channel, height, width)
out = self.blur(out)
elif self.downsample:
input = self.blur(input)
_, _, height, width = input.shape
input = input.view(1, batch * in_channel, height, width)
out = F.conv2d(input, weight, padding=0, stride=2, groups=batch)
_, _, height, width = out.shape
out = out.view(batch, self.out_channel, height, width)
else:
input = input.view(1, batch * in_channel, height, width)
out = F.conv2d(input, weight, padding=self.padding, groups=batch)
_, _, height, width = out.shape
out = out.view(batch, self.out_channel, height, width)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'in_channel': 4, 'out_channel': 4, 'kernel_size': 4,
'style_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import math
from torch import nn
from torch.nn import functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused_mul_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_per_fused_add_mul_pow_rsqrt_sum_2(in_out_ptr0, in_ptr0, in_ptr1,
out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r5 = rindex
x0 = xindex % 4
r3 = rindex // 16
x1 = xindex // 4
x4 = xindex
tmp0 = tl.load(in_ptr0 + (r5 + 64 * x0), xmask, eviction_policy=
'evict_last', other=0.0)
tmp3 = tl.load(in_ptr1 + (r3 + 4 * x1), xmask, eviction_policy=
'evict_last', other=0.0)
tmp1 = 0.125
tmp2 = tmp0 * tmp1
tmp4 = tmp2 * tmp3
tmp5 = tmp4 * tmp4
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = 1e-08
tmp11 = tmp9 + tmp10
tmp12 = libdevice.rsqrt(tmp11)
tmp13 = tmp4 * tmp12
tl.debug_barrier()
tl.store(in_out_ptr0 + x4, tmp12, xmask)
tl.store(out_ptr0 + (r5 + 64 * x4), tmp13, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_0[grid(16)](primals_3, buf0, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_3
buf1 = empty_strided_cuda((4,), (1,), torch.float32)
triton_poi_fused_mul_1[grid(4)](primals_2, buf1, 4, XBLOCK=4,
num_warps=1, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(buf1, primals_4, reinterpret_tensor(buf0, (4,
4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del buf1
buf3 = buf0
del buf0
buf4 = buf3
del buf3
buf5 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
triton_per_fused_add_mul_pow_rsqrt_sum_2[grid(16)](buf4, primals_5,
buf2, buf5, 16, 64, XBLOCK=8, num_warps=4, num_stages=1)
buf6 = extern_kernels.convolution(reinterpret_tensor(primals_1, (1,
16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf5, (16, 4,
4, 4), (64, 16, 4, 1), 0), stride=(1, 1), padding=(2, 2),
dilation=(1, 1), transposed=False, output_padding=(0, 0),
groups=4, bias=None)
assert_size_stride(buf6, (1, 16, 5, 5), (400, 25, 5, 1))
return reinterpret_tensor(buf6, (4, 4, 5, 5), (100, 25, 5, 1), 0
), primals_4, primals_5, buf2, buf4, reinterpret_tensor(buf5, (16,
4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_1, (1, 16,
4, 4), (256, 16, 4, 1), 0)
def make_kernel(k):
k = torch.tensor(k, dtype=torch.float32)
if k.ndim == 1:
k = k[None, :] * k[:, None]
k /= k.sum()
return k
def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0,
pad_x1, pad_y0, pad_y1):
_, channel, in_h, in_w = input.shape
input = input.reshape(-1, in_h, in_w, 1)
_, in_h, in_w, minor = input.shape
kernel_h, kernel_w = kernel.shape
out = input.view(-1, in_h, 1, in_w, 1, minor)
out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
out = out.view(-1, in_h * up_y, in_w * up_x, minor)
out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0),
max(pad_y1, 0)])
out = out[:, max(-pad_y0, 0):out.shape[1] - max(-pad_y1, 0), max(-
pad_x0, 0):out.shape[2] - max(-pad_x1, 0), :]
out = out.permute(0, 3, 1, 2)
out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x +
pad_x0 + pad_x1])
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
out = F.conv2d(out, w)
out = out.reshape(-1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h +
1, in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1)
out = out.permute(0, 2, 3, 1)
out = out[:, ::down_y, ::down_x, :]
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
return out.view(-1, channel, out_h, out_w)
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
out = upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1
], pad[0], pad[1])
return out
def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5):
rest_dim = [1] * (input.ndim - bias.ndim - 1)
if input.ndim == 3:
return F.leaky_relu(input + bias.view(1, *rest_dim, bias.shape[0]),
negative_slope=negative_slope) * scale
else:
return F.leaky_relu(input + bias.view(1, bias.shape[0], *rest_dim),
negative_slope=negative_slope) * scale
class Blur(nn.Module):
def __init__(self, kernel, pad, upsample_factor=1):
super().__init__()
kernel = make_kernel(kernel)
if upsample_factor > 1:
kernel = kernel * upsample_factor ** 2
self.register_buffer('kernel', kernel)
self.pad = pad
def forward(self, input):
out = upfirdn2d(input, self.kernel, pad=self.pad)
return out
class EqualLinear(nn.Module):
def __init__(self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1,
activation=None):
super().__init__()
self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul))
if bias:
self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init))
else:
self.bias = None
self.activation = activation
self.scale = 1 / math.sqrt(in_dim) * lr_mul
self.lr_mul = lr_mul
def forward(self, input):
bias = self.bias * self.lr_mul if self.bias is not None else None
if self.activation:
out = F.linear(input, self.weight * self.scale)
out = fused_leaky_relu(out, bias)
else:
out = F.linear(input, self.weight * self.scale, bias=bias)
return out
def __repr__(self):
return (
f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})'
)
class ModulatedConv2dNew(nn.Module):
def __init__(self, in_channel, out_channel, kernel_size, style_dim,
use_style=True, demodulate=True, upsample=False, downsample=False,
blur_kernel=[1, 3, 3, 1]):
super().__init__()
self.eps = 1e-08
self.kernel_size = kernel_size
self.in_channel = in_channel
self.out_channel = out_channel
self.upsample = upsample
self.downsample = downsample
self.use_style = use_style
if upsample:
factor = 2
p = len(blur_kernel) - factor - (kernel_size - 1)
pad0 = (p + 1) // 2 + factor - 1
pad1 = p // 2 + 1
self.blur = Blur(blur_kernel, pad=(pad0, pad1), upsample_factor
=factor)
if downsample:
factor = 2
p = len(blur_kernel) - factor + (kernel_size - 1)
pad0 = (p + 1) // 2
pad1 = p // 2
self.blur = Blur(blur_kernel, pad=(pad0, pad1))
fan_in = in_channel * kernel_size ** 2
self.scale = 1 / math.sqrt(fan_in)
self.padding = kernel_size // 2
self.weight = nn.Parameter(torch.randn(1, out_channel, in_channel,
kernel_size, kernel_size))
if use_style:
self.modulation = EqualLinear(style_dim, in_channel, bias_init=1)
else:
self.modulation = nn.Parameter(torch.Tensor(1, 1, in_channel, 1,
1).fill_(1))
self.demodulate = demodulate
def __repr__(self):
return (
f'{self.__class__.__name__}({self.in_channel}, {self.out_channel}, {self.kernel_size}, upsample={self.upsample}, downsample={self.downsample})'
)
def forward(self, input_0, input_1):
primals_5 = self.weight
primals_3 = self.modulation.weight
primals_2 = self.modulation.bias
primals_1 = input_0
primals_4 = input_1
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| ishine/GANsNRoses | ModulatedConv2d | false | 15,624 | [
"MIT"
]
| 969 | 414e9e77c3df47d4ecf7941b5dcfdffec67403ee | https://github.com/ishine/GANsNRoses/tree/414e9e77c3df47d4ecf7941b5dcfdffec67403ee |
StyleAdaptiveLayerNorm | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/hp/chpdwpegv6lvistek2wqgimtufecqvfp6grp5rpblk5yjicjzqd2.py
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# out => add, rsqrt, var_mean
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_4, [3]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
triton_poi_fused_native_layer_norm_0 = async_compile.triton('triton_poi_fused_native_layer_norm_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + (x0), tmp8, xmask)
tl.store(out_ptr1 + (x0), tmp23, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/yw/cywz2ylkwkm3dccw3hfne7zd3nl6ogvdalsh44ef2rrsm2a4ko57.py
# Topologically Sorted Source Nodes: [out, mul, out_1], Original ATen: [aten.native_layer_norm, aten.mul, aten.add]
# Source node to ATen node mapping:
# mul => mul_1
# out => add, mul, rsqrt, sub, var_mean
# out_1 => add_1
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_4, [3]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_4, %getitem_3), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem, %mul), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %getitem_1), kwargs = {})
triton_poi_fused_add_mul_native_layer_norm_1 = async_compile.triton('triton_poi_fused_add_mul_native_layer_norm_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4) % 16
x3 = (xindex // 256)
x4 = xindex % 256
x5 = (xindex // 4) % 64
x7 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (8*x1) + (128*x3)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x4), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr3 + (x5), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr4 + (x5), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (4 + x0 + (8*x1) + (128*x3)), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr1 + (4 + x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 - tmp4
tmp7 = tmp5 * tmp6
tmp8 = tmp2 * tmp7
tmp11 = tmp9 + tmp10
tmp12 = tmp8 + tmp11
tl.store(out_ptr0 + (x7), tmp12, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (8, 4), (4, 1))
assert_size_stride(primals_2, (8, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 8), (8, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 8), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.native_layer_norm]
stream0 = get_raw_stream(0)
triton_poi_fused_native_layer_norm_0.run(primals_4, buf1, buf2, 64, grid=grid(64), stream=stream0)
buf3 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out, mul, out_1], Original ATen: [aten.native_layer_norm, aten.mul, aten.add]
triton_poi_fused_add_mul_native_layer_norm_1.run(buf0, primals_2, primals_4, buf1, buf2, buf3, 1024, grid=grid(1024), stream=stream0)
del buf0
del buf1
del buf2
del primals_2
return (buf3, primals_4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((8, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.utils.data.distributed
class AffineLinear(nn.Module):
def __init__(self, in_dim, out_dim):
super(AffineLinear, self).__init__()
affine = nn.Linear(in_dim, out_dim)
self.affine = affine
def forward(self, input):
return self.affine(input)
class StyleAdaptiveLayerNorm(nn.Module):
def __init__(self, in_channel, style_dim):
super(StyleAdaptiveLayerNorm, self).__init__()
self.in_channel = in_channel
self.norm = nn.LayerNorm(in_channel, elementwise_affine=False)
self.style = AffineLinear(style_dim, in_channel * 2)
self.style.affine.bias.data[:in_channel] = 1
self.style.affine.bias.data[in_channel:] = 0
def forward(self, input, style_code):
style = self.style(style_code).unsqueeze(1)
gamma, beta = style.chunk(2, dim=-1)
out = self.norm(input)
out = gamma * out + beta
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channel': 4, 'style_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
import torch.utils.data.distributed
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + x0, tmp8, xmask)
tl.store(out_ptr1 + x0, tmp23, xmask)
@triton.jit
def triton_poi_fused_add_mul_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4 % 16
x3 = xindex // 256
x4 = xindex % 256
x5 = xindex // 4 % 64
x7 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 8 * x1 + 128 * x3), xmask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + x4, xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr3 + x5, xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr4 + x5, xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (4 + x0 + 8 * x1 + 128 * x3), xmask,
eviction_policy='evict_last')
tmp10 = tl.load(in_ptr1 + (4 + x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 - tmp4
tmp7 = tmp5 * tmp6
tmp8 = tmp2 * tmp7
tmp11 = tmp9 + tmp10
tmp12 = tmp8 + tmp11
tl.store(out_ptr0 + x7, tmp12, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (8, 4), (4, 1))
assert_size_stride(primals_2, (8,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 8), (8, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 8), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
get_raw_stream(0)
triton_poi_fused_native_layer_norm_0[grid(64)](primals_4, buf1,
buf2, 64, XBLOCK=64, num_warps=1, num_stages=1)
buf3 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
triton_poi_fused_add_mul_native_layer_norm_1[grid(1024)](buf0,
primals_2, primals_4, buf1, buf2, buf3, 1024, XBLOCK=256,
num_warps=4, num_stages=1)
del buf0
del buf1
del buf2
del primals_2
return buf3, primals_4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0)
class AffineLinear(nn.Module):
def __init__(self, in_dim, out_dim):
super(AffineLinear, self).__init__()
affine = nn.Linear(in_dim, out_dim)
self.affine = affine
def forward(self, input):
return self.affine(input)
class StyleAdaptiveLayerNormNew(nn.Module):
def __init__(self, in_channel, style_dim):
super(StyleAdaptiveLayerNormNew, self).__init__()
self.in_channel = in_channel
self.norm = nn.LayerNorm(in_channel, elementwise_affine=False)
self.style = AffineLinear(style_dim, in_channel * 2)
self.style.affine.bias.data[:in_channel] = 1
self.style.affine.bias.data[in_channel:] = 0
def forward(self, input_0, input_1):
primals_1 = self.style.affine.weight
primals_2 = self.style.affine.bias
primals_3 = input_0
primals_4 = input_1
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
| ishine/StyleSpeech-1 | StyleAdaptiveLayerNorm | false | 15,625 | [
"MIT"
]
| 106 | f939cf9cb981db7b738fa9c9c9a7fea2dfdd0766 | https://github.com/ishine/StyleSpeech-1/tree/f939cf9cb981db7b738fa9c9c9a7fea2dfdd0766 |
_DynamicGates | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/5l/c5l5ekrfmgr3qnr4agpwzt4jg7o426phqlvb4imwrtbcvhsn5ct2.py
# Topologically Sorted Source Nodes: [add, gates], Original ATen: [aten.add]
# Source node to ATen node mapping:
# add => add
# gates => add_1
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %view_3), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %primals_5), kwargs = {})
triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 768
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 12
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x2), xmask)
tmp3 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 12), (12, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 12), (12, 1))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (12, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 12), (12, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), primals_1, out=buf0)
del primals_1
buf1 = empty_strided_cuda((64, 12), (12, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), primals_3, out=buf1)
del primals_3
buf2 = reinterpret_tensor(buf0, (4, 4, 4, 12), (192, 48, 12, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [add, gates], Original ATen: [aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_0.run(buf2, buf1, primals_5, 768, grid=grid(768), stream=stream0)
del buf1
del primals_5
return (buf2, reinterpret_tensor(primals_4, (4, 64), (1, 4), 0), reinterpret_tensor(primals_2, (4, 64), (1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 12), (12, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 12), (12, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from _paritybench_helpers import _mock_config
import torch
import torch.nn as nn
class _DynamicGates(nn.Module):
"""Internal class to wrap the dynamic gate parameters into a dedicated PyTorch Module"""
def __init__(self, cfg: 'Config', input_size: 'int'):
super(_DynamicGates, self).__init__()
self.cfg = cfg
self.weight_ih = nn.Parameter(torch.FloatTensor(input_size, 3 * cfg
.hidden_size))
self.weight_hh = nn.Parameter(torch.FloatTensor(cfg.hidden_size, 3 *
cfg.hidden_size))
self.bias = nn.Parameter(torch.FloatTensor(3 * cfg.hidden_size))
self._reset_parameters()
def _reset_parameters(self):
"""Special initialization of certain model weights."""
nn.init.orthogonal_(self.weight_ih.data)
weight_hh_data = torch.eye(self.cfg.hidden_size)
weight_hh_data = weight_hh_data.repeat(1, 3)
self.weight_hh.data = weight_hh_data
nn.init.constant_(self.bias.data, val=0)
if self.cfg.initial_forget_bias is not None:
self.bias.data[:self.cfg.hidden_size
] = self.cfg.initial_forget_bias
def forward(self, h: 'torch.Tensor', x_d: 'torch.Tensor'):
gates = h @ self.weight_hh + x_d @ self.weight_ih + self.bias
return gates
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'cfg': _mock_config(hidden_size=4, initial_forget_bias=4),
'input_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK:
tl.constexpr):
xnumel = 768
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 12
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x2, xmask)
tmp3 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tl.store(in_out_ptr0 + x2, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 12), (12, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 12), (12, 1))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (12,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 12), (12, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0),
primals_1, out=buf0)
del primals_1
buf1 = empty_strided_cuda((64, 12), (12, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_4, (64, 4), (4, 1), 0),
primals_3, out=buf1)
del primals_3
buf2 = reinterpret_tensor(buf0, (4, 4, 4, 12), (192, 48, 12, 1), 0)
del buf0
get_raw_stream(0)
triton_poi_fused_add_0[grid(768)](buf2, buf1, primals_5, 768,
XBLOCK=256, num_warps=4, num_stages=1)
del buf1
del primals_5
return buf2, reinterpret_tensor(primals_4, (4, 64), (1, 4), 0
), reinterpret_tensor(primals_2, (4, 64), (1, 4), 0)
class _DynamicGatesNew(nn.Module):
"""Internal class to wrap the dynamic gate parameters into a dedicated PyTorch Module"""
def __init__(self, cfg: 'Config', input_size: 'int'):
super(_DynamicGatesNew, self).__init__()
self.cfg = cfg
self.weight_ih = nn.Parameter(torch.FloatTensor(input_size, 3 * cfg
.hidden_size))
self.weight_hh = nn.Parameter(torch.FloatTensor(cfg.hidden_size, 3 *
cfg.hidden_size))
self.bias = nn.Parameter(torch.FloatTensor(3 * cfg.hidden_size))
self._reset_parameters()
def _reset_parameters(self):
"""Special initialization of certain model weights."""
nn.init.orthogonal_(self.weight_ih.data)
weight_hh_data = torch.eye(self.cfg.hidden_size)
weight_hh_data = weight_hh_data.repeat(1, 3)
self.weight_hh.data = weight_hh_data
nn.init.constant_(self.bias.data, val=0)
if self.cfg.initial_forget_bias is not None:
self.bias.data[:self.cfg.hidden_size
] = self.cfg.initial_forget_bias
def forward(self, input_0, input_1):
primals_1 = self.weight_ih
primals_3 = self.weight_hh
primals_5 = self.bias
primals_2 = input_0
primals_4 = input_1
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| DavidChoi76/neuralhydrology | _DynamicGates | false | 15,626 | [
"BSD-3-Clause"
]
| 144 | a4c284b92934ee973c8b3fedf8a60df60c8feae1 | https://github.com/DavidChoi76/neuralhydrology/tree/a4c284b92934ee973c8b3fedf8a60df60c8feae1 |
FastAttention | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/da/cdagjo27gj7mwobx6n2o4xjkim6ocjodht5oelr4yz332bexu5n7.py
# Topologically Sorted Source Nodes: [sub, mask_1, query_for_score, query_for_score_1, softmax], Original ATen: [aten.rsub, aten.mul, aten.div, aten.add, aten._softmax]
# Source node to ATen node mapping:
# mask_1 => mul
# query_for_score => div
# query_for_score_1 => add
# softmax => amax, clone, exp, sub_1, sum_1
# sub => sub
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %unsqueeze), kwargs = {})
# %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, -10000.0), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%permute_3, 1.0), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div, %mul), kwargs = {})
# %clone : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%add,), kwargs = {memory_format: torch.contiguous_format})
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%clone, [-1], True), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clone, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
triton_poi_fused__softmax_add_div_mul_rsub_0 = async_compile.triton('triton_poi_fused__softmax_add_div_mul_rsub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_add_div_mul_rsub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_add_div_mul_rsub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (16*x1)), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr2 + (4*x1), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr0 + (4 + x0 + (16*x1)), xmask)
tmp13 = tl.load(in_ptr2 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp18 = tl.load(in_ptr0 + (8 + x0 + (16*x1)), xmask)
tmp21 = tl.load(in_ptr2 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp26 = tl.load(in_ptr0 + (12 + x0 + (16*x1)), xmask)
tmp29 = tl.load(in_ptr2 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tmp6 = tmp3 - tmp5
tmp7 = -10000.0
tmp8 = tmp6 * tmp7
tmp9 = tmp4 + tmp8
tmp11 = tmp10 + tmp1
tmp12 = tmp11 * tmp3
tmp14 = tmp3 - tmp13
tmp15 = tmp14 * tmp7
tmp16 = tmp12 + tmp15
tmp17 = triton_helpers.maximum(tmp9, tmp16)
tmp19 = tmp18 + tmp1
tmp20 = tmp19 * tmp3
tmp22 = tmp3 - tmp21
tmp23 = tmp22 * tmp7
tmp24 = tmp20 + tmp23
tmp25 = triton_helpers.maximum(tmp17, tmp24)
tmp27 = tmp26 + tmp1
tmp28 = tmp27 * tmp3
tmp30 = tmp3 - tmp29
tmp31 = tmp30 * tmp7
tmp32 = tmp28 + tmp31
tmp33 = triton_helpers.maximum(tmp25, tmp32)
tmp34 = tmp9 - tmp33
tmp35 = tl_math.exp(tmp34)
tmp36 = tmp16 - tmp33
tmp37 = tl_math.exp(tmp36)
tmp38 = tmp35 + tmp37
tmp39 = tmp24 - tmp33
tmp40 = tl_math.exp(tmp39)
tmp41 = tmp38 + tmp40
tmp42 = tmp32 - tmp33
tmp43 = tl_math.exp(tmp42)
tmp44 = tmp41 + tmp43
tl.store(out_ptr0 + (x2), tmp33, xmask)
tl.store(out_ptr1 + (x2), tmp44, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/wm/cwmk76q7cnp6r4ooshjnqn572hfr3p6ih7ndmrcltprhdaqttwfu.py
# Topologically Sorted Source Nodes: [sub, mask_1, query_for_score, query_for_score_1, softmax], Original ATen: [aten.rsub, aten.mul, aten.div, aten.add, aten._softmax]
# Source node to ATen node mapping:
# mask_1 => mul
# query_for_score => div
# query_for_score_1 => add
# softmax => clone, div_1, exp, sub_1
# sub => sub
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %unsqueeze), kwargs = {})
# %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, -10000.0), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%permute_3, 1.0), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div, %mul), kwargs = {})
# %clone : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%add,), kwargs = {memory_format: torch.contiguous_format})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clone, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {})
# %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_add_div_mul_rsub_1 = async_compile.triton('triton_poi_fused__softmax_add_div_mul_rsub_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_add_div_mul_rsub_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_add_div_mul_rsub_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr2 + (x2 + (4*y1)), xmask & ymask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + (y3), ymask, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr4 + (y3), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tmp6 = tmp3 - tmp5
tmp7 = -10000.0
tmp8 = tmp6 * tmp7
tmp9 = tmp4 + tmp8
tmp11 = tmp9 - tmp10
tmp12 = tl_math.exp(tmp11)
tmp14 = tmp12 / tmp13
tl.store(out_ptr0 + (x2 + (4*y3)), tmp14, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/xp/cxp3ouwpdhdlmipppq44wjaey2obmthzec7uqoddmpoigfmupxdx.py
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# matmul => clone_1
# Graph fragment:
# %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_1,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_2 = async_compile.triton('triton_poi_fused_clone_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/gf/cgfwbglhx6ga4elexo53qyxxhirj2h3x3ece2oayjv24wfpno4tg.py
# Topologically Sorted Source Nodes: [pooled_query_repeat, mixed_query_key_layer], Original ATen: [aten.repeat, aten.mul]
# Source node to ATen node mapping:
# mixed_query_key_layer => mul_1
# pooled_query_repeat => repeat
# Graph fragment:
# %repeat : [num_users=2] = call_function[target=torch.ops.aten.repeat.default](args = (%view_10, [1, 4, 1]), kwargs = {})
# %mul_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_3, %repeat), kwargs = {})
triton_poi_fused_mul_repeat_3 = async_compile.triton('triton_poi_fused_mul_repeat_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_repeat_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_repeat_3(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = (xindex // 16)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (4*x2)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x3), xmask)
tmp2 = tmp1 * tmp0
tl.store(out_ptr0 + (x3), tmp0, xmask)
tl.store(out_ptr1 + (x3), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/fx/cfxro6sxxrznbua5rn3ewzc4i4pgisfs7mxqr2w4qi37zuqxkkty.py
# Topologically Sorted Source Nodes: [mul_2], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul_2 => mul_2
# Graph fragment:
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_16, %permute_4), kwargs = {})
triton_poi_fused_mul_4 = async_compile.triton('triton_poi_fused_mul_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = (xindex // 16)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (4*x2)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x3), xmask)
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/56/c566ex7xddxc2fqpwqlmymdyd23nesbsyghxftm7cy73ebnuo3ke.py
# Topologically Sorted Source Nodes: [weighted_value_2], Original ATen: [aten.add]
# Source node to ATen node mapping:
# weighted_value_2 => add_2
# Graph fragment:
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_19, %view_1), kwargs = {})
triton_poi_fused_add_5 = async_compile.triton('triton_poi_fused_add_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_5(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x2), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, ), (1, ))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4, ), (1, ))
assert_size_stride(primals_9, (4, 4), (4, 1))
assert_size_stride(primals_10, (4, ), (1, ))
assert_size_stride(primals_11, (4, 4), (4, 1))
assert_size_stride(primals_12, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mixed_query_layer], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_4, reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_3
del primals_4
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mixed_key_layer], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_6, reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1)
del primals_5
del primals_6
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf0, reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf2)
buf3 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
buf4 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
# Topologically Sorted Source Nodes: [sub, mask_1, query_for_score, query_for_score_1, softmax], Original ATen: [aten.rsub, aten.mul, aten.div, aten.add, aten._softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__softmax_add_div_mul_rsub_0.run(buf2, primals_8, primals_1, buf3, buf4, 16, grid=grid(16), stream=stream0)
buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sub, mask_1, query_for_score, query_for_score_1, softmax], Original ATen: [aten.rsub, aten.mul, aten.div, aten.add, aten._softmax]
triton_poi_fused__softmax_add_div_mul_rsub_1.run(buf2, primals_8, primals_1, buf3, buf4, buf5, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_8
buf6 = reinterpret_tensor(buf2, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone]
triton_poi_fused_clone_2.run(buf0, buf6, 16, 4, grid=grid(16, 4), stream=stream0)
buf7 = reinterpret_tensor(buf4, (16, 1, 1), (1, 1, 1), 0); del buf4 # reuse
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf5, (16, 1, 4), (4, 4, 1), 0), reinterpret_tensor(buf6, (16, 4, 1), (4, 1, 0), 0), out=buf7)
buf8 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
buf9 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [pooled_query_repeat, mixed_query_key_layer], Original ATen: [aten.repeat, aten.mul]
triton_poi_fused_mul_repeat_3.run(buf7, buf1, buf8, buf9, 64, grid=grid(64), stream=stream0)
buf10 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf9, (16, 4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), out=buf10)
buf11 = reinterpret_tensor(buf7, (4, 4, 1), (4, 1, 16), 0); del buf7 # reuse
buf12 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [softmax_1], Original ATen: [aten._softmax]
triton_poi_fused__softmax_add_div_mul_rsub_0.run(buf10, primals_10, primals_1, buf11, buf12, 16, grid=grid(16), stream=stream0)
buf13 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [softmax_1], Original ATen: [aten._softmax]
triton_poi_fused__softmax_add_div_mul_rsub_1.run(buf10, primals_10, primals_1, buf11, buf12, buf13, 16, 4, grid=grid(16, 4), stream=stream0)
del buf11
del primals_1
del primals_10
buf14 = reinterpret_tensor(buf10, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf10 # reuse
# Topologically Sorted Source Nodes: [pooled_key], Original ATen: [aten.clone]
triton_poi_fused_clone_2.run(buf9, buf14, 16, 4, grid=grid(16, 4), stream=stream0)
buf15 = reinterpret_tensor(buf12, (16, 1, 1), (1, 1, 1), 0); del buf12 # reuse
# Topologically Sorted Source Nodes: [pooled_key], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf13, (16, 1, 4), (4, 4, 1), 0), reinterpret_tensor(buf14, (16, 4, 1), (4, 1, 0), 0), out=buf15)
buf16 = empty_strided_cuda((4, 4, 4, 1), (16, 1, 4, 16), torch.float32)
# Topologically Sorted Source Nodes: [mul_2], Original ATen: [aten.mul]
triton_poi_fused_mul_4.run(buf15, buf0, buf16, 64, grid=grid(64), stream=stream0)
buf17 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf16, (16, 4), (4, 1), 0), reinterpret_tensor(primals_11, (4, 4), (1, 4), 0), out=buf17)
buf18 = reinterpret_tensor(buf17, (4, 4, 4), (16, 4, 1), 0); del buf17 # reuse
# Topologically Sorted Source Nodes: [weighted_value_2], Original ATen: [aten.add]
triton_poi_fused_add_5.run(buf18, primals_12, buf0, 64, grid=grid(64), stream=stream0)
del primals_12
return (buf18, reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), buf0, buf1, buf5, buf8, reinterpret_tensor(buf9, (16, 4), (4, 1), 0), buf13, buf15, reinterpret_tensor(buf16, (16, 4), (4, 1), 0), primals_11, reinterpret_tensor(buf14, (16, 1, 4), (4, 1, 1), 0), primals_9, reinterpret_tensor(buf6, (16, 1, 4), (4, 1, 1), 0), primals_7, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class FastAttention(nn.Module):
""" wuch15's Fastformer Attention module (Official) """
def __init__(self, dim, dim_head, heads, dropout=0.1, initializer_range
=0.02):
super(FastAttention, self).__init__()
self.initializer_range = initializer_range
if dim % dim_head != 0:
raise ValueError(
'The hidden size (%d) is not a multiple of the number of attention heads (%d)'
% (dim, dim_head))
self.attention_head_size = int(dim / dim_head)
self.num_attention_heads = dim_head
self.all_head_size = (self.num_attention_heads * self.
attention_head_size)
self.input_dim = dim
self.query = nn.Linear(self.input_dim, self.all_head_size)
self.to_q_attn_logits = nn.Linear(self.all_head_size, self.
num_attention_heads)
self.key = nn.Linear(self.input_dim, self.all_head_size)
self.to_k_attn_logits = nn.Linear(self.all_head_size, self.
num_attention_heads)
self.transform = nn.Linear(self.all_head_size, self.all_head_size)
self.softmax = nn.Softmax(dim=-1)
self.apply(self.init_weights)
self.dropout = nn.Dropout(dropout)
def init_weights(self, module):
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.initializer_range)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.
attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, hidden_states, mask):
"""
hidden_states -- [B, T, H]
mask -- [B, T]
"""
mask = mask.unsqueeze(1)
mask = mask
mask = (1.0 - mask) * -10000.0
_batch_size, seq_len, _ = hidden_states.shape
mixed_query_layer = self.query(hidden_states)
mixed_key_layer = self.key(hidden_states)
query_for_score = self.to_q_attn_logits(mixed_query_layer).transpose(
1, 2) / self.attention_head_size ** 0.5
query_for_score += mask
query_weight = self.softmax(query_for_score).unsqueeze(2)
query_layer = self.transpose_for_scores(mixed_query_layer)
pooled_query = torch.matmul(query_weight, query_layer).transpose(1, 2
).view(-1, 1, self.num_attention_heads * self.attention_head_size)
pooled_query_repeat = pooled_query.repeat(1, seq_len, 1)
mixed_query_key_layer = mixed_key_layer * pooled_query_repeat
query_key_score = (self.to_k_attn_logits(mixed_query_key_layer) /
self.attention_head_size ** 0.5).transpose(1, 2)
query_key_score += mask
query_key_weight = self.softmax(query_key_score).unsqueeze(2)
key_layer = self.transpose_for_scores(mixed_query_key_layer)
pooled_key = torch.matmul(query_key_weight, key_layer)
weighted_value = (pooled_key * query_layer).transpose(1, 2)
weighted_value = weighted_value.reshape(weighted_value.size()[:-2] +
(self.num_attention_heads * self.attention_head_size,))
weighted_value = self.transform(weighted_value) + mixed_query_layer
return self.dropout(weighted_value)
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'dim': 4, 'dim_head': 4, 'heads': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__softmax_add_div_mul_rsub_0(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 16 * x1), xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr2 + 4 * x1, xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr0 + (4 + x0 + 16 * x1), xmask)
tmp13 = tl.load(in_ptr2 + (1 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp18 = tl.load(in_ptr0 + (8 + x0 + 16 * x1), xmask)
tmp21 = tl.load(in_ptr2 + (2 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp26 = tl.load(in_ptr0 + (12 + x0 + 16 * x1), xmask)
tmp29 = tl.load(in_ptr2 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tmp6 = tmp3 - tmp5
tmp7 = -10000.0
tmp8 = tmp6 * tmp7
tmp9 = tmp4 + tmp8
tmp11 = tmp10 + tmp1
tmp12 = tmp11 * tmp3
tmp14 = tmp3 - tmp13
tmp15 = tmp14 * tmp7
tmp16 = tmp12 + tmp15
tmp17 = triton_helpers.maximum(tmp9, tmp16)
tmp19 = tmp18 + tmp1
tmp20 = tmp19 * tmp3
tmp22 = tmp3 - tmp21
tmp23 = tmp22 * tmp7
tmp24 = tmp20 + tmp23
tmp25 = triton_helpers.maximum(tmp17, tmp24)
tmp27 = tmp26 + tmp1
tmp28 = tmp27 * tmp3
tmp30 = tmp3 - tmp29
tmp31 = tmp30 * tmp7
tmp32 = tmp28 + tmp31
tmp33 = triton_helpers.maximum(tmp25, tmp32)
tmp34 = tmp9 - tmp33
tmp35 = tl_math.exp(tmp34)
tmp36 = tmp16 - tmp33
tmp37 = tl_math.exp(tmp36)
tmp38 = tmp35 + tmp37
tmp39 = tmp24 - tmp33
tmp40 = tl_math.exp(tmp39)
tmp41 = tmp38 + tmp40
tmp42 = tmp32 - tmp33
tmp43 = tl_math.exp(tmp42)
tmp44 = tmp41 + tmp43
tl.store(out_ptr0 + x2, tmp33, xmask)
tl.store(out_ptr1 + x2, tmp44, xmask)
@triton.jit
def triton_poi_fused__softmax_add_div_mul_rsub_1(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr,
XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr2 + (x2 + 4 * y1), xmask & ymask, eviction_policy=
'evict_last')
tmp10 = tl.load(in_ptr3 + y3, ymask, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr4 + y3, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tmp6 = tmp3 - tmp5
tmp7 = -10000.0
tmp8 = tmp6 * tmp7
tmp9 = tmp4 + tmp8
tmp11 = tmp9 - tmp10
tmp12 = tl_math.exp(tmp11)
tmp14 = tmp12 / tmp13
tl.store(out_ptr0 + (x2 + 4 * y3), tmp14, xmask & ymask)
@triton.jit
def triton_poi_fused_clone_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_mul_repeat_3(in_ptr0, in_ptr1, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex // 16
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp1 = tl.load(in_ptr1 + x3, xmask)
tmp2 = tmp1 * tmp0
tl.store(out_ptr0 + x3, tmp0, xmask)
tl.store(out_ptr1 + x3, tmp2, xmask)
@triton.jit
def triton_poi_fused_mul_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex // 16
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp1 = tl.load(in_ptr1 + x3, xmask)
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x3, tmp2, xmask)
@triton.jit
def triton_poi_fused_add_5(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK:
tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + x2, xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tl.store(in_out_ptr0 + x2, tmp4, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12
) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4,), (1,))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4,), (1,))
assert_size_stride(primals_9, (4, 4), (4, 1))
assert_size_stride(primals_10, (4,), (1,))
assert_size_stride(primals_11, (4, 4), (4, 1))
assert_size_stride(primals_12, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_4, reinterpret_tensor(primals_2, (16,
4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf0)
del primals_3
del primals_4
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_6, reinterpret_tensor(primals_2, (16,
4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf1)
del primals_5
del primals_6
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(buf0, reinterpret_tensor(primals_7, (4, 4), (1, 4
), 0), out=buf2)
buf3 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
buf4 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
get_raw_stream(0)
triton_poi_fused__softmax_add_div_mul_rsub_0[grid(16)](buf2,
primals_8, primals_1, buf3, buf4, 16, XBLOCK=16, num_warps=1,
num_stages=1)
buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused__softmax_add_div_mul_rsub_1[grid(16, 4)](buf2,
primals_8, primals_1, buf3, buf4, buf5, 16, 4, XBLOCK=4, YBLOCK
=16, num_warps=1, num_stages=1)
del primals_8
buf6 = reinterpret_tensor(buf2, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf2
triton_poi_fused_clone_2[grid(16, 4)](buf0, buf6, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
buf7 = reinterpret_tensor(buf4, (16, 1, 1), (1, 1, 1), 0)
del buf4
extern_kernels.bmm(reinterpret_tensor(buf5, (16, 1, 4), (4, 4, 1),
0), reinterpret_tensor(buf6, (16, 4, 1), (4, 1, 0), 0), out=buf7)
buf8 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
buf9 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_mul_repeat_3[grid(64)](buf7, buf1, buf8, buf9, 64,
XBLOCK=64, num_warps=1, num_stages=1)
buf10 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf9, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), out=buf10)
buf11 = reinterpret_tensor(buf7, (4, 4, 1), (4, 1, 16), 0)
del buf7
buf12 = buf3
del buf3
triton_poi_fused__softmax_add_div_mul_rsub_0[grid(16)](buf10,
primals_10, primals_1, buf11, buf12, 16, XBLOCK=16, num_warps=1,
num_stages=1)
buf13 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused__softmax_add_div_mul_rsub_1[grid(16, 4)](buf10,
primals_10, primals_1, buf11, buf12, buf13, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
del buf11
del primals_1
del primals_10
buf14 = reinterpret_tensor(buf10, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf10
triton_poi_fused_clone_2[grid(16, 4)](buf9, buf14, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
buf15 = reinterpret_tensor(buf12, (16, 1, 1), (1, 1, 1), 0)
del buf12
extern_kernels.bmm(reinterpret_tensor(buf13, (16, 1, 4), (4, 4, 1),
0), reinterpret_tensor(buf14, (16, 4, 1), (4, 1, 0), 0), out=buf15)
buf16 = empty_strided_cuda((4, 4, 4, 1), (16, 1, 4, 16), torch.float32)
triton_poi_fused_mul_4[grid(64)](buf15, buf0, buf16, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf17 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf16, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_11, (4, 4), (1, 4), 0), out=buf17)
buf18 = reinterpret_tensor(buf17, (4, 4, 4), (16, 4, 1), 0)
del buf17
triton_poi_fused_add_5[grid(64)](buf18, primals_12, buf0, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del primals_12
return buf18, reinterpret_tensor(primals_2, (16, 4), (4, 1), 0
), buf0, buf1, buf5, buf8, reinterpret_tensor(buf9, (16, 4), (4, 1), 0
), buf13, buf15, reinterpret_tensor(buf16, (16, 4), (4, 1), 0
), primals_11, reinterpret_tensor(buf14, (16, 1, 4), (4, 1, 1), 0
), primals_9, reinterpret_tensor(buf6, (16, 1, 4), (4, 1, 1), 0
), primals_7
class FastAttentionNew(nn.Module):
""" wuch15's Fastformer Attention module (Official) """
def __init__(self, dim, dim_head, heads, dropout=0.1, initializer_range
=0.02):
super(FastAttentionNew, self).__init__()
self.initializer_range = initializer_range
if dim % dim_head != 0:
raise ValueError(
'The hidden size (%d) is not a multiple of the number of attention heads (%d)'
% (dim, dim_head))
self.attention_head_size = int(dim / dim_head)
self.num_attention_heads = dim_head
self.all_head_size = (self.num_attention_heads * self.
attention_head_size)
self.input_dim = dim
self.query = nn.Linear(self.input_dim, self.all_head_size)
self.to_q_attn_logits = nn.Linear(self.all_head_size, self.
num_attention_heads)
self.key = nn.Linear(self.input_dim, self.all_head_size)
self.to_k_attn_logits = nn.Linear(self.all_head_size, self.
num_attention_heads)
self.transform = nn.Linear(self.all_head_size, self.all_head_size)
self.softmax = nn.Softmax(dim=-1)
self.apply(self.init_weights)
self.dropout = nn.Dropout(dropout)
def init_weights(self, module):
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.initializer_range)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.
attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, input_0, input_1):
primals_1 = self.query.weight
primals_4 = self.query.bias
primals_3 = self.to_q_attn_logits.weight
primals_6 = self.to_q_attn_logits.bias
primals_5 = self.key.weight
primals_8 = self.key.bias
primals_7 = self.to_k_attn_logits.weight
primals_10 = self.to_k_attn_logits.bias
primals_9 = self.transform.weight
primals_12 = self.transform.bias
primals_2 = input_0
primals_11 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12])
return output[0]
| ishine/Comprehensive-Transformer-TTS | FastAttention | false | 15,627 | [
"MIT"
]
| 147 | dca252cae50a18464ce2410aa85a21c557c72d7a | https://github.com/ishine/Comprehensive-Transformer-TTS/tree/dca252cae50a18464ce2410aa85a21c557c72d7a |
GeGLU | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/eu/ceumtkchss74wpyuwfg2wld3irffmrf53djbpqxgir4mufwcytu4.py
# Topologically Sorted Source Nodes: [gelu, mul], Original ATen: [aten.gelu, aten.mul]
# Source node to ATen node mapping:
# gelu => add, erf, mul, mul_1, mul_2
# mul => mul_3
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.5), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.7071067811865476), kwargs = {})
# %erf : [num_users=1] = call_function[target=torch.ops.aten.erf.default](args = (%mul_1,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%erf, 1), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %add), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %view_3), kwargs = {})
triton_poi_fused_gelu_mul_0 = async_compile.triton('triton_poi_fused_gelu_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_gelu_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_gelu_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp9 = tl.load(in_ptr1 + (x0), xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 0.7071067811865476
tmp4 = tmp0 * tmp3
tmp5 = libdevice.erf(tmp4)
tmp6 = 1.0
tmp7 = tmp5 + tmp6
tmp8 = tmp2 * tmp7
tmp10 = tmp8 * tmp9
tl.store(out_ptr0 + (x0), tmp10, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (12, 4), (4, 1))
assert_size_stride(primals_3, (12, ), (1, ))
assert_size_stride(primals_4, (12, 4), (4, 1))
assert_size_stride(primals_5, (12, ), (1, ))
assert_size_stride(primals_6, (4, 12), (12, 1))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 12), (12, 1), torch.float32)
# Topologically Sorted Source Nodes: [k], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_3, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 12), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_2
del primals_3
buf1 = empty_strided_cuda((16, 12), (12, 1), torch.float32)
# Topologically Sorted Source Nodes: [v], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 12), (1, 4), 0), alpha=1, beta=1, out=buf1)
del primals_4
del primals_5
buf2 = empty_strided_cuda((4, 4, 12), (48, 12, 1), torch.float32)
# Topologically Sorted Source Nodes: [gelu, mul], Original ATen: [aten.gelu, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_gelu_mul_0.run(buf0, buf1, buf2, 192, grid=grid(192), stream=stream0)
buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf2, (16, 12), (12, 1), 0), reinterpret_tensor(primals_6, (12, 4), (1, 12), 0), alpha=1, beta=1, out=buf3)
del primals_7
return (reinterpret_tensor(buf3, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), buf0, buf1, reinterpret_tensor(buf2, (16, 12), (12, 1), 0), primals_6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 12), (12, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from _paritybench_helpers import _mock_config
import torch
import torch.nn as nn
from torch.nn import functional as F
class GeGLU(torch.nn.Module):
def __init__(self, config, layer_id, time_shift=False):
super().__init__()
self.layer_id = layer_id
if time_shift:
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
hidden_sz = 3 * config.n_ffn
self.key = nn.Linear(config.n_embd, hidden_sz)
self.value = nn.Linear(config.n_embd, hidden_sz)
self.weight = nn.Linear(hidden_sz, config.n_embd)
def forward(self, x):
_B, _T, C = x.size()
if hasattr(self, 'time_shift'):
x = torch.cat([self.time_shift(x[:, :, :C // 2]), x[:, :, C //
2:]], dim=-1)
k = self.key(x)
v = self.value(x)
y = self.weight(F.gelu(k) * v)
return y
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'config': _mock_config(n_ffn=4, n_embd=4), 'layer_id': 1}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_gelu_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp9 = tl.load(in_ptr1 + x0, xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 0.7071067811865476
tmp4 = tmp0 * tmp3
tmp5 = libdevice.erf(tmp4)
tmp6 = 1.0
tmp7 = tmp5 + tmp6
tmp8 = tmp2 * tmp7
tmp10 = tmp8 * tmp9
tl.store(out_ptr0 + x0, tmp10, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (12, 4), (4, 1))
assert_size_stride(primals_3, (12,), (1,))
assert_size_stride(primals_4, (12, 4), (4, 1))
assert_size_stride(primals_5, (12,), (1,))
assert_size_stride(primals_6, (4, 12), (12, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 12), (12, 1), torch.float32)
extern_kernels.addmm(primals_3, reinterpret_tensor(primals_1, (16,
4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 12), (1, 4),
0), alpha=1, beta=1, out=buf0)
del primals_2
del primals_3
buf1 = empty_strided_cuda((16, 12), (12, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(primals_1, (16,
4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 12), (1, 4),
0), alpha=1, beta=1, out=buf1)
del primals_4
del primals_5
buf2 = empty_strided_cuda((4, 4, 12), (48, 12, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_gelu_mul_0[grid(192)](buf0, buf1, buf2, 192,
XBLOCK=256, num_warps=4, num_stages=1)
buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf2, (16, 12),
(12, 1), 0), reinterpret_tensor(primals_6, (12, 4), (1, 12), 0),
alpha=1, beta=1, out=buf3)
del primals_7
return reinterpret_tensor(buf3, (4, 4, 4), (16, 4, 1), 0
), reinterpret_tensor(primals_1, (16, 4), (4, 1), 0
), buf0, buf1, reinterpret_tensor(buf2, (16, 12), (12, 1), 0
), primals_6
class GeGLUNew(torch.nn.Module):
def __init__(self, config, layer_id, time_shift=False):
super().__init__()
self.layer_id = layer_id
if time_shift:
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
hidden_sz = 3 * config.n_ffn
self.key = nn.Linear(config.n_embd, hidden_sz)
self.value = nn.Linear(config.n_embd, hidden_sz)
self.weight = nn.Linear(hidden_sz, config.n_embd)
def forward(self, input_0):
primals_2 = self.key.weight
primals_3 = self.key.bias
primals_4 = self.value.weight
primals_5 = self.value.bias
primals_6 = self.weight.weight
primals_7 = self.weight.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| BlinkDL/RWKV-LM | GeGLU | false | 15,628 | [
"BSD-2-Clause"
]
| 102 | b48aa1d430a71ced8ae6a665c47f5dbd95f6f6ab | https://github.com/BlinkDL/RWKV-LM/tree/b48aa1d430a71ced8ae6a665c47f5dbd95f6f6ab |
StyledResBlock | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/wi/cwiyl3lwwtancorrifw77xt3aqb4lermdintht45zvkj3bg54nbl.py
# Topologically Sorted Source Nodes: [mul_1], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul_1 => mul_1
# Graph fragment:
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_3, 0.5), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/2o/c2oqkq7zaubqmw7vuixxlseb2ff5jzqqbyczicxlmsahuxwdpdyp.py
# Topologically Sorted Source Nodes: [bias], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# bias => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, 1), kwargs = {})
triton_poi_fused_mul_1 = async_compile.triton('triton_poi_fused_mul_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ry/cry24ts5omvr3ghwu2xf4uyl7vsquzj65mm4gxrlmsc74cnrozwz.py
# Topologically Sorted Source Nodes: [mul_2, weight, pow_1, sum_1, add, demod, weight_1], Original ATen: [aten.mul, aten.pow, aten.sum, aten.add, aten.rsqrt]
# Source node to ATen node mapping:
# add => add
# demod => rsqrt
# mul_2 => mul_2
# pow_1 => pow_1
# sum_1 => sum_1
# weight => mul_3
# weight_1 => mul_4
# Graph fragment:
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_5, 0.16666666666666666), kwargs = {})
# %mul_3 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %view), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%mul_3, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [2, 3, 4]), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, 1e-08), kwargs = {})
# %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_3, %view_1), kwargs = {})
triton_per_fused_add_mul_pow_rsqrt_sum_2 = async_compile.triton('triton_per_fused_add_mul_pow_rsqrt_sum_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 64],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mul_pow_rsqrt_sum_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_mul_pow_rsqrt_sum_2(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 36
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = rindex < rnumel
r5 = rindex
x0 = xindex % 4
r3 = (rindex // 9)
x1 = (xindex // 4)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (r5 + (36*x0)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp3 = tl.load(in_ptr1 + (r3 + (4*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp1 = 0.16666666666666666
tmp2 = tmp0 * tmp1
tmp4 = tmp2 * tmp3
tmp5 = tmp4 * tmp4
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp8 = tl.where(rmask & xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = 1e-08
tmp11 = tmp9 + tmp10
tmp12 = libdevice.rsqrt(tmp11)
tmp13 = tmp4 * tmp12
tl.debug_barrier()
tl.store(in_out_ptr0 + (x4), tmp12, xmask)
tl.store(out_ptr0 + (r5 + (36*x4)), tmp13, rmask & xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/bx/cbxpgikwghyydzs3mnpxmoj2zjbefiyfspnlq3fcopc4f74z24du.py
# Topologically Sorted Source Nodes: [add_1, leaky_relu, out_3], Original ATen: [aten.add, aten.leaky_relu, aten.mul]
# Source node to ATen node mapping:
# add_1 => add_1
# leaky_relu => gt, mul_5, where
# out_3 => mul_6
# Graph fragment:
# %add_1 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_4, %view_5), kwargs = {})
# %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_1, 0), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_1, 0.2), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %add_1, %mul_5), kwargs = {})
# %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where, 1.4142135623730951), kwargs = {})
triton_poi_fused_add_leaky_relu_mul_3 = async_compile.triton('triton_poi_fused_add_leaky_relu_mul_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_leaky_relu_mul_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_leaky_relu_mul_3(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tmp8 = 1.4142135623730951
tmp9 = tmp7 * tmp8
tl.store(out_ptr0 + (x3), tmp4, xmask)
tl.store(out_ptr1 + (x3), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/bg/cbgybjwgahekhdnfh3fbcwl5h7lk5ooilvbmcybfhzybf47iievf.py
# Topologically Sorted Source Nodes: [add_3, leaky_relu_1, out_7, add_4, out_8], Original ATen: [aten.add, aten.leaky_relu, aten.mul, aten.div]
# Source node to ATen node mapping:
# add_3 => add_3
# add_4 => add_4
# leaky_relu_1 => gt_1, mul_12, where_1
# out_7 => mul_13
# out_8 => div
# Graph fragment:
# %add_3 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_10, %view_11), kwargs = {})
# %gt_1 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_3, 0), kwargs = {})
# %mul_12 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_3, 0.2), kwargs = {})
# %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %add_3, %mul_12), kwargs = {})
# %mul_13 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where_1, 1.4142135623730951), kwargs = {})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_13, %primals_1), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_4, 1.4142135623730951), kwargs = {})
triton_poi_fused_add_div_leaky_relu_mul_4 = async_compile.triton('triton_poi_fused_add_div_leaky_relu_mul_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_leaky_relu_mul_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_leaky_relu_mul_4(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr2 + (x3), xmask)
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tmp8 = 1.4142135623730951
tmp9 = tmp7 * tmp8
tmp11 = tmp9 + tmp10
tmp12 = 0.7071067811865475
tmp13 = tmp11 * tmp12
tl.store(out_ptr0 + (x3), tmp4, xmask)
tl.store(out_ptr1 + (x3), tmp13, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (1, 4, 4, 3, 3), (144, 36, 9, 3, 1))
assert_size_stride(primals_6, (4, ), (1, ))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, 4), (4, 1))
assert_size_stride(primals_9, (1, 4, 4, 3, 3), (144, 36, 9, 3, 1))
assert_size_stride(primals_10, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul_1], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(primals_3, buf0, 16, grid=grid(16), stream=stream0)
del primals_3
buf1 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [bias], Original ATen: [aten.mul]
triton_poi_fused_mul_1.run(primals_2, buf1, 4, grid=grid(4), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [bias, out], Original ATen: [aten.mul, aten.addmm]
extern_kernels.addmm(buf1, primals_4, reinterpret_tensor(buf0, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
buf3 = buf0; del buf0 # reuse
buf4 = buf3; del buf3 # reuse
buf5 = empty_strided_cuda((4, 4, 4, 3, 3), (144, 36, 9, 3, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul_2, weight, pow_1, sum_1, add, demod, weight_1], Original ATen: [aten.mul, aten.pow, aten.sum, aten.add, aten.rsqrt]
triton_per_fused_add_mul_pow_rsqrt_sum_2.run(buf4, primals_5, buf2, buf5, 16, 36, grid=grid(16), stream=stream0)
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(reinterpret_tensor(primals_1, (1, 16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf5, (16, 4, 3, 3), (36, 9, 3, 1), 0), stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf6, (1, 16, 4, 4), (256, 16, 4, 1))
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf14 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add_1, leaky_relu, out_3], Original ATen: [aten.add, aten.leaky_relu, aten.mul]
triton_poi_fused_add_leaky_relu_mul_3.run(buf6, primals_6, buf7, buf14, 256, grid=grid(256), stream=stream0)
del primals_6
buf8 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul_7], Original ATen: [aten.mul]
triton_poi_fused_mul_0.run(primals_8, buf8, 16, grid=grid(16), stream=stream0)
del primals_8
buf9 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [bias_1], Original ATen: [aten.mul]
triton_poi_fused_mul_1.run(primals_7, buf9, 4, grid=grid(4), stream=stream0)
del primals_7
buf10 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [bias_1, out_4], Original ATen: [aten.mul, aten.addmm]
extern_kernels.addmm(buf9, primals_4, reinterpret_tensor(buf8, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf10)
del buf9
buf11 = buf8; del buf8 # reuse
buf12 = buf11; del buf11 # reuse
buf13 = empty_strided_cuda((4, 4, 4, 3, 3), (144, 36, 9, 3, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul_8, weight_3, pow_2, sum_2, add_2, demod_1, weight_4], Original ATen: [aten.mul, aten.pow, aten.sum, aten.add, aten.rsqrt]
triton_per_fused_add_mul_pow_rsqrt_sum_2.run(buf12, primals_9, buf10, buf13, 16, 36, grid=grid(16), stream=stream0)
# Topologically Sorted Source Nodes: [out_5], Original ATen: [aten.convolution]
buf15 = extern_kernels.convolution(reinterpret_tensor(buf14, (1, 16, 4, 4), (0, 16, 4, 1), 0), reinterpret_tensor(buf13, (16, 4, 3, 3), (36, 9, 3, 1), 0), stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf15, (1, 16, 4, 4), (256, 16, 4, 1))
buf16 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf17 = reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf6 # reuse
# Topologically Sorted Source Nodes: [add_3, leaky_relu_1, out_7, add_4, out_8], Original ATen: [aten.add, aten.leaky_relu, aten.mul, aten.div]
triton_poi_fused_add_div_leaky_relu_mul_4.run(buf15, primals_10, primals_1, buf16, buf17, 256, grid=grid(256), stream=stream0)
del buf15
del primals_10
return (buf17, primals_4, primals_5, primals_9, buf2, buf4, reinterpret_tensor(buf5, (16, 4, 3, 3), (36, 9, 3, 1), 0), reinterpret_tensor(primals_1, (1, 16, 4, 4), (256, 16, 4, 1), 0), buf7, buf10, buf12, reinterpret_tensor(buf13, (16, 4, 3, 3), (36, 9, 3, 1), 0), reinterpret_tensor(buf14, (1, 16, 4, 4), (256, 16, 4, 1), 0), buf16, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((1, 4, 4, 3, 3), (144, 36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((1, 4, 4, 3, 3), (144, 36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
from torch import nn
from torch.nn import functional as F
def make_kernel(k):
k = torch.tensor(k, dtype=torch.float32)
if k.ndim == 1:
k = k[None, :] * k[:, None]
k /= k.sum()
return k
def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0,
pad_x1, pad_y0, pad_y1):
_, channel, in_h, in_w = input.shape
input = input.reshape(-1, in_h, in_w, 1)
_, in_h, in_w, minor = input.shape
kernel_h, kernel_w = kernel.shape
out = input.view(-1, in_h, 1, in_w, 1, minor)
out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
out = out.view(-1, in_h * up_y, in_w * up_x, minor)
out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0),
max(pad_y1, 0)])
out = out[:, max(-pad_y0, 0):out.shape[1] - max(-pad_y1, 0), max(-
pad_x0, 0):out.shape[2] - max(-pad_x1, 0), :]
out = out.permute(0, 3, 1, 2)
out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x +
pad_x0 + pad_x1])
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
out = F.conv2d(out, w)
out = out.reshape(-1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h +
1, in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1)
out = out.permute(0, 2, 3, 1)
out = out[:, ::down_y, ::down_x, :]
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
return out.view(-1, channel, out_h, out_w)
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
out = upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1
], pad[0], pad[1])
return out
def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5):
rest_dim = [1] * (input.ndim - bias.ndim - 1)
if input.ndim == 3:
return F.leaky_relu(input + bias.view(1, *rest_dim, bias.shape[0]),
negative_slope=negative_slope) * scale
else:
return F.leaky_relu(input + bias.view(1, bias.shape[0], *rest_dim),
negative_slope=negative_slope) * scale
class Blur(nn.Module):
def __init__(self, kernel, pad, upsample_factor=1):
super().__init__()
kernel = make_kernel(kernel)
if upsample_factor > 1:
kernel = kernel * upsample_factor ** 2
self.register_buffer('kernel', kernel)
self.pad = pad
def forward(self, input):
out = upfirdn2d(input, self.kernel, pad=self.pad)
return out
class EqualLinear(nn.Module):
def __init__(self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1,
activation=None):
super().__init__()
self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul))
if bias:
self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init))
else:
self.bias = None
self.activation = activation
self.scale = 1 / math.sqrt(in_dim) * lr_mul
self.lr_mul = lr_mul
def forward(self, input):
bias = self.bias * self.lr_mul if self.bias is not None else None
if self.activation:
out = F.linear(input, self.weight * self.scale)
out = fused_leaky_relu(out, bias)
else:
out = F.linear(input, self.weight * self.scale, bias=bias)
return out
def __repr__(self):
return (
f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})'
)
class ModulatedConv2d(nn.Module):
def __init__(self, in_channel, out_channel, kernel_size, style_dim,
use_style=True, demodulate=True, upsample=False, downsample=False,
blur_kernel=[1, 3, 3, 1]):
super().__init__()
self.eps = 1e-08
self.kernel_size = kernel_size
self.in_channel = in_channel
self.out_channel = out_channel
self.upsample = upsample
self.downsample = downsample
self.use_style = use_style
if upsample:
factor = 2
p = len(blur_kernel) - factor - (kernel_size - 1)
pad0 = (p + 1) // 2 + factor - 1
pad1 = p // 2 + 1
self.blur = Blur(blur_kernel, pad=(pad0, pad1), upsample_factor
=factor)
if downsample:
factor = 2
p = len(blur_kernel) - factor + (kernel_size - 1)
pad0 = (p + 1) // 2
pad1 = p // 2
self.blur = Blur(blur_kernel, pad=(pad0, pad1))
fan_in = in_channel * kernel_size ** 2
self.scale = 1 / math.sqrt(fan_in)
self.padding = kernel_size // 2
self.weight = nn.Parameter(torch.randn(1, out_channel, in_channel,
kernel_size, kernel_size))
if use_style:
self.modulation = EqualLinear(style_dim, in_channel, bias_init=1)
else:
self.modulation = nn.Parameter(torch.Tensor(1, 1, in_channel, 1,
1).fill_(1))
self.demodulate = demodulate
def __repr__(self):
return (
f'{self.__class__.__name__}({self.in_channel}, {self.out_channel}, {self.kernel_size}, upsample={self.upsample}, downsample={self.downsample})'
)
def forward(self, input, style):
batch, in_channel, height, width = input.shape
if self.use_style:
style = self.modulation(style).view(batch, 1, in_channel, 1, 1)
weight = self.scale * self.weight * style
else:
weight = self.scale * self.weight.expand(batch, -1, -1, -1, -1
) * self.modulation
if self.demodulate:
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-08)
weight = weight * demod.view(batch, self.out_channel, 1, 1, 1)
weight = weight.view(batch * self.out_channel, in_channel, self.
