entry_point
stringlengths 1
65
| original_triton_code
stringlengths 4.5k
619k
| python_code
stringlengths 208
60.9k
| triton_code
stringlengths 1.15k
275k
| repo_name
stringlengths 7
115
| module_name
stringlengths 1
65
| synthetic
bool 1
class | uuid
int64 0
18.5k
| licenses
listlengths 1
6
| stars
int64 0
19.8k
| sha
stringlengths 40
40
| repo_link
stringlengths 72
180
|
---|---|---|---|---|---|---|---|---|---|---|---|
LBM
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/sp/cspxk6oul7asggexfh7asqmhytodxgob2ixo676bwdg4ecazywmj.py
# Topologically Sorted Source Nodes: [exp], Original ATen: [aten.exp]
# Source node to ATen node mapping:
# exp => exp
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%view_2,), kwargs = {})
triton_poi_fused_exp_0 = async_compile.triton('triton_poi_fused_exp_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_exp_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_exp_0(in_out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl_math.exp(tmp0)
tl.store(in_out_ptr0 + (x0), tmp1, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (1, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [bilinear], Original ATen: [aten._trilinear]
buf0 = torch.ops.aten._trilinear.default(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), primals_1, reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), [1, 3], [0], [1, 2], [2, 3])
del primals_1
buf1 = buf0
del buf0
buf2 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [exp], Original ATen: [aten.exp]
stream0 = get_raw_stream(0)
triton_poi_fused_exp_0.run(buf2, 64, grid=grid(64), stream=stream0)
return (buf2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((1, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class LBM(nn.Module):
def __init__(self, l_dim, r_dim):
super(LBM, self).__init__()
self.W = nn.Bilinear(l_dim, r_dim, 1, bias=False)
def forward(self, e1, e2):
"""
e1: tensor of size (*, l_dim)
e2: tensor of size (*, r_dim)
return: tensor of size (*, 1)
"""
return torch.exp(self.W(e1, e2))
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'l_dim': 4, 'r_dim': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_exp_0(in_out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl_math.exp(tmp0)
tl.store(in_out_ptr0 + x0, tmp1, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (1, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = torch.ops.aten._trilinear.default(reinterpret_tensor(
primals_3, (64, 4), (4, 1), 0), primals_1, reinterpret_tensor(
primals_2, (64, 4), (4, 1), 0), [1, 3], [0], [1, 2], [2, 3])
del primals_1
buf1 = buf0
del buf0
buf2 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf1
get_raw_stream(0)
triton_poi_fused_exp_0[grid(64)](buf2, 64, XBLOCK=64, num_warps=1,
num_stages=1)
return buf2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), buf2
class LBMNew(nn.Module):
def __init__(self, l_dim, r_dim):
super(LBMNew, self).__init__()
self.W = nn.Bilinear(l_dim, r_dim, 1, bias=False)
def forward(self, input_0, input_1):
primals_1 = self.W.weight
primals_2 = input_0
primals_3 = input_1
output = call([primals_1, primals_2, primals_3])
return output[0]
|
aryaman4/TaxoExpan
|
LBM
| false | 9,785 |
[
"Apache-2.0"
] | 0 |
3d9b9a21ba7cdd872dc62181dd14ff271e20b245
|
https://github.com/aryaman4/TaxoExpan/tree/3d9b9a21ba7cdd872dc62181dd14ff271e20b245
|
depthwise_conv
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/h3/ch3jaerz3yy2cwhlkdxgu5zovr4b3pud2kkovjsigzdkknwn2xvn.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x_1 => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%view, %primals_2, %primals_3, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tl.store(in_out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, 1, 3, 3), (9, 9, 3, 1))
assert_size_stride(primals_3, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(reinterpret_tensor(primals_1, (16, 1, 4, 4), (16, 16, 4, 1), 0), primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (16, 1, 4, 4), (16, 16, 4, 1))
buf1 = reinterpret_tensor(buf0, (16, 1, 4, 4), (16, 1, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(buf1, primals_3, 256, grid=grid(256), stream=stream0)
del primals_3
return (reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0), primals_2, reinterpret_tensor(primals_1, (16, 1, 4, 4), (16, 16, 4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.utils.data
class depthwise_conv(nn.Module):
def __init__(self, kernel_size=3, stride=1, padding=1):
super(depthwise_conv, self).__init__()
self.depthwise = nn.Conv2d(1, 1, kernel_size=kernel_size, stride=
stride, padding=padding)
def forward(self, x):
C, H, W = x.shape[1:]
x = x.reshape(-1, 1, H, W)
x = self.depthwise(x)
x = x.view(-1, C, H, W)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tl.store(in_out_ptr0 + x0, tmp3, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, 1, 3, 3), (9, 9, 3, 1))
assert_size_stride(primals_3, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(reinterpret_tensor(primals_1, (16,
1, 4, 4), (16, 16, 4, 1), 0), primals_2, stride=(1, 1), padding
=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0,
0), groups=1, bias=None)
assert_size_stride(buf0, (16, 1, 4, 4), (16, 16, 4, 1))
buf1 = reinterpret_tensor(buf0, (16, 1, 4, 4), (16, 1, 4, 1), 0)
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(256)](buf1, primals_3, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_3
return reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0
), primals_2, reinterpret_tensor(primals_1, (16, 1, 4, 4), (16, 16,
4, 1), 0)
class depthwise_convNew(nn.Module):
def __init__(self, kernel_size=3, stride=1, padding=1):
super(depthwise_convNew, self).__init__()
self.depthwise = nn.Conv2d(1, 1, kernel_size=kernel_size, stride=
stride, padding=padding)
def forward(self, input_0):
primals_2 = self.depthwise.weight
primals_3 = self.depthwise.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
Zacchaeus14/lang-seg
|
depthwise_conv
| false | 9,786 |
[
"MIT"
] | 0 |
ad1196a4d33830f3219dbe2260a69364a745f094
|
https://github.com/Zacchaeus14/lang-seg/tree/ad1196a4d33830f3219dbe2260a69364a745f094
|
GramMatrix
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/is/cisapkt44fpo5wqfnkix2in7s65orb7574hzyi6bjpkccirc7pcb.py
# Topologically Sorted Source Nodes: [div], Original ATen: [aten.div]
# Source node to ATen node mapping:
# div => div
# Graph fragment:
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mm, 256), kwargs = {})
triton_poi_fused_div_0 = async_compile.triton('triton_poi_fused_div_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_0(in_out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = 0.00390625
tmp2 = tmp0 * tmp1
tl.store(in_out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 16), (16, 1), torch.float32)
# Topologically Sorted Source Nodes: [G], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(arg0_1, (16, 16), (16, 1), 0), reinterpret_tensor(arg0_1, (16, 16), (1, 16), 0), out=buf0)
del arg0_1
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [div], Original ATen: [aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_div_0.run(buf1, 256, grid=grid(256), stream=stream0)
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class GramMatrix(nn.Module):
def forward(self, input):
a, b, c, d = input.size()
features = input.view(a * b, c * d)
G = torch.mm(features, features.t())
return G.div(a * b * c * d)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_div_0(in_out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = 0.00390625
tmp2 = tmp0 * tmp1
tl.store(in_out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 16), (16, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(arg0_1, (16, 16), (16, 1), 0),
reinterpret_tensor(arg0_1, (16, 16), (1, 16), 0), out=buf0)
del arg0_1
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_div_0[grid(256)](buf1, 256, XBLOCK=256, num_warps=
4, num_stages=1)
return buf1,
class GramMatrixNew(nn.Module):
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
bigsshark/mycode
|
GramMatrix
| false | 9,787 |
[
"MIT"
] | 0 |
550e58675cd533265b6a21258aa7bc1859191011
|
https://github.com/bigsshark/mycode/tree/550e58675cd533265b6a21258aa7bc1859191011
|
RBF_activation
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/tu/ctucigkl6fla4wdq57jcyvpj4uoz5orsck35rpm2ivtmyjrqp6dy.py
# Topologically Sorted Source Nodes: [s2, diff, mul, sqrt, truediv, mul_1, neg, mul_2, truediv_1, exp_1, x], Original ATen: [aten.exp, aten.sub, aten.mul, aten.sqrt, aten.reciprocal, aten.neg, aten.div]
# Source node to ATen node mapping:
# diff => sub
# exp_1 => exp_1
# mul => mul
# mul_1 => mul_2
# mul_2 => mul_3
# neg => neg
# s2 => exp
# sqrt => sqrt
# truediv => mul_1, reciprocal
# truediv_1 => div
# x => mul_4
# Graph fragment:
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%expand_1,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_2, %expand), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%exp, 6.283185307179586), kwargs = {})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%mul,), kwargs = {})
# %reciprocal : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%sqrt,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal, 1), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %sub), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%mul_2,), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%exp, 2), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%neg, %mul_3), kwargs = {})
# %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%div,), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %exp_1), kwargs = {})
triton_poi_fused_div_exp_mul_neg_reciprocal_sqrt_sub_0 = async_compile.triton('triton_poi_fused_div_exp_mul_neg_reciprocal_sqrt_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_exp_mul_neg_reciprocal_sqrt_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_exp_mul_neg_reciprocal_sqrt_sub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr1 + (x2), xmask)
tmp10 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp1 = tl_math.exp(tmp0)
tmp2 = 6.283185307179586
tmp3 = tmp1 * tmp2
tmp4 = libdevice.sqrt(tmp3)
tmp5 = tl.full([1], 1, tl.int32)
tmp6 = tmp5 / tmp4
tmp7 = 1.0
tmp8 = tmp6 * tmp7
tmp11 = tmp9 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = -tmp12
tmp14 = 2.0
tmp15 = tmp1 * tmp14
tmp16 = tmp13 / tmp15
tmp17 = tl_math.exp(tmp16)
tmp18 = tmp8 * tmp17
tl.store(out_ptr0 + (x2), tmp18, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, ), (1, ))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [s2, diff, mul, sqrt, truediv, mul_1, neg, mul_2, truediv_1, exp_1, x], Original ATen: [aten.exp, aten.sub, aten.mul, aten.sqrt, aten.reciprocal, aten.neg, aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_div_exp_mul_neg_reciprocal_sqrt_sub_0.run(primals_3, primals_2, primals_1, buf0, 256, grid=grid(256), stream=stream0)
return (buf0, primals_1, primals_2, primals_3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import numpy as np
import torch.nn as nn
class RBF_activation(torch.nn.Module):
def __init__(self, input_features):
super(RBF_activation, self).__init__()
self.input_features = input_features
self.centers = nn.Parameter(torch.ones(input_features))
self.log_sigma2 = nn.Parameter(torch.ones(input_features) * -0.2)
self.pi = np.pi
def forward(self, x):
mus = self.centers.expand_as(x)
s2 = torch.exp(self.log_sigma2.expand_as(x))
diff = x - mus
x = 1 / torch.sqrt(2 * self.pi * s2) * torch.exp(-torch.mul(diff,
diff) / (2 * s2))
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_features': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import numpy as np
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_div_exp_mul_neg_reciprocal_sqrt_sub_0(in_ptr0, in_ptr1,
in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr1 + x2, xmask)
tmp10 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp1 = tl_math.exp(tmp0)
tmp2 = 6.283185307179586
tmp3 = tmp1 * tmp2
tmp4 = libdevice.sqrt(tmp3)
tmp5 = tl.full([1], 1, tl.int32)
tmp6 = tmp5 / tmp4
tmp7 = 1.0
tmp8 = tmp6 * tmp7
tmp11 = tmp9 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = -tmp12
tmp14 = 2.0
tmp15 = tmp1 * tmp14
tmp16 = tmp13 / tmp15
tmp17 = tl_math.exp(tmp16)
tmp18 = tmp8 * tmp17
tl.store(out_ptr0 + x2, tmp18, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4,), (1,))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_div_exp_mul_neg_reciprocal_sqrt_sub_0[grid(256)](
primals_3, primals_2, primals_1, buf0, 256, XBLOCK=128,
num_warps=4, num_stages=1)
return buf0, primals_1, primals_2, primals_3
class RBF_activationNew(torch.nn.Module):
def __init__(self, input_features):
super(RBF_activationNew, self).__init__()
self.input_features = input_features
self.centers = nn.Parameter(torch.ones(input_features))
self.log_sigma2 = nn.Parameter(torch.ones(input_features) * -0.2)
self.pi = np.pi
def forward(self, input_0):
primals_1 = self.centers
primals_3 = self.log_sigma2
primals_2 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
bkompa/PyTorch_CIFAR10_GAU
|
RBF_activation
| false | 9,789 |
[
"MIT"
] | 0 |
2c6da19b251a9536167df473dabcb5cc34c66133
|
https://github.com/bkompa/PyTorch_CIFAR10_GAU/tree/2c6da19b251a9536167df473dabcb5cc34c66133
|
ConditionalBatchNorm2d
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/7h/c7h472oam6vlzx7yb5mtc3kdy3p5vvd7jgap45mgevlf5geawq4f.py
# Topologically Sorted Source Nodes: [matmul, norm], Original ATen: [aten.mv, aten.linalg_vector_norm]
# Source node to ATen node mapping:
# matmul => mul_2, sum_1
# norm => pow_1, sum_2
# Graph fragment:
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%permute, %primals_4), kwargs = {})
# %sum_1 : [num_users=2] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_2, [1]), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 2), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, None), kwargs = {})
triton_per_fused_linalg_vector_norm_mv_0 = async_compile.triton('triton_per_fused_linalg_vector_norm_mv_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 4],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=(4,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_linalg_vector_norm_mv_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_linalg_vector_norm_mv_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr1 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = tl.load(in_ptr0 + (4 + r0), None)
tmp5 = tl.load(in_ptr1 + (1))
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp9 = tl.load(in_ptr0 + (8 + r0), None)
tmp10 = tl.load(in_ptr1 + (2))
tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK])
tmp14 = tl.load(in_ptr0 + (12 + r0), None)
tmp15 = tl.load(in_ptr1 + (3))
tmp16 = tl.broadcast_to(tmp15, [XBLOCK, RBLOCK])
tmp3 = tmp0 * tmp2
tmp7 = tmp4 * tmp6
tmp8 = tmp3 + tmp7
tmp12 = tmp9 * tmp11
tmp13 = tmp8 + tmp12
tmp17 = tmp14 * tmp16
tmp18 = tmp13 + tmp17
tmp19 = tmp18 * tmp18
tmp20 = tl.broadcast_to(tmp19, [XBLOCK, RBLOCK])
tmp22 = tl.sum(tmp20, 1)[:, None]
tl.store(out_ptr0 + (tl.broadcast_to(r0, [XBLOCK, RBLOCK])), tmp18, None)
tl.store(out_ptr1 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp22, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/vn/cvni2qgjd2juowltkhd53nvyjor5s5rs2db3273tfh2p6in366cc.py
# Topologically Sorted Source Nodes: [norm, add, v, matmul_1, norm_1, add_1, u, sigma], Original ATen: [aten.linalg_vector_norm, aten.add, aten.div, aten.mv, aten.dot]
# Source node to ATen node mapping:
# add => add_1
# add_1 => add_2
# matmul_1 => mul_3, sum_3
# norm => pow_2
# norm_1 => pow_3, pow_4, sum_4
# sigma => mul_5, sum_6
# u => div_1
# v => div
# Graph fragment:
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_2, 0.5), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_2, 0.0001), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %add_1), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %div), kwargs = {})
# %sum_3 : [num_users=3] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_3, [1]), kwargs = {})
# %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_3, 2), kwargs = {})
# %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_3, None), kwargs = {})
# %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_4, 0.5), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_4, 0.0001), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_3, %add_2), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_1, %sum_3), kwargs = {})
# %sum_6 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_5,), kwargs = {})
triton_per_fused_add_div_dot_linalg_vector_norm_mv_1 = async_compile.triton('triton_per_fused_add_div_dot_linalg_vector_norm_mv_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 4],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=(4,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_dot_linalg_vector_norm_mv_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_dot_linalg_vector_norm_mv_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (4*r0), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp3 = tl.load(in_ptr2 + (0))
tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp10 = tl.load(in_ptr0 + (1 + (4*r0)), None, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr1 + (1))
tmp12 = tl.broadcast_to(tmp11, [XBLOCK, RBLOCK])
tmp16 = tl.load(in_ptr0 + (2 + (4*r0)), None, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr1 + (2))
tmp18 = tl.broadcast_to(tmp17, [XBLOCK, RBLOCK])
tmp22 = tl.load(in_ptr0 + (3 + (4*r0)), None, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr1 + (3))
tmp24 = tl.broadcast_to(tmp23, [XBLOCK, RBLOCK])
tmp5 = libdevice.sqrt(tmp4)
tmp6 = 0.0001
tmp7 = tmp5 + tmp6
tmp8 = tmp2 / tmp7
tmp9 = tmp0 * tmp8
tmp13 = tmp12 / tmp7
tmp14 = tmp10 * tmp13
tmp15 = tmp9 + tmp14
tmp19 = tmp18 / tmp7
tmp20 = tmp16 * tmp19
tmp21 = tmp15 + tmp20
tmp25 = tmp24 / tmp7
tmp26 = tmp22 * tmp25
tmp27 = tmp21 + tmp26
tmp28 = tmp27 * tmp27
tmp29 = tl.broadcast_to(tmp28, [XBLOCK, RBLOCK])
tmp31 = tl.sum(tmp29, 1)[:, None]
tmp32 = libdevice.sqrt(tmp31)
tmp33 = tmp32 + tmp6
tmp34 = tmp27 / tmp33
tmp35 = tmp34 * tmp27
tmp36 = tl.broadcast_to(tmp35, [XBLOCK, RBLOCK])
tmp38 = tl.sum(tmp36, 1)[:, None]
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp38, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/qa/cqacjmg5thruiiympgmeg563tgu547tvricd27codfxv36x3vdcv.py
# Topologically Sorted Source Nodes: [truediv_2], Original ATen: [aten.div]
# Source node to ATen node mapping:
# truediv_2 => div_2
# Graph fragment:
# %div_2 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_5, %expand), kwargs = {})
triton_poi_fused_div_2 = async_compile.triton('triton_poi_fused_div_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 / tmp2
tl.store(out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/7p/c7pbdjyinlr4jzoslxhdn74su3e6kah3nd373g2lidkiorfsskik.py
# Topologically Sorted Source Nodes: [out, mul, out_1], Original ATen: [aten._native_batch_norm_legit_no_training, aten.mul, aten.add]
# Source node to ATen node mapping:
# mul => mul_10
# out => mul_1, sub
# out_1 => add_6
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %unsqueeze_1), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %unsqueeze_3), kwargs = {})
# %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_6, %mul_1), kwargs = {})
# %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_10, %view_7), kwargs = {})
triton_poi_fused__native_batch_norm_legit_no_training_add_mul_3 = async_compile.triton('triton_poi_fused__native_batch_norm_legit_no_training_add_mul_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__native_batch_norm_legit_no_training_add_mul_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__native_batch_norm_legit_no_training_add_mul_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = (xindex // 16)
x4 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_ptr0 + (x3), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x4), None)
tmp4 = tl.load(in_ptr2 + (x1), None, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr3 + (x1), None, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr4 + (x3), None, eviction_policy='evict_last')
tmp1 = 1.0
tmp2 = tmp0 + tmp1
tmp5 = tmp3 - tmp4
tmp7 = 0.0001
tmp8 = tmp6 + tmp7
tmp9 = libdevice.sqrt(tmp8)
tmp10 = tl.full([1], 1, tl.int32)
tmp11 = tmp10 / tmp9
tmp12 = tmp11 * tmp1
tmp13 = tmp5 * tmp12
tmp14 = tmp2 * tmp13
tmp16 = tmp14 + tmp15
tl.store(out_ptr0 + (x4), tmp16, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args
args.clear()
assert_size_stride(primals_1, (64, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, ), (1, ), torch.float32)
buf1 = empty_strided_cuda((), (), torch.float32)
# Topologically Sorted Source Nodes: [matmul, norm], Original ATen: [aten.mv, aten.linalg_vector_norm]
stream0 = get_raw_stream(0)
triton_per_fused_linalg_vector_norm_mv_0.run(primals_5, primals_4, buf0, buf1, 1, 4, grid=grid(1), stream=stream0)
buf3 = empty_strided_cuda((), (), torch.float32)
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [norm, add, v, matmul_1, norm_1, add_1, u, sigma], Original ATen: [aten.linalg_vector_norm, aten.add, aten.div, aten.mv, aten.dot]
triton_per_fused_add_div_dot_linalg_vector_norm_mv_1.run(buf4, primals_5, buf0, buf1, 1, 4, grid=grid(1), stream=stream0)
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [truediv_2], Original ATen: [aten.div]
triton_poi_fused_div_2.run(primals_5, buf4, buf5, 16, grid=grid(16), stream=stream0)
buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(buf5, (4, 4), (1, 4), 0), out=buf6)
buf7 = buf0; del buf0 # reuse
buf8 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [matmul_2, norm_2], Original ATen: [aten.mv, aten.linalg_vector_norm]
triton_per_fused_linalg_vector_norm_mv_0.run(primals_8, primals_7, buf7, buf8, 1, 4, grid=grid(1), stream=stream0)
buf10 = buf1; del buf1 # reuse
buf11 = buf10; del buf10 # reuse
# Topologically Sorted Source Nodes: [norm_2, add_3, v_1, matmul_3, norm_3, add_4, u_1, sigma_1], Original ATen: [aten.linalg_vector_norm, aten.add, aten.div, aten.mv, aten.dot]
triton_per_fused_add_div_dot_linalg_vector_norm_mv_1.run(buf11, primals_8, buf7, buf8, 1, 4, grid=grid(1), stream=stream0)
del buf7
del buf8
buf12 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [truediv_5], Original ATen: [aten.div]
triton_poi_fused_div_2.run(primals_8, buf11, buf12, 16, grid=grid(16), stream=stream0)
del buf11
buf13 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [beta], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(buf12, (4, 4), (1, 4), 0), out=buf13)
buf14 = empty_strided_cuda((64, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out, mul, out_1], Original ATen: [aten._native_batch_norm_legit_no_training, aten.mul, aten.add]
triton_poi_fused__native_batch_norm_legit_no_training_add_mul_3.run(buf6, primals_1, primals_2, primals_3, buf13, buf14, 4096, grid=grid(4096), stream=stream0)
del buf13
del buf6
return (buf14, buf5, buf12, primals_1, primals_2, primals_3, primals_4, primals_5, primals_7, primals_8, reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((64, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
from torch.nn import Parameter
def l2normalize(v, eps=0.0001):
return v / (v.norm() + eps)
class SpectralNorm(nn.Module):
def __init__(self, module, name='weight', power_iterations=1):
super(SpectralNorm, self).__init__()
self.module = module
self.name = name
self.power_iterations = power_iterations
if not self._made_params():
self._make_params()
def _update_u_v(self):
u = getattr(self.module, self.name + '_u')
v = getattr(self.module, self.name + '_v')
w = getattr(self.module, self.name + '_bar')
height = w.data.shape[0]
_w = w.view(height, -1)
for _ in range(self.power_iterations):
v = l2normalize(torch.matmul(_w.t(), u))
u = l2normalize(torch.matmul(_w, v))
sigma = u.dot(_w.mv(v))
setattr(self.module, self.name, w / sigma.expand_as(w))
def _made_params(self):
try:
getattr(self.module, self.name + '_u')
getattr(self.module, self.name + '_v')
getattr(self.module, self.name + '_bar')
return True
except AttributeError:
return False
def _make_params(self):
w = getattr(self.module, self.name)
height = w.data.shape[0]
w.view(height, -1).data.shape[1]
u = Parameter(w.data.new(height).normal_(0, 1), requires_grad=False)
v = Parameter(w.data.new(height).normal_(0, 1), requires_grad=False)
u.data = l2normalize(u.data)
v.data = l2normalize(v.data)
w_bar = Parameter(w.data)
del self.module._parameters[self.name]
self.module.register_parameter(self.name + '_u', u)
self.module.register_parameter(self.name + '_v', v)
self.module.register_parameter(self.name + '_bar', w_bar)
def forward(self, *args):
self._update_u_v()
return self.module.forward(*args)
class ConditionalBatchNorm2d(nn.Module):
def __init__(self, num_features, num_classes, eps=0.0001, momentum=0.1):
super().__init__()
self.num_features = num_features
self.bn = nn.BatchNorm2d(num_features, affine=False, eps=eps,
momentum=momentum)
self.gamma_embed = SpectralNorm(nn.Linear(num_classes, num_features,
bias=False))
self.beta_embed = SpectralNorm(nn.Linear(num_classes, num_features,
bias=False))
def forward(self, x, y):
out = self.bn(x)
gamma = self.gamma_embed(y) + 1
beta = self.beta_embed(y)
out = gamma.view(-1, self.num_features, 1, 1) * out + beta.view(-1,
self.num_features, 1, 1)
return out
def get_inputs():
return [torch.rand([64, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'num_features': 4, 'num_classes': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
from torch.nn import Parameter
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_linalg_vector_norm_mv_0(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = tl.load(in_ptr0 + (4 + r0), None)
tmp5 = tl.load(in_ptr1 + 1)
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp9 = tl.load(in_ptr0 + (8 + r0), None)
tmp10 = tl.load(in_ptr1 + 2)
tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK])
tmp14 = tl.load(in_ptr0 + (12 + r0), None)
tmp15 = tl.load(in_ptr1 + 3)
tmp16 = tl.broadcast_to(tmp15, [XBLOCK, RBLOCK])
tmp3 = tmp0 * tmp2
tmp7 = tmp4 * tmp6
tmp8 = tmp3 + tmp7
tmp12 = tmp9 * tmp11
tmp13 = tmp8 + tmp12
tmp17 = tmp14 * tmp16
tmp18 = tmp13 + tmp17
tmp19 = tmp18 * tmp18
tmp20 = tl.broadcast_to(tmp19, [XBLOCK, RBLOCK])
tmp22 = tl.sum(tmp20, 1)[:, None]
tl.store(out_ptr0 + tl.broadcast_to(r0, [XBLOCK, RBLOCK]), tmp18, None)
tl.store(out_ptr1 + tl.full([XBLOCK, 1], 0, tl.int32), tmp22, None)
@triton.jit
def triton_per_fused_add_div_dot_linalg_vector_norm_mv_1(in_out_ptr0,
in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + 4 * r0, None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp3 = tl.load(in_ptr2 + 0)
tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp10 = tl.load(in_ptr0 + (1 + 4 * r0), None, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr1 + 1)
tmp12 = tl.broadcast_to(tmp11, [XBLOCK, RBLOCK])
tmp16 = tl.load(in_ptr0 + (2 + 4 * r0), None, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr1 + 2)
tmp18 = tl.broadcast_to(tmp17, [XBLOCK, RBLOCK])
tmp22 = tl.load(in_ptr0 + (3 + 4 * r0), None, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr1 + 3)
tmp24 = tl.broadcast_to(tmp23, [XBLOCK, RBLOCK])
tmp5 = libdevice.sqrt(tmp4)
tmp6 = 0.0001
tmp7 = tmp5 + tmp6
tmp8 = tmp2 / tmp7
tmp9 = tmp0 * tmp8
tmp13 = tmp12 / tmp7
tmp14 = tmp10 * tmp13
tmp15 = tmp9 + tmp14
tmp19 = tmp18 / tmp7
tmp20 = tmp16 * tmp19
tmp21 = tmp15 + tmp20
tmp25 = tmp24 / tmp7
tmp26 = tmp22 * tmp25
tmp27 = tmp21 + tmp26
tmp28 = tmp27 * tmp27
tmp29 = tl.broadcast_to(tmp28, [XBLOCK, RBLOCK])
tmp31 = tl.sum(tmp29, 1)[:, None]
tmp32 = libdevice.sqrt(tmp31)
tmp33 = tmp32 + tmp6
tmp34 = tmp27 / tmp33
tmp35 = tmp34 * tmp27
tmp36 = tl.broadcast_to(tmp35, [XBLOCK, RBLOCK])
tmp38 = tl.sum(tmp36, 1)[:, None]
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp38, None)
@triton.jit
def triton_poi_fused_div_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 / tmp2
tl.store(out_ptr0 + x0, tmp3, xmask)
@triton.jit
def triton_poi_fused__native_batch_norm_legit_no_training_add_mul_3(in_ptr0,
in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex // 16
x4 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_ptr0 + x3, None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + x4, None)
tmp4 = tl.load(in_ptr2 + x1, None, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr3 + x1, None, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr4 + x3, None, eviction_policy='evict_last')
tmp1 = 1.0
tmp2 = tmp0 + tmp1
tmp5 = tmp3 - tmp4
tmp7 = 0.0001
tmp8 = tmp6 + tmp7
tmp9 = libdevice.sqrt(tmp8)
tmp10 = tl.full([1], 1, tl.int32)
tmp11 = tmp10 / tmp9
tmp12 = tmp11 * tmp1
tmp13 = tmp5 * tmp12
tmp14 = tmp2 * tmp13
tmp16 = tmp14 + tmp15
tl.store(out_ptr0 + x4, tmp16, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8) = args
args.clear()
assert_size_stride(primals_1, (64, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4,), (1,), torch.float32)
buf1 = empty_strided_cuda((), (), torch.float32)
get_raw_stream(0)
triton_per_fused_linalg_vector_norm_mv_0[grid(1)](primals_5,
primals_4, buf0, buf1, 1, 4, XBLOCK=1, num_warps=2, num_stages=1)
buf3 = empty_strided_cuda((), (), torch.float32)
buf4 = buf3
del buf3
triton_per_fused_add_div_dot_linalg_vector_norm_mv_1[grid(1)](buf4,
primals_5, buf0, buf1, 1, 4, XBLOCK=1, num_warps=2, num_stages=1)
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_div_2[grid(16)](primals_5, buf4, buf5, 16, XBLOCK=
16, num_warps=1, num_stages=1)
buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0),
reinterpret_tensor(buf5, (4, 4), (1, 4), 0), out=buf6)
buf7 = buf0
del buf0
buf8 = buf4
del buf4
triton_per_fused_linalg_vector_norm_mv_0[grid(1)](primals_8,
primals_7, buf7, buf8, 1, 4, XBLOCK=1, num_warps=2, num_stages=1)
buf10 = buf1
del buf1
buf11 = buf10
del buf10
triton_per_fused_add_div_dot_linalg_vector_norm_mv_1[grid(1)](buf11,
primals_8, buf7, buf8, 1, 4, XBLOCK=1, num_warps=2, num_stages=1)
del buf7
del buf8
buf12 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_div_2[grid(16)](primals_8, buf11, buf12, 16,
XBLOCK=16, num_warps=1, num_stages=1)
del buf11
buf13 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0),
reinterpret_tensor(buf12, (4, 4), (1, 4), 0), out=buf13)
buf14 = empty_strided_cuda((64, 4, 4, 4), (64, 16, 4, 1), torch.float32
)
triton_poi_fused__native_batch_norm_legit_no_training_add_mul_3[grid
(4096)](buf6, primals_1, primals_2, primals_3, buf13, buf14,
4096, XBLOCK=128, num_warps=4, num_stages=1)
del buf13
del buf6
return (buf14, buf5, buf12, primals_1, primals_2, primals_3, primals_4,
primals_5, primals_7, primals_8, reinterpret_tensor(primals_6, (64,
4), (4, 1), 0))
def l2normalize(v, eps=0.0001):
return v / (v.norm() + eps)
class SpectralNorm(nn.Module):
def __init__(self, module, name='weight', power_iterations=1):
super(SpectralNorm, self).__init__()
self.module = module
self.name = name
self.power_iterations = power_iterations
if not self._made_params():
self._make_params()
def _update_u_v(self):
u = getattr(self.module, self.name + '_u')
v = getattr(self.module, self.name + '_v')
w = getattr(self.module, self.name + '_bar')
height = w.data.shape[0]
_w = w.view(height, -1)
for _ in range(self.power_iterations):
v = l2normalize(torch.matmul(_w.t(), u))
u = l2normalize(torch.matmul(_w, v))
sigma = u.dot(_w.mv(v))
setattr(self.module, self.name, w / sigma.expand_as(w))
def _made_params(self):
try:
getattr(self.module, self.name + '_u')
getattr(self.module, self.name + '_v')
getattr(self.module, self.name + '_bar')
return True
except AttributeError:
return False
def _make_params(self):
w = getattr(self.module, self.name)
height = w.data.shape[0]
w.view(height, -1).data.shape[1]
u = Parameter(w.data.new(height).normal_(0, 1), requires_grad=False)
v = Parameter(w.data.new(height).normal_(0, 1), requires_grad=False)
u.data = l2normalize(u.data)
v.data = l2normalize(v.data)
w_bar = Parameter(w.data)
del self.module._parameters[self.name]
self.module.register_parameter(self.name + '_u', u)
self.module.register_parameter(self.name + '_v', v)
self.module.register_parameter(self.name + '_bar', w_bar)
def forward(self, *args):
self._update_u_v()
return self.module.forward(*args)
class ConditionalBatchNorm2dNew(nn.Module):
def __init__(self, num_features, num_classes, eps=0.0001, momentum=0.1):
super().__init__()
self.num_features = num_features
self.bn = nn.BatchNorm2d(num_features, affine=False, eps=eps,
momentum=momentum)
self.gamma_embed = SpectralNorm(nn.Linear(num_classes, num_features,
bias=False))
self.beta_embed = SpectralNorm(nn.Linear(num_classes, num_features,
bias=False))
def forward(self, input_0, input_1):
primals_2 = self.gamma_embed.module.weight_u
primals_3 = self.gamma_embed.module.weight_v
primals_5 = self.gamma_embed.module.weight_bar
primals_4 = self.beta_embed.module.weight_u
primals_7 = self.beta_embed.module.weight_v
primals_8 = self.beta_embed.module.weight_bar
primals_1 = input_0
primals_6 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8])
return output[0]
|
bhagwanalbert/BigGAN-PyTorch
|
ConditionalBatchNorm2d
| false | 9,790 |
[
"MIT"
] | 0 |
34bd6d9d04bb2e9699c27324454197dd01584d22
|
https://github.com/bhagwanalbert/BigGAN-PyTorch/tree/34bd6d9d04bb2e9699c27324454197dd01584d22
|
CutMixCrossEntropyLoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/td/ctdj5kazgiki6gdaadhqtp2x7tq2ee5ey5hqqdcoqmp54jyhf74f.py
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# log_softmax => amax, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg1_1, [1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %amax), kwargs = {})
triton_poi_fused__log_softmax_0 = async_compile.triton('triton_poi_fused__log_softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/f5/cf5kacqts2qtnf6lllagpt43xgndw7reh7jwbc6oav6eubehrpoe.py
# Topologically Sorted Source Nodes: [neg, log_softmax, mul, sum_1, mean], Original ATen: [aten.neg, aten._log_softmax, aten.mul, aten.sum, aten.mean]
# Source node to ATen node mapping:
# log_softmax => exp, log, sub_1, sum_1
# mean => mean
# mul => mul
# neg => neg
# sum_1 => sum_2
# Graph fragment:
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%arg0_1,), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%neg, %sub_1), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sum_2,), kwargs = {})
triton_per_fused__log_softmax_mean_mul_neg_sum_1 = async_compile.triton('triton_per_fused__log_softmax_mean_mul_neg_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax_mean_mul_neg_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__log_softmax_mean_mul_neg_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex % 16
r1 = (rindex // 16)
r2 = rindex
tmp0 = tl.load(in_ptr0 + (r0 + (64*r1)), None)
tmp2 = tl.load(in_ptr1 + (r0 + (64*r1)), None)
tmp4 = tl.load(in_ptr1 + (16 + r0 + (64*r1)), None)
tmp7 = tl.load(in_ptr1 + (32 + r0 + (64*r1)), None)
tmp10 = tl.load(in_ptr1 + (48 + r0 + (64*r1)), None)
tmp16 = tl.load(in_ptr0 + (16 + r0 + (64*r1)), None)
tmp21 = tl.load(in_ptr0 + (32 + r0 + (64*r1)), None)
tmp26 = tl.load(in_ptr0 + (48 + r0 + (64*r1)), None)
tmp1 = -tmp0
tmp3 = tl_math.exp(tmp2)
tmp5 = tl_math.exp(tmp4)
tmp6 = tmp3 + tmp5
tmp8 = tl_math.exp(tmp7)
tmp9 = tmp6 + tmp8
tmp11 = tl_math.exp(tmp10)
tmp12 = tmp9 + tmp11
tmp13 = tl_math.log(tmp12)
tmp14 = tmp2 - tmp13
tmp15 = tmp1 * tmp14
tmp17 = -tmp16
tmp18 = tmp4 - tmp13
tmp19 = tmp17 * tmp18
tmp20 = tmp15 + tmp19
tmp22 = -tmp21
tmp23 = tmp7 - tmp13
tmp24 = tmp22 * tmp23
tmp25 = tmp20 + tmp24
tmp27 = -tmp26
tmp28 = tmp10 - tmp13
tmp29 = tmp27 * tmp28
tmp30 = tmp25 + tmp29
tmp31 = tl.broadcast_to(tmp30, [XBLOCK, RBLOCK])
tmp33 = tl.sum(tmp31, 1)[:, None]
tmp34 = 64.0
tmp35 = tmp33 / tmp34
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp35, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__log_softmax_0.run(arg1_1, buf0, 256, grid=grid(256), stream=stream0)
del arg1_1
buf2 = empty_strided_cuda((), (), torch.float32)
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [neg, log_softmax, mul, sum_1, mean], Original ATen: [aten.neg, aten._log_softmax, aten.mul, aten.sum, aten.mean]
triton_per_fused__log_softmax_mean_mul_neg_sum_1.run(buf3, arg0_1, buf0, 1, 64, grid=grid(1), stream=stream0)
del arg0_1
del buf0
return (buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
from torch.nn import Module
import torch
from torch.nn.modules.module import Module
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
def cross_entropy(input, target, size_average=True):
""" Cross entropy that accepts soft targets
Args:
pred: predictions for neural network
targets: targets, can be soft
size_average: if false, sum is returned instead of mean
Examples::
input = torch.FloatTensor([[1.1, 2.8, 1.3], [1.1, 2.1, 4.8]])
input = torch.autograd.Variable(out, requires_grad=True)
target = torch.FloatTensor([[0.05, 0.9, 0.05], [0.05, 0.05, 0.9]])
target = torch.autograd.Variable(y1)
loss = cross_entropy(input, target)
loss.backward()
"""
logsoftmax = torch.nn.LogSoftmax(dim=1)
if size_average:
return torch.mean(torch.sum(-target * logsoftmax(input), dim=1))
else:
return torch.sum(torch.sum(-target * logsoftmax(input), dim=1))
class CutMixCrossEntropyLoss(Module):
def __init__(self, size_average=True):
super().__init__()
self.size_average = size_average
def forward(self, input, target):
if len(target.size()) == 1:
target = torch.nn.functional.one_hot(target, num_classes=input.
size(-1))
target = target.float()
return cross_entropy(input, target, self.size_average)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch.nn import Module
from torch.nn.modules.module import Module
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + x3, tmp8, xmask)
@triton.jit
def triton_per_fused__log_softmax_mean_mul_neg_sum_1(in_out_ptr0, in_ptr0,
in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex % 16
r1 = rindex // 16
tmp0 = tl.load(in_ptr0 + (r0 + 64 * r1), None)
tmp2 = tl.load(in_ptr1 + (r0 + 64 * r1), None)
tmp4 = tl.load(in_ptr1 + (16 + r0 + 64 * r1), None)
tmp7 = tl.load(in_ptr1 + (32 + r0 + 64 * r1), None)
tmp10 = tl.load(in_ptr1 + (48 + r0 + 64 * r1), None)
tmp16 = tl.load(in_ptr0 + (16 + r0 + 64 * r1), None)
tmp21 = tl.load(in_ptr0 + (32 + r0 + 64 * r1), None)
tmp26 = tl.load(in_ptr0 + (48 + r0 + 64 * r1), None)
tmp1 = -tmp0
tmp3 = tl_math.exp(tmp2)
tmp5 = tl_math.exp(tmp4)
tmp6 = tmp3 + tmp5
tmp8 = tl_math.exp(tmp7)
tmp9 = tmp6 + tmp8
tmp11 = tl_math.exp(tmp10)
tmp12 = tmp9 + tmp11
tmp13 = tl_math.log(tmp12)
tmp14 = tmp2 - tmp13
tmp15 = tmp1 * tmp14
tmp17 = -tmp16
tmp18 = tmp4 - tmp13
tmp19 = tmp17 * tmp18
tmp20 = tmp15 + tmp19
tmp22 = -tmp21
tmp23 = tmp7 - tmp13
tmp24 = tmp22 * tmp23
tmp25 = tmp20 + tmp24
tmp27 = -tmp26
tmp28 = tmp10 - tmp13
tmp29 = tmp27 * tmp28
tmp30 = tmp25 + tmp29
tmp31 = tl.broadcast_to(tmp30, [XBLOCK, RBLOCK])
tmp33 = tl.sum(tmp31, 1)[:, None]
tmp34 = 64.0
tmp35 = tmp33 / tmp34
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp35, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__log_softmax_0[grid(256)](arg1_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg1_1
buf2 = empty_strided_cuda((), (), torch.float32)
buf3 = buf2
del buf2
triton_per_fused__log_softmax_mean_mul_neg_sum_1[grid(1)](buf3,
arg0_1, buf0, 1, 64, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
del buf0
return buf3,
def cross_entropy(input, target, size_average=True):
""" Cross entropy that accepts soft targets
Args:
pred: predictions for neural network
targets: targets, can be soft
size_average: if false, sum is returned instead of mean
Examples::
input = torch.FloatTensor([[1.1, 2.8, 1.3], [1.1, 2.1, 4.8]])
input = torch.autograd.Variable(out, requires_grad=True)
target = torch.FloatTensor([[0.05, 0.9, 0.05], [0.05, 0.05, 0.9]])
target = torch.autograd.Variable(y1)
loss = cross_entropy(input, target)
loss.backward()
"""
logsoftmax = torch.nn.LogSoftmax(dim=1)
if size_average:
return torch.mean(torch.sum(-target * logsoftmax(input), dim=1))
else:
return torch.sum(torch.sum(-target * logsoftmax(input), dim=1))
class CutMixCrossEntropyLossNew(Module):
def __init__(self, size_average=True):
super().__init__()
self.size_average = size_average
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
bottlenome/cutmix
|
CutMixCrossEntropyLoss
| false | 9,791 |
[
"MIT"
] | 0 |
d18c2bda47e7d1786819420edbb2c8e5ad43385f
|
https://github.com/bottlenome/cutmix/tree/d18c2bda47e7d1786819420edbb2c8e5ad43385f
|
Pool
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/ws/cwsernjijxsliy5iskqdqkl4a4mqrxpxpwdopiyuuvrgc74ugctd.py
# Topologically Sorted Source Nodes: [adaptive_avg_pool2d], Original ATen: [aten._adaptive_avg_pool2d]
# Source node to ATen node mapping:
# adaptive_avg_pool2d => _adaptive_avg_pool2d
# Graph fragment:
# %_adaptive_avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten._adaptive_avg_pool2d.default](args = (%arg0_1, [5, 5]), kwargs = {})
triton_poi_fused__adaptive_avg_pool2d_0 = async_compile.triton('triton_poi_fused__adaptive_avg_pool2d_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__adaptive_avg_pool2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__adaptive_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 5) % 5
x0 = xindex % 5
x2 = (xindex // 25)
x4 = xindex
tmp0 = ((4*x1) // 5)
tmp1 = ((8 + (4*x1)) // 5)
tmp2 = tmp0 < tmp1
tmp3 = ((4*x0) // 5)
tmp4 = ((8 + (4*x0)) // 5)
tmp5 = tmp3 < tmp4
tmp6 = tmp2 & tmp5
tmp7 = tl.load(in_ptr0 + ((4*((4*x1) // 5)) + (16*x2) + ((4*x0) // 5)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp8 = 1 + ((4*x0) // 5)
tmp9 = tmp8 < tmp4
tmp10 = tmp2 & tmp9
tmp11 = tl.load(in_ptr0 + (1 + (4*((4*x1) // 5)) + (16*x2) + ((4*x0) // 5)), tmp10 & xmask, eviction_policy='evict_last', other=0.0)
tmp12 = tmp11 + tmp7
tmp13 = 1 + ((4*x1) // 5)
tmp14 = tmp13 < tmp1
tmp15 = tmp14 & tmp5
tmp16 = tl.load(in_ptr0 + (4 + (4*((4*x1) // 5)) + (16*x2) + ((4*x0) // 5)), tmp15 & xmask, eviction_policy='evict_last', other=0.0)
tmp17 = tmp16 + tmp12
tmp18 = tmp14 & tmp9
tmp19 = tl.load(in_ptr0 + (5 + (4*((4*x1) // 5)) + (16*x2) + ((4*x0) // 5)), tmp18 & xmask, eviction_policy='evict_last', other=0.0)
tmp20 = tmp19 + tmp17
tmp21 = 1.0
tmp22 = tl.full(tmp21.shape, 0.0, tmp21.dtype)
tmp23 = tl.where(tmp6, tmp21, tmp22)
tmp24 = tl.where(tmp10, tmp21, tmp22)
tmp25 = tmp24 + tmp23
tmp26 = tl.where(tmp15, tmp21, tmp22)
tmp27 = tmp26 + tmp25
tmp28 = tl.where(tmp18, tmp21, tmp22)
tmp29 = tmp28 + tmp27
tmp30 = tmp20 / tmp29
tl.store(out_ptr0 + (x4), tmp30, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 5, 5), (100, 25, 5, 1), torch.float32)
# Topologically Sorted Source Nodes: [adaptive_avg_pool2d], Original ATen: [aten._adaptive_avg_pool2d]
stream0 = get_raw_stream(0)
triton_poi_fused__adaptive_avg_pool2d_0.run(arg0_1, buf0, 400, grid=grid(400), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class Pool(nn.Module):
def __init__(self):
super(Pool, self).__init__()
def forward(self, x):
return F.adaptive_avg_pool2d(x, (5, 5))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__adaptive_avg_pool2d_0(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 5 % 5
x0 = xindex % 5
x2 = xindex // 25
x4 = xindex
tmp0 = 4 * x1 // 5
tmp1 = (8 + 4 * x1) // 5
tmp2 = tmp0 < tmp1
tmp3 = 4 * x0 // 5
tmp4 = (8 + 4 * x0) // 5
tmp5 = tmp3 < tmp4
tmp6 = tmp2 & tmp5
tmp7 = tl.load(in_ptr0 + (4 * (4 * x1 // 5) + 16 * x2 + 4 * x0 // 5),
tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp8 = 1 + 4 * x0 // 5
tmp9 = tmp8 < tmp4
tmp10 = tmp2 & tmp9
tmp11 = tl.load(in_ptr0 + (1 + 4 * (4 * x1 // 5) + 16 * x2 + 4 * x0 //
5), tmp10 & xmask, eviction_policy='evict_last', other=0.0)
tmp12 = tmp11 + tmp7
tmp13 = 1 + 4 * x1 // 5
tmp14 = tmp13 < tmp1
tmp15 = tmp14 & tmp5
tmp16 = tl.load(in_ptr0 + (4 + 4 * (4 * x1 // 5) + 16 * x2 + 4 * x0 //
5), tmp15 & xmask, eviction_policy='evict_last', other=0.0)
tmp17 = tmp16 + tmp12
tmp18 = tmp14 & tmp9
tmp19 = tl.load(in_ptr0 + (5 + 4 * (4 * x1 // 5) + 16 * x2 + 4 * x0 //
5), tmp18 & xmask, eviction_policy='evict_last', other=0.0)
tmp20 = tmp19 + tmp17
tmp21 = 1.0
tmp22 = tl.full(tmp21.shape, 0.0, tmp21.dtype)
tmp23 = tl.where(tmp6, tmp21, tmp22)
tmp24 = tl.where(tmp10, tmp21, tmp22)
tmp25 = tmp24 + tmp23
tmp26 = tl.where(tmp15, tmp21, tmp22)
tmp27 = tmp26 + tmp25
tmp28 = tl.where(tmp18, tmp21, tmp22)
tmp29 = tmp28 + tmp27
tmp30 = tmp20 / tmp29
tl.store(out_ptr0 + x4, tmp30, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 5, 5), (100, 25, 5, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__adaptive_avg_pool2d_0[grid(400)](arg0_1, buf0,
400, XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class PoolNew(nn.Module):
def __init__(self):
super(PoolNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
borisfom/TRTorch
|
Pool
| false | 9,792 |
[
"BSD-3-Clause"
] | 0 |
1660633c6f6a480cd123d9d91cabf4eced12e8f3
|
https://github.com/borisfom/TRTorch/tree/1660633c6f6a480cd123d9d91cabf4eced12e8f3
|
HyperpriorSynthesis
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/zu/czuua4sopi7uw2j4vhwnz6siwft4q3oub6yvsst7upuvdxgbdeip.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072, 32], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 102400
xnumel = 25
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 320
y1 = (yindex // 320)
tmp0 = tl.load(in_ptr0 + (x2 + (25*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (320*x2) + (8000*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/rs/crschneg3kvye3kuwch7myvnxivcwiau22prtweju442z2v6tr7s.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 1280
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 320
y1 = (yindex // 320)
tmp0 = tl.load(in_ptr0 + (x2 + (16*y3)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (320*x2) + (5120*y1)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/f5/cf5rahjtn7v4v36kwvj65zjpf4ce46w2hyul4dndgpxx4vwwwjzr.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 70400
xnumel = 9
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 220
y1 = (yindex // 220)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (220*x2) + (1980*y1)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/gl/cglkcl5ykpgcv2uydrylvxb6dmvyihdwt3n735pkhiifwgzlyjgn.py
# Topologically Sorted Source Nodes: [conv_transpose2d, x], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv_transpose2d => convolution
# x => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [2, 2], [2, 2], [1, 1], True, [1, 1], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_3 = async_compile.triton('triton_poi_fused_convolution_relu_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 81920
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 320
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/qc/cqcifbqljbi3jwpix3usk7lyjznx6mau7gwn475jaql4t2vmad47.py
# Topologically Sorted Source Nodes: [conv_transpose2d_1, x_1], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv_transpose2d_1 => convolution_1
# x_1 => relu_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [2, 2], [2, 2], [1, 1], True, [1, 1], 1), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {})
triton_poi_fused_convolution_relu_4 = async_compile.triton('triton_poi_fused_convolution_relu_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[524288],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 327680
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 320
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/o6/co6yb7vc327wwyteuvhwzyuiictgb2lllnxydf7efevmaftxhgnt.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x_2 => convolution_2
# Graph fragment:
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], True, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_5 = async_compile.triton('triton_poi_fused_convolution_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024, 256], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_5(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 880
xnumel = 256
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 220
y1 = (yindex // 220)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (220*x2) + (56320*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + (256*y3)), tmp2, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (320, 320, 5, 5), (8000, 25, 5, 1))
assert_size_stride(primals_2, (320, ), (1, ))
assert_size_stride(primals_3, (4, 320, 4, 4), (5120, 16, 4, 1))
assert_size_stride(primals_4, (320, 320, 5, 5), (8000, 25, 5, 1))
assert_size_stride(primals_5, (320, ), (1, ))
assert_size_stride(primals_6, (320, 220, 3, 3), (1980, 9, 3, 1))
assert_size_stride(primals_7, (220, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((320, 320, 5, 5), (8000, 1, 1600, 320), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
stream0 = get_raw_stream(0)
triton_poi_fused_0.run(primals_1, buf0, 102400, 25, grid=grid(102400, 25), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((4, 320, 4, 4), (5120, 1, 1280, 320), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_1.run(primals_3, buf1, 1280, 16, grid=grid(1280, 16), stream=stream0)
del primals_3
buf2 = empty_strided_cuda((320, 320, 5, 5), (8000, 1, 1600, 320), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_0.run(primals_4, buf2, 102400, 25, grid=grid(102400, 25), stream=stream0)
del primals_4
buf3 = empty_strided_cuda((320, 220, 3, 3), (1980, 1, 660, 220), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_2.run(primals_6, buf3, 70400, 9, grid=grid(70400, 9), stream=stream0)
del primals_6
# Topologically Sorted Source Nodes: [conv_transpose2d], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf1, buf0, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=True, output_padding=(1, 1), groups=1, bias=None)
assert_size_stride(buf4, (4, 320, 8, 8), (20480, 1, 2560, 320))
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [conv_transpose2d, x], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_3.run(buf5, primals_2, 81920, grid=grid(81920), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [conv_transpose2d_1], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(buf5, buf2, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=True, output_padding=(1, 1), groups=1, bias=None)
assert_size_stride(buf6, (4, 320, 16, 16), (81920, 1, 5120, 320))
buf7 = buf6; del buf6 # reuse
# Topologically Sorted Source Nodes: [conv_transpose2d_1, x_1], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_4.run(buf7, primals_5, 327680, grid=grid(327680), stream=stream0)
del primals_5
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution]
buf8 = extern_kernels.convolution(buf7, buf3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 220, 16, 16), (56320, 1, 3520, 220))
buf9 = empty_strided_cuda((4, 220, 16, 16), (56320, 256, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution]
triton_poi_fused_convolution_5.run(buf8, primals_7, buf9, 880, 256, grid=grid(880, 256), stream=stream0)
del buf8
del primals_7
return (buf9, buf0, buf1, buf2, buf3, buf5, buf7, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((320, 320, 5, 5), (8000, 25, 5, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((320, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 320, 4, 4), (5120, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((320, 320, 5, 5), (8000, 25, 5, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((320, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((320, 220, 3, 3), (1980, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((220, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class HyperpriorSynthesis(nn.Module):
"""
Hyperprior 'synthesis model' as proposed in [1]. Outputs
distribution parameters of input latents.
[1] Ballé et. al., "Variational image compression with a scale hyperprior",
arXiv:1802.01436 (2018).
C: Number of output channels
"""
def __init__(self, C=220, N=320, activation='relu', final_activation=None):
super(HyperpriorSynthesis, self).__init__()
cnn_kwargs = dict(kernel_size=5, stride=2, padding=2, output_padding=1)
self.activation = getattr(F, activation)
self.final_activation = final_activation
self.conv1 = nn.ConvTranspose2d(N, N, **cnn_kwargs)
self.conv2 = nn.ConvTranspose2d(N, N, **cnn_kwargs)
self.conv3 = nn.ConvTranspose2d(N, C, kernel_size=3, stride=1,
padding=1)
if self.final_activation is not None:
self.final_activation = getattr(F, final_activation)
def forward(self, x):
x = self.activation(self.conv1(x))
x = self.activation(self.conv2(x))
x = self.conv3(x)
if self.final_activation is not None:
x = self.final_activation(x)
return x
def get_inputs():
return [torch.rand([4, 320, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 25
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)
) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 320
y1 = yindex // 320
tmp0 = tl.load(in_ptr0 + (x2 + 25 * y3), xmask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 320 * x2 + 8000 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 1280
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 320
y1 = yindex // 320
tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask & ymask, eviction_policy
='evict_last')
tl.store(out_ptr0 + (y0 + 320 * x2 + 5120 * y1), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 70400
xnumel = 9
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)
) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 220
y1 = yindex // 220
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask & ymask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 220 * x2 + 1980 * y1), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_convolution_relu_3(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 320
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 320
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_5(in_ptr0, in_ptr1, out_ptr0, ynumel,
xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 880
xnumel = 256
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 220
y1 = yindex // 220
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 220 * x2 + 56320 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + 256 * y3), tmp2, xmask & ymask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (320, 320, 5, 5), (8000, 25, 5, 1))
assert_size_stride(primals_2, (320,), (1,))
assert_size_stride(primals_3, (4, 320, 4, 4), (5120, 16, 4, 1))
assert_size_stride(primals_4, (320, 320, 5, 5), (8000, 25, 5, 1))
assert_size_stride(primals_5, (320,), (1,))
assert_size_stride(primals_6, (320, 220, 3, 3), (1980, 9, 3, 1))
assert_size_stride(primals_7, (220,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((320, 320, 5, 5), (8000, 1, 1600, 320),
torch.float32)
get_raw_stream(0)
triton_poi_fused_0[grid(102400, 25)](primals_1, buf0, 102400, 25,
XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((4, 320, 4, 4), (5120, 1, 1280, 320),
torch.float32)
triton_poi_fused_1[grid(1280, 16)](primals_3, buf1, 1280, 16,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_3
buf2 = empty_strided_cuda((320, 320, 5, 5), (8000, 1, 1600, 320),
torch.float32)
triton_poi_fused_0[grid(102400, 25)](primals_4, buf2, 102400, 25,
XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1)
del primals_4
buf3 = empty_strided_cuda((320, 220, 3, 3), (1980, 1, 660, 220),
torch.float32)
triton_poi_fused_2[grid(70400, 9)](primals_6, buf3, 70400, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_6
buf4 = extern_kernels.convolution(buf1, buf0, stride=(2, 2),
padding=(2, 2), dilation=(1, 1), transposed=True,
output_padding=(1, 1), groups=1, bias=None)
assert_size_stride(buf4, (4, 320, 8, 8), (20480, 1, 2560, 320))
buf5 = buf4
del buf4
triton_poi_fused_convolution_relu_3[grid(81920)](buf5, primals_2,
81920, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_2
buf6 = extern_kernels.convolution(buf5, buf2, stride=(2, 2),
padding=(2, 2), dilation=(1, 1), transposed=True,
output_padding=(1, 1), groups=1, bias=None)
assert_size_stride(buf6, (4, 320, 16, 16), (81920, 1, 5120, 320))
buf7 = buf6
del buf6
triton_poi_fused_convolution_relu_4[grid(327680)](buf7, primals_5,
327680, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_5
buf8 = extern_kernels.convolution(buf7, buf3, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 220, 16, 16), (56320, 1, 3520, 220))
buf9 = empty_strided_cuda((4, 220, 16, 16), (56320, 256, 16, 1),
torch.float32)
triton_poi_fused_convolution_5[grid(880, 256)](buf8, primals_7,
buf9, 880, 256, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1)
del buf8
del primals_7
return buf9, buf0, buf1, buf2, buf3, buf5, buf7
class HyperpriorSynthesisNew(nn.Module):
"""
Hyperprior 'synthesis model' as proposed in [1]. Outputs
distribution parameters of input latents.
[1] Ballé et. al., "Variational image compression with a scale hyperprior",
arXiv:1802.01436 (2018).
C: Number of output channels
"""
def __init__(self, C=220, N=320, activation='relu', final_activation=None):
super(HyperpriorSynthesisNew, self).__init__()
cnn_kwargs = dict(kernel_size=5, stride=2, padding=2, output_padding=1)
self.activation = getattr(F, activation)
self.final_activation = final_activation
self.conv1 = nn.ConvTranspose2d(N, N, **cnn_kwargs)
self.conv2 = nn.ConvTranspose2d(N, N, **cnn_kwargs)
self.conv3 = nn.ConvTranspose2d(N, C, kernel_size=3, stride=1,
padding=1)
if self.final_activation is not None:
self.final_activation = getattr(F, final_activation)
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_6 = self.conv3.weight
primals_7 = self.conv3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
|
ali-zafari/high-fidelity-generative-compression
|
HyperpriorSynthesis
| false | 9,793 |
[
"Apache-2.0"
] | 0 |
37ab8d6727df48f8ebf4577db0986ccd0ffe404b
|
https://github.com/ali-zafari/high-fidelity-generative-compression/tree/37ab8d6727df48f8ebf4577db0986ccd0ffe404b
|
FocalLoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/z4/cz4rdmnjzva3wxtwkxdq32ntpuxr4xa3itqmggsv52y455k5rfxs.py
# Topologically Sorted Source Nodes: [mul, sub, mul_1, alpha, eq, pred, sub_1, pt, sub_2, pow_1, mul_2, ce, mul_3], Original ATen: [aten.mul, aten.rsub, aten.add, aten.eq, aten.sigmoid, aten.where, aten.pow, aten.binary_cross_entropy_with_logits]
# Source node to ATen node mapping:
# alpha => add
# ce => abs_1, exp, full_default, log1p, minimum, mul, neg, sub, sub_1, sub_2
# eq => eq
# mul => mul_1
# mul_1 => mul_2
# mul_2 => mul_3
# mul_3 => mul_4
# pow_1 => pow_1
# pred => sigmoid
# pt => where
# sub => sub_3
# sub_1 => sub_4
# sub_2 => sub_5
# Graph fragment:
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, 0.25), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %arg1_1), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, 0.75), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %mul_2), kwargs = {})
# %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%arg1_1, 1), kwargs = {})
# %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%arg0_1,), kwargs = {})
# %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%eq, %sigmoid, %sub_4), kwargs = {})
# %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %where), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_5, 2), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, %pow_1), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg1_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %arg0_1), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %minimum : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%full_default, %arg0_1), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%arg0_1,), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%abs_1,), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg,), kwargs = {})
# %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum, %log1p), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %sub_1), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_3, %sub_2), kwargs = {})
triton_poi_fused_add_binary_cross_entropy_with_logits_eq_mul_pow_rsub_sigmoid_where_0 = async_compile.triton('triton_poi_fused_add_binary_cross_entropy_with_logits_eq_mul_pow_rsub_sigmoid_where_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_binary_cross_entropy_with_logits_eq_mul_pow_rsub_sigmoid_where_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_binary_cross_entropy_with_logits_eq_mul_pow_rsub_sigmoid_where_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp9 = tl.load(in_ptr1 + (x0), xmask)
tmp1 = 0.25
tmp2 = tmp0 * tmp1
tmp3 = 1.0
tmp4 = tmp3 - tmp0
tmp5 = 0.75
tmp6 = tmp4 * tmp5
tmp7 = tmp2 + tmp6
tmp8 = tmp0 == tmp3
tmp10 = tl.sigmoid(tmp9)
tmp11 = tmp3 - tmp10
tmp12 = tl.where(tmp8, tmp10, tmp11)
tmp13 = tmp3 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tmp7 * tmp14
tmp16 = tmp4 * tmp9
tmp17 = 0.0
tmp18 = triton_helpers.minimum(tmp17, tmp9)
tmp19 = tl_math.abs(tmp9)
tmp20 = -tmp19
tmp21 = tl_math.exp(tmp20)
tmp22 = libdevice.log1p(tmp21)
tmp23 = tmp18 - tmp22
tmp24 = tmp16 - tmp23
tmp25 = tmp15 * tmp24
tl.store(out_ptr0 + (x0), tmp25, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, sub, mul_1, alpha, eq, pred, sub_1, pt, sub_2, pow_1, mul_2, ce, mul_3], Original ATen: [aten.mul, aten.rsub, aten.add, aten.eq, aten.sigmoid, aten.where, aten.pow, aten.binary_cross_entropy_with_logits]
stream0 = get_raw_stream(0)
triton_poi_fused_add_binary_cross_entropy_with_logits_eq_mul_pow_rsub_sigmoid_where_0.run(arg1_1, arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.cuda
import torch.distributed
import torch.multiprocessing
class FocalLoss(nn.Module):
"""Focal Loss - https://arxiv.org/abs/1708.02002"""
def __init__(self, alpha=0.25, gamma=2):
super().__init__()
self.alpha = alpha
self.gamma = gamma
def forward(self, pred_logits, target):
pred = pred_logits.sigmoid()
ce = F.binary_cross_entropy_with_logits(pred_logits, target,
reduction='none')
alpha = target * self.alpha + (1.0 - target) * (1.0 - self.alpha)
pt = torch.where(target == 1, pred, 1 - pred)
return alpha * (1.0 - pt) ** self.gamma * ce
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
import torch.cuda
import torch.distributed
import torch.multiprocessing
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_binary_cross_entropy_with_logits_eq_mul_pow_rsub_sigmoid_where_0(
in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp9 = tl.load(in_ptr1 + x0, xmask)
tmp1 = 0.25
tmp2 = tmp0 * tmp1
tmp3 = 1.0
tmp4 = tmp3 - tmp0
tmp5 = 0.75
tmp6 = tmp4 * tmp5
tmp7 = tmp2 + tmp6
tmp8 = tmp0 == tmp3
tmp10 = tl.sigmoid(tmp9)
tmp11 = tmp3 - tmp10
tmp12 = tl.where(tmp8, tmp10, tmp11)
tmp13 = tmp3 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tmp7 * tmp14
tmp16 = tmp4 * tmp9
tmp17 = 0.0
tmp18 = triton_helpers.minimum(tmp17, tmp9)
tmp19 = tl_math.abs(tmp9)
tmp20 = -tmp19
tmp21 = tl_math.exp(tmp20)
tmp22 = libdevice.log1p(tmp21)
tmp23 = tmp18 - tmp22
tmp24 = tmp16 - tmp23
tmp25 = tmp15 * tmp24
tl.store(out_ptr0 + x0, tmp25, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_binary_cross_entropy_with_logits_eq_mul_pow_rsub_sigmoid_where_0[
grid(256)](arg1_1, arg0_1, buf0, 256, XBLOCK=256, num_warps=4,
num_stages=1)
del arg0_1
del arg1_1
return buf0,
class FocalLossNew(nn.Module):
"""Focal Loss - https://arxiv.org/abs/1708.02002"""
def __init__(self, alpha=0.25, gamma=2):
super().__init__()
self.alpha = alpha
self.gamma = gamma
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
azuredsky/retinanet-examples
|
FocalLoss
| false | 9,794 |
[
"BSD-3-Clause"
] | 0 |
1b35d8e7d3360050f25fd80e09ecac3eb2654301
|
https://github.com/azuredsky/retinanet-examples/tree/1b35d8e7d3360050f25fd80e09ecac3eb2654301
|
TSA_Fusion
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/g4/cg4ol27qewbsblsqindyqcoqjbv3ocrgpr3ueqortiqfpei53c5z.py
# Topologically Sorted Source Nodes: [clone], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# clone => clone
# Graph fragment:
# %clone : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%select,), kwargs = {})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 1024
x1 = (xindex // 1024)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2048 + x0 + (5120*x1)), None)
tl.store(out_ptr0 + (x2), tmp0, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/vl/cvlmoerlrbmnehdmef3bbge55w43r7yeghhzhrdh2czvthybjclb.py
# Topologically Sorted Source Nodes: [emb_ref], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# emb_ref => convolution
# Graph fragment:
# %convolution : [num_users=6] = call_function[target=torch.ops.aten.convolution.default](args = (%clone, %primals_2, %primals_3, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 16) % 64
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/in/cinfzueyyyniakvywqmnsv3rq6nal3xyzxhsxtrblzrtqg3xc4w6.py
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv2d_1 => convolution_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%view, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 20480
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 16) % 64
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/6g/c6g5w2xfkgqh3jcdcbb55u57ppgqo3xomq7ralymlbohawjrlbf7.py
# Topologically Sorted Source Nodes: [mul, sum_1, mul_1, sum_2, mul_2, sum_3, mul_3, sum_4, mul_4, sum_5, cat], Original ATen: [aten.mul, aten.sum, aten.cat]
# Source node to ATen node mapping:
# cat => cat
# mul => mul
# mul_1 => mul_1
# mul_2 => mul_2
# mul_3 => mul_3
# mul_4 => mul_4
# sum_1 => sum_1
# sum_2 => sum_2
# sum_3 => sum_3
# sum_4 => sum_4
# sum_5 => sum_5
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_1, %convolution), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_2, %convolution), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_1, [1]), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_3, %convolution), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_2, [1]), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_4, %convolution), kwargs = {})
# %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_3, [1]), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_5, %convolution), kwargs = {})
# %sum_5 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_4, [1]), kwargs = {})
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%unsqueeze, %unsqueeze_1, %unsqueeze_2, %unsqueeze_3, %unsqueeze_4], 1), kwargs = {})
triton_per_fused_cat_mul_sum_3 = async_compile.triton('triton_per_fused_cat_mul_sum_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[64, 64],
reduction_hint=ReductionHint.OUTER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_cat_mul_sum_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 5, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_cat_mul_sum_3(in_ptr0, in_ptr1, out_ptr5, out_ptr6, out_ptr7, out_ptr8, out_ptr9, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 64
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x0 = xindex % 16
x1 = (xindex // 16)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (16*r2) + (5120*x1)), xmask, other=0.0)
tmp1 = tl.load(in_ptr1 + (x0 + (16*r2) + (1024*x1)), xmask, other=0.0)
tmp7 = tl.load(in_ptr0 + (1024 + x0 + (16*r2) + (5120*x1)), xmask, other=0.0)
tmp13 = tl.load(in_ptr0 + (2048 + x0 + (16*r2) + (5120*x1)), xmask, other=0.0)
tmp19 = tl.load(in_ptr0 + (3072 + x0 + (16*r2) + (5120*x1)), xmask, other=0.0)
tmp25 = tl.load(in_ptr0 + (4096 + x0 + (16*r2) + (5120*x1)), xmask, other=0.0)
tmp2 = tmp0 * tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.where(xmask, tmp3, 0)
tmp6 = tl.sum(tmp5, 1)[:, None]
tmp8 = tmp7 * tmp1
tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK])
tmp11 = tl.where(xmask, tmp9, 0)
tmp12 = tl.sum(tmp11, 1)[:, None]
tmp14 = tmp13 * tmp1
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp20 = tmp19 * tmp1
tmp21 = tl.broadcast_to(tmp20, [XBLOCK, RBLOCK])
tmp23 = tl.where(xmask, tmp21, 0)
tmp24 = tl.sum(tmp23, 1)[:, None]
tmp26 = tmp25 * tmp1
tmp27 = tl.broadcast_to(tmp26, [XBLOCK, RBLOCK])
tmp29 = tl.where(xmask, tmp27, 0)
tmp30 = tl.sum(tmp29, 1)[:, None]
tl.store(out_ptr5 + (x0 + (80*x1)), tmp6, xmask)
tl.store(out_ptr6 + (x0 + (80*x1)), tmp12, xmask)
tl.store(out_ptr7 + (x0 + (80*x1)), tmp18, xmask)
tl.store(out_ptr8 + (x0 + (80*x1)), tmp24, xmask)
tl.store(out_ptr9 + (x0 + (80*x1)), tmp30, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/fh/cfhd3pv6oq22djbxa5tx4y42vjmwgldrhgaichhekhdwb5ize252.py
# Topologically Sorted Source Nodes: [aligned_fea], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# aligned_fea => mul_5
# Graph fragment:
# %mul_5 : [num_users=3] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_3, %view_2), kwargs = {})
triton_poi_fused_mul_4 = async_compile.triton('triton_poi_fused_mul_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 20480
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 16
x1 = (xindex // 16) % 320
x2 = (xindex // 5120)
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x0 + (16*(x1 // 64)) + (80*x2)), None)
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tl.store(out_ptr0 + (x3), tmp3, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/zr/czrki3u23zsgaiiexnna7jtzoedroempx47tvzii26xeuavvtgad.py
# Topologically Sorted Source Nodes: [conv2d_3, att], Original ATen: [aten.convolution, aten.leaky_relu]
# Source node to ATen node mapping:
# att => gt_1, mul_7, where_1
# conv2d_3 => convolution_3
# Graph fragment:
# %convolution_3 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%mul_5, %primals_8, %primals_9, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_3, 0), kwargs = {})
# %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_3, 0.1), kwargs = {})
# %where_1 : [num_users=3] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %convolution_3, %mul_7), kwargs = {})
triton_poi_fused_convolution_leaky_relu_5 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 16) % 64
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(in_out_ptr0 + (x3), tmp7, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/pk/cpk3fygaseyui7qdpy3xpxqkvxk3hgw7slvnar3gxlbr74q67zf5.py
# Topologically Sorted Source Nodes: [att_max, att_avg], Original ATen: [aten.max_pool2d_with_indices, aten.avg_pool2d]
# Source node to ATen node mapping:
# att_avg => avg_pool2d
# att_max => _low_memory_max_pool2d_with_offsets, getitem_1
# Graph fragment:
# %_low_memory_max_pool2d_with_offsets : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%where_1, [3, 3], [2, 2], [1, 1], [1, 1], False), kwargs = {})
# %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {})
# %avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%where_1, [3, 3], [2, 2], [1, 1]), kwargs = {})
triton_poi_fused_avg_pool2d_max_pool2d_with_indices_6 = async_compile.triton('triton_poi_fused_avg_pool2d_max_pool2d_with_indices_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_max_pool2d_with_indices_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 18, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_avg_pool2d_max_pool2d_with_indices_6(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 2) % 2
x0 = xindex % 2
x5 = (xindex // 2)
x3 = (xindex // 256)
x6 = xindex % 256
x7 = xindex
tmp0 = (-1) + (2*x1)
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = (-1) + (2*x0)
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp5 & tmp9
tmp11 = tl.load(in_ptr0 + ((-5) + (2*x0) + (8*x5)), tmp10 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp12 = 2*x0
tmp13 = tmp12 >= tmp1
tmp14 = tmp12 < tmp3
tmp15 = tmp13 & tmp14
tmp16 = tmp5 & tmp15
tmp17 = tl.load(in_ptr0 + ((-4) + (2*x0) + (8*x5)), tmp16 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp18 = triton_helpers.maximum(tmp17, tmp11)
tmp19 = 1 + (2*x0)
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp20 & tmp21
tmp23 = tmp5 & tmp22
tmp24 = tl.load(in_ptr0 + ((-3) + (2*x0) + (8*x5)), tmp23 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp25 = triton_helpers.maximum(tmp24, tmp18)
tmp26 = 2*x1
tmp27 = tmp26 >= tmp1
tmp28 = tmp26 < tmp3
tmp29 = tmp27 & tmp28
tmp30 = tmp29 & tmp9
tmp31 = tl.load(in_ptr0 + ((-1) + (2*x0) + (8*x5)), tmp30 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp32 = triton_helpers.maximum(tmp31, tmp25)
tmp33 = tmp29 & tmp15
tmp34 = tl.load(in_ptr0 + ((2*x0) + (8*x5)), tmp33 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp35 = triton_helpers.maximum(tmp34, tmp32)
tmp36 = tmp29 & tmp22
tmp37 = tl.load(in_ptr0 + (1 + (2*x0) + (8*x5)), tmp36 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp38 = triton_helpers.maximum(tmp37, tmp35)
tmp39 = 1 + (2*x1)
tmp40 = tmp39 >= tmp1
tmp41 = tmp39 < tmp3
tmp42 = tmp40 & tmp41
tmp43 = tmp42 & tmp9
tmp44 = tl.load(in_ptr0 + (3 + (2*x0) + (8*x5)), tmp43 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp45 = triton_helpers.maximum(tmp44, tmp38)
tmp46 = tmp42 & tmp15
tmp47 = tl.load(in_ptr0 + (4 + (2*x0) + (8*x5)), tmp46 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp48 = triton_helpers.maximum(tmp47, tmp45)
tmp49 = tmp42 & tmp22
tmp50 = tl.load(in_ptr0 + (5 + (2*x0) + (8*x5)), tmp49 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp51 = triton_helpers.maximum(tmp50, tmp48)
tmp52 = tmp17 > tmp11
tmp53 = tl.full([1], 1, tl.int8)
tmp54 = tl.full([1], 0, tl.int8)
tmp55 = tl.where(tmp52, tmp53, tmp54)
tmp56 = tmp24 > tmp18
tmp57 = tl.full([1], 2, tl.int8)
tmp58 = tl.where(tmp56, tmp57, tmp55)
tmp59 = tmp31 > tmp25
tmp60 = tl.full([1], 3, tl.int8)
tmp61 = tl.where(tmp59, tmp60, tmp58)
tmp62 = tmp34 > tmp32
tmp63 = tl.full([1], 4, tl.int8)
tmp64 = tl.where(tmp62, tmp63, tmp61)
tmp65 = tmp37 > tmp35
tmp66 = tl.full([1], 5, tl.int8)
tmp67 = tl.where(tmp65, tmp66, tmp64)
tmp68 = tmp44 > tmp38
tmp69 = tl.full([1], 6, tl.int8)
tmp70 = tl.where(tmp68, tmp69, tmp67)
tmp71 = tmp47 > tmp45
tmp72 = tl.full([1], 7, tl.int8)
tmp73 = tl.where(tmp71, tmp72, tmp70)
tmp74 = tmp50 > tmp48
tmp75 = tl.full([1], 8, tl.int8)
tmp76 = tl.where(tmp74, tmp75, tmp73)
tmp77 = tl.load(in_ptr0 + ((-5) + (2*x0) + (8*x5)), tmp10 & xmask, eviction_policy='evict_last', other=0.0)
tmp78 = tl.load(in_ptr0 + ((-4) + (2*x0) + (8*x5)), tmp16 & xmask, eviction_policy='evict_last', other=0.0)
tmp79 = tmp78 + tmp77
tmp80 = tl.load(in_ptr0 + ((-3) + (2*x0) + (8*x5)), tmp23 & xmask, eviction_policy='evict_last', other=0.0)
tmp81 = tmp80 + tmp79
tmp82 = tl.load(in_ptr0 + ((-1) + (2*x0) + (8*x5)), tmp30 & xmask, eviction_policy='evict_last', other=0.0)
tmp83 = tmp82 + tmp81
tmp84 = tl.load(in_ptr0 + ((2*x0) + (8*x5)), tmp33 & xmask, eviction_policy='evict_last', other=0.0)
tmp85 = tmp84 + tmp83
tmp86 = tl.load(in_ptr0 + (1 + (2*x0) + (8*x5)), tmp36 & xmask, eviction_policy='evict_last', other=0.0)
tmp87 = tmp86 + tmp85
tmp88 = tl.load(in_ptr0 + (3 + (2*x0) + (8*x5)), tmp43 & xmask, eviction_policy='evict_last', other=0.0)
tmp89 = tmp88 + tmp87
tmp90 = tl.load(in_ptr0 + (4 + (2*x0) + (8*x5)), tmp46 & xmask, eviction_policy='evict_last', other=0.0)
tmp91 = tmp90 + tmp89
tmp92 = tl.load(in_ptr0 + (5 + (2*x0) + (8*x5)), tmp49 & xmask, eviction_policy='evict_last', other=0.0)
tmp93 = tmp92 + tmp91
tmp94 = 1 + ((-2)*x0) + ((-2)*x1) + (((5) * ((5) <= (2 + (2*x0))) + (2 + (2*x0)) * ((2 + (2*x0)) < (5)))*((5) * ((5) <= (2 + (2*x1))) + (2 + (2*x1)) * ((2 + (2*x1)) < (5)))) + ((-2)*x0*((5) * ((5) <= (2 + (2*x1))) + (2 + (2*x1)) * ((2 + (2*x1)) < (5)))) + ((-2)*x1*((5) * ((5) <= (2 + (2*x0))) + (2 + (2*x0)) * ((2 + (2*x0)) < (5)))) + (4*x0*x1) + ((5) * ((5) <= (2 + (2*x0))) + (2 + (2*x0)) * ((2 + (2*x0)) < (5))) + ((5) * ((5) <= (2 + (2*x1))) + (2 + (2*x1)) * ((2 + (2*x1)) < (5)))
tmp95 = tmp93 / tmp94
tl.store(out_ptr0 + (x6 + (512*x3)), tmp51, xmask)
tl.store(out_ptr1 + (x7), tmp76, xmask)
tl.store(out_ptr2 + (x6 + (512*x3)), tmp95, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/ku/ckudte3yk3k5yua5cn4wgvpz6fzasnpftrdhrse4k2pj5bssbxy3.py
# Topologically Sorted Source Nodes: [conv2d_4, att_1], Original ATen: [aten.convolution, aten.leaky_relu]
# Source node to ATen node mapping:
# att_1 => gt_2, mul_8, where_2
# conv2d_4 => convolution_4
# Graph fragment:
# %convolution_4 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%cat_1, %primals_10, %primals_11, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_2 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_4, 0), kwargs = {})
# %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_4, 0.1), kwargs = {})
# %where_2 : [num_users=3] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %convolution_4, %mul_8), kwargs = {})
triton_poi_fused_convolution_leaky_relu_7 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 4) % 64
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(in_out_ptr0 + (x3), tmp7, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/sg/csgczegfowupuwjczr4ywjw7hwfokovqexu34tu4cf2odny25h7r.py
# Topologically Sorted Source Nodes: [att_max_1, att_avg_1], Original ATen: [aten.max_pool2d_with_indices, aten.avg_pool2d]
# Source node to ATen node mapping:
# att_avg_1 => avg_pool2d_1
# att_max_1 => _low_memory_max_pool2d_with_offsets_1, getitem_3
# Graph fragment:
# %_low_memory_max_pool2d_with_offsets_1 : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%where_3, [3, 3], [2, 2], [1, 1], [1, 1], False), kwargs = {})
# %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {})
# %avg_pool2d_1 : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%where_3, [3, 3], [2, 2], [1, 1]), kwargs = {})
triton_poi_fused_avg_pool2d_max_pool2d_with_indices_8 = async_compile.triton('triton_poi_fused_avg_pool2d_max_pool2d_with_indices_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_max_pool2d_with_indices_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 18, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_avg_pool2d_max_pool2d_with_indices_8(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
x1 = (xindex // 64)
tmp0 = tl.full([1], -1, tl.int64)
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 2, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = tmp5 & tmp5
tmp7 = tl.load(in_ptr0 + ((-3) + (4*x2)), tmp6 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp8 = tmp1 >= tmp1
tmp9 = tmp1 < tmp3
tmp10 = tmp8 & tmp9
tmp11 = tmp5 & tmp10
tmp12 = tl.load(in_ptr0 + ((-2) + (4*x2)), tmp11 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp13 = triton_helpers.maximum(tmp12, tmp7)
tmp14 = tl.full([1], 1, tl.int64)
tmp15 = tmp14 >= tmp1
tmp16 = tmp14 < tmp3
tmp17 = tmp15 & tmp16
tmp18 = tmp5 & tmp17
tmp19 = tl.load(in_ptr0 + ((-1) + (4*x2)), tmp18 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp20 = triton_helpers.maximum(tmp19, tmp13)
tmp21 = tmp10 & tmp5
tmp22 = tl.load(in_ptr0 + ((-1) + (4*x2)), tmp21 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp23 = triton_helpers.maximum(tmp22, tmp20)
tmp24 = tmp10 & tmp10
tmp25 = tl.load(in_ptr0 + (4*x2), tmp24 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp26 = triton_helpers.maximum(tmp25, tmp23)
tmp27 = tmp10 & tmp17
tmp28 = tl.load(in_ptr0 + (1 + (4*x2)), tmp27 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp29 = triton_helpers.maximum(tmp28, tmp26)
tmp30 = tmp17 & tmp5
tmp31 = tl.load(in_ptr0 + (1 + (4*x2)), tmp30 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp32 = triton_helpers.maximum(tmp31, tmp29)
tmp33 = tmp17 & tmp10
tmp34 = tl.load(in_ptr0 + (2 + (4*x2)), tmp33 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp35 = triton_helpers.maximum(tmp34, tmp32)
tmp36 = tmp17 & tmp17
tmp37 = tl.load(in_ptr0 + (3 + (4*x2)), tmp36 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp38 = triton_helpers.maximum(tmp37, tmp35)
tmp39 = tmp12 > tmp7
tmp40 = tl.full([1], 1, tl.int8)
tmp41 = tl.full([1], 0, tl.int8)
tmp42 = tl.where(tmp39, tmp40, tmp41)
tmp43 = tmp19 > tmp13
tmp44 = tl.full([1], 2, tl.int8)
tmp45 = tl.where(tmp43, tmp44, tmp42)
tmp46 = tmp22 > tmp20
tmp47 = tl.full([1], 3, tl.int8)
tmp48 = tl.where(tmp46, tmp47, tmp45)
tmp49 = tmp25 > tmp23
tmp50 = tl.full([1], 4, tl.int8)
tmp51 = tl.where(tmp49, tmp50, tmp48)
tmp52 = tmp28 > tmp26
tmp53 = tl.full([1], 5, tl.int8)
tmp54 = tl.where(tmp52, tmp53, tmp51)
tmp55 = tmp31 > tmp29
tmp56 = tl.full([1], 6, tl.int8)
tmp57 = tl.where(tmp55, tmp56, tmp54)
tmp58 = tmp34 > tmp32
tmp59 = tl.full([1], 7, tl.int8)
tmp60 = tl.where(tmp58, tmp59, tmp57)
tmp61 = tmp37 > tmp35
tmp62 = tl.full([1], 8, tl.int8)
tmp63 = tl.where(tmp61, tmp62, tmp60)
tmp64 = tl.load(in_ptr0 + ((-3) + (4*x2)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp65 = tl.load(in_ptr0 + ((-2) + (4*x2)), tmp11 & xmask, eviction_policy='evict_last', other=0.0)
tmp66 = tmp65 + tmp64
tmp67 = tl.load(in_ptr0 + ((-1) + (4*x2)), tmp18 & xmask, eviction_policy='evict_last', other=0.0)
tmp68 = tmp67 + tmp66
tmp69 = tl.load(in_ptr0 + ((-1) + (4*x2)), tmp21 & xmask, eviction_policy='evict_last', other=0.0)
tmp70 = tmp69 + tmp68
tmp71 = tl.load(in_ptr0 + (4*x2), tmp24 & xmask, eviction_policy='evict_last', other=0.0)
tmp72 = tmp71 + tmp70
tmp73 = tl.load(in_ptr0 + (1 + (4*x2)), tmp27 & xmask, eviction_policy='evict_last', other=0.0)
tmp74 = tmp73 + tmp72
tmp75 = tl.load(in_ptr0 + (1 + (4*x2)), tmp30 & xmask, eviction_policy='evict_last', other=0.0)
tmp76 = tmp75 + tmp74
tmp77 = tl.load(in_ptr0 + (2 + (4*x2)), tmp33 & xmask, eviction_policy='evict_last', other=0.0)
tmp78 = tmp77 + tmp76
tmp79 = tl.load(in_ptr0 + (3 + (4*x2)), tmp36 & xmask, eviction_policy='evict_last', other=0.0)
tmp80 = tmp79 + tmp78
tmp81 = tl.full([1], 9, tl.int32)
tmp82 = tmp80 / tmp81
tl.store(out_ptr0 + (x0 + (128*x1)), tmp38, xmask)
tl.store(out_ptr1 + (x2), tmp63, xmask)
tl.store(out_ptr2 + (x0 + (128*x1)), tmp82, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/wq/cwqagsj5ls25hrcw6hxsayqci33xusemulwfozklrduzjqzpvbdb.py
# Topologically Sorted Source Nodes: [conv2d_6, att_L_1], Original ATen: [aten.convolution, aten.leaky_relu]
# Source node to ATen node mapping:
# att_L_1 => gt_4, mul_10, where_4
# conv2d_6 => convolution_6
# Graph fragment:
# %convolution_6 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%cat_2, %primals_14, %primals_15, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_4 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_6, 0), kwargs = {})
# %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_6, 0.1), kwargs = {})
# %where_4 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_4, %convolution_6, %mul_10), kwargs = {})
triton_poi_fused_convolution_leaky_relu_9 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_9', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_9', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_9(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(in_out_ptr0 + (x2), tmp7, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/l4/cl4vcjd4z7lumtxc5zcpws7ce6eexgpl5gregarvkbnjzwfii7gk.py
# Topologically Sorted Source Nodes: [att_L_3], Original ATen: [aten._to_copy]
# Source node to ATen node mapping:
# att_L_3 => convert_element_type_1
# Graph fragment:
# %convert_element_type_1 : [num_users=5] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view_4, torch.int64), kwargs = {})
triton_poi_fused__to_copy_10 = async_compile.triton('triton_poi_fused__to_copy_10', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_10(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 2
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tl.store(out_ptr0 + (x0), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/vi/cvixasqvjpzhra4mkzvqpwqtena4rblcmdqim6ofp3nmxkli5cho.py
# Topologically Sorted Source Nodes: [att_L_3], Original ATen: [aten.add, aten.clamp]
# Source node to ATen node mapping:
# att_L_3 => add_1, clamp_max
# Graph fragment:
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_1, 1), kwargs = {})
# %clamp_max : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add_1, 0), kwargs = {})
triton_poi_fused_add_clamp_11 = async_compile.triton('triton_poi_fused_add_clamp_11', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_11', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_clamp_11(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 2
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tmp9 = tl.full([1], 1, tl.int64)
tmp10 = tmp8 + tmp9
tmp11 = tl.full([1], 0, tl.int64)
tmp12 = triton_helpers.minimum(tmp10, tmp11)
tl.store(out_ptr0 + (x0), tmp12, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/dw/cdwvjjvjx5yjaylq4q7psjgmnhvskuynevkz7t3bpyhxzjigsatv.py
# Topologically Sorted Source Nodes: [att_L_3], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp]
# Source node to ATen node mapping:
# att_L_3 => add, clamp_max_2, clamp_min, clamp_min_2, convert_element_type, iota, mul_12, sub, sub_2
# Graph fragment:
# %iota : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (2,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota, torch.float32), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type, 0.5), kwargs = {})
# %mul_12 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 0.5), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_12, 0.5), kwargs = {})
# %clamp_min : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub, 0.0), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min, %convert_element_type_3), kwargs = {})
# %clamp_min_2 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_2, 0.0), kwargs = {})
# %clamp_max_2 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_2, 1.0), kwargs = {})
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_12 = async_compile.triton('triton_poi_fused__to_copy_add_arange_clamp_mul_sub_12', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_clamp_mul_sub_12', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_12(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 2
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 - tmp9
tmp11 = triton_helpers.maximum(tmp10, tmp6)
tmp12 = 1.0
tmp13 = triton_helpers.minimum(tmp11, tmp12)
tl.store(out_ptr0 + (x0), tmp13, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/g7/cg7hwas3ulxmdn6h36bo5ewdukiqxglk6whwhnhy37eovq7koydc.py
# Topologically Sorted Source Nodes: [conv2d_7, att_L_2, att_L_3, conv2d_8, att_2, att_3], Original ATen: [aten.convolution, aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul, aten.add, aten.leaky_relu_backward]
# Source node to ATen node mapping:
# att_2 => gt_6, mul_17, where_6
# att_3 => add_7
# att_L_2 => gt_5, mul_11, where_5
# att_L_3 => _unsafe_index, _unsafe_index_1, _unsafe_index_2, _unsafe_index_3, add_4, add_5, add_6, mul_14, mul_15, mul_16, sub_3, sub_4, sub_6
# conv2d_7 => convolution_7
# conv2d_8 => convolution_8
# Graph fragment:
# %convolution_7 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where_4, %primals_16, %primals_17, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_5 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_7, 0), kwargs = {})
# %mul_11 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_7, 0.1), kwargs = {})
# %where_5 : [num_users=5] = call_function[target=torch.ops.aten.where.self](args = (%gt_5, %convolution_7, %mul_11), kwargs = {})
# %_unsafe_index : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_5, [None, None, %convert_element_type_1, %convert_element_type_3]), kwargs = {})
# %_unsafe_index_1 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_5, [None, None, %convert_element_type_1, %clamp_max_1]), kwargs = {})
# %_unsafe_index_2 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_5, [None, None, %clamp_max, %convert_element_type_3]), kwargs = {})
# %_unsafe_index_3 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_5, [None, None, %clamp_max, %clamp_max_1]), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_1, %_unsafe_index), kwargs = {})
# %mul_14 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, %clamp_max_2), kwargs = {})
# %add_4 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index, %mul_14), kwargs = {})
# %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_3, %_unsafe_index_2), kwargs = {})
# %mul_15 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_4, %clamp_max_2), kwargs = {})
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_2, %mul_15), kwargs = {})
# %sub_6 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_5, %add_4), kwargs = {})
# %mul_16 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_6, %clamp_max_3), kwargs = {})
# %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_4, %mul_16), kwargs = {})
# %convolution_8 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where_2, %primals_18, %primals_19, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_6 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_8, 0), kwargs = {})
# %mul_17 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_8, 0.1), kwargs = {})
# %where_6 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_6, %convolution_8, %mul_17), kwargs = {})
# %add_7 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%where_6, %add_6), kwargs = {})
# %gt_11 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%where_6, 0), kwargs = {})
triton_poi_fused__unsafe_index_add_convolution_leaky_relu_leaky_relu_backward_mul_sub_13 = async_compile.triton('triton_poi_fused__unsafe_index_add_convolution_leaky_relu_leaky_relu_backward_mul_sub_13', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*i64', 3: '*fp32', 4: '*fp32', 5: '*i64', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*i64', 10: '*fp32', 11: '*i1', 12: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_add_convolution_leaky_relu_leaky_relu_backward_mul_sub_13', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 10, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__unsafe_index_add_convolution_leaky_relu_leaky_relu_backward_mul_sub_13(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 2) % 2
x0 = xindex % 2
x5 = (xindex // 4)
x2 = (xindex // 4) % 64
x6 = xindex
tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr2 + (x5), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + (x2), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last')
tmp22 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr6 + (x6), xmask)
tmp26 = tl.load(in_ptr7 + (x2), xmask, eviction_policy='evict_last')
tmp31 = tl.load(in_ptr8 + (x1), xmask, eviction_policy='evict_last')
tmp36 = tl.load(in_ptr9 + (x1), xmask, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 1, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp11 = tmp9 + tmp10
tmp12 = 0.0
tmp13 = tmp11 > tmp12
tmp14 = 0.1
tmp15 = tmp11 * tmp14
tmp16 = tl.where(tmp13, tmp11, tmp15)
tmp18 = tmp17 + tmp1
tmp19 = tmp17 < 0
tmp20 = tl.where(tmp19, tmp18, tmp17)
tmp21 = tmp16 - tmp16
tmp23 = tmp21 * tmp22
tmp24 = tmp16 + tmp23
tmp27 = tmp25 + tmp26
tmp28 = tmp27 > tmp12
tmp29 = tmp27 * tmp14
tmp30 = tl.where(tmp28, tmp27, tmp29)
tmp32 = tmp31 + tmp1
tmp33 = tmp31 < 0
tmp34 = tl.where(tmp33, tmp32, tmp31)
tmp35 = tmp24 - tmp24
tmp37 = tmp35 * tmp36
tmp38 = tmp24 + tmp37
tmp39 = tmp30 + tmp38
tmp40 = tmp30 > tmp12
tl.store(in_out_ptr0 + (x6), tmp39, xmask)
tl.store(out_ptr0 + (x6), tmp40, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/qh/cqhre475mhrzai26fnzznz5at2t325ucwdj2hqvrn3rxtfvbapzo.py
# Topologically Sorted Source Nodes: [att_5], Original ATen: [aten._to_copy]
# Source node to ATen node mapping:
# att_5 => convert_element_type_5
# Graph fragment:
# %convert_element_type_5 : [num_users=5] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view_6, torch.int64), kwargs = {})
triton_poi_fused__to_copy_14 = async_compile.triton('triton_poi_fused__to_copy_14', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_14', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_14(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tl.store(out_ptr0 + (x0), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/5f/c5fjkguhvjg5ryun7wopg6renfax5rp23vfbg6nzsu7akebanlci.py
# Topologically Sorted Source Nodes: [att_5], Original ATen: [aten.add, aten.clamp]
# Source node to ATen node mapping:
# att_5 => add_9, clamp_max_4
# Graph fragment:
# %add_9 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_5, 1), kwargs = {})
# %clamp_max_4 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add_9, 1), kwargs = {})
triton_poi_fused_add_clamp_15 = async_compile.triton('triton_poi_fused_add_clamp_15', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_15', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_clamp_15(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tmp9 = tl.full([1], 1, tl.int64)
tmp10 = tmp8 + tmp9
tmp11 = triton_helpers.minimum(tmp10, tmp9)
tl.store(out_ptr0 + (x0), tmp11, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/ae/caebye2u374vhzlpesqh72pu5msuyvgx2qnngs7zftzquvm3h3mg.py
# Topologically Sorted Source Nodes: [att_5], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp]
# Source node to ATen node mapping:
# att_5 => add_8, clamp_max_6, clamp_min_4, clamp_min_6, convert_element_type_4, iota_2, mul_19, sub_7, sub_9
# Graph fragment:
# %iota_2 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (4,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %convert_element_type_4 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota_2, torch.float32), kwargs = {})
# %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_4, 0.5), kwargs = {})
# %mul_19 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_8, 0.5), kwargs = {})
# %sub_7 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_19, 0.5), kwargs = {})
# %clamp_min_4 : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_7, 0.0), kwargs = {})
# %sub_9 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min_4, %convert_element_type_7), kwargs = {})
# %clamp_min_6 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_9, 0.0), kwargs = {})
# %clamp_max_6 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_6, 1.0), kwargs = {})
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_16 = async_compile.triton('triton_poi_fused__to_copy_add_arange_clamp_mul_sub_16', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_clamp_mul_sub_16', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_16(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 - tmp9
tmp11 = triton_helpers.maximum(tmp10, tmp6)
tmp12 = 1.0
tmp13 = triton_helpers.minimum(tmp11, tmp12)
tl.store(out_ptr0 + (x0), tmp13, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/5d/c5digbxcc3yvdlkmff5azrziozddchj6yb3sq5xkpjinfocpzrk4.py
# Topologically Sorted Source Nodes: [conv2d_9, att_4, att_5], Original ATen: [aten.convolution, aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul, aten.add]
# Source node to ATen node mapping:
# att_4 => gt_7, mul_18, where_7
# att_5 => _unsafe_index_4, _unsafe_index_5, _unsafe_index_6, _unsafe_index_7, add_12, add_13, add_14, mul_21, mul_22, mul_23, sub_10, sub_11, sub_13
# conv2d_9 => convolution_9
# Graph fragment:
# %convolution_9 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%add_7, %primals_20, %primals_21, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_7 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_9, 0), kwargs = {})
# %mul_18 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_9, 0.1), kwargs = {})
# %where_7 : [num_users=5] = call_function[target=torch.ops.aten.where.self](args = (%gt_7, %convolution_9, %mul_18), kwargs = {})
# %_unsafe_index_4 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_7, [None, None, %convert_element_type_5, %convert_element_type_7]), kwargs = {})
# %_unsafe_index_5 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_7, [None, None, %convert_element_type_5, %clamp_max_5]), kwargs = {})
# %_unsafe_index_6 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_7, [None, None, %clamp_max_4, %convert_element_type_7]), kwargs = {})
# %_unsafe_index_7 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_7, [None, None, %clamp_max_4, %clamp_max_5]), kwargs = {})
# %sub_10 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_5, %_unsafe_index_4), kwargs = {})
# %mul_21 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_10, %clamp_max_6), kwargs = {})
# %add_12 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_4, %mul_21), kwargs = {})
# %sub_11 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_7, %_unsafe_index_6), kwargs = {})
# %mul_22 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_11, %clamp_max_6), kwargs = {})
# %add_13 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_6, %mul_22), kwargs = {})
# %sub_13 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_13, %add_12), kwargs = {})
# %mul_23 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_13, %clamp_max_7), kwargs = {})
# %add_14 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_12, %mul_23), kwargs = {})
triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_17 = async_compile.triton('triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_17', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*i64', 3: '*fp32', 4: '*fp32', 5: '*i64', 6: '*fp32', 7: '*i64', 8: '*fp32', 9: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_17', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_17(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 4) % 4
x0 = xindex % 4
x6 = (xindex // 16)
x2 = (xindex // 16) % 64
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + (x2), None, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr5 + (x0), None, eviction_policy='evict_last')
tmp30 = tl.load(in_ptr6 + (x1), None, eviction_policy='evict_last')
tmp48 = tl.load(in_ptr7 + (x1), None, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 2, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr2 + (tmp8 + (2*tmp4) + (4*x6)), None, eviction_policy='evict_last')
tmp11 = tmp9 + tmp10
tmp12 = 0.0
tmp13 = tmp11 > tmp12
tmp14 = 0.1
tmp15 = tmp11 * tmp14
tmp16 = tl.where(tmp13, tmp11, tmp15)
tmp18 = tmp17 + tmp1
tmp19 = tmp17 < 0
tmp20 = tl.where(tmp19, tmp18, tmp17)
tmp21 = tl.load(in_ptr2 + (tmp20 + (2*tmp4) + (4*x6)), None, eviction_policy='evict_last')
tmp22 = tmp21 + tmp10
tmp23 = tmp22 > tmp12
tmp24 = tmp22 * tmp14
tmp25 = tl.where(tmp23, tmp22, tmp24)
tmp26 = tmp25 - tmp16
tmp28 = tmp26 * tmp27
tmp29 = tmp16 + tmp28
tmp31 = tmp30 + tmp1
tmp32 = tmp30 < 0
tmp33 = tl.where(tmp32, tmp31, tmp30)
tmp34 = tl.load(in_ptr2 + (tmp8 + (2*tmp33) + (4*x6)), None, eviction_policy='evict_last')
tmp35 = tmp34 + tmp10
tmp36 = tmp35 > tmp12
tmp37 = tmp35 * tmp14
tmp38 = tl.where(tmp36, tmp35, tmp37)
tmp39 = tl.load(in_ptr2 + (tmp20 + (2*tmp33) + (4*x6)), None, eviction_policy='evict_last')
tmp40 = tmp39 + tmp10
tmp41 = tmp40 > tmp12
tmp42 = tmp40 * tmp14
tmp43 = tl.where(tmp41, tmp40, tmp42)
tmp44 = tmp43 - tmp38
tmp45 = tmp44 * tmp27
tmp46 = tmp38 + tmp45
tmp47 = tmp46 - tmp29
tmp49 = tmp47 * tmp48
tmp50 = tmp29 + tmp49
tl.store(in_out_ptr0 + (x4), tmp50, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/cu/ccuvxkf5qhj2jvrsbb3ffhmjd2jtqb6hmsyda6rq3u6bfora32rr.py
# Topologically Sorted Source Nodes: [conv2d_2, fea, att_add, att_7, mul_6, mul_7, fea_1], Original ATen: [aten.convolution, aten.leaky_relu, aten.sigmoid, aten.mul, aten.add]
# Source node to ATen node mapping:
# att_7 => sigmoid_1
# att_add => convolution_12
# conv2d_2 => convolution_2
# fea => gt, mul_6, where
# fea_1 => add_15
# mul_6 => mul_25
# mul_7 => mul_26
# Graph fragment:
# %convolution_2 : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%mul_5, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_2, 0), kwargs = {})
# %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_2, 0.1), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution_2, %mul_6), kwargs = {})
# %convolution_12 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%where_8, %primals_26, %primals_27, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %sigmoid_1 : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_10,), kwargs = {})
# %mul_25 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where, %sigmoid_1), kwargs = {})
# %mul_26 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_25, 2), kwargs = {})
# %add_15 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_26, %convolution_12), kwargs = {})
triton_poi_fused_add_convolution_leaky_relu_mul_sigmoid_18 = async_compile.triton('triton_poi_fused_add_convolution_leaky_relu_mul_sigmoid_18', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_leaky_relu_mul_sigmoid_18', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_leaky_relu_mul_sigmoid_18(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 16) % 64
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (x3), None)
tmp13 = tl.load(in_out_ptr1 + (x3), None)
tmp14 = tl.load(in_ptr2 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tmp9 = tl.sigmoid(tmp8)
tmp10 = tmp7 * tmp9
tmp11 = 2.0
tmp12 = tmp10 * tmp11
tmp15 = tmp13 + tmp14
tmp16 = tmp12 + tmp15
tl.store(in_out_ptr0 + (x3), tmp2, None)
tl.store(in_out_ptr1 + (x3), tmp16, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/74/c744ryizhtwhrucrt6eo7euxmid6gpfdi3fhwvvcyslcqrxawzy3.py
# Topologically Sorted Source Nodes: [conv2d_9, att_4], Original ATen: [aten.convolution, aten.leaky_relu, aten.leaky_relu_backward]
# Source node to ATen node mapping:
# att_4 => gt_7, mul_18, where_7
# conv2d_9 => convolution_9
# Graph fragment:
# %convolution_9 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%add_7, %primals_20, %primals_21, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_7 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_9, 0), kwargs = {})
# %mul_18 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_9, 0.1), kwargs = {})
# %where_7 : [num_users=5] = call_function[target=torch.ops.aten.where.self](args = (%gt_7, %convolution_9, %mul_18), kwargs = {})
# %gt_10 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%where_7, 0), kwargs = {})
triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_19 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_19', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_19', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_19(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 4) % 64
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tmp8 = tmp7 > tmp3
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/ey/ceyyqukhyyygq34vtv7g5xckv5mooqbd7qwq2qatahqa4c2so7gc.py
# Topologically Sorted Source Nodes: [conv2d_7, att_L_2], Original ATen: [aten.convolution, aten.leaky_relu, aten.leaky_relu_backward]
# Source node to ATen node mapping:
# att_L_2 => gt_5, mul_11, where_5
# conv2d_7 => convolution_7
# Graph fragment:
# %convolution_7 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where_4, %primals_16, %primals_17, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_5 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_7, 0), kwargs = {})
# %mul_11 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_7, 0.1), kwargs = {})
# %where_5 : [num_users=5] = call_function[target=torch.ops.aten.where.self](args = (%gt_5, %convolution_7, %mul_11), kwargs = {})
# %gt_12 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%where_5, 0), kwargs = {})
triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_20 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_20', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_20', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_20(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tmp8 = tmp7 > tmp3
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27 = args
args.clear()
assert_size_stride(primals_1, (4, 5, 64, 4, 4), (5120, 1024, 16, 4, 1))
assert_size_stride(primals_2, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_3, (64, ), (1, ))
assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_5, (64, ), (1, ))
assert_size_stride(primals_6, (64, 320, 1, 1), (320, 1, 1, 1))
assert_size_stride(primals_7, (64, ), (1, ))
assert_size_stride(primals_8, (64, 320, 1, 1), (320, 1, 1, 1))
assert_size_stride(primals_9, (64, ), (1, ))
assert_size_stride(primals_10, (64, 128, 1, 1), (128, 1, 1, 1))
assert_size_stride(primals_11, (64, ), (1, ))
assert_size_stride(primals_12, (64, 64, 1, 1), (64, 1, 1, 1))
assert_size_stride(primals_13, (64, ), (1, ))
assert_size_stride(primals_14, (64, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_15, (64, ), (1, ))
assert_size_stride(primals_16, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_17, (64, ), (1, ))
assert_size_stride(primals_18, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_19, (64, ), (1, ))
assert_size_stride(primals_20, (64, 64, 1, 1), (64, 1, 1, 1))
assert_size_stride(primals_21, (64, ), (1, ))
assert_size_stride(primals_22, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_23, (64, ), (1, ))
assert_size_stride(primals_24, (64, 64, 1, 1), (64, 1, 1, 1))
assert_size_stride(primals_25, (64, ), (1, ))
assert_size_stride(primals_26, (64, 64, 1, 1), (64, 1, 1, 1))
assert_size_stride(primals_27, (64, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 64, 4, 4), (1024, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [clone], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(primals_1, buf0, 4096, grid=grid(4096), stream=stream0)
# Topologically Sorted Source Nodes: [emb_ref], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 64, 4, 4), (1024, 16, 4, 1))
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [emb_ref], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf2, primals_3, 4096, grid=grid(4096), stream=stream0)
del primals_3
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(reinterpret_tensor(primals_1, (20, 64, 4, 4), (1024, 16, 4, 1), 0), primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (20, 64, 4, 4), (1024, 16, 4, 1))
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
triton_poi_fused_convolution_2.run(buf4, primals_5, 20480, grid=grid(20480), stream=stream0)
del primals_5
buf15 = empty_strided_cuda((4, 5, 4, 4), (80, 16, 4, 1), torch.float32)
buf10 = reinterpret_tensor(buf15, (4, 1, 4, 4), (80, 16, 4, 1), 0) # alias
buf11 = reinterpret_tensor(buf15, (4, 1, 4, 4), (80, 16, 4, 1), 16) # alias
buf12 = reinterpret_tensor(buf15, (4, 1, 4, 4), (80, 16, 4, 1), 32) # alias
buf13 = reinterpret_tensor(buf15, (4, 1, 4, 4), (80, 16, 4, 1), 48) # alias
buf14 = reinterpret_tensor(buf15, (4, 1, 4, 4), (80, 16, 4, 1), 64) # alias
# Topologically Sorted Source Nodes: [mul, sum_1, mul_1, sum_2, mul_2, sum_3, mul_3, sum_4, mul_4, sum_5, cat], Original ATen: [aten.mul, aten.sum, aten.cat]
triton_per_fused_cat_mul_sum_3.run(buf4, buf2, buf10, buf11, buf12, buf13, buf14, 64, 64, grid=grid(64), stream=stream0)
buf16 = empty_strided_cuda((4, 320, 4, 4), (5120, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [aligned_fea], Original ATen: [aten.mul]
triton_poi_fused_mul_4.run(primals_1, buf15, buf16, 20480, grid=grid(20480), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf17 = extern_kernels.convolution(buf16, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf17, (4, 64, 4, 4), (1024, 16, 4, 1))
# Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution]
buf19 = extern_kernels.convolution(buf16, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf19, (4, 64, 4, 4), (1024, 16, 4, 1))
buf20 = buf19; del buf19 # reuse
# Topologically Sorted Source Nodes: [conv2d_3, att], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_5.run(buf20, primals_9, 4096, grid=grid(4096), stream=stream0)
del primals_9
buf24 = empty_strided_cuda((4, 128, 2, 2), (512, 4, 2, 1), torch.float32)
buf21 = reinterpret_tensor(buf24, (4, 64, 2, 2), (512, 4, 2, 1), 0) # alias
buf22 = empty_strided_cuda((4, 64, 2, 2), (256, 4, 2, 1), torch.int8)
buf23 = reinterpret_tensor(buf24, (4, 64, 2, 2), (512, 4, 2, 1), 256) # alias
# Topologically Sorted Source Nodes: [att_max, att_avg], Original ATen: [aten.max_pool2d_with_indices, aten.avg_pool2d]
triton_poi_fused_avg_pool2d_max_pool2d_with_indices_6.run(buf20, buf21, buf22, buf23, 1024, grid=grid(1024), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution]
buf25 = extern_kernels.convolution(buf24, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf25, (4, 64, 2, 2), (256, 4, 2, 1))
buf26 = buf25; del buf25 # reuse
# Topologically Sorted Source Nodes: [conv2d_4, att_1], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_7.run(buf26, primals_11, 1024, grid=grid(1024), stream=stream0)
del primals_11
# Topologically Sorted Source Nodes: [conv2d_5], Original ATen: [aten.convolution]
buf27 = extern_kernels.convolution(buf26, primals_12, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf27, (4, 64, 2, 2), (256, 4, 2, 1))
buf28 = buf27; del buf27 # reuse
# Topologically Sorted Source Nodes: [conv2d_5, att_L], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_7.run(buf28, primals_13, 1024, grid=grid(1024), stream=stream0)
del primals_13
buf32 = empty_strided_cuda((4, 128, 1, 1), (128, 1, 1, 1), torch.float32)
buf29 = reinterpret_tensor(buf32, (4, 64, 1, 1), (128, 1, 1, 1), 0) # alias
buf30 = empty_strided_cuda((4, 64, 1, 1), (64, 1, 1, 1), torch.int8)
buf31 = reinterpret_tensor(buf32, (4, 64, 1, 1), (128, 1, 1, 1), 64) # alias
# Topologically Sorted Source Nodes: [att_max_1, att_avg_1], Original ATen: [aten.max_pool2d_with_indices, aten.avg_pool2d]
triton_poi_fused_avg_pool2d_max_pool2d_with_indices_8.run(buf28, buf29, buf30, buf31, 256, grid=grid(256), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_6], Original ATen: [aten.convolution]
buf33 = extern_kernels.convolution(buf32, primals_14, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf33, (4, 64, 1, 1), (64, 1, 1, 1))
buf34 = buf33; del buf33 # reuse
# Topologically Sorted Source Nodes: [conv2d_6, att_L_1], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_9.run(buf34, primals_15, 256, grid=grid(256), stream=stream0)
del primals_15
# Topologically Sorted Source Nodes: [conv2d_7], Original ATen: [aten.convolution]
buf35 = extern_kernels.convolution(buf34, primals_16, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf35, (4, 64, 1, 1), (64, 1, 1, 1))
buf36 = empty_strided_cuda((2, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [att_L_3], Original ATen: [aten._to_copy]
triton_poi_fused__to_copy_10.run(buf36, 2, grid=grid(2), stream=stream0)
buf37 = empty_strided_cuda((2, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [att_L_3], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_11.run(buf37, 2, grid=grid(2), stream=stream0)
buf38 = empty_strided_cuda((2, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [att_L_3], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp]
triton_poi_fused__to_copy_10.run(buf38, 2, grid=grid(2), stream=stream0)
buf39 = empty_strided_cuda((2, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [att_L_3], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_11.run(buf39, 2, grid=grid(2), stream=stream0)
buf40 = empty_strided_cuda((2, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [att_L_3], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp]
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_12.run(buf40, 2, grid=grid(2), stream=stream0)
buf42 = empty_strided_cuda((2, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [att_L_3], Original ATen: [aten.sub, aten.clamp]
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_12.run(buf42, 2, grid=grid(2), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_8], Original ATen: [aten.convolution]
buf43 = extern_kernels.convolution(buf26, primals_18, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf43, (4, 64, 2, 2), (256, 4, 2, 1))
buf41 = empty_strided_cuda((4, 64, 2, 2), (256, 4, 2, 1), torch.float32)
buf44 = buf41; del buf41 # reuse
buf62 = empty_strided_cuda((4, 64, 2, 2), (256, 4, 2, 1), torch.bool)
# Topologically Sorted Source Nodes: [conv2d_7, att_L_2, att_L_3, conv2d_8, att_2, att_3], Original ATen: [aten.convolution, aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul, aten.add, aten.leaky_relu_backward]
triton_poi_fused__unsafe_index_add_convolution_leaky_relu_leaky_relu_backward_mul_sub_13.run(buf44, buf36, buf38, buf35, primals_17, buf39, buf40, buf43, primals_19, buf37, buf42, buf62, 1024, grid=grid(1024), stream=stream0)
del buf43
del primals_19
# Topologically Sorted Source Nodes: [conv2d_9], Original ATen: [aten.convolution]
buf45 = extern_kernels.convolution(buf44, primals_20, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf45, (4, 64, 2, 2), (256, 4, 2, 1))
buf46 = empty_strided_cuda((4, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [att_5], Original ATen: [aten._to_copy]
triton_poi_fused__to_copy_14.run(buf46, 4, grid=grid(4), stream=stream0)
buf47 = empty_strided_cuda((4, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [att_5], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_15.run(buf47, 4, grid=grid(4), stream=stream0)
buf48 = empty_strided_cuda((4, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [att_5], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp]
triton_poi_fused__to_copy_14.run(buf48, 4, grid=grid(4), stream=stream0)
buf49 = empty_strided_cuda((4, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [att_5], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_15.run(buf49, 4, grid=grid(4), stream=stream0)
buf50 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [att_5], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp]
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_16.run(buf50, 4, grid=grid(4), stream=stream0)
buf52 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [att_5], Original ATen: [aten.sub, aten.clamp]
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_16.run(buf52, 4, grid=grid(4), stream=stream0)
buf53 = empty_strided_cuda((4, 64, 4, 4), (1024, 16, 4, 1), torch.float32)
buf54 = buf53; del buf53 # reuse
# Topologically Sorted Source Nodes: [conv2d_9, att_4, att_5], Original ATen: [aten.convolution, aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul, aten.add]
triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_17.run(buf54, buf46, buf48, buf45, primals_21, buf49, buf50, buf47, buf52, 4096, grid=grid(4096), stream=stream0)
# Topologically Sorted Source Nodes: [att_6], Original ATen: [aten.convolution]
buf55 = extern_kernels.convolution(buf54, primals_22, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf55, (4, 64, 4, 4), (1024, 16, 4, 1))
buf56 = buf55; del buf55 # reuse
# Topologically Sorted Source Nodes: [att_6], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf56, primals_23, 4096, grid=grid(4096), stream=stream0)
del primals_23
# Topologically Sorted Source Nodes: [conv2d_11], Original ATen: [aten.convolution]
buf57 = extern_kernels.convolution(buf56, primals_24, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf57, (4, 64, 4, 4), (1024, 16, 4, 1))
buf58 = buf57; del buf57 # reuse
# Topologically Sorted Source Nodes: [conv2d_11, leaky_relu_8], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_5.run(buf58, primals_25, 4096, grid=grid(4096), stream=stream0)
del primals_25
# Topologically Sorted Source Nodes: [att_add], Original ATen: [aten.convolution]
buf59 = extern_kernels.convolution(buf58, primals_26, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf59, (4, 64, 4, 4), (1024, 16, 4, 1))
buf18 = buf17; del buf17 # reuse
buf60 = buf59; del buf59 # reuse
# Topologically Sorted Source Nodes: [conv2d_2, fea, att_add, att_7, mul_6, mul_7, fea_1], Original ATen: [aten.convolution, aten.leaky_relu, aten.sigmoid, aten.mul, aten.add]
triton_poi_fused_add_convolution_leaky_relu_mul_sigmoid_18.run(buf18, buf60, primals_7, buf56, primals_27, 4096, grid=grid(4096), stream=stream0)
del primals_27
del primals_7
buf61 = empty_strided_cuda((4, 64, 2, 2), (256, 4, 2, 1), torch.bool)
# Topologically Sorted Source Nodes: [conv2d_9, att_4], Original ATen: [aten.convolution, aten.leaky_relu, aten.leaky_relu_backward]
triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_19.run(buf45, primals_21, buf61, 1024, grid=grid(1024), stream=stream0)
del buf45
del primals_21
buf63 = empty_strided_cuda((4, 64, 1, 1), (64, 1, 1, 1), torch.bool)
# Topologically Sorted Source Nodes: [conv2d_7, att_L_2], Original ATen: [aten.convolution, aten.leaky_relu, aten.leaky_relu_backward]
triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_20.run(buf35, primals_17, buf63, 256, grid=grid(256), stream=stream0)
del buf35
del primals_17
return (buf60, primals_1, primals_2, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, primals_20, primals_22, primals_24, primals_26, buf0, buf2, reinterpret_tensor(buf4, (4, 64, 4, 4), (5120, 16, 4, 1), 0), reinterpret_tensor(buf4, (4, 64, 4, 4), (5120, 16, 4, 1), 1024), reinterpret_tensor(buf4, (4, 64, 4, 4), (5120, 16, 4, 1), 2048), reinterpret_tensor(buf4, (4, 64, 4, 4), (5120, 16, 4, 1), 3072), reinterpret_tensor(buf4, (4, 64, 4, 4), (5120, 16, 4, 1), 4096), buf15, buf16, buf18, buf20, buf22, buf24, buf26, buf28, buf30, buf32, buf34, buf36, buf37, buf38, buf39, buf40, buf42, buf44, buf46, buf47, buf48, buf49, buf50, buf52, buf54, buf56, buf58, buf61, buf62, buf63, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 5, 64, 4, 4), (5120, 1024, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((64, 320, 1, 1), (320, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((64, 320, 1, 1), (320, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((64, 128, 1, 1), (128, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((64, 64, 1, 1), (64, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((64, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_17 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_18 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_19 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_20 = rand_strided((64, 64, 1, 1), (64, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_21 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_22 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_23 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_24 = rand_strided((64, 64, 1, 1), (64, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_25 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_26 = rand_strided((64, 64, 1, 1), (64, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_27 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.utils.data
import torch.nn as nn
import torch.nn.functional as F
class TSA_Fusion(nn.Module):
""" Temporal Spatial Attention fusion module
Temporal: correlation;
Spatial: 3 pyramid levels.
"""
def __init__(self, nf=64, nframes=5, center=2):
super(TSA_Fusion, self).__init__()
self.center = center
self.tAtt_1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
self.tAtt_2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
self.fea_fusion = nn.Conv2d(nframes * nf, nf, 1, 1, bias=True)
self.sAtt_1 = nn.Conv2d(nframes * nf, nf, 1, 1, bias=True)
self.maxpool = nn.MaxPool2d(3, stride=2, padding=1)
self.avgpool = nn.AvgPool2d(3, stride=2, padding=1)
self.sAtt_2 = nn.Conv2d(nf * 2, nf, 1, 1, bias=True)
self.sAtt_3 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
self.sAtt_4 = nn.Conv2d(nf, nf, 1, 1, bias=True)
self.sAtt_5 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
self.sAtt_L1 = nn.Conv2d(nf, nf, 1, 1, bias=True)
self.sAtt_L2 = nn.Conv2d(nf * 2, nf, 3, 1, 1, bias=True)
self.sAtt_L3 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
self.sAtt_add_1 = nn.Conv2d(nf, nf, 1, 1, bias=True)
self.sAtt_add_2 = nn.Conv2d(nf, nf, 1, 1, bias=True)
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
def forward(self, aligned_fea):
B, N, C, H, W = aligned_fea.size()
emb_ref = self.tAtt_2(aligned_fea[:, self.center, :, :, :].clone())
emb = self.tAtt_1(aligned_fea.view(-1, C, H, W)).view(B, N, -1, H, W)
cor_l = []
for i in range(N):
emb_nbr = emb[:, i, :, :, :]
cor_tmp = torch.sum(emb_nbr * emb_ref, 1).unsqueeze(1)
cor_l.append(cor_tmp)
cor_prob = torch.sigmoid(torch.cat(cor_l, dim=1))
cor_prob = cor_prob.unsqueeze(2).repeat(1, 1, C, 1, 1).view(B, -1, H, W
)
aligned_fea = aligned_fea.view(B, -1, H, W) * cor_prob
fea = self.lrelu(self.fea_fusion(aligned_fea))
att = self.lrelu(self.sAtt_1(aligned_fea))
att_max = self.maxpool(att)
att_avg = self.avgpool(att)
att = self.lrelu(self.sAtt_2(torch.cat([att_max, att_avg], dim=1)))
att_L = self.lrelu(self.sAtt_L1(att))
att_max = self.maxpool(att_L)
att_avg = self.avgpool(att_L)
att_L = self.lrelu(self.sAtt_L2(torch.cat([att_max, att_avg], dim=1)))
att_L = self.lrelu(self.sAtt_L3(att_L))
att_L = F.interpolate(att_L, scale_factor=2, mode='bilinear',
align_corners=False)
att = self.lrelu(self.sAtt_3(att))
att = att + att_L
att = self.lrelu(self.sAtt_4(att))
att = F.interpolate(att, scale_factor=2, mode='bilinear',
align_corners=False)
att = self.sAtt_5(att)
att_add = self.sAtt_add_2(self.lrelu(self.sAtt_add_1(att)))
att = torch.sigmoid(att)
fea = fea * att * 2 + att_add
return fea
def get_inputs():
return [torch.rand([4, 5, 64, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.utils.data
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 1024
x1 = xindex // 1024
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2048 + x0 + 5120 * x1), None)
tl.store(out_ptr0 + x2, tmp0, None)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 16 % 64
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, None)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 16 % 64
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, None)
@triton.jit
def triton_per_fused_cat_mul_sum_3(in_ptr0, in_ptr1, out_ptr5, out_ptr6,
out_ptr7, out_ptr8, out_ptr9, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x0 = xindex % 16
x1 = xindex // 16
tmp0 = tl.load(in_ptr0 + (x0 + 16 * r2 + 5120 * x1), xmask, other=0.0)
tmp1 = tl.load(in_ptr1 + (x0 + 16 * r2 + 1024 * x1), xmask, other=0.0)
tmp7 = tl.load(in_ptr0 + (1024 + x0 + 16 * r2 + 5120 * x1), xmask,
other=0.0)
tmp13 = tl.load(in_ptr0 + (2048 + x0 + 16 * r2 + 5120 * x1), xmask,
other=0.0)
tmp19 = tl.load(in_ptr0 + (3072 + x0 + 16 * r2 + 5120 * x1), xmask,
other=0.0)
tmp25 = tl.load(in_ptr0 + (4096 + x0 + 16 * r2 + 5120 * x1), xmask,
other=0.0)
tmp2 = tmp0 * tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.where(xmask, tmp3, 0)
tmp6 = tl.sum(tmp5, 1)[:, None]
tmp8 = tmp7 * tmp1
tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK])
tmp11 = tl.where(xmask, tmp9, 0)
tmp12 = tl.sum(tmp11, 1)[:, None]
tmp14 = tmp13 * tmp1
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp20 = tmp19 * tmp1
tmp21 = tl.broadcast_to(tmp20, [XBLOCK, RBLOCK])
tmp23 = tl.where(xmask, tmp21, 0)
tmp24 = tl.sum(tmp23, 1)[:, None]
tmp26 = tmp25 * tmp1
tmp27 = tl.broadcast_to(tmp26, [XBLOCK, RBLOCK])
tmp29 = tl.where(xmask, tmp27, 0)
tmp30 = tl.sum(tmp29, 1)[:, None]
tl.store(out_ptr5 + (x0 + 80 * x1), tmp6, xmask)
tl.store(out_ptr6 + (x0 + 80 * x1), tmp12, xmask)
tl.store(out_ptr7 + (x0 + 80 * x1), tmp18, xmask)
tl.store(out_ptr8 + (x0 + 80 * x1), tmp24, xmask)
tl.store(out_ptr9 + (x0 + 80 * x1), tmp30, xmask)
@triton.jit
def triton_poi_fused_mul_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 16
x1 = xindex // 16 % 320
x2 = xindex // 5120
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + (x0 + 16 * (x1 // 64) + 80 * x2), None)
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tl.store(out_ptr0 + x3, tmp3, None)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_5(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 16 % 64
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(in_out_ptr0 + x3, tmp7, None)
@triton.jit
def triton_poi_fused_avg_pool2d_max_pool2d_with_indices_6(in_ptr0, out_ptr0,
out_ptr1, out_ptr2, xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 2 % 2
x0 = xindex % 2
x5 = xindex // 2
x3 = xindex // 256
x6 = xindex % 256
x7 = xindex
tmp0 = -1 + 2 * x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = -1 + 2 * x0
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp5 & tmp9
tmp11 = tl.load(in_ptr0 + (-5 + 2 * x0 + 8 * x5), tmp10 & xmask,
eviction_policy='evict_last', other=float('-inf'))
tmp12 = 2 * x0
tmp13 = tmp12 >= tmp1
tmp14 = tmp12 < tmp3
tmp15 = tmp13 & tmp14
tmp16 = tmp5 & tmp15
tmp17 = tl.load(in_ptr0 + (-4 + 2 * x0 + 8 * x5), tmp16 & xmask,
eviction_policy='evict_last', other=float('-inf'))
tmp18 = triton_helpers.maximum(tmp17, tmp11)
tmp19 = 1 + 2 * x0
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp20 & tmp21
tmp23 = tmp5 & tmp22
tmp24 = tl.load(in_ptr0 + (-3 + 2 * x0 + 8 * x5), tmp23 & xmask,
eviction_policy='evict_last', other=float('-inf'))
tmp25 = triton_helpers.maximum(tmp24, tmp18)
tmp26 = 2 * x1
tmp27 = tmp26 >= tmp1
tmp28 = tmp26 < tmp3
tmp29 = tmp27 & tmp28
tmp30 = tmp29 & tmp9
tmp31 = tl.load(in_ptr0 + (-1 + 2 * x0 + 8 * x5), tmp30 & xmask,
eviction_policy='evict_last', other=float('-inf'))
tmp32 = triton_helpers.maximum(tmp31, tmp25)
tmp33 = tmp29 & tmp15
tmp34 = tl.load(in_ptr0 + (2 * x0 + 8 * x5), tmp33 & xmask,
eviction_policy='evict_last', other=float('-inf'))
tmp35 = triton_helpers.maximum(tmp34, tmp32)
tmp36 = tmp29 & tmp22
tmp37 = tl.load(in_ptr0 + (1 + 2 * x0 + 8 * x5), tmp36 & xmask,
eviction_policy='evict_last', other=float('-inf'))
tmp38 = triton_helpers.maximum(tmp37, tmp35)
tmp39 = 1 + 2 * x1
tmp40 = tmp39 >= tmp1
tmp41 = tmp39 < tmp3
tmp42 = tmp40 & tmp41
tmp43 = tmp42 & tmp9
tmp44 = tl.load(in_ptr0 + (3 + 2 * x0 + 8 * x5), tmp43 & xmask,
eviction_policy='evict_last', other=float('-inf'))
tmp45 = triton_helpers.maximum(tmp44, tmp38)
tmp46 = tmp42 & tmp15
tmp47 = tl.load(in_ptr0 + (4 + 2 * x0 + 8 * x5), tmp46 & xmask,
eviction_policy='evict_last', other=float('-inf'))
tmp48 = triton_helpers.maximum(tmp47, tmp45)
tmp49 = tmp42 & tmp22
tmp50 = tl.load(in_ptr0 + (5 + 2 * x0 + 8 * x5), tmp49 & xmask,
eviction_policy='evict_last', other=float('-inf'))
tmp51 = triton_helpers.maximum(tmp50, tmp48)
tmp52 = tmp17 > tmp11
tmp53 = tl.full([1], 1, tl.int8)
tmp54 = tl.full([1], 0, tl.int8)
tmp55 = tl.where(tmp52, tmp53, tmp54)
tmp56 = tmp24 > tmp18
tmp57 = tl.full([1], 2, tl.int8)
tmp58 = tl.where(tmp56, tmp57, tmp55)
tmp59 = tmp31 > tmp25
tmp60 = tl.full([1], 3, tl.int8)
tmp61 = tl.where(tmp59, tmp60, tmp58)
tmp62 = tmp34 > tmp32
tmp63 = tl.full([1], 4, tl.int8)
tmp64 = tl.where(tmp62, tmp63, tmp61)
tmp65 = tmp37 > tmp35
tmp66 = tl.full([1], 5, tl.int8)
tmp67 = tl.where(tmp65, tmp66, tmp64)
tmp68 = tmp44 > tmp38
tmp69 = tl.full([1], 6, tl.int8)
tmp70 = tl.where(tmp68, tmp69, tmp67)
tmp71 = tmp47 > tmp45
tmp72 = tl.full([1], 7, tl.int8)
tmp73 = tl.where(tmp71, tmp72, tmp70)
tmp74 = tmp50 > tmp48
tmp75 = tl.full([1], 8, tl.int8)
tmp76 = tl.where(tmp74, tmp75, tmp73)
tmp77 = tl.load(in_ptr0 + (-5 + 2 * x0 + 8 * x5), tmp10 & xmask,
eviction_policy='evict_last', other=0.0)
tmp78 = tl.load(in_ptr0 + (-4 + 2 * x0 + 8 * x5), tmp16 & xmask,
eviction_policy='evict_last', other=0.0)
tmp79 = tmp78 + tmp77
tmp80 = tl.load(in_ptr0 + (-3 + 2 * x0 + 8 * x5), tmp23 & xmask,
eviction_policy='evict_last', other=0.0)
tmp81 = tmp80 + tmp79
tmp82 = tl.load(in_ptr0 + (-1 + 2 * x0 + 8 * x5), tmp30 & xmask,
eviction_policy='evict_last', other=0.0)
tmp83 = tmp82 + tmp81
tmp84 = tl.load(in_ptr0 + (2 * x0 + 8 * x5), tmp33 & xmask,
eviction_policy='evict_last', other=0.0)
tmp85 = tmp84 + tmp83
tmp86 = tl.load(in_ptr0 + (1 + 2 * x0 + 8 * x5), tmp36 & xmask,
eviction_policy='evict_last', other=0.0)
tmp87 = tmp86 + tmp85
tmp88 = tl.load(in_ptr0 + (3 + 2 * x0 + 8 * x5), tmp43 & xmask,
eviction_policy='evict_last', other=0.0)
tmp89 = tmp88 + tmp87
tmp90 = tl.load(in_ptr0 + (4 + 2 * x0 + 8 * x5), tmp46 & xmask,
eviction_policy='evict_last', other=0.0)
tmp91 = tmp90 + tmp89
tmp92 = tl.load(in_ptr0 + (5 + 2 * x0 + 8 * x5), tmp49 & xmask,
eviction_policy='evict_last', other=0.0)
tmp93 = tmp92 + tmp91
tmp94 = 1 + -2 * x0 + -2 * x1 + (5 * (5 <= 2 + 2 * x0) + (2 + 2 * x0) *
(2 + 2 * x0 < 5)) * (5 * (5 <= 2 + 2 * x1) + (2 + 2 * x1) * (2 + 2 *
x1 < 5)) + -2 * x0 * (5 * (5 <= 2 + 2 * x1) + (2 + 2 * x1) * (2 + 2 *
x1 < 5)) + -2 * x1 * (5 * (5 <= 2 + 2 * x0) + (2 + 2 * x0) * (2 + 2 *
x0 < 5)) + 4 * x0 * x1 + (5 * (5 <= 2 + 2 * x0) + (2 + 2 * x0) * (2 +
2 * x0 < 5)) + (5 * (5 <= 2 + 2 * x1) + (2 + 2 * x1) * (2 + 2 * x1 < 5)
)
tmp95 = tmp93 / tmp94
tl.store(out_ptr0 + (x6 + 512 * x3), tmp51, xmask)
tl.store(out_ptr1 + x7, tmp76, xmask)
tl.store(out_ptr2 + (x6 + 512 * x3), tmp95, xmask)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_7(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 4 % 64
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(in_out_ptr0 + x3, tmp7, xmask)
@triton.jit
def triton_poi_fused_avg_pool2d_max_pool2d_with_indices_8(in_ptr0, out_ptr0,
out_ptr1, out_ptr2, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
x1 = xindex // 64
tmp0 = tl.full([1], -1, tl.int64)
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 2, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = tmp5 & tmp5
tmp7 = tl.load(in_ptr0 + (-3 + 4 * x2), tmp6 & xmask, eviction_policy=
'evict_last', other=float('-inf'))
tmp8 = tmp1 >= tmp1
tmp9 = tmp1 < tmp3
tmp10 = tmp8 & tmp9
tmp11 = tmp5 & tmp10
tmp12 = tl.load(in_ptr0 + (-2 + 4 * x2), tmp11 & xmask, eviction_policy
='evict_last', other=float('-inf'))
tmp13 = triton_helpers.maximum(tmp12, tmp7)
tmp14 = tl.full([1], 1, tl.int64)
tmp15 = tmp14 >= tmp1
tmp16 = tmp14 < tmp3
tmp17 = tmp15 & tmp16
tmp18 = tmp5 & tmp17
tmp19 = tl.load(in_ptr0 + (-1 + 4 * x2), tmp18 & xmask, eviction_policy
='evict_last', other=float('-inf'))
tmp20 = triton_helpers.maximum(tmp19, tmp13)
tmp21 = tmp10 & tmp5
tmp22 = tl.load(in_ptr0 + (-1 + 4 * x2), tmp21 & xmask, eviction_policy
='evict_last', other=float('-inf'))
tmp23 = triton_helpers.maximum(tmp22, tmp20)
tmp24 = tmp10 & tmp10
tmp25 = tl.load(in_ptr0 + 4 * x2, tmp24 & xmask, eviction_policy=
'evict_last', other=float('-inf'))
tmp26 = triton_helpers.maximum(tmp25, tmp23)
tmp27 = tmp10 & tmp17
tmp28 = tl.load(in_ptr0 + (1 + 4 * x2), tmp27 & xmask, eviction_policy=
'evict_last', other=float('-inf'))
tmp29 = triton_helpers.maximum(tmp28, tmp26)
tmp30 = tmp17 & tmp5
tmp31 = tl.load(in_ptr0 + (1 + 4 * x2), tmp30 & xmask, eviction_policy=
'evict_last', other=float('-inf'))
tmp32 = triton_helpers.maximum(tmp31, tmp29)
tmp33 = tmp17 & tmp10
tmp34 = tl.load(in_ptr0 + (2 + 4 * x2), tmp33 & xmask, eviction_policy=
'evict_last', other=float('-inf'))
tmp35 = triton_helpers.maximum(tmp34, tmp32)
tmp36 = tmp17 & tmp17
tmp37 = tl.load(in_ptr0 + (3 + 4 * x2), tmp36 & xmask, eviction_policy=
'evict_last', other=float('-inf'))
tmp38 = triton_helpers.maximum(tmp37, tmp35)
tmp39 = tmp12 > tmp7
tmp40 = tl.full([1], 1, tl.int8)
tmp41 = tl.full([1], 0, tl.int8)
tmp42 = tl.where(tmp39, tmp40, tmp41)
tmp43 = tmp19 > tmp13
tmp44 = tl.full([1], 2, tl.int8)
tmp45 = tl.where(tmp43, tmp44, tmp42)
tmp46 = tmp22 > tmp20
tmp47 = tl.full([1], 3, tl.int8)
tmp48 = tl.where(tmp46, tmp47, tmp45)
tmp49 = tmp25 > tmp23
tmp50 = tl.full([1], 4, tl.int8)
tmp51 = tl.where(tmp49, tmp50, tmp48)
tmp52 = tmp28 > tmp26
tmp53 = tl.full([1], 5, tl.int8)
tmp54 = tl.where(tmp52, tmp53, tmp51)
tmp55 = tmp31 > tmp29
tmp56 = tl.full([1], 6, tl.int8)
tmp57 = tl.where(tmp55, tmp56, tmp54)
tmp58 = tmp34 > tmp32
tmp59 = tl.full([1], 7, tl.int8)
tmp60 = tl.where(tmp58, tmp59, tmp57)
tmp61 = tmp37 > tmp35
tmp62 = tl.full([1], 8, tl.int8)
tmp63 = tl.where(tmp61, tmp62, tmp60)
tmp64 = tl.load(in_ptr0 + (-3 + 4 * x2), tmp6 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp65 = tl.load(in_ptr0 + (-2 + 4 * x2), tmp11 & xmask, eviction_policy
='evict_last', other=0.0)
tmp66 = tmp65 + tmp64
tmp67 = tl.load(in_ptr0 + (-1 + 4 * x2), tmp18 & xmask, eviction_policy
='evict_last', other=0.0)
tmp68 = tmp67 + tmp66
tmp69 = tl.load(in_ptr0 + (-1 + 4 * x2), tmp21 & xmask, eviction_policy
='evict_last', other=0.0)
tmp70 = tmp69 + tmp68
tmp71 = tl.load(in_ptr0 + 4 * x2, tmp24 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp72 = tmp71 + tmp70
tmp73 = tl.load(in_ptr0 + (1 + 4 * x2), tmp27 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp74 = tmp73 + tmp72
tmp75 = tl.load(in_ptr0 + (1 + 4 * x2), tmp30 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp76 = tmp75 + tmp74
tmp77 = tl.load(in_ptr0 + (2 + 4 * x2), tmp33 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp78 = tmp77 + tmp76
tmp79 = tl.load(in_ptr0 + (3 + 4 * x2), tmp36 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp80 = tmp79 + tmp78
tmp81 = tl.full([1], 9, tl.int32)
tmp82 = tmp80 / tmp81
tl.store(out_ptr0 + (x0 + 128 * x1), tmp38, xmask)
tl.store(out_ptr1 + x2, tmp63, xmask)
tl.store(out_ptr2 + (x0 + 128 * x1), tmp82, xmask)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_9(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(in_out_ptr0 + x2, tmp7, xmask)
@triton.jit
def triton_poi_fused__to_copy_10(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 2
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tl.store(out_ptr0 + x0, tmp8, xmask)
@triton.jit
def triton_poi_fused_add_clamp_11(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 2
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tmp9 = tl.full([1], 1, tl.int64)
tmp10 = tmp8 + tmp9
tmp11 = tl.full([1], 0, tl.int64)
tmp12 = triton_helpers.minimum(tmp10, tmp11)
tl.store(out_ptr0 + x0, tmp12, xmask)
@triton.jit
def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_12(out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 2
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 - tmp9
tmp11 = triton_helpers.maximum(tmp10, tmp6)
tmp12 = 1.0
tmp13 = triton_helpers.minimum(tmp11, tmp12)
tl.store(out_ptr0 + x0, tmp13, xmask)
@triton.jit
def triton_poi_fused__unsafe_index_add_convolution_leaky_relu_leaky_relu_backward_mul_sub_13(
in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5,
in_ptr6, in_ptr7, in_ptr8, in_ptr9, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 2 % 2
x0 = xindex % 2
x5 = xindex // 4
x2 = xindex // 4 % 64
x6 = xindex
tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr2 + x5, xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + x2, xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last')
tmp22 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr6 + x6, xmask)
tmp26 = tl.load(in_ptr7 + x2, xmask, eviction_policy='evict_last')
tmp31 = tl.load(in_ptr8 + x1, xmask, eviction_policy='evict_last')
tmp36 = tl.load(in_ptr9 + x1, xmask, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 1, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tl.where(tmp7, tmp6, tmp5)
tmp11 = tmp9 + tmp10
tmp12 = 0.0
tmp13 = tmp11 > tmp12
tmp14 = 0.1
tmp15 = tmp11 * tmp14
tmp16 = tl.where(tmp13, tmp11, tmp15)
tmp18 = tmp17 + tmp1
tmp19 = tmp17 < 0
tl.where(tmp19, tmp18, tmp17)
tmp21 = tmp16 - tmp16
tmp23 = tmp21 * tmp22
tmp24 = tmp16 + tmp23
tmp27 = tmp25 + tmp26
tmp28 = tmp27 > tmp12
tmp29 = tmp27 * tmp14
tmp30 = tl.where(tmp28, tmp27, tmp29)
tmp32 = tmp31 + tmp1
tmp33 = tmp31 < 0
tl.where(tmp33, tmp32, tmp31)
tmp35 = tmp24 - tmp24
tmp37 = tmp35 * tmp36
tmp38 = tmp24 + tmp37
tmp39 = tmp30 + tmp38
tmp40 = tmp30 > tmp12
tl.store(in_out_ptr0 + x6, tmp39, xmask)
tl.store(out_ptr0 + x6, tmp40, xmask)
@triton.jit
def triton_poi_fused__to_copy_14(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tl.store(out_ptr0 + x0, tmp8, xmask)
@triton.jit
def triton_poi_fused_add_clamp_15(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tmp9 = tl.full([1], 1, tl.int64)
tmp10 = tmp8 + tmp9
tmp11 = triton_helpers.minimum(tmp10, tmp9)
tl.store(out_ptr0 + x0, tmp11, xmask)
@triton.jit
def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_16(out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 - tmp9
tmp11 = triton_helpers.maximum(tmp10, tmp6)
tmp12 = 1.0
tmp13 = triton_helpers.minimum(tmp11, tmp12)
tl.store(out_ptr0 + x0, tmp13, xmask)
@triton.jit
def triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_17(
in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5,
in_ptr6, in_ptr7, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 4 % 4
x0 = xindex % 4
x6 = xindex // 16
x2 = xindex // 16 % 64
x4 = xindex
tmp0 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + x2, None, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr5 + x0, None, eviction_policy='evict_last')
tmp30 = tl.load(in_ptr6 + x1, None, eviction_policy='evict_last')
tmp48 = tl.load(in_ptr7 + x1, None, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 2, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr2 + (tmp8 + 2 * tmp4 + 4 * x6), None,
eviction_policy='evict_last')
tmp11 = tmp9 + tmp10
tmp12 = 0.0
tmp13 = tmp11 > tmp12
tmp14 = 0.1
tmp15 = tmp11 * tmp14
tmp16 = tl.where(tmp13, tmp11, tmp15)
tmp18 = tmp17 + tmp1
tmp19 = tmp17 < 0
tmp20 = tl.where(tmp19, tmp18, tmp17)
tmp21 = tl.load(in_ptr2 + (tmp20 + 2 * tmp4 + 4 * x6), None,
eviction_policy='evict_last')
tmp22 = tmp21 + tmp10
tmp23 = tmp22 > tmp12
tmp24 = tmp22 * tmp14
tmp25 = tl.where(tmp23, tmp22, tmp24)
tmp26 = tmp25 - tmp16
tmp28 = tmp26 * tmp27
tmp29 = tmp16 + tmp28
tmp31 = tmp30 + tmp1
tmp32 = tmp30 < 0
tmp33 = tl.where(tmp32, tmp31, tmp30)
tmp34 = tl.load(in_ptr2 + (tmp8 + 2 * tmp33 + 4 * x6), None,
eviction_policy='evict_last')
tmp35 = tmp34 + tmp10
tmp36 = tmp35 > tmp12
tmp37 = tmp35 * tmp14
tmp38 = tl.where(tmp36, tmp35, tmp37)
tmp39 = tl.load(in_ptr2 + (tmp20 + 2 * tmp33 + 4 * x6), None,
eviction_policy='evict_last')
tmp40 = tmp39 + tmp10
tmp41 = tmp40 > tmp12
tmp42 = tmp40 * tmp14
tmp43 = tl.where(tmp41, tmp40, tmp42)
tmp44 = tmp43 - tmp38
tmp45 = tmp44 * tmp27
tmp46 = tmp38 + tmp45
tmp47 = tmp46 - tmp29
tmp49 = tmp47 * tmp48
tmp50 = tmp29 + tmp49
tl.store(in_out_ptr0 + x4, tmp50, None)
@triton.jit
def triton_poi_fused_add_convolution_leaky_relu_mul_sigmoid_18(in_out_ptr0,
in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 16 % 64
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + x3, None)
tmp13 = tl.load(in_out_ptr1 + x3, None)
tmp14 = tl.load(in_ptr2 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tmp9 = tl.sigmoid(tmp8)
tmp10 = tmp7 * tmp9
tmp11 = 2.0
tmp12 = tmp10 * tmp11
tmp15 = tmp13 + tmp14
tmp16 = tmp12 + tmp15
tl.store(in_out_ptr0 + x3, tmp2, None)
tl.store(in_out_ptr1 + x3, tmp16, None)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_19(in_ptr0,
in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 4 % 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tmp8 = tmp7 > tmp3
tl.store(out_ptr0 + x3, tmp8, xmask)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_20(in_ptr0,
in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tmp8 = tmp7 > tmp3
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17,
primals_18, primals_19, primals_20, primals_21, primals_22,
primals_23, primals_24, primals_25, primals_26, primals_27) = args
args.clear()
assert_size_stride(primals_1, (4, 5, 64, 4, 4), (5120, 1024, 16, 4, 1))
assert_size_stride(primals_2, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_3, (64,), (1,))
assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_5, (64,), (1,))
assert_size_stride(primals_6, (64, 320, 1, 1), (320, 1, 1, 1))
assert_size_stride(primals_7, (64,), (1,))
assert_size_stride(primals_8, (64, 320, 1, 1), (320, 1, 1, 1))
assert_size_stride(primals_9, (64,), (1,))
assert_size_stride(primals_10, (64, 128, 1, 1), (128, 1, 1, 1))
assert_size_stride(primals_11, (64,), (1,))
assert_size_stride(primals_12, (64, 64, 1, 1), (64, 1, 1, 1))
assert_size_stride(primals_13, (64,), (1,))
assert_size_stride(primals_14, (64, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_15, (64,), (1,))
assert_size_stride(primals_16, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_17, (64,), (1,))
assert_size_stride(primals_18, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_19, (64,), (1,))
assert_size_stride(primals_20, (64, 64, 1, 1), (64, 1, 1, 1))
assert_size_stride(primals_21, (64,), (1,))
assert_size_stride(primals_22, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_23, (64,), (1,))
assert_size_stride(primals_24, (64, 64, 1, 1), (64, 1, 1, 1))
assert_size_stride(primals_25, (64,), (1,))
assert_size_stride(primals_26, (64, 64, 1, 1), (64, 1, 1, 1))
assert_size_stride(primals_27, (64,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 64, 4, 4), (1024, 16, 4, 1), torch.