kernel_size, self.kernel_size)
if self.upsample:
input = input.view(1, batch * in_channel, height, width)
weight = weight.view(batch, self.out_channel, in_channel, self.
kernel_size, self.kernel_size)
weight = weight.transpose(1, 2).reshape(batch * in_channel,
self.out_channel, self.kernel_size, self.kernel_size)
out = F.conv_transpose2d(input, weight, padding=0, stride=2,
groups=batch)
_, _, height, width = out.shape
out = out.view(batch, self.out_channel, height, width)
out = self.blur(out)
elif self.downsample:
input = self.blur(input)
_, _, height, width = input.shape
input = input.view(1, batch * in_channel, height, width)
out = F.conv2d(input, weight, padding=0, stride=2, groups=batch)
_, _, height, width = out.shape
out = out.view(batch, self.out_channel, height, width)
else:
input = input.view(1, batch * in_channel, height, width)
out = F.conv2d(input, weight, padding=self.padding, groups=batch)
_, _, height, width = out.shape
out = out.view(batch, self.out_channel, height, width)
return out
class FusedLeakyReLU(nn.Module):
def __init__(self, channel, negative_slope=0.2, scale=2 ** 0.5):
super().__init__()
self.bias = nn.Parameter(torch.zeros(channel))
self.negative_slope = negative_slope
self.scale = scale
def forward(self, input):
return fused_leaky_relu(input, self.bias, self.negative_slope, self
.scale)
class StyledConv(nn.Module):
def __init__(self, in_channel, out_channel, kernel_size, style_dim,
use_style=True, upsample=False, downsample=False, blur_kernel=[1, 3,
3, 1], demodulate=True):
super().__init__()
self.use_style = use_style
self.conv = ModulatedConv2d(in_channel, out_channel, kernel_size,
style_dim, use_style=use_style, upsample=upsample, downsample=
downsample, blur_kernel=blur_kernel, demodulate=demodulate)
self.activate = FusedLeakyReLU(out_channel)
def forward(self, input, style=None, noise=None):
out = self.conv(input, style)
out = self.activate(out)
return out
class StyledResBlock(nn.Module):
def __init__(self, in_channel, style_dim, blur_kernel=[1, 3, 3, 1],
demodulate=True):
super().__init__()
self.conv1 = StyledConv(in_channel, in_channel, 3, style_dim,
upsample=False, blur_kernel=blur_kernel, demodulate=demodulate)
self.conv2 = StyledConv(in_channel, in_channel, 3, style_dim,
upsample=False, blur_kernel=blur_kernel, demodulate=demodulate)
def forward(self, input, style):
out = self.conv1(input, style)
out = self.conv2(out, style)
out = (out + input) / math.sqrt(2)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'in_channel': 4, 'style_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import math
from torch import nn
from torch.nn import functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused_mul_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_per_fused_add_mul_pow_rsqrt_sum_2(in_out_ptr0, in_ptr0, in_ptr1,
out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 16
rnumel = 36
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
rmask = rindex < rnumel
r5 = rindex
x0 = xindex % 4
r3 = rindex // 9
x1 = xindex // 4
x4 = xindex
tmp0 = tl.load(in_ptr0 + (r5 + 36 * x0), rmask & xmask, eviction_policy
='evict_last', other=0.0)
tmp3 = tl.load(in_ptr1 + (r3 + 4 * x1), rmask & xmask, eviction_policy=
'evict_last', other=0.0)
tmp1 = 0.16666666666666666
tmp2 = tmp0 * tmp1
tmp4 = tmp2 * tmp3
tmp5 = tmp4 * tmp4
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp8 = tl.where(rmask & xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = 1e-08
tmp11 = tmp9 + tmp10
tmp12 = libdevice.rsqrt(tmp11)
tmp13 = tmp4 * tmp12
tl.debug_barrier()
tl.store(in_out_ptr0 + x4, tmp12, xmask)
tl.store(out_ptr0 + (r5 + 36 * x4), tmp13, rmask & xmask)
@triton.jit
def triton_poi_fused_add_leaky_relu_mul_3(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tmp8 = 1.4142135623730951
tmp9 = tmp7 * tmp8
tl.store(out_ptr0 + x3, tmp4, xmask)
tl.store(out_ptr1 + x3, tmp9, xmask)
@triton.jit
def triton_poi_fused_add_div_leaky_relu_mul_4(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr2 + x3, xmask)
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tmp8 = 1.4142135623730951
tmp9 = tmp7 * tmp8
tmp11 = tmp9 + tmp10
tmp12 = 0.7071067811865475
tmp13 = tmp11 * tmp12
tl.store(out_ptr0 + x3, tmp4, xmask)
tl.store(out_ptr1 + x3, tmp13, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (1, 4, 4, 3, 3), (144, 36, 9, 3, 1))
assert_size_stride(primals_6, (4,), (1,))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4, 4), (4, 1))
assert_size_stride(primals_9, (1, 4, 4, 3, 3), (144, 36, 9, 3, 1))
assert_size_stride(primals_10, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_0[grid(16)](primals_3, buf0, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_3
buf1 = empty_strided_cuda((4,), (1,), torch.float32)
triton_poi_fused_mul_1[grid(4)](primals_2, buf1, 4, XBLOCK=4,
num_warps=1, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(buf1, primals_4, reinterpret_tensor(buf0, (4,
4), (1, 4), 0), alpha=1, beta=1, out=buf2)
buf3 = buf0
del buf0
buf4 = buf3
del buf3
buf5 = empty_strided_cuda((4, 4, 4, 3, 3), (144, 36, 9, 3, 1),
torch.float32)
triton_per_fused_add_mul_pow_rsqrt_sum_2[grid(16)](buf4, primals_5,
buf2, buf5, 16, 36, XBLOCK=1, num_warps=2, num_stages=1)
buf6 = extern_kernels.convolution(reinterpret_tensor(primals_1, (1,
16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf5, (16, 4,
3, 3), (36, 9, 3, 1), 0), stride=(1, 1), padding=(1, 1),
dilation=(1, 1), transposed=False, output_padding=(0, 0),
groups=4, bias=None)
assert_size_stride(buf6, (1, 16, 4, 4), (256, 16, 4, 1))
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf14 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_add_leaky_relu_mul_3[grid(256)](buf6, primals_6,
buf7, buf14, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_6
buf8 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_mul_0[grid(16)](primals_8, buf8, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_8
buf9 = buf1
del buf1
triton_poi_fused_mul_1[grid(4)](primals_7, buf9, 4, XBLOCK=4,
num_warps=1, num_stages=1)
del primals_7
buf10 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(buf9, primals_4, reinterpret_tensor(buf8, (4,
4), (1, 4), 0), alpha=1, beta=1, out=buf10)
del buf9
buf11 = buf8
del buf8
buf12 = buf11
del buf11
buf13 = empty_strided_cuda((4, 4, 4, 3, 3), (144, 36, 9, 3, 1),
torch.float32)
triton_per_fused_add_mul_pow_rsqrt_sum_2[grid(16)](buf12, primals_9,
buf10, buf13, 16, 36, XBLOCK=1, num_warps=2, num_stages=1)
buf15 = extern_kernels.convolution(reinterpret_tensor(buf14, (1, 16,
4, 4), (0, 16, 4, 1), 0), reinterpret_tensor(buf13, (16, 4, 3,
3), (36, 9, 3, 1), 0), stride=(1, 1), padding=(1, 1), dilation=
(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias
=None)
assert_size_stride(buf15, (1, 16, 4, 4), (256, 16, 4, 1))
buf16 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf17 = reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf6
triton_poi_fused_add_div_leaky_relu_mul_4[grid(256)](buf15,
primals_10, primals_1, buf16, buf17, 256, XBLOCK=256, num_warps
=4, num_stages=1)
del buf15
del primals_10
return (buf17, primals_4, primals_5, primals_9, buf2, buf4,
reinterpret_tensor(buf5, (16, 4, 3, 3), (36, 9, 3, 1), 0),
reinterpret_tensor(primals_1, (1, 16, 4, 4), (256, 16, 4, 1), 0),
buf7, buf10, buf12, reinterpret_tensor(buf13, (16, 4, 3, 3), (36, 9,
3, 1), 0), reinterpret_tensor(buf14, (1, 16, 4, 4), (256, 16, 4, 1),
0), buf16)
def make_kernel(k):
k = torch.tensor(k, dtype=torch.float32)
if k.ndim == 1:
k = k[None, :] * k[:, None]
k /= k.sum()
return k
def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0,
pad_x1, pad_y0, pad_y1):
_, channel, in_h, in_w = input.shape
input = input.reshape(-1, in_h, in_w, 1)
_, in_h, in_w, minor = input.shape
kernel_h, kernel_w = kernel.shape
out = input.view(-1, in_h, 1, in_w, 1, minor)
out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
out = out.view(-1, in_h * up_y, in_w * up_x, minor)
out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0),
max(pad_y1, 0)])
out = out[:, max(-pad_y0, 0):out.shape[1] - max(-pad_y1, 0), max(-
pad_x0, 0):out.shape[2] - max(-pad_x1, 0), :]
out = out.permute(0, 3, 1, 2)
out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x +
pad_x0 + pad_x1])
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
out = F.conv2d(out, w)
out = out.reshape(-1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h +
1, in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1)
out = out.permute(0, 2, 3, 1)
out = out[:, ::down_y, ::down_x, :]
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
return out.view(-1, channel, out_h, out_w)
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
out = upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1
], pad[0], pad[1])
return out
def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5):
rest_dim = [1] * (input.ndim - bias.ndim - 1)
if input.ndim == 3:
return F.leaky_relu(input + bias.view(1, *rest_dim, bias.shape[0]),
negative_slope=negative_slope) * scale
else:
return F.leaky_relu(input + bias.view(1, bias.shape[0], *rest_dim),
negative_slope=negative_slope) * scale
class Blur(nn.Module):
def __init__(self, kernel, pad, upsample_factor=1):
super().__init__()
kernel = make_kernel(kernel)
if upsample_factor > 1:
kernel = kernel * upsample_factor ** 2
self.register_buffer('kernel', kernel)
self.pad = pad
def forward(self, input):
out = upfirdn2d(input, self.kernel, pad=self.pad)
return out
class EqualLinear(nn.Module):
def __init__(self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1,
activation=None):
super().__init__()
self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul))
if bias:
self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init))
else:
self.bias = None
self.activation = activation
self.scale = 1 / math.sqrt(in_dim) * lr_mul
self.lr_mul = lr_mul
def forward(self, input):
bias = self.bias * self.lr_mul if self.bias is not None else None
if self.activation:
out = F.linear(input, self.weight * self.scale)
out = fused_leaky_relu(out, bias)
else:
out = F.linear(input, self.weight * self.scale, bias=bias)
return out
def __repr__(self):
return (
f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})'
)
class ModulatedConv2d(nn.Module):
def __init__(self, in_channel, out_channel, kernel_size, style_dim,
use_style=True, demodulate=True, upsample=False, downsample=False,
blur_kernel=[1, 3, 3, 1]):
super().__init__()
self.eps = 1e-08
self.kernel_size = kernel_size
self.in_channel = in_channel
self.out_channel = out_channel
self.upsample = upsample
self.downsample = downsample
self.use_style = use_style
if upsample:
factor = 2
p = len(blur_kernel) - factor - (kernel_size - 1)
pad0 = (p + 1) // 2 + factor - 1
pad1 = p // 2 + 1
self.blur = Blur(blur_kernel, pad=(pad0, pad1), upsample_factor
=factor)
if downsample:
factor = 2
p = len(blur_kernel) - factor + (kernel_size - 1)
pad0 = (p + 1) // 2
pad1 = p // 2
self.blur = Blur(blur_kernel, pad=(pad0, pad1))
fan_in = in_channel * kernel_size ** 2
self.scale = 1 / math.sqrt(fan_in)
self.padding = kernel_size // 2
self.weight = nn.Parameter(torch.randn(1, out_channel, in_channel,
kernel_size, kernel_size))
if use_style:
self.modulation = EqualLinear(style_dim, in_channel, bias_init=1)
else:
self.modulation = nn.Parameter(torch.Tensor(1, 1, in_channel, 1,
1).fill_(1))
self.demodulate = demodulate
def __repr__(self):
return (
f'{self.__class__.__name__}({self.in_channel}, {self.out_channel}, {self.kernel_size}, upsample={self.upsample}, downsample={self.downsample})'
)
def forward(self, input, style):
batch, in_channel, height, width = input.shape
if self.use_style:
style = self.modulation(style).view(batch, 1, in_channel, 1, 1)
weight = self.scale * self.weight * style
else:
weight = self.scale * self.weight.expand(batch, -1, -1, -1, -1
) * self.modulation
if self.demodulate:
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-08)
weight = weight * demod.view(batch, self.out_channel, 1, 1, 1)
weight = weight.view(batch * self.out_channel, in_channel, self.
kernel_size, self.kernel_size)
if self.upsample:
input = input.view(1, batch * in_channel, height, width)
weight = weight.view(batch, self.out_channel, in_channel, self.
kernel_size, self.kernel_size)
weight = weight.transpose(1, 2).reshape(batch * in_channel,
self.out_channel, self.kernel_size, self.kernel_size)
out = F.conv_transpose2d(input, weight, padding=0, stride=2,
groups=batch)
_, _, height, width = out.shape
out = out.view(batch, self.out_channel, height, width)
out = self.blur(out)
elif self.downsample:
input = self.blur(input)
_, _, height, width = input.shape
input = input.view(1, batch * in_channel, height, width)
out = F.conv2d(input, weight, padding=0, stride=2, groups=batch)
_, _, height, width = out.shape
out = out.view(batch, self.out_channel, height, width)
else:
input = input.view(1, batch * in_channel, height, width)
out = F.conv2d(input, weight, padding=self.padding, groups=batch)
_, _, height, width = out.shape
out = out.view(batch, self.out_channel, height, width)
return out
class FusedLeakyReLU(nn.Module):
def __init__(self, channel, negative_slope=0.2, scale=2 ** 0.5):
super().__init__()
self.bias = nn.Parameter(torch.zeros(channel))
self.negative_slope = negative_slope
self.scale = scale
def forward(self, input):
return fused_leaky_relu(input, self.bias, self.negative_slope, self
.scale)
class StyledConv(nn.Module):
def __init__(self, in_channel, out_channel, kernel_size, style_dim,
use_style=True, upsample=False, downsample=False, blur_kernel=[1, 3,
3, 1], demodulate=True):
super().__init__()
self.use_style = use_style
self.conv = ModulatedConv2d(in_channel, out_channel, kernel_size,
style_dim, use_style=use_style, upsample=upsample, downsample=
downsample, blur_kernel=blur_kernel, demodulate=demodulate)
self.activate = FusedLeakyReLU(out_channel)
def forward(self, input, style=None, noise=None):
out = self.conv(input, style)
out = self.activate(out)
return out
class StyledResBlockNew(nn.Module):
def __init__(self, in_channel, style_dim, blur_kernel=[1, 3, 3, 1],
demodulate=True):
super().__init__()
self.conv1 = StyledConv(in_channel, in_channel, 3, style_dim,
upsample=False, blur_kernel=blur_kernel, demodulate=demodulate)
self.conv2 = StyledConv(in_channel, in_channel, 3, style_dim,
upsample=False, blur_kernel=blur_kernel, demodulate=demodulate)
def forward(self, input_0, input_1):
primals_5 = self.conv1.conv.weight
primals_3 = self.conv1.conv.modulation.weight
primals_2 = self.conv1.conv.modulation.bias
primals_6 = self.conv1.activate.bias
primals_9 = self.conv2.conv.weight
primals_4 = self.conv2.conv.modulation.weight
primals_7 = self.conv2.conv.modulation.bias
primals_10 = self.conv2.activate.bias
primals_1 = input_0
primals_8 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9, primals_10])
return output[0]
| ishine/GANsNRoses | StyledResBlock | false | 15,629 | [
"MIT"
]
| 969 | 414e9e77c3df47d4ecf7941b5dcfdffec67403ee | https://github.com/ishine/GANsNRoses/tree/414e9e77c3df47d4ecf7941b5dcfdffec67403ee |
FRM | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/xj/cxjc6n35n4dbdwuwsgoewpxau7qnxv2giwhqraobhv67igzij74n.py
# Topologically Sorted Source Nodes: [adaptive_avg_pool1d], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# adaptive_avg_pool1d => mean
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%unsqueeze, [-1, -2], True), kwargs = {})
triton_poi_fused_mean_0 = async_compile.triton('triton_poi_fused_mean_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tl.store(out_ptr0 + (x0), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/xq/cxqdkvsjydmlbtemi3cgcbaz3s34bdl3dtzzd6getpmwvp2or3b3.py
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.mul, aten.add]
# Source node to ATen node mapping:
# x => mul
# x_1 => add
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %view_1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %view_1), kwargs = {})
triton_poi_fused_add_mul_1 = async_compile.triton('triton_poi_fused_add_mul_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tmp4 = tmp3 + tmp2
tl.store(out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
# Topologically Sorted Source Nodes: [adaptive_avg_pool1d], Original ATen: [aten.mean]
stream0 = get_raw_stream(0)
triton_poi_fused_mean_0.run(primals_1, buf0, 16, grid=grid(16), stream=stream0)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_3, reinterpret_tensor(buf0, (4, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1)
del primals_2
del primals_3
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.mul, aten.add]
triton_poi_fused_add_mul_1.run(primals_1, buf1, buf2, 64, grid=grid(64), stream=stream0)
return (buf2, primals_1, reinterpret_tensor(buf0, (4, 4), (4, 1), 0), buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class FRM(nn.Module):
def __init__(self, nb_dim, do_add=True, do_mul=True):
super(FRM, self).__init__()
self.fc = nn.Linear(nb_dim, nb_dim)
self.sig = nn.Sigmoid()
self.do_add = do_add
self.do_mul = do_mul
def forward(self, x):
y = F.adaptive_avg_pool1d(x, 1).view(x.size(0), -1)
y = self.sig(self.fc(y)).view(x.size(0), x.size(1), -1)
if self.do_mul:
x = x * y
if self.do_add:
x = x + y
return x
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'nb_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tl.store(out_ptr0 + x0, tmp8, xmask)
@triton.jit
def triton_poi_fused_add_mul_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tmp4 = tmp3 + tmp2
tl.store(out_ptr0 + x2, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
get_raw_stream(0)
triton_poi_fused_mean_0[grid(16)](primals_1, buf0, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_3, reinterpret_tensor(buf0, (4, 4), (4,
1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), alpha
=1, beta=1, out=buf1)
del primals_2
del primals_3
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_add_mul_1[grid(64)](primals_1, buf1, buf2, 64,
XBLOCK=64, num_warps=1, num_stages=1)
return buf2, primals_1, reinterpret_tensor(buf0, (4, 4), (4, 1), 0), buf1
class FRMNew(nn.Module):
def __init__(self, nb_dim, do_add=True, do_mul=True):
super(FRMNew, self).__init__()
self.fc = nn.Linear(nb_dim, nb_dim)
self.sig = nn.Sigmoid()
self.do_add = do_add
self.do_mul = do_mul
def forward(self, input_0):
primals_2 = self.fc.weight
primals_3 = self.fc.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| ishine/RawNet | FRM | false | 15,630 | [
"MIT"
]
| 199 | cddec5afa27049a4b507f3d48bb02b993ea838bb | https://github.com/ishine/RawNet/tree/cddec5afa27049a4b507f3d48bb02b993ea838bb |
ReCoNet | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/xi/cxi3ssslzv45liamqvbt6decmfms5gkzbjn7dtainfaa436qkyw3.py
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.reflection_pad2d]
# Source node to ATen node mapping:
# out => _unsafe_index, _unsafe_index_1
# Graph fragment:
# %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %sub_1, None]), kwargs = {})
# %_unsafe_index_1 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index, [None, None, None, %sub_1]), kwargs = {})
triton_poi_fused_reflection_pad2d_0 = async_compile.triton('triton_poi_fused_reflection_pad2d_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_reflection_pad2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_reflection_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 62208
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 72
x1 = (xindex // 72) % 72
x2 = (xindex // 5184)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (4095 + ((-1)*(tl_math.abs((-63) + (tl_math.abs((-4) + x0))))) + ((-64)*(tl_math.abs((-63) + (tl_math.abs((-4) + x1))))) + (4096*x2)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x3), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/zp/czpuakvx3zciuzfmemejrltenkqbzqirfyy2fnfbmrorwkdndz6e.py
# Topologically Sorted Source Nodes: [out_1, out_2], Original ATen: [aten.convolution, aten._native_batch_norm_legit]
# Source node to ATen node mapping:
# out_1 => convolution
# out_2 => add, rsqrt, var_mean
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [0, 2, 3]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
triton_red_fused__native_batch_norm_legit_convolution_1 = async_compile.triton('triton_red_fused__native_batch_norm_legit_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[128, 4096],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused__native_batch_norm_legit_convolution_1', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused__native_batch_norm_legit_convolution_1(in_out_ptr0, in_out_ptr1, in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 128
rnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x3 = xindex
x0 = xindex % 32
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp4_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp4_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp4_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex
tmp0 = tl.load(in_out_ptr0 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp2 = tmp0 + tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp4_mean_next, tmp4_m2_next, tmp4_weight_next = triton_helpers.welford_reduce(
tmp3, tmp4_mean, tmp4_m2, tmp4_weight, roffset == 0
)
tmp4_mean = tl.where(rmask & xmask, tmp4_mean_next, tmp4_mean)
tmp4_m2 = tl.where(rmask & xmask, tmp4_m2_next, tmp4_m2)
tmp4_weight = tl.where(rmask & xmask, tmp4_weight_next, tmp4_weight)
tl.store(in_out_ptr0 + (r2 + (4096*x3)), tmp2, rmask & xmask)
tmp4_tmp, tmp5_tmp, tmp6_tmp = triton_helpers.welford(
tmp4_mean, tmp4_m2, tmp4_weight, 1
)
tmp4 = tmp4_tmp[:, None]
tmp5 = tmp5_tmp[:, None]
tmp6 = tmp6_tmp[:, None]
tl.store(out_ptr0 + (x3), tmp4, xmask)
tmp7 = 4096.0
tmp8 = tmp5 / tmp7
tmp9 = 1e-05
tmp10 = tmp8 + tmp9
tmp11 = libdevice.rsqrt(tmp10)
tl.debug_barrier()
tl.store(in_out_ptr1 + (x3), tmp11, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/in/ciny2bql3sygecchlvr6rxw73jnhl7dgi3s5w2g2fefaoug53zzz.py
# Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.repeat]
# Source node to ATen node mapping:
# out_2 => repeat
# Graph fragment:
# %repeat : [num_users=2] = call_function[target=torch.ops.aten.repeat.default](args = (%primals_4, [4]), kwargs = {})
triton_poi_fused_repeat_2 = async_compile.triton('triton_poi_fused_repeat_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_repeat_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_repeat_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0 % 32), xmask)
tl.store(out_ptr0 + (x0), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ii/ciidusl6utkne6h3zmwx3jccsnttcsdc42mtp3vanldcnxv4y7ov.py
# Topologically Sorted Source Nodes: [out_3, out_4], Original ATen: [aten.relu, aten.reflection_pad2d]
# Source node to ATen node mapping:
# out_3 => relu
# out_4 => _unsafe_index_2, _unsafe_index_3
# Graph fragment:
# %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %_unsafe_index_2 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu, [None, None, %sub_6, None]), kwargs = {})
# %_unsafe_index_3 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_2, [None, None, None, %sub_6]), kwargs = {})
triton_poi_fused_reflection_pad2d_relu_3 = async_compile.triton('triton_poi_fused_reflection_pad2d_relu_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1048576],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_reflection_pad2d_relu_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_reflection_pad2d_relu_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 557568
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 66
x1 = (xindex // 66) % 66
x2 = (xindex // 4356)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (4095 + ((-1)*(tl_math.abs((-63) + (tl_math.abs((-1) + x0))))) + ((-64)*(tl_math.abs((-63) + (tl_math.abs((-1) + x1))))) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x2), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x2), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x2), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + (x2), xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tmp9 = tl.full([1], 0, tl.int32)
tmp10 = triton_helpers.maximum(tmp9, tmp8)
tl.store(out_ptr0 + (x3), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/si/csiohvngy3nd4p3av6rdkonvlcuns665sjcyq5ggukrhfwpso4ay.py
# Topologically Sorted Source Nodes: [out_5, out_6], Original ATen: [aten.convolution, aten._native_batch_norm_legit]
# Source node to ATen node mapping:
# out_5 => convolution_1
# out_6 => add_2, rsqrt_1, var_mean_1
# Graph fragment:
# %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_3, %primals_6, %primals_7, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_2, [0, 2, 3]), kwargs = {correction: 0, keepdim: True})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {})
# %rsqrt_1 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_2,), kwargs = {})
triton_per_fused__native_batch_norm_legit_convolution_4 = async_compile.triton('triton_per_fused__native_batch_norm_legit_convolution_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[256, 1024],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_convolution_4', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__native_batch_norm_legit_convolution_4(in_out_ptr0, in_out_ptr1, in_ptr0, out_ptr0, xnumel, rnumel):
xnumel = 256
XBLOCK: tl.constexpr = 1
rnumel = 1024
RBLOCK: tl.constexpr = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r2 = rindex
x3 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + (r2 + (1024*x3)), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.broadcast_to(tmp2, [RBLOCK])
tmp5 = tl.broadcast_to(tmp3, [RBLOCK])
tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0))
tmp8 = tl.full([1], 1024, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp3 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [RBLOCK])
tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0))
tmp16 = 1024.0
tmp17 = tmp15 / tmp16
tmp18 = 1e-05
tmp19 = tmp17 + tmp18
tmp20 = libdevice.rsqrt(tmp19)
tl.store(in_out_ptr0 + (r2 + (1024*x3)), tmp2, None)
tl.debug_barrier()
tl.store(in_out_ptr1 + (x3), tmp20, None)
tl.store(out_ptr0 + (x3), tmp10, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/bo/cbop6byfkkzzjktajzua3ovnpvhy32nxb7dbv364jfeaxunlv7bo.py
# Topologically Sorted Source Nodes: [out_6], Original ATen: [aten.repeat]
# Source node to ATen node mapping:
# out_6 => repeat_2
# Graph fragment:
# %repeat_2 : [num_users=2] = call_function[target=torch.ops.aten.repeat.default](args = (%primals_8, [4]), kwargs = {})
triton_poi_fused_repeat_5 = async_compile.triton('triton_poi_fused_repeat_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_repeat_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_repeat_5(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0 % 64), xmask)
tl.store(out_ptr0 + (x0), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/k6/ck6ljtglelyaqir7indwg3cp4wwudzqtlaof4xfdlyasdzhka7z5.py
# Topologically Sorted Source Nodes: [out_7, out_8], Original ATen: [aten.relu, aten.reflection_pad2d]
# Source node to ATen node mapping:
# out_7 => relu_1
# out_8 => _unsafe_index_4, _unsafe_index_5
# Graph fragment:
# %relu_1 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {})
# %_unsafe_index_4 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_1, [None, None, %sub_11, None]), kwargs = {})
# %_unsafe_index_5 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_4, [None, None, None, %sub_11]), kwargs = {})
triton_poi_fused_reflection_pad2d_relu_6 = async_compile.triton('triton_poi_fused_reflection_pad2d_relu_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[524288],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_reflection_pad2d_relu_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_reflection_pad2d_relu_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 295936
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 34
x1 = (xindex // 34) % 34
x2 = (xindex // 1156)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (1023 + ((-1)*(tl_math.abs((-31) + (tl_math.abs((-1) + x0))))) + ((-32)*(tl_math.abs((-31) + (tl_math.abs((-1) + x1))))) + (1024*x2)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x2), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x2), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x2), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + (x2), xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tmp9 = tl.full([1], 0, tl.int32)
tmp10 = triton_helpers.maximum(tmp9, tmp8)
tl.store(out_ptr0 + (x3), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/b3/cb3i36nfih3ah5aifo46hyitngbbqmrioka4h7sa3nz2vzd5toin.py
# Topologically Sorted Source Nodes: [out_9, out_10, out_11], Original ATen: [aten.convolution, aten.repeat, aten._native_batch_norm_legit, aten.relu]
# Source node to ATen node mapping:
# out_10 => add_4, repeat_4, repeat_5, rsqrt_2, var_mean_2
# out_11 => relu_2
# out_9 => convolution_2
# Graph fragment:
# %convolution_2 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_5, %primals_10, %primals_11, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %repeat_4 : [num_users=2] = call_function[target=torch.ops.aten.repeat.default](args = (%primals_12, [4]), kwargs = {})
# %repeat_5 : [num_users=2] = call_function[target=torch.ops.aten.repeat.default](args = (%primals_13, [4]), kwargs = {})
# %var_mean_2 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_4, [0, 2, 3]), kwargs = {correction: 0, keepdim: True})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_4, 1e-05), kwargs = {})
# %rsqrt_2 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_4,), kwargs = {})
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_5,), kwargs = {})
triton_per_fused__native_batch_norm_legit_convolution_relu_repeat_7 = async_compile.triton('triton_per_fused__native_batch_norm_legit_convolution_relu_repeat_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[512, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: 'i32', 10: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_convolution_relu_repeat_7', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': True, 'num_load': 4, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__native_batch_norm_legit_convolution_relu_repeat_7(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, rnumel):
xnumel = 512
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
x0 = xindex
r3 = rindex
x1 = xindex % 128
tmp0 = tl.load(in_ptr0 + (x0 % 128), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x0 % 128), None, eviction_policy='evict_last')
tmp2 = tl.load(in_out_ptr0 + (r3 + (256*x0)), None)
tmp3 = tl.load(in_ptr2 + (x1), None, eviction_policy='evict_last')
tmp4 = tmp2 + tmp3
tmp5 = tl.broadcast_to(tmp4, [RBLOCK])
tmp7 = tl.broadcast_to(tmp5, [RBLOCK])
tmp9 = triton_helpers.promote_to_tensor(tl.sum(tmp7, 0))
tmp10 = tl.full([1], 256, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp5 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [RBLOCK])
tmp17 = triton_helpers.promote_to_tensor(tl.sum(tmp15, 0))
tmp18 = 256.0
tmp19 = tmp17 / tmp18
tmp20 = 1e-05
tmp21 = tmp19 + tmp20
tmp22 = libdevice.rsqrt(tmp21)
tmp23 = tmp4 - tmp12
tmp24 = tmp23 * tmp22
tmp25 = tmp24 * tmp0
tmp26 = tmp25 + tmp1
tmp27 = tl.full([1], 0, tl.int32)
tmp28 = triton_helpers.maximum(tmp27, tmp26)
tl.store(out_ptr0 + (x0), tmp0, None)
tl.store(out_ptr1 + (x0), tmp1, None)
tl.store(in_out_ptr0 + (r3 + (256*x0)), tmp4, None)
tl.debug_barrier()
tl.store(in_out_ptr1 + (x0), tmp22, None)
tl.store(out_ptr3 + (r3 + (256*x0)), tmp28, None)
tl.store(out_ptr2 + (x0), tmp12, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/st/cstfzn4z33vdn3t4r76kkdoe3fox63ob7zbuq5lr4e2aj2wo3cfw.py
# Topologically Sorted Source Nodes: [out_12], Original ATen: [aten.reflection_pad2d]
# Source node to ATen node mapping:
# out_12 => _unsafe_index_6, _unsafe_index_7
# Graph fragment:
# %_unsafe_index_6 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_2, [None, None, %sub_16, None]), kwargs = {})
# %_unsafe_index_7 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_6, [None, None, None, %sub_16]), kwargs = {})
triton_poi_fused_reflection_pad2d_8 = async_compile.triton('triton_poi_fused_reflection_pad2d_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_reflection_pad2d_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_reflection_pad2d_8(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 165888
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 18
x1 = (xindex // 18) % 18
x2 = (xindex // 324)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (255 + ((-1)*(tl_math.abs((-15) + (tl_math.abs((-1) + x0))))) + ((-16)*(tl_math.abs((-15) + (tl_math.abs((-1) + x1))))) + (256*x2)), None, eviction_policy='evict_last')
tl.store(out_ptr0 + (x3), tmp0, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/e2/ce2xxpjelyctnuhefg5fuzcvwpa544akythto7ai5tgzpkjchqwu.py
# Topologically Sorted Source Nodes: [out_13, instance_norm_3], Original ATen: [aten.convolution, aten._native_batch_norm_legit]
# Source node to ATen node mapping:
# instance_norm_3 => add_6, rsqrt_3, var_mean_3
# out_13 => convolution_3
# Graph fragment:
# %convolution_3 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_7, %primals_14, %primals_15, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %var_mean_3 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_6, [0, 2, 3]), kwargs = {correction: 0, keepdim: True})
# %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_6, 1e-05), kwargs = {})
# %rsqrt_3 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_6,), kwargs = {})
triton_per_fused__native_batch_norm_legit_convolution_9 = async_compile.triton('triton_per_fused__native_batch_norm_legit_convolution_9', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[512, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_convolution_9', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__native_batch_norm_legit_convolution_9(in_out_ptr0, in_out_ptr1, in_ptr0, out_ptr0, xnumel, rnumel):
xnumel = 512
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r2 = rindex
x3 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + (r2 + (256*x3)), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.broadcast_to(tmp2, [RBLOCK])
tmp5 = tl.broadcast_to(tmp3, [RBLOCK])
tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0))
tmp8 = tl.full([1], 256, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp3 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [RBLOCK])
tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0))
tmp16 = 256.0
tmp17 = tmp15 / tmp16
tmp18 = 1e-05
tmp19 = tmp17 + tmp18
tmp20 = libdevice.rsqrt(tmp19)
tl.store(in_out_ptr0 + (r2 + (256*x3)), tmp2, None)
tl.debug_barrier()
tl.store(in_out_ptr1 + (x3), tmp20, None)
tl.store(out_ptr0 + (x3), tmp10, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/df/cdfz5yaux6hd3x6u7ywjjuon3rgwzpj6jchxqf6fmzsftmjj7luu.py
# Topologically Sorted Source Nodes: [instance_norm_3], Original ATen: [aten.repeat]
# Source node to ATen node mapping:
# instance_norm_3 => repeat_6
# Graph fragment:
# %repeat_6 : [num_users=2] = call_function[target=torch.ops.aten.repeat.default](args = (%primals_16, [4]), kwargs = {})
triton_poi_fused_repeat_10 = async_compile.triton('triton_poi_fused_repeat_10', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_repeat_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_repeat_10(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0 % 128), xmask)
tl.store(out_ptr0 + (x0), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/72/c72anaicoavbg3ypt27amkloa7kkqjupcqqr7kifcj4pxrdujccb.py
# Topologically Sorted Source Nodes: [out_14, out_15], Original ATen: [aten.relu, aten.reflection_pad2d]
# Source node to ATen node mapping:
# out_14 => relu_3
# out_15 => _unsafe_index_8, _unsafe_index_9
# Graph fragment:
# %relu_3 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%view_7,), kwargs = {})
# %_unsafe_index_8 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_3, [None, None, %sub_16, None]), kwargs = {})
# %_unsafe_index_9 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_8, [None, None, None, %sub_16]), kwargs = {})
triton_poi_fused_reflection_pad2d_relu_11 = async_compile.triton('triton_poi_fused_reflection_pad2d_relu_11', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_reflection_pad2d_relu_11', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_reflection_pad2d_relu_11(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 165888
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 18
x1 = (xindex // 18) % 18
x2 = (xindex // 324)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (255 + ((-1)*(tl_math.abs((-15) + (tl_math.abs((-1) + x0))))) + ((-16)*(tl_math.abs((-15) + (tl_math.abs((-1) + x1))))) + (256*x2)), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x2), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x2), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x2), None, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + (x2), None, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tmp9 = tl.full([1], 0, tl.int32)
tmp10 = triton_helpers.maximum(tmp9, tmp8)
tl.store(out_ptr0 + (x3), tmp10, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ht/chtgxfnwsuka4dupubnxavhxnvwl72mb4ekz5zpamrm6tamf5fvv.py
# Topologically Sorted Source Nodes: [out_16, out_17, out_18], Original ATen: [aten.convolution, aten.repeat, aten._native_batch_norm_legit, aten.add]
# Source node to ATen node mapping:
# out_16 => convolution_4
# out_17 => add_8, repeat_8, rsqrt_4, var_mean_4
# out_18 => add_10
# Graph fragment:
# %convolution_4 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_9, %primals_18, %primals_19, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %repeat_8 : [num_users=2] = call_function[target=torch.ops.aten.repeat.default](args = (%primals_20, [4]), kwargs = {})
# %var_mean_4 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_8, [0, 2, 3]), kwargs = {correction: 0, keepdim: True})
# %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_8, 1e-05), kwargs = {})
# %rsqrt_4 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_8,), kwargs = {})
# %add_10 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_9, %relu_2), kwargs = {})
triton_per_fused__native_batch_norm_legit_add_convolution_repeat_12 = async_compile.triton('triton_per_fused__native_batch_norm_legit_add_convolution_repeat_12', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[512, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: 'i32', 9: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_add_convolution_repeat_12', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': True, 'num_load': 5, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__native_batch_norm_legit_add_convolution_repeat_12(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr3, xnumel, rnumel):
xnumel = 512
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
x0 = xindex
r3 = rindex
x1 = xindex % 128
tmp0 = tl.load(in_ptr0 + (x0 % 128), None, eviction_policy='evict_last')
tmp1 = tl.load(in_out_ptr0 + (r3 + (256*x0)), None)
tmp2 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr2 + (x1), None, eviction_policy='evict_last')
tmp27 = tl.load(in_out_ptr1 + (r3 + (256*x0)), None)
tmp3 = tmp1 + tmp2
tmp4 = tl.broadcast_to(tmp3, [RBLOCK])
tmp6 = tl.broadcast_to(tmp4, [RBLOCK])
tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0))
tmp9 = tl.full([1], 256, tl.int32)
tmp10 = tmp9.to(tl.float32)
tmp11 = tmp8 / tmp10
tmp12 = tmp4 - tmp11
tmp13 = tmp12 * tmp12
tmp14 = tl.broadcast_to(tmp13, [RBLOCK])
tmp16 = triton_helpers.promote_to_tensor(tl.sum(tmp14, 0))
tmp17 = tmp3 - tmp11
tmp18 = 256.0
tmp19 = tmp16 / tmp18
tmp20 = 1e-05
tmp21 = tmp19 + tmp20
tmp22 = libdevice.rsqrt(tmp21)
tmp23 = tmp17 * tmp22
tmp24 = tmp23 * tmp0
tmp26 = tmp24 + tmp25
tmp28 = tmp26 + tmp27
tl.store(out_ptr0 + (x0), tmp0, None)
tl.store(in_out_ptr0 + (r3 + (256*x0)), tmp3, None)
tl.store(in_out_ptr1 + (r3 + (256*x0)), tmp28, None)
tl.store(out_ptr3 + (x0), tmp22, None)
tl.store(out_ptr1 + (x0), tmp11, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/b3/cb3qjb4uid2oua44nvmn56hgg22nygnazgnt5dgu6oqhrcyphjio.py
# Topologically Sorted Source Nodes: [out_44, out_45], Original ATen: [aten.convolution, aten._native_batch_norm_legit]
# Source node to ATen node mapping:
# out_44 => convolution_12
# out_45 => add_28, rsqrt_12, var_mean_12
# Graph fragment:
# %convolution_12 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_25, %primals_50, %primals_51, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %var_mean_12 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_24, [0, 2, 3]), kwargs = {correction: 0, keepdim: True})
# %add_28 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_24, 1e-05), kwargs = {})
# %rsqrt_12 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_28,), kwargs = {})
triton_per_fused__native_batch_norm_legit_convolution_13 = async_compile.triton('triton_per_fused__native_batch_norm_legit_convolution_13', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[512, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_convolution_13', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__native_batch_norm_legit_convolution_13(in_out_ptr0, in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel):
xnumel = 512
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r2 = rindex
x3 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + (r2 + (256*x3)), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.broadcast_to(tmp2, [RBLOCK])
tmp5 = tl.broadcast_to(tmp3, [RBLOCK])
tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0))
tmp8 = tl.full([1], 256, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp3 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [RBLOCK])
tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0))
tmp16 = 256.0
tmp17 = tmp15 / tmp16
tmp18 = 1e-05
tmp19 = tmp17 + tmp18
tmp20 = libdevice.rsqrt(tmp19)
tl.store(in_out_ptr0 + (r2 + (256*x3)), tmp2, None)
tl.store(out_ptr2 + (x3), tmp20, None)
tl.store(out_ptr0 + (x3), tmp10, None)
tl.store(out_ptr1 + (x3), tmp15, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/qq/cqqyalirw6ktpkb7ck6op5kn5slga5gde6ffhveztg3zuk5kgxda.py
# Topologically Sorted Source Nodes: [x_in], Original ATen: [aten.arange]
# Source node to ATen node mapping:
# x_in => iota_26
# Graph fragment:
# %iota_26 : [num_users=2] = call_function[target=torch.ops.prims.iota.default](args = (32,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
triton_poi_fused_arange_14 = async_compile.triton('triton_poi_fused_arange_14', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_arange_14', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_arange_14(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tl.store(out_ptr0 + (x0), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/r3/cr3jbyf5ylpcnip7fl3i4e3dqhcl5pfkrdyzumgnsa2b4past5le.py
# Topologically Sorted Source Nodes: [x_in], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy]
# Source node to ATen node mapping:
# x_in => add_31, add_32, convert_element_type, convert_element_type_1, mul_26, mul_27
# Graph fragment:
# %mul_26 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%iota_26, 1), kwargs = {})
# %add_31 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_26, 0), kwargs = {})
# %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%add_31, torch.float32), kwargs = {})
# %add_32 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type, 0.0), kwargs = {})
# %mul_27 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_32, 0.5), kwargs = {})
# %convert_element_type_1 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%mul_27, torch.int64), kwargs = {})
triton_poi_fused__to_copy_add_arange_mul_15 = async_compile.triton('triton_poi_fused__to_copy_add_arange_mul_15', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_mul_15', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_add_arange_mul_15(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/4u/c4ulzdc64ey5bpk3wpc3vnmalkhaekirwmcugkiy5azetn32lzqc.py
# Topologically Sorted Source Nodes: [out_46, x_in, out_47], Original ATen: [aten.add, aten._unsafe_index, aten.reflection_pad2d]
# Source node to ATen node mapping:
# out_46 => add_30
# out_47 => _unsafe_index_27, _unsafe_index_28
# x_in => _unsafe_index_26
# Graph fragment:
# %add_30 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_25, %add_25), kwargs = {})
# %_unsafe_index_26 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%add_30, [None, None, %unsqueeze_52, %convert_element_type_1]), kwargs = {})
# %_unsafe_index_27 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_26, [None, None, %sub_11, None]), kwargs = {})
# %_unsafe_index_28 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_27, [None, None, None, %sub_11]), kwargs = {})
triton_poi_fused__unsafe_index_add_reflection_pad2d_16 = async_compile.triton('triton_poi_fused__unsafe_index_add_reflection_pad2d_16', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1048576],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_add_reflection_pad2d_16', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__unsafe_index_add_reflection_pad2d_16(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 591872
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 34) % 34
x0 = xindex % 34
x4 = (xindex // 1156)
x2 = (xindex // 1156) % 128
x7 = xindex
tmp0 = tl.load(in_ptr0 + (31 + ((-1)*(tl_math.abs((-31) + (tl_math.abs((-1) + x1)))))), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (31 + ((-1)*(tl_math.abs((-31) + (tl_math.abs((-1) + x0)))))), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr2 + (x4), None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr3 + (x4), None, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr4 + (x4), None, eviction_policy='evict_last')
tmp21 = tl.load(in_ptr5 + (x2), None, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 16, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr1 + (tmp8 + (16*tmp4) + (256*x4)), None, eviction_policy='evict_last')
tmp11 = tmp9 - tmp10
tmp13 = 256.0
tmp14 = tmp12 / tmp13
tmp15 = 1e-05
tmp16 = tmp14 + tmp15
tmp17 = libdevice.rsqrt(tmp16)
tmp18 = tmp11 * tmp17
tmp20 = tmp18 * tmp19
tmp22 = tmp20 + tmp21
tmp23 = tl.load(in_ptr6 + (tmp8 + (16*tmp4) + (256*x4)), None, eviction_policy='evict_last')
tmp24 = tmp22 + tmp23
tl.store(out_ptr0 + (x7), tmp24, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/dq/cdq7haid5a5j3lkr5pvfwpau3a4evwh5wu6wzw4wsmw3e4ska5zp.py
# Topologically Sorted Source Nodes: [x_in_1], Original ATen: [aten.arange]
# Source node to ATen node mapping:
# x_in_1 => iota_30
# Graph fragment:
# %iota_30 : [num_users=2] = call_function[target=torch.ops.prims.iota.default](args = (64,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
triton_poi_fused_arange_17 = async_compile.triton('triton_poi_fused_arange_17', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_arange_17', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_arange_17(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tl.store(out_ptr0 + (x0), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/lc/clcrsu5s34immb6guobkppggbuvqp4z4ceacadyjt2r2vb5cnfrr.py
# Topologically Sorted Source Nodes: [x_in_1], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy]
# Source node to ATen node mapping:
# x_in_1 => add_37, add_38, convert_element_type_4, convert_element_type_5, mul_32, mul_33
# Graph fragment:
# %mul_32 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%iota_30, 1), kwargs = {})
# %add_37 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_32, 0), kwargs = {})
# %convert_element_type_4 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%add_37, torch.float32), kwargs = {})
# %add_38 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_4, 0.0), kwargs = {})
# %mul_33 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_38, 0.5), kwargs = {})
# %convert_element_type_5 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%mul_33, torch.int64), kwargs = {})
triton_poi_fused__to_copy_add_arange_mul_18 = async_compile.triton('triton_poi_fused__to_copy_add_arange_mul_18', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_mul_18', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_add_arange_mul_18(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/wm/cwmojiabjtl2ol57sxtgs6t2ik45zfe3nj5ahimvzp7to4pegq4y.py
# Topologically Sorted Source Nodes: [out_50, x_in_1, out_51], Original ATen: [aten.relu, aten._unsafe_index, aten.reflection_pad2d]
# Source node to ATen node mapping:
# out_50 => relu_8
# out_51 => _unsafe_index_30, _unsafe_index_31
# x_in_1 => _unsafe_index_29
# Graph fragment:
# %relu_8 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%view_27,), kwargs = {})
# %_unsafe_index_29 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_8, [None, None, %unsqueeze_57, %convert_element_type_5]), kwargs = {})
# %_unsafe_index_30 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_29, [None, None, %sub_6, None]), kwargs = {})
# %_unsafe_index_31 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_30, [None, None, None, %sub_6]), kwargs = {})
triton_poi_fused__unsafe_index_reflection_pad2d_relu_19 = async_compile.triton('triton_poi_fused__unsafe_index_reflection_pad2d_relu_19', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2097152],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_reflection_pad2d_relu_19', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__unsafe_index_reflection_pad2d_relu_19(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1115136
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 66) % 66
x0 = xindex % 66
x2 = (xindex // 4356)
x5 = xindex
tmp0 = tl.load(in_ptr0 + (63 + ((-1)*(tl_math.abs((-63) + (tl_math.abs((-1) + x1)))))), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (63 + ((-1)*(tl_math.abs((-63) + (tl_math.abs((-1) + x0)))))), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr2 + (x2), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr3 + (x2), xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr4 + (x2), xmask, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr5 + (x2), xmask, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 32, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr1 + (tmp8 + (32*tmp4) + (1024*x2)), xmask, eviction_policy='evict_last')
tmp11 = tmp9 - tmp10
tmp13 = tmp11 * tmp12
tmp15 = tmp13 * tmp14
tmp17 = tmp15 + tmp16
tmp18 = tl.full([1], 0, tl.int32)
tmp19 = triton_helpers.maximum(tmp18, tmp17)
tl.store(out_ptr0 + (x5), tmp19, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/th/cthl4msq2bdgpn742l3webz5mqwgninyvmg573gu2uxszfsmpn4m.py
# Topologically Sorted Source Nodes: [out_54, out_55], Original ATen: [aten.relu, aten.reflection_pad2d]
# Source node to ATen node mapping:
# out_54 => relu_9
# out_55 => _unsafe_index_32, _unsafe_index_33
# Graph fragment:
# %relu_9 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%view_29,), kwargs = {})
# %_unsafe_index_32 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_9, [None, None, %sub_1, None]), kwargs = {})
# %_unsafe_index_33 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_32, [None, None, None, %sub_1]), kwargs = {})
triton_poi_fused_reflection_pad2d_relu_20 = async_compile.triton('triton_poi_fused_reflection_pad2d_relu_20', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1048576],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_reflection_pad2d_relu_20', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_reflection_pad2d_relu_20(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 663552
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 72
x1 = (xindex // 72) % 72
x2 = (xindex // 5184)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (4095 + ((-1)*(tl_math.abs((-63) + (tl_math.abs((-4) + x0))))) + ((-64)*(tl_math.abs((-63) + (tl_math.abs((-4) + x1))))) + (4096*x2)), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x2), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x2), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x2), None, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + (x2), None, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tmp9 = tl.full([1], 0, tl.int32)
tmp10 = triton_helpers.maximum(tmp9, tmp8)
tl.store(out_ptr0 + (x3), tmp10, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/77/c77mv5i2dr3djk5tpomc6yt3qlyrnemw6gx6auraaw3xwnapj4pw.py
# Topologically Sorted Source Nodes: [out_56, truediv, tanh, mul, add_5], Original ATen: [aten.convolution, aten.div, aten.tanh, aten.mul, aten.add]
# Source node to ATen node mapping:
# add_5 => add_43
# mul => mul_38
# out_56 => convolution_15
# tanh => tanh
# truediv => div
# Graph fragment:
# %convolution_15 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_33, %primals_62, %primals_63, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%convolution_15, 255), kwargs = {})
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%div,), kwargs = {})
# %mul_38 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%tanh, 150), kwargs = {})
# %add_43 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_38, 127.5), kwargs = {})
triton_poi_fused_add_convolution_div_mul_tanh_21 = async_compile.triton('triton_poi_fused_add_convolution_div_mul_tanh_21', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_div_mul_tanh_21', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_div_mul_tanh_21(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 49152
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 4096) % 3
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.00392156862745098
tmp4 = tmp2 * tmp3
tmp5 = libdevice.tanh(tmp4)
tmp6 = 150.0
tmp7 = tmp5 * tmp6
tmp8 = 127.5
tmp9 = tmp7 + tmp8
tl.store(in_out_ptr0 + (x3), tmp2, None)
tl.store(out_ptr0 + (x3), tmp9, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41, primals_42, primals_43, primals_44, primals_45, primals_46, primals_47, primals_48, primals_49, primals_50, primals_51, primals_52, primals_53, primals_54, primals_55, primals_56, primals_57, primals_58, primals_59, primals_60, primals_61, primals_62, primals_63 = args