float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(4096)](primals_1, buf0, 4096, XBLOCK=
128, num_warps=4, num_stages=1)
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 64, 4, 4), (1024, 16, 4, 1))
buf2 = buf1
del buf1
triton_poi_fused_convolution_1[grid(4096)](buf2, primals_3, 4096,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_3
buf3 = extern_kernels.convolution(reinterpret_tensor(primals_1, (20,
64, 4, 4), (1024, 16, 4, 1), 0), primals_4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (20, 64, 4, 4), (1024, 16, 4, 1))
buf4 = buf3
del buf3
triton_poi_fused_convolution_2[grid(20480)](buf4, primals_5, 20480,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
buf15 = empty_strided_cuda((4, 5, 4, 4), (80, 16, 4, 1), torch.float32)
buf10 = reinterpret_tensor(buf15, (4, 1, 4, 4), (80, 16, 4, 1), 0)
buf11 = reinterpret_tensor(buf15, (4, 1, 4, 4), (80, 16, 4, 1), 16)
buf12 = reinterpret_tensor(buf15, (4, 1, 4, 4), (80, 16, 4, 1), 32)
buf13 = reinterpret_tensor(buf15, (4, 1, 4, 4), (80, 16, 4, 1), 48)
buf14 = reinterpret_tensor(buf15, (4, 1, 4, 4), (80, 16, 4, 1), 64)
triton_per_fused_cat_mul_sum_3[grid(64)](buf4, buf2, buf10, buf11,
buf12, buf13, buf14, 64, 64, XBLOCK=32, num_warps=8, num_stages=1)
buf16 = empty_strided_cuda((4, 320, 4, 4), (5120, 16, 4, 1), torch.
float32)
triton_poi_fused_mul_4[grid(20480)](primals_1, buf15, buf16, 20480,
XBLOCK=256, num_warps=4, num_stages=1)
buf17 = extern_kernels.convolution(buf16, primals_6, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf17, (4, 64, 4, 4), (1024, 16, 4, 1))
buf19 = extern_kernels.convolution(buf16, primals_8, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf19, (4, 64, 4, 4), (1024, 16, 4, 1))
buf20 = buf19
del buf19
triton_poi_fused_convolution_leaky_relu_5[grid(4096)](buf20,
primals_9, 4096, XBLOCK=128, num_warps=4, num_stages=1)
del primals_9
buf24 = empty_strided_cuda((4, 128, 2, 2), (512, 4, 2, 1), torch.
float32)
buf21 = reinterpret_tensor(buf24, (4, 64, 2, 2), (512, 4, 2, 1), 0)
buf22 = empty_strided_cuda((4, 64, 2, 2), (256, 4, 2, 1), torch.int8)
buf23 = reinterpret_tensor(buf24, (4, 64, 2, 2), (512, 4, 2, 1), 256)
triton_poi_fused_avg_pool2d_max_pool2d_with_indices_6[grid(1024)](buf20
, buf21, buf22, buf23, 1024, XBLOCK=256, num_warps=4, num_stages=1)
buf25 = extern_kernels.convolution(buf24, primals_10, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf25, (4, 64, 2, 2), (256, 4, 2, 1))
buf26 = buf25
del buf25
triton_poi_fused_convolution_leaky_relu_7[grid(1024)](buf26,
primals_11, 1024, XBLOCK=128, num_warps=4, num_stages=1)
del primals_11
buf27 = extern_kernels.convolution(buf26, primals_12, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf27, (4, 64, 2, 2), (256, 4, 2, 1))
buf28 = buf27
del buf27
triton_poi_fused_convolution_leaky_relu_7[grid(1024)](buf28,
primals_13, 1024, XBLOCK=128, num_warps=4, num_stages=1)
del primals_13
buf32 = empty_strided_cuda((4, 128, 1, 1), (128, 1, 1, 1), torch.
float32)
buf29 = reinterpret_tensor(buf32, (4, 64, 1, 1), (128, 1, 1, 1), 0)
buf30 = empty_strided_cuda((4, 64, 1, 1), (64, 1, 1, 1), torch.int8)
buf31 = reinterpret_tensor(buf32, (4, 64, 1, 1), (128, 1, 1, 1), 64)
triton_poi_fused_avg_pool2d_max_pool2d_with_indices_8[grid(256)](buf28,
buf29, buf30, buf31, 256, XBLOCK=128, num_warps=4, num_stages=1)
buf33 = extern_kernels.convolution(buf32, primals_14, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf33, (4, 64, 1, 1), (64, 1, 1, 1))
buf34 = buf33
del buf33
triton_poi_fused_convolution_leaky_relu_9[grid(256)](buf34,
primals_15, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_15
buf35 = extern_kernels.convolution(buf34, primals_16, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf35, (4, 64, 1, 1), (64, 1, 1, 1))
buf36 = empty_strided_cuda((2, 1), (1, 1), torch.int64)
triton_poi_fused__to_copy_10[grid(2)](buf36, 2, XBLOCK=2, num_warps
=1, num_stages=1)
buf37 = empty_strided_cuda((2, 1), (1, 1), torch.int64)
triton_poi_fused_add_clamp_11[grid(2)](buf37, 2, XBLOCK=2,
num_warps=1, num_stages=1)
buf38 = empty_strided_cuda((2,), (1,), torch.int64)
triton_poi_fused__to_copy_10[grid(2)](buf38, 2, XBLOCK=2, num_warps
=1, num_stages=1)
buf39 = empty_strided_cuda((2,), (1,), torch.int64)
triton_poi_fused_add_clamp_11[grid(2)](buf39, 2, XBLOCK=2,
num_warps=1, num_stages=1)
buf40 = empty_strided_cuda((2,), (1,), torch.float32)
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_12[grid(2)](buf40,
2, XBLOCK=2, num_warps=1, num_stages=1)
buf42 = empty_strided_cuda((2, 1), (1, 1), torch.float32)
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_12[grid(2)](buf42,
2, XBLOCK=2, num_warps=1, num_stages=1)
buf43 = extern_kernels.convolution(buf26, primals_18, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf43, (4, 64, 2, 2), (256, 4, 2, 1))
buf41 = empty_strided_cuda((4, 64, 2, 2), (256, 4, 2, 1), torch.float32
)
buf44 = buf41
del buf41
buf62 = empty_strided_cuda((4, 64, 2, 2), (256, 4, 2, 1), torch.bool)
triton_poi_fused__unsafe_index_add_convolution_leaky_relu_leaky_relu_backward_mul_sub_13[
grid(1024)](buf44, buf36, buf38, buf35, primals_17, buf39,
buf40, buf43, primals_19, buf37, buf42, buf62, 1024, XBLOCK=256,
num_warps=4, num_stages=1)
del buf43
del primals_19
buf45 = extern_kernels.convolution(buf44, primals_20, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf45, (4, 64, 2, 2), (256, 4, 2, 1))
buf46 = empty_strided_cuda((4, 1), (1, 1), torch.int64)
triton_poi_fused__to_copy_14[grid(4)](buf46, 4, XBLOCK=4, num_warps
=1, num_stages=1)
buf47 = empty_strided_cuda((4, 1), (1, 1), torch.int64)
triton_poi_fused_add_clamp_15[grid(4)](buf47, 4, XBLOCK=4,
num_warps=1, num_stages=1)
buf48 = empty_strided_cuda((4,), (1,), torch.int64)
triton_poi_fused__to_copy_14[grid(4)](buf48, 4, XBLOCK=4, num_warps
=1, num_stages=1)
buf49 = empty_strided_cuda((4,), (1,), torch.int64)
triton_poi_fused_add_clamp_15[grid(4)](buf49, 4, XBLOCK=4,
num_warps=1, num_stages=1)
buf50 = empty_strided_cuda((4,), (1,), torch.float32)
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_16[grid(4)](buf50,
4, XBLOCK=4, num_warps=1, num_stages=1)
buf52 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_16[grid(4)](buf52,
4, XBLOCK=4, num_warps=1, num_stages=1)
buf53 = empty_strided_cuda((4, 64, 4, 4), (1024, 16, 4, 1), torch.
float32)
buf54 = buf53
del buf53
triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_17[
grid(4096)](buf54, buf46, buf48, buf45, primals_21, buf49,
buf50, buf47, buf52, 4096, XBLOCK=128, num_warps=4, num_stages=1)
buf55 = extern_kernels.convolution(buf54, primals_22, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf55, (4, 64, 4, 4), (1024, 16, 4, 1))
buf56 = buf55
del buf55
triton_poi_fused_convolution_1[grid(4096)](buf56, primals_23, 4096,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_23
buf57 = extern_kernels.convolution(buf56, primals_24, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf57, (4, 64, 4, 4), (1024, 16, 4, 1))
buf58 = buf57
del buf57
triton_poi_fused_convolution_leaky_relu_5[grid(4096)](buf58,
primals_25, 4096, XBLOCK=128, num_warps=4, num_stages=1)
del primals_25
buf59 = extern_kernels.convolution(buf58, primals_26, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf59, (4, 64, 4, 4), (1024, 16, 4, 1))
buf18 = buf17
del buf17
buf60 = buf59
del buf59
triton_poi_fused_add_convolution_leaky_relu_mul_sigmoid_18[grid(4096)](
buf18, buf60, primals_7, buf56, primals_27, 4096, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_27
del primals_7
buf61 = empty_strided_cuda((4, 64, 2, 2), (256, 4, 2, 1), torch.bool)
triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_19[grid
(1024)](buf45, primals_21, buf61, 1024, XBLOCK=256, num_warps=4,
num_stages=1)
del buf45
del primals_21
buf63 = empty_strided_cuda((4, 64, 1, 1), (64, 1, 1, 1), torch.bool)
triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_20[grid
(256)](buf35, primals_17, buf63, 256, XBLOCK=128, num_warps=4,
num_stages=1)
del buf35
del primals_17
return (buf60, primals_1, primals_2, primals_4, primals_6, primals_8,
primals_10, primals_12, primals_14, primals_16, primals_18,
primals_20, primals_22, primals_24, primals_26, buf0, buf2,
reinterpret_tensor(buf4, (4, 64, 4, 4), (5120, 16, 4, 1), 0),
reinterpret_tensor(buf4, (4, 64, 4, 4), (5120, 16, 4, 1), 1024),
reinterpret_tensor(buf4, (4, 64, 4, 4), (5120, 16, 4, 1), 2048),
reinterpret_tensor(buf4, (4, 64, 4, 4), (5120, 16, 4, 1), 3072),
reinterpret_tensor(buf4, (4, 64, 4, 4), (5120, 16, 4, 1), 4096),
buf15, buf16, buf18, buf20, buf22, buf24, buf26, buf28, buf30,
buf32, buf34, buf36, buf37, buf38, buf39, buf40, buf42, buf44,
buf46, buf47, buf48, buf49, buf50, buf52, buf54, buf56, buf58,
buf61, buf62, buf63)
class TSA_FusionNew(nn.Module):
""" Temporal Spatial Attention fusion module
Temporal: correlation;
Spatial: 3 pyramid levels.
"""
def __init__(self, nf=64, nframes=5, center=2):
super(TSA_FusionNew, self).__init__()
self.center = center
self.tAtt_1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
self.tAtt_2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
self.fea_fusion = nn.Conv2d(nframes * nf, nf, 1, 1, bias=True)
self.sAtt_1 = nn.Conv2d(nframes * nf, nf, 1, 1, bias=True)
self.maxpool = nn.MaxPool2d(3, stride=2, padding=1)
self.avgpool = nn.AvgPool2d(3, stride=2, padding=1)
self.sAtt_2 = nn.Conv2d(nf * 2, nf, 1, 1, bias=True)
self.sAtt_3 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
self.sAtt_4 = nn.Conv2d(nf, nf, 1, 1, bias=True)
self.sAtt_5 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
self.sAtt_L1 = nn.Conv2d(nf, nf, 1, 1, bias=True)
self.sAtt_L2 = nn.Conv2d(nf * 2, nf, 3, 1, 1, bias=True)
self.sAtt_L3 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
self.sAtt_add_1 = nn.Conv2d(nf, nf, 1, 1, bias=True)
self.sAtt_add_2 = nn.Conv2d(nf, nf, 1, 1, bias=True)
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
def forward(self, input_0):
primals_2 = self.tAtt_1.weight
primals_3 = self.tAtt_1.bias
primals_4 = self.tAtt_2.weight
primals_5 = self.tAtt_2.bias
primals_6 = self.fea_fusion.weight
primals_7 = self.fea_fusion.bias
primals_8 = self.sAtt_1.weight
primals_9 = self.sAtt_1.bias
primals_10 = self.sAtt_2.weight
primals_11 = self.sAtt_2.bias
primals_16 = self.sAtt_3.weight
primals_13 = self.sAtt_3.bias
primals_12 = self.sAtt_4.weight
primals_15 = self.sAtt_4.bias
primals_18 = self.sAtt_5.weight
primals_17 = self.sAtt_5.bias
primals_20 = self.sAtt_L1.weight
primals_19 = self.sAtt_L1.bias
primals_14 = self.sAtt_L2.weight
primals_21 = self.sAtt_L2.bias
primals_22 = self.sAtt_L3.weight
primals_23 = self.sAtt_L3.bias
primals_24 = self.sAtt_add_1.weight
primals_25 = self.sAtt_add_1.bias
primals_26 = self.sAtt_add_2.weight
primals_27 = self.sAtt_add_2.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17, primals_18, primals_19,
primals_20, primals_21, primals_22, primals_23, primals_24,
primals_25, primals_26, primals_27])
return output[0]
|
andreistirb/mmsr
|
TSA_Fusion
| false | 9,795 |
[
"Apache-2.0"
] | 0 |
da6b1109c8dab795a7d451d80dc78e9eb8cfe16c
|
https://github.com/andreistirb/mmsr/tree/da6b1109c8dab795a7d451d80dc78e9eb8cfe16c
|
Postnet
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/iu/ciuxern2omgit5ovksuiwlddxkww6e3pkid4q2h3sauzn5rbd35z.py
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv1d => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_2, %primals_3, [1], [0], [1], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/kn/cknvzagd4cmj4kdoivmelcmvo6he4ziakkyh2o7mwewd7eqarhyj.py
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv1d => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_2, %primals_3, [1], [0], [1], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1280
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 4) % 80
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (80, 4, 1), (4, 1, 1))
assert_size_stride(primals_3, (80, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(primals_1, buf0, 16, 4, grid=grid(16, 4), stream=stream0)
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf1, (4, 80, 4), (320, 4, 1))
del buf0
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf2, primals_3, 1280, grid=grid(1280), stream=stream0)
del primals_3
return (reinterpret_tensor(buf2, (4, 4, 80), (320, 1, 4), 0), primals_2, reinterpret_tensor(primals_1, (4, 4, 4), (16, 1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((80, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((80, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
class Postnet(nn.Module):
"""Postnet is a simple linear layer for predicting the target frames given the
RNN context during training. We don't need the Postnet for feature extraction.
"""
def __init__(self, input_size, output_size=80):
super(Postnet, self).__init__()
self.layer = nn.Conv1d(in_channels=input_size, out_channels=
output_size, kernel_size=1, stride=1)
def forward(self, inputs):
inputs = torch.transpose(inputs, 1, 2)
return torch.transpose(self.layer(inputs), 1, 2)
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'input_size': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 1280
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 4 % 80
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (80, 4, 1), (4, 1, 1))
assert_size_stride(primals_3, (80,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(16, 4)](primals_1, buf0, 16, 4,
XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1)
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,),
padding=(0,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf1, (4, 80, 4), (320, 4, 1))
del buf0
buf2 = buf1
del buf1
triton_poi_fused_convolution_1[grid(1280)](buf2, primals_3, 1280,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_3
return reinterpret_tensor(buf2, (4, 4, 80), (320, 1, 4), 0
), primals_2, reinterpret_tensor(primals_1, (4, 4, 4), (16, 1, 4), 0)
class PostnetNew(nn.Module):
"""Postnet is a simple linear layer for predicting the target frames given the
RNN context during training. We don't need the Postnet for feature extraction.
"""
def __init__(self, input_size, output_size=80):
super(PostnetNew, self).__init__()
self.layer = nn.Conv1d(in_channels=input_size, out_channels=
output_size, kernel_size=1, stride=1)
def forward(self, input_0):
primals_2 = self.layer.weight
primals_3 = self.layer.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
apoorv2904/Self-Supervised-Speech-Pretraining-and-Representation-Learning
|
Postnet
| false | 9,796 |
[
"MIT"
] | 0 |
6bdf02836ed31fdf7f185eddcd004770526c57c3
|
https://github.com/apoorv2904/Self-Supervised-Speech-Pretraining-and-Representation-Learning/tree/6bdf02836ed31fdf7f185eddcd004770526c57c3
|
SmoothL1Loss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/6j/c6jfepznpyw27icx3r43btm73cvmjgsugaqhhbluj37jhqqgggsz.py
# Topologically Sorted Source Nodes: [sub, x, ge, l1, pow_1, mul, l2, where], Original ATen: [aten.sub, aten.abs, aten.ge, aten.pow, aten.mul, aten.div, aten.where]
# Source node to ATen node mapping:
# ge => ge
# l1 => sub_1
# l2 => div
# mul => mul
# pow_1 => pow_1
# sub => sub
# where => where
# x => abs_1
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {})
# %abs_1 : [num_users=3] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {})
# %ge : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%abs_1, 0.11), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%abs_1, 0.055), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%abs_1, 2), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, 0.5), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, 0.11), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%ge, %sub_1, %div), kwargs = {})
triton_poi_fused_abs_div_ge_mul_pow_sub_where_0 = async_compile.triton('triton_poi_fused_abs_div_ge_mul_pow_sub_where_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_abs_div_ge_mul_pow_sub_where_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_abs_div_ge_mul_pow_sub_where_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask)
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp4 = 0.11
tmp5 = tmp3 >= tmp4
tmp6 = 0.055
tmp7 = tmp3 - tmp6
tmp8 = tmp3 * tmp3
tmp9 = 0.5
tmp10 = tmp8 * tmp9
tmp11 = 9.090909090909092
tmp12 = tmp10 * tmp11
tmp13 = tl.where(tmp5, tmp7, tmp12)
tl.store(out_ptr0 + (x0), tmp13, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sub, x, ge, l1, pow_1, mul, l2, where], Original ATen: [aten.sub, aten.abs, aten.ge, aten.pow, aten.mul, aten.div, aten.where]
stream0 = get_raw_stream(0)
triton_poi_fused_abs_div_ge_mul_pow_sub_where_0.run(arg0_1, arg1_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.cuda
import torch.distributed
import torch.multiprocessing
class SmoothL1Loss(nn.Module):
"""Smooth L1 Loss"""
def __init__(self, beta=0.11):
super().__init__()
self.beta = beta
def forward(self, pred, target):
x = (pred - target).abs()
l1 = x - 0.5 * self.beta
l2 = 0.5 * x ** 2 / self.beta
return torch.where(x >= self.beta, l1, l2)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
import torch.cuda
import torch.distributed
import torch.multiprocessing
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_abs_div_ge_mul_pow_sub_where_0(in_ptr0, in_ptr1,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask)
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp4 = 0.11
tmp5 = tmp3 >= tmp4
tmp6 = 0.055
tmp7 = tmp3 - tmp6
tmp8 = tmp3 * tmp3
tmp9 = 0.5
tmp10 = tmp8 * tmp9
tmp11 = 9.090909090909092
tmp12 = tmp10 * tmp11
tmp13 = tl.where(tmp5, tmp7, tmp12)
tl.store(out_ptr0 + x0, tmp13, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_abs_div_ge_mul_pow_sub_where_0[grid(256)](arg0_1,
arg1_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class SmoothL1LossNew(nn.Module):
"""Smooth L1 Loss"""
def __init__(self, beta=0.11):
super().__init__()
self.beta = beta
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
azuredsky/retinanet-examples
|
SmoothL1Loss
| false | 9,797 |
[
"BSD-3-Clause"
] | 0 |
1b35d8e7d3360050f25fd80e09ecac3eb2654301
|
https://github.com/azuredsky/retinanet-examples/tree/1b35d8e7d3360050f25fd80e09ecac3eb2654301
|
ResnetBlockFC
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/6q/c6q46q7lsepa4jw5qgcgbc5kiud5wm57hubk6vfo4gk47vl2tprk.py
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# relu => relu
# Graph fragment:
# %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%primals_1,), kwargs = {})
triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/mp/cmpdsbnpgfsr7uwb7env74mojrq3nlzieqot6rnnkfpbzkkensbi.py
# Topologically Sorted Source Nodes: [relu_1], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# relu_1 => relu_1
# Graph fragment:
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/b3/cb3g6fwupaz5a5j23ckgaqji56bsmt4ixc37lwt344u76m75fqhf.py
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
# Source node to ATen node mapping:
# add => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %view_3), kwargs = {})
triton_poi_fused_add_2 = async_compile.triton('triton_poi_fused_add_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_out_ptr0 + (x2), xmask)
tmp2 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0)
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1)
del primals_2
buf2 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf1 # reuse
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [relu_1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_1.run(buf2, primals_3, buf5, 256, grid=grid(256), stream=stream0)
del primals_3
buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3)
buf4 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf3 # reuse
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
triton_poi_fused_add_2.run(buf4, primals_1, primals_5, 256, grid=grid(256), stream=stream0)
del primals_1
del primals_5
return (buf4, reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(buf2, (64, 4), (4, 1), 0), primals_4, buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
import torch.autograd.profiler as profiler
class ResnetBlockFC(nn.Module):
"""
Fully connected ResNet Block class.
Taken from DVR code.
:param size_in (int): input dimension
:param size_out (int): output dimension
:param size_h (int): hidden dimension
"""
def __init__(self, size_in, size_out=None, size_h=None, beta=0.0):
super().__init__()
if size_out is None:
size_out = size_in
if size_h is None:
size_h = min(size_in, size_out)
self.size_in = size_in
self.size_h = size_h
self.size_out = size_out
self.fc_0 = nn.Linear(size_in, size_h)
self.fc_1 = nn.Linear(size_h, size_out)
nn.init.constant_(self.fc_0.bias, 0.0)
nn.init.kaiming_normal_(self.fc_0.weight, a=0, mode='fan_in')
nn.init.constant_(self.fc_1.bias, 0.0)
nn.init.zeros_(self.fc_1.weight)
if beta > 0:
self.activation = nn.Softplus(beta=beta)
else:
self.activation = nn.ReLU()
if size_in == size_out:
self.shortcut = None
else:
self.shortcut = nn.Linear(size_in, size_out, bias=True)
nn.init.constant_(self.shortcut.bias, 0.0)
nn.init.kaiming_normal_(self.shortcut.weight, a=0, mode='fan_in')
def forward(self, x):
with profiler.record_function('resblock'):
net = self.fc_0(self.activation(x))
dx = self.fc_1(self.activation(net))
if self.shortcut is not None:
x_s = self.shortcut(x)
else:
x_s = x
return x_s + dx
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'size_in': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused_add_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_out_ptr0 + x2, xmask)
tmp2 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tl.store(in_out_ptr0 + x2, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_relu_0[grid(256)](primals_1, buf0, 256, XBLOCK=128,
num_warps=4, num_stages=1)
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1)
del primals_2
buf2 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf1
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_1[grid(256)](buf2,
primals_3, buf5, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_3
buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3)
buf4 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf3
triton_poi_fused_add_2[grid(256)](buf4, primals_1, primals_5, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
del primals_5
return buf4, reinterpret_tensor(buf0, (64, 4), (4, 1), 0
), reinterpret_tensor(buf2, (64, 4), (4, 1), 0), primals_4, buf5
class ResnetBlockFCNew(nn.Module):
"""
Fully connected ResNet Block class.
Taken from DVR code.
:param size_in (int): input dimension
:param size_out (int): output dimension
:param size_h (int): hidden dimension
"""
def __init__(self, size_in, size_out=None, size_h=None, beta=0.0):
super().__init__()
if size_out is None:
size_out = size_in
if size_h is None:
size_h = min(size_in, size_out)
self.size_in = size_in
self.size_h = size_h
self.size_out = size_out
self.fc_0 = nn.Linear(size_in, size_h)
self.fc_1 = nn.Linear(size_h, size_out)
nn.init.constant_(self.fc_0.bias, 0.0)
nn.init.kaiming_normal_(self.fc_0.weight, a=0, mode='fan_in')
nn.init.constant_(self.fc_1.bias, 0.0)
nn.init.zeros_(self.fc_1.weight)
if beta > 0:
self.activation = nn.Softplus(beta=beta)
else:
self.activation = nn.ReLU()
if size_in == size_out:
self.shortcut = None
else:
self.shortcut = nn.Linear(size_in, size_out, bias=True)
nn.init.constant_(self.shortcut.bias, 0.0)
nn.init.kaiming_normal_(self.shortcut.weight, a=0, mode='fan_in')
def forward(self, input_0):
primals_2 = self.fc_0.weight
primals_3 = self.fc_0.bias
primals_4 = self.fc_1.weight
primals_5 = self.fc_1.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
alrivero/pixel-nerf
|
ResnetBlockFC
| false | 9,798 |
[
"BSD-2-Clause"
] | 0 |
c054befe189602627f021cda8376adc5940c8668
|
https://github.com/alrivero/pixel-nerf/tree/c054befe189602627f021cda8376adc5940c8668
|
TwoHiddenLayerFc
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/sr/csrxdjbtbkq5mhx4lx76hdeti625uy52jalpuc5xjwghomvl635m.py
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# out => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 12800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 200
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (200, 4), (4, 1))
assert_size_stride(primals_2, (200, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (200, 200), (200, 1))
assert_size_stride(primals_5, (200, ), (1, ))
assert_size_stride(primals_6, (4, 200), (200, 1))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 200), (200, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 200), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 200), (3200, 800, 200, 1), 0); del buf0 # reuse
buf6 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1), torch.bool)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf6, 12800, grid=grid(12800), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 200), (200, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 200), (200, 1), 0), reinterpret_tensor(primals_4, (200, 200), (1, 200), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 200), (3200, 800, 200, 1), 0); del buf2 # reuse
buf5 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1), torch.bool)
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_0.run(buf3, primals_5, buf5, 12800, grid=grid(12800), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 200), (200, 1), 0), reinterpret_tensor(primals_6, (200, 4), (1, 200), 0), alpha=1, beta=1, out=buf4)
del primals_7
return (reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 200), (200, 1), 0), reinterpret_tensor(buf3, (64, 200), (200, 1), 0), primals_6, buf5, primals_4, buf6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((200, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((200, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((200, 200), (200, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((200, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 200), (200, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class TwoHiddenLayerFc(nn.Module):
def __init__(self, input_shape, out_dim):
super(TwoHiddenLayerFc, self).__init__()
self.fc1 = nn.Linear(input_shape, 200)
self.fc2 = nn.Linear(200, 200)
self.fc3 = nn.Linear(200, out_dim)
def forward(self, x):
out = F.relu(self.fc1(x))
out = F.relu(self.fc2(out))
out = self.fc3(out)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_shape': 4, 'out_dim': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 12800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 200
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (200, 4), (4, 1))
assert_size_stride(primals_2, (200,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (200, 200), (200, 1))
assert_size_stride(primals_5, (200,), (1,))
assert_size_stride(primals_6, (4, 200), (200, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 200), (200, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 200), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 200), (3200, 800, 200, 1), 0)
del buf0
buf6 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1),
torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(12800)](buf1,
primals_2, buf6, 12800, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 200), (200, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 200), (200, 1), 0),
reinterpret_tensor(primals_4, (200, 200), (1, 200), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 200), (3200, 800, 200, 1), 0)
del buf2
buf5 = empty_strided_cuda((4, 4, 4, 200), (3200, 800, 200, 1),
torch.bool)
triton_poi_fused_relu_threshold_backward_0[grid(12800)](buf3,
primals_5, buf5, 12800, XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 200),
(200, 1), 0), reinterpret_tensor(primals_6, (200, 4), (1, 200),
0), alpha=1, beta=1, out=buf4)
del primals_7
return reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 200), (200, 1), 0
), reinterpret_tensor(buf3, (64, 200), (200, 1), 0
), primals_6, buf5, primals_4, buf6
class TwoHiddenLayerFcNew(nn.Module):
def __init__(self, input_shape, out_dim):
super(TwoHiddenLayerFcNew, self).__init__()
self.fc1 = nn.Linear(input_shape, 200)
self.fc2 = nn.Linear(200, 200)
self.fc3 = nn.Linear(200, out_dim)
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_6 = self.fc3.weight
primals_7 = self.fc3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
|
bokunwang/fedavgpy
|
TwoHiddenLayerFc
| false | 9,799 |
[
"MIT"
] | 0 |
22f2fae287f15025e953ab595aa6fd6faedf83d2
|
https://github.com/bokunwang/fedavgpy/tree/22f2fae287f15025e953ab595aa6fd6faedf83d2
|
LxmertAttentionOutput
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/ai/cai32p2ssjvpyulvuzcicdszqe3thbavgxn4jeed6uatjnl7yq2s.py
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
# Source node to ATen node mapping:
# add => add
# Graph fragment:
# %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %primals_4), kwargs = {})
triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x2), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/nk/cnkbkukjfarsysqlaadkg24xmqibk3adq5p7jyfnt6k6loydbn2r.py
# Topologically Sorted Source Nodes: [hidden_states_2], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# hidden_states_2 => add_1, rsqrt, var_mean
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add, [3]), kwargs = {correction: 0, keepdim: True})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-12), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_1,), kwargs = {})
triton_poi_fused_native_layer_norm_1 = async_compile.triton('triton_poi_fused_native_layer_norm_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-12
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + (x0), tmp8, xmask)
tl.store(out_ptr1 + (x0), tmp23, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/mn/cmntyljhuirhsdjg2yosgzllpkpxqedxgoyk6gunquq2rf3kl7u5.py
# Topologically Sorted Source Nodes: [hidden_states_2], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# hidden_states_2 => add_1, add_2, mul, mul_1, rsqrt, sub, var_mean
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add, [3]), kwargs = {correction: 0, keepdim: True})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-12), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_1,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %getitem_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_5), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_6), kwargs = {})
triton_poi_fused_native_layer_norm_2 = async_compile.triton('triton_poi_fused_native_layer_norm_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_0.run(buf1, primals_2, primals_4, 256, grid=grid(256), stream=stream0)
del primals_2
del primals_4
buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
# Topologically Sorted Source Nodes: [hidden_states_2], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_1.run(buf1, buf2, buf3, 64, grid=grid(64), stream=stream0)
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [hidden_states_2], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_2.run(buf1, buf2, buf3, primals_5, primals_6, buf4, 256, grid=grid(256), stream=stream0)
del buf2
del buf3
del primals_6
return (buf4, primals_5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
from itertools import *
class LxmertAttentionOutput(nn.Module):
def __init__(self, hidden_size, hidden_dropout_prob):
super().__init__()
self.dense = nn.Linear(hidden_size, hidden_size)
self.LayerNorm = nn.LayerNorm(hidden_size, eps=1e-12)
self.dropout = nn.Dropout(hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'hidden_size': 4, 'hidden_dropout_prob': 0.5}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
from torch import nn
from itertools import *
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + x2, xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_native_layer_norm_1(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-12
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + x0, tmp8, xmask)
tl.store(out_ptr1 + x0, tmp23, xmask)
@triton.jit
def triton_poi_fused_native_layer_norm_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
get_raw_stream(0)
triton_poi_fused_add_0[grid(256)](buf1, primals_2, primals_4, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
del primals_4
buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
triton_poi_fused_native_layer_norm_1[grid(64)](buf1, buf2, buf3, 64,
XBLOCK=64, num_warps=1, num_stages=1)
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_native_layer_norm_2[grid(256)](buf1, buf2, buf3,
primals_5, primals_6, buf4, 256, XBLOCK=128, num_warps=4,
num_stages=1)
del buf2
del buf3
del primals_6
return buf4, primals_5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), buf1
class LxmertAttentionOutputNew(nn.Module):
def __init__(self, hidden_size, hidden_dropout_prob):
super().__init__()
self.dense = nn.Linear(hidden_size, hidden_size)
self.LayerNorm = nn.LayerNorm(hidden_size, eps=1e-12)
self.dropout = nn.Dropout(hidden_dropout_prob)
def forward(self, input_0, input_1):
primals_1 = self.dense.weight
primals_2 = self.dense.bias
primals_5 = self.LayerNorm.weight
primals_6 = self.LayerNorm.bias
primals_3 = input_0
primals_4 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0]
|
ashutoshbsathe/SmBop
|
LxmertAttentionOutput
| false | 9,800 |
[
"MIT"
] | 0 |
ce5f67ec070df55b84d7f3617659011732020c96
|
https://github.com/ashutoshbsathe/SmBop/tree/ce5f67ec070df55b84d7f3617659011732020c96
|
LxmertCrossAttentionLayer
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/x2/cx2hdvwyo7m5jvhhvtugzxqvmy6z4nsfhkkjhvgzbbm3cb6dsum2.py
# Topologically Sorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
# Graph fragment:
# %mul_scalar : [num_users=1] = call_function[target=torch.ops.aten.mul.Scalar](args = (%permute_default, 1.0), kwargs = {})
# %clone_default : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_default,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + (x2 + (4*y3)), tmp4, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/5j/c5jll3kxtd32cl7pwubrb5oky2mtzckfgip2xbwad7crvvp4zk4r.py
# Topologically Sorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
# Graph fragment:
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_default_2, [-1], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_default_2, %amax_default), kwargs = {})
# %exp_default : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_tensor,), kwargs = {})
triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/kt/cktnex5febczl2ac6zugjmcksgsd5kjdufazv65vtepuwob3cb7a.py
# Topologically Sorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
# Graph fragment:
# %sum_dim_int_list : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_default, [-1], True), kwargs = {})
# %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_default, %sum_dim_int_list), kwargs = {})
# %eq_scalar : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%view_default_2, -inf), kwargs = {})
# %logical_not_default : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%eq_scalar,), kwargs = {})
# %any_dim : [num_users=1] = call_function[target=torch.ops.aten.any.dim](args = (%logical_not_default, -1, True), kwargs = {})
# %logical_not_default_1 : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%any_dim,), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %where_self : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%logical_not_default_1, %full_default, %div_tensor), kwargs = {})
triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp18 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr1 + (x2), xmask)
tmp26 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp29 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp31 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp1 = float("-inf")
tmp2 = tmp0 == tmp1
tmp3 = tmp2 == 0
tmp4 = tmp3.to(tl.int64)
tmp5 = (tmp4 != 0)
tmp7 = tmp6 == tmp1
tmp8 = tmp7 == 0
tmp9 = tmp8.to(tl.int64)
tmp10 = (tmp9 != 0)
tmp11 = tmp5 | tmp10
tmp13 = tmp12 == tmp1
tmp14 = tmp13 == 0
tmp15 = tmp14.to(tl.int64)
tmp16 = (tmp15 != 0)
tmp17 = tmp11 | tmp16
tmp19 = tmp18 == tmp1
tmp20 = tmp19 == 0
tmp21 = tmp20.to(tl.int64)
tmp22 = (tmp21 != 0)
tmp23 = tmp17 | tmp22
tmp24 = tmp23 == 0
tmp28 = tmp26 + tmp27
tmp30 = tmp28 + tmp29
tmp32 = tmp30 + tmp31
tmp33 = tmp25 / tmp32
tmp34 = 0.0
tmp35 = tl.where(tmp24, tmp34, tmp33)
tl.store(out_ptr0 + (x2), tmp35, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/vv/cvvnhithjvmvhfjufxwwzclfobkrgbyyteg66hp24r675f7elw4c.py
# Topologically Sorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
# Graph fragment:
# %clone_default_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_default_3,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_3(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/6t/c6t5a5ere3lqjiu7zh3uu4oxmpdoujdaqqmeunxqapgzo4m74uav.py
# Topologically Sorted Source Nodes: [context_layer_1], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# context_layer_1 => clone_4
# Graph fragment:
# %clone_4 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/6m/c6mhj5zwirfhy5e4o45uaeov72uwfby4udubpm2fcz42iqvs2g57.py
# Topologically Sorted Source Nodes: [add, hidden_states_2], Original ATen: [aten.add, aten.native_layer_norm]
# Source node to ATen node mapping:
# add => add
# hidden_states_2 => var_mean
# Graph fragment:
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_17, %primals_3), kwargs = {})
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add, [2]), kwargs = {correction: 0, keepdim: True})
triton_poi_fused_add_native_layer_norm_5 = async_compile.triton('triton_poi_fused_add_native_layer_norm_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_native_layer_norm_5(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 + tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 + tmp12
tmp14 = tmp10 + tmp13
tmp15 = 4.0
tmp16 = tmp14 / tmp15
tmp17 = tmp2 - tmp16
tmp18 = tmp17 * tmp17
tmp19 = tmp5 - tmp16
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp22 = tmp9 - tmp16
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp25 = tmp13 - tmp16
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = tmp27 / tmp15
tl.store(out_ptr0 + (x0), tmp16, xmask)
tl.store(out_ptr1 + (x0), tmp28, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/i6/ci6ua4lfqzz3v6lbsh75noa7k5ird3udb6b5bjh7gxx4qxuz7gz3.py
# Topologically Sorted Source Nodes: [add, hidden_states_2], Original ATen: [aten.add, aten.native_layer_norm]
# Source node to ATen node mapping:
# add => add
# hidden_states_2 => add_1, add_2, mul, mul_1, rsqrt, sub_1
# Graph fragment:
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_17, %primals_3), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-12), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %getitem_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %rsqrt), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_11), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_12), kwargs = {})
triton_poi_fused_add_native_layer_norm_6 = async_compile.triton('triton_poi_fused_add_native_layer_norm_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_native_layer_norm_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 - tmp3
tmp6 = 1e-12
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp4 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tl.store(out_ptr0 + (x2), tmp13, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4, ), (1, ))
assert_size_stride(primals_9, (4, 4), (4, 1))
assert_size_stride(primals_10, (4, ), (1, ))
assert_size_stride(primals_11, (4, ), (1, ))
assert_size_stride(primals_12, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
del primals_4
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf2)
del primals_7
buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
stream0 = get_raw_stream(0)
triton_poi_fused_0.run(buf0, primals_2, buf3, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_2
buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_0.run(buf1, primals_5, buf4, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_5
buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_1.run(buf5, buf6, 256, grid=grid(256), stream=stream0)
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_2.run(buf5, buf6, buf7, 256, grid=grid(256), stream=stream0)
del buf5
del buf6
buf8 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_3.run(buf2, primals_8, buf8, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_8
buf9 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 0), 0), out=buf9)
buf10 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [context_layer_1], Original ATen: [aten.clone]
triton_poi_fused_clone_4.run(buf9, buf10, 16, 4, grid=grid(16, 4), stream=stream0)
buf11 = reinterpret_tensor(buf9, (16, 4), (4, 1), 0); del buf9 # reuse
# Topologically Sorted Source Nodes: [hidden_states], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_10, reinterpret_tensor(buf10, (16, 4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf11)
del primals_10
buf12 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
buf13 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
# Topologically Sorted Source Nodes: [add, hidden_states_2], Original ATen: [aten.add, aten.native_layer_norm]
triton_poi_fused_add_native_layer_norm_5.run(buf11, primals_3, buf12, buf13, 16, grid=grid(16), stream=stream0)
buf14 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, hidden_states_2], Original ATen: [aten.add, aten.native_layer_norm]
triton_poi_fused_add_native_layer_norm_6.run(buf11, primals_3, buf12, buf13, primals_11, primals_12, buf14, 64, grid=grid(64), stream=stream0)
del buf12
del buf13
del primals_12
return (buf14, primals_3, primals_11, reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), buf7, reinterpret_tensor(buf8, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0), reinterpret_tensor(buf10, (16, 4), (4, 1), 0), buf11, primals_9, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import math
import torch
from torch import nn
from itertools import *
class LxmertAttention(nn.Module):
def __init__(self, hidden_size, num_attention_heads,
attention_probs_dropout_prob, ctx_dim):
super().__init__()
if hidden_size % num_attention_heads != 0:
raise ValueError(
'The hidden size (%d) is not a multiple of the number of attention heads (%d)'
% (hidden_size, num_attention_heads))
self.num_attention_heads = num_attention_heads
self.attention_head_size = int(hidden_size / num_attention_heads)
self.head_size = self.num_attention_heads * self.attention_head_size
self.ctx_dim = hidden_size
self.query = nn.Linear(hidden_size, self.head_size)
self.key = nn.Linear(ctx_dim, self.head_size)
self.value = nn.Linear(ctx_dim, self.head_size)
self.dropout = nn.Dropout(attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.
attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, hidden_states, context, attention_mask=None,
output_attentions=False):
mixed_query_layer = self.query(hidden_states)
mixed_key_layer = self.key(context)
mixed_value_layer = self.value(context)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1,
-2))
attention_scores = attention_scores / math.sqrt(self.
attention_head_size)
if attention_mask is not None:
attention_mask = attention_mask.bool().unsqueeze(1).unsqueeze(1)
attention_scores = attention_scores.clone().masked_fill(~
attention_mask, ai2_util.min_value_of_dtype(
attention_scores.dtype))
attention_probs = nn.Softmax(dim=-1)(attention_scores)
attention_probs = self.dropout(attention_probs)
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (
context_layer,)
return outputs
class LxmertAttentionOutput(nn.Module):
def __init__(self, hidden_size, hidden_dropout_prob):
super().__init__()
self.dense = nn.Linear(hidden_size, hidden_size)
self.LayerNorm = nn.LayerNorm(hidden_size, eps=1e-12)
self.dropout = nn.Dropout(hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class LxmertCrossAttentionLayer(nn.Module):
def __init__(self, hidden_size, num_attention_heads,
attention_probs_dropout_prob, ctx_dim, hidden_dropout_prob):
super().__init__()
self.att = LxmertAttention(hidden_size, num_attention_heads,
attention_probs_dropout_prob, ctx_dim)
self.output = LxmertAttentionOutput(hidden_size, hidden_dropout_prob)
def forward(self, input_tensor, ctx_tensor, ctx_att_mask=None,
output_attentions=False):
output = self.att(input_tensor, ctx_tensor, ctx_att_mask,
output_attentions=output_attentions)
if output_attentions:
attention_probs = output[1]
attention_output = self.output(output[0], input_tensor)
outputs = (attention_output, attention_probs
) if output_attentions else (attention_output,)
return outputs
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'hidden_size': 4, 'num_attention_heads': 4,
'attention_probs_dropout_prob': 0.5, 'ctx_dim': 4,
'hidden_dropout_prob': 0.5}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import math
from torch import nn
from itertools import *
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK:
tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + (x2 + 4 * y3), tmp4, xmask & ymask)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp18 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp25 = tl.load(in_ptr1 + x2, xmask)
tmp26 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp29 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp31 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp1 = float('-inf')
tmp2 = tmp0 == tmp1
tmp3 = tmp2 == 0
tmp4 = tmp3.to(tl.int64)
tmp5 = tmp4 != 0
tmp7 = tmp6 == tmp1
tmp8 = tmp7 == 0
tmp9 = tmp8.to(tl.int64)
tmp10 = tmp9 != 0
tmp11 = tmp5 | tmp10
tmp13 = tmp12 == tmp1
tmp14 = tmp13 == 0
tmp15 = tmp14.to(tl.int64)
tmp16 = tmp15 != 0
tmp17 = tmp11 | tmp16
tmp19 = tmp18 == tmp1
tmp20 = tmp19 == 0
tmp21 = tmp20.to(tl.int64)
tmp22 = tmp21 != 0
tmp23 = tmp17 | tmp22
tmp24 = tmp23 == 0
tmp28 = tmp26 + tmp27
tmp30 = tmp28 + tmp29
tmp32 = tmp30 + tmp31
tmp33 = tmp25 / tmp32
tmp34 = 0.0
tmp35 = tl.where(tmp24, tmp34, tmp33)
tl.store(out_ptr0 + x2, tmp35, xmask)
@triton.jit
def triton_poi_fused_3(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK:
tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_add_native_layer_norm_5(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 + tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 + tmp12
tmp14 = tmp10 + tmp13
tmp15 = 4.0
tmp16 = tmp14 / tmp15
tmp17 = tmp2 - tmp16
tmp18 = tmp17 * tmp17
tmp19 = tmp5 - tmp16
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp22 = tmp9 - tmp16
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp25 = tmp13 - tmp16
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = tmp27 / tmp15
tl.store(out_ptr0 + x0, tmp16, xmask)
tl.store(out_ptr1 + x0, tmp28, xmask)
@triton.jit
def triton_poi_fused_add_native_layer_norm_6(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 - tmp3
tmp6 = 1e-12
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp4 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tl.store(out_ptr0 + x2, tmp13, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12
) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4,), (1,))
assert_size_stride(primals_9, (4, 4), (4, 1))
assert_size_stride(primals_10, (4,), (1,))
assert_size_stride(primals_11, (4,), (1,))
assert_size_stride(primals_12, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
del primals_4
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf2)
del primals_7
buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_0[grid(16, 4)](buf0, primals_2, buf3, 16, 4,
XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1)
del primals_2
buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0)
del buf0
triton_poi_fused_0[grid(16, 4)](buf1, primals_5, buf4, 16, 4,
XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1)
del primals_5
buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0),
0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_1[grid(256)](buf5, buf6, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_2[grid(256)](buf5, buf6, buf7, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del buf5
del buf6
buf8 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf1
triton_poi_fused_3[grid(16, 4)](buf2, primals_8, buf8, 16, 4,
XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1)
del primals_8
buf9 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0)
del buf2
extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 0), 0), out=buf9)
buf10 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
triton_poi_fused_clone_4[grid(16, 4)](buf9, buf10, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
buf11 = reinterpret_tensor(buf9, (16, 4), (4, 1), 0)
del buf9
extern_kernels.addmm(primals_10, reinterpret_tensor(buf10, (16, 4),
(4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf11)
del primals_10
buf12 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
buf13 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
triton_poi_fused_add_native_layer_norm_5[grid(16)](buf11, primals_3,
buf12, buf13, 16, XBLOCK=16, num_warps=1, num_stages=1)
buf14 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_add_native_layer_norm_6[grid(64)](buf11, primals_3,
buf12, buf13, primals_11, primals_12, buf14, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del buf12
del buf13
del primals_12
return buf14, primals_3, primals_11, reinterpret_tensor(primals_6, (16,
4), (4, 1), 0), buf7, reinterpret_tensor(buf8, (16, 1, 4), (4, 1, 1), 0
), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0
), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0
), reinterpret_tensor(buf10, (16, 4), (4, 1), 0), buf11, primals_9
class LxmertAttention(nn.Module):
def __init__(self, hidden_size, num_attention_heads,
attention_probs_dropout_prob, ctx_dim):
super().__init__()
if hidden_size % num_attention_heads != 0:
raise ValueError(
'The hidden size (%d) is not a multiple of the number of attention heads (%d)'
% (hidden_size, num_attention_heads))
self.num_attention_heads = num_attention_heads
self.attention_head_size = int(hidden_size / num_attention_heads)
self.head_size = self.num_attention_heads * self.attention_head_size
self.ctx_dim = hidden_size
self.query = nn.Linear(hidden_size, self.head_size)
self.key = nn.Linear(ctx_dim, self.head_size)
self.value = nn.Linear(ctx_dim, self.head_size)
self.dropout = nn.Dropout(attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.
attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, hidden_states, context, attention_mask=None,
output_attentions=False):
mixed_query_layer = self.query(hidden_states)
mixed_key_layer = self.key(context)
mixed_value_layer = self.value(context)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1,
-2))
attention_scores = attention_scores / math.sqrt(self.
attention_head_size)
if attention_mask is not None:
attention_mask = attention_mask.bool().unsqueeze(1).unsqueeze(1)
attention_scores = attention_scores.clone().masked_fill(~
attention_mask, ai2_util.min_value_of_dtype(
attention_scores.dtype))
attention_probs = nn.Softmax(dim=-1)(attention_scores)
attention_probs = self.dropout(attention_probs)
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (
context_layer,)
return outputs
class LxmertAttentionOutput(nn.Module):
def __init__(self, hidden_size, hidden_dropout_prob):
super().__init__()
self.dense = nn.Linear(hidden_size, hidden_size)
self.LayerNorm = nn.LayerNorm(hidden_size, eps=1e-12)
self.dropout = nn.Dropout(hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class LxmertCrossAttentionLayerNew(nn.Module):
def __init__(self, hidden_size, num_attention_heads,
attention_probs_dropout_prob, ctx_dim, hidden_dropout_prob):
super().__init__()
self.att = LxmertAttention(hidden_size, num_attention_heads,
attention_probs_dropout_prob, ctx_dim)
self.output = LxmertAttentionOutput(hidden_size, hidden_dropout_prob)
def forward(self, input_0, input_1):
primals_1 = self.att.query.weight
primals_2 = self.att.query.bias
primals_4 = self.att.key.weight
primals_5 = self.att.key.bias
primals_7 = self.att.value.weight
primals_8 = self.att.value.bias
primals_9 = self.output.dense.weight
primals_10 = self.output.dense.bias
primals_11 = self.output.LayerNorm.weight
primals_12 = self.output.LayerNorm.bias
primals_3 = input_0
primals_6 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12])
return output[0]
|
ashutoshbsathe/SmBop
|
LxmertCrossAttentionLayer
| false | 9,801 |
[
"MIT"
] | 0 |
ce5f67ec070df55b84d7f3617659011732020c96
|
https://github.com/ashutoshbsathe/SmBop/tree/ce5f67ec070df55b84d7f3617659011732020c96
|
SoftQNetwork
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/ms/cmsuzohbg5nq52jnvirovzkvykrzzko5xomu7zyu5e5u2lhegppw.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# x => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = (xindex // 8)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/5b/c5br3r4gpi7zzaygqfdgcqeerwiekt2d2t2wkw4sj54lam6radgq.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x_1 => relu
# Graph fragment:
# %add_tensor_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_2, %primals_4), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_2,), kwargs = {})
triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 8), (8, 1))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, ), (1, ))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4, ), (1, ))
assert_size_stride(primals_9, (1, 4), (4, 1))
assert_size_stride(primals_10, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 32, grid=grid(32), stream=stream0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf0, reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), out=buf1)
del primals_3
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf2, primals_4, 16, grid=grid(16), stream=stream0)
del primals_4
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf2, reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf3)
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf4, primals_6, 16, grid=grid(16), stream=stream0)
del primals_6
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf4, reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf5)
buf6 = buf5; del buf5 # reuse
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf6, primals_8, 16, grid=grid(16), stream=stream0)
del primals_8
buf8 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_10, buf6, reinterpret_tensor(primals_9, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf8)
del primals_10
return (buf8, buf0, buf2, buf4, buf6, primals_9, primals_7, primals_5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class SoftQNetwork(nn.Module):
def __init__(self, num_inputs, num_actions, hidden_size, init_w=0.003):
super(SoftQNetwork, self).__init__()
self.linear1 = nn.Linear(num_inputs + num_actions, hidden_size)
self.linear2 = nn.Linear(hidden_size, hidden_size)
self.linear3 = nn.Linear(hidden_size, hidden_size)
self.linear4 = nn.Linear(hidden_size, 1)
self.linear4.weight.data.uniform_(-init_w, init_w)
self.linear4.bias.data.uniform_(-init_w, init_w)
def forward(self, state, action):
x = torch.cat([state, action], 1)
x = F.relu(self.linear1(x))
x = F.relu(self.linear2(x))
x = F.relu(self.linear3(x))
x = self.linear4(x)
return x
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'num_inputs': 4, 'num_actions': 4, 'hidden_size': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x2, tmp10, xmask)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 8), (8, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4,), (1,))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4,), (1,))
assert_size_stride(primals_9, (1, 4), (4, 1))
assert_size_stride(primals_10, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(32)](primals_1, primals_2, buf0, 32,
XBLOCK=32, num_warps=1, num_stages=1)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf0, reinterpret_tensor(primals_3, (8, 4), (1, 8
), 0), out=buf1)
del primals_3
buf2 = buf1
del buf1
triton_poi_fused_relu_1[grid(16)](buf2, primals_4, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_4
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf2, reinterpret_tensor(primals_5, (4, 4), (1, 4
), 0), out=buf3)
buf4 = buf3
del buf3
triton_poi_fused_relu_1[grid(16)](buf4, primals_6, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_6
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf4, reinterpret_tensor(primals_7, (4, 4), (1, 4
), 0), out=buf5)
buf6 = buf5
del buf5
triton_poi_fused_relu_1[grid(16)](buf6, primals_8, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_8
buf8 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_10, buf6, reinterpret_tensor(primals_9,
(4, 1), (1, 4), 0), alpha=1, beta=1, out=buf8)
del primals_10
return buf8, buf0, buf2, buf4, buf6, primals_9, primals_7, primals_5
class SoftQNetworkNew(nn.Module):
def __init__(self, num_inputs, num_actions, hidden_size, init_w=0.003):
super(SoftQNetworkNew, self).__init__()
self.linear1 = nn.Linear(num_inputs + num_actions, hidden_size)
self.linear2 = nn.Linear(hidden_size, hidden_size)
self.linear3 = nn.Linear(hidden_size, hidden_size)
self.linear4 = nn.Linear(hidden_size, 1)
self.linear4.weight.data.uniform_(-init_w, init_w)
self.linear4.bias.data.uniform_(-init_w, init_w)
def forward(self, input_0, input_1):
primals_3 = self.linear1.weight
primals_4 = self.linear1.bias
primals_1 = self.linear2.weight
primals_6 = self.linear2.bias
primals_2 = self.linear3.weight
primals_8 = self.linear3.bias
primals_9 = self.linear4.weight
primals_10 = self.linear4.bias
primals_5 = input_0
primals_7 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9, primals_10])
return output[0]
|
biemann/rl-testbed-for-energyplus
|
SoftQNetwork
| false | 9,802 |
[
"MIT"
] | 0 |
a01be4d12eda970b352729ff6cb4a3eea8ddee6a
|
https://github.com/biemann/rl-testbed-for-energyplus/tree/a01be4d12eda970b352729ff6cb4a3eea8ddee6a
|
Conv_ReLU_Block
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/sm/csmn2c5h6ncxnqle756u5rlgewfhiybu5xd5jyz7yap5pkjabpas.py
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# relu => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1048576],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1048576
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), None)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp3 = 0.0
tmp4 = tmp2 <= tmp3
tl.store(in_out_ptr0 + (x0), tmp2, None)
tl.store(out_ptr0 + (x0), tmp4, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_2, (4, 64, 64, 64), (262144, 4096, 64, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 64, 64, 64), (262144, 4096, 64, 1))
buf1 = buf0; del buf0 # reuse
buf2 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.bool)
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, buf2, 1048576, grid=grid(1048576), stream=stream0)
return (buf1, primals_1, primals_2, buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 64, 64, 64), (262144, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class Conv_ReLU_Block(nn.Module):
def __init__(self):
super(Conv_ReLU_Block, self).__init__()
self.conv = nn.Conv2d(in_channels=64, out_channels=64, kernel_size=
3, stride=1, padding=1, bias=False)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
return self.relu(self.conv(x))
def get_inputs():
return [torch.rand([4, 64, 64, 64])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, None)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp3 = 0.0
tmp4 = tmp2 <= tmp3
tl.store(in_out_ptr0 + x0, tmp2, None)
tl.store(out_ptr0 + x0, tmp4, None)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_2, (4, 64, 64, 64), (262144, 4096, 64, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 64, 64, 64), (262144, 4096, 64, 1))
buf1 = buf0
del buf0
buf2 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1),
torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(1048576)](buf1,
buf2, 1048576, XBLOCK=512, num_warps=8, num_stages=1)
return buf1, primals_1, primals_2, buf2
class Conv_ReLU_BlockNew(nn.Module):
def __init__(self):
super(Conv_ReLU_BlockNew, self).__init__()
self.conv = nn.Conv2d(in_channels=64, out_channels=64, kernel_size=
3, stride=1, padding=1, bias=False)
self.relu = nn.ReLU(inplace=True)
def forward(self, input_0):
primals_1 = self.conv.weight
primals_2 = input_0
output = call([primals_1, primals_2])
return output[0]
|
b4435242/pytorch-vdsr
|
Conv_ReLU_Block
| false | 9,803 |
[
"MIT"
] | 0 |
01541bc3d52105c8fd0e4d9cf7308ac267fe5f49
|
https://github.com/b4435242/pytorch-vdsr/tree/01541bc3d52105c8fd0e4d9cf7308ac267fe5f49
|
PolicyNetwork
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/r3/cr3febcwm3t44fuoitsx3ou2p6xg4sk4f7unagmmrvffasxf47te.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_4 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/rm/crmfikkxblrhxfynyknfm2x3wwcwtibkjkkbyhzwmxqi4kmwkosl.py
# Topologically Sorted Source Nodes: [log_std_1], Original ATen: [aten.clamp, aten.ge, aten.le, aten.logical_and]
# Source node to ATen node mapping:
# log_std_1 => clamp_max, clamp_min
# Graph fragment:
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%view_11, -20), kwargs = {})
# %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 2), kwargs = {})
# %ge : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%view_11, -20), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%view_11, 2), kwargs = {})
# %logical_and : [num_users=1] = call_function[target=torch.ops.aten.logical_and.default](args = (%ge, %le), kwargs = {})
triton_poi_fused_clamp_ge_le_logical_and_1 = async_compile.triton('triton_poi_fused_clamp_ge_le_logical_and_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_ge_le_logical_and_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clamp_ge_le_logical_and_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = -20.0
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp5 = 2.0
tmp6 = triton_helpers.minimum(tmp4, tmp5)
tmp7 = tmp2 >= tmp3
tmp8 = tmp2 <= tmp5
tmp9 = tmp7 & tmp8
tl.store(out_ptr0 + (x2), tmp6, xmask)
tl.store(out_ptr1 + (x2), tmp9, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, 4), (4, 1))
assert_size_stride(primals_9, (4, ), (1, ))
assert_size_stride(primals_10, (4, 4), (4, 1))
assert_size_stride(primals_11, (4, ), (1, ))
assert_size_stride(primals_12, (4, 4), (4, 1))
assert_size_stride(primals_13, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
buf15 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf15, 256, grid=grid(256), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse
buf14 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_0.run(buf3, primals_5, buf14, 256, grid=grid(256), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf4)
buf5 = reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf4 # reuse
buf13 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_0.run(buf5, primals_7, buf13, 256, grid=grid(256), stream=stream0)
del primals_7
buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf5, (64, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), out=buf6)
buf7 = reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf6 # reuse
buf12 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_0.run(buf7, primals_9, buf12, 256, grid=grid(256), stream=stream0)
del primals_9
buf8 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mean], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_11, reinterpret_tensor(buf7, (64, 4), (4, 1), 0), reinterpret_tensor(primals_10, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf8)
del primals_11
buf9 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf7, (64, 4), (4, 1), 0), reinterpret_tensor(primals_12, (4, 4), (1, 4), 0), out=buf9)
buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf11 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [log_std_1], Original ATen: [aten.clamp, aten.ge, aten.le, aten.logical_and]
triton_poi_fused_clamp_ge_le_logical_and_1.run(buf9, primals_13, buf10, buf11, 256, grid=grid(256), stream=stream0)
del buf9
del primals_13
return (reinterpret_tensor(buf8, (4, 4, 4, 4), (64, 16, 4, 1), 0), buf10, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(buf5, (64, 4), (4, 1), 0), reinterpret_tensor(buf7, (64, 4), (4, 1), 0), buf11, primals_12, primals_10, buf12, primals_8, buf13, primals_6, buf14, primals_4, buf15, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
from torch.distributions import Normal
class PolicyNetwork(nn.Module):
def __init__(self, num_inputs, num_actions, hidden_size, action_range=
1.0, init_w=0.003, log_std_min=-20, log_std_max=2):
super(PolicyNetwork, self).__init__()
self.log_std_min = log_std_min
self.log_std_max = log_std_max
self.linear1 = nn.Linear(num_inputs, hidden_size)
self.linear2 = nn.Linear(hidden_size, hidden_size)
self.linear3 = nn.Linear(hidden_size, hidden_size)
self.linear4 = nn.Linear(hidden_size, hidden_size)
self.mean_linear = nn.Linear(hidden_size, num_actions)
self.mean_linear.weight.data.uniform_(-init_w, init_w)
self.mean_linear.bias.data.uniform_(-init_w, init_w)
self.log_std_linear = nn.Linear(hidden_size, num_actions)
self.log_std_linear.weight.data.uniform_(-init_w, init_w)
self.log_std_linear.bias.data.uniform_(-init_w, init_w)
self.action_range = action_range
self.num_actions = num_actions
def forward(self, state):
x = F.relu(self.linear1(state))
x = F.relu(self.linear2(x))
x = F.relu(self.linear3(x))
x = F.relu(self.linear4(x))
mean = self.mean_linear(x)
log_std = self.log_std_linear(x)
log_std = torch.clamp(log_std, self.log_std_min, self.log_std_max)
return mean, log_std
def evaluate(self, state, epsilon=1e-06):
"""
generate sampled action with state as input wrt the policy network;
"""
mean, log_std = self.forward(state)
std = log_std.exp()
normal = Normal(0, 1)
z = normal.sample(mean.shape)
action_0 = torch.tanh(mean + std * z)
action = self.action_range * action_0
log_prob = Normal(mean, std).log_prob(mean + std * z) - torch.log(
1.0 - action_0.pow(2) + epsilon) - np.log(self.action_range)
log_prob = log_prob.sum(dim=1, keepdim=True)
return action, log_prob, z, mean, log_std
def get_action(self, state, deterministic):
state = torch.FloatTensor(state).unsqueeze(0)
mean, log_std = self.forward(state)
std = log_std.exp()
normal = Normal(0, 1)
z = normal.sample(mean.shape)
action = self.action_range * torch.tanh(mean + std * z)
action = self.action_range * torch.tanh(mean).detach().cpu().numpy()[0
] if deterministic else action.detach().cpu().numpy()[0]
return action
def sample_action(self):
a = torch.FloatTensor(self.num_actions).uniform_(-1, 1)
return self.action_range * a.numpy()
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'num_inputs': 4, 'num_actions': 4, 'hidden_size': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import numpy as np
import torch.nn as nn
from torch.distributions import Normal
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused_clamp_ge_le_logical_and_1(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = -20.0
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp5 = 2.0
tmp6 = triton_helpers.minimum(tmp4, tmp5)
tmp7 = tmp2 >= tmp3
tmp8 = tmp2 <= tmp5
tmp9 = tmp7 & tmp8
tl.store(out_ptr0 + x2, tmp6, xmask)
tl.store(out_ptr1 + x2, tmp9, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4, 4), (4, 1))
assert_size_stride(primals_9, (4,), (1,))
assert_size_stride(primals_10, (4, 4), (4, 1))
assert_size_stride(primals_11, (4,), (1,))
assert_size_stride(primals_12, (4, 4), (4, 1))
assert_size_stride(primals_13, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
buf15 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(256)](buf1,
primals_2, buf15, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf2
buf14 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_0[grid(256)](buf3,
primals_5, buf14, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf4)
buf5 = reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf4
buf13 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_0[grid(256)](buf5,
primals_7, buf13, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_7
buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf5, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), out=buf6)
buf7 = reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf6
buf12 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_0[grid(256)](buf7,
primals_9, buf12, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_9
buf8 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_11, reinterpret_tensor(buf7, (64, 4),
(4, 1), 0), reinterpret_tensor(primals_10, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf8)
del primals_11
buf9 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf7, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_12, (4, 4), (1, 4), 0), out=buf9)
buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf11 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_clamp_ge_le_logical_and_1[grid(256)](buf9,
primals_13, buf10, buf11, 256, XBLOCK=128, num_warps=4,
num_stages=1)
del buf9
del primals_13
return (reinterpret_tensor(buf8, (4, 4, 4, 4), (64, 16, 4, 1), 0),
buf10, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(
buf3, (64, 4), (4, 1), 0), reinterpret_tensor(buf5, (64, 4), (4, 1),
0), reinterpret_tensor(buf7, (64, 4), (4, 1), 0), buf11, primals_12,
primals_10, buf12, primals_8, buf13, primals_6, buf14, primals_4, buf15
)
class PolicyNetworkNew(nn.Module):
def __init__(self, num_inputs, num_actions, hidden_size, action_range=
1.0, init_w=0.003, log_std_min=-20, log_std_max=2):
super(PolicyNetworkNew, self).__init__()
self.log_std_min = log_std_min
self.log_std_max = log_std_max
self.linear1 = nn.Linear(num_inputs, hidden_size)
self.linear2 = nn.Linear(hidden_size, hidden_size)
self.linear3 = nn.Linear(hidden_size, hidden_size)
self.linear4 = nn.Linear(hidden_size, hidden_size)
self.mean_linear = nn.Linear(hidden_size, num_actions)
self.mean_linear.weight.data.uniform_(-init_w, init_w)
self.mean_linear.bias.data.uniform_(-init_w, init_w)
self.log_std_linear = nn.Linear(hidden_size, num_actions)
self.log_std_linear.weight.data.uniform_(-init_w, init_w)
self.log_std_linear.bias.data.uniform_(-init_w, init_w)
self.action_range = action_range
self.num_actions = num_actions
def evaluate(self, state, epsilon=1e-06):
"""
generate sampled action with state as input wrt the policy network;
"""
mean, log_std = self.forward(state)
std = log_std.exp()
normal = Normal(0, 1)
z = normal.sample(mean.shape)
action_0 = torch.tanh(mean + std * z)
action = self.action_range * action_0
log_prob = Normal(mean, std).log_prob(mean + std * z) - torch.log(
1.0 - action_0.pow(2) + epsilon) - np.log(self.action_range)
log_prob = log_prob.sum(dim=1, keepdim=True)
return action, log_prob, z, mean, log_std
def get_action(self, state, deterministic):
state = torch.FloatTensor(state).unsqueeze(0)
mean, log_std = self.forward(state)
std = log_std.exp()
normal = Normal(0, 1)
z = normal.sample(mean.shape)
action = self.action_range * torch.tanh(mean + std * z)
action = self.action_range * torch.tanh(mean).detach().cpu().numpy()[0
] if deterministic else action.detach().cpu().numpy()[0]
return action
def sample_action(self):
a = torch.FloatTensor(self.num_actions).uniform_(-1, 1)
return self.action_range * a.numpy()
def forward(self, input_0):
primals_1 = self.linear1.weight
primals_2 = self.linear1.bias
primals_4 = self.linear2.weight
primals_5 = self.linear2.bias
primals_6 = self.linear3.weight
primals_7 = self.linear3.bias
primals_8 = self.linear4.weight
primals_9 = self.linear4.bias
primals_10 = self.mean_linear.weight
primals_11 = self.mean_linear.bias
primals_12 = self.log_std_linear.weight
primals_13 = self.log_std_linear.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13])
return output[0], output[1]
|
biemann/rl-testbed-for-energyplus
|
PolicyNetwork
| false | 9,804 |
[
"MIT"
] | 0 |
a01be4d12eda970b352729ff6cb4a3eea8ddee6a
|
https://github.com/biemann/rl-testbed-for-energyplus/tree/a01be4d12eda970b352729ff6cb4a3eea8ddee6a
|
NTN
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/ms/cmsuzohbg5nq52jnvirovzkvykrzzko5xomu7zyu5e5u2lhegppw.py
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_4, %primals_3], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = (xindex // 8)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/sx/csxawct4xueknxdd2u3jfruws4zsn6vvhdu2d2csrorfi7b5ruuq.py
# Topologically Sorted Source Nodes: [bilinear, add, tanh], Original ATen: [aten.add, aten.tanh]
# Source node to ATen node mapping:
# add => add_1
# bilinear => add
# tanh => tanh
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_trilinear, %primals_2), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %mm), kwargs = {})
# %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%add_1,), kwargs = {})
triton_poi_fused_add_tanh_1 = async_compile.triton('triton_poi_fused_add_tanh_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_tanh_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_tanh_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x2), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp5 = libdevice.tanh(tmp4)
tl.store(in_out_ptr0 + (x2), tmp5, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, 8), (8, 1))
assert_size_stride(primals_6, (1, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [bilinear], Original ATen: [aten._trilinear]
buf0 = torch.ops.aten._trilinear.default(primals_4, primals_1, primals_3, [1, 3], [0], [1, 2], [2, 3])
del primals_1
buf1 = buf0
del buf0
buf2 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_4, primals_3, buf2, 32, grid=grid(32), stream=stream0)
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm]
extern_kernels.mm(buf2, reinterpret_tensor(primals_5, (8, 4), (1, 8), 0), out=buf3)
del primals_5
buf4 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [bilinear, add, tanh], Original ATen: [aten.add, aten.tanh]
triton_poi_fused_add_tanh_1.run(buf4, primals_2, buf3, 16, grid=grid(16), stream=stream0)
del buf3
del primals_2
buf5 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.mm]
extern_kernels.mm(buf4, reinterpret_tensor(primals_6, (4, 1), (1, 4), 0), out=buf5)
return (buf5, primals_4, primals_3, buf2, buf4, primals_6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class NTN(nn.Module):
def __init__(self, l_dim, r_dim, k=4, non_linear=F.tanh):
super(NTN, self).__init__()
self.u_R = nn.Linear(k, 1, bias=False)
self.f = non_linear
self.W = nn.Bilinear(l_dim, r_dim, k, bias=True)
self.V = nn.Linear(l_dim + r_dim, k, bias=False)
def forward(self, e1, e2):
"""
e1: tensor of size (*, l_dim)
e2: tensor of size (*, r_dim)
return: tensor of size (*, 1)
"""
return self.u_R(self.f(self.W(e1, e2) + self.V(torch.cat((e1, e2), 1)))
)
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'l_dim': 4, 'r_dim': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x2, tmp10, xmask)
@triton.jit
def triton_poi_fused_add_tanh_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel,
XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + x2, xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp5 = libdevice.tanh(tmp4)
tl.store(in_out_ptr0 + x2, tmp5, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, 8), (8, 1))
assert_size_stride(primals_6, (1, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = torch.ops.aten._trilinear.default(primals_4, primals_1,
primals_3, [1, 3], [0], [1, 2], [2, 3])
del primals_1
buf1 = buf0
del buf0
buf2 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(32)](primals_4, primals_3, buf2, 32,
XBLOCK=32, num_warps=1, num_stages=1)
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf2, reinterpret_tensor(primals_5, (8, 4), (1, 8
), 0), out=buf3)
del primals_5
buf4 = buf1
del buf1
triton_poi_fused_add_tanh_1[grid(16)](buf4, primals_2, buf3, 16,
XBLOCK=16, num_warps=1, num_stages=1)
del buf3
del primals_2
buf5 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
extern_kernels.mm(buf4, reinterpret_tensor(primals_6, (4, 1), (1, 4
), 0), out=buf5)
return buf5, primals_4, primals_3, buf2, buf4, primals_6
class NTNNew(nn.Module):
def __init__(self, l_dim, r_dim, k=4, non_linear=F.tanh):
super(NTNNew, self).__init__()
self.u_R = nn.Linear(k, 1, bias=False)
self.f = non_linear
self.W = nn.Bilinear(l_dim, r_dim, k, bias=True)
self.V = nn.Linear(l_dim + r_dim, k, bias=False)
def forward(self, input_0, input_1):
primals_6 = self.u_R.weight
primals_1 = self.W.weight
primals_2 = self.W.bias
primals_5 = self.V.weight
primals_3 = input_0
primals_4 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0]
|
aryaman4/TaxoExpan
|
NTN
| false | 9,805 |
[
"Apache-2.0"
] | 0 |
3d9b9a21ba7cdd872dc62181dd14ff271e20b245
|
https://github.com/aryaman4/TaxoExpan/tree/3d9b9a21ba7cdd872dc62181dd14ff271e20b245
|
MultiHeadAttentionWithMetrics
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/dk/cdk4odz276xorciau5ehgl7f3s2mgkf3hrye6xep6kzubczdeqqy.py
# Topologically Sorted Source Nodes: [dot_product], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# dot_product => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/vq/cvqpprnukykv7fb6t2uveui44qrapemorby5j3fnnfeymwpqwe63.py
# Topologically Sorted Source Nodes: [dot_product], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# dot_product => clone_1
# Graph fragment:
# %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_1,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/tt/cttmvktt3m2x2nl56afa7l3abaxt7wlehowakdzngkhgs35f3n7u.py
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# softmax => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_11, [3], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_11, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/ry/cryn7ntc2gpkbfzbre3xh7lffx7zkbskw6oihbzsekkgajmdbki6.py
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# softmax => div_1, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [3], True), kwargs = {})
# %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4, ), (1, ))
assert_size_stride(primals_9, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_10, (4, 4), (4, 1))
assert_size_stride(primals_11, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
del primals_2
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [key_projected], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1)
del primals_4
del primals_5
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [value_projected], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_8, reinterpret_tensor(primals_9, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del primals_7
del primals_8
buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [dot_product], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(buf0, primals_3, buf3, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_3
buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [dot_product], Original ATen: [aten.clone]
triton_poi_fused_clone_1.run(buf1, buf4, 16, 4, grid=grid(16, 4), stream=stream0)
buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [dot_product], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf5, buf6, 256, grid=grid(256), stream=stream0)
buf7 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
triton_poi_fused__softmax_3.run(buf6, buf7, 256, grid=grid(256), stream=stream0)
del buf6
buf8 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [context_heads], Original ATen: [aten.clone]
triton_poi_fused_clone_1.run(buf2, buf8, 16, 4, grid=grid(16, 4), stream=stream0)
buf9 = empty_strided_cuda((16, 4, 1), (4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [context_heads], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 0), 0), out=buf9)
buf10 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [context_sequence], Original ATen: [aten.clone]
triton_poi_fused_clone_1.run(buf9, buf10, 16, 4, grid=grid(16, 4), stream=stream0)
buf11 = reinterpret_tensor(buf9, (16, 4), (4, 1), 0); del buf9 # reuse
# Topologically Sorted Source Nodes: [final_output], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_11, reinterpret_tensor(buf10, (16, 4), (4, 1), 0), reinterpret_tensor(primals_10, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf11)
del primals_11
return (reinterpret_tensor(buf11, (4, 4, 4), (16, 4, 1), 0), buf7, reinterpret_tensor(buf2, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_9, (16, 4), (4, 1), 0), buf7, reinterpret_tensor(buf10, (16, 4), (4, 1), 0), primals_10, reinterpret_tensor(buf8, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import numpy as np
import torch.nn as nn
class MultiHeadAttentionWithMetrics(nn.Module):
def __init__(self, ctx, heads_count, d_model, dropout_prob=0.1, mode=
'self-attention'):
super(MultiHeadAttentionWithMetrics, self).__init__()
assert d_model % heads_count == 0
assert mode in ('self-attention', 'memory-attention')
self.context = ctx
self.d_head = d_model // heads_count
self.heads_count = heads_count
self.mode = mode
self.query_projection = nn.Linear(d_model, heads_count * self.d_head)
self.key_projection = nn.Linear(d_model, heads_count * self.d_head)
self.value_projection = nn.Linear(d_model, heads_count * self.d_head)
self.final_projection = nn.Linear(d_model, heads_count * self.d_head)
self.dropout = nn.Dropout(dropout_prob)
self.softmax = nn.Softmax(dim=3)
self.attention = None
self.key_projected = None
self.value_projected = None
def forward(self, query, key, value, mask=None, layer_cache=None):
batch_size, query_len, d_model = query.size()
d_head = d_model // self.heads_count
query_projected = self.query_projection(query)
if layer_cache is None or layer_cache[self.mode] is None:
key_projected = self.key_projection(key)
value_projected = self.value_projection(value)
elif self.mode == 'self-attention':
key_projected = self.key_projection(key)
value_projected = self.value_projection(value)
key_projected = torch.cat([key_projected, layer_cache[self.mode
]['key_projected']], dim=1)
value_projected = torch.cat([value_projected, layer_cache[self.