args.clear()
assert_size_stride(primals_1, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_2, (32, 3, 9, 9), (243, 81, 9, 1))
assert_size_stride(primals_3, (32, ), (1, ))
assert_size_stride(primals_4, (32, ), (1, ))
assert_size_stride(primals_5, (32, ), (1, ))
assert_size_stride(primals_6, (64, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_7, (64, ), (1, ))
assert_size_stride(primals_8, (64, ), (1, ))
assert_size_stride(primals_9, (64, ), (1, ))
assert_size_stride(primals_10, (128, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_11, (128, ), (1, ))
assert_size_stride(primals_12, (128, ), (1, ))
assert_size_stride(primals_13, (128, ), (1, ))
assert_size_stride(primals_14, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_15, (128, ), (1, ))
assert_size_stride(primals_16, (128, ), (1, ))
assert_size_stride(primals_17, (128, ), (1, ))
assert_size_stride(primals_18, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_19, (128, ), (1, ))
assert_size_stride(primals_20, (128, ), (1, ))
assert_size_stride(primals_21, (128, ), (1, ))
assert_size_stride(primals_22, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_23, (128, ), (1, ))
assert_size_stride(primals_24, (128, ), (1, ))
assert_size_stride(primals_25, (128, ), (1, ))
assert_size_stride(primals_26, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_27, (128, ), (1, ))
assert_size_stride(primals_28, (128, ), (1, ))
assert_size_stride(primals_29, (128, ), (1, ))
assert_size_stride(primals_30, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_31, (128, ), (1, ))
assert_size_stride(primals_32, (128, ), (1, ))
assert_size_stride(primals_33, (128, ), (1, ))
assert_size_stride(primals_34, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_35, (128, ), (1, ))
assert_size_stride(primals_36, (128, ), (1, ))
assert_size_stride(primals_37, (128, ), (1, ))
assert_size_stride(primals_38, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_39, (128, ), (1, ))
assert_size_stride(primals_40, (128, ), (1, ))
assert_size_stride(primals_41, (128, ), (1, ))
assert_size_stride(primals_42, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_43, (128, ), (1, ))
assert_size_stride(primals_44, (128, ), (1, ))
assert_size_stride(primals_45, (128, ), (1, ))
assert_size_stride(primals_46, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_47, (128, ), (1, ))
assert_size_stride(primals_48, (128, ), (1, ))
assert_size_stride(primals_49, (128, ), (1, ))
assert_size_stride(primals_50, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_51, (128, ), (1, ))
assert_size_stride(primals_52, (128, ), (1, ))
assert_size_stride(primals_53, (128, ), (1, ))
assert_size_stride(primals_54, (64, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_55, (64, ), (1, ))
assert_size_stride(primals_56, (64, ), (1, ))
assert_size_stride(primals_57, (64, ), (1, ))
assert_size_stride(primals_58, (32, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_59, (32, ), (1, ))
assert_size_stride(primals_60, (32, ), (1, ))
assert_size_stride(primals_61, (32, ), (1, ))
assert_size_stride(primals_62, (3, 32, 9, 9), (2592, 81, 9, 1))
assert_size_stride(primals_63, (3, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 3, 72, 72), (15552, 5184, 72, 1), torch.float32)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.reflection_pad2d]
stream0 = get_raw_stream(0)
triton_poi_fused_reflection_pad2d_0.run(primals_1, buf0, 62208, grid=grid(62208), stream=stream0)
del primals_1
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 32, 64, 64), (131072, 4096, 64, 1))
buf2 = buf1; del buf1 # reuse
buf5 = empty_strided_cuda((1, 128, 1, 1), (128, 1, 1, 1), torch.float32)
buf6 = empty_strided_cuda((1, 128, 1, 1), (128, 1, 128, 128), torch.float32)
buf8 = reinterpret_tensor(buf6, (1, 128, 1, 1), (128, 1, 1, 1), 0); del buf6 # reuse
# Topologically Sorted Source Nodes: [out_1, out_2], Original ATen: [aten.convolution, aten._native_batch_norm_legit]
triton_red_fused__native_batch_norm_legit_convolution_1.run(buf2, buf8, primals_3, buf5, 128, 4096, grid=grid(128), stream=stream0)
del primals_3
buf3 = empty_strided_cuda((128, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.repeat]
triton_poi_fused_repeat_2.run(primals_4, buf3, 128, grid=grid(128), stream=stream0)
del primals_4
buf4 = empty_strided_cuda((128, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.repeat]
triton_poi_fused_repeat_2.run(primals_5, buf4, 128, grid=grid(128), stream=stream0)
del primals_5
buf9 = empty_strided_cuda((4, 32, 66, 66), (139392, 4356, 66, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_3, out_4], Original ATen: [aten.relu, aten.reflection_pad2d]
triton_poi_fused_reflection_pad2d_relu_3.run(buf2, buf5, buf8, buf3, buf4, buf9, 557568, grid=grid(557568), stream=stream0)
# Topologically Sorted Source Nodes: [out_5], Original ATen: [aten.convolution]
buf10 = extern_kernels.convolution(buf9, primals_6, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 64, 32, 32), (65536, 1024, 32, 1))
buf11 = buf10; del buf10 # reuse
buf14 = empty_strided_cuda((1, 256, 1, 1), (256, 1, 1, 1), torch.float32)
buf15 = empty_strided_cuda((1, 256, 1, 1), (256, 1, 256, 256), torch.float32)
buf17 = reinterpret_tensor(buf15, (1, 256, 1, 1), (256, 1, 1, 1), 0); del buf15 # reuse
# Topologically Sorted Source Nodes: [out_5, out_6], Original ATen: [aten.convolution, aten._native_batch_norm_legit]
triton_per_fused__native_batch_norm_legit_convolution_4.run(buf11, buf17, primals_7, buf14, 256, 1024, grid=grid(256), stream=stream0)
del primals_7
buf12 = empty_strided_cuda((256, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [out_6], Original ATen: [aten.repeat]
triton_poi_fused_repeat_5.run(primals_8, buf12, 256, grid=grid(256), stream=stream0)
del primals_8
buf13 = empty_strided_cuda((256, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [out_6], Original ATen: [aten.repeat]
triton_poi_fused_repeat_5.run(primals_9, buf13, 256, grid=grid(256), stream=stream0)
del primals_9
buf18 = empty_strided_cuda((4, 64, 34, 34), (73984, 1156, 34, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_7, out_8], Original ATen: [aten.relu, aten.reflection_pad2d]
triton_poi_fused_reflection_pad2d_relu_6.run(buf11, buf14, buf17, buf12, buf13, buf18, 295936, grid=grid(295936), stream=stream0)
# Topologically Sorted Source Nodes: [out_9], Original ATen: [aten.convolution]
buf19 = extern_kernels.convolution(buf18, primals_10, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf19, (4, 128, 16, 16), (32768, 256, 16, 1))
buf21 = empty_strided_cuda((512, ), (1, ), torch.float32)
buf22 = empty_strided_cuda((512, ), (1, ), torch.float32)
buf20 = buf19; del buf19 # reuse
buf23 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 1, 1), torch.float32)
buf24 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32)
buf26 = reinterpret_tensor(buf24, (1, 512, 1, 1), (512, 1, 1, 1), 0); del buf24 # reuse
buf27 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_9, out_10, out_11], Original ATen: [aten.convolution, aten.repeat, aten._native_batch_norm_legit, aten.relu]
triton_per_fused__native_batch_norm_legit_convolution_relu_repeat_7.run(buf20, buf26, primals_12, primals_13, primals_11, buf21, buf22, buf23, buf27, 512, 256, grid=grid(512), stream=stream0)
del primals_11
del primals_12
del primals_13
buf28 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_12], Original ATen: [aten.reflection_pad2d]
triton_poi_fused_reflection_pad2d_8.run(buf27, buf28, 165888, grid=grid(165888), stream=stream0)
# Topologically Sorted Source Nodes: [out_13], Original ATen: [aten.convolution]
buf29 = extern_kernels.convolution(buf28, primals_14, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf29, (4, 128, 16, 16), (32768, 256, 16, 1))
buf30 = buf29; del buf29 # reuse
buf33 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 1, 1), torch.float32)
buf34 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32)
buf36 = reinterpret_tensor(buf34, (1, 512, 1, 1), (512, 1, 1, 1), 0); del buf34 # reuse
# Topologically Sorted Source Nodes: [out_13, instance_norm_3], Original ATen: [aten.convolution, aten._native_batch_norm_legit]
triton_per_fused__native_batch_norm_legit_convolution_9.run(buf30, buf36, primals_15, buf33, 512, 256, grid=grid(512), stream=stream0)
del primals_15
buf31 = empty_strided_cuda((512, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [instance_norm_3], Original ATen: [aten.repeat]
triton_poi_fused_repeat_10.run(primals_16, buf31, 512, grid=grid(512), stream=stream0)
del primals_16
buf32 = empty_strided_cuda((512, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [instance_norm_3], Original ATen: [aten.repeat]
triton_poi_fused_repeat_10.run(primals_17, buf32, 512, grid=grid(512), stream=stream0)
del primals_17
buf37 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_14, out_15], Original ATen: [aten.relu, aten.reflection_pad2d]
triton_poi_fused_reflection_pad2d_relu_11.run(buf30, buf33, buf36, buf31, buf32, buf37, 165888, grid=grid(165888), stream=stream0)
# Topologically Sorted Source Nodes: [out_16], Original ATen: [aten.convolution]
buf38 = extern_kernels.convolution(buf37, primals_18, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf38, (4, 128, 16, 16), (32768, 256, 16, 1))
buf40 = empty_strided_cuda((512, ), (1, ), torch.float32)
buf39 = buf38; del buf38 # reuse
buf41 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32)
buf45 = buf27; del buf27 # reuse
buf44 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32)
# Topologically Sorted Source Nodes: [out_16, out_17, out_18], Original ATen: [aten.convolution, aten.repeat, aten._native_batch_norm_legit, aten.add]
triton_per_fused__native_batch_norm_legit_add_convolution_repeat_12.run(buf39, buf45, primals_20, primals_19, primals_21, buf40, buf41, buf44, 512, 256, grid=grid(512), stream=stream0)
del primals_19
del primals_20
del primals_21
buf46 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_19], Original ATen: [aten.reflection_pad2d]
triton_poi_fused_reflection_pad2d_8.run(buf45, buf46, 165888, grid=grid(165888), stream=stream0)
# Topologically Sorted Source Nodes: [out_20], Original ATen: [aten.convolution]
buf47 = extern_kernels.convolution(buf46, primals_22, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf47, (4, 128, 16, 16), (32768, 256, 16, 1))
buf48 = buf47; del buf47 # reuse
buf51 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 1, 1), torch.float32)
buf52 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32)
buf54 = reinterpret_tensor(buf52, (1, 512, 1, 1), (512, 1, 1, 1), 0); del buf52 # reuse
# Topologically Sorted Source Nodes: [out_20, instance_norm_5], Original ATen: [aten.convolution, aten._native_batch_norm_legit]
triton_per_fused__native_batch_norm_legit_convolution_9.run(buf48, buf54, primals_23, buf51, 512, 256, grid=grid(512), stream=stream0)
del primals_23
buf49 = empty_strided_cuda((512, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [instance_norm_5], Original ATen: [aten.repeat]
triton_poi_fused_repeat_10.run(primals_24, buf49, 512, grid=grid(512), stream=stream0)
del primals_24
buf50 = empty_strided_cuda((512, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [instance_norm_5], Original ATen: [aten.repeat]
triton_poi_fused_repeat_10.run(primals_25, buf50, 512, grid=grid(512), stream=stream0)
del primals_25
buf55 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_21, out_22], Original ATen: [aten.relu, aten.reflection_pad2d]
triton_poi_fused_reflection_pad2d_relu_11.run(buf48, buf51, buf54, buf49, buf50, buf55, 165888, grid=grid(165888), stream=stream0)
# Topologically Sorted Source Nodes: [out_23], Original ATen: [aten.convolution]
buf56 = extern_kernels.convolution(buf55, primals_26, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf56, (4, 128, 16, 16), (32768, 256, 16, 1))
buf58 = empty_strided_cuda((512, ), (1, ), torch.float32)
buf57 = buf56; del buf56 # reuse
buf59 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32)
buf63 = buf45; del buf45 # reuse
buf62 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32)
# Topologically Sorted Source Nodes: [out_23, out_24, out_25], Original ATen: [aten.convolution, aten.repeat, aten._native_batch_norm_legit, aten.add]
triton_per_fused__native_batch_norm_legit_add_convolution_repeat_12.run(buf57, buf63, primals_28, primals_27, primals_29, buf58, buf59, buf62, 512, 256, grid=grid(512), stream=stream0)
del primals_27
del primals_28
del primals_29
buf64 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_26], Original ATen: [aten.reflection_pad2d]
triton_poi_fused_reflection_pad2d_8.run(buf63, buf64, 165888, grid=grid(165888), stream=stream0)
# Topologically Sorted Source Nodes: [out_27], Original ATen: [aten.convolution]
buf65 = extern_kernels.convolution(buf64, primals_30, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf65, (4, 128, 16, 16), (32768, 256, 16, 1))
buf66 = buf65; del buf65 # reuse
buf69 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 1, 1), torch.float32)
buf70 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32)
buf72 = reinterpret_tensor(buf70, (1, 512, 1, 1), (512, 1, 1, 1), 0); del buf70 # reuse
# Topologically Sorted Source Nodes: [out_27, instance_norm_7], Original ATen: [aten.convolution, aten._native_batch_norm_legit]
triton_per_fused__native_batch_norm_legit_convolution_9.run(buf66, buf72, primals_31, buf69, 512, 256, grid=grid(512), stream=stream0)
del primals_31
buf67 = empty_strided_cuda((512, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [instance_norm_7], Original ATen: [aten.repeat]
triton_poi_fused_repeat_10.run(primals_32, buf67, 512, grid=grid(512), stream=stream0)
del primals_32
buf68 = empty_strided_cuda((512, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [instance_norm_7], Original ATen: [aten.repeat]
triton_poi_fused_repeat_10.run(primals_33, buf68, 512, grid=grid(512), stream=stream0)
del primals_33
buf73 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_28, out_29], Original ATen: [aten.relu, aten.reflection_pad2d]
triton_poi_fused_reflection_pad2d_relu_11.run(buf66, buf69, buf72, buf67, buf68, buf73, 165888, grid=grid(165888), stream=stream0)
# Topologically Sorted Source Nodes: [out_30], Original ATen: [aten.convolution]
buf74 = extern_kernels.convolution(buf73, primals_34, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf74, (4, 128, 16, 16), (32768, 256, 16, 1))
buf76 = empty_strided_cuda((512, ), (1, ), torch.float32)
buf75 = buf74; del buf74 # reuse
buf77 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32)
buf81 = buf63; del buf63 # reuse
buf80 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32)
# Topologically Sorted Source Nodes: [out_30, out_31, out_32], Original ATen: [aten.convolution, aten.repeat, aten._native_batch_norm_legit, aten.add]
triton_per_fused__native_batch_norm_legit_add_convolution_repeat_12.run(buf75, buf81, primals_36, primals_35, primals_37, buf76, buf77, buf80, 512, 256, grid=grid(512), stream=stream0)
del primals_35
del primals_36
del primals_37
buf82 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_33], Original ATen: [aten.reflection_pad2d]
triton_poi_fused_reflection_pad2d_8.run(buf81, buf82, 165888, grid=grid(165888), stream=stream0)
# Topologically Sorted Source Nodes: [out_34], Original ATen: [aten.convolution]
buf83 = extern_kernels.convolution(buf82, primals_38, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf83, (4, 128, 16, 16), (32768, 256, 16, 1))
buf84 = buf83; del buf83 # reuse
buf87 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 1, 1), torch.float32)
buf88 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32)
buf90 = reinterpret_tensor(buf88, (1, 512, 1, 1), (512, 1, 1, 1), 0); del buf88 # reuse
# Topologically Sorted Source Nodes: [out_34, instance_norm_9], Original ATen: [aten.convolution, aten._native_batch_norm_legit]
triton_per_fused__native_batch_norm_legit_convolution_9.run(buf84, buf90, primals_39, buf87, 512, 256, grid=grid(512), stream=stream0)
del primals_39
buf85 = empty_strided_cuda((512, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [instance_norm_9], Original ATen: [aten.repeat]
triton_poi_fused_repeat_10.run(primals_40, buf85, 512, grid=grid(512), stream=stream0)
del primals_40
buf86 = empty_strided_cuda((512, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [instance_norm_9], Original ATen: [aten.repeat]
triton_poi_fused_repeat_10.run(primals_41, buf86, 512, grid=grid(512), stream=stream0)
del primals_41
buf91 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_35, out_36], Original ATen: [aten.relu, aten.reflection_pad2d]
triton_poi_fused_reflection_pad2d_relu_11.run(buf84, buf87, buf90, buf85, buf86, buf91, 165888, grid=grid(165888), stream=stream0)
# Topologically Sorted Source Nodes: [out_37], Original ATen: [aten.convolution]
buf92 = extern_kernels.convolution(buf91, primals_42, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf92, (4, 128, 16, 16), (32768, 256, 16, 1))
buf94 = empty_strided_cuda((512, ), (1, ), torch.float32)
buf93 = buf92; del buf92 # reuse
buf95 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32)
buf99 = buf81; del buf81 # reuse
buf98 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32)
# Topologically Sorted Source Nodes: [out_37, out_38, out_39], Original ATen: [aten.convolution, aten.repeat, aten._native_batch_norm_legit, aten.add]
triton_per_fused__native_batch_norm_legit_add_convolution_repeat_12.run(buf93, buf99, primals_44, primals_43, primals_45, buf94, buf95, buf98, 512, 256, grid=grid(512), stream=stream0)
del primals_43
del primals_44
del primals_45
buf100 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_40], Original ATen: [aten.reflection_pad2d]
triton_poi_fused_reflection_pad2d_8.run(buf99, buf100, 165888, grid=grid(165888), stream=stream0)
# Topologically Sorted Source Nodes: [out_41], Original ATen: [aten.convolution]
buf101 = extern_kernels.convolution(buf100, primals_46, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf101, (4, 128, 16, 16), (32768, 256, 16, 1))
buf102 = buf101; del buf101 # reuse
buf105 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 1, 1), torch.float32)
buf106 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32)
buf108 = reinterpret_tensor(buf106, (1, 512, 1, 1), (512, 1, 1, 1), 0); del buf106 # reuse
# Topologically Sorted Source Nodes: [out_41, instance_norm_11], Original ATen: [aten.convolution, aten._native_batch_norm_legit]
triton_per_fused__native_batch_norm_legit_convolution_9.run(buf102, buf108, primals_47, buf105, 512, 256, grid=grid(512), stream=stream0)
del primals_47
buf103 = empty_strided_cuda((512, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [instance_norm_11], Original ATen: [aten.repeat]
triton_poi_fused_repeat_10.run(primals_48, buf103, 512, grid=grid(512), stream=stream0)
del primals_48
buf104 = empty_strided_cuda((512, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [instance_norm_11], Original ATen: [aten.repeat]
triton_poi_fused_repeat_10.run(primals_49, buf104, 512, grid=grid(512), stream=stream0)
del primals_49
buf109 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_42, out_43], Original ATen: [aten.relu, aten.reflection_pad2d]
triton_poi_fused_reflection_pad2d_relu_11.run(buf102, buf105, buf108, buf103, buf104, buf109, 165888, grid=grid(165888), stream=stream0)
# Topologically Sorted Source Nodes: [out_44], Original ATen: [aten.convolution]
buf110 = extern_kernels.convolution(buf109, primals_50, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf110, (4, 128, 16, 16), (32768, 256, 16, 1))
buf111 = buf110; del buf110 # reuse
buf113 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32)
buf114 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32)
buf116 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512), torch.float32)
# Topologically Sorted Source Nodes: [out_44, out_45], Original ATen: [aten.convolution, aten._native_batch_norm_legit]
triton_per_fused__native_batch_norm_legit_convolution_13.run(buf111, primals_51, buf113, buf114, buf116, 512, 256, grid=grid(512), stream=stream0)
del primals_51
buf112 = empty_strided_cuda((512, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [out_45], Original ATen: [aten.repeat]
triton_poi_fused_repeat_10.run(primals_52, buf112, 512, grid=grid(512), stream=stream0)
del primals_52
buf117 = empty_strided_cuda((32, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [x_in], Original ATen: [aten.arange]
triton_poi_fused_arange_14.run(buf117, 32, grid=grid(32), stream=stream0)
buf118 = empty_strided_cuda((32, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [x_in], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy]
triton_poi_fused__to_copy_add_arange_mul_15.run(buf118, 32, grid=grid(32), stream=stream0)
buf119 = empty_strided_cuda((4, 128, 34, 34), (147968, 1156, 34, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_46, x_in, out_47], Original ATen: [aten.add, aten._unsafe_index, aten.reflection_pad2d]
triton_poi_fused__unsafe_index_add_reflection_pad2d_16.run(buf118, buf111, buf113, buf114, buf112, primals_53, buf99, buf119, 591872, grid=grid(591872), stream=stream0)
del buf114
del buf99
del primals_53
# Topologically Sorted Source Nodes: [out_48], Original ATen: [aten.convolution]
buf120 = extern_kernels.convolution(buf119, primals_54, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf120, (4, 64, 32, 32), (65536, 1024, 32, 1))
buf121 = buf120; del buf120 # reuse
buf124 = empty_strided_cuda((1, 256, 1, 1), (256, 1, 1, 1), torch.float32)
buf125 = empty_strided_cuda((1, 256, 1, 1), (256, 1, 256, 256), torch.float32)
buf127 = reinterpret_tensor(buf125, (1, 256, 1, 1), (256, 1, 1, 1), 0); del buf125 # reuse
# Topologically Sorted Source Nodes: [out_48, out_49], Original ATen: [aten.convolution, aten._native_batch_norm_legit]
triton_per_fused__native_batch_norm_legit_convolution_4.run(buf121, buf127, primals_55, buf124, 256, 1024, grid=grid(256), stream=stream0)
del primals_55
buf122 = empty_strided_cuda((256, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [out_49], Original ATen: [aten.repeat]
triton_poi_fused_repeat_5.run(primals_56, buf122, 256, grid=grid(256), stream=stream0)
del primals_56
buf123 = empty_strided_cuda((256, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [out_49], Original ATen: [aten.repeat]
triton_poi_fused_repeat_5.run(primals_57, buf123, 256, grid=grid(256), stream=stream0)
del primals_57
buf128 = empty_strided_cuda((64, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [x_in_1], Original ATen: [aten.arange]
triton_poi_fused_arange_17.run(buf128, 64, grid=grid(64), stream=stream0)
buf129 = empty_strided_cuda((64, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [x_in_1], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy]
triton_poi_fused__to_copy_add_arange_mul_18.run(buf129, 64, grid=grid(64), stream=stream0)
buf130 = empty_strided_cuda((4, 64, 66, 66), (278784, 4356, 66, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_50, x_in_1, out_51], Original ATen: [aten.relu, aten._unsafe_index, aten.reflection_pad2d]
triton_poi_fused__unsafe_index_reflection_pad2d_relu_19.run(buf129, buf121, buf124, buf127, buf122, buf123, buf130, 1115136, grid=grid(1115136), stream=stream0)
# Topologically Sorted Source Nodes: [out_52], Original ATen: [aten.convolution]
buf131 = extern_kernels.convolution(buf130, primals_58, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf131, (4, 32, 64, 64), (131072, 4096, 64, 1))
buf132 = buf131; del buf131 # reuse
buf135 = empty_strided_cuda((1, 128, 1, 1), (128, 1, 1, 1), torch.float32)
buf136 = empty_strided_cuda((1, 128, 1, 1), (128, 1, 128, 128), torch.float32)
buf138 = reinterpret_tensor(buf136, (1, 128, 1, 1), (128, 1, 1, 1), 0); del buf136 # reuse
# Topologically Sorted Source Nodes: [out_52, out_53], Original ATen: [aten.convolution, aten._native_batch_norm_legit]
triton_red_fused__native_batch_norm_legit_convolution_1.run(buf132, buf138, primals_59, buf135, 128, 4096, grid=grid(128), stream=stream0)
del primals_59
buf133 = empty_strided_cuda((128, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [out_53], Original ATen: [aten.repeat]
triton_poi_fused_repeat_2.run(primals_60, buf133, 128, grid=grid(128), stream=stream0)
del primals_60
buf134 = empty_strided_cuda((128, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [out_53], Original ATen: [aten.repeat]
triton_poi_fused_repeat_2.run(primals_61, buf134, 128, grid=grid(128), stream=stream0)
del primals_61
buf139 = empty_strided_cuda((4, 32, 72, 72), (165888, 5184, 72, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_54, out_55], Original ATen: [aten.relu, aten.reflection_pad2d]
triton_poi_fused_reflection_pad2d_relu_20.run(buf132, buf135, buf138, buf133, buf134, buf139, 663552, grid=grid(663552), stream=stream0)
# Topologically Sorted Source Nodes: [out_56], Original ATen: [aten.convolution]
buf140 = extern_kernels.convolution(buf139, primals_62, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf140, (4, 3, 64, 64), (12288, 4096, 64, 1))
buf141 = buf140; del buf140 # reuse
buf142 = empty_strided_cuda((4, 3, 64, 64), (12288, 4096, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_56, truediv, tanh, mul, add_5], Original ATen: [aten.convolution, aten.div, aten.tanh, aten.mul, aten.add]
triton_poi_fused_add_convolution_div_mul_tanh_21.run(buf141, primals_63, buf142, 49152, grid=grid(49152), stream=stream0)
del primals_63
return (buf142, primals_2, primals_6, primals_10, primals_14, primals_18, primals_22, primals_26, primals_30, primals_34, primals_38, primals_42, primals_46, primals_50, primals_54, primals_58, primals_62, buf0, buf2, buf3, buf4, buf5, buf8, buf9, buf11, buf12, buf13, buf14, buf17, buf18, buf20, buf21, buf22, buf23, buf26, buf28, buf30, buf31, buf32, buf33, buf36, buf37, buf39, buf40, reinterpret_tensor(buf44, (512, ), (1, ), 0), buf46, buf48, buf49, buf50, buf51, buf54, buf55, buf57, buf58, reinterpret_tensor(buf62, (512, ), (1, ), 0), buf64, buf66, buf67, buf68, buf69, buf72, buf73, buf75, buf76, reinterpret_tensor(buf80, (512, ), (1, ), 0), buf82, buf84, buf85, buf86, buf87, buf90, buf91, buf93, buf94, reinterpret_tensor(buf98, (512, ), (1, ), 0), buf100, buf102, buf103, buf104, buf105, buf108, buf109, buf111, buf112, reinterpret_tensor(buf116, (512, ), (1, ), 0), buf117, buf118, buf119, buf121, buf122, buf123, buf124, buf127, buf128, buf129, buf130, buf132, buf133, buf134, buf135, buf138, buf139, buf141, reinterpret_tensor(buf113, (1, 512, 1, 1), (512, 1, 1, 1), 0), reinterpret_tensor(buf95, (1, 512, 1, 1), (512, 1, 1, 1), 0), reinterpret_tensor(buf77, (1, 512, 1, 1), (512, 1, 1, 1), 0), reinterpret_tensor(buf59, (1, 512, 1, 1), (512, 1, 1, 1), 0), reinterpret_tensor(buf41, (1, 512, 1, 1), (512, 1, 1, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((32, 3, 9, 9), (243, 81, 9, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((64, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((128, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_17 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_18 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_19 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_20 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_21 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_22 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_23 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_24 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_25 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_26 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_27 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_28 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_29 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_30 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_31 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_32 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_33 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_34 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_35 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_36 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_37 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_38 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_39 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_40 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_41 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_42 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_43 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_44 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_45 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_46 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_47 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_48 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_49 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_50 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_51 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_52 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_53 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_54 = rand_strided((64, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_55 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_56 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_57 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_58 = rand_strided((32, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_59 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_60 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_61 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_62 = rand_strided((3, 32, 9, 9), (2592, 81, 9, 1), device='cuda:0', dtype=torch.float32)
primals_63 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41, primals_42, primals_43, primals_44, primals_45, primals_46, primals_47, primals_48, primals_49, primals_50, primals_51, primals_52, primals_53, primals_54, primals_55, primals_56, primals_57, primals_58, primals_59, primals_60, primals_61, primals_62, primals_63])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import numpy as np
class SelectiveLoadModule(torch.nn.Module):
"""Only load layers in trained models with the same name."""
def __init__(self):
super(SelectiveLoadModule, self).__init__()
def forward(self, x):
return x
def load_state_dict(self, state_dict):
"""Override the function to ignore redundant weights."""
own_state = self.state_dict()
for name, param in state_dict.items():
if name in own_state:
own_state[name].copy_(param)
class ConvLayer(torch.nn.Module):
"""Reflection padded convolution layer."""
def __init__(self, in_channels, out_channels, kernel_size, stride, bias
=True):
super(ConvLayer, self).__init__()
reflection_padding = int(np.floor(kernel_size / 2))
self.reflection_pad = torch.nn.ReflectionPad2d(reflection_padding)
self.conv2d = torch.nn.Conv2d(in_channels, out_channels,
kernel_size, stride=stride, bias=bias)
def forward(self, x):
out = self.reflection_pad(x)
out = self.conv2d(out)
return out
class ConvTanh(ConvLayer):
def __init__(self, in_channels, out_channels, kernel_size, stride):
super(ConvTanh, self).__init__(in_channels, out_channels,
kernel_size, stride)
self.tanh = torch.nn.Tanh()
def forward(self, x):
out = super(ConvTanh, self).forward(x)
return self.tanh(out / 255) * 150 + 255 / 2
class ConvInstRelu(ConvLayer):
def __init__(self, in_channels, out_channels, kernel_size, stride):
super(ConvInstRelu, self).__init__(in_channels, out_channels,
kernel_size, stride)
self.instance = torch.nn.InstanceNorm2d(out_channels, affine=True)
self.relu = torch.nn.ReLU()
def forward(self, x):
out = super(ConvInstRelu, self).forward(x)
out = self.instance(out)
out = self.relu(out)
return out
class UpsampleConvLayer(torch.nn.Module):
"""Upsamples the input and then does a convolution.
This method gives better results compared to ConvTranspose2d.
ref: http://distill.pub/2016/deconv-checkerboard/
"""
def __init__(self, in_channels, out_channels, kernel_size, stride,
upsample=None):
super(UpsampleConvLayer, self).__init__()
self.upsample = upsample
if upsample:
self.upsample_layer = torch.nn.Upsample(scale_factor=upsample)
reflection_padding = int(np.floor(kernel_size / 2))
self.reflection_pad = torch.nn.ReflectionPad2d(reflection_padding)
self.conv2d = torch.nn.Conv2d(in_channels, out_channels,
kernel_size, stride)
def forward(self, x):
x_in = x
if self.upsample:
x_in = self.upsample_layer(x_in)
out = self.reflection_pad(x_in)
out = self.conv2d(out)
return out
class UpsampleConvInstRelu(UpsampleConvLayer):
def __init__(self, in_channels, out_channels, kernel_size, stride,
upsample=None):
super(UpsampleConvInstRelu, self).__init__(in_channels,
out_channels, kernel_size, stride, upsample)
self.instance = torch.nn.InstanceNorm2d(out_channels, affine=True)
self.relu = torch.nn.ReLU()
def forward(self, x):
out = super(UpsampleConvInstRelu, self).forward(x)
out = self.instance(out)
out = self.relu(out)
return out
class ResidualBlock(torch.nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1):
super(ResidualBlock, self).__init__()
self.conv1 = ConvLayer(in_channels, out_channels, kernel_size, stride)
self.in1 = torch.nn.InstanceNorm2d(out_channels, affine=True)
self.conv2 = ConvLayer(out_channels, out_channels, kernel_size, stride)
self.in2 = torch.nn.InstanceNorm2d(out_channels, affine=True)
self.relu = torch.nn.ReLU()
def forward(self, x):
residual = x
out = self.relu(self.in1(self.conv1(x)))
out = self.in2(self.conv2(out))
out = out + residual
return out
class ReCoNet(SelectiveLoadModule):
def __init__(self):
super(ReCoNet, self).__init__()
self.style_conv1 = ConvInstRelu(3, 32, kernel_size=9, stride=1)
self.style_conv2 = ConvInstRelu(32, 64, kernel_size=3, stride=2)
self.style_conv3 = ConvInstRelu(64, 128, kernel_size=3, stride=2)
self.style_res1 = ResidualBlock(128, 128)
self.style_res2 = ResidualBlock(128, 128)
self.style_res3 = ResidualBlock(128, 128)
self.style_res4 = ResidualBlock(128, 128)
self.style_res5 = ResidualBlock(128, 128)
self.style_deconv1 = UpsampleConvInstRelu(128, 64, kernel_size=3,
stride=1, upsample=2)
self.style_deconv2 = UpsampleConvInstRelu(64, 32, kernel_size=3,
stride=1, upsample=2)
self.style_deconv3 = ConvTanh(32, 3, kernel_size=9, stride=1)
def forward(self, x):
return self.style_deconv3(self.style_deconv2(self.style_deconv1(
self.style_res5(self.style_res4(self.style_res3(self.style_res2
(self.style_res1(self.style_conv3(self.style_conv2(self.
style_conv1(x)))))))))))
def get_inputs():
return [torch.rand([4, 3, 64, 64])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import numpy as np
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_reflection_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 62208
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 72
x1 = xindex // 72 % 72
x2 = xindex // 5184
x3 = xindex
tmp0 = tl.load(in_ptr0 + (4095 + -1 * tl_math.abs(-63 + tl_math.abs(-4 +
x0)) + -64 * tl_math.abs(-63 + tl_math.abs(-4 + x1)) + 4096 * x2),
xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + x3, tmp0, xmask)
@triton.jit
def triton_red_fused__native_batch_norm_legit_convolution_1(in_out_ptr0,
in_out_ptr1, in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr,
RBLOCK: tl.constexpr):
xnumel = 128
rnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x3 = xindex
x0 = xindex % 32
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp4_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp4_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp4_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex
tmp0 = tl.load(in_out_ptr0 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp2 = tmp0 + tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp4_mean_next, tmp4_m2_next, tmp4_weight_next = (triton_helpers.
welford_reduce(tmp3, tmp4_mean, tmp4_m2, tmp4_weight, roffset == 0)
)
tmp4_mean = tl.where(rmask & xmask, tmp4_mean_next, tmp4_mean)
tmp4_m2 = tl.where(rmask & xmask, tmp4_m2_next, tmp4_m2)
tmp4_weight = tl.where(rmask & xmask, tmp4_weight_next, tmp4_weight)
tl.store(in_out_ptr0 + (r2 + 4096 * x3), tmp2, rmask & xmask)
tmp4_tmp, tmp5_tmp, tmp6_tmp = triton_helpers.welford(tmp4_mean,
tmp4_m2, tmp4_weight, 1)
tmp4 = tmp4_tmp[:, None]
tmp5 = tmp5_tmp[:, None]
tmp6_tmp[:, None]
tl.store(out_ptr0 + x3, tmp4, xmask)
tmp7 = 4096.0
tmp8 = tmp5 / tmp7
tmp9 = 1e-05
tmp10 = tmp8 + tmp9
tmp11 = libdevice.rsqrt(tmp10)
tl.debug_barrier()
tl.store(in_out_ptr1 + x3, tmp11, xmask)
@triton.jit
def triton_poi_fused_repeat_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0 % 32, xmask)
tl.store(out_ptr0 + x0, tmp0, xmask)
@triton.jit
def triton_poi_fused_reflection_pad2d_relu_3(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 557568
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 66
x1 = xindex // 66 % 66
x2 = xindex // 4356
x3 = xindex
tmp0 = tl.load(in_ptr0 + (4095 + -1 * tl_math.abs(-63 + tl_math.abs(-1 +
x0)) + -64 * tl_math.abs(-63 + tl_math.abs(-1 + x1)) + 4096 * x2),
xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x2, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + x2, xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tmp9 = tl.full([1], 0, tl.int32)
tmp10 = triton_helpers.maximum(tmp9, tmp8)
tl.store(out_ptr0 + x3, tmp10, xmask)
@triton.jit
def triton_per_fused__native_batch_norm_legit_convolution_4(in_out_ptr0,
in_out_ptr1, in_ptr0, out_ptr0, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r2 = rindex
x3 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + (r2 + 1024 * x3), None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.broadcast_to(tmp2, [RBLOCK])
tmp5 = tl.broadcast_to(tmp3, [RBLOCK])
tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0))
tmp8 = tl.full([1], 1024, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp3 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [RBLOCK])
tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0))
tmp16 = 1024.0
tmp17 = tmp15 / tmp16
tmp18 = 1e-05
tmp19 = tmp17 + tmp18
tmp20 = libdevice.rsqrt(tmp19)
tl.store(in_out_ptr0 + (r2 + 1024 * x3), tmp2, None)
tl.debug_barrier()
tl.store(in_out_ptr1 + x3, tmp20, None)
tl.store(out_ptr0 + x3, tmp10, None)
@triton.jit
def triton_poi_fused_repeat_5(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0 % 64, xmask)
tl.store(out_ptr0 + x0, tmp0, xmask)
@triton.jit
def triton_poi_fused_reflection_pad2d_relu_6(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 295936
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 34
x1 = xindex // 34 % 34
x2 = xindex // 1156
x3 = xindex
tmp0 = tl.load(in_ptr0 + (1023 + -1 * tl_math.abs(-31 + tl_math.abs(-1 +
x0)) + -32 * tl_math.abs(-31 + tl_math.abs(-1 + x1)) + 1024 * x2),
xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x2, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + x2, xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tmp9 = tl.full([1], 0, tl.int32)
tmp10 = triton_helpers.maximum(tmp9, tmp8)
tl.store(out_ptr0 + x3, tmp10, xmask)
@triton.jit
def triton_per_fused__native_batch_norm_legit_convolution_relu_repeat_7(
in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1,
out_ptr2, out_ptr3, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
x0 = xindex
r3 = rindex
x1 = xindex % 128
tmp0 = tl.load(in_ptr0 + x0 % 128, None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x0 % 128, None, eviction_policy='evict_last')
tmp2 = tl.load(in_out_ptr0 + (r3 + 256 * x0), None)
tmp3 = tl.load(in_ptr2 + x1, None, eviction_policy='evict_last')
tmp4 = tmp2 + tmp3
tmp5 = tl.broadcast_to(tmp4, [RBLOCK])
tmp7 = tl.broadcast_to(tmp5, [RBLOCK])
tmp9 = triton_helpers.promote_to_tensor(tl.sum(tmp7, 0))
tmp10 = tl.full([1], 256, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp5 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [RBLOCK])
tmp17 = triton_helpers.promote_to_tensor(tl.sum(tmp15, 0))
tmp18 = 256.0
tmp19 = tmp17 / tmp18
tmp20 = 1e-05
tmp21 = tmp19 + tmp20
tmp22 = libdevice.rsqrt(tmp21)
tmp23 = tmp4 - tmp12
tmp24 = tmp23 * tmp22
tmp25 = tmp24 * tmp0
tmp26 = tmp25 + tmp1
tmp27 = tl.full([1], 0, tl.int32)
tmp28 = triton_helpers.maximum(tmp27, tmp26)
tl.store(out_ptr0 + x0, tmp0, None)
tl.store(out_ptr1 + x0, tmp1, None)
tl.store(in_out_ptr0 + (r3 + 256 * x0), tmp4, None)
tl.debug_barrier()
tl.store(in_out_ptr1 + x0, tmp22, None)
tl.store(out_ptr3 + (r3 + 256 * x0), tmp28, None)
tl.store(out_ptr2 + x0, tmp12, None)
@triton.jit
def triton_poi_fused_reflection_pad2d_8(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 18
x1 = xindex // 18 % 18
x2 = xindex // 324
x3 = xindex
tmp0 = tl.load(in_ptr0 + (255 + -1 * tl_math.abs(-15 + tl_math.abs(-1 +
x0)) + -16 * tl_math.abs(-15 + tl_math.abs(-1 + x1)) + 256 * x2),
None, eviction_policy='evict_last')
tl.store(out_ptr0 + x3, tmp0, None)
@triton.jit
def triton_per_fused__native_batch_norm_legit_convolution_9(in_out_ptr0,
in_out_ptr1, in_ptr0, out_ptr0, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r2 = rindex
x3 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + (r2 + 256 * x3), None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.broadcast_to(tmp2, [RBLOCK])
tmp5 = tl.broadcast_to(tmp3, [RBLOCK])
tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0))
tmp8 = tl.full([1], 256, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp3 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [RBLOCK])
tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0))
tmp16 = 256.0
tmp17 = tmp15 / tmp16
tmp18 = 1e-05
tmp19 = tmp17 + tmp18
tmp20 = libdevice.rsqrt(tmp19)
tl.store(in_out_ptr0 + (r2 + 256 * x3), tmp2, None)
tl.debug_barrier()
tl.store(in_out_ptr1 + x3, tmp20, None)
tl.store(out_ptr0 + x3, tmp10, None)
@triton.jit
def triton_poi_fused_repeat_10(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0 % 128, xmask)
tl.store(out_ptr0 + x0, tmp0, xmask)
@triton.jit
def triton_poi_fused_reflection_pad2d_relu_11(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 18
x1 = xindex // 18 % 18
x2 = xindex // 324
x3 = xindex
tmp0 = tl.load(in_ptr0 + (255 + -1 * tl_math.abs(-15 + tl_math.abs(-1 +
x0)) + -16 * tl_math.abs(-15 + tl_math.abs(-1 + x1)) + 256 * x2),
None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x2, None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + x2, None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x2, None, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + x2, None, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tmp9 = tl.full([1], 0, tl.int32)
tmp10 = triton_helpers.maximum(tmp9, tmp8)
tl.store(out_ptr0 + x3, tmp10, None)
@triton.jit
def triton_per_fused__native_batch_norm_legit_add_convolution_repeat_12(
in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1,
out_ptr3, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
x0 = xindex
r3 = rindex
x1 = xindex % 128
tmp0 = tl.load(in_ptr0 + x0 % 128, None, eviction_policy='evict_last')
tmp1 = tl.load(in_out_ptr0 + (r3 + 256 * x0), None)
tmp2 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr2 + x1, None, eviction_policy='evict_last')
tmp27 = tl.load(in_out_ptr1 + (r3 + 256 * x0), None)
tmp3 = tmp1 + tmp2
tmp4 = tl.broadcast_to(tmp3, [RBLOCK])
tmp6 = tl.broadcast_to(tmp4, [RBLOCK])
tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0))
tmp9 = tl.full([1], 256, tl.int32)
tmp10 = tmp9.to(tl.float32)
tmp11 = tmp8 / tmp10
tmp12 = tmp4 - tmp11
tmp13 = tmp12 * tmp12
tmp14 = tl.broadcast_to(tmp13, [RBLOCK])
tmp16 = triton_helpers.promote_to_tensor(tl.sum(tmp14, 0))
tmp17 = tmp3 - tmp11
tmp18 = 256.0
tmp19 = tmp16 / tmp18
tmp20 = 1e-05
tmp21 = tmp19 + tmp20
tmp22 = libdevice.rsqrt(tmp21)
tmp23 = tmp17 * tmp22
tmp24 = tmp23 * tmp0
tmp26 = tmp24 + tmp25
tmp28 = tmp26 + tmp27
tl.store(out_ptr0 + x0, tmp0, None)
tl.store(in_out_ptr0 + (r3 + 256 * x0), tmp3, None)
tl.store(in_out_ptr1 + (r3 + 256 * x0), tmp28, None)
tl.store(out_ptr3 + x0, tmp22, None)
tl.store(out_ptr1 + x0, tmp11, None)
@triton.jit
def triton_per_fused__native_batch_norm_legit_convolution_13(in_out_ptr0,
in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r2 = rindex
x3 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + (r2 + 256 * x3), None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.broadcast_to(tmp2, [RBLOCK])
tmp5 = tl.broadcast_to(tmp3, [RBLOCK])
tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0))
tmp8 = tl.full([1], 256, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp3 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [RBLOCK])
tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0))
tmp16 = 256.0
tmp17 = tmp15 / tmp16
tmp18 = 1e-05
tmp19 = tmp17 + tmp18
tmp20 = libdevice.rsqrt(tmp19)
tl.store(in_out_ptr0 + (r2 + 256 * x3), tmp2, None)
tl.store(out_ptr2 + x3, tmp20, None)
tl.store(out_ptr0 + x3, tmp10, None)
tl.store(out_ptr1 + x3, tmp15, None)
@triton.jit
def triton_poi_fused_arange_14(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tl.store(out_ptr0 + x0, tmp0, xmask)
@triton.jit
def triton_poi_fused__to_copy_add_arange_mul_15(out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tl.store(out_ptr0 + x0, tmp4, xmask)
@triton.jit
def triton_poi_fused__unsafe_index_add_reflection_pad2d_16(in_ptr0, in_ptr1,
in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 34 % 34
x0 = xindex % 34
x4 = xindex // 1156
x2 = xindex // 1156 % 128
x7 = xindex
tmp0 = tl.load(in_ptr0 + (31 + -1 * tl_math.abs(-31 + tl_math.abs(-1 +
x1))), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (31 + -1 * tl_math.abs(-31 + tl_math.abs(-1 +
x0))), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr2 + x4, None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr3 + x4, None, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr4 + x4, None, eviction_policy='evict_last')
tmp21 = tl.load(in_ptr5 + x2, None, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 16, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr1 + (tmp8 + 16 * tmp4 + 256 * x4), None,
eviction_policy='evict_last')
tmp11 = tmp9 - tmp10
tmp13 = 256.0
tmp14 = tmp12 / tmp13
tmp15 = 1e-05
tmp16 = tmp14 + tmp15
tmp17 = libdevice.rsqrt(tmp16)
tmp18 = tmp11 * tmp17
tmp20 = tmp18 * tmp19
tmp22 = tmp20 + tmp21
tmp23 = tl.load(in_ptr6 + (tmp8 + 16 * tmp4 + 256 * x4), None,
eviction_policy='evict_last')
tmp24 = tmp22 + tmp23
tl.store(out_ptr0 + x7, tmp24, None)
@triton.jit
def triton_poi_fused_arange_17(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tl.store(out_ptr0 + x0, tmp0, xmask)
@triton.jit
def triton_poi_fused__to_copy_add_arange_mul_18(out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tl.store(out_ptr0 + x0, tmp4, xmask)
@triton.jit
def triton_poi_fused__unsafe_index_reflection_pad2d_relu_19(in_ptr0,
in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 1115136
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 66 % 66
x0 = xindex % 66
x2 = xindex // 4356
x5 = xindex
tmp0 = tl.load(in_ptr0 + (63 + -1 * tl_math.abs(-63 + tl_math.abs(-1 +
x1))), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (63 + -1 * tl_math.abs(-63 + tl_math.abs(-1 +
x0))), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr3 + x2, xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr4 + x2, xmask, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr5 + x2, xmask, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 32, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr1 + (tmp8 + 32 * tmp4 + 1024 * x2), xmask,
eviction_policy='evict_last')
tmp11 = tmp9 - tmp10
tmp13 = tmp11 * tmp12
tmp15 = tmp13 * tmp14
tmp17 = tmp15 + tmp16
tmp18 = tl.full([1], 0, tl.int32)
tmp19 = triton_helpers.maximum(tmp18, tmp17)
tl.store(out_ptr0 + x5, tmp19, xmask)
@triton.jit
def triton_poi_fused_reflection_pad2d_relu_20(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 72
x1 = xindex // 72 % 72
x2 = xindex // 5184
x3 = xindex
tmp0 = tl.load(in_ptr0 + (4095 + -1 * tl_math.abs(-63 + tl_math.abs(-4 +
x0)) + -64 * tl_math.abs(-63 + tl_math.abs(-4 + x1)) + 4096 * x2),
None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x2, None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + x2, None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x2, None, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + x2, None, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tmp9 = tl.full([1], 0, tl.int32)
tmp10 = triton_helpers.maximum(tmp9, tmp8)
tl.store(out_ptr0 + x3, tmp10, None)
@triton.jit
def triton_poi_fused_add_convolution_div_mul_tanh_21(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4096 % 3
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.00392156862745098
tmp4 = tmp2 * tmp3
tmp5 = libdevice.tanh(tmp4)
tmp6 = 150.0
tmp7 = tmp5 * tmp6
tmp8 = 127.5
tmp9 = tmp7 + tmp8
tl.store(in_out_ptr0 + x3, tmp2, None)
tl.store(out_ptr0 + x3, tmp9, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17,
primals_18, primals_19, primals_20, primals_21, primals_22,
primals_23, primals_24, primals_25, primals_26, primals_27,
primals_28, primals_29, primals_30, primals_31, primals_32,
primals_33, primals_34, primals_35, primals_36, primals_37,
primals_38, primals_39, primals_40, primals_41, primals_42,
primals_43, primals_44, primals_45, primals_46, primals_47,
primals_48, primals_49, primals_50, primals_51, primals_52,
primals_53, primals_54, primals_55, primals_56, primals_57,
primals_58, primals_59, primals_60, primals_61, primals_62, primals_63
) = args
args.clear()
assert_size_stride(primals_1, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_2, (32, 3, 9, 9), (243, 81, 9, 1))
assert_size_stride(primals_3, (32,), (1,))
assert_size_stride(primals_4, (32,), (1,))
assert_size_stride(primals_5, (32,), (1,))
assert_size_stride(primals_6, (64, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_7, (64,), (1,))
assert_size_stride(primals_8, (64,), (1,))
assert_size_stride(primals_9, (64,), (1,))
assert_size_stride(primals_10, (128, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_11, (128,), (1,))
assert_size_stride(primals_12, (128,), (1,))
assert_size_stride(primals_13, (128,), (1,))
assert_size_stride(primals_14, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_15, (128,), (1,))
assert_size_stride(primals_16, (128,), (1,))
assert_size_stride(primals_17, (128,), (1,))
assert_size_stride(primals_18, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_19, (128,), (1,))
assert_size_stride(primals_20, (128,), (1,))
assert_size_stride(primals_21, (128,), (1,))
assert_size_stride(primals_22, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_23, (128,), (1,))
assert_size_stride(primals_24, (128,), (1,))
assert_size_stride(primals_25, (128,), (1,))
assert_size_stride(primals_26, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_27, (128,), (1,))
assert_size_stride(primals_28, (128,), (1,))
assert_size_stride(primals_29, (128,), (1,))
assert_size_stride(primals_30, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_31, (128,), (1,))
assert_size_stride(primals_32, (128,), (1,))
assert_size_stride(primals_33, (128,), (1,))
assert_size_stride(primals_34, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_35, (128,), (1,))
assert_size_stride(primals_36, (128,), (1,))
assert_size_stride(primals_37, (128,), (1,))
assert_size_stride(primals_38, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_39, (128,), (1,))
assert_size_stride(primals_40, (128,), (1,))
assert_size_stride(primals_41, (128,), (1,))
assert_size_stride(primals_42, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_43, (128,), (1,))
assert_size_stride(primals_44, (128,), (1,))
assert_size_stride(primals_45, (128,), (1,))
assert_size_stride(primals_46, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_47, (128,), (1,))
assert_size_stride(primals_48, (128,), (1,))
assert_size_stride(primals_49, (128,), (1,))
assert_size_stride(primals_50, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_51, (128,), (1,))
assert_size_stride(primals_52, (128,), (1,))
assert_size_stride(primals_53, (128,), (1,))
assert_size_stride(primals_54, (64, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_55, (64,), (1,))
assert_size_stride(primals_56, (64,), (1,))
assert_size_stride(primals_57, (64,), (1,))
assert_size_stride(primals_58, (32, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_59, (32,), (1,))
assert_size_stride(primals_60, (32,), (1,))
assert_size_stride(primals_61, (32,), (1,))
assert_size_stride(primals_62, (3, 32, 9, 9), (2592, 81, 9, 1))
assert_size_stride(primals_63, (3,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 3, 72, 72), (15552, 5184, 72, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_reflection_pad2d_0[grid(62208)](primals_1, buf0,
62208, XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 32, 64, 64), (131072, 4096, 64, 1))
buf2 = buf1
del buf1
buf5 = empty_strided_cuda((1, 128, 1, 1), (128, 1, 1, 1), torch.float32
)
buf6 = empty_strided_cuda((1, 128, 1, 1), (128, 1, 128, 128), torch
.float32)
buf8 = reinterpret_tensor(buf6, (1, 128, 1, 1), (128, 1, 1, 1), 0)
del buf6
triton_red_fused__native_batch_norm_legit_convolution_1[grid(128)](buf2
, buf8, primals_3, buf5, 128, 4096, XBLOCK=1, RBLOCK=2048,
num_warps=16, num_stages=1)
del primals_3
buf3 = empty_strided_cuda((128,), (1,), torch.float32)
triton_poi_fused_repeat_2[grid(128)](primals_4, buf3, 128, XBLOCK=
128, num_warps=4, num_stages=1)
del primals_4
buf4 = empty_strided_cuda((128,), (1,), torch.float32)
triton_poi_fused_repeat_2[grid(128)](primals_5, buf4, 128, XBLOCK=
128, num_warps=4, num_stages=1)
del primals_5
buf9 = empty_strided_cuda((4, 32, 66, 66), (139392, 4356, 66, 1),
torch.float32)
triton_poi_fused_reflection_pad2d_relu_3[grid(557568)](buf2, buf5,
buf8, buf3, buf4, buf9, 557568, XBLOCK=512, num_warps=8,
num_stages=1)
buf10 = extern_kernels.convolution(buf9, primals_6, stride=(2, 2),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 64, 32, 32), (65536, 1024, 32, 1))
buf11 = buf10
del buf10
buf14 = empty_strided_cuda((1, 256, 1, 1), (256, 1, 1, 1), torch.
float32)
buf15 = empty_strided_cuda((1, 256, 1, 1), (256, 1, 256, 256),
torch.float32)
buf17 = reinterpret_tensor(buf15, (1, 256, 1, 1), (256, 1, 1, 1), 0)
del buf15
triton_per_fused__native_batch_norm_legit_convolution_4[grid(256)](
buf11, buf17, primals_7, buf14, 256, 1024, num_warps=8,
num_stages=1)
del primals_7
buf12 = empty_strided_cuda((256,), (1,), torch.float32)
triton_poi_fused_repeat_5[grid(256)](primals_8, buf12, 256, XBLOCK=
128, num_warps=4, num_stages=1)
del primals_8
buf13 = empty_strided_cuda((256,), (1,), torch.float32)
triton_poi_fused_repeat_5[grid(256)](primals_9, buf13, 256, XBLOCK=
128, num_warps=4, num_stages=1)
del primals_9
buf18 = empty_strided_cuda((4, 64, 34, 34), (73984, 1156, 34, 1),
torch.float32)
triton_poi_fused_reflection_pad2d_relu_6[grid(295936)](buf11, buf14,
buf17, buf12, buf13, buf18, 295936, XBLOCK=1024, num_warps=4,
num_stages=1)
buf19 = extern_kernels.convolution(buf18, primals_10, stride=(2, 2),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf19, (4, 128, 16, 16), (32768, 256, 16, 1))
buf21 = empty_strided_cuda((512,), (1,), torch.float32)
buf22 = empty_strided_cuda((512,), (1,), torch.float32)
buf20 = buf19
del buf19
buf23 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 1, 1), torch.
float32)
buf24 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512),
torch.float32)
buf26 = reinterpret_tensor(buf24, (1, 512, 1, 1), (512, 1, 1, 1), 0)
del buf24
buf27 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1),
torch.float32)
triton_per_fused__native_batch_norm_legit_convolution_relu_repeat_7[
grid(512)](buf20, buf26, primals_12, primals_13, primals_11,
buf21, buf22, buf23, buf27, 512, 256, num_warps=2, num_stages=1)
del primals_11
del primals_12
del primals_13
buf28 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1),
torch.float32)
triton_poi_fused_reflection_pad2d_8[grid(165888)](buf27, buf28,
165888, XBLOCK=512, num_warps=8, num_stages=1)
buf29 = extern_kernels.convolution(buf28, primals_14, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf29, (4, 128, 16, 16), (32768, 256, 16, 1))
buf30 = buf29
del buf29
buf33 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 1, 1), torch.
float32)
buf34 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512),
torch.float32)
buf36 = reinterpret_tensor(buf34, (1, 512, 1, 1), (512, 1, 1, 1), 0)
del buf34
triton_per_fused__native_batch_norm_legit_convolution_9[grid(512)](
buf30, buf36, primals_15, buf33, 512, 256, num_warps=2,
num_stages=1)
del primals_15
buf31 = empty_strided_cuda((512,), (1,), torch.float32)
triton_poi_fused_repeat_10[grid(512)](primals_16, buf31, 512,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_16
buf32 = empty_strided_cuda((512,), (1,), torch.float32)
triton_poi_fused_repeat_10[grid(512)](primals_17, buf32, 512,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_17
buf37 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1),
torch.float32)
triton_poi_fused_reflection_pad2d_relu_11[grid(165888)](buf30,
buf33, buf36, buf31, buf32, buf37, 165888, XBLOCK=1024,
num_warps=4, num_stages=1)
buf38 = extern_kernels.convolution(buf37, primals_18, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf38, (4, 128, 16, 16), (32768, 256, 16, 1))
buf40 = empty_strided_cuda((512,), (1,), torch.float32)
buf39 = buf38
del buf38
buf41 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512),
torch.float32)
buf45 = buf27
del buf27
buf44 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512),
torch.float32)
triton_per_fused__native_batch_norm_legit_add_convolution_repeat_12[
grid(512)](buf39, buf45, primals_20, primals_19, primals_21,
buf40, buf41, buf44, 512, 256, num_warps=2, num_stages=1)
del primals_19
del primals_20
del primals_21
buf46 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1),
torch.float32)
triton_poi_fused_reflection_pad2d_8[grid(165888)](buf45, buf46,
165888, XBLOCK=512, num_warps=8, num_stages=1)
buf47 = extern_kernels.convolution(buf46, primals_22, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf47, (4, 128, 16, 16), (32768, 256, 16, 1))
buf48 = buf47
del buf47
buf51 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 1, 1), torch.
float32)
buf52 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512),
torch.float32)
buf54 = reinterpret_tensor(buf52, (1, 512, 1, 1), (512, 1, 1, 1), 0)
del buf52
triton_per_fused__native_batch_norm_legit_convolution_9[grid(512)](
buf48, buf54, primals_23, buf51, 512, 256, num_warps=2,
num_stages=1)
del primals_23
buf49 = empty_strided_cuda((512,), (1,), torch.float32)
triton_poi_fused_repeat_10[grid(512)](primals_24, buf49, 512,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_24
buf50 = empty_strided_cuda((512,), (1,), torch.float32)
triton_poi_fused_repeat_10[grid(512)](primals_25, buf50, 512,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_25
buf55 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1),
torch.float32)
triton_poi_fused_reflection_pad2d_relu_11[grid(165888)](buf48,
buf51, buf54, buf49, buf50, buf55, 165888, XBLOCK=1024,
num_warps=4, num_stages=1)
buf56 = extern_kernels.convolution(buf55, primals_26, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf56, (4, 128, 16, 16), (32768, 256, 16, 1))
buf58 = empty_strided_cuda((512,), (1,), torch.float32)
buf57 = buf56
del buf56
buf59 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512),
torch.float32)
buf63 = buf45
del buf45
buf62 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512),
torch.float32)
triton_per_fused__native_batch_norm_legit_add_convolution_repeat_12[
grid(512)](buf57, buf63, primals_28, primals_27, primals_29,
buf58, buf59, buf62, 512, 256, num_warps=2, num_stages=1)
del primals_27
del primals_28
del primals_29
buf64 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1),
torch.float32)
triton_poi_fused_reflection_pad2d_8[grid(165888)](buf63, buf64,
165888, XBLOCK=512, num_warps=8, num_stages=1)
buf65 = extern_kernels.convolution(buf64, primals_30, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf65, (4, 128, 16, 16), (32768, 256, 16, 1))
buf66 = buf65
del buf65
buf69 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 1, 1), torch.
float32)
buf70 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512),
torch.float32)
buf72 = reinterpret_tensor(buf70, (1, 512, 1, 1), (512, 1, 1, 1), 0)
del buf70
triton_per_fused__native_batch_norm_legit_convolution_9[grid(512)](
buf66, buf72, primals_31, buf69, 512, 256, num_warps=2,
num_stages=1)
del primals_31
buf67 = empty_strided_cuda((512,), (1,), torch.float32)
triton_poi_fused_repeat_10[grid(512)](primals_32, buf67, 512,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_32
buf68 = empty_strided_cuda((512,), (1,), torch.float32)
triton_poi_fused_repeat_10[grid(512)](primals_33, buf68, 512,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_33
buf73 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1),
torch.float32)
triton_poi_fused_reflection_pad2d_relu_11[grid(165888)](buf66,
buf69, buf72, buf67, buf68, buf73, 165888, XBLOCK=1024,
num_warps=4, num_stages=1)
buf74 = extern_kernels.convolution(buf73, primals_34, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf74, (4, 128, 16, 16), (32768, 256, 16, 1))
buf76 = empty_strided_cuda((512,), (1,), torch.float32)
buf75 = buf74
del buf74
buf77 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512),
torch.float32)
buf81 = buf63
del buf63
buf80 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512),
torch.float32)
triton_per_fused__native_batch_norm_legit_add_convolution_repeat_12[
grid(512)](buf75, buf81, primals_36, primals_35, primals_37,
buf76, buf77, buf80, 512, 256, num_warps=2, num_stages=1)
del primals_35
del primals_36
del primals_37
buf82 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1),
torch.float32)
triton_poi_fused_reflection_pad2d_8[grid(165888)](buf81, buf82,
165888, XBLOCK=512, num_warps=8, num_stages=1)
buf83 = extern_kernels.convolution(buf82, primals_38, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf83, (4, 128, 16, 16), (32768, 256, 16, 1))
buf84 = buf83
del buf83
buf87 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 1, 1), torch.
float32)
buf88 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512),
torch.float32)
buf90 = reinterpret_tensor(buf88, (1, 512, 1, 1), (512, 1, 1, 1), 0)
del buf88
triton_per_fused__native_batch_norm_legit_convolution_9[grid(512)](
buf84, buf90, primals_39, buf87, 512, 256, num_warps=2,
num_stages=1)
del primals_39
buf85 = empty_strided_cuda((512,), (1,), torch.float32)
triton_poi_fused_repeat_10[grid(512)](primals_40, buf85, 512,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_40
buf86 = empty_strided_cuda((512,), (1,), torch.float32)
triton_poi_fused_repeat_10[grid(512)](primals_41, buf86, 512,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_41
buf91 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1),
torch.float32)
triton_poi_fused_reflection_pad2d_relu_11[grid(165888)](buf84,
buf87, buf90, buf85, buf86, buf91, 165888, XBLOCK=1024,
num_warps=4, num_stages=1)
buf92 = extern_kernels.convolution(buf91, primals_42, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf92, (4, 128, 16, 16), (32768, 256, 16, 1))
buf94 = empty_strided_cuda((512,), (1,), torch.float32)
buf93 = buf92
del buf92
buf95 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512),
torch.float32)
buf99 = buf81
del buf81
buf98 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512),
torch.float32)
triton_per_fused__native_batch_norm_legit_add_convolution_repeat_12[
grid(512)](buf93, buf99, primals_44, primals_43, primals_45,
buf94, buf95, buf98, 512, 256, num_warps=2, num_stages=1)
del primals_43
del primals_44
del primals_45
buf100 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1),
torch.float32)
triton_poi_fused_reflection_pad2d_8[grid(165888)](buf99, buf100,
165888, XBLOCK=512, num_warps=8, num_stages=1)
buf101 = extern_kernels.convolution(buf100, primals_46, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf101, (4, 128, 16, 16), (32768, 256, 16, 1))
buf102 = buf101
del buf101
buf105 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 1, 1), torch.
float32)
buf106 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512),
torch.float32)
buf108 = reinterpret_tensor(buf106, (1, 512, 1, 1), (512, 1, 1, 1), 0)
del buf106
triton_per_fused__native_batch_norm_legit_convolution_9[grid(512)](
buf102, buf108, primals_47, buf105, 512, 256, num_warps=2,
num_stages=1)
del primals_47
buf103 = empty_strided_cuda((512,), (1,), torch.float32)
triton_poi_fused_repeat_10[grid(512)](primals_48, buf103, 512,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_48
buf104 = empty_strided_cuda((512,), (1,), torch.float32)
triton_poi_fused_repeat_10[grid(512)](primals_49, buf104, 512,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_49
buf109 = empty_strided_cuda((4, 128, 18, 18), (41472, 324, 18, 1),
torch.float32)
triton_poi_fused_reflection_pad2d_relu_11[grid(165888)](buf102,
buf105, buf108, buf103, buf104, buf109, 165888, XBLOCK=1024,
num_warps=4, num_stages=1)
buf110 = extern_kernels.convolution(buf109, primals_50, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf110, (4, 128, 16, 16), (32768, 256, 16, 1))
buf111 = buf110
del buf110
buf113 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512),
torch.float32)
buf114 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512),
torch.float32)
buf116 = empty_strided_cuda((1, 512, 1, 1), (512, 1, 512, 512),
torch.float32)
triton_per_fused__native_batch_norm_legit_convolution_13[grid(512)](
buf111, primals_51, buf113, buf114, buf116, 512, 256, num_warps
=2, num_stages=1)
del primals_51
buf112 = empty_strided_cuda((512,), (1,), torch.float32)
triton_poi_fused_repeat_10[grid(512)](primals_52, buf112, 512,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_52
buf117 = empty_strided_cuda((32,), (1,), torch.int64)
triton_poi_fused_arange_14[grid(32)](buf117, 32, XBLOCK=32,
num_warps=1, num_stages=1)
buf118 = empty_strided_cuda((32,), (1,), torch.int64)
triton_poi_fused__to_copy_add_arange_mul_15[grid(32)](buf118, 32,
XBLOCK=32, num_warps=1, num_stages=1)
buf119 = empty_strided_cuda((4, 128, 34, 34), (147968, 1156, 34, 1),
torch.float32)
triton_poi_fused__unsafe_index_add_reflection_pad2d_16[grid(591872)](
buf118, buf111, buf113, buf114, buf112, primals_53, buf99,
buf119, 591872, XBLOCK=512, num_warps=8, num_stages=1)
del buf114
del buf99
del primals_53
buf120 = extern_kernels.convolution(buf119, primals_54, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf120, (4, 64, 32, 32), (65536, 1024, 32, 1))
buf121 = buf120
del buf120
buf124 = empty_strided_cuda((1, 256, 1, 1), (256, 1, 1, 1), torch.
float32)
buf125 = empty_strided_cuda((1, 256, 1, 1), (256, 1, 256, 256),
torch.float32)
buf127 = reinterpret_tensor(buf125, (1, 256, 1, 1), (256, 1, 1, 1), 0)
del buf125
triton_per_fused__native_batch_norm_legit_convolution_4[grid(256)](
buf121, buf127, primals_55, buf124, 256, 1024, num_warps=8,
num_stages=1)
del primals_55
buf122 = empty_strided_cuda((256,), (1,), torch.float32)
triton_poi_fused_repeat_5[grid(256)](primals_56, buf122, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_56
buf123 = empty_strided_cuda((256,), (1,), torch.float32)
triton_poi_fused_repeat_5[grid(256)](primals_57, buf123, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_57
buf128 = empty_strided_cuda((64,), (1,), torch.int64)
triton_poi_fused_arange_17[grid(64)](buf128, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf129 = empty_strided_cuda((64,), (1,), torch.int64)
triton_poi_fused__to_copy_add_arange_mul_18[grid(64)](buf129, 64,
XBLOCK=64, num_warps=1, num_stages=1)
buf130 = empty_strided_cuda((4, 64, 66, 66), (278784, 4356, 66, 1),
torch.float32)
triton_poi_fused__unsafe_index_reflection_pad2d_relu_19[grid(1115136)](
buf129, buf121, buf124, buf127, buf122, buf123, buf130, 1115136,
XBLOCK=1024, num_warps=4, num_stages=1)
buf131 = extern_kernels.convolution(buf130, primals_58, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf131, (4, 32, 64, 64), (131072, 4096, 64, 1))
buf132 = buf131
del buf131
buf135 = empty_strided_cuda((1, 128, 1, 1), (128, 1, 1, 1), torch.
float32)
buf136 = empty_strided_cuda((1, 128, 1, 1), (128, 1, 128, 128),
torch.float32)
buf138 = reinterpret_tensor(buf136, (1, 128, 1, 1), (128, 1, 1, 1), 0)
del buf136
triton_red_fused__native_batch_norm_legit_convolution_1[grid(128)](
buf132, buf138, primals_59, buf135, 128, 4096, XBLOCK=1, RBLOCK
=2048, num_warps=16, num_stages=1)
del primals_59
buf133 = empty_strided_cuda((128,), (1,), torch.float32)
triton_poi_fused_repeat_2[grid(128)](primals_60, buf133, 128,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_60
buf134 = empty_strided_cuda((128,), (1,), torch.float32)
triton_poi_fused_repeat_2[grid(128)](primals_61, buf134, 128,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_61
buf139 = empty_strided_cuda((4, 32, 72, 72), (165888, 5184, 72, 1),
torch.float32)
triton_poi_fused_reflection_pad2d_relu_20[grid(663552)](buf132,
buf135, buf138, buf133, buf134, buf139, 663552, XBLOCK=1024,
num_warps=4, num_stages=1)
buf140 = extern_kernels.convolution(buf139, primals_62, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf140, (4, 3, 64, 64), (12288, 4096, 64, 1))
buf141 = buf140
del buf140
buf142 = empty_strided_cuda((4, 3, 64, 64), (12288, 4096, 64, 1),
torch.float32)
triton_poi_fused_add_convolution_div_mul_tanh_21[grid(49152)](buf141,
primals_63, buf142, 49152, XBLOCK=512, num_warps=4, num_stages=1)
del primals_63
return (buf142, primals_2, primals_6, primals_10, primals_14,
primals_18, primals_22, primals_26, primals_30, primals_34,
primals_38, primals_42, primals_46, primals_50, primals_54,
primals_58, primals_62, buf0, buf2, buf3, buf4, buf5, buf8, buf9,
buf11, buf12, buf13, buf14, buf17, buf18, buf20, buf21, buf22,
buf23, buf26, buf28, buf30, buf31, buf32, buf33, buf36, buf37,
buf39, buf40, reinterpret_tensor(buf44, (512,), (1,), 0), buf46,
buf48, buf49, buf50, buf51, buf54, buf55, buf57, buf58,
reinterpret_tensor(buf62, (512,), (1,), 0), buf64, buf66, buf67,
buf68, buf69, buf72, buf73, buf75, buf76, reinterpret_tensor(buf80,
(512,), (1,), 0), buf82, buf84, buf85, buf86, buf87, buf90, buf91,
buf93, buf94, reinterpret_tensor(buf98, (512,), (1,), 0), buf100,
buf102, buf103, buf104, buf105, buf108, buf109, buf111, buf112,
reinterpret_tensor(buf116, (512,), (1,), 0), buf117, buf118, buf119,
buf121, buf122, buf123, buf124, buf127, buf128, buf129, buf130,
buf132, buf133, buf134, buf135, buf138, buf139, buf141,
reinterpret_tensor(buf113, (1, 512, 1, 1), (512, 1, 1, 1), 0),
reinterpret_tensor(buf95, (1, 512, 1, 1), (512, 1, 1, 1), 0),
reinterpret_tensor(buf77, (1, 512, 1, 1), (512, 1, 1, 1), 0),
reinterpret_tensor(buf59, (1, 512, 1, 1), (512, 1, 1, 1), 0),
reinterpret_tensor(buf41, (1, 512, 1, 1), (512, 1, 1, 1), 0))
class SelectiveLoadModule(torch.nn.Module):
"""Only load layers in trained models with the same name."""
def __init__(self):
super(SelectiveLoadModule, self).__init__()
def forward(self, x):
return x
def load_state_dict(self, state_dict):
"""Override the function to ignore redundant weights."""
own_state = self.state_dict()
for name, param in state_dict.items():
if name in own_state:
own_state[name].copy_(param)
class ConvLayer(torch.nn.Module):
"""Reflection padded convolution layer."""
def __init__(self, in_channels, out_channels, kernel_size, stride, bias
=True):
super(ConvLayer, self).__init__()
reflection_padding = int(np.floor(kernel_size / 2))
self.reflection_pad = torch.nn.ReflectionPad2d(reflection_padding)
self.conv2d = torch.nn.Conv2d(in_channels, out_channels,
kernel_size, stride=stride, bias=bias)
def forward(self, x):
out = self.reflection_pad(x)
out = self.conv2d(out)
return out
class ConvTanh(ConvLayer):
def __init__(self, in_channels, out_channels, kernel_size, stride):
super(ConvTanh, self).__init__(in_channels, out_channels,
kernel_size, stride)
self.tanh = torch.nn.Tanh()
def forward(self, x):
out = super(ConvTanh, self).forward(x)
return self.tanh(out / 255) * 150 + 255 / 2
class ConvInstRelu(ConvLayer):
def __init__(self, in_channels, out_channels, kernel_size, stride):
super(ConvInstRelu, self).__init__(in_channels, out_channels,
kernel_size, stride)
self.instance = torch.nn.InstanceNorm2d(out_channels, affine=True)
self.relu = torch.nn.ReLU()
def forward(self, x):
out = super(ConvInstRelu, self).forward(x)
out = self.instance(out)
out = self.relu(out)
return out
class UpsampleConvLayer(torch.nn.Module):
"""Upsamples the input and then does a convolution.
This method gives better results compared to ConvTranspose2d.
ref: http://distill.pub/2016/deconv-checkerboard/
"""
def __init__(self, in_channels, out_channels, kernel_size, stride,
upsample=None):
super(UpsampleConvLayer, self).__init__()
self.upsample = upsample
if upsample:
self.upsample_layer = torch.nn.Upsample(scale_factor=upsample)
reflection_padding = int(np.floor(kernel_size / 2))
self.reflection_pad = torch.nn.ReflectionPad2d(reflection_padding)
self.conv2d = torch.nn.Conv2d(in_channels, out_channels,
kernel_size, stride)
def forward(self, x):
x_in = x
if self.upsample:
x_in = self.upsample_layer(x_in)
out = self.reflection_pad(x_in)
out = self.conv2d(out)
return out
class UpsampleConvInstRelu(UpsampleConvLayer):
def __init__(self, in_channels, out_channels, kernel_size, stride,
upsample=None):
super(UpsampleConvInstRelu, self).__init__(in_channels,
out_channels, kernel_size, stride, upsample)
self.instance = torch.nn.InstanceNorm2d(out_channels, affine=True)
self.relu = torch.nn.ReLU()
def forward(self, x):
out = super(UpsampleConvInstRelu, self).forward(x)
out = self.instance(out)
out = self.relu(out)
return out
class ResidualBlock(torch.nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1):
super(ResidualBlock, self).__init__()
self.conv1 = ConvLayer(in_channels, out_channels, kernel_size, stride)
self.in1 = torch.nn.InstanceNorm2d(out_channels, affine=True)
self.conv2 = ConvLayer(out_channels, out_channels, kernel_size, stride)
self.in2 = torch.nn.InstanceNorm2d(out_channels, affine=True)
self.relu = torch.nn.ReLU()
def forward(self, x):
residual = x
out = self.relu(self.in1(self.conv1(x)))
out = self.in2(self.conv2(out))
out = out + residual
return out
class ReCoNetNew(SelectiveLoadModule):
def __init__(self):
super(ReCoNetNew, self).__init__()
self.style_conv1 = ConvInstRelu(3, 32, kernel_size=9, stride=1)
self.style_conv2 = ConvInstRelu(32, 64, kernel_size=3, stride=2)
self.style_conv3 = ConvInstRelu(64, 128, kernel_size=3, stride=2)
self.style_res1 = ResidualBlock(128, 128)
self.style_res2 = ResidualBlock(128, 128)
self.style_res3 = ResidualBlock(128, 128)
self.style_res4 = ResidualBlock(128, 128)
self.style_res5 = ResidualBlock(128, 128)
self.style_deconv1 = UpsampleConvInstRelu(128, 64, kernel_size=3,
stride=1, upsample=2)
self.style_deconv2 = UpsampleConvInstRelu(64, 32, kernel_size=3,
stride=1, upsample=2)
self.style_deconv3 = ConvTanh(32, 3, kernel_size=9, stride=1)
def forward(self, input_0):
primals_2 = self.style_conv1.conv2d.weight
primals_3 = self.style_conv1.conv2d.bias
primals_4 = self.style_conv1.instance.weight
primals_5 = self.style_conv1.instance.bias
primals_6 = self.style_conv2.conv2d.weight
primals_7 = self.style_conv2.conv2d.bias
primals_8 = self.style_conv2.instance.weight
primals_9 = self.style_conv2.instance.bias
primals_10 = self.style_conv3.conv2d.weight
primals_11 = self.style_conv3.conv2d.bias
primals_12 = self.style_conv3.instance.weight
primals_13 = self.style_conv3.instance.bias
primals_14 = self.style_res1.conv1.conv2d.weight
primals_15 = self.style_res1.conv1.conv2d.bias
primals_16 = self.style_res1.in1.weight
primals_17 = self.style_res1.in1.bias
primals_18 = self.style_res1.conv2.conv2d.weight
primals_19 = self.style_res1.conv2.conv2d.bias
primals_20 = self.style_res1.in2.weight
primals_21 = self.style_res1.in2.bias
primals_22 = self.style_res2.conv1.conv2d.weight
primals_23 = self.style_res2.conv1.conv2d.bias
primals_24 = self.style_res2.in1.weight
primals_25 = self.style_res2.in1.bias
primals_26 = self.style_res2.conv2.conv2d.weight
primals_27 = self.style_res2.conv2.conv2d.bias
primals_28 = self.style_res2.in2.weight
primals_29 = self.style_res2.in2.bias
primals_30 = self.style_res3.conv1.conv2d.weight
primals_31 = self.style_res3.conv1.conv2d.bias
primals_32 = self.style_res3.in1.weight
primals_33 = self.style_res3.in1.bias
primals_34 = self.style_res3.conv2.conv2d.weight
primals_35 = self.style_res3.conv2.conv2d.bias
primals_36 = self.style_res3.in2.weight
primals_37 = self.style_res3.in2.bias
primals_38 = self.style_res4.conv1.conv2d.weight
primals_39 = self.style_res4.conv1.conv2d.bias
primals_40 = self.style_res4.in1.weight
primals_41 = self.style_res4.in1.bias
primals_42 = self.style_res4.conv2.conv2d.weight
primals_43 = self.style_res4.conv2.conv2d.bias
primals_44 = self.style_res4.in2.weight
primals_45 = self.style_res4.in2.bias
primals_46 = self.style_res5.conv1.conv2d.weight
primals_47 = self.style_res5.conv1.conv2d.bias
primals_48 = self.style_res5.in1.weight
primals_49 = self.style_res5.in1.bias
primals_50 = self.style_res5.conv2.conv2d.weight
primals_51 = self.style_res5.conv2.conv2d.bias
primals_52 = self.style_res5.in2.weight
primals_53 = self.style_res5.in2.bias
primals_54 = self.style_deconv1.conv2d.weight
primals_55 = self.style_deconv1.conv2d.bias
primals_56 = self.style_deconv1.instance.weight
primals_57 = self.style_deconv1.instance.bias
primals_58 = self.style_deconv2.conv2d.weight
primals_59 = self.style_deconv2.conv2d.bias
primals_60 = self.style_deconv2.instance.weight
primals_61 = self.style_deconv2.instance.bias
primals_62 = self.style_deconv3.conv2d.weight
primals_63 = self.style_deconv3.conv2d.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17, primals_18, primals_19,
primals_20, primals_21, primals_22, primals_23, primals_24,
primals_25, primals_26, primals_27, primals_28, primals_29,
primals_30, primals_31, primals_32, primals_33, primals_34,
primals_35, primals_36, primals_37, primals_38, primals_39,
primals_40, primals_41, primals_42, primals_43, primals_44,
primals_45, primals_46, primals_47, primals_48, primals_49,
primals_50, primals_51, primals_52, primals_53, primals_54,
primals_55, primals_56, primals_57, primals_58, primals_59,
primals_60, primals_61, primals_62, primals_63])
return output[0]
| irsisyphus/reconet | ReCoNet | false | 15,631 | [
"MIT"
]
| 56 | 863acf8dde4d45c8521634af27878fe04f3b2e56 | https://github.com/irsisyphus/reconet/tree/863acf8dde4d45c8521634af27878fe04f3b2e56 |
AttDistance | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/fz/cfzrslwmfv5co5y7e5oodqr7z73jpev5jznua3kps4hmhtctiieb.py
# Topologically Sorted Source Nodes: [att_2], Original ATen: [aten.neg]
# Source node to ATen node mapping:
# att_2 => neg
# Graph fragment:
# %neg : [num_users=2] = call_function[target=torch.ops.aten.neg.default](args = (%permute,), kwargs = {})
triton_poi_fused_neg_0 = async_compile.triton('triton_poi_fused_neg_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_neg_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_neg_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x4 = (xindex // 16)
x1 = (xindex // 4) % 4
x3 = (xindex // 64)
x5 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (16*x4)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x0 + (16*x1) + (64*x3)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (4 + x0 + (16*x4)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (4 + x0 + (16*x1) + (64*x3)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (8 + x0 + (16*x4)), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr1 + (8 + x0 + (16*x1) + (64*x3)), xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr0 + (12 + x0 + (16*x4)), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr1 + (12 + x0 + (16*x1) + (64*x3)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp6 = tmp4 - tmp5
tmp7 = tl_math.abs(tmp6)
tmp8 = tmp3 + tmp7
tmp11 = tmp9 - tmp10
tmp12 = tl_math.abs(tmp11)
tmp13 = tmp8 + tmp12
tmp16 = tmp14 - tmp15
tmp17 = tl_math.abs(tmp16)
tmp18 = tmp13 + tmp17
tmp19 = 4.0
tmp20 = tmp18 / tmp19
tmp21 = -tmp20
tl.store(out_ptr0 + (x5), tmp21, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ug/cugfcxggcu3oormfeqi32fk5hyuzld6ipfryadvhiyurcjt2wdhq.py
# Topologically Sorted Source Nodes: [att_3], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# att_3 => amax, clone, exp, sub_1
# Graph fragment:
# %clone : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%neg,), kwargs = {memory_format: torch.contiguous_format})
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%clone, [2], True), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clone, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x2 = (xindex // 16)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (4 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (8 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (12 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x3), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/2h/c2h5d4qaovdjfx6dqfb3zoqistf7oryqridolv5lvyya6cyzxxl7.py
# Topologically Sorted Source Nodes: [att_3], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# att_3 => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [2], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x2 = (xindex // 16)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (4 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (8 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (12 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ed/cedwabgtpaju62634fofyelvp7uf7doasuaqvjlzc6r5pihvbp43.py
# Topologically Sorted Source Nodes: [max_1], Original ATen: [aten.max]
# Source node to ATen node mapping:
# max_1 => max_1
# Graph fragment:
# %max_1 : [num_users=1] = call_function[target=torch.ops.aten.max.dim](args = (%neg, 2), kwargs = {})
triton_poi_fused_max_3 = async_compile.triton('triton_poi_fused_max_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (16*x1)), xmask)
tmp1 = tl.load(in_ptr0 + (4 + x0 + (16*x1)), xmask)
tmp3 = tl.load(in_ptr0 + (8 + x0 + (16*x1)), xmask)
tmp5 = tl.load(in_ptr0 + (12 + x0 + (16*x1)), xmask)
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp6 = triton_helpers.maximum(tmp4, tmp5)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [att_2], Original ATen: [aten.neg]
stream0 = get_raw_stream(0)
triton_poi_fused_neg_0.run(arg0_1, arg1_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [att_3], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf0, buf1, 256, grid=grid(256), stream=stream0)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [att_3], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf1, buf2, 256, grid=grid(256), stream=stream0)
del buf1
buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [max_1], Original ATen: [aten.max]
triton_poi_fused_max_3.run(buf0, buf3, 64, grid=grid(64), stream=stream0)
del buf0
return (buf2, reinterpret_tensor(buf3, (4, 1, 4, 4), (16, 16, 4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
class AttDistance(torch.nn.Module):
"""
AttDistance: Distance attention that can be used by the Alignment module.
"""
def __init__(self, dist_norm=1, weight_norm=1):
super().__init__()
self.dist_norm = dist_norm
self.weight_norm = weight_norm
def forward(self, query, y):
att = (query.unsqueeze(1) - y.unsqueeze(2)).abs().pow(self.dist_norm)
att = att.mean(dim=3).pow(self.weight_norm)
att = -att.transpose(2, 1)
sim = att.max(2)[0].unsqueeze(1)
att = F.softmax(att, dim=2)
return att, sim
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_neg_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x4 = xindex // 16
x1 = xindex // 4 % 4
x3 = xindex // 64
x5 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 16 * x4), xmask, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr1 + (x0 + 16 * x1 + 64 * x3), xmask,
eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (4 + x0 + 16 * x4), xmask, eviction_policy=
'evict_last')
tmp5 = tl.load(in_ptr1 + (4 + x0 + 16 * x1 + 64 * x3), xmask,
eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (8 + x0 + 16 * x4), xmask, eviction_policy=
'evict_last')
tmp10 = tl.load(in_ptr1 + (8 + x0 + 16 * x1 + 64 * x3), xmask,
eviction_policy='evict_last')
tmp14 = tl.load(in_ptr0 + (12 + x0 + 16 * x4), xmask, eviction_policy=
'evict_last')
tmp15 = tl.load(in_ptr1 + (12 + x0 + 16 * x1 + 64 * x3), xmask,
eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp6 = tmp4 - tmp5
tmp7 = tl_math.abs(tmp6)
tmp8 = tmp3 + tmp7
tmp11 = tmp9 - tmp10
tmp12 = tl_math.abs(tmp11)
tmp13 = tmp8 + tmp12
tmp16 = tmp14 - tmp15
tmp17 = tl_math.abs(tmp16)
tmp18 = tmp13 + tmp17
tmp19 = 4.0
tmp20 = tmp18 / tmp19
tmp21 = -tmp20
tl.store(out_ptr0 + x5, tmp21, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x2 = xindex // 16
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (4 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (8 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (12 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x3, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x2 = xindex // 16
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (4 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (8 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (12 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x3, tmp8, xmask)
@triton.jit
def triton_poi_fused_max_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 16 * x1), xmask)
tmp1 = tl.load(in_ptr0 + (4 + x0 + 16 * x1), xmask)
tmp3 = tl.load(in_ptr0 + (8 + x0 + 16 * x1), xmask)
tmp5 = tl.load(in_ptr0 + (12 + x0 + 16 * x1), xmask)
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp6 = triton_helpers.maximum(tmp4, tmp5)
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_neg_0[grid(256)](arg0_1, arg1_1, buf0, 256, XBLOCK
=256, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused__softmax_1[grid(256)](buf0, buf1, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused__softmax_2[grid(256)](buf1, buf2, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del buf1
buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_max_3[grid(64)](buf0, buf3, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del buf0
return buf2, reinterpret_tensor(buf3, (4, 1, 4, 4), (16, 16, 4, 1), 0)
class AttDistanceNew(torch.nn.Module):
"""
AttDistance: Distance attention that can be used by the Alignment module.
"""
def __init__(self, dist_norm=1, weight_norm=1):
super().__init__()
self.dist_norm = dist_norm
self.weight_norm = weight_norm
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0], output[1]
| ishine/NISQA | AttDistance | false | 15,632 | [
"MIT"
]
| 223 | 2c8917f30c4e4bbca3a48e9852301f1e2480a741 | https://github.com/ishine/NISQA/tree/2c8917f30c4e4bbca3a48e9852301f1e2480a741 |
AFMS | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/xj/cxjc6n35n4dbdwuwsgoewpxau7qnxv2giwhqraobhv67igzij74n.py
# Topologically Sorted Source Nodes: [adaptive_avg_pool1d], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# adaptive_avg_pool1d => mean
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%unsqueeze, [-1, -2], True), kwargs = {})
triton_poi_fused_mean_0 = async_compile.triton('triton_poi_fused_mean_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tl.store(out_ptr0 + (x0), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/wf/cwfjhukeekbhbtamjnwzevd2iue5uslg4nvyfx3eqnop26qerhb6.py
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.add, aten.mul]
# Source node to ATen node mapping:
# x => add
# x_1 => mul
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %primals_4), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, %view_1), kwargs = {})
triton_poi_fused_add_mul_1 = async_compile.triton('triton_poi_fused_add_mul_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 4) % 4
x4 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x4), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tl.sigmoid(tmp3)
tmp5 = tmp2 * tmp4
tl.store(out_ptr0 + (x3), tmp5, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 1), (1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
# Topologically Sorted Source Nodes: [adaptive_avg_pool1d], Original ATen: [aten.mean]
stream0 = get_raw_stream(0)
triton_poi_fused_mean_0.run(primals_1, buf0, 16, grid=grid(16), stream=stream0)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_3, reinterpret_tensor(buf0, (4, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1)
del primals_2
del primals_3
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.add, aten.mul]
triton_poi_fused_add_mul_1.run(primals_1, primals_4, buf1, buf2, 64, grid=grid(64), stream=stream0)
return (buf2, primals_1, primals_4, reinterpret_tensor(buf0, (4, 4), (4, 1), 0), buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class AFMS(nn.Module):
"""
Alpha-Feature map scaling, added to the output of each residual block[1,2].
Reference:
[1] RawNet2 : https://www.isca-speech.org/archive/Interspeech_2020/pdfs/1011.pdf
[2] AMFS : https://www.koreascience.or.kr/article/JAKO202029757857763.page
"""
def __init__(self, nb_dim):
super(AFMS, self).__init__()
self.alpha = nn.Parameter(torch.ones((nb_dim, 1)))
self.fc = nn.Linear(nb_dim, nb_dim)
self.sig = nn.Sigmoid()
def forward(self, x):
y = F.adaptive_avg_pool1d(x, 1).view(x.size(0), -1)
y = self.sig(self.fc(y)).view(x.size(0), x.size(1), -1)
x = x + self.alpha
x = x * y
return x
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'nb_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tl.store(out_ptr0 + x0, tmp8, xmask)
@triton.jit
def triton_poi_fused_add_mul_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 4 % 4
x4 = xindex // 4
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + x4, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tl.sigmoid(tmp3)
tmp5 = tmp2 * tmp4
tl.store(out_ptr0 + x3, tmp5, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 1), (1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
get_raw_stream(0)
triton_poi_fused_mean_0[grid(16)](primals_1, buf0, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_3, reinterpret_tensor(buf0, (4, 4), (4,
1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), alpha
=1, beta=1, out=buf1)
del primals_2
del primals_3
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_add_mul_1[grid(64)](primals_1, primals_4, buf1,
buf2, 64, XBLOCK=64, num_warps=1, num_stages=1)
return buf2, primals_1, primals_4, reinterpret_tensor(buf0, (4, 4), (4,
1), 0), buf1
class AFMSNew(nn.Module):
"""
Alpha-Feature map scaling, added to the output of each residual block[1,2].