mode]['value_projected']], dim=1)
elif self.mode == 'memory-attention':
key_projected = layer_cache[self.mode]['key_projected']
value_projected = layer_cache[self.mode]['value_projected']
self.key_projected = key_projected
self.value_projected = value_projected
batch_size, key_len, d_model = key_projected.size()
batch_size, value_len, d_model = value_projected.size()
query_heads = query_projected.view(batch_size, query_len, self.
heads_count, d_head).transpose(1, 2)
key_heads = key_projected.view(batch_size, key_len, self.
heads_count, d_head).transpose(1, 2)
value_heads = value_projected.view(batch_size, value_len, self.
heads_count, d_head).transpose(1, 2)
attention_weights = self.scaled_dot_product(query_heads, key_heads)
if mask is not None:
mask_expanded = mask.unsqueeze(1).expand_as(attention_weights)
attention_weights = attention_weights.masked_fill(mask_expanded,
-1e+18)
self.attention = self.softmax(attention_weights)
attention_dropped = self.dropout(self.attention)
context_heads = torch.matmul(attention_dropped, value_heads)
context_sequence = context_heads.transpose(1, 2).contiguous()
context = context_sequence.view(batch_size, query_len, d_model)
final_output = self.final_projection(context)
return final_output
def scaled_dot_product(self, query_heads, key_heads):
"""
Args:
query_heads: (batch_size, heads_count, query_len, d_head)
key_heads: (batch_size, heads_count, key_len, d_head)
"""
key_heads_transposed = key_heads.transpose(2, 3)
dot_product = torch.matmul(query_heads, key_heads_transposed)
attention_weights = dot_product / np.sqrt(self.d_head)
return attention_weights
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4])
]
def get_init_inputs():
return [[], {'ctx': 4, 'heads_count': 4, 'd_model': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import numpy as np
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask)
@triton.jit
def triton_poi_fused_clone_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4,), (1,))
assert_size_stride(primals_9, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_10, (4, 4), (4, 1))
assert_size_stride(primals_11, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
del primals_2
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(primals_6, (16,
4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf1)
del primals_4
del primals_5
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_8, reinterpret_tensor(primals_9, (16,
4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf2)
del primals_7
del primals_8
buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(16, 4)](buf0, primals_3, buf3, 16, 4,
XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1)
del primals_3
buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0)
del buf0
triton_poi_fused_clone_1[grid(16, 4)](buf1, buf4, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0),
0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused__softmax_2[grid(256)](buf5, buf6, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf7 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf5
triton_poi_fused__softmax_3[grid(256)](buf6, buf7, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del buf6
buf8 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
triton_poi_fused_clone_1[grid(16, 4)](buf2, buf8, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
buf9 = empty_strided_cuda((16, 4, 1), (4, 1, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 0), 0), out=buf9)
buf10 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
triton_poi_fused_clone_1[grid(16, 4)](buf9, buf10, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
buf11 = reinterpret_tensor(buf9, (16, 4), (4, 1), 0)
del buf9
extern_kernels.addmm(primals_11, reinterpret_tensor(buf10, (16, 4),
(4, 1), 0), reinterpret_tensor(primals_10, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf11)
del primals_11
return reinterpret_tensor(buf11, (4, 4, 4), (16, 4, 1), 0
), buf7, reinterpret_tensor(buf2, (4, 4, 4), (16, 4, 1), 0
), reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0
), reinterpret_tensor(primals_1, (16, 4), (4, 1), 0
), reinterpret_tensor(primals_6, (16, 4), (4, 1), 0
), reinterpret_tensor(primals_9, (16, 4), (4, 1), 0
), buf7, reinterpret_tensor(buf10, (16, 4), (4, 1), 0
), primals_10, reinterpret_tensor(buf8, (16, 1, 4), (4, 1, 1), 0
), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0
), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0)
class MultiHeadAttentionWithMetricsNew(nn.Module):
def __init__(self, ctx, heads_count, d_model, dropout_prob=0.1, mode=
'self-attention'):
super(MultiHeadAttentionWithMetricsNew, self).__init__()
assert d_model % heads_count == 0
assert mode in ('self-attention', 'memory-attention')
self.context = ctx
self.d_head = d_model // heads_count
self.heads_count = heads_count
self.mode = mode
self.query_projection = nn.Linear(d_model, heads_count * self.d_head)
self.key_projection = nn.Linear(d_model, heads_count * self.d_head)
self.value_projection = nn.Linear(d_model, heads_count * self.d_head)
self.final_projection = nn.Linear(d_model, heads_count * self.d_head)
self.dropout = nn.Dropout(dropout_prob)
self.softmax = nn.Softmax(dim=3)
self.attention = None
self.key_projected = None
self.value_projected = None
def scaled_dot_product(self, query_heads, key_heads):
"""
Args:
query_heads: (batch_size, heads_count, query_len, d_head)
key_heads: (batch_size, heads_count, key_len, d_head)
"""
key_heads_transposed = key_heads.transpose(2, 3)
dot_product = torch.matmul(query_heads, key_heads_transposed)
attention_weights = dot_product / np.sqrt(self.d_head)
return attention_weights
def forward(self, input_0, input_1, input_2):
primals_2 = self.query_projection.weight
primals_3 = self.query_projection.bias
primals_4 = self.key_projection.weight
primals_5 = self.key_projection.bias
primals_7 = self.value_projection.weight
primals_8 = self.value_projection.bias
primals_10 = self.final_projection.weight
primals_11 = self.final_projection.bias
primals_1 = input_0
primals_6 = input_1
primals_9 = input_2
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11])
return output[0]
|
bingrao/deeplearning
|
MultiHeadAttentionWithMetrics
| false | 9,806 |
[
"MIT"
] | 0 |
8488478a4355a7f56d49c5126f529c21d5a95798
|
https://github.com/bingrao/deeplearning/tree/8488478a4355a7f56d49c5126f529c21d5a95798
|
DepthwiseSeparableConvolution
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/pw/cpw5jgywzg5ntkknxkt5orxsrrr5zq7a6eoteboi3ba7zrcxj2p7.py
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# out => convolution
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 4), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 1, 3, 3), (9, 9, 3, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(buf1, primals_2, 256, grid=grid(256), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution]
triton_poi_fused_convolution_0.run(buf3, primals_5, 256, grid=grid(256), stream=stream0)
del primals_5
return (buf3, primals_1, primals_3, primals_4, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
class DepthwiseSeparableConvolution(nn.Module):
def __init__(self, in_ch, out_ch, kernel_size=3, stride=1, padding=1):
super().__init__()
"""
input : N*C1
output : N*C1
groups = C1
"""
self.depthwise_conv = nn.Conv2d(in_channels=in_ch, out_channels=
in_ch, kernel_size=kernel_size, stride=stride, padding=padding,
groups=in_ch)
"""
input : N*C1
output : N*C2
kernel_size = 1
groups = 1
"""
self.pointwise_conv = nn.Conv2d(in_channels=in_ch, out_channels=
out_ch, kernel_size=1, stride=1, padding=0, groups=1)
def forward(self, x):
out = self.depthwise_conv(x)
out = self.pointwise_conv(out)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_ch': 4, 'out_ch': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 1, 3, 3), (9, 9, 3, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(256)](buf1, primals_2, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_0[grid(256)](buf3, primals_5, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_5
return buf3, primals_1, primals_3, primals_4, buf1
class DepthwiseSeparableConvolutionNew(nn.Module):
def __init__(self, in_ch, out_ch, kernel_size=3, stride=1, padding=1):
super().__init__()
"""
input : N*C1
output : N*C1
groups = C1
"""
self.depthwise_conv = nn.Conv2d(in_channels=in_ch, out_channels=
in_ch, kernel_size=kernel_size, stride=stride, padding=padding,
groups=in_ch)
"""
input : N*C1
output : N*C2
kernel_size = 1
groups = 1
"""
self.pointwise_conv = nn.Conv2d(in_channels=in_ch, out_channels=
out_ch, kernel_size=1, stride=1, padding=0, groups=1)
def forward(self, input_0):
primals_1 = self.depthwise_conv.weight
primals_2 = self.depthwise_conv.bias
primals_4 = self.pointwise_conv.weight
primals_5 = self.pointwise_conv.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
LiChengChen666/DetectDee
|
DepthwiseSeparableConvolution
| false | 9,807 |
[
"Apache-2.0"
] | 0 |
1e6aaa0d15b1fc12d1342d8a922004e372b5f437
|
https://github.com/LiChengChen666/DetectDee/tree/1e6aaa0d15b1fc12d1342d8a922004e372b5f437
|
DuelingQNetwork
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/az/cazao7d5hdb3kcfc76acvd3yerra6cq3h4spci3xujm27v6xwinj.py
# Topologically Sorted Source Nodes: [adv], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# adv => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_3 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 1024
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/bf/cbfbt6sdm6aj5xj3lrjyhjocam5bavcembflar6dda7e5yjj6ple.py
# Topologically Sorted Source Nodes: [adv_1], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# adv_1 => relu_1
# Graph fragment:
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {})
# %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32768
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 512
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/im/cim4lnvnm7fgfdsaf6brqqcg2wlgptxhwuew5rk7j4pcrfhoqcwp.py
# Topologically Sorted Source Nodes: [mean, sub, out], Original ATen: [aten.mean, aten.sub, aten.add]
# Source node to ATen node mapping:
# mean => mean
# out => add
# sub => sub
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%view_5,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_5, %mean), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_11, %sub), kwargs = {})
triton_per_fused_add_mean_sub_2 = async_compile.triton('triton_per_fused_add_mean_sub_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mean_sub_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 3, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_mean_sub_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
r1 = rindex % 4
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp4 = tl.load(in_out_ptr0 + (r0), None)
tmp5 = tl.load(in_ptr1 + (r1), None, eviction_policy='evict_last')
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = triton_helpers.promote_to_tensor(tl.sum(tmp1, 0))
tmp6 = tmp4 + tmp5
tmp7 = 256.0
tmp8 = tmp3 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp6 + tmp9
tl.store(in_out_ptr0 + (tl.broadcast_to(r0, [RBLOCK])), tmp10, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13 = args
args.clear()
assert_size_stride(primals_1, (1024, 4), (4, 1))
assert_size_stride(primals_2, (1024, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (512, 1024), (1024, 1))
assert_size_stride(primals_5, (512, ), (1, ))
assert_size_stride(primals_6, (4, 512), (512, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (512, 4), (4, 1))
assert_size_stride(primals_9, (512, ), (1, ))
assert_size_stride(primals_10, (512, 512), (512, 1))
assert_size_stride(primals_11, (512, ), (1, ))
assert_size_stride(primals_12, (4, 512), (512, 1))
assert_size_stride(primals_13, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 1024), (1024, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 1024), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 1024), (16384, 4096, 1024, 1), 0); del buf0 # reuse
buf15 = empty_strided_cuda((4, 4, 4, 1024), (16384, 4096, 1024, 1), torch.bool)
# Topologically Sorted Source Nodes: [adv], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf15, 65536, grid=grid(65536), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 512), (512, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 1024), (1024, 1), 0), reinterpret_tensor(primals_4, (1024, 512), (1, 1024), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 512), (8192, 2048, 512, 1), 0); del buf2 # reuse
buf14 = empty_strided_cuda((4, 4, 4, 512), (8192, 2048, 512, 1), torch.bool)
# Topologically Sorted Source Nodes: [adv_1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_1.run(buf3, primals_5, buf14, 32768, grid=grid(32768), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [adv_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 512), (512, 1), 0), reinterpret_tensor(primals_6, (512, 4), (1, 512), 0), alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((64, 512), (512, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 512), (1, 4), 0), out=buf5)
del primals_8
buf6 = reinterpret_tensor(buf5, (4, 4, 4, 512), (8192, 2048, 512, 1), 0); del buf5 # reuse
buf13 = empty_strided_cuda((4, 4, 4, 512), (8192, 2048, 512, 1), torch.bool)
# Topologically Sorted Source Nodes: [val], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_1.run(buf6, primals_9, buf13, 32768, grid=grid(32768), stream=stream0)
del primals_9
buf7 = empty_strided_cuda((64, 512), (512, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf6, (64, 512), (512, 1), 0), reinterpret_tensor(primals_10, (512, 512), (1, 512), 0), out=buf7)
buf8 = reinterpret_tensor(buf7, (4, 4, 4, 512), (8192, 2048, 512, 1), 0); del buf7 # reuse
buf12 = empty_strided_cuda((4, 4, 4, 512), (8192, 2048, 512, 1), torch.bool)
# Topologically Sorted Source Nodes: [val_1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_1.run(buf8, primals_11, buf12, 32768, grid=grid(32768), stream=stream0)
del primals_11
buf9 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf8, (64, 512), (512, 1), 0), reinterpret_tensor(primals_12, (512, 4), (1, 512), 0), out=buf9)
buf11 = reinterpret_tensor(buf9, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf9 # reuse
# Topologically Sorted Source Nodes: [mean, sub, out], Original ATen: [aten.mean, aten.sub, aten.add]
triton_per_fused_add_mean_sub_2.run(buf11, buf4, primals_13, 1, 256, grid=grid(1), stream=stream0)
del buf4
del primals_13
return (buf11, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 1024), (1024, 1), 0), reinterpret_tensor(buf3, (64, 512), (512, 1), 0), reinterpret_tensor(buf6, (64, 512), (512, 1), 0), reinterpret_tensor(buf8, (64, 512), (512, 1), 0), primals_12, buf12, primals_10, buf13, primals_6, buf14, primals_4, buf15, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((1024, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((512, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 512), (512, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((512, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((512, 512), (512, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, 512), (512, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn.functional as F
import torch.nn as nn
class DuelingQNetwork(nn.Module):
"""Actor (Policy) Model."""
def __init__(self, state_size, action_size, seed):
"""Initialize parameters and build model.
Params
======
state_size (int): Dimension of each state
action_size (int): Dimension of each action
seed (int): Random seed
"""
super(DuelingQNetwork, self).__init__()
self.seed = torch.manual_seed(seed)
self.afc1 = nn.Linear(state_size, 1024)
self.afc2 = nn.Linear(1024, 512)
self.afc3 = nn.Linear(512, action_size)
self.vfc1 = nn.Linear(state_size, 512)
self.vfc2 = nn.Linear(512, 512)
self.vfc3 = nn.Linear(512, action_size)
def forward(self, state):
adv = F.relu(self.afc1(state))
adv = F.relu(self.afc2(adv))
adv = self.afc3(adv)
val = F.relu(self.vfc1(state))
val = F.relu(self.vfc2(val))
val = self.vfc3(val)
out = val + (adv - adv.mean())
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'state_size': 4, 'action_size': 4, 'seed': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 1024
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 512
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
@triton.jit
def triton_per_fused_add_mean_sub_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel,
rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
r1 = rindex % 4
tmp0 = tl.load(in_ptr0 + r0, None)
tmp4 = tl.load(in_out_ptr0 + r0, None)
tmp5 = tl.load(in_ptr1 + r1, None, eviction_policy='evict_last')
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = triton_helpers.promote_to_tensor(tl.sum(tmp1, 0))
tmp6 = tmp4 + tmp5
tmp7 = 256.0
tmp8 = tmp3 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp6 + tmp9
tl.store(in_out_ptr0 + tl.broadcast_to(r0, [RBLOCK]), tmp10, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13) = args
args.clear()
assert_size_stride(primals_1, (1024, 4), (4, 1))
assert_size_stride(primals_2, (1024,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (512, 1024), (1024, 1))
assert_size_stride(primals_5, (512,), (1,))
assert_size_stride(primals_6, (4, 512), (512, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (512, 4), (4, 1))
assert_size_stride(primals_9, (512,), (1,))
assert_size_stride(primals_10, (512, 512), (512, 1))
assert_size_stride(primals_11, (512,), (1,))
assert_size_stride(primals_12, (4, 512), (512, 1))
assert_size_stride(primals_13, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 1024), (1024, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 1024), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 1024), (16384, 4096, 1024,
1), 0)
del buf0
buf15 = empty_strided_cuda((4, 4, 4, 1024), (16384, 4096, 1024, 1),
torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(65536)](buf1,
primals_2, buf15, 65536, XBLOCK=512, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 512), (512, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 1024), (1024, 1), 0
), reinterpret_tensor(primals_4, (1024, 512), (1, 1024), 0),
out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 512), (8192, 2048, 512, 1), 0
)
del buf2
buf14 = empty_strided_cuda((4, 4, 4, 512), (8192, 2048, 512, 1),
torch.bool)
triton_poi_fused_relu_threshold_backward_1[grid(32768)](buf3,
primals_5, buf14, 32768, XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 512),
(512, 1), 0), reinterpret_tensor(primals_6, (512, 4), (1, 512),
0), alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((64, 512), (512, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_8, (4, 512), (1, 4), 0), out=buf5)
del primals_8
buf6 = reinterpret_tensor(buf5, (4, 4, 4, 512), (8192, 2048, 512, 1), 0
)
del buf5
buf13 = empty_strided_cuda((4, 4, 4, 512), (8192, 2048, 512, 1),
torch.bool)
triton_poi_fused_relu_threshold_backward_1[grid(32768)](buf6,
primals_9, buf13, 32768, XBLOCK=256, num_warps=4, num_stages=1)
del primals_9
buf7 = empty_strided_cuda((64, 512), (512, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf6, (64, 512), (512, 1), 0),
reinterpret_tensor(primals_10, (512, 512), (1, 512), 0), out=buf7)
buf8 = reinterpret_tensor(buf7, (4, 4, 4, 512), (8192, 2048, 512, 1), 0
)
del buf7
buf12 = empty_strided_cuda((4, 4, 4, 512), (8192, 2048, 512, 1),
torch.bool)
triton_poi_fused_relu_threshold_backward_1[grid(32768)](buf8,
primals_11, buf12, 32768, XBLOCK=256, num_warps=4, num_stages=1)
del primals_11
buf9 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf8, (64, 512), (512, 1), 0),
reinterpret_tensor(primals_12, (512, 4), (1, 512), 0), out=buf9)
buf11 = reinterpret_tensor(buf9, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf9
triton_per_fused_add_mean_sub_2[grid(1)](buf11, buf4, primals_13, 1,
256, num_warps=2, num_stages=1)
del buf4
del primals_13
return buf11, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 1024), (1024, 1), 0
), reinterpret_tensor(buf3, (64, 512), (512, 1), 0
), reinterpret_tensor(buf6, (64, 512), (512, 1), 0
), reinterpret_tensor(buf8, (64, 512), (512, 1), 0
), primals_12, buf12, primals_10, buf13, primals_6, buf14, primals_4, buf15
class DuelingQNetworkNew(nn.Module):
"""Actor (Policy) Model."""
def __init__(self, state_size, action_size, seed):
"""Initialize parameters and build model.
Params
======
state_size (int): Dimension of each state
action_size (int): Dimension of each action
seed (int): Random seed
"""
super(DuelingQNetworkNew, self).__init__()
self.seed = torch.manual_seed(seed)
self.afc1 = nn.Linear(state_size, 1024)
self.afc2 = nn.Linear(1024, 512)
self.afc3 = nn.Linear(512, action_size)
self.vfc1 = nn.Linear(state_size, 512)
self.vfc2 = nn.Linear(512, 512)
self.vfc3 = nn.Linear(512, action_size)
def forward(self, input_0):
primals_1 = self.afc1.weight
primals_2 = self.afc1.bias
primals_4 = self.afc2.weight
primals_5 = self.afc2.bias
primals_6 = self.afc3.weight
primals_7 = self.afc3.bias
primals_8 = self.vfc1.weight
primals_9 = self.vfc1.bias
primals_10 = self.vfc2.weight
primals_11 = self.vfc2.bias
primals_12 = self.vfc3.weight
primals_13 = self.vfc3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13])
return output[0]
|
bfMendonca/deep-reinforcement-learning
|
DuelingQNetwork
| false | 9,808 |
[
"MIT"
] | 0 |
fa8f68d960542658429a4e1a4b1e9fdfb1af0030
|
https://github.com/bfMendonca/deep-reinforcement-learning/tree/fa8f68d960542658429a4e1a4b1e9fdfb1af0030
|
SpatialGroupEnhance
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/l3/cl35tzbhrd24dhunkbb6gjs54aklpyr46oikqhoylcgmkcmhujil.py
# Topologically Sorted Source Nodes: [adaptive_avg_pool2d], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# adaptive_avg_pool2d => mean
# Graph fragment:
# %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%view, [-1, -2], True), kwargs = {})
triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 16.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/a5/ca56thseizupperaiqs5wiuvhcun4wc2jggffpd37a2xbjph27wh.py
# Topologically Sorted Source Nodes: [xn, xn_1, mean, t_1, std, std_1, mul_1, t_4, sigmoid], Original ATen: [aten.mul, aten.sum, aten.mean, aten.sub, aten.std, aten.add, aten.sigmoid]
# Source node to ATen node mapping:
# mean => mean_1
# mul_1 => mul_1
# sigmoid => sigmoid
# std => sqrt, var
# std_1 => add
# t_1 => sub
# t_4 => add_1
# xn => mul
# xn_1 => sum_1
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %mean), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1], True), kwargs = {})
# %mean_1 : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%view_1, [1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, %mean_1), kwargs = {})
# %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%sub, [1]), kwargs = {correction: 1.0, keepdim: True})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%var,), kwargs = {})
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%sqrt, 1e-05), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_2, %primals_2), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_3), kwargs = {})
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add_1,), kwargs = {})
triton_per_fused_add_mean_mul_sigmoid_std_sub_sum_1 = async_compile.triton('triton_per_fused_add_mean_mul_sigmoid_std_sub_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 16],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: 'i32', 9: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 9), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mean_mul_sigmoid_std_sub_sum_1', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 10, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_mean_mul_sigmoid_std_sub_sum_1(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0)
tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (16 + r1 + (64*x0)), xmask, other=0.0)
tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (32 + r1 + (64*x0)), xmask, other=0.0)
tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (48 + r1 + (64*x0)), xmask, other=0.0)
tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp44 = tl.load(in_ptr2 + (0))
tmp45 = tl.broadcast_to(tmp44, [XBLOCK, RBLOCK])
tmp47 = tl.load(in_ptr3 + (0))
tmp48 = tl.broadcast_to(tmp47, [XBLOCK, RBLOCK])
tmp2 = tmp0 * tmp1
tmp5 = tmp3 * tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 * tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 * tmp12
tmp14 = tmp10 + tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = 16.0
tmp20 = tmp18 / tmp19
tmp21 = tmp14 - tmp20
tmp22 = tl.broadcast_to(tmp21, [XBLOCK, RBLOCK])
tmp24 = tl.where(xmask, tmp22, 0)
tmp25 = tl.broadcast_to(tmp22, [XBLOCK, RBLOCK])
tmp27 = tl.where(xmask, tmp25, 0)
tmp28 = tl.sum(tmp27, 1)[:, None]
tmp29 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp30 = tmp29.to(tl.float32)
tmp31 = tmp28 / tmp30
tmp32 = tmp22 - tmp31
tmp33 = tmp32 * tmp32
tmp34 = tl.broadcast_to(tmp33, [XBLOCK, RBLOCK])
tmp36 = tl.where(xmask, tmp34, 0)
tmp37 = tl.sum(tmp36, 1)[:, None]
tmp38 = 15.0
tmp39 = tmp37 / tmp38
tmp40 = libdevice.sqrt(tmp39)
tmp41 = 1e-05
tmp42 = tmp40 + tmp41
tmp43 = tmp21 / tmp42
tmp46 = tmp43 * tmp45
tmp49 = tmp46 + tmp48
tmp50 = tl.sigmoid(tmp49)
tl.store(out_ptr0 + (r1 + (16*x0)), tmp14, xmask)
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp20, xmask)
tl.debug_barrier()
tl.store(in_out_ptr1 + (x0), tmp42, xmask)
tl.store(out_ptr1 + (r1 + (16*x0)), tmp50, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/oc/cocahikgrum5ddfascfd75hjn6cow7rd2ztrvh7tsckzl7n6vq6q.py
# Topologically Sorted Source Nodes: [mul_1, t_4, sigmoid, x_1], Original ATen: [aten.mul, aten.add, aten.sigmoid]
# Source node to ATen node mapping:
# mul_1 => mul_1
# sigmoid => sigmoid
# t_4 => add_1
# x_1 => mul_2
# Graph fragment:
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_2, %primals_2), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_3), kwargs = {})
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add_1,), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %sigmoid), kwargs = {})
triton_poi_fused_add_mul_sigmoid_2 = async_compile.triton('triton_poi_fused_add_mul_sigmoid_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_sigmoid_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_sigmoid_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, 1, 1, 1), (1, 1, 1, 1))
assert_size_stride(primals_3, (1, 1, 1, 1), (1, 1, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [adaptive_avg_pool2d], Original ATen: [aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_mean_0.run(buf1, primals_1, 16, 16, grid=grid(16), stream=stream0)
buf2 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32)
buf3 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
buf4 = reinterpret_tensor(buf3, (4, 1), (1, 1), 0); del buf3 # reuse
buf6 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
buf8 = reinterpret_tensor(buf6, (4, 1), (1, 1), 0); del buf6 # reuse
buf9 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [xn, xn_1, mean, t_1, std, std_1, mul_1, t_4, sigmoid], Original ATen: [aten.mul, aten.sum, aten.mean, aten.sub, aten.std, aten.add, aten.sigmoid]
triton_per_fused_add_mean_mul_sigmoid_std_sub_sum_1.run(buf4, buf8, primals_1, buf1, primals_2, primals_3, buf2, buf9, 4, 16, grid=grid(4), stream=stream0)
del buf2
buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul_1, t_4, sigmoid, x_1], Original ATen: [aten.mul, aten.add, aten.sigmoid]
triton_poi_fused_add_mul_sigmoid_2.run(primals_1, buf9, buf10, 256, grid=grid(256), stream=stream0)
del buf9
return (buf10, primals_1, primals_2, primals_3, buf1, buf4, buf8, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, 1, 1, 1), (1, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1, 1, 1, 1), (1, 1, 1, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
from torch.nn import init
class SpatialGroupEnhance(nn.Module):
def __init__(self, groups):
super().__init__()
self.groups = groups
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.weight = nn.Parameter(torch.zeros(1, groups, 1, 1))
self.bias = nn.Parameter(torch.zeros(1, groups, 1, 1))
self.sig = nn.Sigmoid()
self.init_weights()
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, std=0.001)
if m.bias is not None:
init.constant_(m.bias, 0)
def forward(self, x):
b, c, h, w = x.shape
x = x.view(b * self.groups, -1, h, w)
xn = x * self.avg_pool(x)
xn = xn.sum(dim=1, keepdim=True)
t = xn.view(b * self.groups, -1)
t = t - t.mean(dim=1, keepdim=True)
std = t.std(dim=1, keepdim=True) + 1e-05
t = t / std
t = t.view(b, self.groups, h, w)
t = t * self.weight + self.bias
t = t.view(b * self.groups, 1, h, w)
x = x * self.sig(t)
x = x.view(b, c, h, w)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'groups': 1}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
from torch import nn
from torch.nn import init
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK:
tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 16.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp6, xmask)
@triton.jit
def triton_per_fused_add_mean_mul_sigmoid_std_sub_sum_1(in_out_ptr0,
in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1,
xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0)
tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (16 + r1 + 64 * x0), xmask, other=0.0)
tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (32 + r1 + 64 * x0), xmask, other=0.0)
tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (48 + r1 + 64 * x0), xmask, other=0.0)
tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp44 = tl.load(in_ptr2 + 0)
tmp45 = tl.broadcast_to(tmp44, [XBLOCK, RBLOCK])
tmp47 = tl.load(in_ptr3 + 0)
tmp48 = tl.broadcast_to(tmp47, [XBLOCK, RBLOCK])
tmp2 = tmp0 * tmp1
tmp5 = tmp3 * tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 * tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 * tmp12
tmp14 = tmp10 + tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = 16.0
tmp20 = tmp18 / tmp19
tmp21 = tmp14 - tmp20
tmp22 = tl.broadcast_to(tmp21, [XBLOCK, RBLOCK])
tl.where(xmask, tmp22, 0)
tmp25 = tl.broadcast_to(tmp22, [XBLOCK, RBLOCK])
tmp27 = tl.where(xmask, tmp25, 0)
tmp28 = tl.sum(tmp27, 1)[:, None]
tmp29 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp30 = tmp29.to(tl.float32)
tmp31 = tmp28 / tmp30
tmp32 = tmp22 - tmp31
tmp33 = tmp32 * tmp32
tmp34 = tl.broadcast_to(tmp33, [XBLOCK, RBLOCK])
tmp36 = tl.where(xmask, tmp34, 0)
tmp37 = tl.sum(tmp36, 1)[:, None]
tmp38 = 15.0
tmp39 = tmp37 / tmp38
tmp40 = libdevice.sqrt(tmp39)
tmp41 = 1e-05
tmp42 = tmp40 + tmp41
tmp43 = tmp21 / tmp42
tmp46 = tmp43 * tmp45
tmp49 = tmp46 + tmp48
tmp50 = tl.sigmoid(tmp49)
tl.store(out_ptr0 + (r1 + 16 * x0), tmp14, xmask)
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp20, xmask)
tl.debug_barrier()
tl.store(in_out_ptr1 + x0, tmp42, xmask)
tl.store(out_ptr1 + (r1 + 16 * x0), tmp50, xmask)
@triton.jit
def triton_poi_fused_add_mul_sigmoid_2(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + (x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, 1, 1, 1), (1, 1, 1, 1))
assert_size_stride(primals_3, (1, 1, 1, 1), (1, 1, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0)
del buf0
get_raw_stream(0)
triton_per_fused_mean_0[grid(16)](buf1, primals_1, 16, 16, XBLOCK=8,
num_warps=2, num_stages=1)
buf2 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32)
buf3 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
buf4 = reinterpret_tensor(buf3, (4, 1), (1, 1), 0)
del buf3
buf6 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
buf8 = reinterpret_tensor(buf6, (4, 1), (1, 1), 0)
del buf6
buf9 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32)
triton_per_fused_add_mean_mul_sigmoid_std_sub_sum_1[grid(4)](buf4,
buf8, primals_1, buf1, primals_2, primals_3, buf2, buf9, 4, 16,
XBLOCK=1, num_warps=2, num_stages=1)
del buf2
buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_add_mul_sigmoid_2[grid(256)](primals_1, buf9,
buf10, 256, XBLOCK=256, num_warps=4, num_stages=1)
del buf9
return buf10, primals_1, primals_2, primals_3, buf1, buf4, buf8
class SpatialGroupEnhanceNew(nn.Module):
def __init__(self, groups):
super().__init__()
self.groups = groups
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.weight = nn.Parameter(torch.zeros(1, groups, 1, 1))
self.bias = nn.Parameter(torch.zeros(1, groups, 1, 1))
self.sig = nn.Sigmoid()
self.init_weights()
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, std=0.001)
if m.bias is not None:
init.constant_(m.bias, 0)
def forward(self, input_0):
primals_2 = self.weight
primals_3 = self.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
LiChengChen666/DetectDee
|
SpatialGroupEnhance
| false | 9,809 |
[
"Apache-2.0"
] | 0 |
1e6aaa0d15b1fc12d1342d8a922004e372b5f437
|
https://github.com/LiChengChen666/DetectDee/tree/1e6aaa0d15b1fc12d1342d8a922004e372b5f437
|
Depth_Pointwise_Conv1d
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/o6/co6pflndmsdhmqwe2jfrf4itwvl27ku5p27kydz44oxklfdvmyvc.py
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv1d => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%unsqueeze, %primals_1, %primals_2, [1], [2], [1], False, [0], 4), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 20
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 5)
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x2), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 1, 4), (4, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(reinterpret_tensor(primals_3, (1, 4, 4), (16, 4, 1), 0), primals_1, stride=(1,), padding=(2,), dilation=(1,), transposed=False, output_padding=(0,), groups=4, bias=None)
assert_size_stride(buf0, (1, 4, 5), (20, 5, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(buf1, primals_2, 20, grid=grid(20), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(reinterpret_tensor(buf1, (1, 4, 5), (0, 5, 1), 0), primals_4, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf2, (1, 4, 5), (20, 5, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
triton_poi_fused_convolution_0.run(buf3, primals_5, 20, grid=grid(20), stream=stream0)
del primals_5
return (reinterpret_tensor(buf3, (4, 5), (5, 1), 0), primals_1, primals_4, reinterpret_tensor(primals_3, (1, 4, 4), (16, 4, 1), 0), buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
class Depth_Pointwise_Conv1d(nn.Module):
def __init__(self, in_ch, out_ch, k):
super().__init__()
if k == 1:
self.depth_conv = nn.Identity()
else:
self.depth_conv = nn.Conv1d(in_channels=in_ch, out_channels=
in_ch, kernel_size=k, groups=in_ch, padding=k // 2)
self.pointwise_conv = nn.Conv1d(in_channels=in_ch, out_channels=
out_ch, kernel_size=1, groups=1)
def forward(self, x):
out = self.pointwise_conv(self.depth_conv(x))
return out
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {'in_ch': 4, 'out_ch': 4, 'k': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 20
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 5
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x2, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 1, 4), (4, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(reinterpret_tensor(primals_3, (1,
4, 4), (16, 4, 1), 0), primals_1, stride=(1,), padding=(2,),
dilation=(1,), transposed=False, output_padding=(0,), groups=4,
bias=None)
assert_size_stride(buf0, (1, 4, 5), (20, 5, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(20)](buf1, primals_2, 20,
XBLOCK=32, num_warps=1, num_stages=1)
del primals_2
buf2 = extern_kernels.convolution(reinterpret_tensor(buf1, (1, 4, 5
), (0, 5, 1), 0), primals_4, stride=(1,), padding=(0,),
dilation=(1,), transposed=False, output_padding=(0,), groups=1,
bias=None)
assert_size_stride(buf2, (1, 4, 5), (20, 5, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_0[grid(20)](buf3, primals_5, 20,
XBLOCK=32, num_warps=1, num_stages=1)
del primals_5
return reinterpret_tensor(buf3, (4, 5), (5, 1), 0
), primals_1, primals_4, reinterpret_tensor(primals_3, (1, 4, 4), (
16, 4, 1), 0), buf1
class Depth_Pointwise_Conv1dNew(nn.Module):
def __init__(self, in_ch, out_ch, k):
super().__init__()
if k == 1:
self.depth_conv = nn.Identity()
else:
self.depth_conv = nn.Conv1d(in_channels=in_ch, out_channels=
in_ch, kernel_size=k, groups=in_ch, padding=k // 2)
self.pointwise_conv = nn.Conv1d(in_channels=in_ch, out_channels=
out_ch, kernel_size=1, groups=1)
def forward(self, input_0):
primals_1 = self.depth_conv.weight
primals_2 = self.depth_conv.bias
primals_4 = self.pointwise_conv.weight
primals_5 = self.pointwise_conv.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
LiChengChen666/DetectDee
|
Depth_Pointwise_Conv1d
| false | 9,810 |
[
"Apache-2.0"
] | 0 |
1e6aaa0d15b1fc12d1342d8a922004e372b5f437
|
https://github.com/LiChengChen666/DetectDee/tree/1e6aaa0d15b1fc12d1342d8a922004e372b5f437
|
DoubleAttention
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/pw/cpw5jgywzg5ntkknxkt5orxsrrr5zq7a6eoteboi3ba7zrcxj2p7.py
# Topologically Sorted Source Nodes: [A], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# A => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/hw/chwhte4i74qa6ehm4f5ymxvt2okpvkjoofuf42d42yg6q227sdup.py
# Topologically Sorted Source Nodes: [attention_maps], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# attention_maps => amax, exp, sub, sum_1
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_1, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = (xindex // 16)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask)
tmp1 = tl.load(in_ptr1 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp4 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask)
tmp5 = tl.load(in_ptr1 + (1))
tmp6 = tl.broadcast_to(tmp5, [XBLOCK])
tmp9 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask)
tmp10 = tl.load(in_ptr1 + (2))
tmp11 = tl.broadcast_to(tmp10, [XBLOCK])
tmp14 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask)
tmp15 = tl.load(in_ptr1 + (3))
tmp16 = tl.broadcast_to(tmp15, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp7 = tmp4 + tmp6
tmp8 = triton_helpers.maximum(tmp3, tmp7)
tmp12 = tmp9 + tmp11
tmp13 = triton_helpers.maximum(tmp8, tmp12)
tmp17 = tmp14 + tmp16
tmp18 = triton_helpers.maximum(tmp13, tmp17)
tmp19 = tmp3 - tmp18
tmp20 = tl_math.exp(tmp19)
tmp21 = tmp7 - tmp18
tmp22 = tl_math.exp(tmp21)
tmp23 = tmp20 + tmp22
tmp24 = tmp12 - tmp18
tmp25 = tl_math.exp(tmp24)
tmp26 = tmp23 + tmp25
tmp27 = tmp17 - tmp18
tmp28 = tl_math.exp(tmp27)
tmp29 = tmp26 + tmp28
tl.store(out_ptr0 + (x2), tmp18, xmask)
tl.store(out_ptr1 + (x2), tmp29, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/ct/cctuzkagtzcdmfs752xbjrle5caa2el2phc4el3gd4dl673dsoty.py
# Topologically Sorted Source Nodes: [attention_maps], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# attention_maps => amax, div, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_1, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr2 + (x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 - tmp3
tmp5 = tl_math.exp(tmp4)
tmp7 = tmp5 / tmp6
tl.store(in_out_ptr0 + (x3), tmp7, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_9, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [A], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
# Topologically Sorted Source Nodes: [B], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(primals_1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1))
# Topologically Sorted Source Nodes: [V], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(primals_1, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1))
buf3 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [A], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(buf3, primals_3, 256, grid=grid(256), stream=stream0)
del primals_3
buf4 = empty_strided_cuda((4, 1, 16), (16, 64, 1), torch.float32)
buf5 = empty_strided_cuda((4, 1, 16), (16, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [attention_maps], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf1, primals_5, buf4, buf5, 64, grid=grid(64), stream=stream0)
buf6 = reinterpret_tensor(buf1, (4, 4, 16), (64, 16, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [attention_maps], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf6, primals_5, buf4, buf5, 256, grid=grid(256), stream=stream0)
del primals_5
buf7 = buf5; del buf5 # reuse
buf8 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [attention_vectors], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf2, primals_7, buf7, buf8, 64, grid=grid(64), stream=stream0)
buf9 = reinterpret_tensor(buf2, (4, 4, 16), (64, 16, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [attention_vectors], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf9, primals_7, buf7, buf8, 256, grid=grid(256), stream=stream0)
del buf7
del primals_7
buf10 = reinterpret_tensor(buf8, (4, 4, 4), (16, 4, 1), 0); del buf8 # reuse
# Topologically Sorted Source Nodes: [global_descriptors], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf3, (4, 4, 16), (64, 16, 1), 0), reinterpret_tensor(buf6, (4, 16, 4), (64, 1, 16), 0), out=buf10)
buf11 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [tmpZ], Original ATen: [aten.bmm]
extern_kernels.bmm(buf10, buf9, out=buf11)
# Topologically Sorted Source Nodes: [tmpZ_2], Original ATen: [aten.convolution]
buf12 = extern_kernels.convolution(reinterpret_tensor(buf11, (4, 4, 4, 4), (64, 16, 4, 1), 0), primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 4, 4, 4), (64, 16, 4, 1))
buf13 = buf12; del buf12 # reuse
# Topologically Sorted Source Nodes: [tmpZ_2], Original ATen: [aten.convolution]
triton_poi_fused_convolution_0.run(buf13, primals_9, 256, grid=grid(256), stream=stream0)
del primals_9
return (buf13, primals_1, primals_2, primals_4, primals_6, primals_8, buf6, buf9, reinterpret_tensor(buf11, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf10, (4, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf3, (4, 16, 4), (64, 1, 16), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
from torch.nn import init
from torch.nn import functional as F
class DoubleAttention(nn.Module):
def __init__(self, in_channels, c_m, c_n, reconstruct=True):
super().__init__()
self.in_channels = in_channels
self.reconstruct = reconstruct
self.c_m = c_m
self.c_n = c_n
self.convA = nn.Conv2d(in_channels, c_m, 1)
self.convB = nn.Conv2d(in_channels, c_n, 1)
self.convV = nn.Conv2d(in_channels, c_n, 1)
if self.reconstruct:
self.conv_reconstruct = nn.Conv2d(c_m, in_channels, kernel_size=1)
self.init_weights()
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, std=0.001)
if m.bias is not None:
init.constant_(m.bias, 0)
def forward(self, x):
b, c, h, w = x.shape
assert c == self.in_channels
A = self.convA(x)
B = self.convB(x)
V = self.convV(x)
tmpA = A.view(b, self.c_m, -1)
attention_maps = F.softmax(B.view(b, self.c_n, -1), dim=1)
attention_vectors = F.softmax(V.view(b, self.c_n, -1), dim=1)
global_descriptors = torch.bmm(tmpA, attention_maps.permute(0, 2, 1))
tmpZ = global_descriptors.matmul(attention_vectors)
tmpZ = tmpZ.view(b, self.c_m, h, w)
if self.reconstruct:
tmpZ = self.conv_reconstruct(tmpZ)
return tmpZ
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'c_m': 4, 'c_n': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch import nn
from torch.nn import init
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = xindex // 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask)
tmp1 = tl.load(in_ptr1 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp4 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask)
tmp5 = tl.load(in_ptr1 + 1)
tmp6 = tl.broadcast_to(tmp5, [XBLOCK])
tmp9 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask)
tmp10 = tl.load(in_ptr1 + 2)
tmp11 = tl.broadcast_to(tmp10, [XBLOCK])
tmp14 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask)
tmp15 = tl.load(in_ptr1 + 3)
tmp16 = tl.broadcast_to(tmp15, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp7 = tmp4 + tmp6
tmp8 = triton_helpers.maximum(tmp3, tmp7)
tmp12 = tmp9 + tmp11
tmp13 = triton_helpers.maximum(tmp8, tmp12)
tmp17 = tmp14 + tmp16
tmp18 = triton_helpers.maximum(tmp13, tmp17)
tmp19 = tmp3 - tmp18
tmp20 = tl_math.exp(tmp19)
tmp21 = tmp7 - tmp18
tmp22 = tl_math.exp(tmp21)
tmp23 = tmp20 + tmp22
tmp24 = tmp12 - tmp18
tmp25 = tl_math.exp(tmp24)
tmp26 = tmp23 + tmp25
tmp27 = tmp17 - tmp18
tmp28 = tl_math.exp(tmp27)
tmp29 = tmp26 + tmp28
tl.store(out_ptr0 + x2, tmp18, xmask)
tl.store(out_ptr1 + x2, tmp29, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr2 + (x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 - tmp3
tmp5 = tl_math.exp(tmp4)
tmp7 = tmp5 / tmp6
tl.store(in_out_ptr0 + x3, tmp7, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_9, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = extern_kernels.convolution(primals_1, primals_4, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1))
buf2 = extern_kernels.convolution(primals_1, primals_6, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1))
buf3 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(256)](buf3, primals_3, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_3
buf4 = empty_strided_cuda((4, 1, 16), (16, 64, 1), torch.float32)
buf5 = empty_strided_cuda((4, 1, 16), (16, 64, 1), torch.float32)
triton_poi_fused__softmax_1[grid(64)](buf1, primals_5, buf4, buf5,
64, XBLOCK=64, num_warps=1, num_stages=1)
buf6 = reinterpret_tensor(buf1, (4, 4, 16), (64, 16, 1), 0)
del buf1
triton_poi_fused__softmax_2[grid(256)](buf6, primals_5, buf4, buf5,
256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
buf7 = buf5
del buf5
buf8 = buf4
del buf4
triton_poi_fused__softmax_1[grid(64)](buf2, primals_7, buf7, buf8,
64, XBLOCK=64, num_warps=1, num_stages=1)
buf9 = reinterpret_tensor(buf2, (4, 4, 16), (64, 16, 1), 0)
del buf2
triton_poi_fused__softmax_2[grid(256)](buf9, primals_7, buf7, buf8,
256, XBLOCK=256, num_warps=4, num_stages=1)
del buf7
del primals_7
buf10 = reinterpret_tensor(buf8, (4, 4, 4), (16, 4, 1), 0)
del buf8
extern_kernels.bmm(reinterpret_tensor(buf3, (4, 4, 16), (64, 16, 1),
0), reinterpret_tensor(buf6, (4, 16, 4), (64, 1, 16), 0), out=buf10
)
buf11 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32)
extern_kernels.bmm(buf10, buf9, out=buf11)
buf12 = extern_kernels.convolution(reinterpret_tensor(buf11, (4, 4,
4, 4), (64, 16, 4, 1), 0), primals_8, stride=(1, 1), padding=(0,
0), dilation=(1, 1), transposed=False, output_padding=(0, 0),
groups=1, bias=None)
assert_size_stride(buf12, (4, 4, 4, 4), (64, 16, 4, 1))
buf13 = buf12
del buf12
triton_poi_fused_convolution_0[grid(256)](buf13, primals_9, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_9
return (buf13, primals_1, primals_2, primals_4, primals_6, primals_8,
buf6, buf9, reinterpret_tensor(buf11, (4, 4, 4, 4), (64, 16, 4, 1),
0), reinterpret_tensor(buf10, (4, 4, 4), (16, 1, 4), 0),
reinterpret_tensor(buf3, (4, 16, 4), (64, 1, 16), 0))
class DoubleAttentionNew(nn.Module):
def __init__(self, in_channels, c_m, c_n, reconstruct=True):
super().__init__()
self.in_channels = in_channels
self.reconstruct = reconstruct
self.c_m = c_m
self.c_n = c_n
self.convA = nn.Conv2d(in_channels, c_m, 1)
self.convB = nn.Conv2d(in_channels, c_n, 1)
self.convV = nn.Conv2d(in_channels, c_n, 1)
if self.reconstruct:
self.conv_reconstruct = nn.Conv2d(c_m, in_channels, kernel_size=1)
self.init_weights()
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, std=0.001)
if m.bias is not None:
init.constant_(m.bias, 0)
def forward(self, input_0):
primals_2 = self.convA.weight
primals_3 = self.convA.bias
primals_4 = self.convB.weight
primals_5 = self.convB.bias
primals_6 = self.convV.weight
primals_7 = self.convV.bias
primals_8 = self.conv_reconstruct.weight
primals_9 = self.conv_reconstruct.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0]
|
LiChengChen666/DetectDee
|
DoubleAttention
| false | 9,811 |
[
"Apache-2.0"
] | 0 |
1e6aaa0d15b1fc12d1342d8a922004e372b5f437
|
https://github.com/LiChengChen666/DetectDee/tree/1e6aaa0d15b1fc12d1342d8a922004e372b5f437
|
SpatialAttention
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/uc/cucdaa5tqnxykdmw5yqh7ir5ac35phopjcobljrg4rrtlnfjtuwd.py
# Topologically Sorted Source Nodes: [result], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# result => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%getitem, %mean], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 16) % 2
x0 = xindex % 16
x2 = (xindex // 32)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp9 = triton_helpers.maximum(tmp7, tmp8)
tmp10 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = triton_helpers.maximum(tmp9, tmp10)
tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype)
tmp13 = tl.where(tmp4, tmp11, tmp12)
tmp14 = tmp0 >= tmp3
tmp15 = tl.full([1], 2, tl.int64)
tmp16 = tmp0 < tmp15
tmp17 = tl.load(in_ptr0 + (x0 + (64*x2)), tmp14 & xmask, eviction_policy='evict_last', other=0.0)
tmp18 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), tmp14 & xmask, eviction_policy='evict_last', other=0.0)
tmp19 = tmp17 + tmp18
tmp20 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), tmp14 & xmask, eviction_policy='evict_last', other=0.0)
tmp21 = tmp19 + tmp20
tmp22 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), tmp14 & xmask, eviction_policy='evict_last', other=0.0)
tmp23 = tmp21 + tmp22
tmp24 = 4.0
tmp25 = tmp23 / tmp24
tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype)
tmp27 = tl.where(tmp14, tmp25, tmp26)
tmp28 = tl.where(tmp4, tmp13, tmp27)
tl.store(out_ptr0 + (x3), tmp28, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/go/cgofqcgduqrtcjakfd7uk3wkcrpwsqxispluihwsstry6ekodk2u.py
# Topologically Sorted Source Nodes: [output, output_1], Original ATen: [aten.convolution, aten.sigmoid]
# Source node to ATen node mapping:
# output => convolution
# output_1 => sigmoid
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%cat, %primals_2, %primals_3, [1, 1], [3, 3], [1, 1], False, [0, 0], 1), kwargs = {})
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_sigmoid_1 = async_compile.triton('triton_poi_fused_convolution_sigmoid_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_sigmoid_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.sigmoid(tmp3)
tl.store(in_out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, 2, 7, 7), (98, 49, 7, 1))
assert_size_stride(primals_3, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [result], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_1, buf0, 128, grid=grid(128), stream=stream0)
del primals_1
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 1, 4, 4), (16, 16, 4, 1))
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [output, output_1], Original ATen: [aten.convolution, aten.sigmoid]
triton_poi_fused_convolution_sigmoid_1.run(buf2, primals_3, 64, grid=grid(64), stream=stream0)
del primals_3
return (buf2, primals_2, buf0, buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, 2, 7, 7), (98, 49, 7, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
class SpatialAttention(nn.Module):
def __init__(self, kernel_size=7):
super().__init__()
self.conv = nn.Conv2d(2, 1, kernel_size=kernel_size, padding=
kernel_size // 2)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
max_result, _ = torch.max(x, dim=1, keepdim=True)
avg_result = torch.mean(x, dim=1, keepdim=True)
result = torch.cat([max_result, avg_result], 1)
output = self.conv(result)
output = self.sigmoid(output)
return output
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 16 % 2
x0 = xindex % 16
x2 = xindex // 32
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 64 * x2), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), tmp4 & xmask,
eviction_policy='evict_last', other=0.0)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), tmp4 & xmask,
eviction_policy='evict_last', other=0.0)
tmp9 = triton_helpers.maximum(tmp7, tmp8)
tmp10 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), tmp4 & xmask,
eviction_policy='evict_last', other=0.0)
tmp11 = triton_helpers.maximum(tmp9, tmp10)
tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype)
tmp13 = tl.where(tmp4, tmp11, tmp12)
tmp14 = tmp0 >= tmp3
tl.full([1], 2, tl.int64)
tmp17 = tl.load(in_ptr0 + (x0 + 64 * x2), tmp14 & xmask,
eviction_policy='evict_last', other=0.0)
tmp18 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), tmp14 & xmask,
eviction_policy='evict_last', other=0.0)
tmp19 = tmp17 + tmp18
tmp20 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), tmp14 & xmask,
eviction_policy='evict_last', other=0.0)
tmp21 = tmp19 + tmp20
tmp22 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), tmp14 & xmask,
eviction_policy='evict_last', other=0.0)
tmp23 = tmp21 + tmp22
tmp24 = 4.0
tmp25 = tmp23 / tmp24
tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype)
tmp27 = tl.where(tmp14, tmp25, tmp26)
tmp28 = tl.where(tmp4, tmp13, tmp27)
tl.store(out_ptr0 + x3, tmp28, xmask)
@triton.jit
def triton_poi_fused_convolution_sigmoid_1(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.sigmoid(tmp3)
tl.store(in_out_ptr0 + x0, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, 2, 7, 7), (98, 49, 7, 1))
assert_size_stride(primals_3, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(128)](primals_1, buf0, 128, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_1
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1),
padding=(3, 3), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 1, 4, 4), (16, 16, 4, 1))
buf2 = buf1
del buf1
triton_poi_fused_convolution_sigmoid_1[grid(64)](buf2, primals_3,
64, XBLOCK=64, num_warps=1, num_stages=1)
del primals_3
return buf2, primals_2, buf0, buf2
class SpatialAttentionNew(nn.Module):
def __init__(self, kernel_size=7):
super().__init__()
self.conv = nn.Conv2d(2, 1, kernel_size=kernel_size, padding=
kernel_size // 2)
self.sigmoid = nn.Sigmoid()
def forward(self, input_0):
primals_2 = self.conv.weight
primals_3 = self.conv.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
LiChengChen666/DetectDee
|
SpatialAttention
| false | 9,812 |
[
"Apache-2.0"
] | 0 |
1e6aaa0d15b1fc12d1342d8a922004e372b5f437
|
https://github.com/LiChengChen666/DetectDee/tree/1e6aaa0d15b1fc12d1342d8a922004e372b5f437
|
LxmertAttention
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/x2/cx2hdvwyo7m5jvhhvtugzxqvmy6z4nsfhkkjhvgzbbm3cb6dsum2.py
# Topologically Sorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
# Graph fragment:
# %mul_scalar : [num_users=1] = call_function[target=torch.ops.aten.mul.Scalar](args = (%permute_default, 1.0), kwargs = {})
# %clone_default : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_default,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + (x2 + (4*y3)), tmp4, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/5j/c5jll3kxtd32cl7pwubrb5oky2mtzckfgip2xbwad7crvvp4zk4r.py
# Topologically Sorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
# Graph fragment:
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_default_2, [-1], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_default_2, %amax_default), kwargs = {})
# %exp_default : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_tensor,), kwargs = {})
triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/kt/cktnex5febczl2ac6zugjmcksgsd5kjdufazv65vtepuwob3cb7a.py
# Topologically Sorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
# Graph fragment:
# %sum_dim_int_list : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_default, [-1], True), kwargs = {})
# %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_default, %sum_dim_int_list), kwargs = {})
# %eq_scalar : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%view_default_2, -inf), kwargs = {})
# %logical_not_default : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%eq_scalar,), kwargs = {})
# %any_dim : [num_users=1] = call_function[target=torch.ops.aten.any.dim](args = (%logical_not_default, -1, True), kwargs = {})
# %logical_not_default_1 : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%any_dim,), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %where_self : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%logical_not_default_1, %full_default, %div_tensor), kwargs = {})
triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp18 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr1 + (x2), xmask)
tmp26 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp29 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp31 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp1 = float("-inf")
tmp2 = tmp0 == tmp1
tmp3 = tmp2 == 0
tmp4 = tmp3.to(tl.int64)
tmp5 = (tmp4 != 0)
tmp7 = tmp6 == tmp1
tmp8 = tmp7 == 0
tmp9 = tmp8.to(tl.int64)
tmp10 = (tmp9 != 0)
tmp11 = tmp5 | tmp10
tmp13 = tmp12 == tmp1
tmp14 = tmp13 == 0
tmp15 = tmp14.to(tl.int64)
tmp16 = (tmp15 != 0)
tmp17 = tmp11 | tmp16
tmp19 = tmp18 == tmp1
tmp20 = tmp19 == 0
tmp21 = tmp20.to(tl.int64)
tmp22 = (tmp21 != 0)
tmp23 = tmp17 | tmp22
tmp24 = tmp23 == 0
tmp28 = tmp26 + tmp27
tmp30 = tmp28 + tmp29
tmp32 = tmp30 + tmp31
tmp33 = tmp25 / tmp32
tmp34 = 0.0
tmp35 = tl.where(tmp24, tmp34, tmp33)
tl.store(out_ptr0 + (x2), tmp35, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/vv/cvvnhithjvmvhfjufxwwzclfobkrgbyyteg66hp24r675f7elw4c.py
# Topologically Sorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
# Graph fragment:
# %clone_default_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_default_3,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_3(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/6t/c6t5a5ere3lqjiu7zh3uu4oxmpdoujdaqqmeunxqapgzo4m74uav.py
# Topologically Sorted Source Nodes: [context_layer_1], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# context_layer_1 => clone_4
# Graph fragment:
# %clone_4 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
del primals_4
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf2)
del primals_7
buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
stream0 = get_raw_stream(0)
triton_poi_fused_0.run(buf0, primals_2, buf3, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_2
buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_0.run(buf1, primals_5, buf4, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_5
buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_1.run(buf5, buf6, 256, grid=grid(256), stream=stream0)
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_2.run(buf5, buf6, buf7, 256, grid=grid(256), stream=stream0)
del buf5
del buf6
buf8 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_3.run(buf2, primals_8, buf8, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_8
buf9 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 0), 0), out=buf9)
buf10 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [context_layer_1], Original ATen: [aten.clone]
triton_poi_fused_clone_4.run(buf9, buf10, 16, 4, grid=grid(16, 4), stream=stream0)
del buf9
return (reinterpret_tensor(buf10, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), buf7, reinterpret_tensor(buf8, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import math
import torch
from torch import nn
from itertools import *
class LxmertAttention(nn.Module):
def __init__(self, hidden_size, num_attention_heads,
attention_probs_dropout_prob, ctx_dim):
super().__init__()
if hidden_size % num_attention_heads != 0:
raise ValueError(
'The hidden size (%d) is not a multiple of the number of attention heads (%d)'
% (hidden_size, num_attention_heads))
self.num_attention_heads = num_attention_heads
self.attention_head_size = int(hidden_size / num_attention_heads)
self.head_size = self.num_attention_heads * self.attention_head_size
self.ctx_dim = hidden_size
self.query = nn.Linear(hidden_size, self.head_size)
self.key = nn.Linear(ctx_dim, self.head_size)
self.value = nn.Linear(ctx_dim, self.head_size)
self.dropout = nn.Dropout(attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.
attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, hidden_states, context, attention_mask=None,
output_attentions=False):
mixed_query_layer = self.query(hidden_states)
mixed_key_layer = self.key(context)
mixed_value_layer = self.value(context)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1,
-2))
attention_scores = attention_scores / math.sqrt(self.
attention_head_size)
if attention_mask is not None:
attention_mask = attention_mask.bool().unsqueeze(1).unsqueeze(1)
attention_scores = attention_scores.clone().masked_fill(~
attention_mask, ai2_util.min_value_of_dtype(
attention_scores.dtype))
attention_probs = nn.Softmax(dim=-1)(attention_scores)
attention_probs = self.dropout(attention_probs)
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (
context_layer,)
return outputs
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'hidden_size': 4, 'num_attention_heads': 4,
'attention_probs_dropout_prob': 0.5, 'ctx_dim': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch import nn
from itertools import *
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK:
tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + (x2 + 4 * y3), tmp4, xmask & ymask)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp18 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp25 = tl.load(in_ptr1 + x2, xmask)
tmp26 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp29 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp31 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp1 = float('-inf')
tmp2 = tmp0 == tmp1
tmp3 = tmp2 == 0
tmp4 = tmp3.to(tl.int64)
tmp5 = tmp4 != 0
tmp7 = tmp6 == tmp1
tmp8 = tmp7 == 0
tmp9 = tmp8.to(tl.int64)
tmp10 = tmp9 != 0
tmp11 = tmp5 | tmp10
tmp13 = tmp12 == tmp1
tmp14 = tmp13 == 0
tmp15 = tmp14.to(tl.int64)
tmp16 = tmp15 != 0
tmp17 = tmp11 | tmp16
tmp19 = tmp18 == tmp1
tmp20 = tmp19 == 0
tmp21 = tmp20.to(tl.int64)
tmp22 = tmp21 != 0
tmp23 = tmp17 | tmp22
tmp24 = tmp23 == 0
tmp28 = tmp26 + tmp27
tmp30 = tmp28 + tmp29
tmp32 = tmp30 + tmp31
tmp33 = tmp25 / tmp32
tmp34 = 0.0
tmp35 = tl.where(tmp24, tmp34, tmp33)
tl.store(out_ptr0 + x2, tmp35, xmask)
@triton.jit
def triton_poi_fused_3(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK:
tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
del primals_4
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf2)
del primals_7
buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_0[grid(16, 4)](buf0, primals_2, buf3, 16, 4,
XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1)
del primals_2
buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0)
del buf0
triton_poi_fused_0[grid(16, 4)](buf1, primals_5, buf4, 16, 4,
XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1)
del primals_5
buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0),
0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_1[grid(256)](buf5, buf6, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_2[grid(256)](buf5, buf6, buf7, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del buf5
del buf6
buf8 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf1
triton_poi_fused_3[grid(16, 4)](buf2, primals_8, buf8, 16, 4,
XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1)
del primals_8
buf9 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0)
del buf2
extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 0), 0), out=buf9)
buf10 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
triton_poi_fused_clone_4[grid(16, 4)](buf9, buf10, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
del buf9
return reinterpret_tensor(buf10, (4, 4, 4), (16, 4, 1), 0
), reinterpret_tensor(primals_3, (16, 4), (4, 1), 0
), reinterpret_tensor(primals_6, (16, 4), (4, 1), 0
), buf7, reinterpret_tensor(buf8, (16, 1, 4), (4, 1, 1), 0
), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0
), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0)
class LxmertAttentionNew(nn.Module):
def __init__(self, hidden_size, num_attention_heads,
attention_probs_dropout_prob, ctx_dim):
super().__init__()
if hidden_size % num_attention_heads != 0:
raise ValueError(
'The hidden size (%d) is not a multiple of the number of attention heads (%d)'
% (hidden_size, num_attention_heads))
self.num_attention_heads = num_attention_heads
self.attention_head_size = int(hidden_size / num_attention_heads)
self.head_size = self.num_attention_heads * self.attention_head_size
self.ctx_dim = hidden_size
self.query = nn.Linear(hidden_size, self.head_size)
self.key = nn.Linear(ctx_dim, self.head_size)
self.value = nn.Linear(ctx_dim, self.head_size)
self.dropout = nn.Dropout(attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.
attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, input_0, input_1):
primals_1 = self.query.weight
primals_2 = self.query.bias
primals_4 = self.key.weight
primals_5 = self.key.bias
primals_7 = self.value.weight
primals_8 = self.value.bias
primals_3 = input_0
primals_6 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8])
return output[0]
|
ashutoshbsathe/SmBop
|
LxmertAttention
| false | 9,813 |
[
"MIT"
] | 0 |
ce5f67ec070df55b84d7f3617659011732020c96
|
https://github.com/ashutoshbsathe/SmBop/tree/ce5f67ec070df55b84d7f3617659011732020c96
|
ExternalAttention
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/5q/c5qeh3pdyggwxnuvejg2thm5cuxzihqbmcufbsbx7b7rowvqqtu3.py
# Topologically Sorted Source Nodes: [attn_1], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# attn_1 => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_1, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 256
x2 = (xindex // 1024)
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x0 + (1024*x2)), None, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (256 + x0 + (1024*x2)), None, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (512 + x0 + (1024*x2)), None, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (768 + x0 + (1024*x2)), None, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x3), tmp9, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/g3/cg3hw563jssel4qcvpxgu54b5u5vs56ekmydhabf4bw4vpcp55xv.py
# Topologically Sorted Source Nodes: [attn_1], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# attn_1 => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 256
x2 = (xindex // 1024)
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x0 + (1024*x2)), None, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (256 + x0 + (1024*x2)), None, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (512 + x0 + (1024*x2)), None, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (768 + x0 + (1024*x2)), None, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x3), tmp8, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/6r/c6ref7by2nkxvxeoorqx3pmp6kdvasadwz73xoow3yx5up6n7fv4.py
# Topologically Sorted Source Nodes: [sum_1, attn_2], Original ATen: [aten.sum, aten.div]
# Source node to ATen node mapping:
# attn_2 => div_1
# sum_1 => sum_2
# Graph fragment:
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%div, [2], True), kwargs = {})
# %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%div, %sum_2), kwargs = {})
triton_poi_fused_div_sum_2 = async_compile.triton('triton_poi_fused_div_sum_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_sum_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_sum_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 64
x2 = (xindex // 256)
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x0 + (256*x2)), None, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (64 + x0 + (256*x2)), None, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (128 + x0 + (256*x2)), None, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (192 + x0 + (256*x2)), None, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x3), tmp8, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (64, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 64), (64, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
# Topologically Sorted Source Nodes: [attn], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 64), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [attn_1], Original ATen: [aten._softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__softmax_0.run(buf0, buf1, 4096, grid=grid(4096), stream=stream0)
buf2 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [attn_1], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf1, buf2, 4096, grid=grid(4096), stream=stream0)
buf3 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [sum_1, attn_2], Original ATen: [aten.sum, aten.div]
triton_poi_fused_div_sum_2.run(buf2, buf3, 4096, grid=grid(4096), stream=stream0)
del buf2
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf3, (64, 64), (64, 1), 0), reinterpret_tensor(primals_3, (64, 4), (1, 64), 0), out=buf4)
return (reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), buf0, buf3, primals_3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((64, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 64), (64, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
from torch.nn import init
class ExternalAttention(nn.Module):
def __init__(self, d_model, S=64):
super().__init__()
self.mk = nn.Linear(d_model, S, bias=False)
self.mv = nn.Linear(S, d_model, bias=False)
self.softmax = nn.Softmax(dim=1)
self.init_weights()
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, std=0.001)
if m.bias is not None:
init.constant_(m.bias, 0)
def forward(self, queries):
attn = self.mk(queries)
attn = self.softmax(attn)
attn = attn / torch.sum(attn, dim=2, keepdim=True)
out = self.mv(attn)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'d_model': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch import nn
from torch.nn import init
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 256
x2 = xindex // 1024
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + (x0 + 1024 * x2), None, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (256 + x0 + 1024 * x2), None, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (512 + x0 + 1024 * x2), None, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (768 + x0 + 1024 * x2), None, eviction_policy=
'evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x3, tmp9, None)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 256
x2 = xindex // 1024
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + (x0 + 1024 * x2), None, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (256 + x0 + 1024 * x2), None, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (512 + x0 + 1024 * x2), None, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (768 + x0 + 1024 * x2), None, eviction_policy=
'evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x3, tmp8, None)
@triton.jit
def triton_poi_fused_div_sum_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 64
x2 = xindex // 256
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + (x0 + 256 * x2), None, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (64 + x0 + 256 * x2), None, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (128 + x0 + 256 * x2), None, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (192 + x0 + 256 * x2), None, eviction_policy=
'evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x3, tmp8, None)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (64, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 64), (64, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 64), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.
float32)
get_raw_stream(0)
triton_poi_fused__softmax_0[grid(4096)](buf0, buf1, 4096, XBLOCK=
256, num_warps=4, num_stages=1)
buf2 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.
float32)
triton_poi_fused__softmax_1[grid(4096)](buf1, buf2, 4096, XBLOCK=
128, num_warps=4, num_stages=1)
buf3 = buf1
del buf1
triton_poi_fused_div_sum_2[grid(4096)](buf2, buf3, 4096, XBLOCK=256,
num_warps=4, num_stages=1)
del buf2
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf3, (64, 64), (64, 1), 0),
reinterpret_tensor(primals_3, (64, 4), (1, 64), 0), out=buf4)
return reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(primals_2, (64, 4), (4, 1), 0
), buf0, buf3, primals_3
class ExternalAttentionNew(nn.Module):
def __init__(self, d_model, S=64):
super().__init__()
self.mk = nn.Linear(d_model, S, bias=False)
self.mv = nn.Linear(S, d_model, bias=False)
self.softmax = nn.Softmax(dim=1)
self.init_weights()
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, std=0.001)
if m.bias is not None:
init.constant_(m.bias, 0)
def forward(self, input_0):
primals_1 = self.mk.weight
primals_3 = self.mv.weight
primals_2 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
LiChengChen666/DetectDee
|
ExternalAttention
| false | 9,814 |
[
"Apache-2.0"
] | 0 |
1e6aaa0d15b1fc12d1342d8a922004e372b5f437
|
https://github.com/LiChengChen666/DetectDee/tree/1e6aaa0d15b1fc12d1342d8a922004e372b5f437
|
HyperpriorAnalysis
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/ri/criqkuezky4rfayw6ltqhgahwfjt2yn2oze6l7t3fkgbcyinvotk.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 70400
xnumel = 9
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 220
y1 = (yindex // 220)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (220*x2) + (1980*y1)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/wh/cwhkswckmxft7monsnauuprtatvuatkc4bi2kgvlifmba3jwe76j.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024, 4096], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 880
xnumel = 4096
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 220
y1 = (yindex // 220)
tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (220*x2) + (901120*y1)), tmp0, ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/pa/cpapdgqqws5ag5ehwpofrqtvw5xphxp2fs56js4yos3j74haw2xm.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072, 32], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 102400
xnumel = 25
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 320
y1 = (yindex // 320)
tmp0 = tl.load(in_ptr0 + (x2 + (25*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (320*x2) + (8000*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/ph/cphj34isihiy7vcgo2uyriwgge7pmnu2sij75kxq7ggby6hlmwvh.py
# Topologically Sorted Source Nodes: [conv2d, x, pad], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d]
# Source node to ATen node mapping:
# conv2d => convolution
# pad => _unsafe_index, _unsafe_index_1
# x => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
# %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu, [None, None, %sub_1, None]), kwargs = {})
# %_unsafe_index_1 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index, [None, None, None, %sub_1]), kwargs = {})
triton_poi_fused_convolution_reflection_pad2d_relu_3 = async_compile.triton('triton_poi_fused_convolution_reflection_pad2d_relu_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8388608],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_reflection_pad2d_relu_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_reflection_pad2d_relu_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 5918720
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 320
x1 = (xindex // 320) % 68
x2 = (xindex // 21760) % 68
x3 = (xindex // 1479680)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (1310400 + x0 + ((-20480)*(tl_math.abs((-63) + (tl_math.abs((-2) + x2))))) + ((-320)*(tl_math.abs((-63) + (tl_math.abs((-2) + x1))))) + (1310720*x3)), None)
tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + (x4), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/v4/cv47rfntyy3kzrek5u7vimlqya432tgzptvdqdmafj6vdacriaky.py
# Topologically Sorted Source Nodes: [conv2d_1, x_1, pad_1], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d]
# Source node to ATen node mapping:
# conv2d_1 => convolution_1
# pad_1 => _unsafe_index_2, _unsafe_index_3
# x_1 => relu_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_4, %primals_5, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {})
# %_unsafe_index_2 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_1, [None, None, %sub_5, None]), kwargs = {})
# %_unsafe_index_3 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_2, [None, None, None, %sub_5]), kwargs = {})
triton_poi_fused_convolution_reflection_pad2d_relu_4 = async_compile.triton('triton_poi_fused_convolution_reflection_pad2d_relu_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2097152],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_reflection_pad2d_relu_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_reflection_pad2d_relu_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1658880
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 320
x1 = (xindex // 320) % 36
x2 = (xindex // 11520) % 36
x3 = (xindex // 414720)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (327360 + x0 + ((-10240)*(tl_math.abs((-31) + (tl_math.abs((-2) + x2))))) + ((-320)*(tl_math.abs((-31) + (tl_math.abs((-2) + x1))))) + (327680*x3)), None)
tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + (x4), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/yi/cyipfmkmpblqs4aii7e57iy25xgn5wjt4gc2pyq36tdwjza3ab4v.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x_2 => convolution_2
# Graph fragment:
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_3, %primals_6, %primals_7, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_5 = async_compile.triton('triton_poi_fused_convolution_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048, 256], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_5(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 1280
xnumel = 256
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 320
y1 = (yindex // 320)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (320*x2) + (81920*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + (256*y3)), tmp2, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/5n/c5nmtj336g7l5l66tr54hrh23mpif2c4y6mvrwfj7oymjbig3oot.py
# Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# conv2d_1 => convolution_1
# x_1 => relu_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_4, %primals_5, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {})
# %le_18 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {})
triton_poi_fused_convolution_relu_threshold_backward_6 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2097152],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_6(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1310720
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 320
tmp0 = tl.load(in_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/pd/cpdnddlltf377q3jfxsohyo3jb3e2v5oczjlv7ymcx5pggaqhm34.py
# Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# conv2d => convolution
# x => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
# %le_37 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_convolution_relu_threshold_backward_7 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8388608],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_7(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 5242880
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 320
tmp0 = tl.load(in_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (320, 220, 3, 3), (1980, 9, 3, 1))
assert_size_stride(primals_2, (320, ), (1, ))
assert_size_stride(primals_3, (4, 220, 64, 64), (901120, 4096, 64, 1))
assert_size_stride(primals_4, (320, 320, 5, 5), (8000, 25, 5, 1))
assert_size_stride(primals_5, (320, ), (1, ))
assert_size_stride(primals_6, (320, 320, 5, 5), (8000, 25, 5, 1))
assert_size_stride(primals_7, (320, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((320, 220, 3, 3), (1980, 1, 660, 220), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
stream0 = get_raw_stream(0)
triton_poi_fused_0.run(primals_1, buf0, 70400, 9, grid=grid(70400, 9), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((4, 220, 64, 64), (901120, 1, 14080, 220), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_1.run(primals_3, buf1, 880, 4096, grid=grid(880, 4096), stream=stream0)
del primals_3
buf2 = empty_strided_cuda((320, 320, 5, 5), (8000, 1, 1600, 320), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_2.run(primals_4, buf2, 102400, 25, grid=grid(102400, 25), stream=stream0)
del primals_4
buf3 = empty_strided_cuda((320, 320, 5, 5), (8000, 1, 1600, 320), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_2.run(primals_6, buf3, 102400, 25, grid=grid(102400, 25), stream=stream0)
del primals_6
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf1, buf0, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 320, 64, 64), (1310720, 1, 20480, 320))
buf5 = empty_strided_cuda((4, 320, 68, 68), (1479680, 1, 21760, 320), torch.float32)
# Topologically Sorted Source Nodes: [conv2d, x, pad], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d]
triton_poi_fused_convolution_reflection_pad2d_relu_3.run(buf4, primals_2, buf5, 5918720, grid=grid(5918720), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(buf5, buf2, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 320, 32, 32), (327680, 1, 10240, 320))
buf7 = empty_strided_cuda((4, 320, 36, 36), (414720, 1, 11520, 320), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_1, x_1, pad_1], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d]
triton_poi_fused_convolution_reflection_pad2d_relu_4.run(buf6, primals_5, buf7, 1658880, grid=grid(1658880), stream=stream0)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution]
buf8 = extern_kernels.convolution(buf7, buf3, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 320, 16, 16), (81920, 1, 5120, 320))
buf9 = empty_strided_cuda((4, 320, 16, 16), (81920, 256, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution]
triton_poi_fused_convolution_5.run(buf8, primals_7, buf9, 1280, 256, grid=grid(1280, 256), stream=stream0)
del buf8
del primals_7
buf10 = empty_strided_cuda((4, 320, 32, 32), (327680, 1, 10240, 320), torch.bool)
# Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_6.run(buf6, primals_5, buf10, 1310720, grid=grid(1310720), stream=stream0)
del buf6
del primals_5
buf11 = empty_strided_cuda((4, 320, 64, 64), (1310720, 1, 20480, 320), torch.bool)
# Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_7.run(buf4, primals_2, buf11, 5242880, grid=grid(5242880), stream=stream0)
del buf4
del primals_2
return (buf9, buf0, buf1, buf2, buf3, buf5, buf7, buf10, buf11, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((320, 220, 3, 3), (1980, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((320, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 220, 64, 64), (901120, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((320, 320, 5, 5), (8000, 25, 5, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((320, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((320, 320, 5, 5), (8000, 25, 5, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((320, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class HyperpriorAnalysis(nn.Module):
"""
Hyperprior 'analysis model' as proposed in [1].