Reference:
[1] RawNet2 : https://www.isca-speech.org/archive/Interspeech_2020/pdfs/1011.pdf
[2] AMFS : https://www.koreascience.or.kr/article/JAKO202029757857763.page
"""
def __init__(self, nb_dim):
super(AFMSNew, self).__init__()
self.alpha = nn.Parameter(torch.ones((nb_dim, 1)))
self.fc = nn.Linear(nb_dim, nb_dim)
self.sig = nn.Sigmoid()
def forward(self, input_0):
primals_4 = self.alpha
primals_2 = self.fc.weight
primals_3 = self.fc.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
| ishine/RawNet | AFMS | false | 15,633 | [
"MIT"
]
| 199 | cddec5afa27049a4b507f3d48bb02b993ea838bb | https://github.com/ishine/RawNet/tree/cddec5afa27049a4b507f3d48bb02b993ea838bb |
ToRGB | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/wi/cwiyl3lwwtancorrifw77xt3aqb4lermdintht45zvkj3bg54nbl.py
# Topologically Sorted Source Nodes: [mul_1], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul_1 => mul_1
# Graph fragment:
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_3, 0.5), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/2o/c2oqkq7zaubqmw7vuixxlseb2ff5jzqqbyczicxlmsahuxwdpdyp.py
# Topologically Sorted Source Nodes: [bias], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# bias => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, 1), kwargs = {})
triton_poi_fused_mul_1 = async_compile.triton('triton_poi_fused_mul_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/on/conl6eemb3vyjzkllydlouehrcxphkzifo5kmslz6fgiz6ixsw5h.py
# Topologically Sorted Source Nodes: [mul_2, weight], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul_2 => mul_2
# weight => mul_3
# Graph fragment:
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_5, 0.5), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %view), kwargs = {})
triton_poi_fused_mul_2 = async_compile.triton('triton_poi_fused_mul_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex % 12
x0 = xindex % 4
x2 = (xindex // 12)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x3), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x0 + (4*x2)), xmask, eviction_policy='evict_last')
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + (x4), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/go/cgoav6av4bzem4wmdmkiowlmjpeiubwc67bqu6es4aivwlfpxzhh.py
# Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.add]
# Source node to ATen node mapping:
# out_3 => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_3, %primals_6), kwargs = {})
triton_poi_fused_add_3 = async_compile.triton('triton_poi_fused_add_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 3
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (1, 3, 4, 1, 1), (12, 4, 1, 1, 1))
assert_size_stride(primals_6, (1, 3, 1, 1), (3, 1, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul_1], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(primals_3, buf0, 16, grid=grid(16), stream=stream0)
del primals_3
buf1 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [bias], Original ATen: [aten.mul]
triton_poi_fused_mul_1.run(primals_2, buf1, 4, grid=grid(4), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [bias, out], Original ATen: [aten.mul, aten.addmm]
extern_kernels.addmm(buf1, primals_4, reinterpret_tensor(buf0, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del buf0
del buf1
buf3 = empty_strided_cuda((4, 3, 4, 1, 1), (12, 4, 1, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul_2, weight], Original ATen: [aten.mul]
triton_poi_fused_mul_2.run(primals_5, buf2, buf3, 48, grid=grid(48), stream=stream0)
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(reinterpret_tensor(primals_1, (1, 16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf3, (12, 4, 1, 1), (4, 1, 0, 0), 0), stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf4, (1, 12, 4, 4), (192, 16, 4, 1))
buf5 = reinterpret_tensor(buf4, (4, 3, 4, 4), (48, 16, 4, 1), 0); del buf4 # reuse
# Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.add]
triton_poi_fused_add_3.run(buf5, primals_6, 192, grid=grid(192), stream=stream0)
del primals_6
return (buf5, primals_4, primals_5, buf2, reinterpret_tensor(buf3, (12, 4, 1, 1), (4, 1, 1, 1), 0), reinterpret_tensor(primals_1, (1, 16, 4, 4), (256, 16, 4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((1, 3, 4, 1, 1), (12, 4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((1, 3, 1, 1), (3, 1, 1, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
from torch import nn
from torch.nn import functional as F
def make_kernel(k):
k = torch.tensor(k, dtype=torch.float32)
if k.ndim == 1:
k = k[None, :] * k[:, None]
k /= k.sum()
return k
def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0,
pad_x1, pad_y0, pad_y1):
_, channel, in_h, in_w = input.shape
input = input.reshape(-1, in_h, in_w, 1)
_, in_h, in_w, minor = input.shape
kernel_h, kernel_w = kernel.shape
out = input.view(-1, in_h, 1, in_w, 1, minor)
out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
out = out.view(-1, in_h * up_y, in_w * up_x, minor)
out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0),
max(pad_y1, 0)])
out = out[:, max(-pad_y0, 0):out.shape[1] - max(-pad_y1, 0), max(-
pad_x0, 0):out.shape[2] - max(-pad_x1, 0), :]
out = out.permute(0, 3, 1, 2)
out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x +
pad_x0 + pad_x1])
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
out = F.conv2d(out, w)
out = out.reshape(-1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h +
1, in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1)
out = out.permute(0, 2, 3, 1)
out = out[:, ::down_y, ::down_x, :]
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
return out.view(-1, channel, out_h, out_w)
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
out = upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1
], pad[0], pad[1])
return out
def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5):
rest_dim = [1] * (input.ndim - bias.ndim - 1)
if input.ndim == 3:
return F.leaky_relu(input + bias.view(1, *rest_dim, bias.shape[0]),
negative_slope=negative_slope) * scale
else:
return F.leaky_relu(input + bias.view(1, bias.shape[0], *rest_dim),
negative_slope=negative_slope) * scale
class Upsample(nn.Module):
def __init__(self, kernel, factor=2):
super().__init__()
self.factor = factor
kernel = make_kernel(kernel) * factor ** 2
self.register_buffer('kernel', kernel)
p = kernel.shape[0] - factor
pad0 = (p + 1) // 2 + factor - 1
pad1 = p // 2
self.pad = pad0, pad1
def forward(self, input):
out = upfirdn2d(input, self.kernel, up=self.factor, down=1, pad=
self.pad)
return out
class Blur(nn.Module):
def __init__(self, kernel, pad, upsample_factor=1):
super().__init__()
kernel = make_kernel(kernel)
if upsample_factor > 1:
kernel = kernel * upsample_factor ** 2
self.register_buffer('kernel', kernel)
self.pad = pad
def forward(self, input):
out = upfirdn2d(input, self.kernel, pad=self.pad)
return out
class EqualLinear(nn.Module):
def __init__(self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1,
activation=None):
super().__init__()
self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul))
if bias:
self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init))
else:
self.bias = None
self.activation = activation
self.scale = 1 / math.sqrt(in_dim) * lr_mul
self.lr_mul = lr_mul
def forward(self, input):
bias = self.bias * self.lr_mul if self.bias is not None else None
if self.activation:
out = F.linear(input, self.weight * self.scale)
out = fused_leaky_relu(out, bias)
else:
out = F.linear(input, self.weight * self.scale, bias=bias)
return out
def __repr__(self):
return (
f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})'
)
class ModulatedConv2d(nn.Module):
def __init__(self, in_channel, out_channel, kernel_size, style_dim,
use_style=True, demodulate=True, upsample=False, downsample=False,
blur_kernel=[1, 3, 3, 1]):
super().__init__()
self.eps = 1e-08
self.kernel_size = kernel_size
self.in_channel = in_channel
self.out_channel = out_channel
self.upsample = upsample
self.downsample = downsample
self.use_style = use_style
if upsample:
factor = 2
p = len(blur_kernel) - factor - (kernel_size - 1)
pad0 = (p + 1) // 2 + factor - 1
pad1 = p // 2 + 1
self.blur = Blur(blur_kernel, pad=(pad0, pad1), upsample_factor
=factor)
if downsample:
factor = 2
p = len(blur_kernel) - factor + (kernel_size - 1)
pad0 = (p + 1) // 2
pad1 = p // 2
self.blur = Blur(blur_kernel, pad=(pad0, pad1))
fan_in = in_channel * kernel_size ** 2
self.scale = 1 / math.sqrt(fan_in)
self.padding = kernel_size // 2
self.weight = nn.Parameter(torch.randn(1, out_channel, in_channel,
kernel_size, kernel_size))
if use_style:
self.modulation = EqualLinear(style_dim, in_channel, bias_init=1)
else:
self.modulation = nn.Parameter(torch.Tensor(1, 1, in_channel, 1,
1).fill_(1))
self.demodulate = demodulate
def __repr__(self):
return (
f'{self.__class__.__name__}({self.in_channel}, {self.out_channel}, {self.kernel_size}, upsample={self.upsample}, downsample={self.downsample})'
)
def forward(self, input, style):
batch, in_channel, height, width = input.shape
if self.use_style:
style = self.modulation(style).view(batch, 1, in_channel, 1, 1)
weight = self.scale * self.weight * style
else:
weight = self.scale * self.weight.expand(batch, -1, -1, -1, -1
) * self.modulation
if self.demodulate:
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-08)
weight = weight * demod.view(batch, self.out_channel, 1, 1, 1)
weight = weight.view(batch * self.out_channel, in_channel, self.
kernel_size, self.kernel_size)
if self.upsample:
input = input.view(1, batch * in_channel, height, width)
weight = weight.view(batch, self.out_channel, in_channel, self.
kernel_size, self.kernel_size)
weight = weight.transpose(1, 2).reshape(batch * in_channel,
self.out_channel, self.kernel_size, self.kernel_size)
out = F.conv_transpose2d(input, weight, padding=0, stride=2,
groups=batch)
_, _, height, width = out.shape
out = out.view(batch, self.out_channel, height, width)
out = self.blur(out)
elif self.downsample:
input = self.blur(input)
_, _, height, width = input.shape
input = input.view(1, batch * in_channel, height, width)
out = F.conv2d(input, weight, padding=0, stride=2, groups=batch)
_, _, height, width = out.shape
out = out.view(batch, self.out_channel, height, width)
else:
input = input.view(1, batch * in_channel, height, width)
out = F.conv2d(input, weight, padding=self.padding, groups=batch)
_, _, height, width = out.shape
out = out.view(batch, self.out_channel, height, width)
return out
class ToRGB(nn.Module):
def __init__(self, in_channel, style_dim, upsample=True, blur_kernel=[1,
3, 3, 1]):
super().__init__()
if upsample:
self.upsample = Upsample(blur_kernel)
self.conv = ModulatedConv2d(in_channel, 3, 1, style_dim, demodulate
=False)
self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
def forward(self, input, style, skip=None):
out = self.conv(input, style)
out = out + self.bias
if skip is not None:
skip = self.upsample(skip)
out = out + skip
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'in_channel': 4, 'style_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import math
from torch import nn
from torch.nn import functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused_mul_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex % 12
x0 = xindex % 4
x2 = xindex // 12
x4 = xindex
tmp0 = tl.load(in_ptr0 + x3, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x0 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + x4, tmp4, xmask)
@triton.jit
def triton_poi_fused_add_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 3
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (1, 3, 4, 1, 1), (12, 4, 1, 1, 1))
assert_size_stride(primals_6, (1, 3, 1, 1), (3, 1, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_0[grid(16)](primals_3, buf0, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_3
buf1 = empty_strided_cuda((4,), (1,), torch.float32)
triton_poi_fused_mul_1[grid(4)](primals_2, buf1, 4, XBLOCK=4,
num_warps=1, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(buf1, primals_4, reinterpret_tensor(buf0, (4,
4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del buf0
del buf1
buf3 = empty_strided_cuda((4, 3, 4, 1, 1), (12, 4, 1, 1, 1), torch.
float32)
triton_poi_fused_mul_2[grid(48)](primals_5, buf2, buf3, 48, XBLOCK=
64, num_warps=1, num_stages=1)
buf4 = extern_kernels.convolution(reinterpret_tensor(primals_1, (1,
16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf3, (12, 4,
1, 1), (4, 1, 0, 0), 0), stride=(1, 1), padding=(0, 0),
dilation=(1, 1), transposed=False, output_padding=(0, 0),
groups=4, bias=None)
assert_size_stride(buf4, (1, 12, 4, 4), (192, 16, 4, 1))
buf5 = reinterpret_tensor(buf4, (4, 3, 4, 4), (48, 16, 4, 1), 0)
del buf4
triton_poi_fused_add_3[grid(192)](buf5, primals_6, 192, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_6
return buf5, primals_4, primals_5, buf2, reinterpret_tensor(buf3, (12,
4, 1, 1), (4, 1, 1, 1), 0), reinterpret_tensor(primals_1, (1, 16, 4,
4), (256, 16, 4, 1), 0)
def make_kernel(k):
k = torch.tensor(k, dtype=torch.float32)
if k.ndim == 1:
k = k[None, :] * k[:, None]
k /= k.sum()
return k
def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0,
pad_x1, pad_y0, pad_y1):
_, channel, in_h, in_w = input.shape
input = input.reshape(-1, in_h, in_w, 1)
_, in_h, in_w, minor = input.shape
kernel_h, kernel_w = kernel.shape
out = input.view(-1, in_h, 1, in_w, 1, minor)
out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
out = out.view(-1, in_h * up_y, in_w * up_x, minor)
out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0),
max(pad_y1, 0)])
out = out[:, max(-pad_y0, 0):out.shape[1] - max(-pad_y1, 0), max(-
pad_x0, 0):out.shape[2] - max(-pad_x1, 0), :]
out = out.permute(0, 3, 1, 2)
out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x +
pad_x0 + pad_x1])
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
out = F.conv2d(out, w)
out = out.reshape(-1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h +
1, in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1)
out = out.permute(0, 2, 3, 1)
out = out[:, ::down_y, ::down_x, :]
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
return out.view(-1, channel, out_h, out_w)
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
out = upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1
], pad[0], pad[1])
return out
def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5):
rest_dim = [1] * (input.ndim - bias.ndim - 1)
if input.ndim == 3:
return F.leaky_relu(input + bias.view(1, *rest_dim, bias.shape[0]),
negative_slope=negative_slope) * scale
else:
return F.leaky_relu(input + bias.view(1, bias.shape[0], *rest_dim),
negative_slope=negative_slope) * scale
class Upsample(nn.Module):
def __init__(self, kernel, factor=2):
super().__init__()
self.factor = factor
kernel = make_kernel(kernel) * factor ** 2
self.register_buffer('kernel', kernel)
p = kernel.shape[0] - factor
pad0 = (p + 1) // 2 + factor - 1
pad1 = p // 2
self.pad = pad0, pad1
def forward(self, input):
out = upfirdn2d(input, self.kernel, up=self.factor, down=1, pad=
self.pad)
return out
class Blur(nn.Module):
def __init__(self, kernel, pad, upsample_factor=1):
super().__init__()
kernel = make_kernel(kernel)
if upsample_factor > 1:
kernel = kernel * upsample_factor ** 2
self.register_buffer('kernel', kernel)
self.pad = pad
def forward(self, input):
out = upfirdn2d(input, self.kernel, pad=self.pad)
return out
class EqualLinear(nn.Module):
def __init__(self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1,
activation=None):
super().__init__()
self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul))
if bias:
self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init))
else:
self.bias = None
self.activation = activation
self.scale = 1 / math.sqrt(in_dim) * lr_mul
self.lr_mul = lr_mul
def forward(self, input):
bias = self.bias * self.lr_mul if self.bias is not None else None
if self.activation:
out = F.linear(input, self.weight * self.scale)
out = fused_leaky_relu(out, bias)
else:
out = F.linear(input, self.weight * self.scale, bias=bias)
return out
def __repr__(self):
return (
f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})'
)
class ModulatedConv2d(nn.Module):
def __init__(self, in_channel, out_channel, kernel_size, style_dim,
use_style=True, demodulate=True, upsample=False, downsample=False,
blur_kernel=[1, 3, 3, 1]):
super().__init__()
self.eps = 1e-08
self.kernel_size = kernel_size
self.in_channel = in_channel
self.out_channel = out_channel
self.upsample = upsample
self.downsample = downsample
self.use_style = use_style
if upsample:
factor = 2
p = len(blur_kernel) - factor - (kernel_size - 1)
pad0 = (p + 1) // 2 + factor - 1
pad1 = p // 2 + 1
self.blur = Blur(blur_kernel, pad=(pad0, pad1), upsample_factor
=factor)
if downsample:
factor = 2
p = len(blur_kernel) - factor + (kernel_size - 1)
pad0 = (p + 1) // 2
pad1 = p // 2
self.blur = Blur(blur_kernel, pad=(pad0, pad1))
fan_in = in_channel * kernel_size ** 2
self.scale = 1 / math.sqrt(fan_in)
self.padding = kernel_size // 2
self.weight = nn.Parameter(torch.randn(1, out_channel, in_channel,
kernel_size, kernel_size))
if use_style:
self.modulation = EqualLinear(style_dim, in_channel, bias_init=1)
else:
self.modulation = nn.Parameter(torch.Tensor(1, 1, in_channel, 1,
1).fill_(1))
self.demodulate = demodulate
def __repr__(self):
return (
f'{self.__class__.__name__}({self.in_channel}, {self.out_channel}, {self.kernel_size}, upsample={self.upsample}, downsample={self.downsample})'
)
def forward(self, input, style):
batch, in_channel, height, width = input.shape
if self.use_style:
style = self.modulation(style).view(batch, 1, in_channel, 1, 1)
weight = self.scale * self.weight * style
else:
weight = self.scale * self.weight.expand(batch, -1, -1, -1, -1
) * self.modulation
if self.demodulate:
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-08)
weight = weight * demod.view(batch, self.out_channel, 1, 1, 1)
weight = weight.view(batch * self.out_channel, in_channel, self.
kernel_size, self.kernel_size)
if self.upsample:
input = input.view(1, batch * in_channel, height, width)
weight = weight.view(batch, self.out_channel, in_channel, self.
kernel_size, self.kernel_size)
weight = weight.transpose(1, 2).reshape(batch * in_channel,
self.out_channel, self.kernel_size, self.kernel_size)
out = F.conv_transpose2d(input, weight, padding=0, stride=2,
groups=batch)
_, _, height, width = out.shape
out = out.view(batch, self.out_channel, height, width)
out = self.blur(out)
elif self.downsample:
input = self.blur(input)
_, _, height, width = input.shape
input = input.view(1, batch * in_channel, height, width)
out = F.conv2d(input, weight, padding=0, stride=2, groups=batch)
_, _, height, width = out.shape
out = out.view(batch, self.out_channel, height, width)
else:
input = input.view(1, batch * in_channel, height, width)
out = F.conv2d(input, weight, padding=self.padding, groups=batch)
_, _, height, width = out.shape
out = out.view(batch, self.out_channel, height, width)
return out
class ToRGBNew(nn.Module):
def __init__(self, in_channel, style_dim, upsample=True, blur_kernel=[1,
3, 3, 1]):
super().__init__()
if upsample:
self.upsample = Upsample(blur_kernel)
self.conv = ModulatedConv2d(in_channel, 3, 1, style_dim, demodulate
=False)
self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
def forward(self, input_0, input_1):
primals_6 = self.bias
primals_5 = self.conv.weight
primals_3 = self.conv.modulation.weight
primals_2 = self.conv.modulation.bias
primals_1 = input_0
primals_4 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0]
| ishine/GANsNRoses | ToRGB | false | 15,634 | [
"MIT"
]
| 969 | 414e9e77c3df47d4ecf7941b5dcfdffec67403ee | https://github.com/ishine/GANsNRoses/tree/414e9e77c3df47d4ecf7941b5dcfdffec67403ee |
EmbedNet | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/k3/ck32qkbu76goin6gngorb46frxtcgido7u4gqqjikn6bs3l76qke.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096, 4096], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 4096
xnumel = 4096
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 1024
y1 = (yindex // 1024)
tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), None)
tl.store(out_ptr0 + (y0 + (1024*x2) + (4194304*y1)), tmp0, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/oc/cochsno6wpkwamgsqz5legelnxxchuje5twfzhozvusus3e5bzmo.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 262144
xnumel = 9
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 512
y1 = (yindex // 512)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (512*x2) + (4608*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/rw/crwjcvc7uqnpq2ugrojkfmg5yocmtx2f3xkklxvgpq4rds6erx42.py
# Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d => convolution
# x => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8388608],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8388608
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 512
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/mg/cmgtc4lrnj76uhtbryswckadevfjmrjvgicmfll2snhhbnsejrdo.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x_2 => convolution_2
# Graph fragment:
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_3 = async_compile.triton('triton_poi_fused_convolution_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192, 4096], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_3(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 8192
xnumel = 4096
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y0 = yindex % 2048
y1 = (yindex // 2048)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (2048*x2) + (8388608*y1)), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + (4096*y3)), tmp2, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (512, 1024, 1, 1), (1024, 1, 1, 1))
assert_size_stride(primals_2, (512, ), (1, ))
assert_size_stride(primals_3, (4, 1024, 64, 64), (4194304, 4096, 64, 1))
assert_size_stride(primals_4, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_5, (512, ), (1, ))
assert_size_stride(primals_6, (2048, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_7, (2048, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1024, 64, 64), (4194304, 1, 65536, 1024), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
stream0 = get_raw_stream(0)
triton_poi_fused_0.run(primals_3, buf0, 4096, 4096, grid=grid(4096, 4096), stream=stream0)
del primals_3
buf1 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_1.run(primals_4, buf1, 262144, 9, grid=grid(262144, 9), stream=stream0)
del primals_4
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 512, 64, 64), (2097152, 1, 32768, 512))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_2.run(buf3, primals_2, 8388608, grid=grid(8388608), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf3, buf1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 512, 64, 64), (2097152, 1, 32768, 512))
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_2.run(buf5, primals_5, 8388608, grid=grid(8388608), stream=stream0)
del primals_5
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(buf5, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 2048, 64, 64), (8388608, 1, 131072, 2048))
buf7 = empty_strided_cuda((4, 2048, 64, 64), (8388608, 4096, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution]
triton_poi_fused_convolution_3.run(buf6, primals_7, buf7, 8192, 4096, grid=grid(8192, 4096), stream=stream0)
del buf6
del primals_7
return (buf7, primals_1, buf0, buf1, primals_6, buf3, buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((512, 1024, 1, 1), (1024, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 1024, 64, 64), (4194304, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((2048, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from _paritybench_helpers import _mock_config
import torch
from torchvision.transforms import functional as F
import torch.utils.data
from torch import nn
import torch.nn.functional as F
class EmbedNet(nn.Module):
def __init__(self, cfg):
super(EmbedNet, self).__init__()
self.embed_conv1 = nn.Conv2d(1024, 512, kernel_size=1, stride=1)
self.embed_conv2 = nn.Conv2d(512, 512, kernel_size=3, stride=1,
padding=1)
self.embed_conv3 = nn.Conv2d(512, 2048, kernel_size=1, stride=1)
for l in [self.embed_conv1, self.embed_conv2, self.embed_conv3]:
nn.init.kaiming_uniform_(l.weight, a=1)
nn.init.zeros_(l.bias)
def forward(self, x):
x = F.relu(self.embed_conv1(x))
x = F.relu(self.embed_conv2(x))
x = self.embed_conv3(x)
return x
def get_inputs():
return [torch.rand([4, 1024, 64, 64])]
def get_init_inputs():
return [[], {'cfg': _mock_config()}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.utils.data
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 1024
y1 = yindex // 1024
tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), None)
tl.store(out_ptr0 + (y0 + 1024 * x2 + 4194304 * y1), tmp0, None)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)
) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 512
y1 = yindex // 512
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 512 * x2 + 4608 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 512
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_3(in_ptr0, in_ptr1, out_ptr0, ynumel,
xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y0 = yindex % 2048
y1 = yindex // 2048
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 2048 * x2 + 8388608 * y1), None,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + 4096 * y3), tmp2, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (512, 1024, 1, 1), (1024, 1, 1, 1))
assert_size_stride(primals_2, (512,), (1,))
assert_size_stride(primals_3, (4, 1024, 64, 64), (4194304, 4096, 64, 1))
assert_size_stride(primals_4, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_5, (512,), (1,))
assert_size_stride(primals_6, (2048, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_7, (2048,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1024, 64, 64), (4194304, 1, 65536,
1024), torch.float32)
get_raw_stream(0)
triton_poi_fused_0[grid(4096, 4096)](primals_3, buf0, 4096, 4096,
XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1)
del primals_3
buf1 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512),
torch.float32)
triton_poi_fused_1[grid(262144, 9)](primals_4, buf1, 262144, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_4
buf2 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 512, 64, 64), (2097152, 1, 32768, 512))
buf3 = buf2
del buf2
triton_poi_fused_convolution_relu_2[grid(8388608)](buf3, primals_2,
8388608, XBLOCK=512, num_warps=8, num_stages=1)
del primals_2
buf4 = extern_kernels.convolution(buf3, buf1, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 512, 64, 64), (2097152, 1, 32768, 512))
buf5 = buf4
del buf4
triton_poi_fused_convolution_relu_2[grid(8388608)](buf5, primals_5,
8388608, XBLOCK=512, num_warps=8, num_stages=1)
del primals_5
buf6 = extern_kernels.convolution(buf5, primals_6, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 2048, 64, 64), (8388608, 1, 131072, 2048))
buf7 = empty_strided_cuda((4, 2048, 64, 64), (8388608, 4096, 64, 1),
torch.float32)
triton_poi_fused_convolution_3[grid(8192, 4096)](buf6, primals_7,
buf7, 8192, 4096, XBLOCK=64, YBLOCK=64, num_warps=8, num_stages=1)
del buf6
del primals_7
return buf7, primals_1, buf0, buf1, primals_6, buf3, buf5
class EmbedNetNew(nn.Module):
def __init__(self, cfg):
super(EmbedNetNew, self).__init__()
self.embed_conv1 = nn.Conv2d(1024, 512, kernel_size=1, stride=1)
self.embed_conv2 = nn.Conv2d(512, 512, kernel_size=3, stride=1,
padding=1)
self.embed_conv3 = nn.Conv2d(512, 2048, kernel_size=1, stride=1)
for l in [self.embed_conv1, self.embed_conv2, self.embed_conv3]:
nn.init.kaiming_uniform_(l.weight, a=1)
nn.init.zeros_(l.bias)
def forward(self, input_0):
primals_1 = self.embed_conv1.weight
primals_2 = self.embed_conv1.bias
primals_4 = self.embed_conv2.weight
primals_5 = self.embed_conv2.bias
primals_6 = self.embed_conv3.weight
primals_7 = self.embed_conv3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| hanranCode/mega.pytorch | EmbedNet | false | 15,635 | [
"BSD-2-Clause"
]
| 521 | 28c8a184372aa57a942576a944b3526590bc1ace | https://github.com/hanranCode/mega.pytorch/tree/28c8a184372aa57a942576a944b3526590bc1ace |
TransitionModel | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/4e/c4enwou2rwrafswg6wkceuant5mkoodv6zfzaawnpwjswxf6qb5y.py
# Topologically Sorted Source Nodes: [neg, staying_probability, transition_probability], Original ATen: [aten.neg, aten.sigmoid]
# Source node to ATen node mapping:
# neg => neg
# staying_probability => sigmoid_1
# transition_probability => sigmoid
# Graph fragment:
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%arg1_1,), kwargs = {})
# %sigmoid_1 : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%neg,), kwargs = {})
# %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%arg1_1,), kwargs = {})
triton_poi_fused_neg_sigmoid_0 = async_compile.triton('triton_poi_fused_neg_sigmoid_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_neg_sigmoid_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_neg_sigmoid_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = -tmp0
tmp2 = tl.sigmoid(tmp1)
tmp3 = tl.sigmoid(tmp0)
tl.store(out_ptr0 + (x0), tmp2, xmask)
tl.store(out_ptr1 + (x0), tmp3, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/5z/c5zlucsk5fwycbt4gdibklxm7mcwzextgdwhs5fk3ho6hltp7ilb.py
# Topologically Sorted Source Nodes: [stack], Original ATen: [aten.stack]
# Source node to ATen node mapping:
# stack => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%add, %select_scatter_default], 2), kwargs = {})
triton_poi_fused_stack_1 = async_compile.triton('triton_poi_fused_stack_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_stack_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_stack_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4) % 8
x0 = xindex % 4
x4 = (xindex // 32)
x2 = (xindex // 32) % 4
x3 = (xindex // 128)
x5 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (4*x1) + (16*x4)), tmp4 & xmask, other=0.0)
tmp6 = tl.load(in_ptr1 + (x0 + (4*x1) + (16*x4)), tmp4 & xmask, other=0.0)
tmp7 = 0.0001
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tl_math.log(tmp8)
tmp10 = tmp5 + tmp9
tmp11 = tl.full(tmp10.shape, 0.0, tmp10.dtype)
tmp12 = tl.where(tmp4, tmp10, tmp11)
tmp13 = tmp0 >= tmp3
tmp14 = tl.full([1], 8, tl.int64)
tmp15 = tmp0 < tmp14
tmp16 = x2
tmp17 = tl.full([1], 0, tl.int32)
tmp18 = tmp16 == tmp17
tmp19 = tl.load(in_ptr0 + (x0 + (4*((-4) + x1)) + (16*((3 + x2) % 4)) + (64*x3)), tmp13 & xmask, other=0.0)
tmp20 = tl.load(in_ptr2 + (x0 + (4*((-4) + x1)) + (16*((3 + x2) % 4)) + (64*x3)), tmp13 & xmask, other=0.0)
tmp21 = triton_helpers.maximum(tmp20, tmp7)
tmp22 = tl_math.log(tmp21)
tmp23 = tmp19 + tmp22
tmp24 = float("-inf")
tmp25 = tl.where(tmp18, tmp24, tmp23)
tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype)
tmp27 = tl.where(tmp13, tmp25, tmp26)
tmp28 = tl.where(tmp4, tmp12, tmp27)
tl.store(out_ptr0 + (x5), tmp28, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/qh/cqhb4j6u3enylubcwv2uqaqrnvseu4x2b444keh4g5cajimvxtu6.py
# Topologically Sorted Source Nodes: [max_1, lt, not_state_lengths_mask, out_1, masked_fill__1, mask, masked_fill_, sub, exp, s, log_2, masked_fill__2, out], Original ATen: [aten.max, aten.lt, aten.bitwise_not, aten.masked_fill, aten.eq, aten.sub, aten.exp, aten.sum, aten.log, aten.add]
# Source node to ATen node mapping:
# exp => exp
# log_2 => log_2
# lt => lt
# mask => eq
# masked_fill_ => full_default_1, where
# masked_fill__1 => full_default_2, where_1
# masked_fill__2 => full_default_3, where_2
# max_1 => max_1
# not_state_lengths_mask => bitwise_not
# out => add_4
# out_1 => full_default_4, where_3
# s => sum_1
# sub => sub
# Graph fragment:
# %max_1 : [num_users=1] = call_function[target=torch.ops.aten.max.dim](args = (%view, 2), kwargs = {})
# %lt : [num_users=1] = call_function[target=torch.ops.aten.lt.Tensor](args = (%expand_1, %unsqueeze), kwargs = {})
# %bitwise_not : [num_users=1] = call_function[target=torch.ops.aten.bitwise_not.default](args = (%lt,), kwargs = {})
# %full_default_4 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -inf), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %full_default_2 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 1.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %eq : [num_users=3] = call_function[target=torch.ops.aten.eq.Scalar](args = (%getitem, -inf), kwargs = {})
# %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default_1, %getitem), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %unsqueeze_2), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [2]), kwargs = {})
# %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default_2, %sum_1), kwargs = {})
# %log_2 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%where_1,), kwargs = {})
# %full_default_3 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -inf), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %where_2 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default_3, %where), kwargs = {})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%log_2, %where_2), kwargs = {})
# %where_3 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%bitwise_not, %full_default_4, %add_4), kwargs = {})
triton_poi_fused_add_bitwise_not_eq_exp_log_lt_masked_fill_max_sub_sum_2 = async_compile.triton('triton_poi_fused_add_bitwise_not_eq_exp_log_lt_masked_fill_max_sub_sum_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_bitwise_not_eq_exp_log_lt_masked_fill_max_sub_sum_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_bitwise_not_eq_exp_log_lt_masked_fill_max_sub_sum_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = (xindex // 256)
x5 = xindex % 64
x0 = xindex % 4
x6 = xindex % 16
x7 = (xindex // 16) % 16
x8 = xindex
tmp0 = tl.load(in_ptr0 + (x5 + (64*x4)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (x6 + (32*x7)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr1 + (16 + x6 + (32*x7)), xmask, eviction_policy='evict_last')
tmp1 = x0
tmp2 = tmp1.to(tl.float32)
tmp3 = tmp2 < tmp0
tmp4 = tmp3 == 0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = float("-inf")
tmp9 = tmp7 == tmp8
tmp10 = 0.0
tmp11 = tl.where(tmp9, tmp10, tmp7)
tmp12 = tmp5 - tmp11
tmp13 = tl_math.exp(tmp12)
tmp14 = tmp6 - tmp11
tmp15 = tl_math.exp(tmp14)
tmp16 = tmp13 + tmp15
tmp17 = 1.0
tmp18 = tl.where(tmp9, tmp17, tmp16)
tmp19 = tl_math.log(tmp18)
tmp20 = tl.where(tmp9, tmp8, tmp11)
tmp21 = tmp19 + tmp20
tmp22 = tl.where(tmp4, tmp8, tmp21)
tl.store(out_ptr0 + (x8), tmp22, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [neg, staying_probability, transition_probability], Original ATen: [aten.neg, aten.sigmoid]
stream0 = get_raw_stream(0)
triton_poi_fused_neg_sigmoid_0.run(arg1_1, buf0, buf1, 256, grid=grid(256), stream=stream0)
del arg1_1
buf2 = empty_strided_cuda((4, 4, 8, 4), (128, 32, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [stack], Original ATen: [aten.stack]
triton_poi_fused_stack_1.run(arg0_1, buf0, buf1, buf2, 512, grid=grid(512), stream=stream0)
del arg0_1
buf3 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [max_1, lt, not_state_lengths_mask, out_1, masked_fill__1, mask, masked_fill_, sub, exp, s, log_2, masked_fill__2, out], Original ATen: [aten.max, aten.lt, aten.bitwise_not, aten.masked_fill, aten.eq, aten.sub, aten.exp, aten.sum, aten.log, aten.add]
triton_poi_fused_add_bitwise_not_eq_exp_log_lt_masked_fill_max_sub_sum_2.run(arg2_1, buf2, buf3, 1024, grid=grid(1024), stream=stream0)
del arg2_1
del buf2
return (buf3, buf1, buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
def log_clamped(x, eps=0.0001):
clamped_x = torch.clamp(x, min=eps)
return torch.log(clamped_x)
def logsumexp(x, dim):
"""
Differentiable LogSumExp: Does not creates nan gradients when all the inputs are -inf
Args:
x : torch.Tensor - The input tensor
dim: int - The dimension on which the log sum exp has to be applied
"""
m, _ = x.max(dim=dim)
mask = m == -float('inf')
s = (x - m.masked_fill_(mask, 0).unsqueeze(dim=dim)).exp().sum(dim=dim)
return s.masked_fill_(mask, 1).log() + m.masked_fill_(mask, -float('inf'))
class TransitionModel(nn.Module):
"""
Transition Model of the HMM, it represents the probability of transitioning form current state to all other states
"""
def __init__(self):
super(TransitionModel, self).__init__()
def set_staying_and_transitioning_probability(self, staying, transitioning
):
"""
Make reference of the staying and transitioning probabilities as instance parameters of class
"""
self.staying_probability = staying
self.transition_probability = transitioning
def forward(self, log_alpha_scaled, transition_vector, state_lengths):
"""
It is the product of the past state with transitional probabilities
and since it is in log scale, the product will be converted to logsumexp
Args:
log_alpha_scaled (torch.Tensor): Multiply previous timestep's alphas by transition matrix (in log domain)
shape: (batch size, N)
transition_vector (torch.tensor): transition vector for each state
shape: (N)
state_lengths (int tensor): Lengths of states in a batch
shape: (batch)
"""
T_max = log_alpha_scaled.shape[1]
transition_probability = torch.sigmoid(transition_vector)
staying_probability = torch.sigmoid(-transition_vector)
self.set_staying_and_transitioning_probability(staying_probability,
transition_probability)
log_staying_probability = log_clamped(staying_probability)
log_transition_probability = log_clamped(transition_probability)
staying = log_alpha_scaled + log_staying_probability
leaving = log_alpha_scaled + log_transition_probability
leaving = leaving.roll(1, dims=1)
leaving[:, 0] = -float('inf')
mask_tensor = log_alpha_scaled.new_zeros(T_max)
not_state_lengths_mask = ~(torch.arange(T_max, out=mask_tensor).
expand(len(state_lengths), T_max) < state_lengths.unsqueeze(1))
out = logsumexp(torch.stack((staying, leaving), dim=2), dim=2)
out = out.masked_fill(not_state_lengths_mask, -float('inf'))
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_neg_sigmoid_0(in_ptr0, out_ptr0, out_ptr1, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = -tmp0
tmp2 = tl.sigmoid(tmp1)
tmp3 = tl.sigmoid(tmp0)
tl.store(out_ptr0 + x0, tmp2, xmask)
tl.store(out_ptr1 + x0, tmp3, xmask)
@triton.jit
def triton_poi_fused_stack_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4 % 8
x0 = xindex % 4
x4 = xindex // 32
x2 = xindex // 32 % 4
x3 = xindex // 128
x5 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 4 * x1 + 16 * x4), tmp4 & xmask, other=0.0)
tmp6 = tl.load(in_ptr1 + (x0 + 4 * x1 + 16 * x4), tmp4 & xmask, other=0.0)
tmp7 = 0.0001
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tl_math.log(tmp8)
tmp10 = tmp5 + tmp9
tmp11 = tl.full(tmp10.shape, 0.0, tmp10.dtype)
tmp12 = tl.where(tmp4, tmp10, tmp11)
tmp13 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp16 = x2
tmp17 = tl.full([1], 0, tl.int32)
tmp18 = tmp16 == tmp17
tmp19 = tl.load(in_ptr0 + (x0 + 4 * (-4 + x1) + 16 * ((3 + x2) % 4) +
64 * x3), tmp13 & xmask, other=0.0)
tmp20 = tl.load(in_ptr2 + (x0 + 4 * (-4 + x1) + 16 * ((3 + x2) % 4) +
64 * x3), tmp13 & xmask, other=0.0)
tmp21 = triton_helpers.maximum(tmp20, tmp7)
tmp22 = tl_math.log(tmp21)
tmp23 = tmp19 + tmp22
tmp24 = float('-inf')
tmp25 = tl.where(tmp18, tmp24, tmp23)
tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype)
tmp27 = tl.where(tmp13, tmp25, tmp26)
tmp28 = tl.where(tmp4, tmp12, tmp27)
tl.store(out_ptr0 + x5, tmp28, xmask)
@triton.jit
def triton_poi_fused_add_bitwise_not_eq_exp_log_lt_masked_fill_max_sub_sum_2(
in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex // 256
x5 = xindex % 64
x0 = xindex % 4
x6 = xindex % 16
x7 = xindex // 16 % 16
x8 = xindex
tmp0 = tl.load(in_ptr0 + (x5 + 64 * x4), xmask, eviction_policy=
'evict_last')
tmp5 = tl.load(in_ptr1 + (x6 + 32 * x7), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr1 + (16 + x6 + 32 * x7), xmask, eviction_policy=
'evict_last')
tmp1 = x0
tmp2 = tmp1.to(tl.float32)
tmp3 = tmp2 < tmp0
tmp4 = tmp3 == 0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = float('-inf')
tmp9 = tmp7 == tmp8
tmp10 = 0.0
tmp11 = tl.where(tmp9, tmp10, tmp7)
tmp12 = tmp5 - tmp11
tmp13 = tl_math.exp(tmp12)
tmp14 = tmp6 - tmp11
tmp15 = tl_math.exp(tmp14)
tmp16 = tmp13 + tmp15
tmp17 = 1.0
tmp18 = tl.where(tmp9, tmp17, tmp16)
tmp19 = tl_math.log(tmp18)
tmp20 = tl.where(tmp9, tmp8, tmp11)
tmp21 = tmp19 + tmp20
tmp22 = tl.where(tmp4, tmp8, tmp21)
tl.store(out_ptr0 + x8, tmp22, xmask)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_neg_sigmoid_0[grid(256)](arg1_1, buf0, buf1, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del arg1_1
buf2 = empty_strided_cuda((4, 4, 8, 4), (128, 32, 4, 1), torch.float32)
triton_poi_fused_stack_1[grid(512)](arg0_1, buf0, buf1, buf2, 512,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
buf3 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
triton_poi_fused_add_bitwise_not_eq_exp_log_lt_masked_fill_max_sub_sum_2[
grid(1024)](arg2_1, buf2, buf3, 1024, XBLOCK=256, num_warps=4,
num_stages=1)
del arg2_1
del buf2
return buf3, buf1, buf0
def log_clamped(x, eps=0.0001):
clamped_x = torch.clamp(x, min=eps)
return torch.log(clamped_x)
def logsumexp(x, dim):
"""
Differentiable LogSumExp: Does not creates nan gradients when all the inputs are -inf
Args:
x : torch.Tensor - The input tensor
dim: int - The dimension on which the log sum exp has to be applied
"""
m, _ = x.max(dim=dim)
mask = m == -float('inf')
s = (x - m.masked_fill_(mask, 0).unsqueeze(dim=dim)).exp().sum(dim=dim)
return s.masked_fill_(mask, 1).log() + m.masked_fill_(mask, -float('inf'))
class TransitionModelNew(nn.Module):
"""
Transition Model of the HMM, it represents the probability of transitioning form current state to all other states
"""
def __init__(self):
super(TransitionModelNew, self).__init__()
def set_staying_and_transitioning_probability(self, staying, transitioning
):
"""
Make reference of the staying and transitioning probabilities as instance parameters of class
"""
self.staying_probability = staying
self.transition_probability = transitioning
def forward(self, input_0, input_1, input_2):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
output = call([arg0_1, arg1_1, arg2_1])
return output[0]
| ishine/Neural-HMM | TransitionModel | false | 15,636 | [
"MIT"
]
| 66 | c0bc23ab88f831173d2d4db29a84503b80c5cdc4 | https://github.com/ishine/Neural-HMM/tree/c0bc23ab88f831173d2d4db29a84503b80c5cdc4 |
AttentiveStatsPool | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/lv/clvzonxnhy6fl5yrkxrr6ovbvqty6idyvwskbymkmtmh6lwq4ump.py
# Topologically Sorted Source Nodes: [conv1d, alpha], Original ATen: [aten.convolution, aten.tanh]
# Source node to ATen node mapping:
# alpha => tanh
# conv1d => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1], [0], [1], False, [0], 1), kwargs = {})
# %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_tanh_0 = async_compile.triton('triton_poi_fused_convolution_tanh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 4) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + (x3), tmp3, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/au/cau4pihcaptiev5y2ewn2o2nvrwhk7hogc72cofmmtbyv4rxc2oy.py
# Topologically Sorted Source Nodes: [conv1d_1], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv1d_1 => convolution_1
# Graph fragment:
# %convolution_1 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%tanh, %primals_4, %primals_5, [1], [0], [1], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 4) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/hg/chg3iq6bscxmmxv5f7tuzgwycb4mgrimwfhv2nauw5rj4tt5cmv2.py
# Topologically Sorted Source Nodes: [alpha_1], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# alpha_1 => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%convolution_1, [2], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%convolution_1, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/zu/czuvep3dmpmqmhiiliwubh4ghdt2qr27va67sszkua7trziinwov.py
# Topologically Sorted Source Nodes: [alpha_1], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# alpha_1 => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [2], True), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/js/cjsld3wpkuqa2jsc3754couxrmwao7s4uswgaey3epfkafdnydkc.py
# Topologically Sorted Source Nodes: [mul, mean, pow_1, mul_1, sum_2, pow_2, residuals, clamp, std], Original ATen: [aten.mul, aten.sum, aten.pow, aten.sub, aten.clamp, aten.sqrt]
# Source node to ATen node mapping:
# clamp => clamp_min
# mean => sum_2
# mul => mul
# mul_1 => mul_1
# pow_1 => pow_1
# pow_2 => pow_2
# residuals => sub_1
# std => sqrt
# sum_2 => sum_3
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %primals_3), kwargs = {})
# %sum_2 : [num_users=2] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [2]), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_3, 2), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %pow_1), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_1, [2]), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_2, 2), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sum_3, %pow_2), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_1, 1e-09), kwargs = {})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%clamp_min,), kwargs = {})
triton_poi_fused_clamp_mul_pow_sqrt_sub_sum_4 = async_compile.triton('triton_poi_fused_clamp_mul_pow_sqrt_sub_sum_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_mul_pow_sqrt_sub_sum_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clamp_mul_pow_sqrt_sub_sum_4(in_ptr0, in_ptr1, out_ptr0, out_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (4*x2), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4*x2), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + (4*x2)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + (4*x2)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + (4*x2)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + (4*x2)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (3 + (4*x2)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp5 = tmp3 * tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 * tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 * tmp12
tmp14 = tmp10 + tmp13
tmp15 = tmp1 * tmp1
tmp16 = tmp0 * tmp15
tmp17 = tmp4 * tmp4
tmp18 = tmp3 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp8 * tmp8
tmp21 = tmp7 * tmp20
tmp22 = tmp19 + tmp21
tmp23 = tmp12 * tmp12
tmp24 = tmp11 * tmp23
tmp25 = tmp22 + tmp24
tmp26 = tmp14 * tmp14
tmp27 = tmp25 - tmp26
tmp28 = 1e-09
tmp29 = triton_helpers.maximum(tmp27, tmp28)
tmp30 = libdevice.sqrt(tmp29)
tl.store(out_ptr0 + (x0 + (8*x1)), tmp14, xmask)
tl.store(out_ptr2 + (x0 + (8*x1)), tmp30, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4), (16, 4, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [conv1d, alpha], Original ATen: [aten.convolution, aten.tanh]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_tanh_0.run(buf1, primals_2, 64, grid=grid(64), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [conv1d_1], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 4), (16, 4, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [conv1d_1], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf3, primals_5, 64, grid=grid(64), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [alpha_1], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf3, buf4, 64, grid=grid(64), stream=stream0)
buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [alpha_1], Original ATen: [aten._softmax]
triton_poi_fused__softmax_3.run(buf4, buf5, 64, grid=grid(64), stream=stream0)
del buf4
buf9 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
buf6 = reinterpret_tensor(buf9, (4, 4), (8, 1), 0) # alias
buf8 = reinterpret_tensor(buf9, (4, 4), (8, 1), 4) # alias
# Topologically Sorted Source Nodes: [mul, mean, pow_1, mul_1, sum_2, pow_2, residuals, clamp, std], Original ATen: [aten.mul, aten.sum, aten.pow, aten.sub, aten.clamp, aten.sqrt]
triton_poi_fused_clamp_mul_pow_sqrt_sub_sum_4.run(buf5, primals_3, buf6, buf8, 16, grid=grid(16), stream=stream0)
del buf5
return (buf9, primals_1, primals_3, primals_4, buf1, buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn
import torch.nn as nn
class AttentiveStatsPool(nn.Module):
def __init__(self, in_dim, bottleneck_dim):
super().__init__()
self.linear1 = nn.Conv1d(in_dim, bottleneck_dim, kernel_size=1)
self.linear2 = nn.Conv1d(bottleneck_dim, in_dim, kernel_size=1)
def forward(self, x):
alpha = torch.tanh(self.linear1(x))
alpha = torch.softmax(self.linear2(alpha), dim=2)
mean = torch.sum(alpha * x, dim=2)
residuals = torch.sum(alpha * x ** 2, dim=2) - mean ** 2
std = torch.sqrt(residuals.clamp(min=1e-09))
return torch.cat([mean, std], dim=1)
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'in_dim': 4, 'bottleneck_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_tanh_0(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 4 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + x3, tmp3, xmask)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 4 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_clamp_mul_pow_sqrt_sub_sum_4(in_ptr0, in_ptr1,
out_ptr0, out_ptr2, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + 4 * x2, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 4 * x2, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x2), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + 4 * x2), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + 4 * x2), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + 4 * x2), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp12 = tl.load(in_ptr1 + (3 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 * tmp1
tmp5 = tmp3 * tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 * tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 * tmp12
tmp14 = tmp10 + tmp13
tmp15 = tmp1 * tmp1
tmp16 = tmp0 * tmp15
tmp17 = tmp4 * tmp4
tmp18 = tmp3 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp8 * tmp8
tmp21 = tmp7 * tmp20
tmp22 = tmp19 + tmp21
tmp23 = tmp12 * tmp12
tmp24 = tmp11 * tmp23
tmp25 = tmp22 + tmp24
tmp26 = tmp14 * tmp14
tmp27 = tmp25 - tmp26
tmp28 = 1e-09
tmp29 = triton_helpers.maximum(tmp27, tmp28)
tmp30 = libdevice.sqrt(tmp29)
tl.store(out_ptr0 + (x0 + 8 * x1), tmp14, xmask)
tl.store(out_ptr2 + (x0 + 8 * x1), tmp30, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,),
padding=(0,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4), (16, 4, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_tanh_0[grid(64)](buf1, primals_2, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del primals_2
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1,),
padding=(0,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 4), (16, 4, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_1[grid(64)](buf3, primals_5, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused__softmax_2[grid(64)](buf3, buf4, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused__softmax_3[grid(64)](buf4, buf5, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del buf4
buf9 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
buf6 = reinterpret_tensor(buf9, (4, 4), (8, 1), 0)
buf8 = reinterpret_tensor(buf9, (4, 4), (8, 1), 4)
triton_poi_fused_clamp_mul_pow_sqrt_sub_sum_4[grid(16)](buf5,
primals_3, buf6, buf8, 16, XBLOCK=16, num_warps=1, num_stages=1)
del buf5
return buf9, primals_1, primals_3, primals_4, buf1, buf3
class AttentiveStatsPoolNew(nn.Module):
def __init__(self, in_dim, bottleneck_dim):
super().__init__()
self.linear1 = nn.Conv1d(in_dim, bottleneck_dim, kernel_size=1)
self.linear2 = nn.Conv1d(bottleneck_dim, in_dim, kernel_size=1)
def forward(self, input_0):
primals_1 = self.linear1.weight
primals_2 = self.linear1.bias
primals_4 = self.linear2.weight
primals_5 = self.linear2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| ishine/asv-subtools | AttentiveStatsPool | false | 15,637 | [
"Apache-2.0"
]
| 370 | 597dcb29a772b8113dbe7ab64f0d4cc1da298707 | https://github.com/ishine/asv-subtools/tree/597dcb29a772b8113dbe7ab64f0d4cc1da298707 |
InResBlock | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/2y/c2ydrs6kcmoqcbfsh7w4exaacrtkc5ldydgwh2dj7ztumjtpiis6.py
# Topologically Sorted Source Nodes: [mul, weight, pow_1, sum_1, add, demod, weight_1], Original ATen: [aten.mul, aten.pow, aten.sum, aten.add, aten.rsqrt]
# Source node to ATen node mapping:
# add => add
# demod => rsqrt
# mul => mul
# pow_1 => pow_1
# sum_1 => sum_1
# weight => mul_1
# weight_1 => mul_2
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expand, 0.16666666666666666), kwargs = {})
# %mul_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_3), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%mul_1, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [2, 3, 4]), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, 1e-08), kwargs = {})
# %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %view), kwargs = {})
triton_per_fused_add_mul_pow_rsqrt_sum_0 = async_compile.triton('triton_per_fused_add_mul_pow_rsqrt_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mul_pow_rsqrt_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_mul_pow_rsqrt_sum_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 36
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = rindex < rnumel
r5 = rindex
x0 = xindex % 4
r3 = (rindex // 9)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (r5 + (36*x0)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp3 = tl.load(in_ptr1 + (r3), rmask, eviction_policy='evict_last', other=0.0)
tmp1 = 0.16666666666666666
tmp2 = tmp0 * tmp1
tmp4 = tmp2 * tmp3
tmp5 = tmp4 * tmp4
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp8 = tl.where(rmask & xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = 1e-08
tmp11 = tmp9 + tmp10
tmp12 = libdevice.rsqrt(tmp11)
tmp13 = tmp4 * tmp12
tl.debug_barrier()
tl.store(in_out_ptr0 + (x4), tmp12, xmask)
tl.store(out_ptr0 + (r5 + (36*x4)), tmp13, rmask & xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/4g/c4ghhcucftimybh6i3mvrnz2ck57wlxoedr4fcoa5hgynh4ktkv4.py
# Topologically Sorted Source Nodes: [add_1, leaky_relu, out_2], Original ATen: [aten.add, aten.leaky_relu, aten.mul]
# Source node to ATen node mapping:
# add_1 => add_1
# leaky_relu => gt, mul_3, where
# out_2 => mul_4
# Graph fragment:
# %add_1 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_3, %view_4), kwargs = {})
# %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_1, 0), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_1, 0.2), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %add_1, %mul_3), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where, 1.4142135623730951), kwargs = {})
triton_poi_fused_add_leaky_relu_mul_1 = async_compile.triton('triton_poi_fused_add_leaky_relu_mul_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_leaky_relu_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_leaky_relu_mul_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tmp8 = 1.4142135623730951
tmp9 = tmp7 * tmp8
tl.store(out_ptr0 + (x3), tmp4, xmask)
tl.store(out_ptr1 + (x3), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/rc/crcwbg3sphpdqp5wsi7wc3jyjhgny45b5cooay7qg6xvkaijwrcz.py
# Topologically Sorted Source Nodes: [add_3, leaky_relu_1, out_5, add_4, out_6], Original ATen: [aten.add, aten.leaky_relu, aten.mul, aten.div]
# Source node to ATen node mapping:
# add_3 => add_3
# add_4 => add_4
# leaky_relu_1 => gt_1, mul_8, where_1
# out_5 => mul_9
# out_6 => div
# Graph fragment:
# %add_3 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_8, %view_9), kwargs = {})
# %gt_1 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_3, 0), kwargs = {})
# %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_3, 0.2), kwargs = {})
# %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %add_3, %mul_8), kwargs = {})
# %mul_9 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where_1, 1.4142135623730951), kwargs = {})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_9, %primals_1), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_4, 1.4142135623730951), kwargs = {})
triton_poi_fused_add_div_leaky_relu_mul_2 = async_compile.triton('triton_poi_fused_add_div_leaky_relu_mul_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_leaky_relu_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_leaky_relu_mul_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr2 + (x3), xmask)
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tmp8 = 1.4142135623730951
tmp9 = tmp7 * tmp8
tmp11 = tmp9 + tmp10
tmp12 = 0.7071067811865475
tmp13 = tmp11 * tmp12
tl.store(out_ptr0 + (x3), tmp4, xmask)
tl.store(out_ptr1 + (x3), tmp13, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, 4, 4, 3, 3), (144, 36, 9, 3, 1))
assert_size_stride(primals_3, (1, 1, 4, 1, 1), (4, 4, 1, 1, 1))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (1, 4, 4, 3, 3), (144, 36, 9, 3, 1))
assert_size_stride(primals_6, (1, 1, 4, 1, 1), (4, 4, 1, 1, 1))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf1 = buf0; del buf0 # reuse
buf2 = empty_strided_cuda((4, 4, 4, 3, 3), (144, 36, 9, 3, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, weight, pow_1, sum_1, add, demod, weight_1], Original ATen: [aten.mul, aten.pow, aten.sum, aten.add, aten.rsqrt]
stream0 = get_raw_stream(0)
triton_per_fused_add_mul_pow_rsqrt_sum_0.run(buf1, primals_2, primals_3, buf2, 16, 36, grid=grid(16), stream=stream0)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(reinterpret_tensor(primals_1, (1, 16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf2, (16, 4, 3, 3), (36, 9, 3, 1), 0), stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf3, (1, 16, 4, 4), (256, 16, 4, 1))
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add_1, leaky_relu, out_2], Original ATen: [aten.add, aten.leaky_relu, aten.mul]
triton_poi_fused_add_leaky_relu_mul_1.run(buf3, primals_4, buf4, buf8, 256, grid=grid(256), stream=stream0)
del primals_4
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf6 = buf5; del buf5 # reuse
buf7 = empty_strided_cuda((4, 4, 4, 3, 3), (144, 36, 9, 3, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul_4, weight_3, pow_2, sum_2, add_2, demod_1, weight_4], Original ATen: [aten.mul, aten.pow, aten.sum, aten.add, aten.rsqrt]
triton_per_fused_add_mul_pow_rsqrt_sum_0.run(buf6, primals_5, primals_6, buf7, 16, 36, grid=grid(16), stream=stream0)
# Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.convolution]
buf9 = extern_kernels.convolution(reinterpret_tensor(buf8, (1, 16, 4, 4), (0, 16, 4, 1), 0), reinterpret_tensor(buf7, (16, 4, 3, 3), (36, 9, 3, 1), 0), stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf9, (1, 16, 4, 4), (256, 16, 4, 1))
buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf11 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf3 # reuse
# Topologically Sorted Source Nodes: [add_3, leaky_relu_1, out_5, add_4, out_6], Original ATen: [aten.add, aten.leaky_relu, aten.mul, aten.div]
triton_poi_fused_add_div_leaky_relu_mul_2.run(buf9, primals_7, primals_1, buf10, buf11, 256, grid=grid(256), stream=stream0)
del buf9
del primals_7
return (buf11, primals_2, primals_3, primals_5, primals_6, buf1, reinterpret_tensor(buf2, (16, 4, 3, 3), (36, 9, 3, 1), 0), reinterpret_tensor(primals_1, (1, 16, 4, 4), (256, 16, 4, 1), 0), buf4, buf6, reinterpret_tensor(buf7, (16, 4, 3, 3), (36, 9, 3, 1), 0), reinterpret_tensor(buf8, (1, 16, 4, 4), (256, 16, 4, 1), 0), buf10, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, 4, 4, 3, 3), (144, 36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1, 1, 4, 1, 1), (4, 4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((1, 4, 4, 3, 3), (144, 36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((1, 1, 4, 1, 1), (4, 4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
from torch import nn
from torch.nn import functional as F
def make_kernel(k):
k = torch.tensor(k, dtype=torch.float32)
if k.ndim == 1:
k = k[None, :] * k[:, None]
k /= k.sum()
return k
def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0,
pad_x1, pad_y0, pad_y1):
_, channel, in_h, in_w = input.shape
input = input.reshape(-1, in_h, in_w, 1)
_, in_h, in_w, minor = input.shape
kernel_h, kernel_w = kernel.shape
out = input.view(-1, in_h, 1, in_w, 1, minor)
out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
out = out.view(-1, in_h * up_y, in_w * up_x, minor)
out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0),
max(pad_y1, 0)])
out = out[:, max(-pad_y0, 0):out.shape[1] - max(-pad_y1, 0), max(-
pad_x0, 0):out.shape[2] - max(-pad_x1, 0), :]
out = out.permute(0, 3, 1, 2)
out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x +
pad_x0 + pad_x1])
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
out = F.conv2d(out, w)
out = out.reshape(-1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h +
1, in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1)
out = out.permute(0, 2, 3, 1)
out = out[:, ::down_y, ::down_x, :]
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
return out.view(-1, channel, out_h, out_w)
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
out = upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1
], pad[0], pad[1])
return out
def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5):
rest_dim = [1] * (input.ndim - bias.ndim - 1)
if input.ndim == 3:
return F.leaky_relu(input + bias.view(1, *rest_dim, bias.shape[0]),
negative_slope=negative_slope) * scale
else:
return F.leaky_relu(input + bias.view(1, bias.shape[0], *rest_dim),
negative_slope=negative_slope) * scale
class Blur(nn.Module):
def __init__(self, kernel, pad, upsample_factor=1):
super().__init__()
kernel = make_kernel(kernel)
if upsample_factor > 1:
kernel = kernel * upsample_factor ** 2
self.register_buffer('kernel', kernel)
self.pad = pad
def forward(self, input):
out = upfirdn2d(input, self.kernel, pad=self.pad)
return out
class EqualLinear(nn.Module):
def __init__(self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1,
activation=None):
super().__init__()
self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul))
if bias:
self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init))
else:
self.bias = None
self.activation = activation
self.scale = 1 / math.sqrt(in_dim) * lr_mul
self.lr_mul = lr_mul
def forward(self, input):
bias = self.bias * self.lr_mul if self.bias is not None else None
if self.activation:
out = F.linear(input, self.weight * self.scale)
out = fused_leaky_relu(out, bias)
else:
out = F.linear(input, self.weight * self.scale, bias=bias)
return out
def __repr__(self):
return (
f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})'
)
class ModulatedConv2d(nn.Module):
def __init__(self, in_channel, out_channel, kernel_size, style_dim,
use_style=True, demodulate=True, upsample=False, downsample=False,
blur_kernel=[1, 3, 3, 1]):
super().__init__()
self.eps = 1e-08
self.kernel_size = kernel_size
self.in_channel = in_channel
self.out_channel = out_channel
self.upsample = upsample
self.downsample = downsample
self.use_style = use_style
if upsample:
factor = 2
p = len(blur_kernel) - factor - (kernel_size - 1)
pad0 = (p + 1) // 2 + factor - 1
pad1 = p // 2 + 1
self.blur = Blur(blur_kernel, pad=(pad0, pad1), upsample_factor
=factor)
if downsample:
factor = 2
p = len(blur_kernel) - factor + (kernel_size - 1)
pad0 = (p + 1) // 2
pad1 = p // 2
self.blur = Blur(blur_kernel, pad=(pad0, pad1))
fan_in = in_channel * kernel_size ** 2
self.scale = 1 / math.sqrt(fan_in)
self.padding = kernel_size // 2
self.weight = nn.Parameter(torch.randn(1, out_channel, in_channel,
kernel_size, kernel_size))
if use_style:
self.modulation = EqualLinear(style_dim, in_channel, bias_init=1)
else:
self.modulation = nn.Parameter(torch.Tensor(1, 1, in_channel, 1,
1).fill_(1))
self.demodulate = demodulate
def __repr__(self):
return (
f'{self.__class__.__name__}({self.in_channel}, {self.out_channel}, {self.kernel_size}, upsample={self.upsample}, downsample={self.downsample})'
)
def forward(self, input, style):
batch, in_channel, height, width = input.shape
if self.use_style:
style = self.modulation(style).view(batch, 1, in_channel, 1, 1)
weight = self.scale * self.weight * style
else:
weight = self.scale * self.weight.expand(batch, -1, -1, -1, -1
) * self.modulation
if self.demodulate:
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-08)
weight = weight * demod.view(batch, self.out_channel, 1, 1, 1)
weight = weight.view(batch * self.out_channel, in_channel, self.