[1] Ballé et. al., "Variational image compression with a scale hyperprior",
arXiv:1802.01436 (2018).
C: Number of input channels
"""
def __init__(self, C=220, N=320, activation='relu'):
super(HyperpriorAnalysis, self).__init__()
cnn_kwargs = dict(kernel_size=5, stride=2, padding=2, padding_mode=
'reflect')
self.activation = getattr(F, activation)
self.n_downsampling_layers = 2
self.conv1 = nn.Conv2d(C, N, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(N, N, **cnn_kwargs)
self.conv3 = nn.Conv2d(N, N, **cnn_kwargs)
def forward(self, x):
x = self.activation(self.conv1(x))
x = self.activation(self.conv2(x))
x = self.conv3(x)
return x
def get_inputs():
return [torch.rand([4, 220, 64, 64])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 70400
xnumel = 9
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)
) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 220
y1 = yindex // 220
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask & ymask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 220 * x2 + 1980 * y1), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 880
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 220
y1 = yindex // 220
tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), ymask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 220 * x2 + 901120 * y1), tmp0, ymask)
@triton.jit
def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 25
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)
) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 320
y1 = yindex // 320
tmp0 = tl.load(in_ptr0 + (x2 + 25 * y3), xmask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 320 * x2 + 8000 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_convolution_reflection_pad2d_relu_3(in_ptr0, in_ptr1,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 320
x1 = xindex // 320 % 68
x2 = xindex // 21760 % 68
x3 = xindex // 1479680
x4 = xindex
tmp0 = tl.load(in_ptr0 + (1310400 + x0 + -20480 * tl_math.abs(-63 +
tl_math.abs(-2 + x2)) + -320 * tl_math.abs(-63 + tl_math.abs(-2 +
x1)) + 1310720 * x3), None)
tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + x4, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_reflection_pad2d_relu_4(in_ptr0, in_ptr1,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 320
x1 = xindex // 320 % 36
x2 = xindex // 11520 % 36
x3 = xindex // 414720
x4 = xindex
tmp0 = tl.load(in_ptr0 + (327360 + x0 + -10240 * tl_math.abs(-31 +
tl_math.abs(-2 + x2)) + -320 * tl_math.abs(-31 + tl_math.abs(-2 +
x1)) + 327680 * x3), None)
tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + x4, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_5(in_ptr0, in_ptr1, out_ptr0, ynumel,
xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 1280
xnumel = 256
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 320
y1 = yindex // 320
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 320 * x2 + 81920 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + 256 * y3), tmp2, xmask & ymask)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_6(in_ptr0, in_ptr1,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 320
tmp0 = tl.load(in_ptr0 + x2, None)
tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + x2, tmp6, None)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_7(in_ptr0, in_ptr1,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 320
tmp0 = tl.load(in_ptr0 + x2, None)
tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + x2, tmp6, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (320, 220, 3, 3), (1980, 9, 3, 1))
assert_size_stride(primals_2, (320,), (1,))
assert_size_stride(primals_3, (4, 220, 64, 64), (901120, 4096, 64, 1))
assert_size_stride(primals_4, (320, 320, 5, 5), (8000, 25, 5, 1))
assert_size_stride(primals_5, (320,), (1,))
assert_size_stride(primals_6, (320, 320, 5, 5), (8000, 25, 5, 1))
assert_size_stride(primals_7, (320,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((320, 220, 3, 3), (1980, 1, 660, 220),
torch.float32)
get_raw_stream(0)
triton_poi_fused_0[grid(70400, 9)](primals_1, buf0, 70400, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((4, 220, 64, 64), (901120, 1, 14080, 220),
torch.float32)
triton_poi_fused_1[grid(880, 4096)](primals_3, buf1, 880, 4096,
XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1)
del primals_3
buf2 = empty_strided_cuda((320, 320, 5, 5), (8000, 1, 1600, 320),
torch.float32)
triton_poi_fused_2[grid(102400, 25)](primals_4, buf2, 102400, 25,
XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1)
del primals_4
buf3 = empty_strided_cuda((320, 320, 5, 5), (8000, 1, 1600, 320),
torch.float32)
triton_poi_fused_2[grid(102400, 25)](primals_6, buf3, 102400, 25,
XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1)
del primals_6
buf4 = extern_kernels.convolution(buf1, buf0, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 320, 64, 64), (1310720, 1, 20480, 320))
buf5 = empty_strided_cuda((4, 320, 68, 68), (1479680, 1, 21760, 320
), torch.float32)
triton_poi_fused_convolution_reflection_pad2d_relu_3[grid(5918720)](
buf4, primals_2, buf5, 5918720, XBLOCK=1024, num_warps=4,
num_stages=1)
buf6 = extern_kernels.convolution(buf5, buf2, stride=(2, 2),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 320, 32, 32), (327680, 1, 10240, 320))
buf7 = empty_strided_cuda((4, 320, 36, 36), (414720, 1, 11520, 320),
torch.float32)
triton_poi_fused_convolution_reflection_pad2d_relu_4[grid(1658880)](
buf6, primals_5, buf7, 1658880, XBLOCK=1024, num_warps=4,
num_stages=1)
buf8 = extern_kernels.convolution(buf7, buf3, stride=(2, 2),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 320, 16, 16), (81920, 1, 5120, 320))
buf9 = empty_strided_cuda((4, 320, 16, 16), (81920, 256, 16, 1),
torch.float32)
triton_poi_fused_convolution_5[grid(1280, 256)](buf8, primals_7,
buf9, 1280, 256, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1)
del buf8
del primals_7
buf10 = empty_strided_cuda((4, 320, 32, 32), (327680, 1, 10240, 320
), torch.bool)
triton_poi_fused_convolution_relu_threshold_backward_6[grid(1310720)](
buf6, primals_5, buf10, 1310720, XBLOCK=1024, num_warps=4,
num_stages=1)
del buf6
del primals_5
buf11 = empty_strided_cuda((4, 320, 64, 64), (1310720, 1, 20480,
320), torch.bool)
triton_poi_fused_convolution_relu_threshold_backward_7[grid(5242880)](
buf4, primals_2, buf11, 5242880, XBLOCK=1024, num_warps=4,
num_stages=1)
del buf4
del primals_2
return buf9, buf0, buf1, buf2, buf3, buf5, buf7, buf10, buf11
class HyperpriorAnalysisNew(nn.Module):
"""
Hyperprior 'analysis model' as proposed in [1].
[1] Ballé et. al., "Variational image compression with a scale hyperprior",
arXiv:1802.01436 (2018).
C: Number of input channels
"""
def __init__(self, C=220, N=320, activation='relu'):
super(HyperpriorAnalysisNew, self).__init__()
cnn_kwargs = dict(kernel_size=5, stride=2, padding=2, padding_mode=
'reflect')
self.activation = getattr(F, activation)
self.n_downsampling_layers = 2
self.conv1 = nn.Conv2d(C, N, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(N, N, **cnn_kwargs)
self.conv3 = nn.Conv2d(N, N, **cnn_kwargs)
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_6 = self.conv3.weight
primals_7 = self.conv3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
|
ali-zafari/high-fidelity-generative-compression
|
HyperpriorAnalysis
| false | 9,815 |
[
"Apache-2.0"
] | 0 |
37ab8d6727df48f8ebf4577db0986ccd0ffe404b
|
https://github.com/ali-zafari/high-fidelity-generative-compression/tree/37ab8d6727df48f8ebf4577db0986ccd0ffe404b
|
ChannelAttentionModule
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/p6/cp6vuooninjiuju55qtiu7u3yjx4izmj5jtvx2lkeddu4rheo45u.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048, 64], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 2048
xnumel = 49
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 512
y1 = (yindex // 512)
tmp0 = tl.load(in_ptr0 + (x2 + (49*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (512*x2) + (25088*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/oc/cochsno6wpkwamgsqz5legelnxxchuje5twfzhozvusus3e5bzmo.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 262144
xnumel = 9
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 512
y1 = (yindex // 512)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (512*x2) + (4608*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/qx/cqxjinzzdi527r7k6w42436njez2bx4cbmwgxdreh5ebe3jdfhoa.py
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# y => convolution
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 100352
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 512
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x2), tmp2, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/d5/cd5fpdjs2anlog45byuw5kz6tjzeazlgaskaocoyyn6w5kpybr4e.py
# Topologically Sorted Source Nodes: [wrapped_sqrt, att_1], Original ATen: [aten.sqrt, aten._softmax]
# Source node to ATen node mapping:
# att_1 => div_1, exp, sum_1
# wrapped_sqrt => full_default
# Graph fragment:
# %full_default : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([], 7.0), kwargs = {dtype: torch.float64, layout: torch.strided, device: cpu, pin_memory: False})
# %scalar_tensor_default : [num_users=2] = call_function[target=torch.ops.aten.scalar_tensor.default](args = (1,), kwargs = {dtype: torch.float32, device: cuda:0, pin_memory: False})
# %ge_scalar : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%full_default, 0), kwargs = {})
# %neg_default : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%scalar_tensor_default,), kwargs = {})
# %where_self : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%ge_scalar, %scalar_tensor_default, %neg_default), kwargs = {})
# %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_6, %where_self), kwargs = {})
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {})
# %mul_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where_self, %full_default), kwargs = {})
# %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, %mul_tensor_1), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_per_fused__softmax_sqrt_3 = async_compile.triton('triton_per_fused__softmax_sqrt_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[2048, 512],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_sqrt_3', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__softmax_sqrt_3(in_ptr0, out_ptr2, xnumel, rnumel):
xnumel = 2048
XBLOCK: tl.constexpr = 1
rnumel = 512
RBLOCK: tl.constexpr = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (512*x0)), None)
tmp1 = tl.full([1], 7.0, tl.float64)
tmp2 = tl.full([1], 0.0, tl.float64)
tmp3 = tmp1 >= tmp2
tmp4 = 1.0
tmp5 = -1.0
tmp6 = tl.where(tmp3, tmp4, tmp5)
tmp7 = tmp0 * tmp6
tmp8 = tl.broadcast_to(tmp7, [RBLOCK])
tmp10 = triton_helpers.promote_to_tensor(triton_helpers.max2(tmp8, 0))
tmp11 = tmp7 - tmp10
tmp12 = tmp6.to(tl.float64)
tmp13 = tmp12 * tmp1
tmp14 = tmp13.to(tl.float32)
tmp15 = tmp11 / tmp14
tmp16 = tl_math.exp(tmp15)
tmp17 = tl.broadcast_to(tmp16, [RBLOCK])
tmp19 = triton_helpers.promote_to_tensor(tl.sum(tmp17, 0))
tmp20 = tmp16 / tmp19
tl.store(out_ptr2 + (r1 + (512*x0)), tmp20, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 512, 1, 49), (25088, 49, 49, 1))
assert_size_stride(primals_2, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_3, (512, ), (1, ))
assert_size_stride(primals_4, (49, 49), (49, 1))
assert_size_stride(primals_5, (49, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 512, 1, 49), (25088, 1, 25088, 512), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
stream0 = get_raw_stream(0)
triton_poi_fused_0.run(primals_1, buf0, 2048, 49, grid=grid(2048, 49), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_1.run(primals_2, buf1, 262144, 9, grid=grid(262144, 9), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf0, buf1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 512, 1, 49), (25088, 1, 25088, 512))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.convolution]
triton_poi_fused_convolution_2.run(buf3, primals_3, 100352, grid=grid(100352), stream=stream0)
del primals_3
buf4 = empty_strided_cuda((4, 512, 512), (262144, 512, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf3, (4, 512, 49), (25088, 1, 512), 0), reinterpret_tensor(buf3, (4, 49, 512), (25088, 512, 1), 0), out=buf4)
buf7 = empty_strided_cuda((4, 1, 512, 512), (262144, 1, 512, 1), torch.float32)
# Topologically Sorted Source Nodes: [wrapped_sqrt, att_1], Original ATen: [aten.sqrt, aten._softmax]
triton_per_fused__softmax_sqrt_3.run(buf4, buf7, 2048, 512, grid=grid(2048), stream=stream0)
del buf4
buf8 = empty_strided_cuda((4, 512, 49), (25088, 49, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf7, (4, 512, 512), (262144, 512, 1), 0), reinterpret_tensor(buf3, (4, 512, 49), (25088, 1, 512), 0), out=buf8)
buf9 = empty_strided_cuda((2048, 49), (49, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(buf8, (2048, 49), (49, 1), 0), reinterpret_tensor(primals_4, (49, 49), (1, 49), 0), alpha=1, beta=1, out=buf9)
del primals_5
return (reinterpret_tensor(buf9, (4, 512, 49), (25088, 49, 1), 0), buf0, buf1, buf3, buf7, reinterpret_tensor(buf8, (2048, 49), (49, 1), 0), primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 512, 1, 49), (25088, 49, 49, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((49, 49), (49, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((49, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import numpy as np
from torch import nn
from torch.nn import init
class SimplifiedScaledDotProductAttention(nn.Module):
"""
Scaled dot-product attention
"""
def __init__(self, d_model, h, dropout=0.1):
"""
:param d_model: Output dimensionality of the model
:param d_k: Dimensionality of queries and keys
:param d_v: Dimensionality of values
:param h: Number of heads
"""
super(SimplifiedScaledDotProductAttention, self).__init__()
self.d_model = d_model
self.d_k = d_model // h
self.d_v = d_model // h
self.h = h
self.fc_o = nn.Linear(h * self.d_v, d_model)
self.dropout = nn.Dropout(dropout)
self.init_weights()
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, std=0.001)
if m.bias is not None:
init.constant_(m.bias, 0)
def forward(self, queries, keys, values, attention_mask=None,
attention_weights=None):
"""
Computes
:param queries: Queries (b_s, nq, d_model)
:param keys: Keys (b_s, nk, d_model)
:param values: Values (b_s, nk, d_model)
:param attention_mask: Mask over attention values (b_s, h, nq, nk). True indicates masking.
:param attention_weights: Multiplicative weights for attention values (b_s, h, nq, nk).
:return:
"""
b_s, nq = queries.shape[:2]
nk = keys.shape[1]
q = queries.view(b_s, nq, self.h, self.d_k).permute(0, 2, 1, 3)
k = keys.view(b_s, nk, self.h, self.d_k).permute(0, 2, 3, 1)
v = values.view(b_s, nk, self.h, self.d_v).permute(0, 2, 1, 3)
att = torch.matmul(q, k) / np.sqrt(self.d_k)
if attention_weights is not None:
att = att * attention_weights
if attention_mask is not None:
att = att.masked_fill(attention_mask, -np.inf)
att = torch.softmax(att, -1)
att = self.dropout(att)
out = torch.matmul(att, v).permute(0, 2, 1, 3).contiguous().view(b_s,
nq, self.h * self.d_v)
out = self.fc_o(out)
return out
class ChannelAttentionModule(nn.Module):
def __init__(self, d_model=512, kernel_size=3, H=7, W=7):
super().__init__()
self.cnn = nn.Conv2d(d_model, d_model, kernel_size=kernel_size,
padding=(kernel_size - 1) // 2)
self.pa = SimplifiedScaledDotProductAttention(H * W, h=1)
def forward(self, x):
bs, c, _h, _w = x.shape
y = self.cnn(x)
y = y.view(bs, c, -1)
y = self.pa(y, y, y)
return y
def get_inputs():
return [torch.rand([4, 512, 1, 49])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import numpy as np
from torch import nn
from torch.nn import init
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 49
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 512
y1 = yindex // 512
tmp0 = tl.load(in_ptr0 + (x2 + 49 * y3), xmask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 512 * x2 + 25088 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)
) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 512
y1 = yindex // 512
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 512 * x2 + 4608 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 512
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x2, tmp2, None)
@triton.jit
def triton_per_fused__softmax_sqrt_3(in_ptr0, out_ptr2, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 512 * x0), None)
tmp1 = tl.full([1], 7.0, tl.float64)
tmp2 = tl.full([1], 0.0, tl.float64)
tmp3 = tmp1 >= tmp2
tmp4 = 1.0
tmp5 = -1.0
tmp6 = tl.where(tmp3, tmp4, tmp5)
tmp7 = tmp0 * tmp6
tmp8 = tl.broadcast_to(tmp7, [RBLOCK])
tmp10 = triton_helpers.promote_to_tensor(triton_helpers.max2(tmp8, 0))
tmp11 = tmp7 - tmp10
tmp12 = tmp6.to(tl.float64)
tmp13 = tmp12 * tmp1
tmp14 = tmp13.to(tl.float32)
tmp15 = tmp11 / tmp14
tmp16 = tl_math.exp(tmp15)
tmp17 = tl.broadcast_to(tmp16, [RBLOCK])
tmp19 = triton_helpers.promote_to_tensor(tl.sum(tmp17, 0))
tmp20 = tmp16 / tmp19
tl.store(out_ptr2 + (r1 + 512 * x0), tmp20, None)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 512, 1, 49), (25088, 49, 49, 1))
assert_size_stride(primals_2, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_3, (512,), (1,))
assert_size_stride(primals_4, (49, 49), (49, 1))
assert_size_stride(primals_5, (49,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 512, 1, 49), (25088, 1, 25088, 512),
torch.float32)
get_raw_stream(0)
triton_poi_fused_0[grid(2048, 49)](primals_1, buf0, 2048, 49,
XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512),
torch.float32)
triton_poi_fused_1[grid(262144, 9)](primals_2, buf1, 262144, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_2
buf2 = extern_kernels.convolution(buf0, buf1, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 512, 1, 49), (25088, 1, 25088, 512))
buf3 = buf2
del buf2
triton_poi_fused_convolution_2[grid(100352)](buf3, primals_3,
100352, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_3
buf4 = empty_strided_cuda((4, 512, 512), (262144, 512, 1), torch.
float32)
extern_kernels.bmm(reinterpret_tensor(buf3, (4, 512, 49), (25088, 1,
512), 0), reinterpret_tensor(buf3, (4, 49, 512), (25088, 512, 1
), 0), out=buf4)
buf7 = empty_strided_cuda((4, 1, 512, 512), (262144, 1, 512, 1),
torch.float32)
triton_per_fused__softmax_sqrt_3[grid(2048)](buf4, buf7, 2048, 512,
num_warps=4, num_stages=1)
del buf4
buf8 = empty_strided_cuda((4, 512, 49), (25088, 49, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf7, (4, 512, 512), (262144,
512, 1), 0), reinterpret_tensor(buf3, (4, 512, 49), (25088, 1,
512), 0), out=buf8)
buf9 = empty_strided_cuda((2048, 49), (49, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(buf8, (2048, 49),
(49, 1), 0), reinterpret_tensor(primals_4, (49, 49), (1, 49), 0
), alpha=1, beta=1, out=buf9)
del primals_5
return reinterpret_tensor(buf9, (4, 512, 49), (25088, 49, 1), 0
), buf0, buf1, buf3, buf7, reinterpret_tensor(buf8, (2048, 49), (49,
1), 0), primals_4
class SimplifiedScaledDotProductAttention(nn.Module):
"""
Scaled dot-product attention
"""
def __init__(self, d_model, h, dropout=0.1):
"""
:param d_model: Output dimensionality of the model
:param d_k: Dimensionality of queries and keys
:param d_v: Dimensionality of values
:param h: Number of heads
"""
super(SimplifiedScaledDotProductAttention, self).__init__()
self.d_model = d_model
self.d_k = d_model // h
self.d_v = d_model // h
self.h = h
self.fc_o = nn.Linear(h * self.d_v, d_model)
self.dropout = nn.Dropout(dropout)
self.init_weights()
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, std=0.001)
if m.bias is not None:
init.constant_(m.bias, 0)
def forward(self, queries, keys, values, attention_mask=None,
attention_weights=None):
"""
Computes
:param queries: Queries (b_s, nq, d_model)
:param keys: Keys (b_s, nk, d_model)
:param values: Values (b_s, nk, d_model)
:param attention_mask: Mask over attention values (b_s, h, nq, nk). True indicates masking.
:param attention_weights: Multiplicative weights for attention values (b_s, h, nq, nk).
:return:
"""
b_s, nq = queries.shape[:2]
nk = keys.shape[1]
q = queries.view(b_s, nq, self.h, self.d_k).permute(0, 2, 1, 3)
k = keys.view(b_s, nk, self.h, self.d_k).permute(0, 2, 3, 1)
v = values.view(b_s, nk, self.h, self.d_v).permute(0, 2, 1, 3)
att = torch.matmul(q, k) / np.sqrt(self.d_k)
if attention_weights is not None:
att = att * attention_weights
if attention_mask is not None:
att = att.masked_fill(attention_mask, -np.inf)
att = torch.softmax(att, -1)
att = self.dropout(att)
out = torch.matmul(att, v).permute(0, 2, 1, 3).contiguous().view(b_s,
nq, self.h * self.d_v)
out = self.fc_o(out)
return out
class ChannelAttentionModuleNew(nn.Module):
def __init__(self, d_model=512, kernel_size=3, H=7, W=7):
super().__init__()
self.cnn = nn.Conv2d(d_model, d_model, kernel_size=kernel_size,
padding=(kernel_size - 1) // 2)
self.pa = SimplifiedScaledDotProductAttention(H * W, h=1)
def forward(self, input_0):
primals_2 = self.cnn.weight
primals_3 = self.cnn.bias
primals_4 = self.pa.fc_o.weight
primals_5 = self.pa.fc_o.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
LiChengChen666/DetectDee
|
ChannelAttentionModule
| false | 9,816 |
[
"Apache-2.0"
] | 0 |
1e6aaa0d15b1fc12d1342d8a922004e372b5f437
|
https://github.com/LiChengChen666/DetectDee/tree/1e6aaa0d15b1fc12d1342d8a922004e372b5f437
|
ECAAttention
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/l3/cl35tzbhrd24dhunkbb6gjs54aklpyr46oikqhoylcgmkcmhujil.py
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# y => mean
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [-1, -2], True), kwargs = {})
triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 16.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/it/citxitwi5k5revcoaspxziwrq6kifyromw64awswainul3shsed3.py
# Topologically Sorted Source Nodes: [y_2], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# y_2 => convolution
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_2, %primals_3, [1], [1], [1], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tl.store(in_out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/xv/cxvgsfj3x2o5ls6evsy4rhywutbtjkwezlavric3plphgvn75mea.py
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %expand), kwargs = {})
triton_poi_fused_mul_2 = async_compile.triton('triton_poi_fused_mul_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 16)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tl.store(out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, 1, 3), (3, 3, 1))
assert_size_stride(primals_3, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_mean_0.run(buf1, primals_1, 16, 16, grid=grid(16), stream=stream0)
# Topologically Sorted Source Nodes: [y_2], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(reinterpret_tensor(buf1, (4, 1, 4), (4, 0, 1), 0), primals_2, stride=(1,), padding=(1,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf2, (4, 1, 4), (4, 4, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [y_2], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf3, primals_3, 16, grid=grid(16), stream=stream0)
del primals_3
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
triton_poi_fused_mul_2.run(primals_1, buf3, buf4, 256, grid=grid(256), stream=stream0)
return (buf4, primals_1, primals_2, reinterpret_tensor(buf1, (4, 1, 4), (4, 1, 1), 0), buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, 1, 3), (3, 3, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
from torch.nn import init
class ECAAttention(nn.Module):
def __init__(self, kernel_size=3):
super().__init__()
self.gap = nn.AdaptiveAvgPool2d(1)
self.conv = nn.Conv1d(1, 1, kernel_size=kernel_size, padding=(
kernel_size - 1) // 2)
self.sigmoid = nn.Sigmoid()
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, std=0.001)
if m.bias is not None:
init.constant_(m.bias, 0)
def forward(self, x):
y = self.gap(x)
y = y.squeeze(-1).permute(0, 2, 1)
y = self.conv(y)
y = self.sigmoid(y)
y = y.permute(0, 2, 1).unsqueeze(-1)
return x * y.expand_as(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
from torch.nn import init
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK:
tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 16.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp6, xmask)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tl.store(in_out_ptr0 + x0, tmp3, xmask)
@triton.jit
def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 16
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tl.store(out_ptr0 + x2, tmp3, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, 1, 3), (3, 3, 1))
assert_size_stride(primals_3, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_mean_0[grid(16)](buf1, primals_1, 16, 16, XBLOCK=8,
num_warps=2, num_stages=1)
buf2 = extern_kernels.convolution(reinterpret_tensor(buf1, (4, 1, 4
), (4, 0, 1), 0), primals_2, stride=(1,), padding=(1,),
dilation=(1,), transposed=False, output_padding=(0,), groups=1,
bias=None)
assert_size_stride(buf2, (4, 1, 4), (4, 4, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_1[grid(16)](buf3, primals_3, 16,
XBLOCK=16, num_warps=1, num_stages=1)
del primals_3
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_mul_2[grid(256)](primals_1, buf3, buf4, 256,
XBLOCK=256, num_warps=4, num_stages=1)
return buf4, primals_1, primals_2, reinterpret_tensor(buf1, (4, 1, 4),
(4, 1, 1), 0), buf3
class ECAAttentionNew(nn.Module):
def __init__(self, kernel_size=3):
super().__init__()
self.gap = nn.AdaptiveAvgPool2d(1)
self.conv = nn.Conv1d(1, 1, kernel_size=kernel_size, padding=(
kernel_size - 1) // 2)
self.sigmoid = nn.Sigmoid()
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, std=0.001)
if m.bias is not None:
init.constant_(m.bias, 0)
def forward(self, input_0):
primals_2 = self.conv.weight
primals_3 = self.conv.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
LiChengChen666/DetectDee
|
ECAAttention
| false | 9,817 |
[
"Apache-2.0"
] | 0 |
1e6aaa0d15b1fc12d1342d8a922004e372b5f437
|
https://github.com/LiChengChen666/DetectDee/tree/1e6aaa0d15b1fc12d1342d8a922004e372b5f437
|
VectorQuantizeLayer_GB
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/35/c35q4e6jhh34rgspncd7edlc5eu4v4e2a5z5hywigcsvff5yphzq.py
# Topologically Sorted Source Nodes: [max_1], Original ATen: [aten.max]
# Source node to ATen node mapping:
# max_1 => max_1
# Graph fragment:
# %max_1 : [num_users=1] = call_function[target=torch.ops.aten.max.dim](args = (%view_1, -1), kwargs = {})
triton_poi_fused_max_0 = async_compile.triton('triton_poi_fused_max_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp32 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 > tmp1
tmp3 = tmp0 == tmp1
tmp4 = tmp0 != tmp0
tmp5 = tmp1 != tmp1
tmp6 = tmp4 > tmp5
tmp7 = tmp2 | tmp6
tmp8 = tmp4 & tmp5
tmp9 = tmp3 | tmp8
tmp10 = tl.full([1], 0, tl.int64)
tmp11 = tl.full([1], 1, tl.int64)
tmp12 = tmp10 < tmp11
tmp13 = tmp9 & tmp12
tmp14 = tmp7 | tmp13
tmp15 = tl.where(tmp14, tmp0, tmp1)
tmp16 = tl.where(tmp14, tmp10, tmp11)
tmp18 = tmp15 > tmp17
tmp19 = tmp15 == tmp17
tmp20 = tmp15 != tmp15
tmp21 = tmp17 != tmp17
tmp22 = tmp20 > tmp21
tmp23 = tmp18 | tmp22
tmp24 = tmp20 & tmp21
tmp25 = tmp19 | tmp24
tmp26 = tl.full([1], 2, tl.int64)
tmp27 = tmp16 < tmp26
tmp28 = tmp25 & tmp27
tmp29 = tmp23 | tmp28
tmp30 = tl.where(tmp29, tmp15, tmp17)
tmp31 = tl.where(tmp29, tmp16, tmp26)
tmp33 = tmp30 > tmp32
tmp34 = tmp30 == tmp32
tmp35 = tmp30 != tmp30
tmp36 = tmp32 != tmp32
tmp37 = tmp35 > tmp36
tmp38 = tmp33 | tmp37
tmp39 = tmp35 & tmp36
tmp40 = tmp34 | tmp39
tmp41 = tl.full([1], 3, tl.int64)
tmp42 = tmp31 < tmp41
tmp43 = tmp40 & tmp42
tmp44 = tmp38 | tmp43
tmp45 = tl.where(tmp44, tmp30, tmp32)
tmp46 = tl.where(tmp44, tmp31, tmp41)
tl.store(out_ptr0 + (x0), tmp46, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/hy/chytip2d5fzv4y63ad6xbcg7x5lr37tsspzw2s3i4s4ypgtll47e.py
# Topologically Sorted Source Nodes: [scatter_], Original ATen: [aten.scatter]
# Source node to ATen node mapping:
# scatter_ => scatter_upon_const_tensor
# Graph fragment:
# %scatter_upon_const_tensor : [num_users=2] = call_function[target=torch._inductor.fx_passes.post_grad.scatter_upon_const_tensor](args = (), kwargs = {shape: [16, 4], background_val: 0, dtype: torch.float32, dim: -1, selector: %view_2, val: 1.0})
triton_poi_fused_scatter_1 = async_compile.triton('triton_poi_fused_scatter_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_scatter_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_scatter_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4)
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp1 = x0
tmp2 = tmp0 == tmp1
tmp3 = 1.0
tmp4 = 0.0
tmp5 = tl.where(tmp2, tmp3, tmp4)
tl.store(out_ptr0 + (x2), tmp5, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/t3/ct36slq4pxf24ivarhs6mpwoffn4gktcgolcwiwvjkzughwactyt.py
# Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.sum]
# Source node to ATen node mapping:
# x_6 => sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%view_7, [-2]), kwargs = {})
triton_poi_fused_sum_2 = async_compile.triton('triton_poi_fused_sum_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sum_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sum_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4)
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (4 + x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (8 + x0), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (12 + x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp5 = tmp3 * tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 * tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 * tmp12
tmp14 = tmp10 + tmp13
tl.store(out_ptr0 + (x2), tmp14, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (1, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_3, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
del primals_3
buf1 = empty_strided_cuda((16, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [max_1], Original ATen: [aten.max]
stream0 = get_raw_stream(0)
triton_poi_fused_max_0.run(buf0, buf1, 16, grid=grid(16), stream=stream0)
buf2 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [scatter_], Original ATen: [aten.scatter]
triton_poi_fused_scatter_1.run(buf1, buf2, 64, grid=grid(64), stream=stream0)
del buf1
buf3 = empty_strided_cuda((16, 1, 4), (4, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.sum]
triton_poi_fused_sum_2.run(buf2, primals_4, buf3, 64, grid=grid(64), stream=stream0)
del primals_4
return (reinterpret_tensor(buf3, (4, 4, 4), (16, 4, 1), 0), buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((1, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
import torch.nn.functional as F
class VectorQuantizeLayer_GB(nn.Module):
def __init__(self, input_dim, vq_size, vq_dim, temp=(1.0, 0.1, 0.99),
groups=1, combine_groups=True, time_first=True, activation=nn.GELU(
), weight_proj_depth=1, weight_proj_factor=1):
"""Vector quantization using gumbel softmax
Args:
input_dim: input dimension (channels)
vq_size: number of quantized vectors per group
vq_dim: dimensionality of the resulting quantized vector
temp: temperature for training. this should be a tuple of 3 elements: (start, stop, decay factor)
groups: number of groups for vector quantization
combine_groups: whether to use the vectors for all groups
time_first: if true, expect input in BxTxC format, otherwise in BxCxT
activation: what activation to use (should be a module). this is only used if weight_proj_depth is > 1
weight_proj_depth: number of layers (with activation in between) to project input before computing logits
weight_proj_factor: this is used only if weight_proj_depth is > 1. scales the inner dimensionality of
projections by this factor
"""
super().__init__()
self.input_dim = input_dim
self.vq_size = vq_size
self.groups = groups
self.combine_groups = combine_groups
self.time_first = time_first
self.out_dim = vq_dim
assert vq_dim % groups == 0, f'dim {vq_dim} must be divisible by groups {groups} for concatenation'
var_dim = vq_dim // groups
num_groups = groups if not combine_groups else 1
self.vars = nn.Parameter(torch.FloatTensor(1, num_groups * vq_size,
var_dim))
nn.init.uniform_(self.vars)
if weight_proj_depth > 1:
def block(input_dim, output_dim):
return nn.Sequential(nn.Linear(input_dim, output_dim),
activation)
inner_dim = self.input_dim * weight_proj_factor
self.weight_proj = nn.Sequential(*[block(self.input_dim if i ==
0 else inner_dim, inner_dim) for i in range(
weight_proj_depth - 1)], nn.Linear(inner_dim, groups * vq_size)
)
else:
self.weight_proj = nn.Linear(self.input_dim, groups * vq_size)
nn.init.normal_(self.weight_proj.weight, mean=0, std=1)
nn.init.zeros_(self.weight_proj.bias)
assert len(temp) == 3, temp
self.max_temp, self.min_temp, self.temp_decay = temp
self.curr_temp = self.max_temp
self.codebook_indices = None
def set_num_updates(self, num_updates):
self.curr_temp = max(self.max_temp * self.temp_decay ** num_updates,
self.min_temp)
def get_codebook_indices(self):
if self.codebook_indices is None:
from itertools import product
p = [range(self.vq_size)] * self.groups
inds = list(product(*p))
self.codebook_indices = torch.tensor(inds, dtype=torch.long,
device=self.vars.device).flatten()
if not self.combine_groups:
self.codebook_indices = self.codebook_indices.view(self.
vq_size ** self.groups, -1)
for b in range(1, self.groups):
self.codebook_indices[:, b] += self.vq_size * b
self.codebook_indices = self.codebook_indices.flatten()
return self.codebook_indices
def codebook(self):
indices = self.get_codebook_indices()
return self.vars.squeeze(0).index_select(0, indices).view(self.
vq_size ** self.groups, -1)
def sample_from_codebook(self, b, n):
indices = self.get_codebook_indices()
indices = indices.view(-1, self.groups)
cb_size = indices.size(0)
assert n < cb_size, f'sample size {n} is greater than size of codebook {cb_size}'
sample_idx = torch.randint(low=0, high=cb_size, size=(b * n,))
indices = indices[sample_idx]
z = self.vars.squeeze(0).index_select(0, indices.flatten()).view(b,
n, -1)
return z
def to_codebook_index(self, indices):
res = indices.new_full(indices.shape[:-1], 0)
for i in range(self.groups):
exponent = self.groups - i - 1
res += indices[..., i] * self.vq_size ** exponent
return res
def forward(self, x, produce_targets=False):
result = {'vq_size': self.vq_size * self.groups}
if not self.time_first:
x = x.transpose(1, 2)
bsz, tsz, fsz = x.shape
x = x.reshape(-1, fsz)
x = self.weight_proj(x)
x = x.view(bsz * tsz * self.groups, -1)
_, k = x.max(-1)
hard_x = x.new_zeros(*x.shape).scatter_(-1, k.view(-1, 1), 1.0).view(
bsz * tsz, self.groups, -1)
result['temp'] = self.curr_temp
if self.training:
x = F.gumbel_softmax(x.float(), tau=self.curr_temp, hard=True
).type_as(x)
else:
x = hard_x
x = x.view(bsz * tsz, -1)
vars = self.vars
if self.combine_groups:
vars = vars.repeat(1, self.groups, 1)
if produce_targets:
result['targets'] = x.view(bsz * tsz * self.groups, -1).argmax(dim
=-1).view(bsz, tsz, self.groups).detach()
x = x.unsqueeze(-1) * vars
x = x.view(bsz * tsz, self.groups, self.vq_size, -1)
x = x.sum(-2)
x = x.view(bsz, tsz, -1)
if not self.time_first:
x = x.transpose(1, 2)
return x
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'input_dim': 4, 'vq_size': 4, 'vq_dim': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_max_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp32 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 > tmp1
tmp3 = tmp0 == tmp1
tmp4 = tmp0 != tmp0
tmp5 = tmp1 != tmp1
tmp6 = tmp4 > tmp5
tmp7 = tmp2 | tmp6
tmp8 = tmp4 & tmp5
tmp9 = tmp3 | tmp8
tmp10 = tl.full([1], 0, tl.int64)
tmp11 = tl.full([1], 1, tl.int64)
tmp12 = tmp10 < tmp11
tmp13 = tmp9 & tmp12
tmp14 = tmp7 | tmp13
tmp15 = tl.where(tmp14, tmp0, tmp1)
tmp16 = tl.where(tmp14, tmp10, tmp11)
tmp18 = tmp15 > tmp17
tmp19 = tmp15 == tmp17
tmp20 = tmp15 != tmp15
tmp21 = tmp17 != tmp17
tmp22 = tmp20 > tmp21
tmp23 = tmp18 | tmp22
tmp24 = tmp20 & tmp21
tmp25 = tmp19 | tmp24
tmp26 = tl.full([1], 2, tl.int64)
tmp27 = tmp16 < tmp26
tmp28 = tmp25 & tmp27
tmp29 = tmp23 | tmp28
tmp30 = tl.where(tmp29, tmp15, tmp17)
tmp31 = tl.where(tmp29, tmp16, tmp26)
tmp33 = tmp30 > tmp32
tmp34 = tmp30 == tmp32
tmp35 = tmp30 != tmp30
tmp36 = tmp32 != tmp32
tmp37 = tmp35 > tmp36
tmp38 = tmp33 | tmp37
tmp39 = tmp35 & tmp36
tmp40 = tmp34 | tmp39
tmp41 = tl.full([1], 3, tl.int64)
tmp42 = tmp31 < tmp41
tmp43 = tmp40 & tmp42
tmp44 = tmp38 | tmp43
tl.where(tmp44, tmp30, tmp32)
tmp46 = tl.where(tmp44, tmp31, tmp41)
tl.store(out_ptr0 + x0, tmp46, xmask)
@triton.jit
def triton_poi_fused_scatter_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp1 = x0
tmp2 = tmp0 == tmp1
tmp3 = 1.0
tmp4 = 0.0
tmp5 = tl.where(tmp2, tmp3, tmp4)
tl.store(out_ptr0 + x2, tmp5, xmask)
@triton.jit
def triton_poi_fused_sum_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (4 + x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (8 + x0), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp12 = tl.load(in_ptr1 + (12 + x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp5 = tmp3 * tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 * tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 * tmp12
tmp14 = tmp10 + tmp13
tl.store(out_ptr0 + x2, tmp14, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (1, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_3, reinterpret_tensor(primals_1, (16,
4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
del primals_3
buf1 = empty_strided_cuda((16,), (1,), torch.int64)
get_raw_stream(0)
triton_poi_fused_max_0[grid(16)](buf0, buf1, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf2 = buf0
del buf0
triton_poi_fused_scatter_1[grid(64)](buf1, buf2, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del buf1
buf3 = empty_strided_cuda((16, 1, 4), (4, 4, 1), torch.float32)
triton_poi_fused_sum_2[grid(64)](buf2, primals_4, buf3, 64, XBLOCK=
64, num_warps=1, num_stages=1)
del primals_4
return reinterpret_tensor(buf3, (4, 4, 4), (16, 4, 1), 0), buf2
class VectorQuantizeLayer_GBNew(nn.Module):
def __init__(self, input_dim, vq_size, vq_dim, temp=(1.0, 0.1, 0.99),
groups=1, combine_groups=True, time_first=True, activation=nn.GELU(
), weight_proj_depth=1, weight_proj_factor=1):
"""Vector quantization using gumbel softmax
Args:
input_dim: input dimension (channels)
vq_size: number of quantized vectors per group
vq_dim: dimensionality of the resulting quantized vector
temp: temperature for training. this should be a tuple of 3 elements: (start, stop, decay factor)
groups: number of groups for vector quantization
combine_groups: whether to use the vectors for all groups
time_first: if true, expect input in BxTxC format, otherwise in BxCxT
activation: what activation to use (should be a module). this is only used if weight_proj_depth is > 1
weight_proj_depth: number of layers (with activation in between) to project input before computing logits
weight_proj_factor: this is used only if weight_proj_depth is > 1. scales the inner dimensionality of
projections by this factor
"""
super().__init__()
self.input_dim = input_dim
self.vq_size = vq_size
self.groups = groups
self.combine_groups = combine_groups
self.time_first = time_first
self.out_dim = vq_dim
assert vq_dim % groups == 0, f'dim {vq_dim} must be divisible by groups {groups} for concatenation'
var_dim = vq_dim // groups
num_groups = groups if not combine_groups else 1
self.vars = nn.Parameter(torch.FloatTensor(1, num_groups * vq_size,
var_dim))
nn.init.uniform_(self.vars)
if weight_proj_depth > 1:
def block(input_dim, output_dim):
return nn.Sequential(nn.Linear(input_dim, output_dim),
activation)
inner_dim = self.input_dim * weight_proj_factor
self.weight_proj = nn.Sequential(*[block(self.input_dim if i ==
0 else inner_dim, inner_dim) for i in range(
weight_proj_depth - 1)], nn.Linear(inner_dim, groups * vq_size)
)
else:
self.weight_proj = nn.Linear(self.input_dim, groups * vq_size)
nn.init.normal_(self.weight_proj.weight, mean=0, std=1)
nn.init.zeros_(self.weight_proj.bias)
assert len(temp) == 3, temp
self.max_temp, self.min_temp, self.temp_decay = temp
self.curr_temp = self.max_temp
self.codebook_indices = None
def set_num_updates(self, num_updates):
self.curr_temp = max(self.max_temp * self.temp_decay ** num_updates,
self.min_temp)
def get_codebook_indices(self):
if self.codebook_indices is None:
from itertools import product
p = [range(self.vq_size)] * self.groups
inds = list(product(*p))
self.codebook_indices = torch.tensor(inds, dtype=torch.long,
device=self.vars.device).flatten()
if not self.combine_groups:
self.codebook_indices = self.codebook_indices.view(self.
vq_size ** self.groups, -1)
for b in range(1, self.groups):
self.codebook_indices[:, b] += self.vq_size * b
self.codebook_indices = self.codebook_indices.flatten()
return self.codebook_indices
def codebook(self):
indices = self.get_codebook_indices()
return self.vars.squeeze(0).index_select(0, indices).view(self.
vq_size ** self.groups, -1)
def sample_from_codebook(self, b, n):
indices = self.get_codebook_indices()
indices = indices.view(-1, self.groups)
cb_size = indices.size(0)
assert n < cb_size, f'sample size {n} is greater than size of codebook {cb_size}'
sample_idx = torch.randint(low=0, high=cb_size, size=(b * n,))
indices = indices[sample_idx]
z = self.vars.squeeze(0).index_select(0, indices.flatten()).view(b,
n, -1)
return z
def to_codebook_index(self, indices):
res = indices.new_full(indices.shape[:-1], 0)
for i in range(self.groups):
exponent = self.groups - i - 1
res += indices[..., i] * self.vq_size ** exponent
return res
def forward(self, input_0):
primals_4 = self.vars
primals_2 = self.weight_proj.weight
primals_3 = self.weight_proj.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
|
apoorv2904/Self-Supervised-Speech-Pretraining-and-Representation-Learning
|
VectorQuantizeLayer_GB
| false | 9,818 |
[
"MIT"
] | 0 |
6bdf02836ed31fdf7f185eddcd004770526c57c3
|
https://github.com/apoorv2904/Self-Supervised-Speech-Pretraining-and-Representation-Learning/tree/6bdf02836ed31fdf7f185eddcd004770526c57c3
|
ZPool
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/uc/cucdaa5tqnxykdmw5yqh7ir5ac35phopjcobljrg4rrtlnfjtuwd.py
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%unsqueeze, %unsqueeze_1], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 16) % 2
x0 = xindex % 16
x2 = (xindex // 32)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp9 = triton_helpers.maximum(tmp7, tmp8)
tmp10 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = triton_helpers.maximum(tmp9, tmp10)
tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype)
tmp13 = tl.where(tmp4, tmp11, tmp12)
tmp14 = tmp0 >= tmp3
tmp15 = tl.full([1], 2, tl.int64)
tmp16 = tmp0 < tmp15
tmp17 = tl.load(in_ptr0 + (x0 + (64*x2)), tmp14 & xmask, eviction_policy='evict_last', other=0.0)
tmp18 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), tmp14 & xmask, eviction_policy='evict_last', other=0.0)
tmp19 = tmp17 + tmp18
tmp20 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), tmp14 & xmask, eviction_policy='evict_last', other=0.0)
tmp21 = tmp19 + tmp20
tmp22 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), tmp14 & xmask, eviction_policy='evict_last', other=0.0)
tmp23 = tmp21 + tmp22
tmp24 = 4.0
tmp25 = tmp23 / tmp24
tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype)
tmp27 = tl.where(tmp14, tmp25, tmp26)
tmp28 = tl.where(tmp4, tmp13, tmp27)
tl.store(out_ptr0 + (x3), tmp28, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(arg0_1, buf0, 128, grid=grid(128), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
class ZPool(nn.Module):
def forward(self, x):
return torch.cat((torch.max(x, 1)[0].unsqueeze(1), torch.mean(x, 1)
.unsqueeze(1)), dim=1)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 16 % 2
x0 = xindex % 16
x2 = xindex // 32
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 64 * x2), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), tmp4 & xmask,
eviction_policy='evict_last', other=0.0)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), tmp4 & xmask,
eviction_policy='evict_last', other=0.0)
tmp9 = triton_helpers.maximum(tmp7, tmp8)
tmp10 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), tmp4 & xmask,
eviction_policy='evict_last', other=0.0)
tmp11 = triton_helpers.maximum(tmp9, tmp10)
tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype)
tmp13 = tl.where(tmp4, tmp11, tmp12)
tmp14 = tmp0 >= tmp3
tl.full([1], 2, tl.int64)
tmp17 = tl.load(in_ptr0 + (x0 + 64 * x2), tmp14 & xmask,
eviction_policy='evict_last', other=0.0)
tmp18 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), tmp14 & xmask,
eviction_policy='evict_last', other=0.0)
tmp19 = tmp17 + tmp18
tmp20 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), tmp14 & xmask,
eviction_policy='evict_last', other=0.0)
tmp21 = tmp19 + tmp20
tmp22 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), tmp14 & xmask,
eviction_policy='evict_last', other=0.0)
tmp23 = tmp21 + tmp22
tmp24 = 4.0
tmp25 = tmp23 / tmp24
tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype)
tmp27 = tl.where(tmp14, tmp25, tmp26)
tmp28 = tl.where(tmp4, tmp13, tmp27)
tl.store(out_ptr0 + x3, tmp28, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(128)](arg0_1, buf0, 128, XBLOCK=128,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class ZPoolNew(nn.Module):
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
LiChengChen666/DetectDee
|
ZPool
| false | 9,819 |
[
"Apache-2.0"
] | 0 |
1e6aaa0d15b1fc12d1342d8a922004e372b5f437
|
https://github.com/LiChengChen666/DetectDee/tree/1e6aaa0d15b1fc12d1342d8a922004e372b5f437
|
SimplifiedScaledDotProductAttention
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/yd/cydbtjoq352gcolmflbvu2nqkda7xg7q5hnvltb47jsg5dbmubym.py
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# matmul => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/hz/chz2sqsqk26mwhf2dxhgh44jfpu2er5yqjftwkzfav5ctqtx5e7f.py
# Topologically Sorted Source Nodes: [att_1], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# att_1 => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_5, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_5, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/3f/c3fx6bzkalkw7u7askqdnz4rzlcoyqiec4r434sjc5x3axxgkrmr.py
# Topologically Sorted Source Nodes: [att_1], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# att_1 => div_1, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 1), (16, 4, 1, 1))
assert_size_stride(primals_2, (4, 4, 4, 1), (16, 4, 1, 1))
assert_size_stride(primals_3, (4, 4, 4, 1), (16, 4, 1, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(primals_1, buf0, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((4, 4, 1, 4), (16, 4, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone]
triton_poi_fused_clone_0.run(primals_2, buf1, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf0, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf1, (16, 1, 4), (4, 0, 1), 0), out=buf2)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [att_1], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf2, buf3, 256, grid=grid(256), stream=stream0)
buf4 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [att_1], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf3, buf4, 256, grid=grid(256), stream=stream0)
del buf3
buf5 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.clone]
triton_poi_fused_clone_0.run(primals_3, buf5, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_3
buf6 = reinterpret_tensor(buf0, (16, 4, 1), (4, 1, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf4, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf5, (16, 4, 1), (4, 1, 0), 0), out=buf6)
del buf4
buf7 = buf5; del buf5 # reuse
# Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone]
triton_poi_fused_clone_0.run(buf6, buf7, 16, 4, grid=grid(16, 4), stream=stream0)
buf8 = reinterpret_tensor(buf6, (16, 4), (4, 1), 0); del buf6 # reuse
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(buf7, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf8)
del primals_4
del primals_5
return (reinterpret_tensor(buf8, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf7, (16, 4), (4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 1), (16, 4, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 1), (16, 4, 1, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 1), (16, 4, 1, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import numpy as np
from torch import nn
from torch.nn import init
class SimplifiedScaledDotProductAttention(nn.Module):
"""
Scaled dot-product attention
"""
def __init__(self, d_model, h, dropout=0.1):
"""
:param d_model: Output dimensionality of the model
:param d_k: Dimensionality of queries and keys
:param d_v: Dimensionality of values
:param h: Number of heads
"""
super(SimplifiedScaledDotProductAttention, self).__init__()
self.d_model = d_model
self.d_k = d_model // h
self.d_v = d_model // h
self.h = h
self.fc_o = nn.Linear(h * self.d_v, d_model)
self.dropout = nn.Dropout(dropout)
self.init_weights()
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, std=0.001)
if m.bias is not None:
init.constant_(m.bias, 0)
def forward(self, queries, keys, values, attention_mask=None,
attention_weights=None):
"""
Computes
:param queries: Queries (b_s, nq, d_model)
:param keys: Keys (b_s, nk, d_model)
:param values: Values (b_s, nk, d_model)
:param attention_mask: Mask over attention values (b_s, h, nq, nk). True indicates masking.
:param attention_weights: Multiplicative weights for attention values (b_s, h, nq, nk).
:return:
"""
b_s, nq = queries.shape[:2]
nk = keys.shape[1]
q = queries.view(b_s, nq, self.h, self.d_k).permute(0, 2, 1, 3)
k = keys.view(b_s, nk, self.h, self.d_k).permute(0, 2, 3, 1)
v = values.view(b_s, nk, self.h, self.d_v).permute(0, 2, 1, 3)
att = torch.matmul(q, k) / np.sqrt(self.d_k)
if attention_weights is not None:
att = att * attention_weights
if attention_mask is not None:
att = att.masked_fill(attention_mask, -np.inf)
att = torch.softmax(att, -1)
att = self.dropout(att)
out = torch.matmul(att, v).permute(0, 2, 1, 3).contiguous().view(b_s,
nq, self.h * self.d_v)
out = self.fc_o(out)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 1]), torch.rand([4, 4, 4, 1]), torch.rand(
[4, 4, 4, 1])]
def get_init_inputs():
return [[], {'d_model': 4, 'h': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch import nn
from torch.nn import init
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 1), (16, 4, 1, 1))
assert_size_stride(primals_2, (4, 4, 4, 1), (16, 4, 1, 1))
assert_size_stride(primals_3, (4, 4, 4, 1), (16, 4, 1, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(16, 4)](primals_1, buf0, 16, 4,
XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((4, 4, 1, 4), (16, 4, 4, 1), torch.float32)
triton_poi_fused_clone_0[grid(16, 4)](primals_2, buf1, 16, 4,
XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf0, (16, 4, 1), (4, 1, 0),
0), reinterpret_tensor(buf1, (16, 1, 4), (4, 0, 1), 0), out=buf2)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused__softmax_1[grid(256)](buf2, buf3, 256, XBLOCK=128,
num_warps=4, num_stages=1)
buf4 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf2
triton_poi_fused__softmax_2[grid(256)](buf3, buf4, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del buf3
buf5 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf1
triton_poi_fused_clone_0[grid(16, 4)](primals_3, buf5, 16, 4,
XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1)
del primals_3
buf6 = reinterpret_tensor(buf0, (16, 4, 1), (4, 1, 1), 0)
del buf0
extern_kernels.bmm(reinterpret_tensor(buf4, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf5, (16, 4, 1), (4, 1, 0), 0), out=buf6)
del buf4
buf7 = buf5
del buf5
triton_poi_fused_clone_0[grid(16, 4)](buf6, buf7, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
buf8 = reinterpret_tensor(buf6, (16, 4), (4, 1), 0)
del buf6
extern_kernels.addmm(primals_5, reinterpret_tensor(buf7, (16, 4), (
4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf8)
del primals_4
del primals_5
return reinterpret_tensor(buf8, (4, 4, 4), (16, 4, 1), 0
), reinterpret_tensor(buf7, (16, 4), (4, 1), 0)
class SimplifiedScaledDotProductAttentionNew(nn.Module):
"""
Scaled dot-product attention
"""
def __init__(self, d_model, h, dropout=0.1):
"""
:param d_model: Output dimensionality of the model
:param d_k: Dimensionality of queries and keys
:param d_v: Dimensionality of values
:param h: Number of heads
"""
super(SimplifiedScaledDotProductAttentionNew, self).__init__()
self.d_model = d_model
self.d_k = d_model // h
self.d_v = d_model // h
self.h = h
self.fc_o = nn.Linear(h * self.d_v, d_model)
self.dropout = nn.Dropout(dropout)
self.init_weights()
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, std=0.001)
if m.bias is not None:
init.constant_(m.bias, 0)
def forward(self, input_0, input_1, input_2):
primals_4 = self.fc_o.weight
primals_5 = self.fc_o.bias
primals_1 = input_0
primals_2 = input_1
primals_3 = input_2
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
LiChengChen666/DetectDee
|
SimplifiedScaledDotProductAttention
| false | 9,820 |
[
"Apache-2.0"
] | 0 |
1e6aaa0d15b1fc12d1342d8a922004e372b5f437
|
https://github.com/LiChengChen666/DetectDee/tree/1e6aaa0d15b1fc12d1342d8a922004e372b5f437
|
OutlookAttention
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/6x/c6xdtz2w5en5fsdbgutlchlfsh4q7a2byarfiaglzh45nn222wce.py
# Topologically Sorted Source Nodes: [unfold], Original ATen: [aten.im2col]
# Source node to ATen node mapping:
# unfold => add
# Graph fragment:
# %add : [num_users=4] = call_function[target=torch.ops.aten.add.Tensor](args = (%unsqueeze, %unsqueeze_1), kwargs = {})
triton_poi_fused_im2col_0 = async_compile.triton('triton_poi_fused_im2col_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_im2col_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_im2col_0(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 12
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
x2 = xindex
tmp0 = x0 + x1
tl.store(out_ptr0 + (x2), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/7h/c7howbh27c6wmleecf2uzap4cbx7ucljylpyhqy6ghbnqufvr5po.py
# Topologically Sorted Source Nodes: [avg_pool2d], Original ATen: [aten.avg_pool2d]
# Source node to ATen node mapping:
# avg_pool2d => avg_pool2d
# Graph fragment:
# %avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%permute_4, [1, 1], [1, 1], [0, 0], True), kwargs = {})
triton_poi_fused_avg_pool2d_1 = async_compile.triton('triton_poi_fused_avg_pool2d_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_avg_pool2d_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/qu/cquhnm52pqnjqmg225t6c6byordni5rqv6e4jn22ez5xcptmtplx.py
# Topologically Sorted Source Nodes: [attn_3], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# attn_3 => div, exp, sum_1
# Graph fragment:
# %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%permute_7, 1), kwargs = {})
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {})
# %mul_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_tensor, 0.5), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%mul_tensor_1,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_per_fused__softmax_2 = async_compile.triton('triton_per_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1024, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__softmax_2(in_ptr0, in_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 576
rnumel = 9
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = rindex < rnumel
r2 = rindex
x5 = xindex
x0 = xindex % 9
x4 = (xindex // 144)
x6 = xindex % 144
tmp0 = tl.load(in_ptr0 + (r2 + (9*x5)), rmask & xmask, other=0.0)
tmp1 = tl.load(in_ptr1 + (r2 + (9*x0)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK])
tmp7 = tl.where(rmask & xmask, tmp5, float("-inf"))
tmp8 = triton_helpers.max2(tmp7, 1)[:, None]
tmp9 = tmp4 - tmp8
tmp10 = 0.5
tmp11 = tmp9 * tmp10
tmp12 = tl_math.exp(tmp11)
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.where(rmask & xmask, tmp13, 0)
tmp16 = tl.sum(tmp15, 1)[:, None]
tmp17 = tmp12 / tmp16
tl.store(out_ptr2 + (r2 + (9*x6) + (1312*x4)), tmp17, rmask & xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/ey/ceyb3am47ifxesuvzrr26eydaluvdgp3oxv24nkd3mmm7x7jwygu.py
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# matmul => clone_2
# Graph fragment:
# %clone_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_1,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_3 = async_compile.triton('triton_poi_fused_clone_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 2304
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4) % 9
x2 = (xindex // 36) % 16
x0 = xindex % 4
x3 = (xindex // 576)
x4 = xindex
tmp0 = tl.load(in_ptr0 + ((4*(x1 // 3)) + (x2 // 4)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + ((4*(x1 % 3)) + (x2 % 4)), xmask, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 6, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tl.device_assert(((0 <= tmp4) & (tmp4 < 6)) | ~(xmask), "index out of bounds: 0 <= tmp4 < 6")
tmp7 = tmp6 + tmp1
tmp8 = tmp6 < 0
tmp9 = tl.where(tmp8, tmp7, tmp6)
tl.device_assert(((0 <= tmp9) & (tmp9 < 6)) | ~(xmask), "index out of bounds: 0 <= tmp9 < 6")
tmp11 = (-1) + tmp4
tmp12 = tl.full([1], 0, tl.int64)
tmp13 = tmp11 >= tmp12
tmp14 = tl.full([1], 4, tl.int64)
tmp15 = tmp11 < tmp14
tmp16 = (-1) + tmp9
tmp17 = tmp16 >= tmp12
tmp18 = tmp16 < tmp14
tmp19 = tmp13 & tmp15
tmp20 = tmp19 & tmp17
tmp21 = tmp20 & tmp18
tmp22 = tl.load(in_ptr1 + ((-20) + x0 + (4*tmp9) + (16*tmp4) + (64*x3)), tmp21 & xmask, other=0.0)
tl.store(out_ptr0 + (x4), tmp22, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/s2/cs2stujdhu7ikjsefsqrf3pzshjig4nfsxvbaum4e7txzyio474y.py
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm]
# Source node to ATen node mapping:
# matmul => bmm
# Graph fragment:
# %bmm : [num_users=1] = call_function[target=torch.ops.aten.bmm.default](args = (%view_7, %view_8), kwargs = {})
triton_poi_fused_bmm_4 = async_compile.triton('triton_poi_fused_bmm_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_bmm_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_bmm_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 5184
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 81
x1 = (xindex // 81)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (81*(x1 % 16)) + (1312*(x1 // 16))), xmask)
tl.store(out_ptr0 + (x2), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/tv/ctvlqogy5r6ohjndwmx3qbdwvnnrjj2qm7iknoh6f6ckrtehwqir.py
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.col2im]
# Source node to ATen node mapping:
# out_1 => full_default
# Graph fragment:
# %full_default : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 6, 6], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
triton_poi_fused_col2im_5 = async_compile.triton('triton_poi_fused_col2im_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_col2im_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_col2im_5(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 576
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = 0.0
tl.store(out_ptr0 + (x0), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/wn/cwny5emcwuqtopqfvgdcafgoxd3b3o6ewj73od3v5htm4uthw2ne.py
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.col2im]
# Source node to ATen node mapping:
# out_1 => index_put
# Graph fragment:
# %index_put : [num_users=1] = call_function[target=torch.ops.aten.index_put.default](args = (%full_default, [None, None, %unsqueeze_5, %add], %permute_9, True), kwargs = {})
triton_poi_fused_col2im_6 = async_compile.triton('triton_poi_fused_col2im_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_col2im_6', 'mutated_arg_names': ['out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_col2im_6(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 2304
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x7 = (xindex // 48) % 12
x9 = (xindex // 4) % 12
x0 = xindex % 4
x1 = (xindex // 4) % 4
x2 = (xindex // 16) % 3
x3 = (xindex // 48) % 4
x4 = (xindex // 192) % 3
x5 = (xindex // 576)
tmp0 = tl.load(in_ptr0 + (x7), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (x9), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr1 + (x0 + (4*x2) + (12*x4) + (36*x1) + (144*x3) + (576*x5) + ((x2 + (3*x4)) // 9)), xmask)
tmp1 = tl.full([XBLOCK], 6, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tl.device_assert(((0 <= tmp4) & (tmp4 < 6)) | ~(xmask), "index out of bounds: 0 <= tmp4 < 6")
tmp7 = tmp6 + tmp1
tmp8 = tmp6 < 0
tmp9 = tl.where(tmp8, tmp7, tmp6)
tl.device_assert(((0 <= tmp9) & (tmp9 < 6)) | ~(xmask), "index out of bounds: 0 <= tmp9 < 6")
tl.atomic_add(out_ptr0 + (tmp9 + (6*tmp4) + (36*x0) + (144*x5)), tmp11, xmask, sem='relaxed')
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/6j/c6j6zr7wslvz3frvfzwveytngq4nfxv75gmqi2vju57tya4iykk7.py
# Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# out_2 => clone_4
# Graph fragment:
# %clone_4 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_10,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_7 = async_compile.triton('triton_poi_fused_clone_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_7(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
y1 = (yindex // 4) % 4
y0 = yindex % 4
x3 = xindex
y2 = (yindex // 16)
y5 = yindex
tmp0 = 1 + y1
tmp1 = tl.full([1, 1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1, 1], 6, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = 1 + y0
tmp6 = tmp5 >= tmp1
tmp7 = tmp5 < tmp3
tmp8 = tmp2 & tmp4
tmp9 = tmp8 & tmp6
tmp10 = tmp9 & tmp7
tmp11 = tl.load(in_ptr0 + (7 + y0 + (6*y1) + (36*x3) + (144*y2)), tmp10 & xmask & ymask, eviction_policy='evict_last', other=0.0)
tl.store(out_ptr0 + (x3 + (4*y5)), tmp11, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/wv/cwvxucyxlsbx6r4eu4pwwxtgq2adykv2e5ulhy576dumppymjdrc.py
# Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.add]
# Source node to ATen node mapping:
# out_2 => add_4
# Graph fragment:
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_13, %primals_6), kwargs = {})
triton_poi_fused_add_8 = async_compile.triton('triton_poi_fused_add_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_8', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x2), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (81, 4), (4, 1))
assert_size_stride(primals_4, (81, ), (1, ))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
del primals_2
buf1 = empty_strided_cuda((3, 4), (4, 1), torch.int64)
# Topologically Sorted Source Nodes: [unfold], Original ATen: [aten.im2col]
stream0 = get_raw_stream(0)
triton_poi_fused_im2col_0.run(buf1, 12, grid=grid(12), stream=stream0)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32)
# Topologically Sorted Source Nodes: [avg_pool2d], Original ATen: [aten.avg_pool2d]
triton_poi_fused_avg_pool2d_1.run(primals_1, buf2, 256, grid=grid(256), stream=stream0)
buf3 = empty_strided_cuda((64, 81), (81, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 81), (1, 4), 0), out=buf3)
del primals_3
buf6 = empty_strided_cuda((4, 1, 16, 9, 9), (1312, 1312, 81, 9, 1), torch.float32)
# Topologically Sorted Source Nodes: [attn_3], Original ATen: [aten._softmax]
triton_per_fused__softmax_2.run(buf3, primals_4, buf6, 576, 9, grid=grid(576), stream=stream0)
del primals_4
buf7 = empty_strided_cuda((4, 1, 16, 9, 4), (576, 1, 36, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone]
triton_poi_fused_clone_3.run(buf1, buf0, buf7, 2304, grid=grid(2304), stream=stream0)
buf8 = reinterpret_tensor(buf3, (64, 9, 9), (81, 9, 1), 0); del buf3 # reuse
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm]
triton_poi_fused_bmm_4.run(buf6, buf8, 5184, grid=grid(5184), stream=stream0)
buf9 = empty_strided_cuda((64, 9, 4), (36, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm]
extern_kernels.bmm(buf8, reinterpret_tensor(buf7, (64, 9, 4), (36, 4, 1), 0), out=buf9)
del buf8
buf10 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.col2im]
triton_poi_fused_col2im_5.run(buf10, 576, grid=grid(576), stream=stream0)
buf11 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.col2im]
triton_poi_fused_col2im_5.run(buf11, 576, grid=grid(576), stream=stream0)
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.col2im]
triton_poi_fused_col2im_6.run(buf1, buf9, buf11, 2304, grid=grid(2304), stream=stream0)
del buf9
buf13 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.clone]
triton_poi_fused_clone_7.run(buf11, buf13, 64, 4, grid=grid(64, 4), stream=stream0)
del buf11
buf14 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf13, (64, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf14)
buf15 = reinterpret_tensor(buf14, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf14 # reuse
# Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.add]
triton_poi_fused_add_8.run(buf15, primals_6, 256, grid=grid(256), stream=stream0)
del primals_6
return (buf15, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), buf1, reinterpret_tensor(buf2, (64, 4), (4, 1), 0), buf6, buf10, reinterpret_tensor(buf13, (64, 4), (4, 1), 0), primals_5, reinterpret_tensor(buf7, (64, 4, 9), (36, 1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((81, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((81, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import math
import torch
from torch import nn
from torch.nn import functional as F
class OutlookAttention(nn.Module):
def __init__(self, dim, num_heads=1, kernel_size=3, padding=1, stride=1,
qkv_bias=False, attn_drop=0.1):
super().__init__()
self.dim = dim
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.kernel_size = kernel_size
self.padding = padding
self.stride = stride
self.scale = self.head_dim ** -0.5
self.v_pj = nn.Linear(dim, dim, bias=qkv_bias)
self.attn = nn.Linear(dim, kernel_size ** 4 * num_heads)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(attn_drop)
self.unflod = nn.Unfold(kernel_size, padding, stride)
self.pool = nn.AvgPool2d(kernel_size=stride, stride=stride,
ceil_mode=True)
def forward(self, x):
B, H, W, C = x.shape
v = self.v_pj(x).permute(0, 3, 1, 2)
h, w = math.ceil(H / self.stride), math.ceil(W / self.stride)
v = self.unflod(v).reshape(B, self.num_heads, self.head_dim, self.