kernel_size, self.kernel_size)
if self.upsample:
input = input.view(1, batch * in_channel, height, width)
weight = weight.view(batch, self.out_channel, in_channel, self.
kernel_size, self.kernel_size)
weight = weight.transpose(1, 2).reshape(batch * in_channel,
self.out_channel, self.kernel_size, self.kernel_size)
out = F.conv_transpose2d(input, weight, padding=0, stride=2,
groups=batch)
_, _, height, width = out.shape
out = out.view(batch, self.out_channel, height, width)
out = self.blur(out)
elif self.downsample:
input = self.blur(input)
_, _, height, width = input.shape
input = input.view(1, batch * in_channel, height, width)
out = F.conv2d(input, weight, padding=0, stride=2, groups=batch)
_, _, height, width = out.shape
out = out.view(batch, self.out_channel, height, width)
else:
input = input.view(1, batch * in_channel, height, width)
out = F.conv2d(input, weight, padding=self.padding, groups=batch)
_, _, height, width = out.shape
out = out.view(batch, self.out_channel, height, width)
return out
class FusedLeakyReLU(nn.Module):
def __init__(self, channel, negative_slope=0.2, scale=2 ** 0.5):
super().__init__()
self.bias = nn.Parameter(torch.zeros(channel))
self.negative_slope = negative_slope
self.scale = scale
def forward(self, input):
return fused_leaky_relu(input, self.bias, self.negative_slope, self
.scale)
class StyledConv(nn.Module):
def __init__(self, in_channel, out_channel, kernel_size, style_dim,
use_style=True, upsample=False, downsample=False, blur_kernel=[1, 3,
3, 1], demodulate=True):
super().__init__()
self.use_style = use_style
self.conv = ModulatedConv2d(in_channel, out_channel, kernel_size,
style_dim, use_style=use_style, upsample=upsample, downsample=
downsample, blur_kernel=blur_kernel, demodulate=demodulate)
self.activate = FusedLeakyReLU(out_channel)
def forward(self, input, style=None, noise=None):
out = self.conv(input, style)
out = self.activate(out)
return out
class InResBlock(nn.Module):
def __init__(self, in_channel, blur_kernel=[1, 3, 3, 1]):
super().__init__()
self.conv1 = StyledConv(in_channel, in_channel, 3, None,
blur_kernel=blur_kernel, demodulate=True, use_style=False)
self.conv2 = StyledConv(in_channel, in_channel, 3, None,
blur_kernel=blur_kernel, demodulate=True, use_style=False)
def forward(self, input):
out = self.conv1(input, None)
out = self.conv2(out, None)
out = (out + input) / math.sqrt(2)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channel': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import math
from torch import nn
from torch.nn import functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_add_mul_pow_rsqrt_sum_0(in_out_ptr0, in_ptr0, in_ptr1,
out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 16
rnumel = 36
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
rmask = rindex < rnumel
r5 = rindex
x0 = xindex % 4
r3 = rindex // 9
x4 = xindex
tmp0 = tl.load(in_ptr0 + (r5 + 36 * x0), rmask & xmask, eviction_policy
='evict_last', other=0.0)
tmp3 = tl.load(in_ptr1 + r3, rmask, eviction_policy='evict_last', other=0.0
)
tmp1 = 0.16666666666666666
tmp2 = tmp0 * tmp1
tmp4 = tmp2 * tmp3
tmp5 = tmp4 * tmp4
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp8 = tl.where(rmask & xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = 1e-08
tmp11 = tmp9 + tmp10
tmp12 = libdevice.rsqrt(tmp11)
tmp13 = tmp4 * tmp12
tl.debug_barrier()
tl.store(in_out_ptr0 + x4, tmp12, xmask)
tl.store(out_ptr0 + (r5 + 36 * x4), tmp13, rmask & xmask)
@triton.jit
def triton_poi_fused_add_leaky_relu_mul_1(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tmp8 = 1.4142135623730951
tmp9 = tmp7 * tmp8
tl.store(out_ptr0 + x3, tmp4, xmask)
tl.store(out_ptr1 + x3, tmp9, xmask)
@triton.jit
def triton_poi_fused_add_div_leaky_relu_mul_2(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr2 + x3, xmask)
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tmp8 = 1.4142135623730951
tmp9 = tmp7 * tmp8
tmp11 = tmp9 + tmp10
tmp12 = 0.7071067811865475
tmp13 = tmp11 * tmp12
tl.store(out_ptr0 + x3, tmp4, xmask)
tl.store(out_ptr1 + x3, tmp13, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, 4, 4, 3, 3), (144, 36, 9, 3, 1))
assert_size_stride(primals_3, (1, 1, 4, 1, 1), (4, 4, 1, 1, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (1, 4, 4, 3, 3), (144, 36, 9, 3, 1))
assert_size_stride(primals_6, (1, 1, 4, 1, 1), (4, 4, 1, 1, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf1 = buf0
del buf0
buf2 = empty_strided_cuda((4, 4, 4, 3, 3), (144, 36, 9, 3, 1),
torch.float32)
get_raw_stream(0)
triton_per_fused_add_mul_pow_rsqrt_sum_0[grid(16)](buf1, primals_2,
primals_3, buf2, 16, 36, XBLOCK=8, num_warps=4, num_stages=1)
buf3 = extern_kernels.convolution(reinterpret_tensor(primals_1, (1,
16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf2, (16, 4,
3, 3), (36, 9, 3, 1), 0), stride=(1, 1), padding=(1, 1),
dilation=(1, 1), transposed=False, output_padding=(0, 0),
groups=4, bias=None)
assert_size_stride(buf3, (1, 16, 4, 4), (256, 16, 4, 1))
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_add_leaky_relu_mul_1[grid(256)](buf3, primals_4,
buf4, buf8, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_4
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf6 = buf5
del buf5
buf7 = empty_strided_cuda((4, 4, 4, 3, 3), (144, 36, 9, 3, 1),
torch.float32)
triton_per_fused_add_mul_pow_rsqrt_sum_0[grid(16)](buf6, primals_5,
primals_6, buf7, 16, 36, XBLOCK=8, num_warps=4, num_stages=1)
buf9 = extern_kernels.convolution(reinterpret_tensor(buf8, (1, 16,
4, 4), (0, 16, 4, 1), 0), reinterpret_tensor(buf7, (16, 4, 3, 3
), (36, 9, 3, 1), 0), stride=(1, 1), padding=(1, 1), dilation=(
1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None
)
assert_size_stride(buf9, (1, 16, 4, 4), (256, 16, 4, 1))
buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf11 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf3
triton_poi_fused_add_div_leaky_relu_mul_2[grid(256)](buf9,
primals_7, primals_1, buf10, buf11, 256, XBLOCK=256, num_warps=
4, num_stages=1)
del buf9
del primals_7
return (buf11, primals_2, primals_3, primals_5, primals_6, buf1,
reinterpret_tensor(buf2, (16, 4, 3, 3), (36, 9, 3, 1), 0),
reinterpret_tensor(primals_1, (1, 16, 4, 4), (256, 16, 4, 1), 0),
buf4, buf6, reinterpret_tensor(buf7, (16, 4, 3, 3), (36, 9, 3, 1),
0), reinterpret_tensor(buf8, (1, 16, 4, 4), (256, 16, 4, 1), 0), buf10)
def make_kernel(k):
k = torch.tensor(k, dtype=torch.float32)
if k.ndim == 1:
k = k[None, :] * k[:, None]
k /= k.sum()
return k
def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0,
pad_x1, pad_y0, pad_y1):
_, channel, in_h, in_w = input.shape
input = input.reshape(-1, in_h, in_w, 1)
_, in_h, in_w, minor = input.shape
kernel_h, kernel_w = kernel.shape
out = input.view(-1, in_h, 1, in_w, 1, minor)
out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
out = out.view(-1, in_h * up_y, in_w * up_x, minor)
out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0),
max(pad_y1, 0)])
out = out[:, max(-pad_y0, 0):out.shape[1] - max(-pad_y1, 0), max(-
pad_x0, 0):out.shape[2] - max(-pad_x1, 0), :]
out = out.permute(0, 3, 1, 2)
out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x +
pad_x0 + pad_x1])
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
out = F.conv2d(out, w)
out = out.reshape(-1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h +
1, in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1)
out = out.permute(0, 2, 3, 1)
out = out[:, ::down_y, ::down_x, :]
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
return out.view(-1, channel, out_h, out_w)
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
out = upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1
], pad[0], pad[1])
return out
def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5):
rest_dim = [1] * (input.ndim - bias.ndim - 1)
if input.ndim == 3:
return F.leaky_relu(input + bias.view(1, *rest_dim, bias.shape[0]),
negative_slope=negative_slope) * scale
else:
return F.leaky_relu(input + bias.view(1, bias.shape[0], *rest_dim),
negative_slope=negative_slope) * scale
class Blur(nn.Module):
def __init__(self, kernel, pad, upsample_factor=1):
super().__init__()
kernel = make_kernel(kernel)
if upsample_factor > 1:
kernel = kernel * upsample_factor ** 2
self.register_buffer('kernel', kernel)
self.pad = pad
def forward(self, input):
out = upfirdn2d(input, self.kernel, pad=self.pad)
return out
class EqualLinear(nn.Module):
def __init__(self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1,
activation=None):
super().__init__()
self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul))
if bias:
self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init))
else:
self.bias = None
self.activation = activation
self.scale = 1 / math.sqrt(in_dim) * lr_mul
self.lr_mul = lr_mul
def forward(self, input):
bias = self.bias * self.lr_mul if self.bias is not None else None
if self.activation:
out = F.linear(input, self.weight * self.scale)
out = fused_leaky_relu(out, bias)
else:
out = F.linear(input, self.weight * self.scale, bias=bias)
return out
def __repr__(self):
return (
f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})'
)
class ModulatedConv2d(nn.Module):
def __init__(self, in_channel, out_channel, kernel_size, style_dim,
use_style=True, demodulate=True, upsample=False, downsample=False,
blur_kernel=[1, 3, 3, 1]):
super().__init__()
self.eps = 1e-08
self.kernel_size = kernel_size
self.in_channel = in_channel
self.out_channel = out_channel
self.upsample = upsample
self.downsample = downsample
self.use_style = use_style
if upsample:
factor = 2
p = len(blur_kernel) - factor - (kernel_size - 1)
pad0 = (p + 1) // 2 + factor - 1
pad1 = p // 2 + 1
self.blur = Blur(blur_kernel, pad=(pad0, pad1), upsample_factor
=factor)
if downsample:
factor = 2
p = len(blur_kernel) - factor + (kernel_size - 1)
pad0 = (p + 1) // 2
pad1 = p // 2
self.blur = Blur(blur_kernel, pad=(pad0, pad1))
fan_in = in_channel * kernel_size ** 2
self.scale = 1 / math.sqrt(fan_in)
self.padding = kernel_size // 2
self.weight = nn.Parameter(torch.randn(1, out_channel, in_channel,
kernel_size, kernel_size))
if use_style:
self.modulation = EqualLinear(style_dim, in_channel, bias_init=1)
else:
self.modulation = nn.Parameter(torch.Tensor(1, 1, in_channel, 1,
1).fill_(1))
self.demodulate = demodulate
def __repr__(self):
return (
f'{self.__class__.__name__}({self.in_channel}, {self.out_channel}, {self.kernel_size}, upsample={self.upsample}, downsample={self.downsample})'
)
def forward(self, input, style):
batch, in_channel, height, width = input.shape
if self.use_style:
style = self.modulation(style).view(batch, 1, in_channel, 1, 1)
weight = self.scale * self.weight * style
else:
weight = self.scale * self.weight.expand(batch, -1, -1, -1, -1
) * self.modulation
if self.demodulate:
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-08)
weight = weight * demod.view(batch, self.out_channel, 1, 1, 1)
weight = weight.view(batch * self.out_channel, in_channel, self.
kernel_size, self.kernel_size)
if self.upsample:
input = input.view(1, batch * in_channel, height, width)
weight = weight.view(batch, self.out_channel, in_channel, self.
kernel_size, self.kernel_size)
weight = weight.transpose(1, 2).reshape(batch * in_channel,
self.out_channel, self.kernel_size, self.kernel_size)
out = F.conv_transpose2d(input, weight, padding=0, stride=2,
groups=batch)
_, _, height, width = out.shape
out = out.view(batch, self.out_channel, height, width)
out = self.blur(out)
elif self.downsample:
input = self.blur(input)
_, _, height, width = input.shape
input = input.view(1, batch * in_channel, height, width)
out = F.conv2d(input, weight, padding=0, stride=2, groups=batch)
_, _, height, width = out.shape
out = out.view(batch, self.out_channel, height, width)
else:
input = input.view(1, batch * in_channel, height, width)
out = F.conv2d(input, weight, padding=self.padding, groups=batch)
_, _, height, width = out.shape
out = out.view(batch, self.out_channel, height, width)
return out
class FusedLeakyReLU(nn.Module):
def __init__(self, channel, negative_slope=0.2, scale=2 ** 0.5):
super().__init__()
self.bias = nn.Parameter(torch.zeros(channel))
self.negative_slope = negative_slope
self.scale = scale
def forward(self, input):
return fused_leaky_relu(input, self.bias, self.negative_slope, self
.scale)
class StyledConv(nn.Module):
def __init__(self, in_channel, out_channel, kernel_size, style_dim,
use_style=True, upsample=False, downsample=False, blur_kernel=[1, 3,
3, 1], demodulate=True):
super().__init__()
self.use_style = use_style
self.conv = ModulatedConv2d(in_channel, out_channel, kernel_size,
style_dim, use_style=use_style, upsample=upsample, downsample=
downsample, blur_kernel=blur_kernel, demodulate=demodulate)
self.activate = FusedLeakyReLU(out_channel)
def forward(self, input, style=None, noise=None):
out = self.conv(input, style)
out = self.activate(out)
return out
class InResBlockNew(nn.Module):
def __init__(self, in_channel, blur_kernel=[1, 3, 3, 1]):
super().__init__()
self.conv1 = StyledConv(in_channel, in_channel, 3, None,
blur_kernel=blur_kernel, demodulate=True, use_style=False)
self.conv2 = StyledConv(in_channel, in_channel, 3, None,
blur_kernel=blur_kernel, demodulate=True, use_style=False)
def forward(self, input_0):
primals_2 = self.conv1.conv.weight
primals_3 = self.conv1.conv.modulation
primals_4 = self.conv1.activate.bias
primals_5 = self.conv2.conv.weight
primals_6 = self.conv2.conv.modulation
primals_7 = self.conv2.activate.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| ishine/GANsNRoses | InResBlock | false | 15,638 | [
"MIT"
]
| 969 | 414e9e77c3df47d4ecf7941b5dcfdffec67403ee | https://github.com/ishine/GANsNRoses/tree/414e9e77c3df47d4ecf7941b5dcfdffec67403ee |
AttLuong | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/5g/c5gmw5yygbr7gcpoap4f4uvhtvrzy6hnhrugadb3vaygrmx4umw5.py
# Topologically Sorted Source Nodes: [max_1], Original ATen: [aten.max]
# Source node to ATen node mapping:
# max_1 => max_1
# Graph fragment:
# %max_1 : [num_users=2] = call_function[target=torch.ops.aten.max.dim](args = (%bmm, 2), kwargs = {})
triton_poi_fused_max_0 = async_compile.triton('triton_poi_fused_max_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp32 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 > tmp1
tmp3 = tmp0 == tmp1
tmp4 = tmp0 != tmp0
tmp5 = tmp1 != tmp1
tmp6 = tmp4 > tmp5
tmp7 = tmp2 | tmp6
tmp8 = tmp4 & tmp5
tmp9 = tmp3 | tmp8
tmp10 = tl.full([1], 0, tl.int64)
tmp11 = tl.full([1], 1, tl.int64)
tmp12 = tmp10 < tmp11
tmp13 = tmp9 & tmp12
tmp14 = tmp7 | tmp13
tmp15 = tl.where(tmp14, tmp0, tmp1)
tmp16 = tl.where(tmp14, tmp10, tmp11)
tmp18 = tmp15 > tmp17
tmp19 = tmp15 == tmp17
tmp20 = tmp15 != tmp15
tmp21 = tmp17 != tmp17
tmp22 = tmp20 > tmp21
tmp23 = tmp18 | tmp22
tmp24 = tmp20 & tmp21
tmp25 = tmp19 | tmp24
tmp26 = tl.full([1], 2, tl.int64)
tmp27 = tmp16 < tmp26
tmp28 = tmp25 & tmp27
tmp29 = tmp23 | tmp28
tmp30 = tl.where(tmp29, tmp15, tmp17)
tmp31 = tl.where(tmp29, tmp16, tmp26)
tmp33 = tmp30 > tmp32
tmp34 = tmp30 == tmp32
tmp35 = tmp30 != tmp30
tmp36 = tmp32 != tmp32
tmp37 = tmp35 > tmp36
tmp38 = tmp33 | tmp37
tmp39 = tmp35 & tmp36
tmp40 = tmp34 | tmp39
tmp41 = tl.full([1], 3, tl.int64)
tmp42 = tmp31 < tmp41
tmp43 = tmp40 & tmp42
tmp44 = tmp38 | tmp43
tmp45 = tl.where(tmp44, tmp30, tmp32)
tmp46 = tl.where(tmp44, tmp31, tmp41)
tmp47 = triton_helpers.maximum(tmp0, tmp1)
tmp48 = triton_helpers.maximum(tmp47, tmp17)
tmp49 = triton_helpers.maximum(tmp48, tmp32)
tl.store(out_ptr0 + (x0), tmp46, xmask)
tl.store(out_ptr1 + (x0), tmp49, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/hz/chzi3aam26mikdhljz5x7jlqazm7kpktzeptsf36thgfhsg7ub6a.py
# Topologically Sorted Source Nodes: [att_1], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# att_1 => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%bmm, [2], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%bmm, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/em/cem6qbxwbiqnjqybzk5arf2obt5uggy4qs7otwwpovvnrhvdc6h4.py
# Topologically Sorted Source Nodes: [att_1], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# att_1 => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [2], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [att], Original ATen: [aten.bmm]
extern_kernels.bmm(primals_4, reinterpret_tensor(buf0, (4, 4, 4), (16, 1, 4), 0), out=buf1)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.int64)
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [max_1], Original ATen: [aten.max]
stream0 = get_raw_stream(0)
triton_poi_fused_max_0.run(buf1, buf2, buf3, 16, grid=grid(16), stream=stream0)
buf4 = reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [att_1], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf1, buf4, 64, grid=grid(64), stream=stream0)
buf5 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [att_1], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf4, buf5, 64, grid=grid(64), stream=stream0)
del buf4
return (buf5, reinterpret_tensor(buf3, (4, 1, 4), (4, 4, 1), 0), reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), buf5, reinterpret_tensor(buf2, (4, 4, 1), (4, 1, 1), 0), reinterpret_tensor(primals_4, (4, 4, 4), (16, 1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class AttLuong(torch.nn.Module):
"""
AttLuong: Attention according to Luong that can be used by the
Alignment module.
"""
def __init__(self, q_dim, y_dim, softmax=True):
super().__init__()
self.q_dim = q_dim
self.y_dim = y_dim
self.softmax = softmax
self.W = nn.Linear(self.y_dim, self.q_dim)
def forward(self, query, y):
att = torch.bmm(query, self.W(y).transpose(2, 1))
sim = att.max(2)[0].unsqueeze(1)
if self.softmax:
att = F.softmax(att, dim=2)
return att, sim
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'q_dim': 4, 'y_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_max_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.
constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp32 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 > tmp1
tmp3 = tmp0 == tmp1
tmp4 = tmp0 != tmp0
tmp5 = tmp1 != tmp1
tmp6 = tmp4 > tmp5
tmp7 = tmp2 | tmp6
tmp8 = tmp4 & tmp5
tmp9 = tmp3 | tmp8
tmp10 = tl.full([1], 0, tl.int64)
tmp11 = tl.full([1], 1, tl.int64)
tmp12 = tmp10 < tmp11
tmp13 = tmp9 & tmp12
tmp14 = tmp7 | tmp13
tmp15 = tl.where(tmp14, tmp0, tmp1)
tmp16 = tl.where(tmp14, tmp10, tmp11)
tmp18 = tmp15 > tmp17
tmp19 = tmp15 == tmp17
tmp20 = tmp15 != tmp15
tmp21 = tmp17 != tmp17
tmp22 = tmp20 > tmp21
tmp23 = tmp18 | tmp22
tmp24 = tmp20 & tmp21
tmp25 = tmp19 | tmp24
tmp26 = tl.full([1], 2, tl.int64)
tmp27 = tmp16 < tmp26
tmp28 = tmp25 & tmp27
tmp29 = tmp23 | tmp28
tmp30 = tl.where(tmp29, tmp15, tmp17)
tmp31 = tl.where(tmp29, tmp16, tmp26)
tmp33 = tmp30 > tmp32
tmp34 = tmp30 == tmp32
tmp35 = tmp30 != tmp30
tmp36 = tmp32 != tmp32
tmp37 = tmp35 > tmp36
tmp38 = tmp33 | tmp37
tmp39 = tmp35 & tmp36
tmp40 = tmp34 | tmp39
tmp41 = tl.full([1], 3, tl.int64)
tmp42 = tmp31 < tmp41
tmp43 = tmp40 & tmp42
tmp44 = tmp38 | tmp43
tl.where(tmp44, tmp30, tmp32)
tmp46 = tl.where(tmp44, tmp31, tmp41)
tmp47 = triton_helpers.maximum(tmp0, tmp1)
tmp48 = triton_helpers.maximum(tmp47, tmp17)
tmp49 = triton_helpers.maximum(tmp48, tmp32)
tl.store(out_ptr0 + x0, tmp46, xmask)
tl.store(out_ptr1 + x0, tmp49, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (16,
4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(primals_4, reinterpret_tensor(buf0, (4, 4, 4), (
16, 1, 4), 0), out=buf1)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.int64)
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_max_0[grid(16)](buf1, buf2, buf3, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf4 = reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0)
del buf0
triton_poi_fused__softmax_1[grid(64)](buf1, buf4, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf5 = buf1
del buf1
triton_poi_fused__softmax_2[grid(64)](buf4, buf5, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del buf4
return buf5, reinterpret_tensor(buf3, (4, 1, 4), (4, 4, 1), 0
), reinterpret_tensor(primals_3, (16, 4), (4, 1), 0
), buf5, reinterpret_tensor(buf2, (4, 4, 1), (4, 1, 1), 0
), reinterpret_tensor(primals_4, (4, 4, 4), (16, 1, 4), 0)
class AttLuongNew(torch.nn.Module):
"""
AttLuong: Attention according to Luong that can be used by the
Alignment module.
"""
def __init__(self, q_dim, y_dim, softmax=True):
super().__init__()
self.q_dim = q_dim
self.y_dim = y_dim
self.softmax = softmax
self.W = nn.Linear(self.y_dim, self.q_dim)
def forward(self, input_0, input_1):
primals_1 = self.W.weight
primals_2 = self.W.bias
primals_3 = input_0
primals_4 = input_1
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0], output[1]
| ishine/NISQA | AttLuong | false | 15,639 | [
"MIT"
]
| 223 | 2c8917f30c4e4bbca3a48e9852301f1e2480a741 | https://github.com/ishine/NISQA/tree/2c8917f30c4e4bbca3a48e9852301f1e2480a741 |
FinalLayer | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/r3/cr3febcwm3t44fuoitsx3ou2p6xg4sk4f7unagmmrvffasxf47te.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x_1 => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (2, 4), (4, 1))
assert_size_stride(primals_7, (2, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf4, 256, grid=grid(256), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [kws_cls_score], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del primals_5
buf3 = empty_strided_cuda((64, 2), (2, 1), torch.float32)
# Topologically Sorted Source Nodes: [kws_bbox_pred], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 2), (1, 4), 0), alpha=1, beta=1, out=buf3)
del primals_7
return (reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf3, (4, 4, 4, 2), (32, 8, 2, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), primals_6, primals_4, buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((2, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class LayerNorm(nn.Module):
def __init__(self, features, eps=1e-06):
super(LayerNorm, self).__init__()
self.gamma = nn.Parameter(torch.ones(features))
self.beta = nn.Parameter(torch.zeros(features))
self.eps = eps
def forward(self, x):
mean = x.mean(-1, keepdim=True)
std = x.std(-1, keepdim=True)
return self.gamma * (x - mean) / (std + self.eps) + self.beta
class normrelu(nn.Module):
def __init__(self):
super(normrelu, self).__init__()
def forward(self, x):
dim = 1
x = F.relu(x) / torch.max(x, dim, keepdim=True)[0]
return x
class LinearBlock(nn.Module):
def __init__(self, pre_dim, dim, activation='none', dropout_rate=0,
use_batch_norm=False, use_layer_norm=False):
self.linear = None
self.bn = None
self.ln = None
self.act = None
self.dropout_layer = None
super(LinearBlock, self).__init__()
if activation == 'relu':
self.act = nn.ReLU()
elif activation == 'tanh':
self.act = nn.Tanh()
elif activation == 'sigmoid':
self.act = nn.Sigmoid()
elif activation == 'normrelu':
self.act = normrelu()
elif activation == 'none':
self.act = None
else:
None
if use_batch_norm:
self.linear = nn.Linear(pre_dim, dim, bias=False)
self.bn = nn.BatchNorm1d(dim, momentum=0.05)
else:
self.linear = nn.Linear(pre_dim, dim)
if use_layer_norm:
self.ln = LayerNorm(dim)
if dropout_rate > 0.0001:
self.dropout_layer = nn.Dropout(p=dropout_rate)
def forward(self, x):
if self.linear is not None:
x = self.linear(x)
if self.bn is not None:
x = self.bn(x)
if self.ln is not None:
x = self.ln(x)
if self.act is not None:
x = self.act(x)
if self.dropout_layer is not None:
x = self.dropout_layer(x)
return x
class FinalLayer(nn.Module):
"""
final classification and bounding box regression layer for RPN KWS
"""
def __init__(self, input_dim, num_class):
super(FinalLayer, self).__init__()
self.linear = LinearBlock(input_dim, input_dim, activation='relu')
self.cls_score_KWS = nn.Linear(input_dim, num_class, bias=True)
self.bbox_score_KWS = nn.Linear(input_dim, 2, bias=True)
def forward(self, x):
x = self.linear(x)
kws_cls_score = self.cls_score_KWS(x)
kws_bbox_pred = self.bbox_score_KWS(x)
return kws_cls_score, kws_bbox_pred
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_dim': 4, 'num_class': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (2, 4), (4, 1))
assert_size_stride(primals_7, (2,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(256)](buf1,
primals_2, buf4, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf2)
del primals_5
buf3 = empty_strided_cuda((64, 2), (2, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf1, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_6, (4, 2), (1, 4), 0),
alpha=1, beta=1, out=buf3)
del primals_7
return reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(buf3, (4, 4, 4, 2), (32, 8, 2, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 4), (4, 1), 0
), primals_6, primals_4, buf4
class LayerNorm(nn.Module):
def __init__(self, features, eps=1e-06):
super(LayerNorm, self).__init__()
self.gamma = nn.Parameter(torch.ones(features))
self.beta = nn.Parameter(torch.zeros(features))
self.eps = eps
def forward(self, x):
mean = x.mean(-1, keepdim=True)
std = x.std(-1, keepdim=True)
return self.gamma * (x - mean) / (std + self.eps) + self.beta
class normrelu(nn.Module):
def __init__(self):
super(normrelu, self).__init__()
def forward(self, x):
dim = 1
x = F.relu(x) / torch.max(x, dim, keepdim=True)[0]
return x
class LinearBlock(nn.Module):
def __init__(self, pre_dim, dim, activation='none', dropout_rate=0,
use_batch_norm=False, use_layer_norm=False):
self.linear = None
self.bn = None
self.ln = None
self.act = None
self.dropout_layer = None
super(LinearBlock, self).__init__()
if activation == 'relu':
self.act = nn.ReLU()
elif activation == 'tanh':
self.act = nn.Tanh()
elif activation == 'sigmoid':
self.act = nn.Sigmoid()
elif activation == 'normrelu':
self.act = normrelu()
elif activation == 'none':
self.act = None
else:
None
if use_batch_norm:
self.linear = nn.Linear(pre_dim, dim, bias=False)
self.bn = nn.BatchNorm1d(dim, momentum=0.05)
else:
self.linear = nn.Linear(pre_dim, dim)
if use_layer_norm:
self.ln = LayerNorm(dim)
if dropout_rate > 0.0001:
self.dropout_layer = nn.Dropout(p=dropout_rate)
def forward(self, x):
if self.linear is not None:
x = self.linear(x)
if self.bn is not None:
x = self.bn(x)
if self.ln is not None:
x = self.ln(x)
if self.act is not None:
x = self.act(x)
if self.dropout_layer is not None:
x = self.dropout_layer(x)
return x
class FinalLayerNew(nn.Module):
"""
final classification and bounding box regression layer for RPN KWS
"""
def __init__(self, input_dim, num_class):
super(FinalLayerNew, self).__init__()
self.linear = LinearBlock(input_dim, input_dim, activation='relu')
self.cls_score_KWS = nn.Linear(input_dim, num_class, bias=True)
self.bbox_score_KWS = nn.Linear(input_dim, 2, bias=True)
def forward(self, input_0):
primals_1 = self.linear.linear.weight
primals_2 = self.linear.linear.bias
primals_4 = self.cls_score_KWS.weight
primals_5 = self.cls_score_KWS.bias
primals_6 = self.bbox_score_KWS.weight
primals_7 = self.bbox_score_KWS.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0], output[1]
| ishine/RPN_KWS | FinalLayer | false | 15,640 | [
"MIT"
]
| 53 | b54d4010a701a6ec0a9ddf3ab6177a4be6dd6af5 | https://github.com/ishine/RPN_KWS/tree/b54d4010a701a6ec0a9ddf3ab6177a4be6dd6af5 |
BasicBlockWN | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/p7/cp7mjs4cvfmmk3xanldfhbfyw3iz6jtioejhqhvyiw5cvteee5uz.py
# Topologically Sorted Source Nodes: [_weight_norm], Original ATen: [aten._weight_norm_interface]
# Source node to ATen node mapping:
# _weight_norm => div, mul, pow_1, pow_2, sum_1
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_2, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1, 2, 3], True), kwargs = {})
# %pow_2 : [num_users=2] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_1, %pow_2), kwargs = {})
# %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %div), kwargs = {})
triton_per_fused__weight_norm_interface_0 = async_compile.triton('triton_per_fused__weight_norm_interface_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__weight_norm_interface_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__weight_norm_interface_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 36
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = rindex < rnumel
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (36*x0)), rmask & xmask, other=0.0)
tmp7 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp1 = tmp0 * tmp0
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = tl.where(rmask & xmask, tmp2, 0)
tmp5 = tl.sum(tmp4, 1)[:, None]
tmp6 = libdevice.sqrt(tmp5)
tmp8 = tmp7 / tmp6
tmp9 = tmp0 * tmp8
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp6, xmask)
tl.store(out_ptr0 + (r1 + (36*x0)), tmp9, rmask & xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/3g/c3gulbvr4xrfq3wps6kqjc3yuakrgtdcdvb44tmfrvggj56xwcm6.py
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# out => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tl.store(in_out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/et/cet7mpe46xrhpaxasnjmwa5kqarykvc3xmaemz25bq4hpkn3n7cb.py
# Topologically Sorted Source Nodes: [out_2, out_3], Original ATen: [aten.add, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# out_2 => add
# out_3 => relu_1
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_1, %primals_3), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {})
triton_poi_fused_add_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_add_relu_threshold_backward_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_relu_threshold_backward_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask)
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x0), tmp4, xmask)
tl.store(out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 1, 1, 1), (1, 1, 1, 1))
assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 1, 1, 1), (1, 1, 1, 1))
assert_size_stride(primals_5, (4, 4, 3, 3), (36, 9, 3, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 1, 1, 1), (1, 1, 1, 1), 0); del buf0 # reuse
buf2 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.float32)
# Topologically Sorted Source Nodes: [_weight_norm], Original ATen: [aten._weight_norm_interface]
stream0 = get_raw_stream(0)
triton_per_fused__weight_norm_interface_0.run(buf1, primals_2, primals_1, buf2, 4, 36, grid=grid(4), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(primals_3, buf2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1))
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf4, 256, grid=grid(256), stream=stream0)
buf5 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
buf6 = reinterpret_tensor(buf5, (4, 1, 1, 1), (1, 1, 1, 1), 0); del buf5 # reuse
buf7 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.float32)
# Topologically Sorted Source Nodes: [_weight_norm_1], Original ATen: [aten._weight_norm_interface]
triton_per_fused__weight_norm_interface_0.run(buf6, primals_5, primals_4, buf7, 4, 36, grid=grid(4), stream=stream0)
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution]
buf8 = extern_kernels.convolution(buf4, buf7, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 4, 4, 4), (64, 16, 4, 1))
buf9 = buf8; del buf8 # reuse
buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [out_2, out_3], Original ATen: [aten.add, aten.relu, aten.threshold_backward]
triton_poi_fused_add_relu_threshold_backward_2.run(buf9, primals_3, buf10, 256, grid=grid(256), stream=stream0)
return (buf9, buf2, buf7, primals_1, primals_2, primals_3, primals_4, primals_5, buf1, buf2, buf4, buf6, buf7, buf10, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 1, 1, 1), (1, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 1, 1, 1), (1, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch as t
import torch.nn as nn
from abc import ABC
from torch.nn.utils.weight_norm import weight_norm
def conv1x1(in_planes, out_planes, stride=1):
"""
Create a 1x1 2d convolution block
"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride,
bias=False)
def conv3x3(in_planes, out_planes, stride=1):
"""
Create a 3x3 2d convolution block
"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
class NeuralNetworkModule(nn.Module, ABC):
"""
Note: input device and output device are determined by module parameters,
your input module / output submodule should not store parameters on
more than one device, and you also should not move your output to
other devices other than your parameter storage device in forward().
"""
def __init__(self):
super().__init__()
self.input_module = None
self.output_module = None
def set_input_module(self, input_module: 'nn.Module'):
"""
Set the input submodule of current module.
"""
self.input_module = input_module
if not isinstance(input_module, NeuralNetworkModule):
if isinstance(input_module, nn.Sequential):
input_module = self.find_child(input_module, True)
if len({p.device for p in input_module.parameters()}) > 1:
raise RuntimeError(
'Input module must be another NeuralNetworkModule or locate on one single device.'
)
def set_output_module(self, output_module: 'nn.Module'):
"""
Set the output submodule of current module.
"""
self.output_module = output_module
if not isinstance(output_module, NeuralNetworkModule):
if isinstance(output_module, nn.Sequential):
output_module = self.find_child(output_module, False)
if len({p.device for p in output_module.parameters()}) > 1:
raise RuntimeError(
'Output module must be another NeuralNetworkModule or locate on one single device.'
)
@property
def input_device(self):
if self.input_module is None:
raise RuntimeError('Input module not set.')
elif not isinstance(self.input_module, NeuralNetworkModule):
dev_set = {p.device for p in self.input_module.parameters()}
if len(dev_set) != 1:
raise RuntimeError(
'This input module contains parameters on different devices, please consider about splitting it.'
)
else:
return list(dev_set)[0]
else:
return self.input_module.input_device
@property
def output_device(self):
if self.output_module is None and self.input_module is None:
raise RuntimeError('Output module not set.')
elif self.output_module is not None:
if not isinstance(self.output_module, NeuralNetworkModule):
dev_set = {p.device for p in self.output_module.parameters()}
if len(dev_set) != 1:
raise RuntimeError(
'This output module contains parameters on different devices, please consider about splitting it.'
)
else:
return list(dev_set)[0]
else:
return self.output_module.output_device
else:
return self.input_device
@staticmethod
def find_child(seq, is_first=True):
"""
Find the first / last leaf child module.
"""
if isinstance(seq, nn.Sequential):
if is_first:
return NeuralNetworkModule.find_child(seq[0], is_first)
else:
return NeuralNetworkModule.find_child(seq[-1], is_first)
else:
return seq
def forward(self, *_, **__):
pass
class BasicBlockWN(NeuralNetworkModule):
"""
Basic block with weight normalization
"""
expansion = 1
def __init__(self, in_planes, out_planes, stride=1, **__):
"""
Create a basic block of resnet.
Args:
in_planes: Number of input planes.
out_planes: Number of output planes.
stride: Stride of convolution.
"""
super().__init__()
self.conv1 = weight_norm(conv3x3(in_planes, out_planes, stride))
self.conv2 = weight_norm(conv3x3(out_planes, self.expansion *
out_planes))
self.shortcut = nn.Sequential()
self.set_input_module(self.conv1)
if stride != 1 or in_planes != self.expansion * out_planes:
self.shortcut = nn.Sequential(weight_norm(conv1x1(in_planes,
self.expansion * out_planes, stride)))
def forward(self, x):
out = t.relu(self.conv1(x))
out = self.conv2(out)
out += self.shortcut(x)
out = t.relu(out)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_planes': 4, 'out_planes': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
from abc import ABC
from torch.nn.utils.weight_norm import weight_norm
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused__weight_norm_interface_0(in_out_ptr0, in_ptr0, in_ptr1,
out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 4
rnumel = 36
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
rmask = rindex < rnumel
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 36 * x0), rmask & xmask, other=0.0)
tmp7 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp1 = tmp0 * tmp0
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = tl.where(rmask & xmask, tmp2, 0)
tmp5 = tl.sum(tmp4, 1)[:, None]
tmp6 = libdevice.sqrt(tmp5)
tmp8 = tmp7 / tmp6
tmp9 = tmp0 * tmp8
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp6, xmask)
tl.store(out_ptr0 + (r1 + 36 * x0), tmp9, rmask & xmask)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tl.store(in_out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused_add_relu_threshold_backward_2(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask)
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x0, tmp4, xmask)
tl.store(out_ptr0 + x0, tmp6, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 1, 1, 1), (1, 1, 1, 1))
assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 1, 1, 1), (1, 1, 1, 1))
assert_size_stride(primals_5, (4, 4, 3, 3), (36, 9, 3, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 1, 1, 1), (1, 1, 1, 1), 0)
del buf0
buf2 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.float32)
get_raw_stream(0)
triton_per_fused__weight_norm_interface_0[grid(4)](buf1, primals_2,
primals_1, buf2, 4, 36, XBLOCK=1, num_warps=2, num_stages=1)
buf3 = extern_kernels.convolution(primals_3, buf2, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1))
buf4 = buf3
del buf3
triton_poi_fused_relu_1[grid(256)](buf4, 256, XBLOCK=256, num_warps
=4, num_stages=1)
buf5 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
buf6 = reinterpret_tensor(buf5, (4, 1, 1, 1), (1, 1, 1, 1), 0)
del buf5
buf7 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.float32)
triton_per_fused__weight_norm_interface_0[grid(4)](buf6, primals_5,
primals_4, buf7, 4, 36, XBLOCK=1, num_warps=2, num_stages=1)
buf8 = extern_kernels.convolution(buf4, buf7, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 4, 4, 4), (64, 16, 4, 1))
buf9 = buf8
del buf8
buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_add_relu_threshold_backward_2[grid(256)](buf9,
primals_3, buf10, 256, XBLOCK=256, num_warps=4, num_stages=1)
return (buf9, buf2, buf7, primals_1, primals_2, primals_3, primals_4,
primals_5, buf1, buf2, buf4, buf6, buf7, buf10)
def conv1x1(in_planes, out_planes, stride=1):
"""
Create a 1x1 2d convolution block
"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride,
bias=False)
def conv3x3(in_planes, out_planes, stride=1):
"""
Create a 3x3 2d convolution block
"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
class NeuralNetworkModule(nn.Module, ABC):
"""
Note: input device and output device are determined by module parameters,
your input module / output submodule should not store parameters on
more than one device, and you also should not move your output to
other devices other than your parameter storage device in forward().
"""
def __init__(self):
super().__init__()
self.input_module = None
self.output_module = None
def set_input_module(self, input_module: 'nn.Module'):
"""
Set the input submodule of current module.
"""
self.input_module = input_module
if not isinstance(input_module, NeuralNetworkModule):
if isinstance(input_module, nn.Sequential):
input_module = self.find_child(input_module, True)
if len({p.device for p in input_module.parameters()}) > 1:
raise RuntimeError(
'Input module must be another NeuralNetworkModule or locate on one single device.'
)
def set_output_module(self, output_module: 'nn.Module'):
"""
Set the output submodule of current module.
"""
self.output_module = output_module
if not isinstance(output_module, NeuralNetworkModule):
if isinstance(output_module, nn.Sequential):
output_module = self.find_child(output_module, False)
if len({p.device for p in output_module.parameters()}) > 1:
raise RuntimeError(
'Output module must be another NeuralNetworkModule or locate on one single device.'
)
@property
def input_device(self):
if self.input_module is None:
raise RuntimeError('Input module not set.')
elif not isinstance(self.input_module, NeuralNetworkModule):
dev_set = {p.device for p in self.input_module.parameters()}
if len(dev_set) != 1:
raise RuntimeError(
'This input module contains parameters on different devices, please consider about splitting it.'
)
else:
return list(dev_set)[0]
else:
return self.input_module.input_device
@property
def output_device(self):
if self.output_module is None and self.input_module is None:
raise RuntimeError('Output module not set.')
elif self.output_module is not None:
if not isinstance(self.output_module, NeuralNetworkModule):
dev_set = {p.device for p in self.output_module.parameters()}
if len(dev_set) != 1:
raise RuntimeError(
'This output module contains parameters on different devices, please consider about splitting it.'
)
else:
return list(dev_set)[0]
else:
return self.output_module.output_device
else:
return self.input_device
@staticmethod
def find_child(seq, is_first=True):
"""
Find the first / last leaf child module.
"""
if isinstance(seq, nn.Sequential):
if is_first:
return NeuralNetworkModule.find_child(seq[0], is_first)
else:
return NeuralNetworkModule.find_child(seq[-1], is_first)
else:
return seq
def forward(self, *_, **__):
pass
class BasicBlockWNNew(NeuralNetworkModule):
"""
Basic block with weight normalization
"""
expansion = 1
def __init__(self, in_planes, out_planes, stride=1, **__):
"""
Create a basic block of resnet.
Args:
in_planes: Number of input planes.
out_planes: Number of output planes.
stride: Stride of convolution.
"""
super().__init__()
self.conv1 = weight_norm(conv3x3(in_planes, out_planes, stride))
self.conv2 = weight_norm(conv3x3(out_planes, self.expansion *
out_planes))
self.shortcut = nn.Sequential()
self.set_input_module(self.conv1)
if stride != 1 or in_planes != self.expansion * out_planes:
self.shortcut = nn.Sequential(weight_norm(conv1x1(in_planes,
self.expansion * out_planes, stride)))
def forward(self, input_0):
primals_1 = self.conv1.weight_g
primals_2 = self.conv1.weight_v
primals_4 = self.conv2.weight_g
primals_5 = self.conv2.weight_v
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| iffiX/machin | BasicBlockWN | false | 15,641 | [
"MIT"
]
| 287 | 7fa986b1bafdefff117d6ff73d14644a5488de9d | https://github.com/iffiX/machin/tree/7fa986b1bafdefff117d6ff73d14644a5488de9d |
normrelu | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/7g/c7gsbcdf5wmef23oi7m53slouqewvmjvehh7r7lxun6fr6ocsttg.py
# Topologically Sorted Source Nodes: [max_1, relu, x], Original ATen: [aten.max, aten.relu, aten.div]
# Source node to ATen node mapping:
# max_1 => max_1
# relu => relu
# x => div
# Graph fragment:
# %max_1 : [num_users=1] = call_function[target=torch.ops.aten.max.dim](args = (%arg0_1, 1, True), kwargs = {})
# %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%arg0_1,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%relu, %getitem), kwargs = {})
triton_poi_fused_div_max_relu_0 = async_compile.triton('triton_poi_fused_div_max_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_max_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_max_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp3 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp9 = triton_helpers.maximum(tmp7, tmp8)
tmp10 = tmp2 / tmp9
tl.store(out_ptr0 + (x3), tmp10, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [max_1, relu, x], Original ATen: [aten.max, aten.relu, aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_div_max_relu_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class normrelu(nn.Module):
def __init__(self):
super(normrelu, self).__init__()
def forward(self, x):
dim = 1
x = F.relu(x) / torch.max(x, dim, keepdim=True)[0]
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_div_max_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp3 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp8 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp9 = triton_helpers.maximum(tmp7, tmp8)
tmp10 = tmp2 / tmp9
tl.store(out_ptr0 + x3, tmp10, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_div_max_relu_0[grid(256)](arg0_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class normreluNew(nn.Module):
def __init__(self):
super(normreluNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| ishine/RPN_KWS | normrelu | false | 15,642 | [
"MIT"
]
| 53 | b54d4010a701a6ec0a9ddf3ab6177a4be6dd6af5 | https://github.com/ishine/RPN_KWS/tree/b54d4010a701a6ec0a9ddf3ab6177a4be6dd6af5 |
DiceLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/gh/cghkvnojcro7rgscgd5r4cllvtslxh2gwzksefjiy3c774ovf7fb.py
# Topologically Sorted Source Nodes: [mul, intersection, mul_1, add, neg, sum_2, sum_3, add_1, add_2, truediv], Original ATen: [aten.mul, aten.sum, aten.add, aten.neg, aten.div]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# add_2 => add_2
# intersection => sum_1
# mul => mul
# mul_1 => mul_1
# neg => neg
# sum_2 => sum_2
# sum_3 => sum_3
# truediv => div
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %view_1), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, 2.0), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, 1.0), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%add,), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%view,), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%view_1,), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_2, %sum_3), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, 1.0), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%neg, %add_2), kwargs = {})
triton_per_fused_add_div_mul_neg_sum_0 = async_compile.triton('triton_per_fused_add_div_mul_neg_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mul_neg_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 3, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_mul_neg_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr1 + (r0), None)
tmp2 = tmp0 * tmp1
tmp3 = tl.broadcast_to(tmp2, [RBLOCK])
tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0))
tmp6 = tl.broadcast_to(tmp0, [RBLOCK])
tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0))
tmp9 = tl.broadcast_to(tmp1, [RBLOCK])
tmp11 = triton_helpers.promote_to_tensor(tl.sum(tmp9, 0))
tmp12 = 2.0
tmp13 = tmp5 * tmp12
tmp14 = 1.0
tmp15 = tmp13 + tmp14
tmp16 = -tmp15
tmp17 = tmp8 + tmp11
tmp18 = tmp17 + tmp14
tmp19 = tmp16 / tmp18
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp19, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf3 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [mul, intersection, mul_1, add, neg, sum_2, sum_3, add_1, add_2, truediv], Original ATen: [aten.mul, aten.sum, aten.add, aten.neg, aten.div]
stream0 = get_raw_stream(0)
triton_per_fused_add_div_mul_neg_sum_0.run(buf3, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class DiceLoss(nn.Module):
"""DiceLoss.
.. seealso::
Milletari, Fausto, Nassir Navab, and Seyed-Ahmad Ahmadi. "V-net: Fully convolutional neural networks for
volumetric medical image segmentation." 2016 fourth international conference on 3D vision (3DV). IEEE, 2016.
Args:
smooth (float): Value to avoid division by zero when images and predictions are empty.
Attributes:
smooth (float): Value to avoid division by zero when images and predictions are empty.
"""
def __init__(self, smooth=1.0):
super(DiceLoss, self).__init__()
self.smooth = smooth
def forward(self, prediction, target):
iflat = prediction.reshape(-1)
tflat = target.reshape(-1)
intersection = (iflat * tflat).sum()
return -(2.0 * intersection + self.smooth) / (iflat.sum() + tflat.
sum() + self.smooth)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_div_mul_neg_sum_0(in_out_ptr0, in_ptr0, in_ptr1,
xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp2 = tmp0 * tmp1
tmp3 = tl.broadcast_to(tmp2, [RBLOCK])
tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0))
tmp6 = tl.broadcast_to(tmp0, [RBLOCK])
tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0))
tmp9 = tl.broadcast_to(tmp1, [RBLOCK])
tmp11 = triton_helpers.promote_to_tensor(tl.sum(tmp9, 0))
tmp12 = 2.0
tmp13 = tmp5 * tmp12
tmp14 = 1.0
tmp15 = tmp13 + tmp14
tmp16 = -tmp15
tmp17 = tmp8 + tmp11
tmp18 = tmp17 + tmp14
tmp19 = tmp16 / tmp18
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp19, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf3 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_add_div_mul_neg_sum_0[grid(1)](buf3, arg0_1,
arg1_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf3,
class DiceLossNew(nn.Module):
"""DiceLoss.
.. seealso::
Milletari, Fausto, Nassir Navab, and Seyed-Ahmad Ahmadi. "V-net: Fully convolutional neural networks for
volumetric medical image segmentation." 2016 fourth international conference on 3D vision (3DV). IEEE, 2016.
Args:
smooth (float): Value to avoid division by zero when images and predictions are empty.
Attributes:
smooth (float): Value to avoid division by zero when images and predictions are empty.
"""
def __init__(self, smooth=1.0):
super(DiceLossNew, self).__init__()
self.smooth = smooth
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| ivadomed-profile-analysis-project/ivadomed | DiceLoss | false | 15,643 | [
"MIT"
]
| 87 | 3b53e2cb2b210511943da439401e2471fd387876 | https://github.com/ivadomed-profile-analysis-project/ivadomed/tree/3b53e2cb2b210511943da439401e2471fd387876 |
SE_Connect | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/jn/cjnv5uptstyk4xaisuiw5kf5lbz3m33meejxhbfbsta5ozps7ijn.py
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# out => mean
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [2]), kwargs = {})
triton_poi_fused_mean_0 = async_compile.triton('triton_poi_fused_mean_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (16*x1)), xmask)
tmp1 = tl.load(in_ptr0 + (4 + x0 + (16*x1)), xmask)
tmp3 = tl.load(in_ptr0 + (8 + x0 + (16*x1)), xmask)
tmp5 = tl.load(in_ptr0 + (12 + x0 + (16*x1)), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ip/cip355a7nnydvbbk53yzzlgfxtclbx4sdaz6diiadsc7bk4g3ikp.py
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# out_1 => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.full([1], 0, tl.int32)
tmp5 = triton_helpers.maximum(tmp4, tmp3)
tmp6 = 0.0
tmp7 = tmp5 <= tmp6
tl.store(in_out_ptr0 + (x0), tmp5, xmask)
tl.store(out_ptr0 + (x0), tmp7, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/cm/ccmo3ssy4it32zgmnziqn6cih5z7bew4voyzb4nxpajh2zquk7fp.py
# Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# out_3 => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %unsqueeze), kwargs = {})
triton_poi_fused_mul_2 = async_compile.triton('triton_poi_fused_mul_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x2 = (xindex // 16)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x0 + (4*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tl.store(out_ptr0 + (x3), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, 4), (4, 1))
assert_size_stride(primals_3, (1, ), (1, ))
assert_size_stride(primals_4, (4, 1), (1, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.mean]
stream0 = get_raw_stream(0)
triton_poi_fused_mean_0.run(primals_1, buf0, 64, grid=grid(64), stream=stream0)
buf1 = empty_strided_cuda((16, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 1), (1, 4), 0), out=buf1)
del primals_2
buf2 = reinterpret_tensor(buf1, (4, 4, 1), (4, 1, 1), 0); del buf1 # reuse
buf5 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.bool)
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_1.run(buf2, primals_3, buf5, 16, grid=grid(16), stream=stream0)
del primals_3
buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(buf2, (16, 1), (1, 0), 0), reinterpret_tensor(primals_4, (1, 4), (1, 1), 0), alpha=1, beta=1, out=buf3)
del primals_5
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.mul]
triton_poi_fused_mul_2.run(primals_1, buf3, buf4, 256, grid=grid(256), stream=stream0)
return (buf4, primals_1, reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(buf2, (16, 1), (1, 1), 0), buf3, primals_4, buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
import torch.nn
import torch.nn as nn
class SE_Connect(nn.Module):
def __init__(self, channels, s=4):
super().__init__()
assert channels % s == 0, '{} % {} != 0'.format(channesl, s)
self.linear1 = nn.Linear(channels, channels // s)
self.linear2 = nn.Linear(channels // s, channels)
def forward(self, x):
out = x.mean(dim=2)
out = F.relu(self.linear1(out))
out = torch.sigmoid(self.linear2(out))
out = x * out.unsqueeze(2)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'channels': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 16 * x1), xmask)
tmp1 = tl.load(in_ptr0 + (4 + x0 + 16 * x1), xmask)
tmp3 = tl.load(in_ptr0 + (8 + x0 + 16 * x1), xmask)
tmp5 = tl.load(in_ptr0 + (12 + x0 + 16 * x1), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.full([1], 0, tl.int32)
tmp5 = triton_helpers.maximum(tmp4, tmp3)
tmp6 = 0.0
tmp7 = tmp5 <= tmp6
tl.store(in_out_ptr0 + x0, tmp5, xmask)
tl.store(out_ptr0 + x0, tmp7, xmask)
@triton.jit
def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x2 = xindex // 16
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + (x0 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tl.store(out_ptr0 + x3, tmp3, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, 4), (4, 1))
assert_size_stride(primals_3, (1,), (1,))
assert_size_stride(primals_4, (4, 1), (1, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mean_0[grid(64)](primals_1, buf0, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf1 = empty_strided_cuda((16, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf0, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 1), (1, 4), 0), out=buf1)
del primals_2
buf2 = reinterpret_tensor(buf1, (4, 4, 1), (4, 1, 1), 0)
del buf1
buf5 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_1[grid(16)](buf2,
primals_3, buf5, 16, XBLOCK=16, num_warps=1, num_stages=1)
del primals_3
buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(buf2, (16, 1), (
1, 0), 0), reinterpret_tensor(primals_4, (1, 4), (1, 1), 0),
alpha=1, beta=1, out=buf3)
del primals_5
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_mul_2[grid(256)](primals_1, buf3, buf4, 256,
XBLOCK=256, num_warps=4, num_stages=1)
return buf4, primals_1, reinterpret_tensor(buf0, (16, 4), (4, 1), 0
), reinterpret_tensor(buf2, (16, 1), (1, 1), 0), buf3, primals_4, buf5
class SE_ConnectNew(nn.Module):
def __init__(self, channels, s=4):
super().__init__()
assert channels % s == 0, '{} % {} != 0'.format(channesl, s)
self.linear1 = nn.Linear(channels, channels // s)
self.linear2 = nn.Linear(channels // s, channels)
def forward(self, input_0):
primals_2 = self.linear1.weight
primals_3 = self.linear1.bias
primals_4 = self.linear2.weight
primals_5 = self.linear2.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| ishine/asv-subtools | SE_Connect | false | 15,644 | [
"Apache-2.0"
]
| 370 | 597dcb29a772b8113dbe7ab64f0d4cc1da298707 | https://github.com/ishine/asv-subtools/tree/597dcb29a772b8113dbe7ab64f0d4cc1da298707 |
LDEPooling | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/px/cpxgh7rygczo7s5i6nrfdx75l2hi6cjdfexsy2ctyfflclxdb7ye.py
# Topologically Sorted Source Nodes: [r, pow_1, add, neg, pow_2, sum_1, mul, w], Original ATen: [aten.sub, aten.pow, aten.add, aten.neg, aten.sum, aten.mul, aten._softmax]
# Source node to ATen node mapping:
# add => add
# mul => mul
# neg => neg
# pow_1 => pow_1
# pow_2 => pow_2
# r => sub
# sum_1 => sum_1
# w => amax, exp, sub_1, sum_2
# Graph fragment:
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%unsqueeze, %primals_2), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_3, 2), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_1, 1e-10), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%add,), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_2, [2], True), kwargs = {})
# %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%neg, %sum_1), kwargs = {})
# %amax : [num_users=2] = call_function[target=torch.ops.aten.amax.default](args = (%mul, [3], True), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {})
# %sum_2 : [num_users=2] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [3], True), kwargs = {})
triton_per_fused__softmax_add_mul_neg_pow_sub_sum_0 = async_compile.triton('triton_per_fused__softmax_add_mul_neg_pow_sub_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_add_mul_neg_pow_sub_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__softmax_add_mul_neg_pow_sub_sum_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x0 = xindex % 4
x1 = (xindex // 4)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (r2), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (x0 + (16*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr2 + (r2), None, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr1 + (4 + x0 + (16*x1)), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr2 + (64 + r2), None, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr1 + (8 + x0 + (16*x1)), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr2 + (128 + r2), None, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr1 + (12 + x0 + (16*x1)), xmask, eviction_policy='evict_last')
tmp20 = tl.load(in_ptr2 + (192 + r2), None, eviction_policy='evict_last')
tmp1 = tmp0 * tmp0
tmp2 = 1e-10
tmp3 = tmp1 + tmp2
tmp4 = -tmp3
tmp7 = tmp5 - tmp6
tmp8 = tmp7 * tmp7
tmp11 = tmp9 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tmp8 + tmp12
tmp16 = tmp14 - tmp15
tmp17 = tmp16 * tmp16
tmp18 = tmp13 + tmp17
tmp21 = tmp19 - tmp20
tmp22 = tmp21 * tmp21
tmp23 = tmp18 + tmp22
tmp24 = tmp4 * tmp23
tmp25 = tl.broadcast_to(tmp24, [XBLOCK, RBLOCK])
tmp27 = tl.where(xmask, tmp25, float("-inf"))
tmp28 = triton_helpers.max2(tmp27, 1)[:, None]
tmp29 = tmp24 - tmp28
tmp30 = tl_math.exp(tmp29)
tmp31 = tl.broadcast_to(tmp30, [XBLOCK, RBLOCK])
tmp33 = tl.where(xmask, tmp31, 0)
tmp34 = tl.sum(tmp33, 1)[:, None]
tl.store(out_ptr0 + (r2 + (64*x3)), tmp24, xmask)
tl.store(out_ptr1 + (x3), tmp28, xmask)
tl.store(out_ptr2 + (x3), tmp34, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/5c/c5cyg6tmgybx2znb56tli3mxu474a5mhwo2sfz4cyzeil7dyv77v.py
# Topologically Sorted Source Nodes: [r, w, mul_1, e], Original ATen: [aten.sub, aten._softmax, aten.mul, aten.mean]
# Source node to ATen node mapping:
# e => mean
# mul_1 => mul_1
# r => sub
# w => div, exp, sub_1
# Graph fragment:
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%unsqueeze, %primals_2), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_2), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %sub), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%mul_1, [1]), kwargs = {})
triton_poi_fused__softmax_mean_mul_sub_1 = async_compile.triton('triton_poi_fused__softmax_mean_mul_sub_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_mean_mul_sub_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 17, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_mean_mul_sub_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 64
x2 = (xindex // 256)
x4 = (xindex // 64)
x3 = xindex % 256
x5 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (256*x2)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4*x2), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr2 + (4*x2), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr3 + (4*x4), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + (x3), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr0 + (64 + x0 + (256*x2)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr1 + (1 + (4*x2)), xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr2 + (1 + (4*x2)), xmask, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr3 + (1 + (4*x4)), xmask, eviction_policy='evict_last')
tmp20 = tl.load(in_ptr0 + (128 + x0 + (256*x2)), xmask, eviction_policy='evict_last')
tmp21 = tl.load(in_ptr1 + (2 + (4*x2)), xmask, eviction_policy='evict_last')
tmp24 = tl.load(in_ptr2 + (2 + (4*x2)), xmask, eviction_policy='evict_last')
tmp26 = tl.load(in_ptr3 + (2 + (4*x4)), xmask, eviction_policy='evict_last')
tmp30 = tl.load(in_ptr0 + (192 + x0 + (256*x2)), xmask, eviction_policy='evict_last')
tmp31 = tl.load(in_ptr1 + (3 + (4*x2)), xmask, eviction_policy='evict_last')
tmp34 = tl.load(in_ptr2 + (3 + (4*x2)), xmask, eviction_policy='evict_last')
tmp36 = tl.load(in_ptr3 + (3 + (4*x4)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp3 = tl_math.exp(tmp2)
tmp5 = tmp3 / tmp4
tmp8 = tmp6 - tmp7
tmp9 = tmp5 * tmp8
tmp12 = tmp10 - tmp11
tmp13 = tl_math.exp(tmp12)
tmp15 = tmp13 / tmp14
tmp17 = tmp16 - tmp7
tmp18 = tmp15 * tmp17
tmp19 = tmp9 + tmp18
tmp22 = tmp20 - tmp21
tmp23 = tl_math.exp(tmp22)
tmp25 = tmp23 / tmp24
tmp27 = tmp26 - tmp7
tmp28 = tmp25 * tmp27
tmp29 = tmp19 + tmp28
tmp32 = tmp30 - tmp31
tmp33 = tl_math.exp(tmp32)
tmp35 = tmp33 / tmp34
tmp37 = tmp36 - tmp7
tmp38 = tmp35 * tmp37
tmp39 = tmp29 + tmp38
tmp40 = 4.0
tmp41 = tmp39 / tmp40
tl.store(out_ptr0 + (x5), tmp41, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 64), (64, 1))
assert_size_stride(primals_3, (64, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 64), (256, 64, 1024, 1), torch.float32)
buf1 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32)
buf2 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [r, pow_1, add, neg, pow_2, sum_1, mul, w], Original ATen: [aten.sub, aten.pow, aten.add, aten.neg, aten.sum, aten.mul, aten._softmax]
stream0 = get_raw_stream(0)
triton_per_fused__softmax_add_mul_neg_pow_sub_sum_0.run(primals_3, primals_1, primals_2, buf0, buf1, buf2, 16, 64, grid=grid(16), stream=stream0)
buf3 = empty_strided_cuda((4, 4, 64), (256, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [r, w, mul_1, e], Original ATen: [aten.sub, aten._softmax, aten.mul, aten.mean]
triton_poi_fused__softmax_mean_mul_sub_1.run(buf0, buf1, buf2, primals_1, primals_2, buf3, 1024, grid=grid(1024), stream=stream0)
del buf0
return (reinterpret_tensor(buf3, (4, 256, 1), (256, 1, 1), 0), primals_1, primals_2, primals_3, buf1, buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 64), (64, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn
class LDEPooling(torch.nn.Module):
"""A novel learnable dictionary encoding layer.
Reference: Weicheng Cai, etc., "A NOVEL LEARNABLE DICTIONARY ENCODING LAYER FOR END-TO-END
LANGUAGE IDENTIFICATION", icassp, 2018
"""
def __init__(self, input_dim, c_num=64, eps=1e-10):
super(LDEPooling, self).__init__()
self.input_dim = input_dim
self.output_dim = input_dim * c_num
self.eps = eps
self.mu = torch.nn.Parameter(torch.randn(input_dim, c_num))
self.s = torch.nn.Parameter(torch.ones(c_num))
self.softmax_for_w = torch.nn.Softmax(dim=3)
def forward(self, inputs):
"""
@inputs: a 3-dimensional tensor (a batch), including [samples-index, frames-dim-index, frames-index]
"""
assert len(inputs.shape) == 3
assert inputs.shape[1] == self.input_dim
r = inputs.transpose(1, 2).unsqueeze(3) - self.mu
w = self.softmax_for_w(-(self.s ** 2 + self.eps) * torch.sum(r ** 2,
dim=2, keepdim=True))
e = torch.mean(w * r, dim=1)
return e.reshape(-1, self.output_dim, 1)
def get_output_dim(self):
return self.output_dim
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'input_dim': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused__softmax_add_mul_neg_pow_sub_sum_0(in_ptr0, in_ptr1,
in_ptr2, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr
):
xnumel = 16
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x0 = xindex % 4
x1 = xindex // 4
x3 = xindex
tmp0 = tl.load(in_ptr0 + r2, None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (x0 + 16 * x1), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr2 + r2, None, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr1 + (4 + x0 + 16 * x1), xmask, eviction_policy=
'evict_last')
tmp10 = tl.load(in_ptr2 + (64 + r2), None, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr1 + (8 + x0 + 16 * x1), xmask, eviction_policy=
'evict_last')
tmp15 = tl.load(in_ptr2 + (128 + r2), None, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr1 + (12 + x0 + 16 * x1), xmask, eviction_policy=
'evict_last')
tmp20 = tl.load(in_ptr2 + (192 + r2), None, eviction_policy='evict_last')
tmp1 = tmp0 * tmp0
tmp2 = 1e-10
tmp3 = tmp1 + tmp2
tmp4 = -tmp3
tmp7 = tmp5 - tmp6
tmp8 = tmp7 * tmp7
tmp11 = tmp9 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tmp8 + tmp12
tmp16 = tmp14 - tmp15
tmp17 = tmp16 * tmp16
tmp18 = tmp13 + tmp17
tmp21 = tmp19 - tmp20
tmp22 = tmp21 * tmp21
tmp23 = tmp18 + tmp22
tmp24 = tmp4 * tmp23
tmp25 = tl.broadcast_to(tmp24, [XBLOCK, RBLOCK])
tmp27 = tl.where(xmask, tmp25, float('-inf'))
tmp28 = triton_helpers.max2(tmp27, 1)[:, None]
tmp29 = tmp24 - tmp28
tmp30 = tl_math.exp(tmp29)
tmp31 = tl.broadcast_to(tmp30, [XBLOCK, RBLOCK])
tmp33 = tl.where(xmask, tmp31, 0)
tmp34 = tl.sum(tmp33, 1)[:, None]
tl.store(out_ptr0 + (r2 + 64 * x3), tmp24, xmask)
tl.store(out_ptr1 + x3, tmp28, xmask)
tl.store(out_ptr2 + x3, tmp34, xmask)
@triton.jit
def triton_poi_fused__softmax_mean_mul_sub_1(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 64
x2 = xindex // 256
x4 = xindex // 64
x3 = xindex % 256
x5 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 256 * x2), xmask, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr1 + 4 * x2, xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr2 + 4 * x2, xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr3 + 4 * x4, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + x3, xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr0 + (64 + x0 + 256 * x2), xmask, eviction_policy=
'evict_last')
tmp11 = tl.load(in_ptr1 + (1 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp14 = tl.load(in_ptr2 + (1 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp16 = tl.load(in_ptr3 + (1 + 4 * x4), xmask, eviction_policy='evict_last'
)
tmp20 = tl.load(in_ptr0 + (128 + x0 + 256 * x2), xmask, eviction_policy
='evict_last')
tmp21 = tl.load(in_ptr1 + (2 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp24 = tl.load(in_ptr2 + (2 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp26 = tl.load(in_ptr3 + (2 + 4 * x4), xmask, eviction_policy='evict_last'
)
tmp30 = tl.load(in_ptr0 + (192 + x0 + 256 * x2), xmask, eviction_policy
='evict_last')
tmp31 = tl.load(in_ptr1 + (3 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp34 = tl.load(in_ptr2 + (3 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp36 = tl.load(in_ptr3 + (3 + 4 * x4), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 - tmp1
tmp3 = tl_math.exp(tmp2)
tmp5 = tmp3 / tmp4
tmp8 = tmp6 - tmp7
tmp9 = tmp5 * tmp8
tmp12 = tmp10 - tmp11
tmp13 = tl_math.exp(tmp12)
tmp15 = tmp13 / tmp14
tmp17 = tmp16 - tmp7
tmp18 = tmp15 * tmp17
tmp19 = tmp9 + tmp18
tmp22 = tmp20 - tmp21
tmp23 = tl_math.exp(tmp22)
tmp25 = tmp23 / tmp24
tmp27 = tmp26 - tmp7
tmp28 = tmp25 * tmp27
tmp29 = tmp19 + tmp28
tmp32 = tmp30 - tmp31
tmp33 = tl_math.exp(tmp32)
tmp35 = tmp33 / tmp34
tmp37 = tmp36 - tmp7
tmp38 = tmp35 * tmp37
tmp39 = tmp29 + tmp38
tmp40 = 4.0
tmp41 = tmp39 / tmp40
tl.store(out_ptr0 + x5, tmp41, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 64), (64, 1))
assert_size_stride(primals_3, (64,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 64), (256, 64, 1024, 1), torch.
float32)
buf1 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32)
buf2 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32)
get_raw_stream(0)
triton_per_fused__softmax_add_mul_neg_pow_sub_sum_0[grid(16)](primals_3
, primals_1, primals_2, buf0, buf1, buf2, 16, 64, XBLOCK=8,
num_warps=4, num_stages=1)
buf3 = empty_strided_cuda((4, 4, 64), (256, 64, 1), torch.float32)
triton_poi_fused__softmax_mean_mul_sub_1[grid(1024)](buf0, buf1,
buf2, primals_1, primals_2, buf3, 1024, XBLOCK=128, num_warps=4,
num_stages=1)
del buf0
return reinterpret_tensor(buf3, (4, 256, 1), (256, 1, 1), 0
), primals_1, primals_2, primals_3, buf1, buf2
class LDEPoolingNew(torch.nn.Module):
"""A novel learnable dictionary encoding layer.
Reference: Weicheng Cai, etc., "A NOVEL LEARNABLE DICTIONARY ENCODING LAYER FOR END-TO-END
LANGUAGE IDENTIFICATION", icassp, 2018
"""
def __init__(self, input_dim, c_num=64, eps=1e-10):
super(LDEPoolingNew, self).__init__()
self.input_dim = input_dim
self.output_dim = input_dim * c_num
self.eps = eps
self.mu = torch.nn.Parameter(torch.randn(input_dim, c_num))
self.s = torch.nn.Parameter(torch.ones(c_num))
self.softmax_for_w = torch.nn.Softmax(dim=3)
def get_output_dim(self):
return self.output_dim
def forward(self, input_0):
primals_2 = self.mu
primals_3 = self.s
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| ishine/asv-subtools | LDEPooling | false | 15,645 | [
"Apache-2.0"
]
| 370 | 597dcb29a772b8113dbe7ab64f0d4cc1da298707 | https://github.com/ishine/asv-subtools/tree/597dcb29a772b8113dbe7ab64f0d4cc1da298707 |
TdnnAffine | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/cu/ccutvo2v4333pq6xhrg2zryqqwthm7dmmuqprvva2xdwiodpz5jn.py
# Topologically Sorted Source Nodes: [outputs], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# outputs => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1], [0], [1], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 4) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [outputs], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4), (16, 4, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [outputs], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(buf1, primals_3, 64, grid=grid(64), stream=stream0)
del primals_3
return (buf1, primals_1, primals_2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
import torch.nn
def to_device(device_object, tensor):
"""
Select device for non-parameters tensor w.r.t model or tensor which has been specified a device.
"""
if isinstance(device_object, torch.nn.Module):
next(device_object.parameters()).device
elif isinstance(device_object, torch.Tensor):
pass
return tensor
class TdnnAffine(torch.nn.Module):
""" An implemented tdnn affine component by conv1d
y = splice(w * x, context) + b
@input_dim: number of dims of frame <=> inputs channels of conv
@output_dim: number of layer nodes <=> outputs channels of conv
@context: a list of context
e.g. [-2,0,2]
If context is [0], then the TdnnAffine is equal to linear layer.
"""
def __init__(self, input_dim, output_dim, context=[0], bias=True, pad=
True, stride=1, groups=1, norm_w=False, norm_f=False):
super(TdnnAffine, self).__init__()
assert input_dim % groups == 0
for index in range(0, len(context) - 1):
if context[index] >= context[index + 1]:
raise ValueError(
'Context tuple {} is invalid, such as the order.'.
format(context))
self.input_dim = input_dim
self.output_dim = output_dim
self.context = context
self.bool_bias = bias
self.pad = pad
self.groups = groups
self.norm_w = norm_w
self.norm_f = norm_f
self.stride = stride
self.left_context = context[0] if context[0] < 0 else 0
self.right_context = context[-1] if context[-1] > 0 else 0
self.tot_context = self.right_context - self.left_context + 1
if self.tot_context > 1 and self.norm_f:
self.norm_f = False
None
kernel_size = self.tot_context,
self.weight = torch.nn.Parameter(torch.randn(output_dim, input_dim //
groups, *kernel_size))
if self.bool_bias:
self.bias = torch.nn.Parameter(torch.randn(output_dim))
else:
self.register_parameter('bias', None)
self.init_weight()
if len(context) != self.tot_context:
self.mask = torch.tensor([[[(1 if index in context else 0) for
index in range(self.left_context, self.right_context + 1)]]])
else:
self.mask = None
self.selected_device = False
def init_weight(self):
torch.nn.init.normal_(self.weight, 0.0, 0.01)
if self.bias is not None:
torch.nn.init.constant_(self.bias, 0.0)
def forward(self, inputs):
"""
@inputs: a 3-dimensional tensor (a batch), including [samples-index, frames-dim-index, frames-index]
"""
assert len(inputs.shape) == 3
assert inputs.shape[1] == self.input_dim
if self.pad:
inputs = F.pad(inputs, (-self.left_context, self.right_context),
mode='constant', value=0)
assert inputs.shape[2] >= self.tot_context
if not self.selected_device and self.mask is not None:
self.mask = to_device(self, self.mask)
self.selected_device = True
filters = (self.weight * self.mask if self.mask is not None else
self.weight)
if self.norm_w:
filters = F.normalize(filters, dim=1)
if self.norm_f:
inputs = F.normalize(inputs, dim=1)
outputs = F.conv1d(inputs, filters, self.bias, stride=self.stride,
padding=0, dilation=1, groups=self.groups)
return outputs
def extra_repr(self):
return (
'{input_dim}, {output_dim}, context={context}, bias={bool_bias}, stride={stride}, pad={pad}, groups={groups}, norm_w={norm_w}, norm_f={norm_f}'
.format(**self.__dict__))
@classmethod
def thop_count(self, m, x, y):
x = x[0]
kernel_ops = torch.zeros(m.weight.size()[2:]).numel()
bias_ops = 1 if m.bias is not None else 0
total_ops = y.nelement() * (m.input_dim * kernel_ops + bias_ops)
m.total_ops += torch.DoubleTensor([int(total_ops)])
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'input_dim': 4, 'output_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 4 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,),
padding=(0,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4), (16, 4, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(64)](buf1, primals_3, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del primals_3
return buf1, primals_1, primals_2
def to_device(device_object, tensor):
"""
Select device for non-parameters tensor w.r.t model or tensor which has been specified a device.
"""
if isinstance(device_object, torch.nn.Module):
next(device_object.parameters()).device
elif isinstance(device_object, torch.Tensor):
pass
return tensor
class TdnnAffineNew(torch.nn.Module):
""" An implemented tdnn affine component by conv1d
y = splice(w * x, context) + b
@input_dim: number of dims of frame <=> inputs channels of conv
@output_dim: number of layer nodes <=> outputs channels of conv
@context: a list of context
e.g. [-2,0,2]
If context is [0], then the TdnnAffine is equal to linear layer.
"""
def __init__(self, input_dim, output_dim, context=[0], bias=True, pad=
True, stride=1, groups=1, norm_w=False, norm_f=False):
super(TdnnAffineNew, self).__init__()
assert input_dim % groups == 0
for index in range(0, len(context) - 1):
if context[index] >= context[index + 1]:
raise ValueError(
'Context tuple {} is invalid, such as the order.'.
format(context))
self.input_dim = input_dim
self.output_dim = output_dim
self.context = context
self.bool_bias = bias
self.pad = pad
self.groups = groups
self.norm_w = norm_w
self.norm_f = norm_f
self.stride = stride
self.left_context = context[0] if context[0] < 0 else 0
self.right_context = context[-1] if context[-1] > 0 else 0
self.tot_context = self.right_context - self.left_context + 1
if self.tot_context > 1 and self.norm_f:
self.norm_f = False
None
kernel_size = self.tot_context,
self.weight = torch.nn.Parameter(torch.randn(output_dim, input_dim //
groups, *kernel_size))
if self.bool_bias:
self.bias = torch.nn.Parameter(torch.randn(output_dim))
else:
self.register_parameter('bias', None)
self.init_weight()
if len(context) != self.tot_context:
self.mask = torch.tensor([[[(1 if index in context else 0) for
index in range(self.left_context, self.right_context + 1)]]])
else:
self.mask = None
self.selected_device = False
def init_weight(self):
torch.nn.init.normal_(self.weight, 0.0, 0.01)
if self.bias is not None:
torch.nn.init.constant_(self.bias, 0.0)
def extra_repr(self):
return (
'{input_dim}, {output_dim}, context={context}, bias={bool_bias}, stride={stride}, pad={pad}, groups={groups}, norm_w={norm_w}, norm_f={norm_f}'
.format(**self.__dict__))
@classmethod
def thop_count(self, m, x, y):
x = x[0]
kernel_ops = torch.zeros(m.weight.size()[2:]).numel()
bias_ops = 1 if m.bias is not None else 0
total_ops = y.nelement() * (m.input_dim * kernel_ops + bias_ops)
m.total_ops += torch.DoubleTensor([int(total_ops)])
def forward(self, input_0):
primals_2 = self.weight
primals_3 = self.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| ishine/asv-subtools | TdnnAffine | false | 15,646 | [
"Apache-2.0"
]
| 370 | 597dcb29a772b8113dbe7ab64f0d4cc1da298707 | https://github.com/ishine/asv-subtools/tree/597dcb29a772b8113dbe7ab64f0d4cc1da298707 |
AttCosine | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/bn/cbni2wdtfrcc7ki6gnm2cjxjtcosxo777xfqexk7ns4fqptlcftp.py
# Topologically Sorted Source Nodes: [att], Original ATen: [aten.linalg_vector_norm, aten.clamp_min, aten.div, aten.mul]
# Source node to ATen node mapping:
# att => clamp_min, clamp_min_1, div, div_1, mul, pow_1, pow_2, pow_3, pow_4, sum_1, sum_2
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%expand_1, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [3], True), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%pow_2, 1e-08), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%expand_1, %clamp_min), kwargs = {})
# %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%expand, 2), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_3, [3], True), kwargs = {})
# %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_2, 0.5), kwargs = {})
# %clamp_min_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%pow_4, 1e-08), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%expand, %clamp_min_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_1, %div), kwargs = {})
triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0 = async_compile.triton('triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 10, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x5 = xindex % 16
x6 = (xindex // 64)
x0 = xindex % 4
x4 = (xindex // 256)
x8 = xindex % 64
x2 = (xindex // 16) % 4
x9 = xindex
tmp0 = tl.load(in_ptr0 + (x5 + (16*x6)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (x0 + (16*x6)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (4 + x0 + (16*x6)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (8 + x0 + (16*x6)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (12 + x0 + (16*x6)), xmask, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr1 + (x8 + (64*x4)), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr1 + (x0 + (16*x2) + (64*x4)), xmask, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr1 + (4 + x0 + (16*x2) + (64*x4)), xmask, eviction_policy='evict_last')
tmp22 = tl.load(in_ptr1 + (8 + x0 + (16*x2) + (64*x4)), xmask, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr1 + (12 + x0 + (16*x2) + (64*x4)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-08
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tmp18 = tmp17 * tmp17
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = libdevice.sqrt(tmp27)
tmp29 = triton_helpers.maximum(tmp28, tmp13)
tmp30 = tmp16 / tmp29
tmp31 = tmp15 * tmp30
tl.store(out_ptr0 + (x9), tmp31, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/if/cifcheo7gezrz6zb5af7ylzeq2bp6v53tqdyeqqvip4h4u5wms5b.py
# Topologically Sorted Source Nodes: [att, max_1, att_1], Original ATen: [aten.sum, aten.max, aten._softmax]
# Source node to ATen node mapping:
# att => sum_3
# att_1 => amax
# max_1 => max_1
# Graph fragment:
# %sum_3 : [num_users=3] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [3]), kwargs = {})
# %max_1 : [num_users=1] = call_function[target=torch.ops.aten.max.dim](args = (%sum_3, 2), kwargs = {})
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%sum_3, [2], True), kwargs = {})
triton_poi_fused__softmax_max_sum_1 = async_compile.triton('triton_poi_fused__softmax_max_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_max_sum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_max_sum_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask)
tmp1 = tl.load(in_ptr0 + (4 + x0 + (64*x1)), xmask)
tmp3 = tl.load(in_ptr0 + (8 + x0 + (64*x1)), xmask)
tmp5 = tl.load(in_ptr0 + (12 + x0 + (64*x1)), xmask)
tmp7 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask)
tmp8 = tl.load(in_ptr0 + (20 + x0 + (64*x1)), xmask)
tmp10 = tl.load(in_ptr0 + (24 + x0 + (64*x1)), xmask)
tmp12 = tl.load(in_ptr0 + (28 + x0 + (64*x1)), xmask)
tmp15 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask)
tmp16 = tl.load(in_ptr0 + (36 + x0 + (64*x1)), xmask)
tmp18 = tl.load(in_ptr0 + (40 + x0 + (64*x1)), xmask)
tmp20 = tl.load(in_ptr0 + (44 + x0 + (64*x1)), xmask)
tmp23 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask)
tmp24 = tl.load(in_ptr0 + (52 + x0 + (64*x1)), xmask)
tmp26 = tl.load(in_ptr0 + (56 + x0 + (64*x1)), xmask)
tmp28 = tl.load(in_ptr0 + (60 + x0 + (64*x1)), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp9 = tmp7 + tmp8
tmp11 = tmp9 + tmp10
tmp13 = tmp11 + tmp12
tmp14 = triton_helpers.maximum(tmp6, tmp13)
tmp17 = tmp15 + tmp16
tmp19 = tmp17 + tmp18
tmp21 = tmp19 + tmp20
tmp22 = triton_helpers.maximum(tmp14, tmp21)
tmp25 = tmp23 + tmp24
tmp27 = tmp25 + tmp26
tmp29 = tmp27 + tmp28
tmp30 = triton_helpers.maximum(tmp22, tmp29)
tl.store(out_ptr0 + (x2), tmp30, xmask)
tl.store(out_ptr1 + (x2), tmp30, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/m6/cm6stmhrsqwokswzmpvizo25muwmyoxifjlmvnqea2gjkxwcuabf.py
# Topologically Sorted Source Nodes: [att, att_1], Original ATen: [aten.sum, aten._softmax]
# Source node to ATen node mapping:
# att => sum_3
# att_1 => exp, sub
# Graph fragment:
# %sum_3 : [num_users=3] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [3]), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sum_3, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_sum_2 = async_compile.triton('triton_poi_fused__softmax_sum_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_sum_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_sum_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x3 = (xindex // 4)
x2 = (xindex // 16)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (16*x3)), xmask)
tmp1 = tl.load(in_ptr0 + (4 + x0 + (16*x3)), xmask)
tmp3 = tl.load(in_ptr0 + (8 + x0 + (16*x3)), xmask)
tmp5 = tl.load(in_ptr0 + (12 + x0 + (16*x3)), xmask)
tmp7 = tl.load(in_ptr1 + (x0 + (4*x2)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp8 = tmp6 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x4), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/u3/cu3nkkpsb4i2i7d6n6rkag3p4fnx5qjjay2ykzvhps67hsbhltyh.py
# Topologically Sorted Source Nodes: [att_1], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# att_1 => div_2, sum_4
# Graph fragment:
# %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [2], True), kwargs = {})
# %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_4), kwargs = {})
triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x2 = (xindex // 16)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (4 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (8 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (12 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [att], Original ATen: [aten.linalg_vector_norm, aten.clamp_min, aten.div, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0.run(arg0_1, arg1_1, buf0, 1024, grid=grid(1024), stream=stream0)
del arg0_1
del arg1_1
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
buf2 = empty_strided_cuda((4, 4, 1, 4), (16, 4, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [att, max_1, att_1], Original ATen: [aten.sum, aten.max, aten._softmax]
triton_poi_fused__softmax_max_sum_1.run(buf0, buf1, buf2, 64, grid=grid(64), stream=stream0)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [att, att_1], Original ATen: [aten.sum, aten._softmax]
triton_poi_fused__softmax_sum_2.run(buf0, buf2, buf3, 256, grid=grid(256), stream=stream0)
del buf0
del buf2
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [att_1], Original ATen: [aten._softmax]
triton_poi_fused__softmax_3.run(buf3, buf4, 256, grid=grid(256), stream=stream0)
del buf3
return (buf4, reinterpret_tensor(buf1, (4, 1, 4, 4), (16, 16, 4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class AttCosine(torch.nn.Module):
"""
AttCosine: Cosine attention that can be used by the Alignment module.
"""
def __init__(self, softmax=True):
super().__init__()
self.softmax = softmax
self.pdist = nn.CosineSimilarity(dim=3)
def forward(self, query, y):
att = self.pdist(query.unsqueeze(2), y.unsqueeze(1))
sim = att.max(2)[0].unsqueeze(1)
if self.softmax:
att = F.softmax(att, dim=2)
return att, sim
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0(in_ptr0,
in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x5 = xindex % 16
x6 = xindex // 64
x0 = xindex % 4
x4 = xindex // 256
x8 = xindex % 64
x2 = xindex // 16 % 4
x9 = xindex
tmp0 = tl.load(in_ptr0 + (x5 + 16 * x6), xmask, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (x0 + 16 * x6), xmask, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (4 + x0 + 16 * x6), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (8 + x0 + 16 * x6), xmask, eviction_policy=
'evict_last')
tmp9 = tl.load(in_ptr0 + (12 + x0 + 16 * x6), xmask, eviction_policy=
'evict_last')
tmp16 = tl.load(in_ptr1 + (x8 + 64 * x4), xmask, eviction_policy=
'evict_last')
tmp17 = tl.load(in_ptr1 + (x0 + 16 * x2 + 64 * x4), xmask,
eviction_policy='evict_last')
tmp19 = tl.load(in_ptr1 + (4 + x0 + 16 * x2 + 64 * x4), xmask,
eviction_policy='evict_last')
tmp22 = tl.load(in_ptr1 + (8 + x0 + 16 * x2 + 64 * x4), xmask,
eviction_policy='evict_last')
tmp25 = tl.load(in_ptr1 + (12 + x0 + 16 * x2 + 64 * x4), xmask,
eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-08
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tmp18 = tmp17 * tmp17
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = libdevice.sqrt(tmp27)
tmp29 = triton_helpers.maximum(tmp28, tmp13)
tmp30 = tmp16 / tmp29
tmp31 = tmp15 * tmp30
tl.store(out_ptr0 + x9, tmp31, xmask)
@triton.jit
def triton_poi_fused__softmax_max_sum_1(in_ptr0, out_ptr0, out_ptr1, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask)
tmp1 = tl.load(in_ptr0 + (4 + x0 + 64 * x1), xmask)
tmp3 = tl.load(in_ptr0 + (8 + x0 + 64 * x1), xmask)
tmp5 = tl.load(in_ptr0 + (12 + x0 + 64 * x1), xmask)
tmp7 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask)
tmp8 = tl.load(in_ptr0 + (20 + x0 + 64 * x1), xmask)
tmp10 = tl.load(in_ptr0 + (24 + x0 + 64 * x1), xmask)
tmp12 = tl.load(in_ptr0 + (28 + x0 + 64 * x1), xmask)
tmp15 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask)
tmp16 = tl.load(in_ptr0 + (36 + x0 + 64 * x1), xmask)
tmp18 = tl.load(in_ptr0 + (40 + x0 + 64 * x1), xmask)
tmp20 = tl.load(in_ptr0 + (44 + x0 + 64 * x1), xmask)
tmp23 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask)
tmp24 = tl.load(in_ptr0 + (52 + x0 + 64 * x1), xmask)
tmp26 = tl.load(in_ptr0 + (56 + x0 + 64 * x1), xmask)
tmp28 = tl.load(in_ptr0 + (60 + x0 + 64 * x1), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp9 = tmp7 + tmp8
tmp11 = tmp9 + tmp10
tmp13 = tmp11 + tmp12
tmp14 = triton_helpers.maximum(tmp6, tmp13)
tmp17 = tmp15 + tmp16
tmp19 = tmp17 + tmp18
tmp21 = tmp19 + tmp20
tmp22 = triton_helpers.maximum(tmp14, tmp21)
tmp25 = tmp23 + tmp24
tmp27 = tmp25 + tmp26
tmp29 = tmp27 + tmp28
tmp30 = triton_helpers.maximum(tmp22, tmp29)
tl.store(out_ptr0 + x2, tmp30, xmask)
tl.store(out_ptr1 + x2, tmp30, xmask)
@triton.jit
def triton_poi_fused__softmax_sum_2(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x3 = xindex // 4
x2 = xindex // 16
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 16 * x3), xmask)
tmp1 = tl.load(in_ptr0 + (4 + x0 + 16 * x3), xmask)
tmp3 = tl.load(in_ptr0 + (8 + x0 + 16 * x3), xmask)
tmp5 = tl.load(in_ptr0 + (12 + x0 + 16 * x3), xmask)
tmp7 = tl.load(in_ptr1 + (x0 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp8 = tmp6 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x4, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x2 = xindex // 16
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (4 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (8 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (12 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x3, tmp8, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0[grid(1024)](
arg0_1, arg1_1, buf0, 1024, XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
buf2 = empty_strided_cuda((4, 4, 1, 4), (16, 4, 64, 1), torch.float32)
triton_poi_fused__softmax_max_sum_1[grid(64)](buf0, buf1, buf2, 64,
XBLOCK=64, num_warps=1, num_stages=1)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused__softmax_sum_2[grid(256)](buf0, buf2, buf3, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del buf0
del buf2
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused__softmax_3[grid(256)](buf3, buf4, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del buf3
return buf4, reinterpret_tensor(buf1, (4, 1, 4, 4), (16, 16, 4, 1), 0)
class AttCosineNew(torch.nn.Module):
"""
AttCosine: Cosine attention that can be used by the Alignment module.
"""
def __init__(self, softmax=True):
super().__init__()
self.softmax = softmax
self.pdist = nn.CosineSimilarity(dim=3)
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0], output[1]
| ishine/NISQA | AttCosine | false | 15,647 | [
"MIT"
]
| 223 | 2c8917f30c4e4bbca3a48e9852301f1e2480a741 | https://github.com/ishine/NISQA/tree/2c8917f30c4e4bbca3a48e9852301f1e2480a741 |
ChunkSeparationAffine | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/qz/cqzgictjpi53mvqpidmypr6gvl6skq6ldd43ow7utchkt5n2ang3.py
# Topologically Sorted Source Nodes: [inputs_1], Original ATen: [aten.constant_pad_nd]
# Source node to ATen node mapping:
# inputs_1 => constant_pad_nd_1
# Graph fragment:
# %constant_pad_nd_1 : [num_users=2] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%slice_3, [0, 0], 0.0), kwargs = {})
triton_poi_fused_constant_pad_nd_0 = async_compile.triton('triton_poi_fused_constant_pad_nd_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 3
x1 = (xindex // 3)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (1 + x0 + (4*x1)), xmask)
tl.store(out_ptr0 + (x2), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/nu/cnuyr7sdimes3uxey6dc2ueydyjlbpvwyujhycu27ud2jg4ujepp.py
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%convolution, %convolution_1], 1), kwargs = {})
triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 2) % 4
x0 = xindex % 2
x2 = (xindex // 8)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 2, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (2*x1) + (4*x2)), tmp4 & xmask, other=0.0)
tmp6 = tl.load(in_ptr1 + (x1), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tmp0 >= tmp3
tmp11 = tl.full([1], 4, tl.int64)
tmp12 = tmp0 < tmp11
tmp13 = tl.load(in_ptr2 + (x0 + (2*((-2) + x1)) + (4*x2)), tmp10 & xmask, other=0.0)
tmp14 = tl.load(in_ptr3 + ((-2) + x1), tmp10 & xmask, eviction_policy='evict_last', other=0.0)
tmp15 = tmp13 + tmp14
tmp16 = tl.full(tmp15.shape, 0.0, tmp15.dtype)
tmp17 = tl.where(tmp10, tmp15, tmp16)
tmp18 = tl.where(tmp4, tmp9, tmp17)
tl.store(out_ptr0 + (x3), tmp18, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (2, 4, 1), (4, 1, 1))
assert_size_stride(primals_3, (2, ), (1, ))
assert_size_stride(primals_4, (2, 4, 1), (4, 1, 1))
assert_size_stride(primals_5, (2, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [outputs], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(2,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf0, (4, 2, 2), (4, 2, 1))
buf1 = empty_strided_cuda((4, 4, 3), (12, 3, 1), torch.float32)
# Topologically Sorted Source Nodes: [inputs_1], Original ATen: [aten.constant_pad_nd]
stream0 = get_raw_stream(0)
triton_poi_fused_constant_pad_nd_0.run(primals_1, buf1, 48, grid=grid(48), stream=stream0)
# Topologically Sorted Source Nodes: [outputs_1], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(2,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf2, (4, 2, 2), (4, 2, 1))
buf3 = empty_strided_cuda((4, 4, 2), (8, 2, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
triton_poi_fused_cat_1.run(buf0, primals_3, buf2, primals_5, buf3, 32, grid=grid(32), stream=stream0)
del buf0
del buf2
del primals_3
del primals_5
return (buf3, primals_1, primals_2, primals_4, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((2, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((2, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
import torch.nn
def to_device(device_object, tensor):
"""
Select device for non-parameters tensor w.r.t model or tensor which has been specified a device.
"""
if isinstance(device_object, torch.nn.Module):
next(device_object.parameters()).device
elif isinstance(device_object, torch.Tensor):
pass
return tensor
class TdnnAffine(torch.nn.Module):
""" An implemented tdnn affine component by conv1d
y = splice(w * x, context) + b
@input_dim: number of dims of frame <=> inputs channels of conv
@output_dim: number of layer nodes <=> outputs channels of conv
@context: a list of context
e.g. [-2,0,2]
If context is [0], then the TdnnAffine is equal to linear layer.
"""
def __init__(self, input_dim, output_dim, context=[0], bias=True, pad=
True, stride=1, groups=1, norm_w=False, norm_f=False):
super(TdnnAffine, self).__init__()
assert input_dim % groups == 0
for index in range(0, len(context) - 1):
if context[index] >= context[index + 1]:
raise ValueError(
'Context tuple {} is invalid, such as the order.'.
format(context))
self.input_dim = input_dim
self.output_dim = output_dim
self.context = context
self.bool_bias = bias
self.pad = pad
self.groups = groups
self.norm_w = norm_w
self.norm_f = norm_f
self.stride = stride
self.left_context = context[0] if context[0] < 0 else 0
self.right_context = context[-1] if context[-1] > 0 else 0
self.tot_context = self.right_context - self.left_context + 1
if self.tot_context > 1 and self.norm_f:
self.norm_f = False
None
kernel_size = self.tot_context,
self.weight = torch.nn.Parameter(torch.randn(output_dim, input_dim //
groups, *kernel_size))
if self.bool_bias:
self.bias = torch.nn.Parameter(torch.randn(output_dim))
else:
self.register_parameter('bias', None)
self.init_weight()
if len(context) != self.tot_context:
self.mask = torch.tensor([[[(1 if index in context else 0) for
index in range(self.left_context, self.right_context + 1)]]])
else:
self.mask = None
self.selected_device = False
def init_weight(self):
torch.nn.init.normal_(self.weight, 0.0, 0.01)
if self.bias is not None:
torch.nn.init.constant_(self.bias, 0.0)
def forward(self, inputs):
"""
@inputs: a 3-dimensional tensor (a batch), including [samples-index, frames-dim-index, frames-index]
"""
assert len(inputs.shape) == 3
assert inputs.shape[1] == self.input_dim
if self.pad:
inputs = F.pad(inputs, (-self.left_context, self.right_context),
mode='constant', value=0)
assert inputs.shape[2] >= self.tot_context
if not self.selected_device and self.mask is not None:
self.mask = to_device(self, self.mask)
self.selected_device = True
filters = (self.weight * self.mask if self.mask is not None else
self.weight)
if self.norm_w:
filters = F.normalize(filters, dim=1)
if self.norm_f:
inputs = F.normalize(inputs, dim=1)
outputs = F.conv1d(inputs, filters, self.bias, stride=self.stride,
padding=0, dilation=1, groups=self.groups)
return outputs
def extra_repr(self):
return (
'{input_dim}, {output_dim}, context={context}, bias={bool_bias}, stride={stride}, pad={pad}, groups={groups}, norm_w={norm_w}, norm_f={norm_f}'
.format(**self.__dict__))
@classmethod
def thop_count(self, m, x, y):
x = x[0]
kernel_ops = torch.zeros(m.weight.size()[2:]).numel()
bias_ops = 1 if m.bias is not None else 0
total_ops = y.nelement() * (m.input_dim * kernel_ops + bias_ops)
m.total_ops += torch.DoubleTensor([int(total_ops)])
class ChunkSeparationAffine(torch.nn.Module):
"""By this component, the chunk will be grouped to two parts, odd and even.
"""
def __init__(self, input_dim, output_dim, **options):
super(ChunkSeparationAffine, self).__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.odd = TdnnAffine(input_dim, output_dim // 2, stride=2, **options)
self.even = TdnnAffine(input_dim, output_dim // 2, stride=2, **options)
def forward(self, inputs):
"""
@inputs: a 3-dimensional tensor (a batch), including [samples-index, frames-dim-index, frames-index]
"""
assert len(inputs.shape) == 3
assert inputs.shape[1] == self.input_dim
if inputs.shape[2] % 2 != 0:
inputs = F.pad(inputs, (0, 1), mode='constant', value=0)
return torch.cat((self.odd(inputs), self.even(inputs[:, :, 1:])), dim=1
)
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'input_dim': 4, 'output_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn.functional as F
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 3
x1 = xindex // 3
x2 = xindex
tmp0 = tl.load(in_ptr0 + (1 + x0 + 4 * x1), xmask)
tl.store(out_ptr0 + x2, tmp0, xmask)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 2 % 4
x0 = xindex % 2
x2 = xindex // 8
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 2, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 2 * x1 + 4 * x2), tmp4 & xmask, other=0.0)
tmp6 = tl.load(in_ptr1 + x1, tmp4 & xmask, eviction_policy='evict_last',
other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tmp0 >= tmp3
tl.full([1], 4, tl.int64)
tmp13 = tl.load(in_ptr2 + (x0 + 2 * (-2 + x1) + 4 * x2), tmp10 & xmask,
other=0.0)
tmp14 = tl.load(in_ptr3 + (-2 + x1), tmp10 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp15 = tmp13 + tmp14
tmp16 = tl.full(tmp15.shape, 0.0, tmp15.dtype)
tmp17 = tl.where(tmp10, tmp15, tmp16)
tmp18 = tl.where(tmp4, tmp9, tmp17)
tl.store(out_ptr0 + x3, tmp18, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (2, 4, 1), (4, 1, 1))
assert_size_stride(primals_3, (2,), (1,))
assert_size_stride(primals_4, (2, 4, 1), (4, 1, 1))
assert_size_stride(primals_5, (2,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(2,),
padding=(0,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf0, (4, 2, 2), (4, 2, 1))
buf1 = empty_strided_cuda((4, 4, 3), (12, 3, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_constant_pad_nd_0[grid(48)](primals_1, buf1, 48,
XBLOCK=64, num_warps=1, num_stages=1)
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(2,),
padding=(0,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf2, (4, 2, 2), (4, 2, 1))
buf3 = empty_strided_cuda((4, 4, 2), (8, 2, 1), torch.float32)
triton_poi_fused_cat_1[grid(32)](buf0, primals_3, buf2, primals_5,
buf3, 32, XBLOCK=32, num_warps=1, num_stages=1)
del buf0
del buf2
del primals_3
del primals_5
return buf3, primals_1, primals_2, primals_4, buf1
def to_device(device_object, tensor):
"""
Select device for non-parameters tensor w.r.t model or tensor which has been specified a device.
"""
if isinstance(device_object, torch.nn.Module):
next(device_object.parameters()).device
elif isinstance(device_object, torch.Tensor):
pass
return tensor
class TdnnAffine(torch.nn.Module):
""" An implemented tdnn affine component by conv1d
y = splice(w * x, context) + b
@input_dim: number of dims of frame <=> inputs channels of conv
@output_dim: number of layer nodes <=> outputs channels of conv
@context: a list of context
e.g. [-2,0,2]
If context is [0], then the TdnnAffine is equal to linear layer.