kernel_size * self.kernel_size, h * w).permute(0, 1, 4, 3, 2)
attn = self.pool(x.permute(0, 3, 1, 2)).permute(0, 2, 3, 1)
attn = self.attn(attn).reshape(B, h * w, self.num_heads, self.
kernel_size * self.kernel_size, self.kernel_size * self.kernel_size
).permute(0, 2, 1, 3, 4)
attn = self.scale * attn
attn = attn.softmax(-1)
attn = self.attn_drop(attn)
out = (attn @ v).permute(0, 1, 4, 3, 2).reshape(B, C * self.
kernel_size * self.kernel_size, h * w)
out = F.fold(out, output_size=(H, W), kernel_size=self.kernel_size,
padding=self.padding, stride=self.stride)
out = self.proj(out.permute(0, 2, 3, 1))
out = self.proj_drop(out)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'dim': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_im2col_0(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 12
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = x0 + x1
tl.store(out_ptr0 + x2, tmp0, xmask)
@triton.jit
def triton_poi_fused_avg_pool2d_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_per_fused__softmax_2(in_ptr0, in_ptr1, out_ptr2, xnumel, rnumel,
XBLOCK: tl.constexpr):
xnumel = 576
rnumel = 9
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
rmask = rindex < rnumel
r2 = rindex
x5 = xindex
x0 = xindex % 9
x4 = xindex // 144
x6 = xindex % 144
tmp0 = tl.load(in_ptr0 + (r2 + 9 * x5), rmask & xmask, other=0.0)
tmp1 = tl.load(in_ptr1 + (r2 + 9 * x0), rmask & xmask, eviction_policy=
'evict_last', other=0.0)
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK])
tmp7 = tl.where(rmask & xmask, tmp5, float('-inf'))
tmp8 = triton_helpers.max2(tmp7, 1)[:, None]
tmp9 = tmp4 - tmp8
tmp10 = 0.5
tmp11 = tmp9 * tmp10
tmp12 = tl_math.exp(tmp11)
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.where(rmask & xmask, tmp13, 0)
tmp16 = tl.sum(tmp15, 1)[:, None]
tmp17 = tmp12 / tmp16
tl.store(out_ptr2 + (r2 + 9 * x6 + 1312 * x4), tmp17, rmask & xmask)
@triton.jit
def triton_poi_fused_clone_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 2304
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4 % 9
x2 = xindex // 36 % 16
x0 = xindex % 4
x3 = xindex // 576
x4 = xindex
tmp0 = tl.load(in_ptr0 + (4 * (x1 // 3) + x2 // 4), xmask,
eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (4 * (x1 % 3) + x2 % 4), xmask,
eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 6, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tl.device_assert((0 <= tmp4) & (tmp4 < 6) | ~xmask,
'index out of bounds: 0 <= tmp4 < 6')
tmp7 = tmp6 + tmp1
tmp8 = tmp6 < 0
tmp9 = tl.where(tmp8, tmp7, tmp6)
tl.device_assert((0 <= tmp9) & (tmp9 < 6) | ~xmask,
'index out of bounds: 0 <= tmp9 < 6')
tmp11 = -1 + tmp4
tmp12 = tl.full([1], 0, tl.int64)
tmp13 = tmp11 >= tmp12
tmp14 = tl.full([1], 4, tl.int64)
tmp15 = tmp11 < tmp14
tmp16 = -1 + tmp9
tmp17 = tmp16 >= tmp12
tmp18 = tmp16 < tmp14
tmp19 = tmp13 & tmp15
tmp20 = tmp19 & tmp17
tmp21 = tmp20 & tmp18
tmp22 = tl.load(in_ptr1 + (-20 + x0 + 4 * tmp9 + 16 * tmp4 + 64 * x3),
tmp21 & xmask, other=0.0)
tl.store(out_ptr0 + x4, tmp22, xmask)
@triton.jit
def triton_poi_fused_bmm_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 5184
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 81
x1 = xindex // 81
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 81 * (x1 % 16) + 1312 * (x1 // 16)), xmask)
tl.store(out_ptr0 + x2, tmp0, xmask)
@triton.jit
def triton_poi_fused_col2im_5(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 576
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = 0.0
tl.store(out_ptr0 + x0, tmp0, xmask)
@triton.jit
def triton_poi_fused_col2im_6(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 2304
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x7 = xindex // 48 % 12
x9 = xindex // 4 % 12
x0 = xindex % 4
x1 = xindex // 4 % 4
x2 = xindex // 16 % 3
x3 = xindex // 48 % 4
x4 = xindex // 192 % 3
x5 = xindex // 576
tmp0 = tl.load(in_ptr0 + x7, xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + x9, xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr1 + (x0 + 4 * x2 + 12 * x4 + 36 * x1 + 144 * x3 +
576 * x5 + (x2 + 3 * x4) // 9), xmask)
tmp1 = tl.full([XBLOCK], 6, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tl.device_assert((0 <= tmp4) & (tmp4 < 6) | ~xmask,
'index out of bounds: 0 <= tmp4 < 6')
tmp7 = tmp6 + tmp1
tmp8 = tmp6 < 0
tmp9 = tl.where(tmp8, tmp7, tmp6)
tl.device_assert((0 <= tmp9) & (tmp9 < 6) | ~xmask,
'index out of bounds: 0 <= tmp9 < 6')
tl.atomic_add(out_ptr0 + (tmp9 + 6 * tmp4 + 36 * x0 + 144 * x5), tmp11,
xmask, sem='relaxed')
@triton.jit
def triton_poi_fused_clone_7(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
y1 = yindex // 4 % 4
y0 = yindex % 4
x3 = xindex
y2 = yindex // 16
y5 = yindex
tmp0 = 1 + y1
tmp1 = tl.full([1, 1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1, 1], 6, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = 1 + y0
tmp6 = tmp5 >= tmp1
tmp7 = tmp5 < tmp3
tmp8 = tmp2 & tmp4
tmp9 = tmp8 & tmp6
tmp10 = tmp9 & tmp7
tmp11 = tl.load(in_ptr0 + (7 + y0 + 6 * y1 + 36 * x3 + 144 * y2), tmp10 &
xmask & ymask, eviction_policy='evict_last', other=0.0)
tl.store(out_ptr0 + (x3 + 4 * y5), tmp11, xmask & ymask)
@triton.jit
def triton_poi_fused_add_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x2, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (81, 4), (4, 1))
assert_size_stride(primals_4, (81,), (1,))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
del primals_2
buf1 = empty_strided_cuda((3, 4), (4, 1), torch.int64)
get_raw_stream(0)
triton_poi_fused_im2col_0[grid(12)](buf1, 12, XBLOCK=16, num_warps=
1, num_stages=1)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32)
triton_poi_fused_avg_pool2d_1[grid(256)](primals_1, buf2, 256,
XBLOCK=256, num_warps=4, num_stages=1)
buf3 = empty_strided_cuda((64, 81), (81, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_3, (4, 81), (1, 4), 0), out=buf3)
del primals_3
buf6 = empty_strided_cuda((4, 1, 16, 9, 9), (1312, 1312, 81, 9, 1),
torch.float32)
triton_per_fused__softmax_2[grid(576)](buf3, primals_4, buf6, 576,
9, XBLOCK=8, num_warps=2, num_stages=1)
del primals_4
buf7 = empty_strided_cuda((4, 1, 16, 9, 4), (576, 1, 36, 4, 1),
torch.float32)
triton_poi_fused_clone_3[grid(2304)](buf1, buf0, buf7, 2304, XBLOCK
=256, num_warps=4, num_stages=1)
buf8 = reinterpret_tensor(buf3, (64, 9, 9), (81, 9, 1), 0)
del buf3
triton_poi_fused_bmm_4[grid(5184)](buf6, buf8, 5184, XBLOCK=256,
num_warps=4, num_stages=1)
buf9 = empty_strided_cuda((64, 9, 4), (36, 4, 1), torch.float32)
extern_kernels.bmm(buf8, reinterpret_tensor(buf7, (64, 9, 4), (36,
4, 1), 0), out=buf9)
del buf8
buf10 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32
)
triton_poi_fused_col2im_5[grid(576)](buf10, 576, XBLOCK=256,
num_warps=4, num_stages=1)
buf11 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32
)
triton_poi_fused_col2im_5[grid(576)](buf11, 576, XBLOCK=256,
num_warps=4, num_stages=1)
triton_poi_fused_col2im_6[grid(2304)](buf1, buf9, buf11, 2304,
XBLOCK=128, num_warps=4, num_stages=1)
del buf9
buf13 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
triton_poi_fused_clone_7[grid(64, 4)](buf11, buf13, 64, 4, XBLOCK=4,
YBLOCK=32, num_warps=4, num_stages=1)
del buf11
buf14 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf13, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf14)
buf15 = reinterpret_tensor(buf14, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf14
triton_poi_fused_add_8[grid(256)](buf15, primals_6, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_6
return buf15, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0
), buf1, reinterpret_tensor(buf2, (64, 4), (4, 1), 0
), buf6, buf10, reinterpret_tensor(buf13, (64, 4), (4, 1), 0
), primals_5, reinterpret_tensor(buf7, (64, 4, 9), (36, 1, 4), 0)
class OutlookAttentionNew(nn.Module):
def __init__(self, dim, num_heads=1, kernel_size=3, padding=1, stride=1,
qkv_bias=False, attn_drop=0.1):
super().__init__()
self.dim = dim
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.kernel_size = kernel_size
self.padding = padding
self.stride = stride
self.scale = self.head_dim ** -0.5
self.v_pj = nn.Linear(dim, dim, bias=qkv_bias)
self.attn = nn.Linear(dim, kernel_size ** 4 * num_heads)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(attn_drop)
self.unflod = nn.Unfold(kernel_size, padding, stride)
self.pool = nn.AvgPool2d(kernel_size=stride, stride=stride,
ceil_mode=True)
def forward(self, input_0):
primals_2 = self.v_pj.weight
primals_3 = self.attn.weight
primals_4 = self.attn.bias
primals_5 = self.proj.weight
primals_6 = self.proj.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0]
|
LiChengChen666/DetectDee
|
OutlookAttention
| false | 9,823 |
[
"Apache-2.0"
] | 0 |
1e6aaa0d15b1fc12d1342d8a922004e372b5f437
|
https://github.com/LiChengChen666/DetectDee/tree/1e6aaa0d15b1fc12d1342d8a922004e372b5f437
|
ScaledDotProductAttention
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/xe/cxeuttfzx4xq2jmzwzvkech4crjirky5wjckb34lnep5o6sog3uw.py
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# matmul => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4) % 4
x2 = (xindex // 16) % 4
x3 = (xindex // 64)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (4*x2) + (16*x1) + (64*x3)), xmask)
tmp1 = tl.load(in_ptr1 + (x0 + (4*x2)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x4), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/fn/cfnr6wn6wbusamhilcgctjberp7g5kksyakcze32k6ntswznc2de.py
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# matmul => clone_1
# Graph fragment:
# %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_1,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_1(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 16
y1 = (yindex // 16)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (16*x2) + (64*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/ka/ckaneo6wn23ipwgbubou64jdtwieswlrn7w7r7kqky4aagh3v6l3.py
# Topologically Sorted Source Nodes: [wrapped_sqrt, att_1], Original ATen: [aten.sqrt, aten._softmax]
# Source node to ATen node mapping:
# att_1 => exp
# wrapped_sqrt => full_default
# Graph fragment:
# %full_default : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([], 2.0), kwargs = {dtype: torch.float64, layout: torch.strided, device: cpu, pin_memory: False})
# %scalar_tensor_default : [num_users=2] = call_function[target=torch.ops.aten.scalar_tensor.default](args = (1,), kwargs = {dtype: torch.float32, device: cuda:0, pin_memory: False})
# %ge_scalar : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%full_default, 0), kwargs = {})
# %neg_default : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%scalar_tensor_default,), kwargs = {})
# %where_self : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%ge_scalar, %scalar_tensor_default, %neg_default), kwargs = {})
# %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_11, %where_self), kwargs = {})
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {})
# %mul_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where_self, %full_default), kwargs = {})
# %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, %mul_tensor_1), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {})
triton_poi_fused__softmax_sqrt_2 = async_compile.triton('triton_poi_fused__softmax_sqrt_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_sqrt_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_sqrt_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp8 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp1 = tl.full([1], 2.0, tl.float64)
tmp2 = tl.full([1], 0.0, tl.float64)
tmp3 = tmp1 >= tmp2
tmp4 = 1.0
tmp5 = -1.0
tmp6 = tl.where(tmp3, tmp4, tmp5)
tmp7 = tmp0 * tmp6
tmp9 = tmp8 * tmp6
tmp11 = tmp10 * tmp6
tmp12 = triton_helpers.maximum(tmp9, tmp11)
tmp14 = tmp13 * tmp6
tmp15 = triton_helpers.maximum(tmp12, tmp14)
tmp17 = tmp16 * tmp6
tmp18 = triton_helpers.maximum(tmp15, tmp17)
tmp19 = tmp7 - tmp18
tmp20 = tmp6.to(tl.float64)
tmp21 = tmp20 * tmp1
tmp22 = tmp21.to(tl.float32)
tmp23 = tmp19 / tmp22
tmp24 = tl_math.exp(tmp23)
tl.store(out_ptr0 + (x2), tmp24, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/ry/cryn7ntc2gpkbfzbre3xh7lffx7zkbskw6oihbzsekkgajmdbki6.py
# Topologically Sorted Source Nodes: [att_1], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# att_1 => div_1, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/6b/c6busvilz5nn36jjet3bmw7cqddirh4sgalamjr3fsrp3sbsacfi.py
# Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# contiguous => clone_4
# Graph fragment:
# %clone_4 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_6,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4) % 4
x2 = (xindex // 16) % 4
x3 = (xindex // 64)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (4*x2) + (16*x1) + (64*x3)), xmask)
tl.store(out_ptr0 + (x4), tmp0, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (16, 4), (4, 1))
assert_size_stride(primals_4, (16, ), (1, ))
assert_size_stride(primals_5, (16, 4), (4, 1))
assert_size_stride(primals_6, (16, ), (1, ))
assert_size_stride(primals_7, (16, 4), (4, 1))
assert_size_stride(primals_8, (16, ), (1, ))
assert_size_stride(primals_9, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_10, (4, 16), (16, 1))
assert_size_stride(primals_11, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 16), (16, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 16), (1, 4), 0), out=buf0)
del primals_3
buf1 = empty_strided_cuda((16, 16), (16, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 16), (1, 4), 0), out=buf1)
del primals_5
buf2 = empty_strided_cuda((16, 16), (16, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_9, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 16), (1, 4), 0), out=buf2)
del primals_7
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(buf0, primals_4, buf3, 256, grid=grid(256), stream=stream0)
del primals_4
buf4 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone]
triton_poi_fused_clone_1.run(buf1, primals_6, buf4, 64, 4, grid=grid(64, 4), stream=stream0)
del primals_6
buf5 = reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf4, (16, 4, 4), (16, 4, 1), 0), out=buf5)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [wrapped_sqrt, att_1], Original ATen: [aten.sqrt, aten._softmax]
triton_poi_fused__softmax_sqrt_2.run(buf5, buf6, 256, grid=grid(256), stream=stream0)
buf7 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse
# Topologically Sorted Source Nodes: [att_1], Original ATen: [aten._softmax]
triton_poi_fused__softmax_3.run(buf6, buf7, 256, grid=grid(256), stream=stream0)
buf8 = buf6; del buf6 # reuse
# Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.clone]
triton_poi_fused_clone_0.run(buf2, primals_8, buf8, 256, grid=grid(256), stream=stream0)
del primals_8
buf9 = reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 4, 4), (16, 4, 1), 0), out=buf9)
buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone]
triton_poi_fused_clone_4.run(buf9, buf10, 256, grid=grid(256), stream=stream0)
del buf9
buf11 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_11, reinterpret_tensor(buf10, (16, 16), (16, 1), 0), reinterpret_tensor(primals_10, (16, 4), (1, 16), 0), alpha=1, beta=1, out=buf11)
del primals_11
return (reinterpret_tensor(buf11, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_9, (16, 4), (4, 1), 0), buf7, reinterpret_tensor(buf10, (16, 16), (16, 1), 0), primals_10, reinterpret_tensor(buf8, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf3, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf4, (16, 4, 4), (16, 1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, 16), (16, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import numpy as np
from torch import nn
from torch.nn import init
class ScaledDotProductAttention(nn.Module):
"""
Scaled dot-product attention
"""
def __init__(self, d_model, d_k, d_v, h, dropout=0.1):
"""
:param d_model: Output dimensionality of the model
:param d_k: Dimensionality of queries and keys
:param d_v: Dimensionality of values
:param h: Number of heads
"""
super(ScaledDotProductAttention, self).__init__()
self.fc_q = nn.Linear(d_model, h * d_k)
self.fc_k = nn.Linear(d_model, h * d_k)
self.fc_v = nn.Linear(d_model, h * d_v)
self.fc_o = nn.Linear(h * d_v, d_model)
self.dropout = nn.Dropout(dropout)
self.d_model = d_model
self.d_k = d_k
self.d_v = d_v
self.h = h
self.init_weights()
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, std=0.001)
if m.bias is not None:
init.constant_(m.bias, 0)
def forward(self, queries, keys, values, attention_mask=None,
attention_weights=None):
"""
Computes
:param queries: Queries (b_s, nq, d_model)
:param keys: Keys (b_s, nk, d_model)
:param values: Values (b_s, nk, d_model)
:param attention_mask: Mask over attention values (b_s, h, nq, nk). True indicates masking.
:param attention_weights: Multiplicative weights for attention values (b_s, h, nq, nk).
:return:
"""
b_s, nq = queries.shape[:2]
nk = keys.shape[1]
q = self.fc_q(queries).view(b_s, nq, self.h, self.d_k).permute(0, 2,
1, 3)
k = self.fc_k(keys).view(b_s, nk, self.h, self.d_k).permute(0, 2, 3, 1)
v = self.fc_v(values).view(b_s, nk, self.h, self.d_v).permute(0, 2,
1, 3)
att = torch.matmul(q, k) / np.sqrt(self.d_k)
if attention_weights is not None:
att = att * attention_weights
if attention_mask is not None:
att = att.masked_fill(attention_mask, -np.inf)
att = torch.softmax(att, -1)
att = self.dropout(att)
out = torch.matmul(att, v).permute(0, 2, 1, 3).contiguous().view(b_s,
nq, self.h * self.d_v)
out = self.fc_o(out)
return out
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4])
]
def get_init_inputs():
return [[], {'d_model': 4, 'd_k': 4, 'd_v': 4, 'h': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch import nn
from torch.nn import init
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4 % 4
x2 = xindex // 16 % 4
x3 = xindex // 64
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 16 * x1 + 64 * x3), xmask)
tmp1 = tl.load(in_ptr1 + (x0 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + x4, tmp2, xmask)
@triton.jit
def triton_poi_fused_clone_1(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 16
y1 = yindex // 16
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 16 * x2 + 64 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask)
@triton.jit
def triton_poi_fused__softmax_sqrt_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp8 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp13 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp16 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp1 = tl.full([1], 2.0, tl.float64)
tmp2 = tl.full([1], 0.0, tl.float64)
tmp3 = tmp1 >= tmp2
tmp4 = 1.0
tmp5 = -1.0
tmp6 = tl.where(tmp3, tmp4, tmp5)
tmp7 = tmp0 * tmp6
tmp9 = tmp8 * tmp6
tmp11 = tmp10 * tmp6
tmp12 = triton_helpers.maximum(tmp9, tmp11)
tmp14 = tmp13 * tmp6
tmp15 = triton_helpers.maximum(tmp12, tmp14)
tmp17 = tmp16 * tmp6
tmp18 = triton_helpers.maximum(tmp15, tmp17)
tmp19 = tmp7 - tmp18
tmp20 = tmp6.to(tl.float64)
tmp21 = tmp20 * tmp1
tmp22 = tmp21.to(tl.float32)
tmp23 = tmp19 / tmp22
tmp24 = tl_math.exp(tmp23)
tl.store(out_ptr0 + x2, tmp24, xmask)
@triton.jit
def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4 % 4
x2 = xindex // 16 % 4
x3 = xindex // 64
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 16 * x1 + 64 * x3), xmask)
tl.store(out_ptr0 + x4, tmp0, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (16, 4), (4, 1))
assert_size_stride(primals_4, (16,), (1,))
assert_size_stride(primals_5, (16, 4), (4, 1))
assert_size_stride(primals_6, (16,), (1,))
assert_size_stride(primals_7, (16, 4), (4, 1))
assert_size_stride(primals_8, (16,), (1,))
assert_size_stride(primals_9, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_10, (4, 16), (16, 1))
assert_size_stride(primals_11, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 16), (16, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_3, (4, 16), (1, 4), 0), out=buf0)
del primals_3
buf1 = empty_strided_cuda((16, 16), (16, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_5, (4, 16), (1, 4), 0), out=buf1)
del primals_5
buf2 = empty_strided_cuda((16, 16), (16, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_9, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_7, (4, 16), (1, 4), 0), out=buf2)
del primals_7
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(256)](buf0, primals_4, buf3, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_4
buf4 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
triton_poi_fused_clone_1[grid(64, 4)](buf1, primals_6, buf4, 64, 4,
XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1)
del primals_6
buf5 = reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0)
del buf1
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf4, (16, 4, 4), (16, 4, 1), 0), out=buf5)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused__softmax_sqrt_2[grid(256)](buf5, buf6, 256, XBLOCK
=128, num_warps=4, num_stages=1)
buf7 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf5
triton_poi_fused__softmax_3[grid(256)](buf6, buf7, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf8 = buf6
del buf6
triton_poi_fused_clone_0[grid(256)](buf2, primals_8, buf8, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_8
buf9 = reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0)
del buf2
extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf8, (16, 4, 4), (16, 4, 1), 0), out=buf9)
buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_clone_4[grid(256)](buf9, buf10, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del buf9
buf11 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_11, reinterpret_tensor(buf10, (16, 16),
(16, 1), 0), reinterpret_tensor(primals_10, (16, 4), (1, 16), 0
), alpha=1, beta=1, out=buf11)
del primals_11
return reinterpret_tensor(buf11, (4, 4, 4), (16, 4, 1), 0
), reinterpret_tensor(primals_1, (16, 4), (4, 1), 0
), reinterpret_tensor(primals_2, (16, 4), (4, 1), 0
), reinterpret_tensor(primals_9, (16, 4), (4, 1), 0
), buf7, reinterpret_tensor(buf10, (16, 16), (16, 1), 0
), primals_10, reinterpret_tensor(buf8, (16, 4, 4), (16, 1, 4), 0
), reinterpret_tensor(buf3, (16, 4, 4), (16, 1, 4), 0
), reinterpret_tensor(buf4, (16, 4, 4), (16, 1, 4), 0)
class ScaledDotProductAttentionNew(nn.Module):
"""
Scaled dot-product attention
"""
def __init__(self, d_model, d_k, d_v, h, dropout=0.1):
"""
:param d_model: Output dimensionality of the model
:param d_k: Dimensionality of queries and keys
:param d_v: Dimensionality of values
:param h: Number of heads
"""
super(ScaledDotProductAttentionNew, self).__init__()
self.fc_q = nn.Linear(d_model, h * d_k)
self.fc_k = nn.Linear(d_model, h * d_k)
self.fc_v = nn.Linear(d_model, h * d_v)
self.fc_o = nn.Linear(h * d_v, d_model)
self.dropout = nn.Dropout(dropout)
self.d_model = d_model
self.d_k = d_k
self.d_v = d_v
self.h = h
self.init_weights()
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, std=0.001)
if m.bias is not None:
init.constant_(m.bias, 0)
def forward(self, input_0, input_1, input_2):
primals_3 = self.fc_q.weight
primals_4 = self.fc_q.bias
primals_5 = self.fc_k.weight
primals_6 = self.fc_k.bias
primals_7 = self.fc_v.weight
primals_8 = self.fc_v.bias
primals_10 = self.fc_o.weight
primals_11 = self.fc_o.bias
primals_1 = input_0
primals_2 = input_1
primals_9 = input_2
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11])
return output[0]
|
LiChengChen666/DetectDee
|
ScaledDotProductAttention
| false | 9,824 |
[
"Apache-2.0"
] | 0 |
1e6aaa0d15b1fc12d1342d8a922004e372b5f437
|
https://github.com/LiChengChen666/DetectDee/tree/1e6aaa0d15b1fc12d1342d8a922004e372b5f437
|
CustomizedNet
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/zb/czbrdc6746xv7kfxrqkzgbhm74ijdfuyfd3sz3llzzwzm6wzxmfi.py
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x_3 => relu
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_3), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 16), (16, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 16), (16, 1), 0), reinterpret_tensor(primals_2, (16, 4), (1, 16), 0), out=buf0)
del primals_2
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_0.run(buf1, primals_3, 64, grid=grid(64), stream=stream0)
del primals_3
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, buf1, reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del primals_5
return (reinterpret_tensor(buf2, (16, 1, 4), (4, 4, 1), 0), reinterpret_tensor(primals_1, (16, 16), (16, 1), 0), buf1, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 16), (16, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.utils.data.distributed
class CustomizedNet(nn.Module):
def __init__(self, dropout, input_size, input_feature_num, hidden_dim,
output_size):
"""
Simply use linear layers for multi-variate single-step forecasting.
"""
super().__init__()
self.fc1 = nn.Linear(input_size * input_feature_num, hidden_dim)
self.dropout = nn.Dropout(dropout)
self.relu1 = nn.ReLU()
self.fc2 = nn.Linear(hidden_dim, output_size)
def forward(self, x):
x = x.view(-1, x.shape[1] * x.shape[2])
x = self.fc1(x)
x = self.dropout(x)
x = self.relu1(x)
x = self.fc2(x)
x = torch.unsqueeze(x, 1)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'dropout': 0.5, 'input_size': 4, 'input_feature_num': 4,
'hidden_dim': 4, 'output_size': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.utils.data.distributed
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 16), (16, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 16), (16, 1),
0), reinterpret_tensor(primals_2, (16, 4), (1, 16), 0), out=buf0)
del primals_2
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_relu_0[grid(64)](buf1, primals_3, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_3
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, buf1, reinterpret_tensor(primals_4,
(4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del primals_5
return reinterpret_tensor(buf2, (16, 1, 4), (4, 4, 1), 0
), reinterpret_tensor(primals_1, (16, 16), (16, 1), 0), buf1, primals_4
class CustomizedNetNew(nn.Module):
def __init__(self, dropout, input_size, input_feature_num, hidden_dim,
output_size):
"""
Simply use linear layers for multi-variate single-step forecasting.
"""
super().__init__()
self.fc1 = nn.Linear(input_size * input_feature_num, hidden_dim)
self.dropout = nn.Dropout(dropout)
self.relu1 = nn.ReLU()
self.fc2 = nn.Linear(hidden_dim, output_size)
def forward(self, input_0):
primals_2 = self.fc1.weight
primals_3 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
bendavidsteel/BigDL
|
CustomizedNet
| false | 9,825 |
[
"Apache-2.0"
] | 0 |
b49d978c5ec8ebaf3d4c1343f25edeb5a21e31f3
|
https://github.com/bendavidsteel/BigDL/tree/b49d978c5ec8ebaf3d4c1343f25edeb5a21e31f3
|
Reorg
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/l5/cl5b6spvyoawk3rk5eatjxs6crkxt5h56dutf76hem45gsxd2mev.py
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%slice_2, %slice_4, %slice_6, %slice_8], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = (xindex // 4) % 16
x0 = xindex % 2
x1 = (xindex // 2) % 2
x3 = (xindex // 64)
x4 = xindex
tmp0 = x2
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((2*x0) + (8*x1) + (16*x2) + (64*x3)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr0 + (4 + (2*x0) + (8*x1) + (16*((-4) + x2)) + (64*x3)), tmp9 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr0 + (1 + (2*x0) + (8*x1) + (16*((-8) + x2)) + (64*x3)), tmp14 & xmask, eviction_policy='evict_last', other=0.0)
tmp16 = tmp0 >= tmp12
tmp17 = tl.full([1], 16, tl.int64)
tmp18 = tmp0 < tmp17
tmp19 = tl.load(in_ptr0 + (5 + (2*x0) + (8*x1) + (16*((-12) + x2)) + (64*x3)), tmp16 & xmask, eviction_policy='evict_last', other=0.0)
tmp20 = tl.where(tmp14, tmp15, tmp19)
tmp21 = tl.where(tmp9, tmp10, tmp20)
tmp22 = tl.where(tmp4, tmp5, tmp21)
tl.store(out_ptr0 + (x4), tmp22, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 16, 2, 2), (64, 4, 2, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
import torch.utils.data
class Reorg(nn.Module):
def forward(self, x):
return torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2,
1::2], x[..., 1::2, 1::2]], 1)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex // 4 % 16
x0 = xindex % 2
x1 = xindex // 2 % 2
x3 = xindex // 64
x4 = xindex
tmp0 = x2
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (2 * x0 + 8 * x1 + 16 * x2 + 64 * x3), tmp4 &
xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr0 + (4 + 2 * x0 + 8 * x1 + 16 * (-4 + x2) + 64 *
x3), tmp9 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr0 + (1 + 2 * x0 + 8 * x1 + 16 * (-8 + x2) + 64 *
x3), tmp14 & xmask, eviction_policy='evict_last', other=0.0)
tmp16 = tmp0 >= tmp12
tl.full([1], 16, tl.int64)
tmp19 = tl.load(in_ptr0 + (5 + 2 * x0 + 8 * x1 + 16 * (-12 + x2) + 64 *
x3), tmp16 & xmask, eviction_policy='evict_last', other=0.0)
tmp20 = tl.where(tmp14, tmp15, tmp19)
tmp21 = tl.where(tmp9, tmp10, tmp20)
tmp22 = tl.where(tmp4, tmp5, tmp21)
tl.store(out_ptr0 + x4, tmp22, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 16, 2, 2), (64, 4, 2, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class ReorgNew(nn.Module):
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
bruceli-rw0/rob535-perception
|
Reorg
| false | 9,826 |
[
"MIT"
] | 0 |
b800b48aea888b0959b19fe13c637e1f257417e6
|
https://github.com/bruceli-rw0/rob535-perception/tree/b800b48aea888b0959b19fe13c637e1f257417e6
|
NetVLAD
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/tb/ctbeeotfqzbneeewwh2aiay5657nsb5gfe5znphkkjrpdvh7ojsn.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.linalg_vector_norm]
# Source node to ATen node mapping:
# x => pow_1, sum_1
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_1, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1], True), kwargs = {})
triton_red_fused_linalg_vector_norm_0 = async_compile.triton('triton_red_fused_linalg_vector_norm_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[16384, 128],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_linalg_vector_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused_linalg_vector_norm_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 16384
rnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex % 4096
x1 = (xindex // 4096)
_tmp3 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
x3 = xindex
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex
tmp0 = tl.load(in_ptr0 + (x0 + (4096*r2) + (524288*x1)), rmask, eviction_policy='evict_last', other=0.0)
tmp1 = tmp0 * tmp0
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = _tmp3 + tmp2
_tmp3 = tl.where(rmask, tmp4, _tmp3)
tmp3 = tl.sum(_tmp3, 1)[:, None]
tl.store(out_ptr0 + (x3), tmp3, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/ef/cefdzljppvz2lfunb6uf63d2oi3ptkpnhsxqbeffjopee5fas75z.py
# Topologically Sorted Source Nodes: [x, residual_2, residual_4, residual_6, residual_8, residual_10, residual_12, residual_14, residual_16, residual_18, residual_20, residual_22, residual_24, residual_26, residual_28, residual_30, residual_32, residual_34, residual_36, residual_38, residual_40, residual_42, residual_44, residual_46, residual_48, residual_50, residual_52, residual_54, residual_56, residual_58, residual_60, residual_62, residual_64, residual_66, residual_68, residual_70, residual_72, residual_74, residual_76, residual_78, residual_80, residual_82, residual_84, residual_86, residual_88, residual_90, residual_92, residual_94, residual_96, residual_98, residual_100, residual_102, residual_104, residual_106, residual_108, residual_110, residual_112, residual_114, residual_116, residual_118, residual_120, residual_122, residual_124, residual_126], Original ATen: [aten.div, aten.sub]
# Source node to ATen node mapping:
# residual_10 => sub_6
# residual_100 => sub_51
# residual_102 => sub_52
# residual_104 => sub_53
# residual_106 => sub_54
# residual_108 => sub_55
# residual_110 => sub_56
# residual_112 => sub_57
# residual_114 => sub_58
# residual_116 => sub_59
# residual_118 => sub_60
# residual_12 => sub_7
# residual_120 => sub_61
# residual_122 => sub_62
# residual_124 => sub_63
# residual_126 => sub_64
# residual_14 => sub_8
# residual_16 => sub_9
# residual_18 => sub_10
# residual_2 => sub_2
# residual_20 => sub_11
# residual_22 => sub_12
# residual_24 => sub_13
# residual_26 => sub_14
# residual_28 => sub_15
# residual_30 => sub_16
# residual_32 => sub_17
# residual_34 => sub_18
# residual_36 => sub_19
# residual_38 => sub_20
# residual_4 => sub_3
# residual_40 => sub_21
# residual_42 => sub_22
# residual_44 => sub_23
# residual_46 => sub_24
# residual_48 => sub_25
# residual_50 => sub_26
# residual_52 => sub_27
# residual_54 => sub_28
# residual_56 => sub_29
# residual_58 => sub_30
# residual_6 => sub_4
# residual_60 => sub_31
# residual_62 => sub_32
# residual_64 => sub_33
# residual_66 => sub_34
# residual_68 => sub_35
# residual_70 => sub_36
# residual_72 => sub_37
# residual_74 => sub_38
# residual_76 => sub_39
# residual_78 => sub_40
# residual_8 => sub_5
# residual_80 => sub_41
# residual_82 => sub_42
# residual_84 => sub_43
# residual_86 => sub_44
# residual_88 => sub_45
# residual_90 => sub_46
# residual_92 => sub_47
# residual_94 => sub_48
# residual_96 => sub_49
# residual_98 => sub_50
# x => div
# Graph fragment:
# %div : [num_users=3] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_1, %expand), kwargs = {})
# %sub_2 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_4), kwargs = {})
# %sub_3 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_7), kwargs = {})
# %sub_4 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_10), kwargs = {})
# %sub_5 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_13), kwargs = {})
# %sub_6 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_16), kwargs = {})
# %sub_7 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_19), kwargs = {})
# %sub_8 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_22), kwargs = {})
# %sub_9 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_25), kwargs = {})
# %sub_10 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_28), kwargs = {})
# %sub_11 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_31), kwargs = {})
# %sub_12 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_34), kwargs = {})
# %sub_13 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_37), kwargs = {})
# %sub_14 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_40), kwargs = {})
# %sub_15 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_43), kwargs = {})
# %sub_16 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_46), kwargs = {})
# %sub_17 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_49), kwargs = {})
# %sub_18 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_52), kwargs = {})
# %sub_19 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_55), kwargs = {})
# %sub_20 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_58), kwargs = {})
# %sub_21 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_61), kwargs = {})
# %sub_22 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_64), kwargs = {})
# %sub_23 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_67), kwargs = {})
# %sub_24 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_70), kwargs = {})
# %sub_25 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_73), kwargs = {})
# %sub_26 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_76), kwargs = {})
# %sub_27 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_79), kwargs = {})
# %sub_28 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_82), kwargs = {})
# %sub_29 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_85), kwargs = {})
# %sub_30 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_88), kwargs = {})
# %sub_31 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_91), kwargs = {})
# %sub_32 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_94), kwargs = {})
# %sub_33 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_97), kwargs = {})
# %sub_34 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_100), kwargs = {})
# %sub_35 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_103), kwargs = {})
# %sub_36 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_106), kwargs = {})
# %sub_37 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_109), kwargs = {})
# %sub_38 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_112), kwargs = {})
# %sub_39 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_115), kwargs = {})
# %sub_40 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_118), kwargs = {})
# %sub_41 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_121), kwargs = {})
# %sub_42 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_124), kwargs = {})
# %sub_43 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_127), kwargs = {})
# %sub_44 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_130), kwargs = {})
# %sub_45 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_133), kwargs = {})
# %sub_46 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_136), kwargs = {})
# %sub_47 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_139), kwargs = {})
# %sub_48 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_142), kwargs = {})
# %sub_49 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_145), kwargs = {})
# %sub_50 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_148), kwargs = {})
# %sub_51 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_151), kwargs = {})
# %sub_52 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_154), kwargs = {})
# %sub_53 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_157), kwargs = {})
# %sub_54 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_160), kwargs = {})
# %sub_55 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_163), kwargs = {})
# %sub_56 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_166), kwargs = {})
# %sub_57 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_169), kwargs = {})
# %sub_58 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_172), kwargs = {})
# %sub_59 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_175), kwargs = {})
# %sub_60 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_178), kwargs = {})
# %sub_61 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_181), kwargs = {})
# %sub_62 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_184), kwargs = {})
# %sub_63 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_187), kwargs = {})
# %sub_64 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_190), kwargs = {})
triton_poi_fused_div_sub_1 = async_compile.triton('triton_poi_fused_div_sub_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2097152],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: '*fp32', 11: '*fp32', 12: '*fp32', 13: '*fp32', 14: '*fp32', 15: '*fp32', 16: '*fp32', 17: '*fp32', 18: '*fp32', 19: '*fp32', 20: '*fp32', 21: '*fp32', 22: '*fp32', 23: '*fp32', 24: '*fp32', 25: '*fp32', 26: '*fp32', 27: '*fp32', 28: '*fp32', 29: '*fp32', 30: '*fp32', 31: '*fp32', 32: '*fp32', 33: '*fp32', 34: '*fp32', 35: '*fp32', 36: '*fp32', 37: '*fp32', 38: '*fp32', 39: '*fp32', 40: '*fp32', 41: '*fp32', 42: '*fp32', 43: '*fp32', 44: '*fp32', 45: '*fp32', 46: '*fp32', 47: '*fp32', 48: '*fp32', 49: '*fp32', 50: '*fp32', 51: '*fp32', 52: '*fp32', 53: '*fp32', 54: '*fp32', 55: '*fp32', 56: '*fp32', 57: '*fp32', 58: '*fp32', 59: '*fp32', 60: '*fp32', 61: '*fp32', 62: '*fp32', 63: '*fp32', 64: '*fp32', 65: '*fp32', 66: '*fp32', 67: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_sub_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 65, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_sub_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5, out_ptr6, out_ptr7, out_ptr8, out_ptr9, out_ptr10, out_ptr11, out_ptr12, out_ptr13, out_ptr14, out_ptr15, out_ptr16, out_ptr17, out_ptr18, out_ptr19, out_ptr20, out_ptr21, out_ptr22, out_ptr23, out_ptr24, out_ptr25, out_ptr26, out_ptr27, out_ptr28, out_ptr29, out_ptr30, out_ptr31, out_ptr32, out_ptr33, out_ptr34, out_ptr35, out_ptr36, out_ptr37, out_ptr38, out_ptr39, out_ptr40, out_ptr41, out_ptr42, out_ptr43, out_ptr44, out_ptr45, out_ptr46, out_ptr47, out_ptr48, out_ptr49, out_ptr50, out_ptr51, out_ptr52, out_ptr53, out_ptr54, out_ptr55, out_ptr56, out_ptr57, out_ptr58, out_ptr59, out_ptr60, out_ptr61, out_ptr62, out_ptr63, xnumel, XBLOCK : tl.constexpr):
xnumel = 2097152
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 4096
x2 = (xindex // 524288)
x1 = (xindex // 4096) % 128
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x0 + (4096*x2)), None, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr2 + (128 + x1), None, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr2 + (256 + x1), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr2 + (384 + x1), None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr2 + (512 + x1), None, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr2 + (640 + x1), None, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr2 + (768 + x1), None, eviction_policy='evict_last')
tmp18 = tl.load(in_ptr2 + (896 + x1), None, eviction_policy='evict_last')
tmp20 = tl.load(in_ptr2 + (1024 + x1), None, eviction_policy='evict_last')
tmp22 = tl.load(in_ptr2 + (1152 + x1), None, eviction_policy='evict_last')
tmp24 = tl.load(in_ptr2 + (1280 + x1), None, eviction_policy='evict_last')
tmp26 = tl.load(in_ptr2 + (1408 + x1), None, eviction_policy='evict_last')
tmp28 = tl.load(in_ptr2 + (1536 + x1), None, eviction_policy='evict_last')
tmp30 = tl.load(in_ptr2 + (1664 + x1), None, eviction_policy='evict_last')
tmp32 = tl.load(in_ptr2 + (1792 + x1), None, eviction_policy='evict_last')
tmp34 = tl.load(in_ptr2 + (1920 + x1), None, eviction_policy='evict_last')
tmp36 = tl.load(in_ptr2 + (2048 + x1), None, eviction_policy='evict_last')
tmp38 = tl.load(in_ptr2 + (2176 + x1), None, eviction_policy='evict_last')
tmp40 = tl.load(in_ptr2 + (2304 + x1), None, eviction_policy='evict_last')
tmp42 = tl.load(in_ptr2 + (2432 + x1), None, eviction_policy='evict_last')
tmp44 = tl.load(in_ptr2 + (2560 + x1), None, eviction_policy='evict_last')
tmp46 = tl.load(in_ptr2 + (2688 + x1), None, eviction_policy='evict_last')
tmp48 = tl.load(in_ptr2 + (2816 + x1), None, eviction_policy='evict_last')
tmp50 = tl.load(in_ptr2 + (2944 + x1), None, eviction_policy='evict_last')
tmp52 = tl.load(in_ptr2 + (3072 + x1), None, eviction_policy='evict_last')
tmp54 = tl.load(in_ptr2 + (3200 + x1), None, eviction_policy='evict_last')
tmp56 = tl.load(in_ptr2 + (3328 + x1), None, eviction_policy='evict_last')
tmp58 = tl.load(in_ptr2 + (3456 + x1), None, eviction_policy='evict_last')
tmp60 = tl.load(in_ptr2 + (3584 + x1), None, eviction_policy='evict_last')
tmp62 = tl.load(in_ptr2 + (3712 + x1), None, eviction_policy='evict_last')
tmp64 = tl.load(in_ptr2 + (3840 + x1), None, eviction_policy='evict_last')
tmp66 = tl.load(in_ptr2 + (3968 + x1), None, eviction_policy='evict_last')
tmp68 = tl.load(in_ptr2 + (4096 + x1), None, eviction_policy='evict_last')
tmp70 = tl.load(in_ptr2 + (4224 + x1), None, eviction_policy='evict_last')
tmp72 = tl.load(in_ptr2 + (4352 + x1), None, eviction_policy='evict_last')
tmp74 = tl.load(in_ptr2 + (4480 + x1), None, eviction_policy='evict_last')
tmp76 = tl.load(in_ptr2 + (4608 + x1), None, eviction_policy='evict_last')
tmp78 = tl.load(in_ptr2 + (4736 + x1), None, eviction_policy='evict_last')
tmp80 = tl.load(in_ptr2 + (4864 + x1), None, eviction_policy='evict_last')
tmp82 = tl.load(in_ptr2 + (4992 + x1), None, eviction_policy='evict_last')
tmp84 = tl.load(in_ptr2 + (5120 + x1), None, eviction_policy='evict_last')
tmp86 = tl.load(in_ptr2 + (5248 + x1), None, eviction_policy='evict_last')
tmp88 = tl.load(in_ptr2 + (5376 + x1), None, eviction_policy='evict_last')
tmp90 = tl.load(in_ptr2 + (5504 + x1), None, eviction_policy='evict_last')
tmp92 = tl.load(in_ptr2 + (5632 + x1), None, eviction_policy='evict_last')
tmp94 = tl.load(in_ptr2 + (5760 + x1), None, eviction_policy='evict_last')
tmp96 = tl.load(in_ptr2 + (5888 + x1), None, eviction_policy='evict_last')
tmp98 = tl.load(in_ptr2 + (6016 + x1), None, eviction_policy='evict_last')
tmp100 = tl.load(in_ptr2 + (6144 + x1), None, eviction_policy='evict_last')
tmp102 = tl.load(in_ptr2 + (6272 + x1), None, eviction_policy='evict_last')
tmp104 = tl.load(in_ptr2 + (6400 + x1), None, eviction_policy='evict_last')
tmp106 = tl.load(in_ptr2 + (6528 + x1), None, eviction_policy='evict_last')
tmp108 = tl.load(in_ptr2 + (6656 + x1), None, eviction_policy='evict_last')
tmp110 = tl.load(in_ptr2 + (6784 + x1), None, eviction_policy='evict_last')
tmp112 = tl.load(in_ptr2 + (6912 + x1), None, eviction_policy='evict_last')
tmp114 = tl.load(in_ptr2 + (7040 + x1), None, eviction_policy='evict_last')
tmp116 = tl.load(in_ptr2 + (7168 + x1), None, eviction_policy='evict_last')
tmp118 = tl.load(in_ptr2 + (7296 + x1), None, eviction_policy='evict_last')
tmp120 = tl.load(in_ptr2 + (7424 + x1), None, eviction_policy='evict_last')
tmp122 = tl.load(in_ptr2 + (7552 + x1), None, eviction_policy='evict_last')
tmp124 = tl.load(in_ptr2 + (7680 + x1), None, eviction_policy='evict_last')
tmp126 = tl.load(in_ptr2 + (7808 + x1), None, eviction_policy='evict_last')
tmp128 = tl.load(in_ptr2 + (7936 + x1), None, eviction_policy='evict_last')
tmp130 = tl.load(in_ptr2 + (8064 + x1), None, eviction_policy='evict_last')
tmp2 = libdevice.sqrt(tmp1)
tmp3 = 1e-12
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp5 = tmp0 / tmp4
tmp7 = tmp5 - tmp6
tmp9 = tmp5 - tmp8
tmp11 = tmp5 - tmp10
tmp13 = tmp5 - tmp12
tmp15 = tmp5 - tmp14
tmp17 = tmp5 - tmp16
tmp19 = tmp5 - tmp18
tmp21 = tmp5 - tmp20
tmp23 = tmp5 - tmp22
tmp25 = tmp5 - tmp24
tmp27 = tmp5 - tmp26
tmp29 = tmp5 - tmp28
tmp31 = tmp5 - tmp30
tmp33 = tmp5 - tmp32
tmp35 = tmp5 - tmp34
tmp37 = tmp5 - tmp36
tmp39 = tmp5 - tmp38
tmp41 = tmp5 - tmp40
tmp43 = tmp5 - tmp42
tmp45 = tmp5 - tmp44
tmp47 = tmp5 - tmp46
tmp49 = tmp5 - tmp48
tmp51 = tmp5 - tmp50
tmp53 = tmp5 - tmp52
tmp55 = tmp5 - tmp54
tmp57 = tmp5 - tmp56
tmp59 = tmp5 - tmp58
tmp61 = tmp5 - tmp60
tmp63 = tmp5 - tmp62
tmp65 = tmp5 - tmp64
tmp67 = tmp5 - tmp66
tmp69 = tmp5 - tmp68
tmp71 = tmp5 - tmp70
tmp73 = tmp5 - tmp72
tmp75 = tmp5 - tmp74
tmp77 = tmp5 - tmp76
tmp79 = tmp5 - tmp78
tmp81 = tmp5 - tmp80
tmp83 = tmp5 - tmp82
tmp85 = tmp5 - tmp84
tmp87 = tmp5 - tmp86
tmp89 = tmp5 - tmp88
tmp91 = tmp5 - tmp90
tmp93 = tmp5 - tmp92
tmp95 = tmp5 - tmp94
tmp97 = tmp5 - tmp96
tmp99 = tmp5 - tmp98
tmp101 = tmp5 - tmp100
tmp103 = tmp5 - tmp102
tmp105 = tmp5 - tmp104
tmp107 = tmp5 - tmp106
tmp109 = tmp5 - tmp108
tmp111 = tmp5 - tmp110
tmp113 = tmp5 - tmp112
tmp115 = tmp5 - tmp114
tmp117 = tmp5 - tmp116
tmp119 = tmp5 - tmp118
tmp121 = tmp5 - tmp120
tmp123 = tmp5 - tmp122
tmp125 = tmp5 - tmp124
tmp127 = tmp5 - tmp126
tmp129 = tmp5 - tmp128
tmp131 = tmp5 - tmp130
tl.store(out_ptr0 + (x3), tmp5, None)
tl.store(out_ptr1 + (x3), tmp7, None)
tl.store(out_ptr2 + (x3), tmp9, None)
tl.store(out_ptr3 + (x3), tmp11, None)
tl.store(out_ptr4 + (x3), tmp13, None)
tl.store(out_ptr5 + (x3), tmp15, None)
tl.store(out_ptr6 + (x3), tmp17, None)
tl.store(out_ptr7 + (x3), tmp19, None)
tl.store(out_ptr8 + (x3), tmp21, None)
tl.store(out_ptr9 + (x3), tmp23, None)
tl.store(out_ptr10 + (x3), tmp25, None)
tl.store(out_ptr11 + (x3), tmp27, None)
tl.store(out_ptr12 + (x3), tmp29, None)
tl.store(out_ptr13 + (x3), tmp31, None)
tl.store(out_ptr14 + (x3), tmp33, None)
tl.store(out_ptr15 + (x3), tmp35, None)
tl.store(out_ptr16 + (x3), tmp37, None)
tl.store(out_ptr17 + (x3), tmp39, None)
tl.store(out_ptr18 + (x3), tmp41, None)
tl.store(out_ptr19 + (x3), tmp43, None)
tl.store(out_ptr20 + (x3), tmp45, None)
tl.store(out_ptr21 + (x3), tmp47, None)
tl.store(out_ptr22 + (x3), tmp49, None)
tl.store(out_ptr23 + (x3), tmp51, None)
tl.store(out_ptr24 + (x3), tmp53, None)
tl.store(out_ptr25 + (x3), tmp55, None)
tl.store(out_ptr26 + (x3), tmp57, None)
tl.store(out_ptr27 + (x3), tmp59, None)
tl.store(out_ptr28 + (x3), tmp61, None)
tl.store(out_ptr29 + (x3), tmp63, None)
tl.store(out_ptr30 + (x3), tmp65, None)
tl.store(out_ptr31 + (x3), tmp67, None)
tl.store(out_ptr32 + (x3), tmp69, None)
tl.store(out_ptr33 + (x3), tmp71, None)
tl.store(out_ptr34 + (x3), tmp73, None)
tl.store(out_ptr35 + (x3), tmp75, None)
tl.store(out_ptr36 + (x3), tmp77, None)
tl.store(out_ptr37 + (x3), tmp79, None)
tl.store(out_ptr38 + (x3), tmp81, None)
tl.store(out_ptr39 + (x3), tmp83, None)
tl.store(out_ptr40 + (x3), tmp85, None)
tl.store(out_ptr41 + (x3), tmp87, None)
tl.store(out_ptr42 + (x3), tmp89, None)
tl.store(out_ptr43 + (x3), tmp91, None)
tl.store(out_ptr44 + (x3), tmp93, None)
tl.store(out_ptr45 + (x3), tmp95, None)
tl.store(out_ptr46 + (x3), tmp97, None)
tl.store(out_ptr47 + (x3), tmp99, None)
tl.store(out_ptr48 + (x3), tmp101, None)
tl.store(out_ptr49 + (x3), tmp103, None)
tl.store(out_ptr50 + (x3), tmp105, None)
tl.store(out_ptr51 + (x3), tmp107, None)
tl.store(out_ptr52 + (x3), tmp109, None)
tl.store(out_ptr53 + (x3), tmp111, None)
tl.store(out_ptr54 + (x3), tmp113, None)
tl.store(out_ptr55 + (x3), tmp115, None)
tl.store(out_ptr56 + (x3), tmp117, None)
tl.store(out_ptr57 + (x3), tmp119, None)
tl.store(out_ptr58 + (x3), tmp121, None)
tl.store(out_ptr59 + (x3), tmp123, None)
tl.store(out_ptr60 + (x3), tmp125, None)
tl.store(out_ptr61 + (x3), tmp127, None)
tl.store(out_ptr62 + (x3), tmp129, None)
tl.store(out_ptr63 + (x3), tmp131, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/u6/cu6dgbkwo4zyodk2zqiay4hwrwemkqpxzmixog3qipqaqcevgo7u.py
# Topologically Sorted Source Nodes: [soft_assign_1], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# soft_assign_1 => amax, exp, sub, sum_2
# Graph fragment:
# %amax : [num_users=2] = call_function[target=torch.ops.aten.amax.default](args = (%view, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_2 : [num_users=2] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
triton_per_fused__softmax_2 = async_compile.triton('triton_per_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16384, 64],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__softmax_2(in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16384
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x0 = xindex % 4096
x1 = (xindex // 4096)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (4096*r2) + (262144*x1)), None)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = triton_helpers.max2(tmp1, 1)[:, None]
tmp4 = tmp0 - tmp3
tmp5 = tl_math.exp(tmp4)
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp8 = tl.sum(tmp6, 1)[:, None]
tl.store(out_ptr0 + (x3), tmp3, None)
tl.store(out_ptr1 + (x3), tmp8, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/46/c465fdmmhrzvuvb7xjrad46zallycaofrdeajo4ox533uv52dzji.py
# Topologically Sorted Source Nodes: [residual, residual_1, sum_1, residual_3, sum_2, residual_5, sum_3, residual_7, sum_4, residual_9, sum_5, residual_11, sum_6, residual_13, sum_7, residual_15, sum_8, residual_17, sum_9, residual_19, sum_10, residual_21, sum_11, residual_23, sum_12, residual_25, sum_13, residual_27, sum_14, residual_29, sum_15, residual_31, sum_16, residual_33, sum_17, residual_35, sum_18, residual_37, sum_19, residual_39, sum_20, residual_41, sum_21, residual_43, sum_22, residual_45, sum_23, residual_47, sum_24, residual_49, sum_25, residual_51, sum_26, residual_53, sum_27, residual_55, sum_28, residual_57, sum_29], Original ATen: [aten.sub, aten.mul, aten.sum]
# Source node to ATen node mapping:
# residual => sub_1
# residual_1 => mul
# residual_11 => mul_5
# residual_13 => mul_6
# residual_15 => mul_7
# residual_17 => mul_8
# residual_19 => mul_9
# residual_21 => mul_10
# residual_23 => mul_11
# residual_25 => mul_12
# residual_27 => mul_13
# residual_29 => mul_14
# residual_3 => mul_1
# residual_31 => mul_15
# residual_33 => mul_16
# residual_35 => mul_17
# residual_37 => mul_18
# residual_39 => mul_19
# residual_41 => mul_20
# residual_43 => mul_21
# residual_45 => mul_22
# residual_47 => mul_23
# residual_49 => mul_24
# residual_5 => mul_2
# residual_51 => mul_25
# residual_53 => mul_26
# residual_55 => mul_27
# residual_57 => mul_28
# residual_7 => mul_3
# residual_9 => mul_4
# sum_1 => sum_3
# sum_10 => sum_12
# sum_11 => sum_13
# sum_12 => sum_14
# sum_13 => sum_15
# sum_14 => sum_16
# sum_15 => sum_17
# sum_16 => sum_18
# sum_17 => sum_19
# sum_18 => sum_20
# sum_19 => sum_21
# sum_2 => sum_4
# sum_20 => sum_22
# sum_21 => sum_23
# sum_22 => sum_24
# sum_23 => sum_25
# sum_24 => sum_26
# sum_25 => sum_27
# sum_26 => sum_28
# sum_27 => sum_29
# sum_28 => sum_30
# sum_29 => sum_31
# sum_3 => sum_5
# sum_4 => sum_6
# sum_5 => sum_7
# sum_6 => sum_8
# sum_7 => sum_9
# sum_8 => sum_10
# sum_9 => sum_11
# Graph fragment:
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %unsqueeze_2), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [-1]), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %unsqueeze_5), kwargs = {})
# %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_1, [-1]), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, %unsqueeze_8), kwargs = {})
# %sum_5 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_2, [-1]), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_4, %unsqueeze_11), kwargs = {})
# %sum_6 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_3, [-1]), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_5, %unsqueeze_14), kwargs = {})
# %sum_7 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_4, [-1]), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_6, %unsqueeze_17), kwargs = {})
# %sum_8 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_5, [-1]), kwargs = {})
# %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_7, %unsqueeze_20), kwargs = {})
# %sum_9 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_6, [-1]), kwargs = {})
# %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_8, %unsqueeze_23), kwargs = {})
# %sum_10 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_7, [-1]), kwargs = {})
# %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_9, %unsqueeze_26), kwargs = {})
# %sum_11 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_8, [-1]), kwargs = {})
# %mul_9 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_10, %unsqueeze_29), kwargs = {})
# %sum_12 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_9, [-1]), kwargs = {})
# %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_11, %unsqueeze_32), kwargs = {})
# %sum_13 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_10, [-1]), kwargs = {})
# %mul_11 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_12, %unsqueeze_35), kwargs = {})
# %sum_14 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_11, [-1]), kwargs = {})
# %mul_12 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_13, %unsqueeze_38), kwargs = {})
# %sum_15 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_12, [-1]), kwargs = {})
# %mul_13 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_14, %unsqueeze_41), kwargs = {})
# %sum_16 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_13, [-1]), kwargs = {})
# %mul_14 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_15, %unsqueeze_44), kwargs = {})
# %sum_17 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_14, [-1]), kwargs = {})
# %mul_15 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_16, %unsqueeze_47), kwargs = {})
# %sum_18 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_15, [-1]), kwargs = {})
# %mul_16 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_17, %unsqueeze_50), kwargs = {})
# %sum_19 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_16, [-1]), kwargs = {})
# %mul_17 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_18, %unsqueeze_53), kwargs = {})
# %sum_20 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_17, [-1]), kwargs = {})
# %mul_18 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_19, %unsqueeze_56), kwargs = {})
# %sum_21 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_18, [-1]), kwargs = {})
# %mul_19 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_20, %unsqueeze_59), kwargs = {})
# %sum_22 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_19, [-1]), kwargs = {})
# %mul_20 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_21, %unsqueeze_62), kwargs = {})
# %sum_23 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_20, [-1]), kwargs = {})
# %mul_21 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_22, %unsqueeze_65), kwargs = {})
# %sum_24 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_21, [-1]), kwargs = {})
# %mul_22 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_23, %unsqueeze_68), kwargs = {})
# %sum_25 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_22, [-1]), kwargs = {})
# %mul_23 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_24, %unsqueeze_71), kwargs = {})
# %sum_26 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_23, [-1]), kwargs = {})
# %mul_24 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_25, %unsqueeze_74), kwargs = {})
# %sum_27 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_24, [-1]), kwargs = {})
# %mul_25 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_26, %unsqueeze_77), kwargs = {})
# %sum_28 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_25, [-1]), kwargs = {})
# %mul_26 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_27, %unsqueeze_80), kwargs = {})
# %sum_29 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_26, [-1]), kwargs = {})
# %mul_27 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_28, %unsqueeze_83), kwargs = {})
# %sum_30 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_27, [-1]), kwargs = {})
# %mul_28 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_29, %unsqueeze_86), kwargs = {})
# %sum_31 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_28, [-1]), kwargs = {})
triton_red_fused_mul_sub_sum_3 = async_compile.triton('triton_red_fused_mul_sub_sum_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[512, 4096],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: '*fp32', 11: '*fp32', 12: '*fp32', 13: '*fp32', 14: '*fp32', 15: '*fp32', 16: '*fp32', 17: '*fp32', 18: '*fp32', 19: '*fp32', 20: '*fp32', 21: '*fp32', 22: '*fp32', 23: '*fp32', 24: '*fp32', 25: '*fp32', 26: '*fp32', 27: '*fp32', 28: '*fp32', 29: '*fp32', 30: '*fp32', 31: '*fp32', 32: '*fp32', 33: '*fp32', 34: '*fp32', 35: '*fp32', 36: '*fp32', 37: '*fp32', 38: '*fp32', 39: '*fp32', 40: '*fp32', 41: '*fp32', 42: '*fp32', 43: '*fp32', 44: '*fp32', 45: '*fp32', 46: '*fp32', 47: '*fp32', 48: '*fp32', 49: '*fp32', 50: '*fp32', 51: '*fp32', 52: '*fp32', 53: '*fp32', 54: '*fp32', 55: '*fp32', 56: '*fp32', 57: '*fp32', 58: '*fp32', 59: '*fp32', 60: '*fp32', 61: '*fp32', 62: 'i32', 63: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_mul_sub_sum_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 61, 'num_reduction': 29, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused_mul_sub_sum_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, in_ptr12, in_ptr13, in_ptr14, in_ptr15, in_ptr16, in_ptr17, in_ptr18, in_ptr19, in_ptr20, in_ptr21, in_ptr22, in_ptr23, in_ptr24, in_ptr25, in_ptr26, in_ptr27, in_ptr28, in_ptr29, in_ptr30, in_ptr31, in_ptr32, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5, out_ptr6, out_ptr7, out_ptr8, out_ptr9, out_ptr10, out_ptr11, out_ptr12, out_ptr13, out_ptr14, out_ptr15, out_ptr16, out_ptr17, out_ptr18, out_ptr19, out_ptr20, out_ptr21, out_ptr22, out_ptr23, out_ptr24, out_ptr25, out_ptr26, out_ptr27, out_ptr28, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 512
rnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x3 = xindex
x0 = xindex % 128
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
x1 = (xindex // 128)
_tmp11 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp20 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp29 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp38 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp47 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp56 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp65 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp74 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp83 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp92 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp101 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp110 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp119 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp128 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp137 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp146 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp155 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp164 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp173 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp182 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp191 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp200 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp209 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp218 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp227 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp236 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp245 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp254 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp263 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex
tmp0 = tl.load(in_ptr0 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp3 = tl.load(in_ptr2 + (r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp4 = tl.load(in_ptr3 + (r2 + (4096*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp7 = tl.load(in_ptr4 + (r2 + (4096*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp13 = tl.load(in_ptr5 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp14 = tl.load(in_ptr2 + (4096 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp22 = tl.load(in_ptr6 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp23 = tl.load(in_ptr2 + (8192 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp31 = tl.load(in_ptr7 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp32 = tl.load(in_ptr2 + (12288 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp40 = tl.load(in_ptr8 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp41 = tl.load(in_ptr2 + (16384 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp49 = tl.load(in_ptr9 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp50 = tl.load(in_ptr2 + (20480 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp58 = tl.load(in_ptr10 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp59 = tl.load(in_ptr2 + (24576 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp67 = tl.load(in_ptr11 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp68 = tl.load(in_ptr2 + (28672 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp76 = tl.load(in_ptr12 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp77 = tl.load(in_ptr2 + (32768 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp85 = tl.load(in_ptr13 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp86 = tl.load(in_ptr2 + (36864 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp94 = tl.load(in_ptr14 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp95 = tl.load(in_ptr2 + (40960 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp103 = tl.load(in_ptr15 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp104 = tl.load(in_ptr2 + (45056 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp112 = tl.load(in_ptr16 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp113 = tl.load(in_ptr2 + (49152 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp121 = tl.load(in_ptr17 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp122 = tl.load(in_ptr2 + (53248 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp130 = tl.load(in_ptr18 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp131 = tl.load(in_ptr2 + (57344 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp139 = tl.load(in_ptr19 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp140 = tl.load(in_ptr2 + (61440 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp148 = tl.load(in_ptr20 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp149 = tl.load(in_ptr2 + (65536 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp157 = tl.load(in_ptr21 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp158 = tl.load(in_ptr2 + (69632 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp166 = tl.load(in_ptr22 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp167 = tl.load(in_ptr2 + (73728 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp175 = tl.load(in_ptr23 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp176 = tl.load(in_ptr2 + (77824 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp184 = tl.load(in_ptr24 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp185 = tl.load(in_ptr2 + (81920 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp193 = tl.load(in_ptr25 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp194 = tl.load(in_ptr2 + (86016 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp202 = tl.load(in_ptr26 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp203 = tl.load(in_ptr2 + (90112 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp211 = tl.load(in_ptr27 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp212 = tl.load(in_ptr2 + (94208 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp220 = tl.load(in_ptr28 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp221 = tl.load(in_ptr2 + (98304 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp229 = tl.load(in_ptr29 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp230 = tl.load(in_ptr2 + (102400 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp238 = tl.load(in_ptr30 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp239 = tl.load(in_ptr2 + (106496 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp247 = tl.load(in_ptr31 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp248 = tl.load(in_ptr2 + (110592 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp256 = tl.load(in_ptr32 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp257 = tl.load(in_ptr2 + (114688 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp2 = tmp0 - tmp1
tmp5 = tmp3 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp8 = tmp6 / tmp7
tmp9 = tmp2 * tmp8
tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK])