"""
def __init__(self, input_dim, output_dim, context=[0], bias=True, pad=
True, stride=1, groups=1, norm_w=False, norm_f=False):
super(TdnnAffine, self).__init__()
assert input_dim % groups == 0
for index in range(0, len(context) - 1):
if context[index] >= context[index + 1]:
raise ValueError(
'Context tuple {} is invalid, such as the order.'.
format(context))
self.input_dim = input_dim
self.output_dim = output_dim
self.context = context
self.bool_bias = bias
self.pad = pad
self.groups = groups
self.norm_w = norm_w
self.norm_f = norm_f
self.stride = stride
self.left_context = context[0] if context[0] < 0 else 0
self.right_context = context[-1] if context[-1] > 0 else 0
self.tot_context = self.right_context - self.left_context + 1
if self.tot_context > 1 and self.norm_f:
self.norm_f = False
None
kernel_size = self.tot_context,
self.weight = torch.nn.Parameter(torch.randn(output_dim, input_dim //
groups, *kernel_size))
if self.bool_bias:
self.bias = torch.nn.Parameter(torch.randn(output_dim))
else:
self.register_parameter('bias', None)
self.init_weight()
if len(context) != self.tot_context:
self.mask = torch.tensor([[[(1 if index in context else 0) for
index in range(self.left_context, self.right_context + 1)]]])
else:
self.mask = None
self.selected_device = False
def init_weight(self):
torch.nn.init.normal_(self.weight, 0.0, 0.01)
if self.bias is not None:
torch.nn.init.constant_(self.bias, 0.0)
def forward(self, inputs):
"""
@inputs: a 3-dimensional tensor (a batch), including [samples-index, frames-dim-index, frames-index]
"""
assert len(inputs.shape) == 3
assert inputs.shape[1] == self.input_dim
if self.pad:
inputs = F.pad(inputs, (-self.left_context, self.right_context),
mode='constant', value=0)
assert inputs.shape[2] >= self.tot_context
if not self.selected_device and self.mask is not None:
self.mask = to_device(self, self.mask)
self.selected_device = True
filters = (self.weight * self.mask if self.mask is not None else
self.weight)
if self.norm_w:
filters = F.normalize(filters, dim=1)
if self.norm_f:
inputs = F.normalize(inputs, dim=1)
outputs = F.conv1d(inputs, filters, self.bias, stride=self.stride,
padding=0, dilation=1, groups=self.groups)
return outputs
def extra_repr(self):
return (
'{input_dim}, {output_dim}, context={context}, bias={bool_bias}, stride={stride}, pad={pad}, groups={groups}, norm_w={norm_w}, norm_f={norm_f}'
.format(**self.__dict__))
@classmethod
def thop_count(self, m, x, y):
x = x[0]
kernel_ops = torch.zeros(m.weight.size()[2:]).numel()
bias_ops = 1 if m.bias is not None else 0
total_ops = y.nelement() * (m.input_dim * kernel_ops + bias_ops)
m.total_ops += torch.DoubleTensor([int(total_ops)])
class ChunkSeparationAffineNew(torch.nn.Module):
"""By this component, the chunk will be grouped to two parts, odd and even.
"""
def __init__(self, input_dim, output_dim, **options):
super(ChunkSeparationAffineNew, self).__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.odd = TdnnAffine(input_dim, output_dim // 2, stride=2, **options)
self.even = TdnnAffine(input_dim, output_dim // 2, stride=2, **options)
def forward(self, input_0):
primals_2 = self.odd.weight
primals_3 = self.odd.bias
primals_4 = self.even.weight
primals_5 = self.even.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| ishine/asv-subtools | ChunkSeparationAffine | false | 15,648 | [
"Apache-2.0"
]
| 370 | 597dcb29a772b8113dbe7ab64f0d4cc1da298707 | https://github.com/ishine/asv-subtools/tree/597dcb29a772b8113dbe7ab64f0d4cc1da298707 |
FocalLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/wu/cwulnfzawsraojxjhrosfetzxwwjffv77d4rvq534gvtlqi6vyp4.py
# Topologically Sorted Source Nodes: [mul_2, sub_2, mul_3, at, neg_2, input_1, log, mul, sub, sub_1, log_1, mul_1, add, cross_entropy, logpt, balanced_cross_entropy, pt, sub_3, pow_1, focal_loss, sum_1], Original ATen: [aten.mul, aten.rsub, aten.add, aten.neg, aten.clamp, aten.log, aten.exp, aten.pow, aten.sum]
# Source node to ATen node mapping:
# add => add
# at => add_1
# balanced_cross_entropy => mul_4
# cross_entropy => neg
# focal_loss => mul_5
# input_1 => clamp_max, clamp_min
# log => log
# log_1 => log_1
# logpt => neg_1
# mul => mul
# mul_1 => mul_1
# mul_2 => mul_2
# mul_3 => mul_3
# neg_2 => neg_2
# pow_1 => pow_1
# pt => exp
# sub => sub
# sub_1 => sub_1
# sub_2 => sub_2
# sub_3 => sub_3
# sum_1 => sum_1
# Graph fragment:
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, 0.25), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg1_1), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, 0.75), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %mul_3), kwargs = {})
# %neg_2 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%add_1,), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%arg0_1, 1e-07), kwargs = {})
# %clamp_max : [num_users=2] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 0.9999999), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%clamp_max,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, %log), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg1_1), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %clamp_max), kwargs = {})
# %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sub_1,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %log_1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%add,), kwargs = {})
# %neg_1 : [num_users=2] = call_function[target=torch.ops.aten.neg.default](args = (%neg,), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%neg_2, %neg_1), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg_1,), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %exp), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_3, 2), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_4, %pow_1), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_5,), kwargs = {})
triton_per_fused_add_clamp_exp_log_mul_neg_pow_rsub_sum_0 = async_compile.triton('triton_per_fused_add_clamp_exp_log_mul_neg_pow_rsub_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_clamp_exp_log_mul_neg_pow_rsub_sum_0', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_clamp_exp_log_mul_neg_pow_rsub_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp9 = tl.load(in_ptr1 + (r0), None)
tmp1 = 0.25
tmp2 = tmp0 * tmp1
tmp3 = 1.0
tmp4 = tmp3 - tmp0
tmp5 = 0.75
tmp6 = tmp4 * tmp5
tmp7 = tmp2 + tmp6
tmp8 = -tmp7
tmp10 = 1e-07
tmp11 = triton_helpers.maximum(tmp9, tmp10)
tmp12 = 0.9999999
tmp13 = triton_helpers.minimum(tmp11, tmp12)
tmp14 = tl_math.log(tmp13)
tmp15 = tmp0 * tmp14
tmp16 = tmp3 - tmp13
tmp17 = tl_math.log(tmp16)
tmp18 = tmp4 * tmp17
tmp19 = tmp15 + tmp18
tmp20 = -tmp19
tmp21 = -tmp20
tmp22 = tmp8 * tmp21
tmp23 = tl_math.exp(tmp21)
tmp24 = tmp3 - tmp23
tmp25 = tmp24 * tmp24
tmp26 = tmp22 * tmp25
tmp27 = tl.broadcast_to(tmp26, [RBLOCK])
tmp29 = triton_helpers.promote_to_tensor(tl.sum(tmp27, 0))
tl.store(out_ptr0 + (tl.full([1], 0, tl.int32)), tmp29, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
# Topologically Sorted Source Nodes: [mul_2, sub_2, mul_3, at, neg_2, input_1, log, mul, sub, sub_1, log_1, mul_1, add, cross_entropy, logpt, balanced_cross_entropy, pt, sub_3, pow_1, focal_loss, sum_1], Original ATen: [aten.mul, aten.rsub, aten.add, aten.neg, aten.clamp, aten.log, aten.exp, aten.pow, aten.sum]
stream0 = get_raw_stream(0)
triton_per_fused_add_clamp_exp_log_mul_neg_pow_rsub_sum_0.run(arg1_1, arg0_1, buf0, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class FocalLoss(nn.Module):
"""FocalLoss.
.. seealso::
Lin, Tsung-Yi, et al. "Focal loss for dense object detection."
Proceedings of the IEEE international conference on computer vision. 2017.
Args:
gamma (float): Value from 0 to 5, Control between easy background and hard ROI
training examples. If set to 0, equivalent to cross-entropy.
alpha (float): Value from 0 to 1, usually corresponding to the inverse of class frequency to address class
imbalance.
eps (float): Epsilon to avoid division by zero.
Attributes:
gamma (float): Value from 0 to 5, Control between easy background and hard ROI
training examples. If set to 0, equivalent to cross-entropy.
alpha (float): Value from 0 to 1, usually corresponding to the inverse of class frequency to address class
imbalance.
eps (float): Epsilon to avoid division by zero.
"""
def __init__(self, gamma=2, alpha=0.25, eps=1e-07):
super(FocalLoss, self).__init__()
self.gamma = gamma
self.alpha = alpha
self.eps = eps
def forward(self, input, target):
input = input.clamp(self.eps, 1.0 - self.eps)
cross_entropy = -(target * torch.log(input) + (1 - target) * torch.
log(1 - input))
logpt = -cross_entropy
pt = torch.exp(logpt)
at = self.alpha * target + (1 - self.alpha) * (1 - target)
balanced_cross_entropy = -at * logpt
focal_loss = balanced_cross_entropy * (1 - pt) ** self.gamma
return focal_loss.sum()
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_clamp_exp_log_mul_neg_pow_rsub_sum_0(in_ptr0,
in_ptr1, out_ptr0, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp9 = tl.load(in_ptr1 + r0, None)
tmp1 = 0.25
tmp2 = tmp0 * tmp1
tmp3 = 1.0
tmp4 = tmp3 - tmp0
tmp5 = 0.75
tmp6 = tmp4 * tmp5
tmp7 = tmp2 + tmp6
tmp8 = -tmp7
tmp10 = 1e-07
tmp11 = triton_helpers.maximum(tmp9, tmp10)
tmp12 = 0.9999999
tmp13 = triton_helpers.minimum(tmp11, tmp12)
tmp14 = tl_math.log(tmp13)
tmp15 = tmp0 * tmp14
tmp16 = tmp3 - tmp13
tmp17 = tl_math.log(tmp16)
tmp18 = tmp4 * tmp17
tmp19 = tmp15 + tmp18
tmp20 = -tmp19
tmp21 = -tmp20
tmp22 = tmp8 * tmp21
tmp23 = tl_math.exp(tmp21)
tmp24 = tmp3 - tmp23
tmp25 = tmp24 * tmp24
tmp26 = tmp22 * tmp25
tmp27 = tl.broadcast_to(tmp26, [RBLOCK])
tmp29 = triton_helpers.promote_to_tensor(tl.sum(tmp27, 0))
tl.store(out_ptr0 + tl.full([1], 0, tl.int32), tmp29, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
get_raw_stream(0)
triton_per_fused_add_clamp_exp_log_mul_neg_pow_rsub_sum_0[grid(1)](
arg1_1, arg0_1, buf0, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class FocalLossNew(nn.Module):
"""FocalLoss.
.. seealso::
Lin, Tsung-Yi, et al. "Focal loss for dense object detection."
Proceedings of the IEEE international conference on computer vision. 2017.
Args:
gamma (float): Value from 0 to 5, Control between easy background and hard ROI
training examples. If set to 0, equivalent to cross-entropy.
alpha (float): Value from 0 to 1, usually corresponding to the inverse of class frequency to address class
imbalance.
eps (float): Epsilon to avoid division by zero.
Attributes:
gamma (float): Value from 0 to 5, Control between easy background and hard ROI
training examples. If set to 0, equivalent to cross-entropy.
alpha (float): Value from 0 to 1, usually corresponding to the inverse of class frequency to address class
imbalance.
eps (float): Epsilon to avoid division by zero.
"""
def __init__(self, gamma=2, alpha=0.25, eps=1e-07):
super(FocalLossNew, self).__init__()
self.gamma = gamma
self.alpha = alpha
self.eps = eps
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| ivadomed-profile-analysis-project/ivadomed | FocalLoss | false | 15,649 | [
"MIT"
]
| 87 | 3b53e2cb2b210511943da439401e2471fd387876 | https://github.com/ivadomed-profile-analysis-project/ivadomed/tree/3b53e2cb2b210511943da439401e2471fd387876 |
L2loss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/4f/c4fdcypdrjhkjpkpyz6yljpxb3nxkbianvyy6aou5roe5l4nmyaw.py
# Topologically Sorted Source Nodes: [sub, pow_1, sum_1, truediv], Original ATen: [aten.sub, aten.pow, aten.sum, aten.div]
# Source node to ATen node mapping:
# pow_1 => pow_1
# sub => sub
# sum_1 => sum_1
# truediv => div
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%pow_1,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, 2), kwargs = {})
triton_per_fused_div_pow_sub_sum_0 = async_compile.triton('triton_per_fused_div_pow_sub_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_pow_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_div_pow_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr1 + (r0), None)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp4 = tl.broadcast_to(tmp3, [RBLOCK])
tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0))
tmp7 = 0.5
tmp8 = tmp6 * tmp7
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp8, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [sub, pow_1, sum_1, truediv], Original ATen: [aten.sub, aten.pow, aten.sum, aten.div]
stream0 = get_raw_stream(0)
triton_per_fused_div_pow_sub_sum_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class L2loss(nn.Module):
"""
Euclidean loss also known as L2 loss. Compute the sum of the squared difference between the two images.
"""
def __init__(self):
super(L2loss, self).__init__()
def forward(self, input, target):
return torch.sum((input - target) ** 2) / 2
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_div_pow_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1,
xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp4 = tl.broadcast_to(tmp3, [RBLOCK])
tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0))
tmp7 = 0.5
tmp8 = tmp6 * tmp7
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp8, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_div_pow_sub_sum_0[grid(1)](buf1, arg0_1, arg1_1, 1,
256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf1,
class L2lossNew(nn.Module):
"""
Euclidean loss also known as L2 loss. Compute the sum of the squared difference between the two images.
"""
def __init__(self):
super(L2lossNew, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| ivadomed-profile-analysis-project/ivadomed | L2loss | false | 15,650 | [
"MIT"
]
| 87 | 3b53e2cb2b210511943da439401e2471fd387876 | https://github.com/ivadomed-profile-analysis-project/ivadomed/tree/3b53e2cb2b210511943da439401e2471fd387876 |
SoftmaxAffineLayer | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/2t/c2ttlvr2ngdhjnhfyvr646edvmboep3mriwuj3ygccebcw6w3uev.py
# Topologically Sorted Source Nodes: [outputs, log_softmax], Original ATen: [aten.convolution, aten._log_softmax]
# Source node to ATen node mapping:
# log_softmax => exp, sum_1
# outputs => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1], [0], [1], False, [0], 1), kwargs = {})
# %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 1), kwargs = {})
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [1], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {})
# %div_tensor : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 1.0), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
triton_poi_fused__log_softmax_convolution_0 = async_compile.triton('triton_poi_fused__log_softmax_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_convolution_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_convolution_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (16*x1)), xmask)
tmp1 = tl.load(in_ptr1 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp6 = tl.load(in_ptr0 + (4 + x0 + (16*x1)), xmask)
tmp7 = tl.load(in_ptr1 + (1))
tmp8 = tl.broadcast_to(tmp7, [XBLOCK])
tmp12 = tl.load(in_ptr0 + (8 + x0 + (16*x1)), xmask)
tmp13 = tl.load(in_ptr1 + (2))
tmp14 = tl.broadcast_to(tmp13, [XBLOCK])
tmp18 = tl.load(in_ptr0 + (12 + x0 + (16*x1)), xmask)
tmp19 = tl.load(in_ptr1 + (3))
tmp20 = tl.broadcast_to(tmp19, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = 1.0
tmp5 = tmp3 * tmp4
tmp9 = tmp6 + tmp8
tmp10 = tmp9 * tmp4
tmp11 = triton_helpers.maximum(tmp5, tmp10)
tmp15 = tmp12 + tmp14
tmp16 = tmp15 * tmp4
tmp17 = triton_helpers.maximum(tmp11, tmp16)
tmp21 = tmp18 + tmp20
tmp22 = tmp21 * tmp4
tmp23 = triton_helpers.maximum(tmp17, tmp22)
tmp24 = tmp5 - tmp23
tmp25 = tmp24 * tmp4
tmp26 = tl_math.exp(tmp25)
tmp27 = tmp10 - tmp23
tmp28 = tmp27 * tmp4
tmp29 = tl_math.exp(tmp28)
tmp30 = tmp26 + tmp29
tmp31 = tmp16 - tmp23
tmp32 = tmp31 * tmp4
tmp33 = tl_math.exp(tmp32)
tmp34 = tmp30 + tmp33
tmp35 = tmp22 - tmp23
tmp36 = tmp35 * tmp4
tmp37 = tl_math.exp(tmp36)
tmp38 = tmp34 + tmp37
tl.store(out_ptr0 + (x2), tmp23, xmask)
tl.store(out_ptr1 + (x2), tmp38, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/nk/cnkyhgk4ekrtmfxabvrxv7cvf54d7vrdimis4qzz5tw33rjuejwh.py
# Topologically Sorted Source Nodes: [outputs, log_softmax], Original ATen: [aten.convolution, aten._log_softmax]
# Source node to ATen node mapping:
# log_softmax => log, sub_1
# outputs => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1], [0], [1], False, [0], 1), kwargs = {})
# %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 1), kwargs = {})
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [1], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {})
# %div_tensor : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 1.0), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%div_tensor, %log), kwargs = {})
triton_poi_fused__log_softmax_convolution_1 = async_compile.triton('triton_poi_fused__log_softmax_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_convolution_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 4) % 4
x0 = xindex % 4
x2 = (xindex // 16)
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (x0 + (4*x2)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr2 + (x0 + (4*x2)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tmp6 = tmp4 - tmp5
tmp7 = tmp6 * tmp3
tmp9 = tl_math.log(tmp8)
tmp10 = tmp7 - tmp9
tl.store(in_out_ptr0 + (x3), tmp10, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [outputs], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4), (16, 4, 1))
buf1 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32)
buf2 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [outputs, log_softmax], Original ATen: [aten.convolution, aten._log_softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__log_softmax_convolution_0.run(buf0, primals_3, buf1, buf2, 16, grid=grid(16), stream=stream0)
buf3 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [outputs, log_softmax], Original ATen: [aten.convolution, aten._log_softmax]
triton_poi_fused__log_softmax_convolution_1.run(buf3, primals_3, buf1, buf2, 64, grid=grid(64), stream=stream0)
del buf1
del buf2
del primals_3
return (buf3, primals_1, primals_2, buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn.functional as F
import torch.nn
def to_device(device_object, tensor):
"""
Select device for non-parameters tensor w.r.t model or tensor which has been specified a device.
"""
if isinstance(device_object, torch.nn.Module):
next(device_object.parameters()).device
elif isinstance(device_object, torch.Tensor):
pass
return tensor
class TdnnAffine(torch.nn.Module):
""" An implemented tdnn affine component by conv1d
y = splice(w * x, context) + b
@input_dim: number of dims of frame <=> inputs channels of conv
@output_dim: number of layer nodes <=> outputs channels of conv
@context: a list of context
e.g. [-2,0,2]
If context is [0], then the TdnnAffine is equal to linear layer.
"""
def __init__(self, input_dim, output_dim, context=[0], bias=True, pad=
True, stride=1, groups=1, norm_w=False, norm_f=False):
super(TdnnAffine, self).__init__()
assert input_dim % groups == 0
for index in range(0, len(context) - 1):
if context[index] >= context[index + 1]:
raise ValueError(
'Context tuple {} is invalid, such as the order.'.
format(context))
self.input_dim = input_dim
self.output_dim = output_dim
self.context = context
self.bool_bias = bias
self.pad = pad
self.groups = groups
self.norm_w = norm_w
self.norm_f = norm_f
self.stride = stride
self.left_context = context[0] if context[0] < 0 else 0
self.right_context = context[-1] if context[-1] > 0 else 0
self.tot_context = self.right_context - self.left_context + 1
if self.tot_context > 1 and self.norm_f:
self.norm_f = False
None
kernel_size = self.tot_context,
self.weight = torch.nn.Parameter(torch.randn(output_dim, input_dim //
groups, *kernel_size))
if self.bool_bias:
self.bias = torch.nn.Parameter(torch.randn(output_dim))
else:
self.register_parameter('bias', None)
self.init_weight()
if len(context) != self.tot_context:
self.mask = torch.tensor([[[(1 if index in context else 0) for
index in range(self.left_context, self.right_context + 1)]]])
else:
self.mask = None
self.selected_device = False
def init_weight(self):
torch.nn.init.normal_(self.weight, 0.0, 0.01)
if self.bias is not None:
torch.nn.init.constant_(self.bias, 0.0)
def forward(self, inputs):
"""
@inputs: a 3-dimensional tensor (a batch), including [samples-index, frames-dim-index, frames-index]
"""
assert len(inputs.shape) == 3
assert inputs.shape[1] == self.input_dim
if self.pad:
inputs = F.pad(inputs, (-self.left_context, self.right_context),
mode='constant', value=0)
assert inputs.shape[2] >= self.tot_context
if not self.selected_device and self.mask is not None:
self.mask = to_device(self, self.mask)
self.selected_device = True
filters = (self.weight * self.mask if self.mask is not None else
self.weight)
if self.norm_w:
filters = F.normalize(filters, dim=1)
if self.norm_f:
inputs = F.normalize(inputs, dim=1)
outputs = F.conv1d(inputs, filters, self.bias, stride=self.stride,
padding=0, dilation=1, groups=self.groups)
return outputs
def extra_repr(self):
return (
'{input_dim}, {output_dim}, context={context}, bias={bool_bias}, stride={stride}, pad={pad}, groups={groups}, norm_w={norm_w}, norm_f={norm_f}'
.format(**self.__dict__))
@classmethod
def thop_count(self, m, x, y):
x = x[0]
kernel_ops = torch.zeros(m.weight.size()[2:]).numel()
bias_ops = 1 if m.bias is not None else 0
total_ops = y.nelement() * (m.input_dim * kernel_ops + bias_ops)
m.total_ops += torch.DoubleTensor([int(total_ops)])
class SoftmaxAffineLayer(torch.nn.Module):
""" An usual 2-fold softmax layer with an affine transform.
@dim: which dim to apply softmax on
"""
def __init__(self, input_dim, output_dim, context=[0], dim=1, log=True,
bias=True, groups=1, t=1.0, special_init=False):
super(SoftmaxAffineLayer, self).__init__()
self.affine = TdnnAffine(input_dim, output_dim, context=context,
bias=bias, groups=groups)
self.t = t
if log:
self.softmax = torch.nn.LogSoftmax(dim=dim)
else:
self.softmax = torch.nn.Softmax(dim=dim)
if special_init:
torch.nn.init.xavier_uniform_(self.affine.weight, gain=torch.nn
.init.calculate_gain('sigmoid'))
def forward(self, inputs):
"""
@inputs: any, such as a 3-dimensional tensor (a batch), including [samples-index, frames-dim-index, frames-index]
"""
return self.softmax(self.affine(inputs) / self.t)
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'input_dim': 4, 'output_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn.functional as F
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__log_softmax_convolution_0(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 16 * x1), xmask)
tmp1 = tl.load(in_ptr1 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp6 = tl.load(in_ptr0 + (4 + x0 + 16 * x1), xmask)
tmp7 = tl.load(in_ptr1 + 1)
tmp8 = tl.broadcast_to(tmp7, [XBLOCK])
tmp12 = tl.load(in_ptr0 + (8 + x0 + 16 * x1), xmask)
tmp13 = tl.load(in_ptr1 + 2)
tmp14 = tl.broadcast_to(tmp13, [XBLOCK])
tmp18 = tl.load(in_ptr0 + (12 + x0 + 16 * x1), xmask)
tmp19 = tl.load(in_ptr1 + 3)
tmp20 = tl.broadcast_to(tmp19, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = 1.0
tmp5 = tmp3 * tmp4
tmp9 = tmp6 + tmp8
tmp10 = tmp9 * tmp4
tmp11 = triton_helpers.maximum(tmp5, tmp10)
tmp15 = tmp12 + tmp14
tmp16 = tmp15 * tmp4
tmp17 = triton_helpers.maximum(tmp11, tmp16)
tmp21 = tmp18 + tmp20
tmp22 = tmp21 * tmp4
tmp23 = triton_helpers.maximum(tmp17, tmp22)
tmp24 = tmp5 - tmp23
tmp25 = tmp24 * tmp4
tmp26 = tl_math.exp(tmp25)
tmp27 = tmp10 - tmp23
tmp28 = tmp27 * tmp4
tmp29 = tl_math.exp(tmp28)
tmp30 = tmp26 + tmp29
tmp31 = tmp16 - tmp23
tmp32 = tmp31 * tmp4
tmp33 = tl_math.exp(tmp32)
tmp34 = tmp30 + tmp33
tmp35 = tmp22 - tmp23
tmp36 = tmp35 * tmp4
tmp37 = tl_math.exp(tmp36)
tmp38 = tmp34 + tmp37
tl.store(out_ptr0 + x2, tmp23, xmask)
tl.store(out_ptr1 + x2, tmp38, xmask)
@triton.jit
def triton_poi_fused__log_softmax_convolution_1(in_out_ptr0, in_ptr0,
in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 4 % 4
x0 = xindex % 4
x2 = xindex // 16
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (x0 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp8 = tl.load(in_ptr2 + (x0 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tmp6 = tmp4 - tmp5
tmp7 = tmp6 * tmp3
tmp9 = tl_math.log(tmp8)
tmp10 = tmp7 - tmp9
tl.store(in_out_ptr0 + x3, tmp10, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,),
padding=(0,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4), (16, 4, 1))
buf1 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32)
buf2 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__log_softmax_convolution_0[grid(16)](buf0,
primals_3, buf1, buf2, 16, XBLOCK=16, num_warps=1, num_stages=1)
buf3 = buf0
del buf0
triton_poi_fused__log_softmax_convolution_1[grid(64)](buf3,
primals_3, buf1, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1)
del buf1
del buf2
del primals_3
return buf3, primals_1, primals_2, buf3
def to_device(device_object, tensor):
"""
Select device for non-parameters tensor w.r.t model or tensor which has been specified a device.
"""
if isinstance(device_object, torch.nn.Module):
next(device_object.parameters()).device
elif isinstance(device_object, torch.Tensor):
pass
return tensor
class TdnnAffine(torch.nn.Module):
""" An implemented tdnn affine component by conv1d
y = splice(w * x, context) + b
@input_dim: number of dims of frame <=> inputs channels of conv
@output_dim: number of layer nodes <=> outputs channels of conv
@context: a list of context
e.g. [-2,0,2]
If context is [0], then the TdnnAffine is equal to linear layer.
"""
def __init__(self, input_dim, output_dim, context=[0], bias=True, pad=
True, stride=1, groups=1, norm_w=False, norm_f=False):
super(TdnnAffine, self).__init__()
assert input_dim % groups == 0
for index in range(0, len(context) - 1):
if context[index] >= context[index + 1]:
raise ValueError(
'Context tuple {} is invalid, such as the order.'.
format(context))
self.input_dim = input_dim
self.output_dim = output_dim
self.context = context
self.bool_bias = bias
self.pad = pad
self.groups = groups
self.norm_w = norm_w
self.norm_f = norm_f
self.stride = stride
self.left_context = context[0] if context[0] < 0 else 0
self.right_context = context[-1] if context[-1] > 0 else 0
self.tot_context = self.right_context - self.left_context + 1
if self.tot_context > 1 and self.norm_f:
self.norm_f = False
None
kernel_size = self.tot_context,
self.weight = torch.nn.Parameter(torch.randn(output_dim, input_dim //
groups, *kernel_size))
if self.bool_bias:
self.bias = torch.nn.Parameter(torch.randn(output_dim))
else:
self.register_parameter('bias', None)
self.init_weight()
if len(context) != self.tot_context:
self.mask = torch.tensor([[[(1 if index in context else 0) for
index in range(self.left_context, self.right_context + 1)]]])
else:
self.mask = None
self.selected_device = False
def init_weight(self):
torch.nn.init.normal_(self.weight, 0.0, 0.01)
if self.bias is not None:
torch.nn.init.constant_(self.bias, 0.0)
def forward(self, inputs):
"""
@inputs: a 3-dimensional tensor (a batch), including [samples-index, frames-dim-index, frames-index]
"""
assert len(inputs.shape) == 3
assert inputs.shape[1] == self.input_dim
if self.pad:
inputs = F.pad(inputs, (-self.left_context, self.right_context),
mode='constant', value=0)
assert inputs.shape[2] >= self.tot_context
if not self.selected_device and self.mask is not None:
self.mask = to_device(self, self.mask)
self.selected_device = True
filters = (self.weight * self.mask if self.mask is not None else
self.weight)
if self.norm_w:
filters = F.normalize(filters, dim=1)
if self.norm_f:
inputs = F.normalize(inputs, dim=1)
outputs = F.conv1d(inputs, filters, self.bias, stride=self.stride,
padding=0, dilation=1, groups=self.groups)
return outputs
def extra_repr(self):
return (
'{input_dim}, {output_dim}, context={context}, bias={bool_bias}, stride={stride}, pad={pad}, groups={groups}, norm_w={norm_w}, norm_f={norm_f}'
.format(**self.__dict__))
@classmethod
def thop_count(self, m, x, y):
x = x[0]
kernel_ops = torch.zeros(m.weight.size()[2:]).numel()
bias_ops = 1 if m.bias is not None else 0
total_ops = y.nelement() * (m.input_dim * kernel_ops + bias_ops)
m.total_ops += torch.DoubleTensor([int(total_ops)])
class SoftmaxAffineLayerNew(torch.nn.Module):
""" An usual 2-fold softmax layer with an affine transform.
@dim: which dim to apply softmax on
"""
def __init__(self, input_dim, output_dim, context=[0], dim=1, log=True,
bias=True, groups=1, t=1.0, special_init=False):
super(SoftmaxAffineLayerNew, self).__init__()
self.affine = TdnnAffine(input_dim, output_dim, context=context,
bias=bias, groups=groups)
self.t = t
if log:
self.softmax = torch.nn.LogSoftmax(dim=dim)
else:
self.softmax = torch.nn.Softmax(dim=dim)
if special_init:
torch.nn.init.xavier_uniform_(self.affine.weight, gain=torch.nn
.init.calculate_gain('sigmoid'))
def forward(self, input_0):
primals_2 = self.affine.weight
primals_3 = self.affine.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| ishine/asv-subtools | SoftmaxAffineLayer | false | 15,651 | [
"Apache-2.0"
]
| 370 | 597dcb29a772b8113dbe7ab64f0d4cc1da298707 | https://github.com/ishine/asv-subtools/tree/597dcb29a772b8113dbe7ab64f0d4cc1da298707 |
TverskyLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/6b/c6buzk73ml4cn4qgfofpvbpedkpojxukecnqivpettwovefmugdm.py
# Topologically Sorted Source Nodes: [mul, tp, numerator, sub_1, mul_2, fp, mul_3, add_1, sub, mul_1, fn, mul_4, add_2, denominator, tversky_label, tversky_sum, mul_5, tp_1, numerator_1, sub_3, mul_7, fp_1, mul_8, add_6, sub_2, mul_6, fn_1, mul_9, add_7, denominator_1, tversky_label_1, tversky_sum_1, mul_10, tp_2, numerator_2, sub_5, mul_12, fp_2, mul_13, add_10, sub_4, mul_11, fn_2, mul_14, add_11, denominator_2, tversky_label_2, tversky_sum_2, mul_15, tp_3, numerator_3, sub_7, mul_17, fp_3, mul_18, add_14, sub_6, mul_16, fn_3, mul_19, add_15, denominator_3, tversky_label_3, tversky_sum_3, neg, truediv_4], Original ATen: [aten.mul, aten.sum, aten.add, aten.rsub, aten.div, aten.neg]
# Source node to ATen node mapping:
# add_1 => add_1
# add_10 => add_11
# add_11 => add_12
# add_14 => add_16
# add_15 => add_17
# add_2 => add_2
# add_6 => add_6
# add_7 => add_7
# denominator => add_3
# denominator_1 => add_8
# denominator_2 => add_13
# denominator_3 => add_18
# fn => sum_2
# fn_1 => sum_5
# fn_2 => sum_8
# fn_3 => sum_11
# fp => sum_3
# fp_1 => sum_6
# fp_2 => sum_9
# fp_3 => sum_12
# mul => mul
# mul_1 => mul_1
# mul_10 => mul_10
# mul_11 => mul_11
# mul_12 => mul_12
# mul_13 => mul_13
# mul_14 => mul_14
# mul_15 => mul_15
# mul_16 => mul_16
# mul_17 => mul_17
# mul_18 => mul_18
# mul_19 => mul_19
# mul_2 => mul_2
# mul_3 => mul_3
# mul_4 => mul_4
# mul_5 => mul_5
# mul_6 => mul_6
# mul_7 => mul_7
# mul_8 => mul_8
# mul_9 => mul_9
# neg => neg
# numerator => add
# numerator_1 => add_5
# numerator_2 => add_10
# numerator_3 => add_15
# sub => sub
# sub_1 => sub_1
# sub_2 => sub_2
# sub_3 => sub_3
# sub_4 => sub_4
# sub_5 => sub_5
# sub_6 => sub_6
# sub_7 => sub_7
# tp => sum_1
# tp_1 => sum_4
# tp_2 => sum_7
# tp_3 => sum_10
# truediv_4 => div_4
# tversky_label => div
# tversky_label_1 => div_1
# tversky_label_2 => div_2
# tversky_label_3 => div_3
# tversky_sum => add_4
# tversky_sum_1 => add_9
# tversky_sum_2 => add_14
# tversky_sum_3 => add_19
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_1, %select), kwargs = {})
# %sum_1 : [num_users=2] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, 1.0), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %select_1), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %select), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_2,), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_3, 0.7), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, %mul_3), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %select), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_1, %sub), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_1,), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_2, 0.3), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %mul_4), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, 1.0), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add, %add_3), kwargs = {})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div, 0.0), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_3, %select_2), kwargs = {})
# %sum_4 : [num_users=2] = call_function[target=torch.ops.aten.sum.default](args = (%mul_5,), kwargs = {})
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_4, 1.0), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %select_3), kwargs = {})
# %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, %select_2), kwargs = {})
# %sum_6 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_7,), kwargs = {})
# %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_6, 0.7), kwargs = {})
# %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_4, %mul_8), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %select_2), kwargs = {})
# %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_3, %sub_2), kwargs = {})
# %sum_5 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_6,), kwargs = {})
# %mul_9 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_5, 0.3), kwargs = {})
# %add_7 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_6, %mul_9), kwargs = {})
# %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_7, 1.0), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_5, %add_8), kwargs = {})
# %add_9 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_4, %div_1), kwargs = {})
# %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_5, %select_4), kwargs = {})
# %sum_7 : [num_users=2] = call_function[target=torch.ops.aten.sum.default](args = (%mul_10,), kwargs = {})
# %add_10 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_7, 1.0), kwargs = {})
# %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %select_5), kwargs = {})
# %mul_12 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_5, %select_4), kwargs = {})
# %sum_9 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_12,), kwargs = {})
# %mul_13 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_9, 0.7), kwargs = {})
# %add_11 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_7, %mul_13), kwargs = {})
# %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %select_4), kwargs = {})
# %mul_11 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_5, %sub_4), kwargs = {})
# %sum_8 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_11,), kwargs = {})
# %mul_14 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_8, 0.3), kwargs = {})
# %add_12 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_11, %mul_14), kwargs = {})
# %add_13 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_12, 1.0), kwargs = {})
# %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_10, %add_13), kwargs = {})
# %add_14 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_9, %div_2), kwargs = {})
# %mul_15 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_7, %select_6), kwargs = {})
# %sum_10 : [num_users=2] = call_function[target=torch.ops.aten.sum.default](args = (%mul_15,), kwargs = {})
# %add_15 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_10, 1.0), kwargs = {})
# %sub_7 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %select_7), kwargs = {})
# %mul_17 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_7, %select_6), kwargs = {})
# %sum_12 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_17,), kwargs = {})
# %mul_18 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_12, 0.7), kwargs = {})
# %add_16 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_10, %mul_18), kwargs = {})
# %sub_6 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %select_6), kwargs = {})
# %mul_16 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_7, %sub_6), kwargs = {})
# %sum_11 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_16,), kwargs = {})
# %mul_19 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_11, 0.3), kwargs = {})
# %add_17 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_16, %mul_19), kwargs = {})
# %add_18 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_17, 1.0), kwargs = {})
# %div_3 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_15, %add_18), kwargs = {})
# %add_19 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_14, %div_3), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%add_19,), kwargs = {})
# %div_4 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%neg, 4), kwargs = {})
triton_per_fused_add_div_mul_neg_rsub_sum_0 = async_compile.triton('triton_per_fused_add_div_mul_neg_rsub_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mul_neg_rsub_sum_0', 'mutated_arg_names': ['in_out_ptr1'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 12, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_mul_neg_rsub_sum_0(in_out_ptr1, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex % 16
r1 = (rindex // 16)
tmp0 = tl.load(in_ptr0 + (r0 + (64*r1)), None)
tmp1 = tl.load(in_ptr1 + (r0 + (64*r1)), None)
tmp17 = tl.load(in_ptr0 + (16 + r0 + (64*r1)), None)
tmp18 = tl.load(in_ptr1 + (16 + r0 + (64*r1)), None)
tmp33 = tl.load(in_ptr0 + (48 + r0 + (64*r1)), None)
tmp34 = tl.load(in_ptr1 + (48 + r0 + (64*r1)), None)
tmp49 = tl.load(in_ptr0 + (32 + r0 + (64*r1)), None)
tmp50 = tl.load(in_ptr1 + (32 + r0 + (64*r1)), None)
tmp2 = tmp0 * tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.sum(tmp3, 1)[:, None]
tmp6 = 1.0
tmp7 = tmp6 - tmp0
tmp8 = tmp7 * tmp1
tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK])
tmp11 = tl.sum(tmp9, 1)[:, None]
tmp12 = tmp6 - tmp1
tmp13 = tmp0 * tmp12
tmp14 = tl.broadcast_to(tmp13, [XBLOCK, RBLOCK])
tmp16 = tl.sum(tmp14, 1)[:, None]
tmp19 = tmp17 * tmp18
tmp20 = tl.broadcast_to(tmp19, [XBLOCK, RBLOCK])
tmp22 = tl.sum(tmp20, 1)[:, None]
tmp23 = tmp6 - tmp17
tmp24 = tmp23 * tmp18
tmp25 = tl.broadcast_to(tmp24, [XBLOCK, RBLOCK])
tmp27 = tl.sum(tmp25, 1)[:, None]
tmp28 = tmp6 - tmp18
tmp29 = tmp17 * tmp28
tmp30 = tl.broadcast_to(tmp29, [XBLOCK, RBLOCK])
tmp32 = tl.sum(tmp30, 1)[:, None]
tmp35 = tmp33 * tmp34
tmp36 = tl.broadcast_to(tmp35, [XBLOCK, RBLOCK])
tmp38 = tl.sum(tmp36, 1)[:, None]
tmp39 = tmp6 - tmp33
tmp40 = tmp39 * tmp34
tmp41 = tl.broadcast_to(tmp40, [XBLOCK, RBLOCK])
tmp43 = tl.sum(tmp41, 1)[:, None]
tmp44 = tmp6 - tmp34
tmp45 = tmp33 * tmp44
tmp46 = tl.broadcast_to(tmp45, [XBLOCK, RBLOCK])
tmp48 = tl.sum(tmp46, 1)[:, None]
tmp51 = tmp49 * tmp50
tmp52 = tl.broadcast_to(tmp51, [XBLOCK, RBLOCK])
tmp54 = tl.sum(tmp52, 1)[:, None]
tmp55 = tmp6 - tmp49
tmp56 = tmp55 * tmp50
tmp57 = tl.broadcast_to(tmp56, [XBLOCK, RBLOCK])
tmp59 = tl.sum(tmp57, 1)[:, None]
tmp60 = tmp6 - tmp50
tmp61 = tmp49 * tmp60
tmp62 = tl.broadcast_to(tmp61, [XBLOCK, RBLOCK])
tmp64 = tl.sum(tmp62, 1)[:, None]
tmp65 = tmp5 + tmp6
tmp66 = 0.7
tmp67 = tmp11 * tmp66
tmp68 = tmp5 + tmp67
tmp69 = 0.3
tmp70 = tmp16 * tmp69
tmp71 = tmp68 + tmp70
tmp72 = tmp71 + tmp6
tmp73 = tmp65 / tmp72
tmp74 = 0.0
tmp75 = tmp73 + tmp74
tmp76 = tmp22 + tmp6
tmp77 = tmp27 * tmp66
tmp78 = tmp22 + tmp77
tmp79 = tmp32 * tmp69
tmp80 = tmp78 + tmp79
tmp81 = tmp80 + tmp6
tmp82 = tmp76 / tmp81
tmp83 = tmp75 + tmp82
tmp84 = tmp54 + tmp6
tmp85 = tmp59 * tmp66
tmp86 = tmp54 + tmp85
tmp87 = tmp64 * tmp69
tmp88 = tmp86 + tmp87
tmp89 = tmp88 + tmp6
tmp90 = tmp84 / tmp89
tmp91 = tmp83 + tmp90
tmp92 = tmp38 + tmp6
tmp93 = tmp43 * tmp66
tmp94 = tmp38 + tmp93
tmp95 = tmp48 * tmp69
tmp96 = tmp94 + tmp95
tmp97 = tmp96 + tmp6
tmp98 = tmp92 / tmp97
tmp99 = tmp91 + tmp98
tmp100 = -tmp99
tmp101 = 0.25
tmp102 = tmp100 * tmp101
tl.debug_barrier()
tl.store(in_out_ptr1 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp102, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf10 = empty_strided_cuda((), (), torch.float32)
buf13 = buf10; del buf10 # reuse
# Topologically Sorted Source Nodes: [mul, tp, numerator, sub_1, mul_2, fp, mul_3, add_1, sub, mul_1, fn, mul_4, add_2, denominator, tversky_label, tversky_sum, mul_5, tp_1, numerator_1, sub_3, mul_7, fp_1, mul_8, add_6, sub_2, mul_6, fn_1, mul_9, add_7, denominator_1, tversky_label_1, tversky_sum_1, mul_10, tp_2, numerator_2, sub_5, mul_12, fp_2, mul_13, add_10, sub_4, mul_11, fn_2, mul_14, add_11, denominator_2, tversky_label_2, tversky_sum_2, mul_15, tp_3, numerator_3, sub_7, mul_17, fp_3, mul_18, add_14, sub_6, mul_16, fn_3, mul_19, add_15, denominator_3, tversky_label_3, tversky_sum_3, neg, truediv_4], Original ATen: [aten.mul, aten.sum, aten.add, aten.rsub, aten.div, aten.neg]
stream0 = get_raw_stream(0)
triton_per_fused_add_div_mul_neg_rsub_sum_0.run(buf13, arg1_1, arg0_1, 1, 64, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf13, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class TverskyLoss(nn.Module):
"""Tversky Loss.
.. seealso::
Salehi, Seyed Sadegh Mohseni, Deniz Erdogmus, and Ali Gholipour. "Tversky loss function for image segmentation
using 3D fully convolutional deep networks." International Workshop on Machine Learning in Medical Imaging.
Springer, Cham, 2017.
Args:
alpha (float): Weight of false positive voxels.
beta (float): Weight of false negative voxels.
smooth (float): Epsilon to avoid division by zero, when both Numerator and Denominator of Tversky are zeros.
Attributes:
alpha (float): Weight of false positive voxels.
beta (float): Weight of false negative voxels.
smooth (float): Epsilon to avoid division by zero, when both Numerator and Denominator of Tversky are zeros.
Notes:
- setting alpha=beta=0.5: Equivalent to DiceLoss.
- default parameters were suggested by https://arxiv.org/pdf/1706.05721.pdf .
"""
def __init__(self, alpha=0.7, beta=0.3, smooth=1.0):
super(TverskyLoss, self).__init__()
self.alpha = alpha
self.beta = beta
self.smooth = smooth
def tversky_index(self, y_pred, y_true):
"""Compute Tversky index.
Args:
y_pred (torch Tensor): Prediction.
y_true (torch Tensor): Target.
Returns:
float: Tversky index.
"""
y_true = y_true.float()
tp = torch.sum(y_true * y_pred)
fn = torch.sum(y_true * (1 - y_pred))
fp = torch.sum((1 - y_true) * y_pred)
numerator = tp + self.smooth
denominator = tp + self.alpha * fp + self.beta * fn + self.smooth
tversky_label = numerator / denominator
return tversky_label
def forward(self, input, target):
n_classes = input.shape[1]
tversky_sum = 0.0
for i_label in range(n_classes):
y_pred, y_true = input[:, i_label], target[:, i_label]
tversky_sum += self.tversky_index(y_pred, y_true)
return -tversky_sum / n_classes
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_div_mul_neg_rsub_sum_0(in_out_ptr1, in_ptr0,
in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex % 16
r1 = rindex // 16
tmp0 = tl.load(in_ptr0 + (r0 + 64 * r1), None)
tmp1 = tl.load(in_ptr1 + (r0 + 64 * r1), None)
tmp17 = tl.load(in_ptr0 + (16 + r0 + 64 * r1), None)
tmp18 = tl.load(in_ptr1 + (16 + r0 + 64 * r1), None)
tmp33 = tl.load(in_ptr0 + (48 + r0 + 64 * r1), None)
tmp34 = tl.load(in_ptr1 + (48 + r0 + 64 * r1), None)
tmp49 = tl.load(in_ptr0 + (32 + r0 + 64 * r1), None)
tmp50 = tl.load(in_ptr1 + (32 + r0 + 64 * r1), None)
tmp2 = tmp0 * tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.sum(tmp3, 1)[:, None]
tmp6 = 1.0
tmp7 = tmp6 - tmp0
tmp8 = tmp7 * tmp1
tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK])
tmp11 = tl.sum(tmp9, 1)[:, None]
tmp12 = tmp6 - tmp1
tmp13 = tmp0 * tmp12
tmp14 = tl.broadcast_to(tmp13, [XBLOCK, RBLOCK])
tmp16 = tl.sum(tmp14, 1)[:, None]
tmp19 = tmp17 * tmp18
tmp20 = tl.broadcast_to(tmp19, [XBLOCK, RBLOCK])
tmp22 = tl.sum(tmp20, 1)[:, None]
tmp23 = tmp6 - tmp17
tmp24 = tmp23 * tmp18
tmp25 = tl.broadcast_to(tmp24, [XBLOCK, RBLOCK])
tmp27 = tl.sum(tmp25, 1)[:, None]
tmp28 = tmp6 - tmp18
tmp29 = tmp17 * tmp28
tmp30 = tl.broadcast_to(tmp29, [XBLOCK, RBLOCK])
tmp32 = tl.sum(tmp30, 1)[:, None]
tmp35 = tmp33 * tmp34
tmp36 = tl.broadcast_to(tmp35, [XBLOCK, RBLOCK])
tmp38 = tl.sum(tmp36, 1)[:, None]
tmp39 = tmp6 - tmp33
tmp40 = tmp39 * tmp34
tmp41 = tl.broadcast_to(tmp40, [XBLOCK, RBLOCK])
tmp43 = tl.sum(tmp41, 1)[:, None]
tmp44 = tmp6 - tmp34
tmp45 = tmp33 * tmp44
tmp46 = tl.broadcast_to(tmp45, [XBLOCK, RBLOCK])
tmp48 = tl.sum(tmp46, 1)[:, None]
tmp51 = tmp49 * tmp50
tmp52 = tl.broadcast_to(tmp51, [XBLOCK, RBLOCK])
tmp54 = tl.sum(tmp52, 1)[:, None]
tmp55 = tmp6 - tmp49
tmp56 = tmp55 * tmp50
tmp57 = tl.broadcast_to(tmp56, [XBLOCK, RBLOCK])
tmp59 = tl.sum(tmp57, 1)[:, None]
tmp60 = tmp6 - tmp50
tmp61 = tmp49 * tmp60
tmp62 = tl.broadcast_to(tmp61, [XBLOCK, RBLOCK])
tmp64 = tl.sum(tmp62, 1)[:, None]
tmp65 = tmp5 + tmp6
tmp66 = 0.7
tmp67 = tmp11 * tmp66
tmp68 = tmp5 + tmp67
tmp69 = 0.3
tmp70 = tmp16 * tmp69
tmp71 = tmp68 + tmp70
tmp72 = tmp71 + tmp6
tmp73 = tmp65 / tmp72
tmp74 = 0.0
tmp75 = tmp73 + tmp74
tmp76 = tmp22 + tmp6
tmp77 = tmp27 * tmp66
tmp78 = tmp22 + tmp77
tmp79 = tmp32 * tmp69
tmp80 = tmp78 + tmp79
tmp81 = tmp80 + tmp6
tmp82 = tmp76 / tmp81
tmp83 = tmp75 + tmp82
tmp84 = tmp54 + tmp6
tmp85 = tmp59 * tmp66
tmp86 = tmp54 + tmp85
tmp87 = tmp64 * tmp69
tmp88 = tmp86 + tmp87
tmp89 = tmp88 + tmp6
tmp90 = tmp84 / tmp89
tmp91 = tmp83 + tmp90
tmp92 = tmp38 + tmp6
tmp93 = tmp43 * tmp66
tmp94 = tmp38 + tmp93
tmp95 = tmp48 * tmp69
tmp96 = tmp94 + tmp95
tmp97 = tmp96 + tmp6
tmp98 = tmp92 / tmp97
tmp99 = tmp91 + tmp98
tmp100 = -tmp99
tmp101 = 0.25
tmp102 = tmp100 * tmp101
tl.debug_barrier()
tl.store(in_out_ptr1 + tl.full([XBLOCK, 1], 0, tl.int32), tmp102, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf10 = empty_strided_cuda((), (), torch.float32)
buf13 = buf10
del buf10
get_raw_stream(0)
triton_per_fused_add_div_mul_neg_rsub_sum_0[grid(1)](buf13, arg1_1,
arg0_1, 1, 64, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf13,
class TverskyLossNew(nn.Module):
"""Tversky Loss.
.. seealso::
Salehi, Seyed Sadegh Mohseni, Deniz Erdogmus, and Ali Gholipour. "Tversky loss function for image segmentation
using 3D fully convolutional deep networks." International Workshop on Machine Learning in Medical Imaging.
Springer, Cham, 2017.
Args:
alpha (float): Weight of false positive voxels.
beta (float): Weight of false negative voxels.
smooth (float): Epsilon to avoid division by zero, when both Numerator and Denominator of Tversky are zeros.
Attributes:
alpha (float): Weight of false positive voxels.
beta (float): Weight of false negative voxels.
smooth (float): Epsilon to avoid division by zero, when both Numerator and Denominator of Tversky are zeros.
Notes:
- setting alpha=beta=0.5: Equivalent to DiceLoss.
- default parameters were suggested by https://arxiv.org/pdf/1706.05721.pdf .
"""
def __init__(self, alpha=0.7, beta=0.3, smooth=1.0):
super(TverskyLossNew, self).__init__()
self.alpha = alpha
self.beta = beta
self.smooth = smooth
def tversky_index(self, y_pred, y_true):
"""Compute Tversky index.
Args:
y_pred (torch Tensor): Prediction.
y_true (torch Tensor): Target.
Returns:
float: Tversky index.
"""
y_true = y_true.float()
tp = torch.sum(y_true * y_pred)
fn = torch.sum(y_true * (1 - y_pred))
fp = torch.sum((1 - y_true) * y_pred)
numerator = tp + self.smooth
denominator = tp + self.alpha * fp + self.beta * fn + self.smooth
tversky_label = numerator / denominator
return tversky_label
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| ivadomed-profile-analysis-project/ivadomed | TverskyLoss | false | 15,652 | [
"MIT"
]
| 87 | 3b53e2cb2b210511943da439401e2471fd387876 | https://github.com/ivadomed-profile-analysis-project/ivadomed/tree/3b53e2cb2b210511943da439401e2471fd387876 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.