tmp12 = _tmp11 + tmp10
_tmp11 = tl.where(rmask & xmask, tmp12, _tmp11)
tmp15 = tmp14 - tmp4
tmp16 = tl_math.exp(tmp15)
tmp17 = tmp16 / tmp7
tmp18 = tmp13 * tmp17
tmp19 = tl.broadcast_to(tmp18, [XBLOCK, RBLOCK])
tmp21 = _tmp20 + tmp19
_tmp20 = tl.where(rmask & xmask, tmp21, _tmp20)
tmp24 = tmp23 - tmp4
tmp25 = tl_math.exp(tmp24)
tmp26 = tmp25 / tmp7
tmp27 = tmp22 * tmp26
tmp28 = tl.broadcast_to(tmp27, [XBLOCK, RBLOCK])
tmp30 = _tmp29 + tmp28
_tmp29 = tl.where(rmask & xmask, tmp30, _tmp29)
tmp33 = tmp32 - tmp4
tmp34 = tl_math.exp(tmp33)
tmp35 = tmp34 / tmp7
tmp36 = tmp31 * tmp35
tmp37 = tl.broadcast_to(tmp36, [XBLOCK, RBLOCK])
tmp39 = _tmp38 + tmp37
_tmp38 = tl.where(rmask & xmask, tmp39, _tmp38)
tmp42 = tmp41 - tmp4
tmp43 = tl_math.exp(tmp42)
tmp44 = tmp43 / tmp7
tmp45 = tmp40 * tmp44
tmp46 = tl.broadcast_to(tmp45, [XBLOCK, RBLOCK])
tmp48 = _tmp47 + tmp46
_tmp47 = tl.where(rmask & xmask, tmp48, _tmp47)
tmp51 = tmp50 - tmp4
tmp52 = tl_math.exp(tmp51)
tmp53 = tmp52 / tmp7
tmp54 = tmp49 * tmp53
tmp55 = tl.broadcast_to(tmp54, [XBLOCK, RBLOCK])
tmp57 = _tmp56 + tmp55
_tmp56 = tl.where(rmask & xmask, tmp57, _tmp56)
tmp60 = tmp59 - tmp4
tmp61 = tl_math.exp(tmp60)
tmp62 = tmp61 / tmp7
tmp63 = tmp58 * tmp62
tmp64 = tl.broadcast_to(tmp63, [XBLOCK, RBLOCK])
tmp66 = _tmp65 + tmp64
_tmp65 = tl.where(rmask & xmask, tmp66, _tmp65)
tmp69 = tmp68 - tmp4
tmp70 = tl_math.exp(tmp69)
tmp71 = tmp70 / tmp7
tmp72 = tmp67 * tmp71
tmp73 = tl.broadcast_to(tmp72, [XBLOCK, RBLOCK])
tmp75 = _tmp74 + tmp73
_tmp74 = tl.where(rmask & xmask, tmp75, _tmp74)
tmp78 = tmp77 - tmp4
tmp79 = tl_math.exp(tmp78)
tmp80 = tmp79 / tmp7
tmp81 = tmp76 * tmp80
tmp82 = tl.broadcast_to(tmp81, [XBLOCK, RBLOCK])
tmp84 = _tmp83 + tmp82
_tmp83 = tl.where(rmask & xmask, tmp84, _tmp83)
tmp87 = tmp86 - tmp4
tmp88 = tl_math.exp(tmp87)
tmp89 = tmp88 / tmp7
tmp90 = tmp85 * tmp89
tmp91 = tl.broadcast_to(tmp90, [XBLOCK, RBLOCK])
tmp93 = _tmp92 + tmp91
_tmp92 = tl.where(rmask & xmask, tmp93, _tmp92)
tmp96 = tmp95 - tmp4
tmp97 = tl_math.exp(tmp96)
tmp98 = tmp97 / tmp7
tmp99 = tmp94 * tmp98
tmp100 = tl.broadcast_to(tmp99, [XBLOCK, RBLOCK])
tmp102 = _tmp101 + tmp100
_tmp101 = tl.where(rmask & xmask, tmp102, _tmp101)
tmp105 = tmp104 - tmp4
tmp106 = tl_math.exp(tmp105)
tmp107 = tmp106 / tmp7
tmp108 = tmp103 * tmp107
tmp109 = tl.broadcast_to(tmp108, [XBLOCK, RBLOCK])
tmp111 = _tmp110 + tmp109
_tmp110 = tl.where(rmask & xmask, tmp111, _tmp110)
tmp114 = tmp113 - tmp4
tmp115 = tl_math.exp(tmp114)
tmp116 = tmp115 / tmp7
tmp117 = tmp112 * tmp116
tmp118 = tl.broadcast_to(tmp117, [XBLOCK, RBLOCK])
tmp120 = _tmp119 + tmp118
_tmp119 = tl.where(rmask & xmask, tmp120, _tmp119)
tmp123 = tmp122 - tmp4
tmp124 = tl_math.exp(tmp123)
tmp125 = tmp124 / tmp7
tmp126 = tmp121 * tmp125
tmp127 = tl.broadcast_to(tmp126, [XBLOCK, RBLOCK])
tmp129 = _tmp128 + tmp127
_tmp128 = tl.where(rmask & xmask, tmp129, _tmp128)
tmp132 = tmp131 - tmp4
tmp133 = tl_math.exp(tmp132)
tmp134 = tmp133 / tmp7
tmp135 = tmp130 * tmp134
tmp136 = tl.broadcast_to(tmp135, [XBLOCK, RBLOCK])
tmp138 = _tmp137 + tmp136
_tmp137 = tl.where(rmask & xmask, tmp138, _tmp137)
tmp141 = tmp140 - tmp4
tmp142 = tl_math.exp(tmp141)
tmp143 = tmp142 / tmp7
tmp144 = tmp139 * tmp143
tmp145 = tl.broadcast_to(tmp144, [XBLOCK, RBLOCK])
tmp147 = _tmp146 + tmp145
_tmp146 = tl.where(rmask & xmask, tmp147, _tmp146)
tmp150 = tmp149 - tmp4
tmp151 = tl_math.exp(tmp150)
tmp152 = tmp151 / tmp7
tmp153 = tmp148 * tmp152
tmp154 = tl.broadcast_to(tmp153, [XBLOCK, RBLOCK])
tmp156 = _tmp155 + tmp154
_tmp155 = tl.where(rmask & xmask, tmp156, _tmp155)
tmp159 = tmp158 - tmp4
tmp160 = tl_math.exp(tmp159)
tmp161 = tmp160 / tmp7
tmp162 = tmp157 * tmp161
tmp163 = tl.broadcast_to(tmp162, [XBLOCK, RBLOCK])
tmp165 = _tmp164 + tmp163
_tmp164 = tl.where(rmask & xmask, tmp165, _tmp164)
tmp168 = tmp167 - tmp4
tmp169 = tl_math.exp(tmp168)
tmp170 = tmp169 / tmp7
tmp171 = tmp166 * tmp170
tmp172 = tl.broadcast_to(tmp171, [XBLOCK, RBLOCK])
tmp174 = _tmp173 + tmp172
_tmp173 = tl.where(rmask & xmask, tmp174, _tmp173)
tmp177 = tmp176 - tmp4
tmp178 = tl_math.exp(tmp177)
tmp179 = tmp178 / tmp7
tmp180 = tmp175 * tmp179
tmp181 = tl.broadcast_to(tmp180, [XBLOCK, RBLOCK])
tmp183 = _tmp182 + tmp181
_tmp182 = tl.where(rmask & xmask, tmp183, _tmp182)
tmp186 = tmp185 - tmp4
tmp187 = tl_math.exp(tmp186)
tmp188 = tmp187 / tmp7
tmp189 = tmp184 * tmp188
tmp190 = tl.broadcast_to(tmp189, [XBLOCK, RBLOCK])
tmp192 = _tmp191 + tmp190
_tmp191 = tl.where(rmask & xmask, tmp192, _tmp191)
tmp195 = tmp194 - tmp4
tmp196 = tl_math.exp(tmp195)
tmp197 = tmp196 / tmp7
tmp198 = tmp193 * tmp197
tmp199 = tl.broadcast_to(tmp198, [XBLOCK, RBLOCK])
tmp201 = _tmp200 + tmp199
_tmp200 = tl.where(rmask & xmask, tmp201, _tmp200)
tmp204 = tmp203 - tmp4
tmp205 = tl_math.exp(tmp204)
tmp206 = tmp205 / tmp7
tmp207 = tmp202 * tmp206
tmp208 = tl.broadcast_to(tmp207, [XBLOCK, RBLOCK])
tmp210 = _tmp209 + tmp208
_tmp209 = tl.where(rmask & xmask, tmp210, _tmp209)
tmp213 = tmp212 - tmp4
tmp214 = tl_math.exp(tmp213)
tmp215 = tmp214 / tmp7
tmp216 = tmp211 * tmp215
tmp217 = tl.broadcast_to(tmp216, [XBLOCK, RBLOCK])
tmp219 = _tmp218 + tmp217
_tmp218 = tl.where(rmask & xmask, tmp219, _tmp218)
tmp222 = tmp221 - tmp4
tmp223 = tl_math.exp(tmp222)
tmp224 = tmp223 / tmp7
tmp225 = tmp220 * tmp224
tmp226 = tl.broadcast_to(tmp225, [XBLOCK, RBLOCK])
tmp228 = _tmp227 + tmp226
_tmp227 = tl.where(rmask & xmask, tmp228, _tmp227)
tmp231 = tmp230 - tmp4
tmp232 = tl_math.exp(tmp231)
tmp233 = tmp232 / tmp7
tmp234 = tmp229 * tmp233
tmp235 = tl.broadcast_to(tmp234, [XBLOCK, RBLOCK])
tmp237 = _tmp236 + tmp235
_tmp236 = tl.where(rmask & xmask, tmp237, _tmp236)
tmp240 = tmp239 - tmp4
tmp241 = tl_math.exp(tmp240)
tmp242 = tmp241 / tmp7
tmp243 = tmp238 * tmp242
tmp244 = tl.broadcast_to(tmp243, [XBLOCK, RBLOCK])
tmp246 = _tmp245 + tmp244
_tmp245 = tl.where(rmask & xmask, tmp246, _tmp245)
tmp249 = tmp248 - tmp4
tmp250 = tl_math.exp(tmp249)
tmp251 = tmp250 / tmp7
tmp252 = tmp247 * tmp251
tmp253 = tl.broadcast_to(tmp252, [XBLOCK, RBLOCK])
tmp255 = _tmp254 + tmp253
_tmp254 = tl.where(rmask & xmask, tmp255, _tmp254)
tmp258 = tmp257 - tmp4
tmp259 = tl_math.exp(tmp258)
tmp260 = tmp259 / tmp7
tmp261 = tmp256 * tmp260
tmp262 = tl.broadcast_to(tmp261, [XBLOCK, RBLOCK])
tmp264 = _tmp263 + tmp262
_tmp263 = tl.where(rmask & xmask, tmp264, _tmp263)
tmp11 = tl.sum(_tmp11, 1)[:, None]
tl.store(out_ptr0 + (x3), tmp11, xmask)
tmp20 = tl.sum(_tmp20, 1)[:, None]
tl.store(out_ptr1 + (x3), tmp20, xmask)
tmp29 = tl.sum(_tmp29, 1)[:, None]
tl.store(out_ptr2 + (x3), tmp29, xmask)
tmp38 = tl.sum(_tmp38, 1)[:, None]
tl.store(out_ptr3 + (x3), tmp38, xmask)
tmp47 = tl.sum(_tmp47, 1)[:, None]
tl.store(out_ptr4 + (x3), tmp47, xmask)
tmp56 = tl.sum(_tmp56, 1)[:, None]
tl.store(out_ptr5 + (x3), tmp56, xmask)
tmp65 = tl.sum(_tmp65, 1)[:, None]
tl.store(out_ptr6 + (x3), tmp65, xmask)
tmp74 = tl.sum(_tmp74, 1)[:, None]
tl.store(out_ptr7 + (x3), tmp74, xmask)
tmp83 = tl.sum(_tmp83, 1)[:, None]
tl.store(out_ptr8 + (x3), tmp83, xmask)
tmp92 = tl.sum(_tmp92, 1)[:, None]
tl.store(out_ptr9 + (x3), tmp92, xmask)
tmp101 = tl.sum(_tmp101, 1)[:, None]
tl.store(out_ptr10 + (x3), tmp101, xmask)
tmp110 = tl.sum(_tmp110, 1)[:, None]
tl.store(out_ptr11 + (x3), tmp110, xmask)
tmp119 = tl.sum(_tmp119, 1)[:, None]
tl.store(out_ptr12 + (x3), tmp119, xmask)
tmp128 = tl.sum(_tmp128, 1)[:, None]
tl.store(out_ptr13 + (x3), tmp128, xmask)
tmp137 = tl.sum(_tmp137, 1)[:, None]
tl.store(out_ptr14 + (x3), tmp137, xmask)
tmp146 = tl.sum(_tmp146, 1)[:, None]
tl.store(out_ptr15 + (x3), tmp146, xmask)
tmp155 = tl.sum(_tmp155, 1)[:, None]
tl.store(out_ptr16 + (x3), tmp155, xmask)
tmp164 = tl.sum(_tmp164, 1)[:, None]
tl.store(out_ptr17 + (x3), tmp164, xmask)
tmp173 = tl.sum(_tmp173, 1)[:, None]
tl.store(out_ptr18 + (x3), tmp173, xmask)
tmp182 = tl.sum(_tmp182, 1)[:, None]
tl.store(out_ptr19 + (x3), tmp182, xmask)
tmp191 = tl.sum(_tmp191, 1)[:, None]
tl.store(out_ptr20 + (x3), tmp191, xmask)
tmp200 = tl.sum(_tmp200, 1)[:, None]
tl.store(out_ptr21 + (x3), tmp200, xmask)
tmp209 = tl.sum(_tmp209, 1)[:, None]
tl.store(out_ptr22 + (x3), tmp209, xmask)
tmp218 = tl.sum(_tmp218, 1)[:, None]
tl.store(out_ptr23 + (x3), tmp218, xmask)
tmp227 = tl.sum(_tmp227, 1)[:, None]
tl.store(out_ptr24 + (x3), tmp227, xmask)
tmp236 = tl.sum(_tmp236, 1)[:, None]
tl.store(out_ptr25 + (x3), tmp236, xmask)
tmp245 = tl.sum(_tmp245, 1)[:, None]
tl.store(out_ptr26 + (x3), tmp245, xmask)
tmp254 = tl.sum(_tmp254, 1)[:, None]
tl.store(out_ptr27 + (x3), tmp254, xmask)
tmp263 = tl.sum(_tmp263, 1)[:, None]
tl.store(out_ptr28 + (x3), tmp263, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/7g/c7gpcb637ns46u6bq6sgchjaxn4thmkzjpeoxhjhn2ws6dc2fyq4.py
# Topologically Sorted Source Nodes: [residual_59, sum_30, residual_61, sum_31, residual_63, sum_32, residual_65, sum_33, residual_67, sum_34, residual_69, sum_35, residual_71, sum_36, residual_73, sum_37, residual_75, sum_38, residual_77, sum_39, residual_79, sum_40, residual_81, sum_41, residual_83, sum_42, residual_85, sum_43, residual_87, sum_44, residual_89, sum_45, residual_91, sum_46, residual_93, sum_47, residual_95, sum_48, residual_97, sum_49, residual_99, sum_50, residual_101, sum_51, residual_103, sum_52, residual_105, sum_53, residual_107, sum_54, residual_109, sum_55, residual_111, sum_56, residual_113, sum_57], Original ATen: [aten.mul, aten.sum]
# Source node to ATen node mapping:
# residual_101 => mul_50
# residual_103 => mul_51
# residual_105 => mul_52
# residual_107 => mul_53
# residual_109 => mul_54
# residual_111 => mul_55
# residual_113 => mul_56
# residual_59 => mul_29
# residual_61 => mul_30
# residual_63 => mul_31
# residual_65 => mul_32
# residual_67 => mul_33
# residual_69 => mul_34
# residual_71 => mul_35
# residual_73 => mul_36
# residual_75 => mul_37
# residual_77 => mul_38
# residual_79 => mul_39
# residual_81 => mul_40
# residual_83 => mul_41
# residual_85 => mul_42
# residual_87 => mul_43
# residual_89 => mul_44
# residual_91 => mul_45
# residual_93 => mul_46
# residual_95 => mul_47
# residual_97 => mul_48
# residual_99 => mul_49
# sum_30 => sum_32
# sum_31 => sum_33
# sum_32 => sum_34
# sum_33 => sum_35
# sum_34 => sum_36
# sum_35 => sum_37
# sum_36 => sum_38
# sum_37 => sum_39
# sum_38 => sum_40
# sum_39 => sum_41
# sum_40 => sum_42
# sum_41 => sum_43
# sum_42 => sum_44
# sum_43 => sum_45
# sum_44 => sum_46
# sum_45 => sum_47
# sum_46 => sum_48
# sum_47 => sum_49
# sum_48 => sum_50
# sum_49 => sum_51
# sum_50 => sum_52
# sum_51 => sum_53
# sum_52 => sum_54
# sum_53 => sum_55
# sum_54 => sum_56
# sum_55 => sum_57
# sum_56 => sum_58
# sum_57 => sum_59
# Graph fragment:
# %mul_29 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_30, %unsqueeze_89), kwargs = {})
# %sum_32 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_29, [-1]), kwargs = {})
# %mul_30 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_31, %unsqueeze_92), kwargs = {})
# %sum_33 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_30, [-1]), kwargs = {})
# %mul_31 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_32, %unsqueeze_95), kwargs = {})
# %sum_34 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_31, [-1]), kwargs = {})
# %mul_32 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_33, %unsqueeze_98), kwargs = {})
# %sum_35 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_32, [-1]), kwargs = {})
# %mul_33 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_34, %unsqueeze_101), kwargs = {})
# %sum_36 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_33, [-1]), kwargs = {})
# %mul_34 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_35, %unsqueeze_104), kwargs = {})
# %sum_37 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_34, [-1]), kwargs = {})
# %mul_35 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_36, %unsqueeze_107), kwargs = {})
# %sum_38 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_35, [-1]), kwargs = {})
# %mul_36 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_37, %unsqueeze_110), kwargs = {})
# %sum_39 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_36, [-1]), kwargs = {})
# %mul_37 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_38, %unsqueeze_113), kwargs = {})
# %sum_40 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_37, [-1]), kwargs = {})
# %mul_38 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_39, %unsqueeze_116), kwargs = {})
# %sum_41 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_38, [-1]), kwargs = {})
# %mul_39 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_40, %unsqueeze_119), kwargs = {})
# %sum_42 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_39, [-1]), kwargs = {})
# %mul_40 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_41, %unsqueeze_122), kwargs = {})
# %sum_43 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_40, [-1]), kwargs = {})
# %mul_41 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_42, %unsqueeze_125), kwargs = {})
# %sum_44 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_41, [-1]), kwargs = {})
# %mul_42 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_43, %unsqueeze_128), kwargs = {})
# %sum_45 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_42, [-1]), kwargs = {})
# %mul_43 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_44, %unsqueeze_131), kwargs = {})
# %sum_46 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_43, [-1]), kwargs = {})
# %mul_44 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_45, %unsqueeze_134), kwargs = {})
# %sum_47 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_44, [-1]), kwargs = {})
# %mul_45 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_46, %unsqueeze_137), kwargs = {})
# %sum_48 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_45, [-1]), kwargs = {})
# %mul_46 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_47, %unsqueeze_140), kwargs = {})
# %sum_49 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_46, [-1]), kwargs = {})
# %mul_47 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_48, %unsqueeze_143), kwargs = {})
# %sum_50 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_47, [-1]), kwargs = {})
# %mul_48 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_49, %unsqueeze_146), kwargs = {})
# %sum_51 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_48, [-1]), kwargs = {})
# %mul_49 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_50, %unsqueeze_149), kwargs = {})
# %sum_52 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_49, [-1]), kwargs = {})
# %mul_50 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_51, %unsqueeze_152), kwargs = {})
# %sum_53 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_50, [-1]), kwargs = {})
# %mul_51 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_52, %unsqueeze_155), kwargs = {})
# %sum_54 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_51, [-1]), kwargs = {})
# %mul_52 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_53, %unsqueeze_158), kwargs = {})
# %sum_55 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_52, [-1]), kwargs = {})
# %mul_53 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_54, %unsqueeze_161), kwargs = {})
# %sum_56 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_53, [-1]), kwargs = {})
# %mul_54 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_55, %unsqueeze_164), kwargs = {})
# %sum_57 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_54, [-1]), kwargs = {})
# %mul_55 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_56, %unsqueeze_167), kwargs = {})
# %sum_58 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_55, [-1]), kwargs = {})
# %mul_56 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_57, %unsqueeze_170), kwargs = {})
# %sum_59 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_56, [-1]), kwargs = {})
triton_red_fused_mul_sum_4 = async_compile.triton('triton_red_fused_mul_sum_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[512, 4096],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: '*fp32', 11: '*fp32', 12: '*fp32', 13: '*fp32', 14: '*fp32', 15: '*fp32', 16: '*fp32', 17: '*fp32', 18: '*fp32', 19: '*fp32', 20: '*fp32', 21: '*fp32', 22: '*fp32', 23: '*fp32', 24: '*fp32', 25: '*fp32', 26: '*fp32', 27: '*fp32', 28: '*fp32', 29: '*fp32', 30: '*fp32', 31: '*fp32', 32: '*fp32', 33: '*fp32', 34: '*fp32', 35: '*fp32', 36: '*fp32', 37: '*fp32', 38: '*fp32', 39: '*fp32', 40: '*fp32', 41: '*fp32', 42: '*fp32', 43: '*fp32', 44: '*fp32', 45: '*fp32', 46: '*fp32', 47: '*fp32', 48: '*fp32', 49: '*fp32', 50: '*fp32', 51: '*fp32', 52: '*fp32', 53: '*fp32', 54: '*fp32', 55: '*fp32', 56: '*fp32', 57: '*fp32', 58: '*fp32', 59: 'i32', 60: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_mul_sum_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 58, 'num_reduction': 28, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused_mul_sum_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, in_ptr12, in_ptr13, in_ptr14, in_ptr15, in_ptr16, in_ptr17, in_ptr18, in_ptr19, in_ptr20, in_ptr21, in_ptr22, in_ptr23, in_ptr24, in_ptr25, in_ptr26, in_ptr27, in_ptr28, in_ptr29, in_ptr30, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5, out_ptr6, out_ptr7, out_ptr8, out_ptr9, out_ptr10, out_ptr11, out_ptr12, out_ptr13, out_ptr14, out_ptr15, out_ptr16, out_ptr17, out_ptr18, out_ptr19, out_ptr20, out_ptr21, out_ptr22, out_ptr23, out_ptr24, out_ptr25, out_ptr26, out_ptr27, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 512
rnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x3 = xindex
x1 = (xindex // 128)
_tmp9 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp18 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp27 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp36 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp45 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp54 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp63 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp72 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp81 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp90 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp99 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp108 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp117 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp126 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp135 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp144 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp153 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp162 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp171 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp180 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp189 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp198 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp207 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp216 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp225 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp234 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp243 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp252 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex
tmp0 = tl.load(in_ptr0 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp1 = tl.load(in_ptr1 + (118784 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp2 = tl.load(in_ptr2 + (r2 + (4096*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp5 = tl.load(in_ptr3 + (r2 + (4096*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tl.load(in_ptr4 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp12 = tl.load(in_ptr1 + (122880 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp20 = tl.load(in_ptr5 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp21 = tl.load(in_ptr1 + (126976 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp29 = tl.load(in_ptr6 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp30 = tl.load(in_ptr1 + (131072 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp38 = tl.load(in_ptr7 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp39 = tl.load(in_ptr1 + (135168 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp47 = tl.load(in_ptr8 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp48 = tl.load(in_ptr1 + (139264 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp56 = tl.load(in_ptr9 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp57 = tl.load(in_ptr1 + (143360 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp65 = tl.load(in_ptr10 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp66 = tl.load(in_ptr1 + (147456 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp74 = tl.load(in_ptr11 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp75 = tl.load(in_ptr1 + (151552 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp83 = tl.load(in_ptr12 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp84 = tl.load(in_ptr1 + (155648 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp92 = tl.load(in_ptr13 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp93 = tl.load(in_ptr1 + (159744 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp101 = tl.load(in_ptr14 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp102 = tl.load(in_ptr1 + (163840 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp110 = tl.load(in_ptr15 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp111 = tl.load(in_ptr1 + (167936 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp119 = tl.load(in_ptr16 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp120 = tl.load(in_ptr1 + (172032 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp128 = tl.load(in_ptr17 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp129 = tl.load(in_ptr1 + (176128 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp137 = tl.load(in_ptr18 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp138 = tl.load(in_ptr1 + (180224 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp146 = tl.load(in_ptr19 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp147 = tl.load(in_ptr1 + (184320 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp155 = tl.load(in_ptr20 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp156 = tl.load(in_ptr1 + (188416 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp164 = tl.load(in_ptr21 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp165 = tl.load(in_ptr1 + (192512 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp173 = tl.load(in_ptr22 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp174 = tl.load(in_ptr1 + (196608 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp182 = tl.load(in_ptr23 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp183 = tl.load(in_ptr1 + (200704 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp191 = tl.load(in_ptr24 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp192 = tl.load(in_ptr1 + (204800 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp200 = tl.load(in_ptr25 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp201 = tl.load(in_ptr1 + (208896 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp209 = tl.load(in_ptr26 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp210 = tl.load(in_ptr1 + (212992 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp218 = tl.load(in_ptr27 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp219 = tl.load(in_ptr1 + (217088 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp227 = tl.load(in_ptr28 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp228 = tl.load(in_ptr1 + (221184 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp236 = tl.load(in_ptr29 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp237 = tl.load(in_ptr1 + (225280 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp245 = tl.load(in_ptr30 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp246 = tl.load(in_ptr1 + (229376 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp3 = tmp1 - tmp2
tmp4 = tl_math.exp(tmp3)
tmp6 = tmp4 / tmp5
tmp7 = tmp0 * tmp6
tmp8 = tl.broadcast_to(tmp7, [XBLOCK, RBLOCK])
tmp10 = _tmp9 + tmp8
_tmp9 = tl.where(rmask & xmask, tmp10, _tmp9)
tmp13 = tmp12 - tmp2
tmp14 = tl_math.exp(tmp13)
tmp15 = tmp14 / tmp5
tmp16 = tmp11 * tmp15
tmp17 = tl.broadcast_to(tmp16, [XBLOCK, RBLOCK])
tmp19 = _tmp18 + tmp17
_tmp18 = tl.where(rmask & xmask, tmp19, _tmp18)
tmp22 = tmp21 - tmp2
tmp23 = tl_math.exp(tmp22)
tmp24 = tmp23 / tmp5
tmp25 = tmp20 * tmp24
tmp26 = tl.broadcast_to(tmp25, [XBLOCK, RBLOCK])
tmp28 = _tmp27 + tmp26
_tmp27 = tl.where(rmask & xmask, tmp28, _tmp27)
tmp31 = tmp30 - tmp2
tmp32 = tl_math.exp(tmp31)
tmp33 = tmp32 / tmp5
tmp34 = tmp29 * tmp33
tmp35 = tl.broadcast_to(tmp34, [XBLOCK, RBLOCK])
tmp37 = _tmp36 + tmp35
_tmp36 = tl.where(rmask & xmask, tmp37, _tmp36)
tmp40 = tmp39 - tmp2
tmp41 = tl_math.exp(tmp40)
tmp42 = tmp41 / tmp5
tmp43 = tmp38 * tmp42
tmp44 = tl.broadcast_to(tmp43, [XBLOCK, RBLOCK])
tmp46 = _tmp45 + tmp44
_tmp45 = tl.where(rmask & xmask, tmp46, _tmp45)
tmp49 = tmp48 - tmp2
tmp50 = tl_math.exp(tmp49)
tmp51 = tmp50 / tmp5
tmp52 = tmp47 * tmp51
tmp53 = tl.broadcast_to(tmp52, [XBLOCK, RBLOCK])
tmp55 = _tmp54 + tmp53
_tmp54 = tl.where(rmask & xmask, tmp55, _tmp54)
tmp58 = tmp57 - tmp2
tmp59 = tl_math.exp(tmp58)
tmp60 = tmp59 / tmp5
tmp61 = tmp56 * tmp60
tmp62 = tl.broadcast_to(tmp61, [XBLOCK, RBLOCK])
tmp64 = _tmp63 + tmp62
_tmp63 = tl.where(rmask & xmask, tmp64, _tmp63)
tmp67 = tmp66 - tmp2
tmp68 = tl_math.exp(tmp67)
tmp69 = tmp68 / tmp5
tmp70 = tmp65 * tmp69
tmp71 = tl.broadcast_to(tmp70, [XBLOCK, RBLOCK])
tmp73 = _tmp72 + tmp71
_tmp72 = tl.where(rmask & xmask, tmp73, _tmp72)
tmp76 = tmp75 - tmp2
tmp77 = tl_math.exp(tmp76)
tmp78 = tmp77 / tmp5
tmp79 = tmp74 * tmp78
tmp80 = tl.broadcast_to(tmp79, [XBLOCK, RBLOCK])
tmp82 = _tmp81 + tmp80
_tmp81 = tl.where(rmask & xmask, tmp82, _tmp81)
tmp85 = tmp84 - tmp2
tmp86 = tl_math.exp(tmp85)
tmp87 = tmp86 / tmp5
tmp88 = tmp83 * tmp87
tmp89 = tl.broadcast_to(tmp88, [XBLOCK, RBLOCK])
tmp91 = _tmp90 + tmp89
_tmp90 = tl.where(rmask & xmask, tmp91, _tmp90)
tmp94 = tmp93 - tmp2
tmp95 = tl_math.exp(tmp94)
tmp96 = tmp95 / tmp5
tmp97 = tmp92 * tmp96
tmp98 = tl.broadcast_to(tmp97, [XBLOCK, RBLOCK])
tmp100 = _tmp99 + tmp98
_tmp99 = tl.where(rmask & xmask, tmp100, _tmp99)
tmp103 = tmp102 - tmp2
tmp104 = tl_math.exp(tmp103)
tmp105 = tmp104 / tmp5
tmp106 = tmp101 * tmp105
tmp107 = tl.broadcast_to(tmp106, [XBLOCK, RBLOCK])
tmp109 = _tmp108 + tmp107
_tmp108 = tl.where(rmask & xmask, tmp109, _tmp108)
tmp112 = tmp111 - tmp2
tmp113 = tl_math.exp(tmp112)
tmp114 = tmp113 / tmp5
tmp115 = tmp110 * tmp114
tmp116 = tl.broadcast_to(tmp115, [XBLOCK, RBLOCK])
tmp118 = _tmp117 + tmp116
_tmp117 = tl.where(rmask & xmask, tmp118, _tmp117)
tmp121 = tmp120 - tmp2
tmp122 = tl_math.exp(tmp121)
tmp123 = tmp122 / tmp5
tmp124 = tmp119 * tmp123
tmp125 = tl.broadcast_to(tmp124, [XBLOCK, RBLOCK])
tmp127 = _tmp126 + tmp125
_tmp126 = tl.where(rmask & xmask, tmp127, _tmp126)
tmp130 = tmp129 - tmp2
tmp131 = tl_math.exp(tmp130)
tmp132 = tmp131 / tmp5
tmp133 = tmp128 * tmp132
tmp134 = tl.broadcast_to(tmp133, [XBLOCK, RBLOCK])
tmp136 = _tmp135 + tmp134
_tmp135 = tl.where(rmask & xmask, tmp136, _tmp135)
tmp139 = tmp138 - tmp2
tmp140 = tl_math.exp(tmp139)
tmp141 = tmp140 / tmp5
tmp142 = tmp137 * tmp141
tmp143 = tl.broadcast_to(tmp142, [XBLOCK, RBLOCK])
tmp145 = _tmp144 + tmp143
_tmp144 = tl.where(rmask & xmask, tmp145, _tmp144)
tmp148 = tmp147 - tmp2
tmp149 = tl_math.exp(tmp148)
tmp150 = tmp149 / tmp5
tmp151 = tmp146 * tmp150
tmp152 = tl.broadcast_to(tmp151, [XBLOCK, RBLOCK])
tmp154 = _tmp153 + tmp152
_tmp153 = tl.where(rmask & xmask, tmp154, _tmp153)
tmp157 = tmp156 - tmp2
tmp158 = tl_math.exp(tmp157)
tmp159 = tmp158 / tmp5
tmp160 = tmp155 * tmp159
tmp161 = tl.broadcast_to(tmp160, [XBLOCK, RBLOCK])
tmp163 = _tmp162 + tmp161
_tmp162 = tl.where(rmask & xmask, tmp163, _tmp162)
tmp166 = tmp165 - tmp2
tmp167 = tl_math.exp(tmp166)
tmp168 = tmp167 / tmp5
tmp169 = tmp164 * tmp168
tmp170 = tl.broadcast_to(tmp169, [XBLOCK, RBLOCK])
tmp172 = _tmp171 + tmp170
_tmp171 = tl.where(rmask & xmask, tmp172, _tmp171)
tmp175 = tmp174 - tmp2
tmp176 = tl_math.exp(tmp175)
tmp177 = tmp176 / tmp5
tmp178 = tmp173 * tmp177
tmp179 = tl.broadcast_to(tmp178, [XBLOCK, RBLOCK])
tmp181 = _tmp180 + tmp179
_tmp180 = tl.where(rmask & xmask, tmp181, _tmp180)
tmp184 = tmp183 - tmp2
tmp185 = tl_math.exp(tmp184)
tmp186 = tmp185 / tmp5
tmp187 = tmp182 * tmp186
tmp188 = tl.broadcast_to(tmp187, [XBLOCK, RBLOCK])
tmp190 = _tmp189 + tmp188
_tmp189 = tl.where(rmask & xmask, tmp190, _tmp189)
tmp193 = tmp192 - tmp2
tmp194 = tl_math.exp(tmp193)
tmp195 = tmp194 / tmp5
tmp196 = tmp191 * tmp195
tmp197 = tl.broadcast_to(tmp196, [XBLOCK, RBLOCK])
tmp199 = _tmp198 + tmp197
_tmp198 = tl.where(rmask & xmask, tmp199, _tmp198)
tmp202 = tmp201 - tmp2
tmp203 = tl_math.exp(tmp202)
tmp204 = tmp203 / tmp5
tmp205 = tmp200 * tmp204
tmp206 = tl.broadcast_to(tmp205, [XBLOCK, RBLOCK])
tmp208 = _tmp207 + tmp206
_tmp207 = tl.where(rmask & xmask, tmp208, _tmp207)
tmp211 = tmp210 - tmp2
tmp212 = tl_math.exp(tmp211)
tmp213 = tmp212 / tmp5
tmp214 = tmp209 * tmp213
tmp215 = tl.broadcast_to(tmp214, [XBLOCK, RBLOCK])
tmp217 = _tmp216 + tmp215
_tmp216 = tl.where(rmask & xmask, tmp217, _tmp216)
tmp220 = tmp219 - tmp2
tmp221 = tl_math.exp(tmp220)
tmp222 = tmp221 / tmp5
tmp223 = tmp218 * tmp222
tmp224 = tl.broadcast_to(tmp223, [XBLOCK, RBLOCK])
tmp226 = _tmp225 + tmp224
_tmp225 = tl.where(rmask & xmask, tmp226, _tmp225)
tmp229 = tmp228 - tmp2
tmp230 = tl_math.exp(tmp229)
tmp231 = tmp230 / tmp5
tmp232 = tmp227 * tmp231
tmp233 = tl.broadcast_to(tmp232, [XBLOCK, RBLOCK])
tmp235 = _tmp234 + tmp233
_tmp234 = tl.where(rmask & xmask, tmp235, _tmp234)
tmp238 = tmp237 - tmp2
tmp239 = tl_math.exp(tmp238)
tmp240 = tmp239 / tmp5
tmp241 = tmp236 * tmp240
tmp242 = tl.broadcast_to(tmp241, [XBLOCK, RBLOCK])
tmp244 = _tmp243 + tmp242
_tmp243 = tl.where(rmask & xmask, tmp244, _tmp243)
tmp247 = tmp246 - tmp2
tmp248 = tl_math.exp(tmp247)
tmp249 = tmp248 / tmp5
tmp250 = tmp245 * tmp249
tmp251 = tl.broadcast_to(tmp250, [XBLOCK, RBLOCK])
tmp253 = _tmp252 + tmp251
_tmp252 = tl.where(rmask & xmask, tmp253, _tmp252)
tmp9 = tl.sum(_tmp9, 1)[:, None]
tl.store(out_ptr0 + (x3), tmp9, xmask)
tmp18 = tl.sum(_tmp18, 1)[:, None]
tl.store(out_ptr1 + (x3), tmp18, xmask)
tmp27 = tl.sum(_tmp27, 1)[:, None]
tl.store(out_ptr2 + (x3), tmp27, xmask)
tmp36 = tl.sum(_tmp36, 1)[:, None]
tl.store(out_ptr3 + (x3), tmp36, xmask)
tmp45 = tl.sum(_tmp45, 1)[:, None]
tl.store(out_ptr4 + (x3), tmp45, xmask)
tmp54 = tl.sum(_tmp54, 1)[:, None]
tl.store(out_ptr5 + (x3), tmp54, xmask)
tmp63 = tl.sum(_tmp63, 1)[:, None]
tl.store(out_ptr6 + (x3), tmp63, xmask)
tmp72 = tl.sum(_tmp72, 1)[:, None]
tl.store(out_ptr7 + (x3), tmp72, xmask)
tmp81 = tl.sum(_tmp81, 1)[:, None]
tl.store(out_ptr8 + (x3), tmp81, xmask)
tmp90 = tl.sum(_tmp90, 1)[:, None]
tl.store(out_ptr9 + (x3), tmp90, xmask)
tmp99 = tl.sum(_tmp99, 1)[:, None]
tl.store(out_ptr10 + (x3), tmp99, xmask)
tmp108 = tl.sum(_tmp108, 1)[:, None]
tl.store(out_ptr11 + (x3), tmp108, xmask)
tmp117 = tl.sum(_tmp117, 1)[:, None]
tl.store(out_ptr12 + (x3), tmp117, xmask)
tmp126 = tl.sum(_tmp126, 1)[:, None]
tl.store(out_ptr13 + (x3), tmp126, xmask)
tmp135 = tl.sum(_tmp135, 1)[:, None]
tl.store(out_ptr14 + (x3), tmp135, xmask)
tmp144 = tl.sum(_tmp144, 1)[:, None]
tl.store(out_ptr15 + (x3), tmp144, xmask)
tmp153 = tl.sum(_tmp153, 1)[:, None]
tl.store(out_ptr16 + (x3), tmp153, xmask)
tmp162 = tl.sum(_tmp162, 1)[:, None]
tl.store(out_ptr17 + (x3), tmp162, xmask)
tmp171 = tl.sum(_tmp171, 1)[:, None]
tl.store(out_ptr18 + (x3), tmp171, xmask)
tmp180 = tl.sum(_tmp180, 1)[:, None]
tl.store(out_ptr19 + (x3), tmp180, xmask)
tmp189 = tl.sum(_tmp189, 1)[:, None]
tl.store(out_ptr20 + (x3), tmp189, xmask)
tmp198 = tl.sum(_tmp198, 1)[:, None]
tl.store(out_ptr21 + (x3), tmp198, xmask)
tmp207 = tl.sum(_tmp207, 1)[:, None]
tl.store(out_ptr22 + (x3), tmp207, xmask)
tmp216 = tl.sum(_tmp216, 1)[:, None]
tl.store(out_ptr23 + (x3), tmp216, xmask)
tmp225 = tl.sum(_tmp225, 1)[:, None]
tl.store(out_ptr24 + (x3), tmp225, xmask)
tmp234 = tl.sum(_tmp234, 1)[:, None]
tl.store(out_ptr25 + (x3), tmp234, xmask)
tmp243 = tl.sum(_tmp243, 1)[:, None]
tl.store(out_ptr26 + (x3), tmp243, xmask)
tmp252 = tl.sum(_tmp252, 1)[:, None]
tl.store(out_ptr27 + (x3), tmp252, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/m5/cm5hatbwewijgqsezz7mpghb6gtaqevomtlc673msign42fqnq42.py
# Topologically Sorted Source Nodes: [residual_115, sum_58, residual_117, sum_59, residual_119, sum_60, residual_121, sum_61, residual_123, sum_62, residual_125, sum_63, residual_127, sum_64], Original ATen: [aten.mul, aten.sum]
# Source node to ATen node mapping:
# residual_115 => mul_57
# residual_117 => mul_58
# residual_119 => mul_59
# residual_121 => mul_60
# residual_123 => mul_61
# residual_125 => mul_62
# residual_127 => mul_63
# sum_58 => sum_60
# sum_59 => sum_61
# sum_60 => sum_62
# sum_61 => sum_63
# sum_62 => sum_64
# sum_63 => sum_65
# sum_64 => sum_66
# Graph fragment:
# %mul_57 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_58, %unsqueeze_173), kwargs = {})
# %sum_60 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_57, [-1]), kwargs = {})
# %mul_58 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_59, %unsqueeze_176), kwargs = {})
# %sum_61 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_58, [-1]), kwargs = {})
# %mul_59 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_60, %unsqueeze_179), kwargs = {})
# %sum_62 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_59, [-1]), kwargs = {})
# %mul_60 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_61, %unsqueeze_182), kwargs = {})
# %sum_63 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_60, [-1]), kwargs = {})
# %mul_61 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_62, %unsqueeze_185), kwargs = {})
# %sum_64 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_61, [-1]), kwargs = {})
# %mul_62 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_63, %unsqueeze_188), kwargs = {})
# %sum_65 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_62, [-1]), kwargs = {})
# %mul_63 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_64, %unsqueeze_191), kwargs = {})
# %sum_66 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_63, [-1]), kwargs = {})
triton_red_fused_mul_sum_5 = async_compile.triton('triton_red_fused_mul_sum_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[512, 4096],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: '*fp32', 11: '*fp32', 12: '*fp32', 13: '*fp32', 14: '*fp32', 15: '*fp32', 16: '*fp32', 17: 'i32', 18: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_mul_sum_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 7, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused_mul_sum_5(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5, out_ptr6, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 512
rnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x3 = xindex
x1 = (xindex // 128)
_tmp9 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp18 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp27 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp36 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp45 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp54 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp63 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex
tmp0 = tl.load(in_ptr0 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp1 = tl.load(in_ptr1 + (233472 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp2 = tl.load(in_ptr2 + (r2 + (4096*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp5 = tl.load(in_ptr3 + (r2 + (4096*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tl.load(in_ptr4 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp12 = tl.load(in_ptr1 + (237568 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp20 = tl.load(in_ptr5 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp21 = tl.load(in_ptr1 + (241664 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp29 = tl.load(in_ptr6 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp30 = tl.load(in_ptr1 + (245760 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp38 = tl.load(in_ptr7 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp39 = tl.load(in_ptr1 + (249856 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp47 = tl.load(in_ptr8 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp48 = tl.load(in_ptr1 + (253952 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp56 = tl.load(in_ptr9 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp57 = tl.load(in_ptr1 + (258048 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp3 = tmp1 - tmp2
tmp4 = tl_math.exp(tmp3)
tmp6 = tmp4 / tmp5
tmp7 = tmp0 * tmp6
tmp8 = tl.broadcast_to(tmp7, [XBLOCK, RBLOCK])
tmp10 = _tmp9 + tmp8
_tmp9 = tl.where(rmask & xmask, tmp10, _tmp9)
tmp13 = tmp12 - tmp2
tmp14 = tl_math.exp(tmp13)
tmp15 = tmp14 / tmp5
tmp16 = tmp11 * tmp15
tmp17 = tl.broadcast_to(tmp16, [XBLOCK, RBLOCK])
tmp19 = _tmp18 + tmp17
_tmp18 = tl.where(rmask & xmask, tmp19, _tmp18)
tmp22 = tmp21 - tmp2
tmp23 = tl_math.exp(tmp22)
tmp24 = tmp23 / tmp5
tmp25 = tmp20 * tmp24
tmp26 = tl.broadcast_to(tmp25, [XBLOCK, RBLOCK])
tmp28 = _tmp27 + tmp26
_tmp27 = tl.where(rmask & xmask, tmp28, _tmp27)
tmp31 = tmp30 - tmp2
tmp32 = tl_math.exp(tmp31)
tmp33 = tmp32 / tmp5
tmp34 = tmp29 * tmp33
tmp35 = tl.broadcast_to(tmp34, [XBLOCK, RBLOCK])
tmp37 = _tmp36 + tmp35
_tmp36 = tl.where(rmask & xmask, tmp37, _tmp36)
tmp40 = tmp39 - tmp2
tmp41 = tl_math.exp(tmp40)
tmp42 = tmp41 / tmp5
tmp43 = tmp38 * tmp42
tmp44 = tl.broadcast_to(tmp43, [XBLOCK, RBLOCK])
tmp46 = _tmp45 + tmp44
_tmp45 = tl.where(rmask & xmask, tmp46, _tmp45)
tmp49 = tmp48 - tmp2
tmp50 = tl_math.exp(tmp49)
tmp51 = tmp50 / tmp5
tmp52 = tmp47 * tmp51
tmp53 = tl.broadcast_to(tmp52, [XBLOCK, RBLOCK])
tmp55 = _tmp54 + tmp53
_tmp54 = tl.where(rmask & xmask, tmp55, _tmp54)
tmp58 = tmp57 - tmp2
tmp59 = tl_math.exp(tmp58)
tmp60 = tmp59 / tmp5
tmp61 = tmp56 * tmp60
tmp62 = tl.broadcast_to(tmp61, [XBLOCK, RBLOCK])
tmp64 = _tmp63 + tmp62
_tmp63 = tl.where(rmask & xmask, tmp64, _tmp63)
tmp9 = tl.sum(_tmp9, 1)[:, None]
tl.store(out_ptr0 + (x3), tmp9, xmask)
tmp18 = tl.sum(_tmp18, 1)[:, None]
tl.store(out_ptr1 + (x3), tmp18, xmask)
tmp27 = tl.sum(_tmp27, 1)[:, None]
tl.store(out_ptr2 + (x3), tmp27, xmask)
tmp36 = tl.sum(_tmp36, 1)[:, None]
tl.store(out_ptr3 + (x3), tmp36, xmask)
tmp45 = tl.sum(_tmp45, 1)[:, None]
tl.store(out_ptr4 + (x3), tmp45, xmask)
tmp54 = tl.sum(_tmp54, 1)[:, None]
tl.store(out_ptr5 + (x3), tmp54, xmask)
tmp63 = tl.sum(_tmp63, 1)[:, None]
tl.store(out_ptr6 + (x3), tmp63, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/ew/cewrqjskzvue6r2kcna4men3gingd3ajhrksiyyptwu2fliqalf7.py
# Topologically Sorted Source Nodes: [vlad, setitem, setitem_1, setitem_2, setitem_3, setitem_4, setitem_5, setitem_6, setitem_7, setitem_8, setitem_9, setitem_10, setitem_11, setitem_12, setitem_13, setitem_14, setitem_15, setitem_16, setitem_17, setitem_18, setitem_19, setitem_20, setitem_21, setitem_22, setitem_23, setitem_24, setitem_25, setitem_26, setitem_27, setitem_28, setitem_29, setitem_30, setitem_31, setitem_32, setitem_33, setitem_34, setitem_35, setitem_36, setitem_37, setitem_38, setitem_39, setitem_40, setitem_41, setitem_42, setitem_43, setitem_44, setitem_45, setitem_46, setitem_47, setitem_48, setitem_49, setitem_50, setitem_51, setitem_52, setitem_53, setitem_54, setitem_55, setitem_56, setitem_57, setitem_58, setitem_59, setitem_60, setitem_61, setitem_62, setitem_63, vlad_1], Original ATen: [aten.zeros, aten.copy, aten.linalg_vector_norm]
# Source node to ATen node mapping:
# setitem => copy
# setitem_1 => copy_1
# setitem_10 => copy_10
# setitem_11 => copy_11
# setitem_12 => copy_12
# setitem_13 => copy_13
# setitem_14 => copy_14
# setitem_15 => copy_15
# setitem_16 => copy_16
# setitem_17 => copy_17
# setitem_18 => copy_18
# setitem_19 => copy_19
# setitem_2 => copy_2
# setitem_20 => copy_20
# setitem_21 => copy_21
# setitem_22 => copy_22
# setitem_23 => copy_23
# setitem_24 => copy_24
# setitem_25 => copy_25
# setitem_26 => copy_26
# setitem_27 => copy_27
# setitem_28 => copy_28
# setitem_29 => copy_29
# setitem_3 => copy_3
# setitem_30 => copy_30
# setitem_31 => copy_31
# setitem_32 => copy_32
# setitem_33 => copy_33
# setitem_34 => copy_34
# setitem_35 => copy_35
# setitem_36 => copy_36
# setitem_37 => copy_37
# setitem_38 => copy_38
# setitem_39 => copy_39
# setitem_4 => copy_4
# setitem_40 => copy_40
# setitem_41 => copy_41
# setitem_42 => copy_42
# setitem_43 => copy_43
# setitem_44 => copy_44
# setitem_45 => copy_45
# setitem_46 => copy_46
# setitem_47 => copy_47
# setitem_48 => copy_48
# setitem_49 => copy_49
# setitem_5 => copy_5
# setitem_50 => copy_50
# setitem_51 => copy_51
# setitem_52 => copy_52
# setitem_53 => copy_53
# setitem_54 => copy_54
# setitem_55 => copy_55
# setitem_56 => copy_56
# setitem_57 => copy_57
# setitem_58 => copy_58
# setitem_59 => copy_59
# setitem_6 => copy_6
# setitem_60 => copy_60
# setitem_61 => copy_61
# setitem_62 => copy_62
# setitem_63 => copy_63
# setitem_7 => copy_7
# setitem_8 => copy_8
# setitem_9 => copy_9
# vlad => full
# vlad_1 => pow_3, pow_4, sum_67
# Graph fragment:
# %full : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([4, 64, 128], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %copy : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_7, %sum_3), kwargs = {})
# %slice_scatter_default : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%full, %copy, 1, 0, 1), kwargs = {})
# %copy_1 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_26, %sum_4), kwargs = {})
# %slice_scatter_default_1 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default, %copy_1, 1, 1, 2), kwargs = {})
# %copy_2 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_45, %sum_5), kwargs = {})
# %slice_scatter_default_2 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_1, %copy_2, 1, 2, 3), kwargs = {})
# %copy_3 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_64, %sum_6), kwargs = {})
# %slice_scatter_default_3 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_2, %copy_3, 1, 3, 4), kwargs = {})
# %copy_4 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_83, %sum_7), kwargs = {})
# %slice_scatter_default_4 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_3, %copy_4, 1, 4, 5), kwargs = {})
# %copy_5 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_102, %sum_8), kwargs = {})
# %slice_scatter_default_5 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_4, %copy_5, 1, 5, 6), kwargs = {})
# %copy_6 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_121, %sum_9), kwargs = {})
# %slice_scatter_default_6 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_5, %copy_6, 1, 6, 7), kwargs = {})
# %copy_7 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_140, %sum_10), kwargs = {})
# %slice_scatter_default_7 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_6, %copy_7, 1, 7, 8), kwargs = {})
# %copy_8 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_159, %sum_11), kwargs = {})
# %slice_scatter_default_8 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_7, %copy_8, 1, 8, 9), kwargs = {})
# %copy_9 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_178, %sum_12), kwargs = {})
# %slice_scatter_default_9 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_8, %copy_9, 1, 9, 10), kwargs = {})
# %copy_10 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_197, %sum_13), kwargs = {})
# %slice_scatter_default_10 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_9, %copy_10, 1, 10, 11), kwargs = {})
# %copy_11 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_216, %sum_14), kwargs = {})
# %slice_scatter_default_11 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_10, %copy_11, 1, 11, 12), kwargs = {})
# %copy_12 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_235, %sum_15), kwargs = {})
# %slice_scatter_default_12 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_11, %copy_12, 1, 12, 13), kwargs = {})
# %copy_13 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_254, %sum_16), kwargs = {})
# %slice_scatter_default_13 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_12, %copy_13, 1, 13, 14), kwargs = {})
# %copy_14 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_273, %sum_17), kwargs = {})
# %slice_scatter_default_14 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_13, %copy_14, 1, 14, 15), kwargs = {})
# %copy_15 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_292, %sum_18), kwargs = {})
# %slice_scatter_default_15 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_14, %copy_15, 1, 15, 16), kwargs = {})
# %copy_16 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_311, %sum_19), kwargs = {})
# %slice_scatter_default_16 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_15, %copy_16, 1, 16, 17), kwargs = {})
# %copy_17 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_330, %sum_20), kwargs = {})
# %slice_scatter_default_17 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_16, %copy_17, 1, 17, 18), kwargs = {})
# %copy_18 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_349, %sum_21), kwargs = {})
# %slice_scatter_default_18 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_17, %copy_18, 1, 18, 19), kwargs = {})
# %copy_19 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_368, %sum_22), kwargs = {})
# %slice_scatter_default_19 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_18, %copy_19, 1, 19, 20), kwargs = {})
# %copy_20 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_387, %sum_23), kwargs = {})
# %slice_scatter_default_20 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_19, %copy_20, 1, 20, 21), kwargs = {})
# %copy_21 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_406, %sum_24), kwargs = {})
# %slice_scatter_default_21 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_20, %copy_21, 1, 21, 22), kwargs = {})
# %copy_22 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_425, %sum_25), kwargs = {})
# %slice_scatter_default_22 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_21, %copy_22, 1, 22, 23), kwargs = {})
# %copy_23 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_444, %sum_26), kwargs = {})
# %slice_scatter_default_23 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_22, %copy_23, 1, 23, 24), kwargs = {})
# %copy_24 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_463, %sum_27), kwargs = {})
# %slice_scatter_default_24 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_23, %copy_24, 1, 24, 25), kwargs = {})
# %copy_25 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_482, %sum_28), kwargs = {})
# %slice_scatter_default_25 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_24, %copy_25, 1, 25, 26), kwargs = {})
# %copy_26 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_501, %sum_29), kwargs = {})
# %slice_scatter_default_26 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_25, %copy_26, 1, 26, 27), kwargs = {})
# %copy_27 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_520, %sum_30), kwargs = {})
# %slice_scatter_default_27 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_26, %copy_27, 1, 27, 28), kwargs = {})
# %copy_28 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_539, %sum_31), kwargs = {})
# %slice_scatter_default_28 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_27, %copy_28, 1, 28, 29), kwargs = {})
# %copy_29 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_558, %sum_32), kwargs = {})
# %slice_scatter_default_29 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_28, %copy_29, 1, 29, 30), kwargs = {})
# %copy_30 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_577, %sum_33), kwargs = {})
# %slice_scatter_default_30 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_29, %copy_30, 1, 30, 31), kwargs = {})
# %copy_31 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_596, %sum_34), kwargs = {})
# %slice_scatter_default_31 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_30, %copy_31, 1, 31, 32), kwargs = {})
# %copy_32 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_615, %sum_35), kwargs = {})
# %slice_scatter_default_32 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_31, %copy_32, 1, 32, 33), kwargs = {})
# %copy_33 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_634, %sum_36), kwargs = {})
# %slice_scatter_default_33 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_32, %copy_33, 1, 33, 34), kwargs = {})
# %copy_34 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_653, %sum_37), kwargs = {})
# %slice_scatter_default_34 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_33, %copy_34, 1, 34, 35), kwargs = {})
# %copy_35 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_672, %sum_38), kwargs = {})
# %slice_scatter_default_35 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_34, %copy_35, 1, 35, 36), kwargs = {})
# %copy_36 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_691, %sum_39), kwargs = {})
# %slice_scatter_default_36 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_35, %copy_36, 1, 36, 37), kwargs = {})
# %copy_37 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_710, %sum_40), kwargs = {})
# %slice_scatter_default_37 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_36, %copy_37, 1, 37, 38), kwargs = {})
# %copy_38 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_729, %sum_41), kwargs = {})
# %slice_scatter_default_38 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_37, %copy_38, 1, 38, 39), kwargs = {})
# %copy_39 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_748, %sum_42), kwargs = {})
# %slice_scatter_default_39 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_38, %copy_39, 1, 39, 40), kwargs = {})
# %copy_40 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_767, %sum_43), kwargs = {})
# %slice_scatter_default_40 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_39, %copy_40, 1, 40, 41), kwargs = {})
# %copy_41 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_786, %sum_44), kwargs = {})
# %slice_scatter_default_41 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_40, %copy_41, 1, 41, 42), kwargs = {})
# %copy_42 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_805, %sum_45), kwargs = {})
# %slice_scatter_default_42 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_41, %copy_42, 1, 42, 43), kwargs = {})
# %copy_43 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_824, %sum_46), kwargs = {})
# %slice_scatter_default_43 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_42, %copy_43, 1, 43, 44), kwargs = {})
# %copy_44 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_843, %sum_47), kwargs = {})
# %slice_scatter_default_44 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_43, %copy_44, 1, 44, 45), kwargs = {})
# %copy_45 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_862, %sum_48), kwargs = {})
# %slice_scatter_default_45 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_44, %copy_45, 1, 45, 46), kwargs = {})
# %copy_46 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_881, %sum_49), kwargs = {})
# %slice_scatter_default_46 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_45, %copy_46, 1, 46, 47), kwargs = {})
# %copy_47 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_900, %sum_50), kwargs = {})
# %slice_scatter_default_47 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_46, %copy_47, 1, 47, 48), kwargs = {})
# %copy_48 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_919, %sum_51), kwargs = {})
# %slice_scatter_default_48 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_47, %copy_48, 1, 48, 49), kwargs = {})
# %copy_49 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_938, %sum_52), kwargs = {})
# %slice_scatter_default_49 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_48, %copy_49, 1, 49, 50), kwargs = {})
# %copy_50 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_957, %sum_53), kwargs = {})
# %slice_scatter_default_50 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_49, %copy_50, 1, 50, 51), kwargs = {})
# %copy_51 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_976, %sum_54), kwargs = {})
# %slice_scatter_default_51 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_50, %copy_51, 1, 51, 52), kwargs = {})
# %copy_52 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_995, %sum_55), kwargs = {})
# %slice_scatter_default_52 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_51, %copy_52, 1, 52, 53), kwargs = {})
# %copy_53 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_1014, %sum_56), kwargs = {})
# %slice_scatter_default_53 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_52, %copy_53, 1, 53, 54), kwargs = {})
# %copy_54 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_1033, %sum_57), kwargs = {})
# %slice_scatter_default_54 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_53, %copy_54, 1, 54, 55), kwargs = {})
# %copy_55 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_1052, %sum_58), kwargs = {})
# %slice_scatter_default_55 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_54, %copy_55, 1, 55, 56), kwargs = {})
# %copy_56 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_1071, %sum_59), kwargs = {})
# %slice_scatter_default_56 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_55, %copy_56, 1, 56, 57), kwargs = {})
# %copy_57 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_1090, %sum_60), kwargs = {})
# %slice_scatter_default_57 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_56, %copy_57, 1, 57, 58), kwargs = {})
# %copy_58 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_1109, %sum_61), kwargs = {})
# %slice_scatter_default_58 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_57, %copy_58, 1, 58, 59), kwargs = {})
# %copy_59 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_1128, %sum_62), kwargs = {})
# %slice_scatter_default_59 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_58, %copy_59, 1, 59, 60), kwargs = {})
# %copy_60 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_1147, %sum_63), kwargs = {})
# %slice_scatter_default_60 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_59, %copy_60, 1, 60, 61), kwargs = {})
# %copy_61 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_1166, %sum_64), kwargs = {})
# %slice_scatter_default_61 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_60, %copy_61, 1, 61, 62), kwargs = {})
# %copy_62 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_1185, %sum_65), kwargs = {})
# %slice_scatter_default_62 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_61, %copy_62, 1, 62, 63), kwargs = {})
# %copy_63 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_1204, %sum_66), kwargs = {})
# %slice_scatter_default_63 : [num_users=3] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_62, %copy_63, 1, 63, 64), kwargs = {})
# %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%slice_scatter_default_63, 2), kwargs = {})
# %sum_67 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_3, [2], True), kwargs = {})
# %pow_4 : [num_users=2] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_67, 0.5), kwargs = {})
triton_per_fused_copy_linalg_vector_norm_zeros_6 = async_compile.triton('triton_per_fused_copy_linalg_vector_norm_zeros_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[256, 128],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: '*fp32', 11: '*fp32', 12: '*fp32', 13: '*fp32', 14: '*fp32', 15: '*fp32', 16: '*fp32', 17: '*fp32', 18: '*fp32', 19: '*fp32', 20: '*fp32', 21: '*fp32', 22: '*fp32', 23: '*fp32', 24: '*fp32', 25: '*fp32', 26: '*fp32', 27: '*fp32', 28: '*fp32', 29: '*fp32', 30: '*fp32', 31: '*fp32', 32: '*fp32', 33: '*fp32', 34: '*fp32', 35: '*fp32', 36: '*fp32', 37: '*fp32', 38: '*fp32', 39: '*fp32', 40: '*fp32', 41: '*fp32', 42: '*fp32', 43: '*fp32', 44: '*fp32', 45: '*fp32', 46: '*fp32', 47: '*fp32', 48: '*fp32', 49: '*fp32', 50: '*fp32', 51: '*fp32', 52: '*fp32', 53: '*fp32', 54: '*fp32', 55: '*fp32', 56: '*fp32', 57: '*fp32', 58: '*fp32', 59: '*fp32', 60: '*fp32', 61: '*fp32', 62: '*fp32', 63: '*fp32', 64: '*fp32', 65: '*fp32', 66: 'i32', 67: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_copy_linalg_vector_norm_zeros_6', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 64, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_copy_linalg_vector_norm_zeros_6(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, in_ptr12, in_ptr13, in_ptr14, in_ptr15, in_ptr16, in_ptr17, in_ptr18, in_ptr19, in_ptr20, in_ptr21, in_ptr22, in_ptr23, in_ptr24, in_ptr25, in_ptr26, in_ptr27, in_ptr28, in_ptr29, in_ptr30, in_ptr31, in_ptr32, in_ptr33, in_ptr34, in_ptr35, in_ptr36, in_ptr37, in_ptr38, in_ptr39, in_ptr40, in_ptr41, in_ptr42, in_ptr43, in_ptr44, in_ptr45, in_ptr46, in_ptr47, in_ptr48, in_ptr49, in_ptr50, in_ptr51, in_ptr52, in_ptr53, in_ptr54, in_ptr55, in_ptr56, in_ptr57, in_ptr58, in_ptr59, in_ptr60, in_ptr61, in_ptr62, in_ptr63, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 256
rnumel = 128
RBLOCK: tl.constexpr = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
x0 = xindex % 64
r2 = rindex
x1 = (xindex // 64)
x3 = xindex
tmp0 = x0
tmp1 = tl.full([1, 1], 4, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1, 1], 5, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = tl.load(in_ptr0 + (r2 + (128*x1)), tmp5 & xmask, eviction_policy='evict_last', other=0.0)
tmp7 = tl.full([1, 1], 3, tl.int64)
tmp8 = tmp0 >= tmp7
tmp9 = tmp0 < tmp1
tmp10 = tmp8 & tmp9
tmp11 = tl.load(in_ptr1 + (r2 + (128*x1)), tmp10 & xmask, eviction_policy='evict_last', other=0.0)
tmp12 = tl.full([1, 1], 2, tl.int64)
tmp13 = tmp0 >= tmp12
tmp14 = tmp0 < tmp7
tmp15 = tmp13 & tmp14
tmp16 = tl.load(in_ptr2 + (r2 + (128*x1)), tmp15 & xmask, eviction_policy='evict_last', other=0.0)
tmp17 = tl.full([1, 1], 1, tl.int64)
tmp18 = tmp0 >= tmp17
tmp19 = tmp0 < tmp12
tmp20 = tmp18 & tmp19
tmp21 = tl.load(in_ptr3 + (r2 + (128*x1)), tmp20 & xmask, eviction_policy='evict_last', other=0.0)
tmp22 = tmp0 < tmp17
tmp23 = tl.load(in_ptr4 + (r2 + (128*x1)), tmp22 & xmask, eviction_policy='evict_last', other=0.0)
tmp24 = 0.0
tmp25 = tl.where(tmp22, tmp23, tmp24)
tmp26 = tl.where(tmp20, tmp21, tmp25)
tmp27 = tl.where(tmp15, tmp16, tmp26)
tmp28 = tl.where(tmp10, tmp11, tmp27)
tmp29 = tl.where(tmp5, tmp6, tmp28)
tmp30 = tl.full([1, 1], 8, tl.int64)
tmp31 = tmp0 >= tmp30
tmp32 = tl.full([1, 1], 9, tl.int64)
tmp33 = tmp0 < tmp32
tmp34 = tmp31 & tmp33
tmp35 = tl.load(in_ptr5 + (r2 + (128*x1)), tmp34 & xmask, eviction_policy='evict_last', other=0.0)
tmp36 = tl.full([1, 1], 7, tl.int64)
tmp37 = tmp0 >= tmp36
tmp38 = tmp0 < tmp30
tmp39 = tmp37 & tmp38
tmp40 = tl.load(in_ptr6 + (r2 + (128*x1)), tmp39 & xmask, eviction_policy='evict_last', other=0.0)
tmp41 = tl.full([1, 1], 6, tl.int64)
tmp42 = tmp0 >= tmp41
tmp43 = tmp0 < tmp36
tmp44 = tmp42 & tmp43
tmp45 = tl.load(in_ptr7 + (r2 + (128*x1)), tmp44 & xmask, eviction_policy='evict_last', other=0.0)
tmp46 = tmp0 >= tmp3
tmp47 = tmp0 < tmp41
tmp48 = tmp46 & tmp47
tmp49 = tl.load(in_ptr8 + (r2 + (128*x1)), tmp48 & xmask, eviction_policy='evict_last', other=0.0)
tmp50 = tl.where(tmp48, tmp49, tmp29)
tmp51 = tl.where(tmp44, tmp45, tmp50)
tmp52 = tl.where(tmp39, tmp40, tmp51)
tmp53 = tl.where(tmp34, tmp35, tmp52)
tmp54 = tl.full([1, 1], 12, tl.int64)
tmp55 = tmp0 >= tmp54
tmp56 = tl.full([1, 1], 13, tl.int64)
tmp57 = tmp0 < tmp56
tmp58 = tmp55 & tmp57
tmp59 = tl.load(in_ptr9 + (r2 + (128*x1)), tmp58 & xmask, eviction_policy='evict_last', other=0.0)
tmp60 = tl.full([1, 1], 11, tl.int64)
tmp61 = tmp0 >= tmp60
tmp62 = tmp0 < tmp54
tmp63 = tmp61 & tmp62
tmp64 = tl.load(in_ptr10 + (r2 + (128*x1)), tmp63 & xmask, eviction_policy='evict_last', other=0.0)
tmp65 = tl.full([1, 1], 10, tl.int64)
tmp66 = tmp0 >= tmp65
tmp67 = tmp0 < tmp60
tmp68 = tmp66 & tmp67
tmp69 = tl.load(in_ptr11 + (r2 + (128*x1)), tmp68 & xmask, eviction_policy='evict_last', other=0.0)
tmp70 = tmp0 >= tmp32
tmp71 = tmp0 < tmp65
tmp72 = tmp70 & tmp71
tmp73 = tl.load(in_ptr12 + (r2 + (128*x1)), tmp72 & xmask, eviction_policy='evict_last', other=0.0)
tmp74 = tl.where(tmp72, tmp73, tmp53)
tmp75 = tl.where(tmp68, tmp69, tmp74)
tmp76 = tl.where(tmp63, tmp64, tmp75)
tmp77 = tl.where(tmp58, tmp59, tmp76)
tmp78 = tl.full([1, 1], 16, tl.int64)
tmp79 = tmp0 >= tmp78
tmp80 = tl.full([1, 1], 17, tl.int64)
tmp81 = tmp0 < tmp80
tmp82 = tmp79 & tmp81
tmp83 = tl.load(in_ptr13 + (r2 + (128*x1)), tmp82 & xmask, eviction_policy='evict_last', other=0.0)
tmp84 = tl.full([1, 1], 15, tl.int64)
tmp85 = tmp0 >= tmp84
tmp86 = tmp0 < tmp78
tmp87 = tmp85 & tmp86
tmp88 = tl.load(in_ptr14 + (r2 + (128*x1)), tmp87 & xmask, eviction_policy='evict_last', other=0.0)
tmp89 = tl.full([1, 1], 14, tl.int64)
tmp90 = tmp0 >= tmp89
tmp91 = tmp0 < tmp84
tmp92 = tmp90 & tmp91
tmp93 = tl.load(in_ptr15 + (r2 + (128*x1)), tmp92 & xmask, eviction_policy='evict_last', other=0.0)
tmp94 = tmp0 >= tmp56
tmp95 = tmp0 < tmp89
tmp96 = tmp94 & tmp95
tmp97 = tl.load(in_ptr16 + (r2 + (128*x1)), tmp96 & xmask, eviction_policy='evict_last', other=0.0)
tmp98 = tl.where(tmp96, tmp97, tmp77)
tmp99 = tl.where(tmp92, tmp93, tmp98)
tmp100 = tl.where(tmp87, tmp88, tmp99)
tmp101 = tl.where(tmp82, tmp83, tmp100)
tmp102 = tl.full([1, 1], 20, tl.int64)
tmp103 = tmp0 >= tmp102
tmp104 = tl.full([1, 1], 21, tl.int64)
tmp105 = tmp0 < tmp104
tmp106 = tmp103 & tmp105
tmp107 = tl.load(in_ptr17 + (r2 + (128*x1)), tmp106 & xmask, eviction_policy='evict_last', other=0.0)
tmp108 = tl.full([1, 1], 19, tl.int64)
tmp109 = tmp0 >= tmp108
tmp110 = tmp0 < tmp102
tmp111 = tmp109 & tmp110
tmp112 = tl.load(in_ptr18 + (r2 + (128*x1)), tmp111 & xmask, eviction_policy='evict_last', other=0.0)
tmp113 = tl.full([1, 1], 18, tl.int64)
tmp114 = tmp0 >= tmp113
tmp115 = tmp0 < tmp108
tmp116 = tmp114 & tmp115
tmp117 = tl.load(in_ptr19 + (r2 + (128*x1)), tmp116 & xmask, eviction_policy='evict_last', other=0.0)
tmp118 = tmp0 >= tmp80
tmp119 = tmp0 < tmp113
tmp120 = tmp118 & tmp119
tmp121 = tl.load(in_ptr20 + (r2 + (128*x1)), tmp120 & xmask, eviction_policy='evict_last', other=0.0)
tmp122 = tl.where(tmp120, tmp121, tmp101)
tmp123 = tl.where(tmp116, tmp117, tmp122)
tmp124 = tl.where(tmp111, tmp112, tmp123)
tmp125 = tl.where(tmp106, tmp107, tmp124)
tmp126 = tl.full([1, 1], 24, tl.int64)
tmp127 = tmp0 >= tmp126
tmp128 = tl.full([1, 1], 25, tl.int64)
tmp129 = tmp0 < tmp128
tmp130 = tmp127 & tmp129
tmp131 = tl.load(in_ptr21 + (r2 + (128*x1)), tmp130 & xmask, eviction_policy='evict_last', other=0.0)
tmp132 = tl.full([1, 1], 23, tl.int64)
tmp133 = tmp0 >= tmp132
tmp134 = tmp0 < tmp126
tmp135 = tmp133 & tmp134
tmp136 = tl.load(in_ptr22 + (r2 + (128*x1)), tmp135 & xmask, eviction_policy='evict_last', other=0.0)
tmp137 = tl.full([1, 1], 22, tl.int64)
tmp138 = tmp0 >= tmp137
tmp139 = tmp0 < tmp132
tmp140 = tmp138 & tmp139
tmp141 = tl.load(in_ptr23 + (r2 + (128*x1)), tmp140 & xmask, eviction_policy='evict_last', other=0.0)
tmp142 = tmp0 >= tmp104
tmp143 = tmp0 < tmp137
tmp144 = tmp142 & tmp143
tmp145 = tl.load(in_ptr24 + (r2 + (128*x1)), tmp144 & xmask, eviction_policy='evict_last', other=0.0)
tmp146 = tl.where(tmp144, tmp145, tmp125)
tmp147 = tl.where(tmp140, tmp141, tmp146)
tmp148 = tl.where(tmp135, tmp136, tmp147)
tmp149 = tl.where(tmp130, tmp131, tmp148)
tmp150 = tl.full([1, 1], 28, tl.int64)
tmp151 = tmp0 >= tmp150
tmp152 = tl.full([1, 1], 29, tl.int64)
tmp153 = tmp0 < tmp152
tmp154 = tmp151 & tmp153
tmp155 = tl.load(in_ptr25 + (r2 + (128*x1)), tmp154 & xmask, eviction_policy='evict_last', other=0.0)
tmp156 = tl.full([1, 1], 27, tl.int64)
tmp157 = tmp0 >= tmp156
tmp158 = tmp0 < tmp150
tmp159 = tmp157 & tmp158
tmp160 = tl.load(in_ptr26 + (r2 + (128*x1)), tmp159 & xmask, eviction_policy='evict_last', other=0.0)
tmp161 = tl.full([1, 1], 26, tl.int64)
tmp162 = tmp0 >= tmp161
tmp163 = tmp0 < tmp156
tmp164 = tmp162 & tmp163
tmp165 = tl.load(in_ptr27 + (r2 + (128*x1)), tmp164 & xmask, eviction_policy='evict_last', other=0.0)
tmp166 = tmp0 >= tmp128
tmp167 = tmp0 < tmp161
tmp168 = tmp166 & tmp167
tmp169 = tl.load(in_ptr28 + (r2 + (128*x1)), tmp168 & xmask, eviction_policy='evict_last', other=0.0)
tmp170 = tl.where(tmp168, tmp169, tmp149)
tmp171 = tl.where(tmp164, tmp165, tmp170)
tmp172 = tl.where(tmp159, tmp160, tmp171)
tmp173 = tl.where(tmp154, tmp155, tmp172)
tmp174 = tl.full([1, 1], 32, tl.int64)
tmp175 = tmp0 >= tmp174
tmp176 = tl.full([1, 1], 33, tl.int64)
tmp177 = tmp0 < tmp176
tmp178 = tmp175 & tmp177
tmp179 = tl.load(in_ptr29 + (r2 + (128*x1)), tmp178 & xmask, eviction_policy='evict_last', other=0.0)
tmp180 = tl.full([1, 1], 31, tl.int64)
tmp181 = tmp0 >= tmp180
tmp182 = tmp0 < tmp174
tmp183 = tmp181 & tmp182
tmp184 = tl.load(in_ptr30 + (r2 + (128*x1)), tmp183 & xmask, eviction_policy='evict_last', other=0.0)
tmp185 = tl.full([1, 1], 30, tl.int64)
tmp186 = tmp0 >= tmp185
tmp187 = tmp0 < tmp180
tmp188 = tmp186 & tmp187
tmp189 = tl.load(in_ptr31 + (r2 + (128*x1)), tmp188 & xmask, eviction_policy='evict_last', other=0.0)
tmp190 = tmp0 >= tmp152
tmp191 = tmp0 < tmp185
tmp192 = tmp190 & tmp191
tmp193 = tl.load(in_ptr32 + (r2 + (128*x1)), tmp192 & xmask, eviction_policy='evict_last', other=0.0)
tmp194 = tl.where(tmp192, tmp193, tmp173)
tmp195 = tl.where(tmp188, tmp189, tmp194)
tmp196 = tl.where(tmp183, tmp184, tmp195)
tmp197 = tl.where(tmp178, tmp179, tmp196)
tmp198 = tl.full([1, 1], 36, tl.int64)
tmp199 = tmp0 >= tmp198
tmp200 = tl.full([1, 1], 37, tl.int64)
tmp201 = tmp0 < tmp200
tmp202 = tmp199 & tmp201
tmp203 = tl.load(in_ptr33 + (r2 + (128*x1)), tmp202 & xmask, eviction_policy='evict_last', other=0.0)
tmp204 = tl.full([1, 1], 35, tl.int64)
tmp205 = tmp0 >= tmp204
tmp206 = tmp0 < tmp198
tmp207 = tmp205 & tmp206
tmp208 = tl.load(in_ptr34 + (r2 + (128*x1)), tmp207 & xmask, eviction_policy='evict_last', other=0.0)
tmp209 = tl.full([1, 1], 34, tl.int64)
tmp210 = tmp0 >= tmp209
tmp211 = tmp0 < tmp204
tmp212 = tmp210 & tmp211
tmp213 = tl.load(in_ptr35 + (r2 + (128*x1)), tmp212 & xmask, eviction_policy='evict_last', other=0.0)
tmp214 = tmp0 >= tmp176
tmp215 = tmp0 < tmp209
tmp216 = tmp214 & tmp215
tmp217 = tl.load(in_ptr36 + (r2 + (128*x1)), tmp216 & xmask, eviction_policy='evict_last', other=0.0)
tmp218 = tl.where(tmp216, tmp217, tmp197)
tmp219 = tl.where(tmp212, tmp213, tmp218)
tmp220 = tl.where(tmp207, tmp208, tmp219)
tmp221 = tl.where(tmp202, tmp203, tmp220)
tmp222 = tl.full([1, 1], 40, tl.int64)
tmp223 = tmp0 >= tmp222
tmp224 = tl.full([1, 1], 41, tl.int64)
tmp225 = tmp0 < tmp224
tmp226 = tmp223 & tmp225
tmp227 = tl.load(in_ptr37 + (r2 + (128*x1)), tmp226 & xmask, eviction_policy='evict_last', other=0.0)
tmp228 = tl.full([1, 1], 39, tl.int64)
tmp229 = tmp0 >= tmp228
tmp230 = tmp0 < tmp222
tmp231 = tmp229 & tmp230
tmp232 = tl.load(in_ptr38 + (r2 + (128*x1)), tmp231 & xmask, eviction_policy='evict_last', other=0.0)
tmp233 = tl.full([1, 1], 38, tl.int64)
tmp234 = tmp0 >= tmp233
tmp235 = tmp0 < tmp228
tmp236 = tmp234 & tmp235
tmp237 = tl.load(in_ptr39 + (r2 + (128*x1)), tmp236 & xmask, eviction_policy='evict_last', other=0.0)
tmp238 = tmp0 >= tmp200
tmp239 = tmp0 < tmp233
tmp240 = tmp238 & tmp239
tmp241 = tl.load(in_ptr40 + (r2 + (128*x1)), tmp240 & xmask, eviction_policy='evict_last', other=0.0)
tmp242 = tl.where(tmp240, tmp241, tmp221)
tmp243 = tl.where(tmp236, tmp237, tmp242)
tmp244 = tl.where(tmp231, tmp232, tmp243)
tmp245 = tl.where(tmp226, tmp227, tmp244)
tmp246 = tl.full([1, 1], 44, tl.int64)
tmp247 = tmp0 >= tmp246
tmp248 = tl.full([1, 1], 45, tl.int64)
tmp249 = tmp0 < tmp248
tmp250 = tmp247 & tmp249
tmp251 = tl.load(in_ptr41 + (r2 + (128*x1)), tmp250 & xmask, eviction_policy='evict_last', other=0.0)
tmp252 = tl.full([1, 1], 43, tl.int64)
tmp253 = tmp0 >= tmp252
tmp254 = tmp0 < tmp246
tmp255 = tmp253 & tmp254
tmp256 = tl.load(in_ptr42 + (r2 + (128*x1)), tmp255 & xmask, eviction_policy='evict_last', other=0.0)
tmp257 = tl.full([1, 1], 42, tl.int64)
tmp258 = tmp0 >= tmp257
tmp259 = tmp0 < tmp252
tmp260 = tmp258 & tmp259
tmp261 = tl.load(in_ptr43 + (r2 + (128*x1)), tmp260 & xmask, eviction_policy='evict_last', other=0.0)
tmp262 = tmp0 >= tmp224
tmp263 = tmp0 < tmp257
tmp264 = tmp262 & tmp263
tmp265 = tl.load(in_ptr44 + (r2 + (128*x1)), tmp264 & xmask, eviction_policy='evict_last', other=0.0)
tmp266 = tl.where(tmp264, tmp265, tmp245)
tmp267 = tl.where(tmp260, tmp261, tmp266)
tmp268 = tl.where(tmp255, tmp256, tmp267)
tmp269 = tl.where(tmp250, tmp251, tmp268)
tmp270 = tl.full([1, 1], 48, tl.int64)
tmp271 = tmp0 >= tmp270
tmp272 = tl.full([1, 1], 49, tl.int64)
tmp273 = tmp0 < tmp272
tmp274 = tmp271 & tmp273
tmp275 = tl.load(in_ptr45 + (r2 + (128*x1)), tmp274 & xmask, eviction_policy='evict_last', other=0.0)
tmp276 = tl.full([1, 1], 47, tl.int64)
tmp277 = tmp0 >= tmp276
tmp278 = tmp0 < tmp270
tmp279 = tmp277 & tmp278
tmp280 = tl.load(in_ptr46 + (r2 + (128*x1)), tmp279 & xmask, eviction_policy='evict_last', other=0.0)
tmp281 = tl.full([1, 1], 46, tl.int64)
tmp282 = tmp0 >= tmp281
tmp283 = tmp0 < tmp276
tmp284 = tmp282 & tmp283
tmp285 = tl.load(in_ptr47 + (r2 + (128*x1)), tmp284 & xmask, eviction_policy='evict_last', other=0.0)
tmp286 = tmp0 >= tmp248
tmp287 = tmp0 < tmp281
tmp288 = tmp286 & tmp287
tmp289 = tl.load(in_ptr48 + (r2 + (128*x1)), tmp288 & xmask, eviction_policy='evict_last', other=0.0)
tmp290 = tl.where(tmp288, tmp289, tmp269)
tmp291 = tl.where(tmp284, tmp285, tmp290)
tmp292 = tl.where(tmp279, tmp280, tmp291)
tmp293 = tl.where(tmp274, tmp275, tmp292)
tmp294 = tl.full([1, 1], 52, tl.int64)
tmp295 = tmp0 >= tmp294
tmp296 = tl.full([1, 1], 53, tl.int64)
tmp297 = tmp0 < tmp296
tmp298 = tmp295 & tmp297
tmp299 = tl.load(in_ptr49 + (r2 + (128*x1)), tmp298 & xmask, eviction_policy='evict_last', other=0.0)
tmp300 = tl.full([1, 1], 51, tl.int64)
tmp301 = tmp0 >= tmp300
tmp302 = tmp0 < tmp294
tmp303 = tmp301 & tmp302
tmp304 = tl.load(in_ptr50 + (r2 + (128*x1)), tmp303 & xmask, eviction_policy='evict_last', other=0.0)
tmp305 = tl.full([1, 1], 50, tl.int64)
tmp306 = tmp0 >= tmp305
tmp307 = tmp0 < tmp300
tmp308 = tmp306 & tmp307
tmp309 = tl.load(in_ptr51 + (r2 + (128*x1)), tmp308 & xmask, eviction_policy='evict_last', other=0.0)
tmp310 = tmp0 >= tmp272
tmp311 = tmp0 < tmp305
tmp312 = tmp310 & tmp311
tmp313 = tl.load(in_ptr52 + (r2 + (128*x1)), tmp312 & xmask, eviction_policy='evict_last', other=0.0)
tmp314 = tl.where(tmp312, tmp313, tmp293)
tmp315 = tl.where(tmp308, tmp309, tmp314)
tmp316 = tl.where(tmp303, tmp304, tmp315)
tmp317 = tl.where(tmp298, tmp299, tmp316)
tmp318 = tl.full([1, 1], 56, tl.int64)
tmp319 = tmp0 >= tmp318
tmp320 = tl.full([1, 1], 57, tl.int64)
tmp321 = tmp0 < tmp320
tmp322 = tmp319 & tmp321
tmp323 = tl.load(in_ptr53 + (r2 + (128*x1)), tmp322 & xmask, eviction_policy='evict_last', other=0.0)
tmp324 = tl.full([1, 1], 55, tl.int64)
tmp325 = tmp0 >= tmp324
tmp326 = tmp0 < tmp318
tmp327 = tmp325 & tmp326
tmp328 = tl.load(in_ptr54 + (r2 + (128*x1)), tmp327 & xmask, eviction_policy='evict_last', other=0.0)
tmp329 = tl.full([1, 1], 54, tl.int64)
tmp330 = tmp0 >= tmp329
tmp331 = tmp0 < tmp324
tmp332 = tmp330 & tmp331
tmp333 = tl.load(in_ptr55 + (r2 + (128*x1)), tmp332 & xmask, eviction_policy='evict_last', other=0.0)
tmp334 = tmp0 >= tmp296
tmp335 = tmp0 < tmp329
tmp336 = tmp334 & tmp335
tmp337 = tl.load(in_ptr56 + (r2 + (128*x1)), tmp336 & xmask, eviction_policy='evict_last', other=0.0)
tmp338 = tl.where(tmp336, tmp337, tmp317)
tmp339 = tl.where(tmp332, tmp333, tmp338)
tmp340 = tl.where(tmp327, tmp328, tmp339)
tmp341 = tl.where(tmp322, tmp323, tmp340)
tmp342 = tl.full([1, 1], 60, tl.int64)
tmp343 = tmp0 >= tmp342
tmp344 = tl.full([1, 1], 61, tl.int64)
tmp345 = tmp0 < tmp344
tmp346 = tmp343 & tmp345
tmp347 = tl.load(in_ptr57 + (r2 + (128*x1)), tmp346 & xmask, eviction_policy='evict_last', other=0.0)
tmp348 = tl.full([1, 1], 59, tl.int64)
tmp349 = tmp0 >= tmp348
tmp350 = tmp0 < tmp342
tmp351 = tmp349 & tmp350
tmp352 = tl.load(in_ptr58 + (r2 + (128*x1)), tmp351 & xmask, eviction_policy='evict_last', other=0.0)
tmp353 = tl.full([1, 1], 58, tl.int64)
tmp354 = tmp0 >= tmp353
tmp355 = tmp0 < tmp348
tmp356 = tmp354 & tmp355
tmp357 = tl.load(in_ptr59 + (r2 + (128*x1)), tmp356 & xmask, eviction_policy='evict_last', other=0.0)
tmp358 = tmp0 >= tmp320
tmp359 = tmp0 < tmp353
tmp360 = tmp358 & tmp359
tmp361 = tl.load(in_ptr60 + (r2 + (128*x1)), tmp360 & xmask, eviction_policy='evict_last', other=0.0)
tmp362 = tl.where(tmp360, tmp361, tmp341)
tmp363 = tl.where(tmp356, tmp357, tmp362)
tmp364 = tl.where(tmp351, tmp352, tmp363)
tmp365 = tl.where(tmp346, tmp347, tmp364)
tmp366 = tl.full([1, 1], 63, tl.int64)
tmp367 = tmp0 >= tmp366
tmp368 = tl.load(in_ptr61 + (r2 + (128*x1)), tmp367 & xmask, eviction_policy='evict_last', other=0.0)
tmp369 = tl.full([1, 1], 62, tl.int64)
tmp370 = tmp0 >= tmp369
tmp371 = tmp0 < tmp366
tmp372 = tmp370 & tmp371
tmp373 = tl.load(in_ptr62 + (r2 + (128*x1)), tmp372 & xmask, eviction_policy='evict_last', other=0.0)
tmp374 = tmp0 >= tmp344
tmp375 = tmp0 < tmp369
tmp376 = tmp374 & tmp375
tmp377 = tl.load(in_ptr63 + (r2 + (128*x1)), tmp376 & xmask, eviction_policy='evict_last', other=0.0)
tmp378 = tl.where(tmp376, tmp377, tmp365)
tmp379 = tl.where(tmp372, tmp373, tmp378)
tmp380 = tl.where(tmp367, tmp368, tmp379)
tmp381 = tmp380 * tmp380
tmp382 = tl.broadcast_to(tmp381, [XBLOCK, RBLOCK])
tmp384 = tl.where(xmask, tmp382, 0)
tmp385 = tl.sum(tmp384, 1)[:, None]
tmp386 = libdevice.sqrt(tmp385)
tl.store(in_out_ptr0 + (r2 + (128*x3)), tmp380, xmask)
tl.debug_barrier()
tl.store(in_out_ptr1 + (x3), tmp386, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/t2/ct2f2hshheqz3ic3c445uhobgzuy7jfkonekptjcv4yqglojftmh.py
# Topologically Sorted Source Nodes: [vlad_3], Original ATen: [aten.linalg_vector_norm, aten.div]
# Source node to ATen node mapping:
# vlad_3 => div_3, pow_5, pow_6, sum_68
# Graph fragment:
# %pow_5 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%view_2, 2), kwargs = {})
# %sum_68 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_5, [1], True), kwargs = {})
# %pow_6 : [num_users=2] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_68, 0.5), kwargs = {})
# %div_3 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_2, %expand_66), kwargs = {})
triton_red_fused_div_linalg_vector_norm_7 = async_compile.triton('triton_red_fused_div_linalg_vector_norm_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[4, 8192],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_div_linalg_vector_norm_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused_div_linalg_vector_norm_7(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 4
rnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex
_tmp7 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp0 = tl.load(in_ptr0 + (r1 + (8192*x0)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp1 = tl.load(in_ptr1 + ((64*x0) + (r1 // 128)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp2 = 1e-12
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp4 = tmp0 / tmp3
tmp5 = tmp4 * tmp4
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp8 = _tmp7 + tmp6
_tmp7 = tl.where(rmask & xmask, tmp8, _tmp7)
tmp7 = tl.sum(_tmp7, 1)[:, None]
tmp9 = libdevice.sqrt(tmp7)
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp9, xmask)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp10 = tl.load(in_ptr0 + (r1 + (8192*x0)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp11 = tl.load(in_ptr1 + ((64*x0) + (r1 // 128)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp12 = 1e-12
tmp13 = triton_helpers.maximum(tmp11, tmp12)
tmp14 = tmp10 / tmp13
tmp15 = triton_helpers.maximum(tmp9, tmp12)
tmp16 = tmp14 / tmp15
tl.store(out_ptr0 + (r1 + (8192*x0)), tmp16, rmask & xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 128, 64, 64), (524288, 4096, 64, 1))
assert_size_stride(primals_2, (64, 128, 1, 1), (128, 1, 1, 1))
assert_size_stride(primals_3, (64, 128), (128, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 64, 64), (4096, 16384, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.linalg_vector_norm]
stream0 = get_raw_stream(0)
triton_red_fused_linalg_vector_norm_0.run(primals_1, buf0, 16384, 128, grid=grid(16384), stream=stream0)
buf1 = empty_strided_cuda((4, 128, 64, 64), (524288, 4096, 64, 1), torch.float32)
buf6 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf8 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf10 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf12 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf15 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf17 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf19 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf21 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf24 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf26 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf28 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf30 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf33 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf35 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf37 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf39 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf42 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf44 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf46 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf48 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf51 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf53 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf55 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf57 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf60 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf62 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf64 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf66 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf69 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf71 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf73 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf75 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf78 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf80 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf82 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf84 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf87 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf89 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf91 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf93 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf96 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf98 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf100 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf102 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf105 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf107 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf109 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf111 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf114 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf116 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf118 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf120 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf123 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf125 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf127 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf129 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf132 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf134 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf136 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf138 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf141 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf143 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf145 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
# Topologically Sorted Source Nodes: [x, residual_2, residual_4, residual_6, residual_8, residual_10, residual_12, residual_14, residual_16, residual_18, residual_20, residual_22, residual_24, residual_26, residual_28, residual_30, residual_32, residual_34, residual_36, residual_38, residual_40, residual_42, residual_44, residual_46, residual_48, residual_50, residual_52, residual_54, residual_56, residual_58, residual_60, residual_62, residual_64, residual_66, residual_68, residual_70, residual_72, residual_74, residual_76, residual_78, residual_80, residual_82, residual_84, residual_86, residual_88, residual_90, residual_92, residual_94, residual_96, residual_98, residual_100, residual_102, residual_104, residual_106, residual_108, residual_110, residual_112, residual_114, residual_116, residual_118, residual_120, residual_122, residual_124, residual_126], Original ATen: [aten.div, aten.sub]
triton_poi_fused_div_sub_1.run(primals_1, buf0, primals_3, buf1, buf6, buf8, buf10, buf12, buf15, buf17, buf19, buf21, buf24, buf26, buf28, buf30, buf33, buf35, buf37, buf39, buf42, buf44, buf46, buf48, buf51, buf53, buf55, buf57, buf60, buf62, buf64, buf66, buf69, buf71, buf73, buf75, buf78, buf80, buf82, buf84, buf87, buf89, buf91, buf93, buf96, buf98, buf100, buf102, buf105, buf107, buf109, buf111, buf114, buf116, buf118, buf120, buf123, buf125, buf127, buf129, buf132, buf134, buf136, buf138, buf141, buf143, buf145, 2097152, grid=grid(2097152), stream=stream0)
del primals_1
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 64, 64, 64), (262144, 4096, 64, 1))
buf3 = reinterpret_tensor(buf0, (4, 1, 4096), (4096, 4096, 1), 0); del buf0 # reuse
buf4 = empty_strided_cuda((4, 1, 4096), (4096, 4096, 1), torch.float32)
# Topologically Sorted Source Nodes: [soft_assign_1], Original ATen: [aten._softmax]
triton_per_fused__softmax_2.run(buf2, buf3, buf4, 16384, 64, grid=grid(16384), stream=stream0)
buf5 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf7 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf9 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf11 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf13 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf16 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf18 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf20 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf22 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf25 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf27 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf29 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf31 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf34 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf36 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf38 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf40 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf43 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf45 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf47 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf49 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf52 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf54 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf56 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf58 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf61 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf63 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf65 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf67 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
# Topologically Sorted Source Nodes: [residual, residual_1, sum_1, residual_3, sum_2, residual_5, sum_3, residual_7, sum_4, residual_9, sum_5, residual_11, sum_6, residual_13, sum_7, residual_15, sum_8, residual_17, sum_9, residual_19, sum_10, residual_21, sum_11, residual_23, sum_12, residual_25, sum_13, residual_27, sum_14, residual_29, sum_15, residual_31, sum_16, residual_33, sum_17, residual_35, sum_18, residual_37, sum_19, residual_39, sum_20, residual_41, sum_21, residual_43, sum_22, residual_45, sum_23, residual_47, sum_24, residual_49, sum_25, residual_51, sum_26, residual_53, sum_27, residual_55, sum_28, residual_57, sum_29], Original ATen: [aten.sub, aten.mul, aten.sum]
triton_red_fused_mul_sub_sum_3.run(buf1, primals_3, buf2, buf3, buf4, buf6, buf8, buf10, buf12, buf15, buf17, buf19, buf21, buf24, buf26, buf28, buf30, buf33, buf35, buf37, buf39, buf42, buf44, buf46, buf48, buf51, buf53, buf55, buf57, buf60, buf62, buf64, buf66, buf5, buf7, buf9, buf11, buf13, buf16, buf18, buf20, buf22, buf25, buf27, buf29, buf31, buf34, buf36, buf38, buf40, buf43, buf45, buf47, buf49, buf52, buf54, buf56, buf58, buf61, buf63, buf65, buf67, 512, 4096, grid=grid(512), stream=stream0)
buf70 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf72 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf74 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf76 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf79 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf81 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf83 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf85 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf88 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf90 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf92 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf94 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf97 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf99 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf101 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf103 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf106 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf108 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf110 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf112 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf115 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf117 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf119 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf121 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf124 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf126 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf128 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf130 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
# Topologically Sorted Source Nodes: [residual_59, sum_30, residual_61, sum_31, residual_63, sum_32, residual_65, sum_33, residual_67, sum_34, residual_69, sum_35, residual_71, sum_36, residual_73, sum_37, residual_75, sum_38, residual_77, sum_39, residual_79, sum_40, residual_81, sum_41, residual_83, sum_42, residual_85, sum_43, residual_87, sum_44, residual_89, sum_45, residual_91, sum_46, residual_93, sum_47, residual_95, sum_48, residual_97, sum_49, residual_99, sum_50, residual_101, sum_51, residual_103, sum_52, residual_105, sum_53, residual_107, sum_54, residual_109, sum_55, residual_111, sum_56, residual_113, sum_57], Original ATen: [aten.mul, aten.sum]
triton_red_fused_mul_sum_4.run(buf69, buf2, buf3, buf4, buf71, buf73, buf75, buf78, buf80, buf82, buf84, buf87, buf89, buf91, buf93, buf96, buf98, buf100, buf102, buf105, buf107, buf109, buf111, buf114, buf116, buf118, buf120, buf123, buf125, buf127, buf129, buf70, buf72, buf74, buf76, buf79, buf81, buf83, buf85, buf88, buf90, buf92, buf94, buf97, buf99, buf101, buf103, buf106, buf108, buf110, buf112, buf115, buf117, buf119, buf121, buf124, buf126, buf128, buf130, 512, 4096, grid=grid(512), stream=stream0)
buf133 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf135 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf137 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf139 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf142 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf144 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf146 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
# Topologically Sorted Source Nodes: [residual_115, sum_58, residual_117, sum_59, residual_119, sum_60, residual_121, sum_61, residual_123, sum_62, residual_125, sum_63, residual_127, sum_64], Original ATen: [aten.mul, aten.sum]
triton_red_fused_mul_sum_5.run(buf132, buf2, buf3, buf4, buf134, buf136, buf138, buf141, buf143, buf145, buf133, buf135, buf137, buf139, buf142, buf144, buf146, 512, 4096, grid=grid(512), stream=stream0)
buf14 = empty_strided_cuda((4, 64, 128), (8192, 128, 1), torch.float32)
buf23 = buf14; del buf14 # reuse
buf32 = buf23; del buf23 # reuse
buf41 = buf32; del buf32 # reuse
buf50 = buf41; del buf41 # reuse
buf59 = buf50; del buf50 # reuse
buf68 = buf59; del buf59 # reuse
buf77 = buf68; del buf68 # reuse
buf86 = buf77; del buf77 # reuse
buf95 = buf86; del buf86 # reuse
buf104 = buf95; del buf95 # reuse
buf113 = buf104; del buf104 # reuse
buf122 = buf113; del buf113 # reuse
buf131 = buf122; del buf122 # reuse
buf140 = buf131; del buf131 # reuse
buf147 = buf140; del buf140 # reuse
buf148 = empty_strided_cuda((4, 64, 1), (64, 1, 256), torch.float32)
buf149 = reinterpret_tensor(buf148, (4, 64, 1), (64, 1, 1), 0); del buf148 # reuse
# Topologically Sorted Source Nodes: [vlad, setitem, setitem_1, setitem_2, setitem_3, setitem_4, setitem_5, setitem_6, setitem_7, setitem_8, setitem_9, setitem_10, setitem_11, setitem_12, setitem_13, setitem_14, setitem_15, setitem_16, setitem_17, setitem_18, setitem_19, setitem_20, setitem_21, setitem_22, setitem_23, setitem_24, setitem_25, setitem_26, setitem_27, setitem_28, setitem_29, setitem_30, setitem_31, setitem_32, setitem_33, setitem_34, setitem_35, setitem_36, setitem_37, setitem_38, setitem_39, setitem_40, setitem_41, setitem_42, setitem_43, setitem_44, setitem_45, setitem_46, setitem_47, setitem_48, setitem_49, setitem_50, setitem_51, setitem_52, setitem_53, setitem_54, setitem_55, setitem_56, setitem_57, setitem_58, setitem_59, setitem_60, setitem_61, setitem_62, setitem_63, vlad_1], Original ATen: [aten.zeros, aten.copy, aten.linalg_vector_norm]
triton_per_fused_copy_linalg_vector_norm_zeros_6.run(buf147, buf149, buf13, buf11, buf9, buf7, buf5, buf22, buf20, buf18, buf16, buf31, buf29, buf27, buf25, buf40, buf38, buf36, buf34, buf49, buf47, buf45, buf43, buf58, buf56, buf54, buf52, buf67, buf65, buf63, buf61, buf76, buf74, buf72, buf70, buf85, buf83, buf81, buf79, buf94, buf92, buf90, buf88, buf103, buf101, buf99, buf97, buf112, buf110, buf108, buf106, buf121, buf119, buf117, buf115, buf130, buf128, buf126, buf124, buf139, buf137, buf135, buf133, buf146, buf144, buf142, 256, 128, grid=grid(256), stream=stream0)
del buf101
del buf103
del buf106
del buf108
del buf11
del buf110
del buf112
del buf115
del buf117
del buf119
del buf121
del buf124
del buf126
del buf128
del buf13
del buf130
del buf133
del buf135
del buf137
del buf139
del buf142
del buf144
del buf146
del buf16
del buf18
del buf20
del buf22
del buf25
del buf27
del buf29
del buf31
del buf34
del buf36
del buf38
del buf40
del buf43
del buf45
del buf47
del buf49
del buf5
del buf52
del buf54
del buf56
del buf58
del buf61
del buf63
del buf65
del buf67
del buf7
del buf70
del buf72
del buf74
del buf76
del buf79
del buf81
del buf83
del buf85
del buf88
del buf9
del buf90
del buf92
del buf94
del buf97
del buf99
buf150 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
buf151 = reinterpret_tensor(buf150, (4, 1), (1, 1), 0); del buf150 # reuse
buf152 = empty_strided_cuda((4, 8192), (8192, 1), torch.float32)
# Topologically Sorted Source Nodes: [vlad_3], Original ATen: [aten.linalg_vector_norm, aten.div]
triton_red_fused_div_linalg_vector_norm_7.run(buf151, buf147, buf149, buf152, 4, 8192, grid=grid(4), stream=stream0)
return (buf152, primals_2, buf1, buf2, buf3, buf4, reinterpret_tensor(primals_3, (1, 128), (128, 1), 0), buf6, buf8, buf10, buf12, buf15, buf17, buf19, buf21, buf24, buf26, buf28, buf30, buf33, buf35, buf37, buf39, buf42, buf44, buf46, buf48, buf51, buf53, buf55, buf57, buf60, buf62, buf64, buf66, buf69, buf71, buf73, buf75, buf78, buf80, buf82, buf84, buf87, buf89, buf91, buf93, buf96, buf98, buf100, buf102, buf105, buf107, buf109, buf111, buf114, buf116, buf118, buf120, buf123, buf125, buf127, buf129, buf132, buf134, buf136, buf138, buf141, buf143, buf145, buf147, buf149, buf151, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 128, 64, 64), (524288, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((64, 128, 1, 1), (128, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((64, 128), (128, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
from sklearn.neighbors import NearestNeighbors
class NetVLAD(nn.Module):
"""NetVLAD layer implementation"""
def __init__(self, num_clusters=64, dim=128, normalize_input=True,
vladv2=False, use_faiss=True):
"""
Args:
num_clusters : int
The number of clusters
dim : int
Dimension of descriptors
normalize_input : bool
If true, descriptor-wise L2 normalization is applied to input.
vladv2 : bool
If true, use vladv2 otherwise use vladv1
"""
super().__init__()
self.num_clusters = num_clusters
self.dim = dim
self.alpha = 0
self.vladv2 = vladv2
self.normalize_input = normalize_input
self.conv = nn.Conv2d(dim, num_clusters, kernel_size=(1, 1), bias=
vladv2)
self.centroids = nn.Parameter(torch.rand(num_clusters, dim))
self.use_faiss = use_faiss
def init_params(self, clsts, traindescs):
if not self.vladv2:
clstsAssign = clsts / np.linalg.norm(clsts, axis=1, keepdims=True)
dots = np.dot(clstsAssign, traindescs.T)
dots.sort(0)
dots = dots[::-1, :]
self.alpha = (-np.log(0.01) / np.mean(dots[0, :] - dots[1, :])
).item()
self.centroids = nn.Parameter(torch.from_numpy(clsts))
self.conv.weight = nn.Parameter(torch.from_numpy(self.alpha *
clstsAssign).unsqueeze(2).unsqueeze(3))
self.conv.bias = None
else:
if not self.use_faiss:
knn = NearestNeighbors(n_jobs=-1)
knn.fit(traindescs)
del traindescs
ds_sq = np.square(knn.kneighbors(clsts, 2)[1])
del knn
else:
index = faiss.IndexFlatL2(traindescs.shape[1])
index.add(traindescs)
del traindescs
ds_sq = np.square(index.search(clsts, 2)[1])
del index
self.alpha = (-np.log(0.01) / np.mean(ds_sq[:, 1] - ds_sq[:, 0])
).item()
self.centroids = nn.Parameter(torch.from_numpy(clsts))
del clsts, ds_sq
self.conv.weight = nn.Parameter((2.0 * self.alpha * self.
centroids).unsqueeze(-1).unsqueeze(-1))
self.conv.bias = nn.Parameter(-self.alpha * self.centroids.norm
(dim=1))
def forward(self, x):
N, C = x.shape[:2]
if self.normalize_input:
x = F.normalize(x, p=2, dim=1)
soft_assign = self.conv(x).view(N, self.num_clusters, -1)
soft_assign = F.softmax(soft_assign, dim=1)
x_flatten = x.view(N, C, -1)
vlad = torch.zeros([N, self.num_clusters, C], dtype=x.dtype, layout
=x.layout, device=x.device)
for C in range(self.num_clusters):
residual = x_flatten.unsqueeze(0).permute(1, 0, 2, 3
) - self.centroids[C:C + 1, :].expand(x_flatten.size(-1), -
1, -1).permute(1, 2, 0).unsqueeze(0)
residual *= soft_assign[:, C:C + 1, :].unsqueeze(2)
vlad[:, C:C + 1, :] = residual.sum(dim=-1)
vlad = F.normalize(vlad, p=2, dim=2)
vlad = vlad.view(x.size(0), -1)
vlad = F.normalize(vlad, p=2, dim=1)
return vlad
def get_inputs():
return [torch.rand([4, 128, 64, 64])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import numpy as np
import torch.nn as nn
from sklearn.neighbors import NearestNeighbors
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_red_fused_linalg_vector_norm_0(in_ptr0, out_ptr0, xnumel, rnumel,
XBLOCK: tl.constexpr, RBLOCK: tl.constexpr):
rnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex % 4096
x1 = xindex // 4096
_tmp3 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
x3 = xindex
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex
tmp0 = tl.load(in_ptr0 + (x0 + 4096 * r2 + 524288 * x1), rmask,
eviction_policy='evict_last', other=0.0)
tmp1 = tmp0 * tmp0
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = _tmp3 + tmp2
_tmp3 = tl.where(rmask, tmp4, _tmp3)
tmp3 = tl.sum(_tmp3, 1)[:, None]
tl.store(out_ptr0 + x3, tmp3, None)
@triton.jit
def triton_poi_fused_div_sub_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0,
out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5, out_ptr6, out_ptr7,
out_ptr8, out_ptr9, out_ptr10, out_ptr11, out_ptr12, out_ptr13,
out_ptr14, out_ptr15, out_ptr16, out_ptr17, out_ptr18, out_ptr19,
out_ptr20, out_ptr21, out_ptr22, out_ptr23, out_ptr24, out_ptr25,
out_ptr26, out_ptr27, out_ptr28, out_ptr29, out_ptr30, out_ptr31,
out_ptr32, out_ptr33, out_ptr34, out_ptr35, out_ptr36, out_ptr37,
out_ptr38, out_ptr39, out_ptr40, out_ptr41, out_ptr42, out_ptr43,
out_ptr44, out_ptr45, out_ptr46, out_ptr47, out_ptr48, out_ptr49,
out_ptr50, out_ptr51, out_ptr52, out_ptr53, out_ptr54, out_ptr55,
out_ptr56, out_ptr57, out_ptr58, out_ptr59, out_ptr60, out_ptr61,
out_ptr62, out_ptr63, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 4096
x2 = xindex // 524288
x1 = xindex // 4096 % 128
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + (x0 + 4096 * x2), None, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr2 + (128 + x1), None, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr2 + (256 + x1), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr2 + (384 + x1), None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr2 + (512 + x1), None, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr2 + (640 + x1), None, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr2 + (768 + x1), None, eviction_policy='evict_last')
tmp18 = tl.load(in_ptr2 + (896 + x1), None, eviction_policy='evict_last')
tmp20 = tl.load(in_ptr2 + (1024 + x1), None, eviction_policy='evict_last')
tmp22 = tl.load(in_ptr2 + (1152 + x1), None, eviction_policy='evict_last')
tmp24 = tl.load(in_ptr2 + (1280 + x1), None, eviction_policy='evict_last')
tmp26 = tl.load(in_ptr2 + (1408 + x1), None, eviction_policy='evict_last')
tmp28 = tl.load(in_ptr2 + (1536 + x1), None, eviction_policy='evict_last')
tmp30 = tl.load(in_ptr2 + (1664 + x1), None, eviction_policy='evict_last')
tmp32 = tl.load(in_ptr2 + (1792 + x1), None, eviction_policy='evict_last')
tmp34 = tl.load(in_ptr2 + (1920 + x1), None, eviction_policy='evict_last')
tmp36 = tl.load(in_ptr2 + (2048 + x1), None, eviction_policy='evict_last')
tmp38 = tl.load(in_ptr2 + (2176 + x1), None, eviction_policy='evict_last')
tmp40 = tl.load(in_ptr2 + (2304 + x1), None, eviction_policy='evict_last')
tmp42 = tl.load(in_ptr2 + (2432 + x1), None, eviction_policy='evict_last')
tmp44 = tl.load(in_ptr2 + (2560 + x1), None, eviction_policy='evict_last')
tmp46 = tl.load(in_ptr2 + (2688 + x1), None, eviction_policy='evict_last')
tmp48 = tl.load(in_ptr2 + (2816 + x1), None, eviction_policy='evict_last')
tmp50 = tl.load(in_ptr2 + (2944 + x1), None, eviction_policy='evict_last')
tmp52 = tl.load(in_ptr2 + (3072 + x1), None, eviction_policy='evict_last')
tmp54 = tl.load(in_ptr2 + (3200 + x1), None, eviction_policy='evict_last')
tmp56 = tl.load(in_ptr2 + (3328 + x1), None, eviction_policy='evict_last')
tmp58 = tl.load(in_ptr2 + (3456 + x1), None, eviction_policy='evict_last')
tmp60 = tl.load(in_ptr2 + (3584 + x1), None, eviction_policy='evict_last')
tmp62 = tl.load(in_ptr2 + (3712 + x1), None, eviction_policy='evict_last')
tmp64 = tl.load(in_ptr2 + (3840 + x1), None, eviction_policy='evict_last')
tmp66 = tl.load(in_ptr2 + (3968 + x1), None, eviction_policy='evict_last')
tmp68 = tl.load(in_ptr2 + (4096 + x1), None, eviction_policy='evict_last')
tmp70 = tl.load(in_ptr2 + (4224 + x1), None, eviction_policy='evict_last')
tmp72 = tl.load(in_ptr2 + (4352 + x1), None, eviction_policy='evict_last')
tmp74 = tl.load(in_ptr2 + (4480 + x1), None, eviction_policy='evict_last')
tmp76 = tl.load(in_ptr2 + (4608 + x1), None, eviction_policy='evict_last')
tmp78 = tl.load(in_ptr2 + (4736 + x1), None, eviction_policy='evict_last')
tmp80 = tl.load(in_ptr2 + (4864 + x1), None, eviction_policy='evict_last')
tmp82 = tl.load(in_ptr2 + (4992 + x1), None, eviction_policy='evict_last')
tmp84 = tl.load(in_ptr2 + (5120 + x1), None, eviction_policy='evict_last')
tmp86 = tl.load(in_ptr2 + (5248 + x1), None, eviction_policy='evict_last')
tmp88 = tl.load(in_ptr2 + (5376 + x1), None, eviction_policy='evict_last')
tmp90 = tl.load(in_ptr2 + (5504 + x1), None, eviction_policy='evict_last')
tmp92 = tl.load(in_ptr2 + (5632 + x1), None, eviction_policy='evict_last')
tmp94 = tl.load(in_ptr2 + (5760 + x1), None, eviction_policy='evict_last')
tmp96 = tl.load(in_ptr2 + (5888 + x1), None, eviction_policy='evict_last')
tmp98 = tl.load(in_ptr2 + (6016 + x1), None, eviction_policy='evict_last')
tmp100 = tl.load(in_ptr2 + (6144 + x1), None, eviction_policy='evict_last')
tmp102 = tl.load(in_ptr2 + (6272 + x1), None, eviction_policy='evict_last')
tmp104 = tl.load(in_ptr2 + (6400 + x1), None, eviction_policy='evict_last')
tmp106 = tl.load(in_ptr2 + (6528 + x1), None, eviction_policy='evict_last')
tmp108 = tl.load(in_ptr2 + (6656 + x1), None, eviction_policy='evict_last')
tmp110 = tl.load(in_ptr2 + (6784 + x1), None, eviction_policy='evict_last')
tmp112 = tl.load(in_ptr2 + (6912 + x1), None, eviction_policy='evict_last')
tmp114 = tl.load(in_ptr2 + (7040 + x1), None, eviction_policy='evict_last')
tmp116 = tl.load(in_ptr2 + (7168 + x1), None, eviction_policy='evict_last')
tmp118 = tl.load(in_ptr2 + (7296 + x1), None, eviction_policy='evict_last')
tmp120 = tl.load(in_ptr2 + (7424 + x1), None, eviction_policy='evict_last')
tmp122 = tl.load(in_ptr2 + (7552 + x1), None, eviction_policy='evict_last')
tmp124 = tl.load(in_ptr2 + (7680 + x1), None, eviction_policy='evict_last')
tmp126 = tl.load(in_ptr2 + (7808 + x1), None, eviction_policy='evict_last')
tmp128 = tl.load(in_ptr2 + (7936 + x1), None, eviction_policy='evict_last')
tmp130 = tl.load(in_ptr2 + (8064 + x1), None, eviction_policy='evict_last')
tmp2 = libdevice.sqrt(tmp1)
tmp3 = 1e-12
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp5 = tmp0 / tmp4
tmp7 = tmp5 - tmp6
tmp9 = tmp5 - tmp8
tmp11 = tmp5 - tmp10
tmp13 = tmp5 - tmp12
tmp15 = tmp5 - tmp14
tmp17 = tmp5 - tmp16
tmp19 = tmp5 - tmp18
tmp21 = tmp5 - tmp20
tmp23 = tmp5 - tmp22
tmp25 = tmp5 - tmp24
tmp27 = tmp5 - tmp26
tmp29 = tmp5 - tmp28
tmp31 = tmp5 - tmp30
tmp33 = tmp5 - tmp32
tmp35 = tmp5 - tmp34
tmp37 = tmp5 - tmp36
tmp39 = tmp5 - tmp38
tmp41 = tmp5 - tmp40
tmp43 = tmp5 - tmp42
tmp45 = tmp5 - tmp44
tmp47 = tmp5 - tmp46
tmp49 = tmp5 - tmp48
tmp51 = tmp5 - tmp50
tmp53 = tmp5 - tmp52
tmp55 = tmp5 - tmp54
tmp57 = tmp5 - tmp56
tmp59 = tmp5 - tmp58
tmp61 = tmp5 - tmp60
tmp63 = tmp5 - tmp62
tmp65 = tmp5 - tmp64
tmp67 = tmp5 - tmp66
tmp69 = tmp5 - tmp68
tmp71 = tmp5 - tmp70
tmp73 = tmp5 - tmp72
tmp75 = tmp5 - tmp74
tmp77 = tmp5 - tmp76
tmp79 = tmp5 - tmp78
tmp81 = tmp5 - tmp80
tmp83 = tmp5 - tmp82
tmp85 = tmp5 - tmp84
tmp87 = tmp5 - tmp86
tmp89 = tmp5 - tmp88
tmp91 = tmp5 - tmp90
tmp93 = tmp5 - tmp92
tmp95 = tmp5 - tmp94
tmp97 = tmp5 - tmp96
tmp99 = tmp5 - tmp98
tmp101 = tmp5 - tmp100
tmp103 = tmp5 - tmp102
tmp105 = tmp5 - tmp104
tmp107 = tmp5 - tmp106
tmp109 = tmp5 - tmp108
tmp111 = tmp5 - tmp110
tmp113 = tmp5 - tmp112
tmp115 = tmp5 - tmp114
tmp117 = tmp5 - tmp116
tmp119 = tmp5 - tmp118
tmp121 = tmp5 - tmp120
tmp123 = tmp5 - tmp122
tmp125 = tmp5 - tmp124
tmp127 = tmp5 - tmp126
tmp129 = tmp5 - tmp128
tmp131 = tmp5 - tmp130
tl.store(out_ptr0 + x3, tmp5, None)
tl.store(out_ptr1 + x3, tmp7, None)
tl.store(out_ptr2 + x3, tmp9, None)
tl.store(out_ptr3 + x3, tmp11, None)
tl.store(out_ptr4 + x3, tmp13, None)
tl.store(out_ptr5 + x3, tmp15, None)
tl.store(out_ptr6 + x3, tmp17, None)
tl.store(out_ptr7 + x3, tmp19, None)
tl.store(out_ptr8 + x3, tmp21, None)
tl.store(out_ptr9 + x3, tmp23, None)
tl.store(out_ptr10 + x3, tmp25, None)
tl.store(out_ptr11 + x3, tmp27, None)
tl.store(out_ptr12 + x3, tmp29, None)
tl.store(out_ptr13 + x3, tmp31, None)
tl.store(out_ptr14 + x3, tmp33, None)
tl.store(out_ptr15 + x3, tmp35, None)
tl.store(out_ptr16 + x3, tmp37, None)
tl.store(out_ptr17 + x3, tmp39, None)
tl.store(out_ptr18 + x3, tmp41, None)
tl.store(out_ptr19 + x3, tmp43, None)
tl.store(out_ptr20 + x3, tmp45, None)
tl.store(out_ptr21 + x3, tmp47, None)
tl.store(out_ptr22 + x3, tmp49, None)
tl.store(out_ptr23 + x3, tmp51, None)
tl.store(out_ptr24 + x3, tmp53, None)
tl.store(out_ptr25 + x3, tmp55, None)
tl.store(out_ptr26 + x3, tmp57, None)
tl.store(out_ptr27 + x3, tmp59, None)
tl.store(out_ptr28 + x3, tmp61, None)
tl.store(out_ptr29 + x3, tmp63, None)
tl.store(out_ptr30 + x3, tmp65, None)
tl.store(out_ptr31 + x3, tmp67, None)
tl.store(out_ptr32 + x3, tmp69, None)
tl.store(out_ptr33 + x3, tmp71, None)
tl.store(out_ptr34 + x3, tmp73, None)
tl.store(out_ptr35 + x3, tmp75, None)
tl.store(out_ptr36 + x3, tmp77, None)
tl.store(out_ptr37 + x3, tmp79, None)
tl.store(out_ptr38 + x3, tmp81, None)
tl.store(out_ptr39 + x3, tmp83, None)
tl.store(out_ptr40 + x3, tmp85, None)
tl.store(out_ptr41 + x3, tmp87, None)
tl.store(out_ptr42 + x3, tmp89, None)
tl.store(out_ptr43 + x3, tmp91, None)
tl.store(out_ptr44 + x3, tmp93, None)
tl.store(out_ptr45 + x3, tmp95, None)
tl.store(out_ptr46 + x3, tmp97, None)
tl.store(out_ptr47 + x3, tmp99, None)
tl.store(out_ptr48 + x3, tmp101, None)
tl.store(out_ptr49 + x3, tmp103, None)
tl.store(out_ptr50 + x3, tmp105, None)
tl.store(out_ptr51 + x3, tmp107, None)
tl.store(out_ptr52 + x3, tmp109, None)
tl.store(out_ptr53 + x3, tmp111, None)
tl.store(out_ptr54 + x3, tmp113, None)
tl.store(out_ptr55 + x3, tmp115, None)
tl.store(out_ptr56 + x3, tmp117, None)
tl.store(out_ptr57 + x3, tmp119, None)
tl.store(out_ptr58 + x3, tmp121, None)
tl.store(out_ptr59 + x3, tmp123, None)
tl.store(out_ptr60 + x3, tmp125, None)
tl.store(out_ptr61 + x3, tmp127, None)
tl.store(out_ptr62 + x3, tmp129, None)
tl.store(out_ptr63 + x3, tmp131, None)
@triton.jit
def triton_per_fused__softmax_2(in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel,
XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x0 = xindex % 4096
x1 = xindex // 4096
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4096 * r2 + 262144 * x1), None)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = triton_helpers.max2(tmp1, 1)[:, None]
tmp4 = tmp0 - tmp3
tmp5 = tl_math.exp(tmp4)
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp8 = tl.sum(tmp6, 1)[:, None]
tl.store(out_ptr0 + x3, tmp3, None)
tl.store(out_ptr1 + x3, tmp8, None)
@triton.jit
def triton_red_fused_mul_sub_sum_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10,
in_ptr11, in_ptr12, in_ptr13, in_ptr14, in_ptr15, in_ptr16, in_ptr17,
in_ptr18, in_ptr19, in_ptr20, in_ptr21, in_ptr22, in_ptr23, in_ptr24,
in_ptr25, in_ptr26, in_ptr27, in_ptr28, in_ptr29, in_ptr30, in_ptr31,
in_ptr32, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5,
out_ptr6, out_ptr7, out_ptr8, out_ptr9, out_ptr10, out_ptr11, out_ptr12,
out_ptr13, out_ptr14, out_ptr15, out_ptr16, out_ptr17, out_ptr18,
out_ptr19, out_ptr20, out_ptr21, out_ptr22, out_ptr23, out_ptr24,
out_ptr25, out_ptr26, out_ptr27, out_ptr28, xnumel, rnumel, XBLOCK: tl.
constexpr, RBLOCK: tl.constexpr):
xnumel = 512
rnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x3 = xindex
x0 = xindex % 128
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
x1 = xindex // 128
_tmp11 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp20 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp29 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp38 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp47 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp56 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp65 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp74 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp83 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp92 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp101 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp110 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp119 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp128 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp137 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp146 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp155 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp164 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp173 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp182 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp191 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp200 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp209 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp218 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp227 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp236 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp245 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp254 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp263 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex
tmp0 = tl.load(in_ptr0 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp3 = tl.load(in_ptr2 + (r2 + 262144 * x1), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp4 = tl.load(in_ptr3 + (r2 + 4096 * x1), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp7 = tl.load(in_ptr4 + (r2 + 4096 * x1), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp13 = tl.load(in_ptr5 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp14 = tl.load(in_ptr2 + (4096 + r2 + 262144 * x1), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp22 = tl.load(in_ptr6 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp23 = tl.load(in_ptr2 + (8192 + r2 + 262144 * x1), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp31 = tl.load(in_ptr7 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp32 = tl.load(in_ptr2 + (12288 + r2 + 262144 * x1), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp40 = tl.load(in_ptr8 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp41 = tl.load(in_ptr2 + (16384 + r2 + 262144 * x1), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp49 = tl.load(in_ptr9 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp50 = tl.load(in_ptr2 + (20480 + r2 + 262144 * x1), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp58 = tl.load(in_ptr10 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp59 = tl.load(in_ptr2 + (24576 + r2 + 262144 * x1), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp67 = tl.load(in_ptr11 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp68 = tl.load(in_ptr2 + (28672 + r2 + 262144 * x1), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp76 = tl.load(in_ptr12 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp77 = tl.load(in_ptr2 + (32768 + r2 + 262144 * x1), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp85 = tl.load(in_ptr13 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp86 = tl.load(in_ptr2 + (36864 + r2 + 262144 * x1), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp94 = tl.load(in_ptr14 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp95 = tl.load(in_ptr2 + (40960 + r2 + 262144 * x1), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp103 = tl.load(in_ptr15 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp104 = tl.load(in_ptr2 + (45056 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp112 = tl.load(in_ptr16 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp113 = tl.load(in_ptr2 + (49152 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp121 = tl.load(in_ptr17 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp122 = tl.load(in_ptr2 + (53248 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp130 = tl.load(in_ptr18 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp131 = tl.load(in_ptr2 + (57344 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp139 = tl.load(in_ptr19 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp140 = tl.load(in_ptr2 + (61440 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp148 = tl.load(in_ptr20 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp149 = tl.load(in_ptr2 + (65536 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp157 = tl.load(in_ptr21 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp158 = tl.load(in_ptr2 + (69632 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp166 = tl.load(in_ptr22 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp167 = tl.load(in_ptr2 + (73728 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp175 = tl.load(in_ptr23 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp176 = tl.load(in_ptr2 + (77824 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp184 = tl.load(in_ptr24 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp185 = tl.load(in_ptr2 + (81920 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp193 = tl.load(in_ptr25 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp194 = tl.load(in_ptr2 + (86016 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp202 = tl.load(in_ptr26 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp203 = tl.load(in_ptr2 + (90112 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp211 = tl.load(in_ptr27 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp212 = tl.load(in_ptr2 + (94208 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp220 = tl.load(in_ptr28 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp221 = tl.load(in_ptr2 + (98304 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp229 = tl.load(in_ptr29 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp230 = tl.load(in_ptr2 + (102400 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp238 = tl.load(in_ptr30 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp239 = tl.load(in_ptr2 + (106496 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp247 = tl.load(in_ptr31 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp248 = tl.load(in_ptr2 + (110592 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp256 = tl.load(in_ptr32 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp257 = tl.load(in_ptr2 + (114688 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp2 = tmp0 - tmp1
tmp5 = tmp3 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp8 = tmp6 / tmp7
tmp9 = tmp2 * tmp8
tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK])
tmp12 = _tmp11 + tmp10
_tmp11 = tl.where(rmask & xmask, tmp12, _tmp11)
tmp15 = tmp14 - tmp4
tmp16 = tl_math.exp(tmp15)
tmp17 = tmp16 / tmp7
tmp18 = tmp13 * tmp17
tmp19 = tl.broadcast_to(tmp18, [XBLOCK, RBLOCK])
tmp21 = _tmp20 + tmp19
_tmp20 = tl.where(rmask & xmask, tmp21, _tmp20)
tmp24 = tmp23 - tmp4
tmp25 = tl_math.exp(tmp24)
tmp26 = tmp25 / tmp7
tmp27 = tmp22 * tmp26
tmp28 = tl.broadcast_to(tmp27, [XBLOCK, RBLOCK])
tmp30 = _tmp29 + tmp28
_tmp29 = tl.where(rmask & xmask, tmp30, _tmp29)
tmp33 = tmp32 - tmp4
tmp34 = tl_math.exp(tmp33)
tmp35 = tmp34 / tmp7
tmp36 = tmp31 * tmp35
tmp37 = tl.broadcast_to(tmp36, [XBLOCK, RBLOCK])
tmp39 = _tmp38 + tmp37
_tmp38 = tl.where(rmask & xmask, tmp39, _tmp38)
tmp42 = tmp41 - tmp4
tmp43 = tl_math.exp(tmp42)
tmp44 = tmp43 / tmp7
tmp45 = tmp40 * tmp44
tmp46 = tl.broadcast_to(tmp45, [XBLOCK, RBLOCK])
tmp48 = _tmp47 + tmp46
_tmp47 = tl.where(rmask & xmask, tmp48, _tmp47)
tmp51 = tmp50 - tmp4
tmp52 = tl_math.exp(tmp51)
tmp53 = tmp52 / tmp7
tmp54 = tmp49 * tmp53
tmp55 = tl.broadcast_to(tmp54, [XBLOCK, RBLOCK])
tmp57 = _tmp56 + tmp55
_tmp56 = tl.where(rmask & xmask, tmp57, _tmp56)
tmp60 = tmp59 - tmp4
tmp61 = tl_math.exp(tmp60)
tmp62 = tmp61 / tmp7
tmp63 = tmp58 * tmp62
tmp64 = tl.broadcast_to(tmp63, [XBLOCK, RBLOCK])
tmp66 = _tmp65 + tmp64
_tmp65 = tl.where(rmask & xmask, tmp66, _tmp65)
tmp69 = tmp68 - tmp4
tmp70 = tl_math.exp(tmp69)
tmp71 = tmp70 / tmp7
tmp72 = tmp67 * tmp71
tmp73 = tl.broadcast_to(tmp72, [XBLOCK, RBLOCK])
tmp75 = _tmp74 + tmp73
_tmp74 = tl.where(rmask & xmask, tmp75, _tmp74)
tmp78 = tmp77 - tmp4
tmp79 = tl_math.exp(tmp78)
tmp80 = tmp79 / tmp7
tmp81 = tmp76 * tmp80
tmp82 = tl.broadcast_to(tmp81, [XBLOCK, RBLOCK])
tmp84 = _tmp83 + tmp82
_tmp83 = tl.where(rmask & xmask, tmp84, _tmp83)
tmp87 = tmp86 - tmp4
tmp88 = tl_math.exp(tmp87)
tmp89 = tmp88 / tmp7
tmp90 = tmp85 * tmp89
tmp91 = tl.broadcast_to(tmp90, [XBLOCK, RBLOCK])
tmp93 = _tmp92 + tmp91
_tmp92 = tl.where(rmask & xmask, tmp93, _tmp92)
tmp96 = tmp95 - tmp4
tmp97 = tl_math.exp(tmp96)
tmp98 = tmp97 / tmp7
tmp99 = tmp94 * tmp98
tmp100 = tl.broadcast_to(tmp99, [XBLOCK, RBLOCK])
tmp102 = _tmp101 + tmp100
_tmp101 = tl.where(rmask & xmask, tmp102, _tmp101)
tmp105 = tmp104 - tmp4
tmp106 = tl_math.exp(tmp105)
tmp107 = tmp106 / tmp7
tmp108 = tmp103 * tmp107
tmp109 = tl.broadcast_to(tmp108, [XBLOCK, RBLOCK])
tmp111 = _tmp110 + tmp109
_tmp110 = tl.where(rmask & xmask, tmp111, _tmp110)
tmp114 = tmp113 - tmp4
tmp115 = tl_math.exp(tmp114)
tmp116 = tmp115 / tmp7
tmp117 = tmp112 * tmp116
tmp118 = tl.broadcast_to(tmp117, [XBLOCK, RBLOCK])
tmp120 = _tmp119 + tmp118
_tmp119 = tl.where(rmask & xmask, tmp120, _tmp119)
tmp123 = tmp122 - tmp4
tmp124 = tl_math.exp(tmp123)
tmp125 = tmp124 / tmp7
tmp126 = tmp121 * tmp125
tmp127 = tl.broadcast_to(tmp126, [XBLOCK, RBLOCK])
tmp129 = _tmp128 + tmp127
_tmp128 = tl.where(rmask & xmask, tmp129, _tmp128)
tmp132 = tmp131 - tmp4
tmp133 = tl_math.exp(tmp132)
tmp134 = tmp133 / tmp7
tmp135 = tmp130 * tmp134
tmp136 = tl.broadcast_to(tmp135, [XBLOCK, RBLOCK])
tmp138 = _tmp137 + tmp136
_tmp137 = tl.where(rmask & xmask, tmp138, _tmp137)
tmp141 = tmp140 - tmp4
tmp142 = tl_math.exp(tmp141)
tmp143 = tmp142 / tmp7
tmp144 = tmp139 * tmp143
tmp145 = tl.broadcast_to(tmp144, [XBLOCK, RBLOCK])
tmp147 = _tmp146 + tmp145
_tmp146 = tl.where(rmask & xmask, tmp147, _tmp146)
tmp150 = tmp149 - tmp4
tmp151 = tl_math.exp(tmp150)
tmp152 = tmp151 / tmp7
tmp153 = tmp148 * tmp152
tmp154 = tl.broadcast_to(tmp153, [XBLOCK, RBLOCK])
tmp156 = _tmp155 + tmp154
_tmp155 = tl.where(rmask & xmask, tmp156, _tmp155)
tmp159 = tmp158 - tmp4
tmp160 = tl_math.exp(tmp159)
tmp161 = tmp160 / tmp7
tmp162 = tmp157 * tmp161
tmp163 = tl.broadcast_to(tmp162, [XBLOCK, RBLOCK])
tmp165 = _tmp164 + tmp163
_tmp164 = tl.where(rmask & xmask, tmp165, _tmp164)
tmp168 = tmp167 - tmp4
tmp169 = tl_math.exp(tmp168)
tmp170 = tmp169 / tmp7
tmp171 = tmp166 * tmp170
tmp172 = tl.broadcast_to(tmp171, [XBLOCK, RBLOCK])
tmp174 = _tmp173 + tmp172
_tmp173 = tl.where(rmask & xmask, tmp174, _tmp173)
tmp177 = tmp176 - tmp4
tmp178 = tl_math.exp(tmp177)
tmp179 = tmp178 / tmp7
tmp180 = tmp175 * tmp179
tmp181 = tl.broadcast_to(tmp180, [XBLOCK, RBLOCK])
tmp183 = _tmp182 + tmp181
_tmp182 = tl.where(rmask & xmask, tmp183, _tmp182)
tmp186 = tmp185 - tmp4
tmp187 = tl_math.exp(tmp186)
tmp188 = tmp187 / tmp7
tmp189 = tmp184 * tmp188
tmp190 = tl.broadcast_to(tmp189, [XBLOCK, RBLOCK])
tmp192 = _tmp191 + tmp190
_tmp191 = tl.where(rmask & xmask, tmp192, _tmp191)
tmp195 = tmp194 - tmp4
tmp196 = tl_math.exp(tmp195)
tmp197 = tmp196 / tmp7
tmp198 = tmp193 * tmp197
tmp199 = tl.broadcast_to(tmp198, [XBLOCK, RBLOCK])
tmp201 = _tmp200 + tmp199
_tmp200 = tl.where(rmask & xmask, tmp201, _tmp200)
tmp204 = tmp203 - tmp4
tmp205 = tl_math.exp(tmp204)
tmp206 = tmp205 / tmp7
tmp207 = tmp202 * tmp206
tmp208 = tl.broadcast_to(tmp207, [XBLOCK, RBLOCK])
tmp210 = _tmp209 + tmp208
_tmp209 = tl.where(rmask & xmask, tmp210, _tmp209)
tmp213 = tmp212 - tmp4
tmp214 = tl_math.exp(tmp213)
tmp215 = tmp214 / tmp7
tmp216 = tmp211 * tmp215
tmp217 = tl.broadcast_to(tmp216, [XBLOCK, RBLOCK])
tmp219 = _tmp218 + tmp217
_tmp218 = tl.where(rmask & xmask, tmp219, _tmp218)
tmp222 = tmp221 - tmp4
tmp223 = tl_math.exp(tmp222)
tmp224 = tmp223 / tmp7
tmp225 = tmp220 * tmp224
tmp226 = tl.broadcast_to(tmp225, [XBLOCK, RBLOCK])
tmp228 = _tmp227 + tmp226
_tmp227 = tl.where(rmask & xmask, tmp228, _tmp227)
tmp231 = tmp230 - tmp4
tmp232 = tl_math.exp(tmp231)
tmp233 = tmp232 / tmp7
tmp234 = tmp229 * tmp233
tmp235 = tl.broadcast_to(tmp234, [XBLOCK, RBLOCK])
tmp237 = _tmp236 + tmp235
_tmp236 = tl.where(rmask & xmask, tmp237, _tmp236)
tmp240 = tmp239 - tmp4
tmp241 = tl_math.exp(tmp240)
tmp242 = tmp241 / tmp7
tmp243 = tmp238 * tmp242
tmp244 = tl.broadcast_to(tmp243, [XBLOCK, RBLOCK])
tmp246 = _tmp245 + tmp244
_tmp245 = tl.where(rmask & xmask, tmp246, _tmp245)
tmp249 = tmp248 - tmp4
tmp250 = tl_math.exp(tmp249)
tmp251 = tmp250 / tmp7
tmp252 = tmp247 * tmp251
tmp253 = tl.broadcast_to(tmp252, [XBLOCK, RBLOCK])
tmp255 = _tmp254 + tmp253
_tmp254 = tl.where(rmask & xmask, tmp255, _tmp254)
tmp258 = tmp257 - tmp4
tmp259 = tl_math.exp(tmp258)
tmp260 = tmp259 / tmp7
tmp261 = tmp256 * tmp260
tmp262 = tl.broadcast_to(tmp261, [XBLOCK, RBLOCK])
tmp264 = _tmp263 + tmp262
_tmp263 = tl.where(rmask & xmask, tmp264, _tmp263)
tmp11 = tl.sum(_tmp11, 1)[:, None]
tl.store(out_ptr0 + x3, tmp11, xmask)
tmp20 = tl.sum(_tmp20, 1)[:, None]
tl.store(out_ptr1 + x3, tmp20, xmask)
tmp29 = tl.sum(_tmp29, 1)[:, None]
tl.store(out_ptr2 + x3, tmp29, xmask)
tmp38 = tl.sum(_tmp38, 1)[:, None]
tl.store(out_ptr3 + x3, tmp38, xmask)
tmp47 = tl.sum(_tmp47, 1)[:, None]
tl.store(out_ptr4 + x3, tmp47, xmask)
tmp56 = tl.sum(_tmp56, 1)[:, None]
tl.store(out_ptr5 + x3, tmp56, xmask)
tmp65 = tl.sum(_tmp65, 1)[:, None]
tl.store(out_ptr6 + x3, tmp65, xmask)
tmp74 = tl.sum(_tmp74, 1)[:, None]
tl.store(out_ptr7 + x3, tmp74, xmask)
tmp83 = tl.sum(_tmp83, 1)[:, None]
tl.store(out_ptr8 + x3, tmp83, xmask)
tmp92 = tl.sum(_tmp92, 1)[:, None]
tl.store(out_ptr9 + x3, tmp92, xmask)
tmp101 = tl.sum(_tmp101, 1)[:, None]
tl.store(out_ptr10 + x3, tmp101, xmask)
tmp110 = tl.sum(_tmp110, 1)[:, None]
tl.store(out_ptr11 + x3, tmp110, xmask)
tmp119 = tl.sum(_tmp119, 1)[:, None]
tl.store(out_ptr12 + x3, tmp119, xmask)
tmp128 = tl.sum(_tmp128, 1)[:, None]
tl.store(out_ptr13 + x3, tmp128, xmask)
tmp137 = tl.sum(_tmp137, 1)[:, None]
tl.store(out_ptr14 + x3, tmp137, xmask)
tmp146 = tl.sum(_tmp146, 1)[:, None]
tl.store(out_ptr15 + x3, tmp146, xmask)
tmp155 = tl.sum(_tmp155, 1)[:, None]
tl.store(out_ptr16 + x3, tmp155, xmask)
tmp164 = tl.sum(_tmp164, 1)[:, None]
tl.store(out_ptr17 + x3, tmp164, xmask)
tmp173 = tl.sum(_tmp173, 1)[:, None]
tl.store(out_ptr18 + x3, tmp173, xmask)
tmp182 = tl.sum(_tmp182, 1)[:, None]
tl.store(out_ptr19 + x3, tmp182, xmask)
tmp191 = tl.sum(_tmp191, 1)[:, None]
tl.store(out_ptr20 + x3, tmp191, xmask)
tmp200 = tl.sum(_tmp200, 1)[:, None]
tl.store(out_ptr21 + x3, tmp200, xmask)
tmp209 = tl.sum(_tmp209, 1)[:, None]
tl.store(out_ptr22 + x3, tmp209, xmask)
tmp218 = tl.sum(_tmp218, 1)[:, None]
tl.store(out_ptr23 + x3, tmp218, xmask)
tmp227 = tl.sum(_tmp227, 1)[:, None]
tl.store(out_ptr24 + x3, tmp227, xmask)
tmp236 = tl.sum(_tmp236, 1)[:, None]
tl.store(out_ptr25 + x3, tmp236, xmask)
tmp245 = tl.sum(_tmp245, 1)[:, None]
tl.store(out_ptr26 + x3, tmp245, xmask)
tmp254 = tl.sum(_tmp254, 1)[:, None]
tl.store(out_ptr27 + x3, tmp254, xmask)
tmp263 = tl.sum(_tmp263, 1)[:, None]
tl.store(out_ptr28 + x3, tmp263, xmask)
@triton.jit
def triton_red_fused_mul_sum_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4,
in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11,
in_ptr12, in_ptr13, in_ptr14, in_ptr15, in_ptr16, in_ptr17, in_ptr18,
in_ptr19, in_ptr20, in_ptr21, in_ptr22, in_ptr23, in_ptr24, in_ptr25,
in_ptr26, in_ptr27, in_ptr28, in_ptr29, in_ptr30, out_ptr0, out_ptr1,
out_ptr2, out_ptr3, out_ptr4, out_ptr5, out_ptr6, out_ptr7, out_ptr8,
out_ptr9, out_ptr10, out_ptr11, out_ptr12, out_ptr13, out_ptr14,
out_ptr15, out_ptr16, out_ptr17, out_ptr18, out_ptr19, out_ptr20,
out_ptr21, out_ptr22, out_ptr23, out_ptr24, out_ptr25, out_ptr26,
out_ptr27, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr):
xnumel = 512
rnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x3 = xindex
x1 = xindex // 128
_tmp9 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp18 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp27 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp36 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp45 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp54 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp63 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp72 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp81 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp90 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp99 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp108 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp117 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp126 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp135 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp144 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp153 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp162 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp171 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp180 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp189 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp198 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp207 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp216 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp225 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp234 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp243 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp252 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex
tmp0 = tl.load(in_ptr0 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp1 = tl.load(in_ptr1 + (118784 + r2 + 262144 * x1), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp2 = tl.load(in_ptr2 + (r2 + 4096 * x1), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp5 = tl.load(in_ptr3 + (r2 + 4096 * x1), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp11 = tl.load(in_ptr4 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp12 = tl.load(in_ptr1 + (122880 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp20 = tl.load(in_ptr5 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp21 = tl.load(in_ptr1 + (126976 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp29 = tl.load(in_ptr6 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp30 = tl.load(in_ptr1 + (131072 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp38 = tl.load(in_ptr7 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp39 = tl.load(in_ptr1 + (135168 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp47 = tl.load(in_ptr8 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp48 = tl.load(in_ptr1 + (139264 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp56 = tl.load(in_ptr9 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp57 = tl.load(in_ptr1 + (143360 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp65 = tl.load(in_ptr10 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp66 = tl.load(in_ptr1 + (147456 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp74 = tl.load(in_ptr11 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp75 = tl.load(in_ptr1 + (151552 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp83 = tl.load(in_ptr12 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp84 = tl.load(in_ptr1 + (155648 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp92 = tl.load(in_ptr13 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp93 = tl.load(in_ptr1 + (159744 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp101 = tl.load(in_ptr14 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp102 = tl.load(in_ptr1 + (163840 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp110 = tl.load(in_ptr15 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp111 = tl.load(in_ptr1 + (167936 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp119 = tl.load(in_ptr16 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp120 = tl.load(in_ptr1 + (172032 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp128 = tl.load(in_ptr17 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp129 = tl.load(in_ptr1 + (176128 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp137 = tl.load(in_ptr18 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp138 = tl.load(in_ptr1 + (180224 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp146 = tl.load(in_ptr19 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp147 = tl.load(in_ptr1 + (184320 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp155 = tl.load(in_ptr20 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp156 = tl.load(in_ptr1 + (188416 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp164 = tl.load(in_ptr21 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp165 = tl.load(in_ptr1 + (192512 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp173 = tl.load(in_ptr22 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp174 = tl.load(in_ptr1 + (196608 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp182 = tl.load(in_ptr23 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp183 = tl.load(in_ptr1 + (200704 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp191 = tl.load(in_ptr24 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp192 = tl.load(in_ptr1 + (204800 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp200 = tl.load(in_ptr25 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp201 = tl.load(in_ptr1 + (208896 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp209 = tl.load(in_ptr26 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp210 = tl.load(in_ptr1 + (212992 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp218 = tl.load(in_ptr27 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp219 = tl.load(in_ptr1 + (217088 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp227 = tl.load(in_ptr28 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp228 = tl.load(in_ptr1 + (221184 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp236 = tl.load(in_ptr29 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp237 = tl.load(in_ptr1 + (225280 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp245 = tl.load(in_ptr30 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp246 = tl.load(in_ptr1 + (229376 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp3 = tmp1 - tmp2
tmp4 = tl_math.exp(tmp3)
tmp6 = tmp4 / tmp5
tmp7 = tmp0 * tmp6
tmp8 = tl.broadcast_to(tmp7, [XBLOCK, RBLOCK])
tmp10 = _tmp9 + tmp8
_tmp9 = tl.where(rmask & xmask, tmp10, _tmp9)
tmp13 = tmp12 - tmp2
tmp14 = tl_math.exp(tmp13)
tmp15 = tmp14 / tmp5
tmp16 = tmp11 * tmp15
tmp17 = tl.broadcast_to(tmp16, [XBLOCK, RBLOCK])
tmp19 = _tmp18 + tmp17
_tmp18 = tl.where(rmask & xmask, tmp19, _tmp18)
tmp22 = tmp21 - tmp2
tmp23 = tl_math.exp(tmp22)
tmp24 = tmp23 / tmp5
tmp25 = tmp20 * tmp24
tmp26 = tl.broadcast_to(tmp25, [XBLOCK, RBLOCK])
tmp28 = _tmp27 + tmp26
_tmp27 = tl.where(rmask & xmask, tmp28, _tmp27)
tmp31 = tmp30 - tmp2
tmp32 = tl_math.exp(tmp31)
tmp33 = tmp32 / tmp5
tmp34 = tmp29 * tmp33
tmp35 = tl.broadcast_to(tmp34, [XBLOCK, RBLOCK])
tmp37 = _tmp36 + tmp35
_tmp36 = tl.where(rmask & xmask, tmp37, _tmp36)
tmp40 = tmp39 - tmp2
tmp41 = tl_math.exp(tmp40)
tmp42 = tmp41 / tmp5
tmp43 = tmp38 * tmp42
tmp44 = tl.broadcast_to(tmp43, [XBLOCK, RBLOCK])
tmp46 = _tmp45 + tmp44
_tmp45 = tl.where(rmask & xmask, tmp46, _tmp45)
tmp49 = tmp48 - tmp2
tmp50 = tl_math.exp(tmp49)
tmp51 = tmp50 / tmp5
tmp52 = tmp47 * tmp51
tmp53 = tl.broadcast_to(tmp52, [XBLOCK, RBLOCK])
tmp55 = _tmp54 + tmp53
_tmp54 = tl.where(rmask & xmask, tmp55, _tmp54)
tmp58 = tmp57 - tmp2
tmp59 = tl_math.exp(tmp58)
tmp60 = tmp59 / tmp5
tmp61 = tmp56 * tmp60
tmp62 = tl.broadcast_to(tmp61, [XBLOCK, RBLOCK])
tmp64 = _tmp63 + tmp62
_tmp63 = tl.where(rmask & xmask, tmp64, _tmp63)
tmp67 = tmp66 - tmp2
tmp68 = tl_math.exp(tmp67)
tmp69 = tmp68 / tmp5
tmp70 = tmp65 * tmp69
tmp71 = tl.broadcast_to(tmp70, [XBLOCK, RBLOCK])
tmp73 = _tmp72 + tmp71
_tmp72 = tl.where(rmask & xmask, tmp73, _tmp72)
tmp76 = tmp75 - tmp2
tmp77 = tl_math.exp(tmp76)
tmp78 = tmp77 / tmp5
tmp79 = tmp74 * tmp78
tmp80 = tl.broadcast_to(tmp79, [XBLOCK, RBLOCK])
tmp82 = _tmp81 + tmp80
_tmp81 = tl.where(rmask & xmask, tmp82, _tmp81)
tmp85 = tmp84 - tmp2
tmp86 = tl_math.exp(tmp85)
tmp87 = tmp86 / tmp5
tmp88 = tmp83 * tmp87
tmp89 = tl.broadcast_to(tmp88, [XBLOCK, RBLOCK])
tmp91 = _tmp90 + tmp89
_tmp90 = tl.where(rmask & xmask, tmp91, _tmp90)
tmp94 = tmp93 - tmp2
tmp95 = tl_math.exp(tmp94)
tmp96 = tmp95 / tmp5
tmp97 = tmp92 * tmp96
tmp98 = tl.broadcast_to(tmp97, [XBLOCK, RBLOCK])
tmp100 = _tmp99 + tmp98
_tmp99 = tl.where(rmask & xmask, tmp100, _tmp99)
tmp103 = tmp102 - tmp2
tmp104 = tl_math.exp(tmp103)
tmp105 = tmp104 / tmp5
tmp106 = tmp101 * tmp105
tmp107 = tl.broadcast_to(tmp106, [XBLOCK, RBLOCK])
tmp109 = _tmp108 + tmp107
_tmp108 = tl.where(rmask & xmask, tmp109, _tmp108)
tmp112 = tmp111 - tmp2
tmp113 = tl_math.exp(tmp112)
tmp114 = tmp113 / tmp5
tmp115 = tmp110 * tmp114
tmp116 = tl.broadcast_to(tmp115, [XBLOCK, RBLOCK])
tmp118 = _tmp117 + tmp116
_tmp117 = tl.where(rmask & xmask, tmp118, _tmp117)
tmp121 = tmp120 - tmp2
tmp122 = tl_math.exp(tmp121)
tmp123 = tmp122 / tmp5
tmp124 = tmp119 * tmp123
tmp125 = tl.broadcast_to(tmp124, [XBLOCK, RBLOCK])
tmp127 = _tmp126 + tmp125
_tmp126 = tl.where(rmask & xmask, tmp127, _tmp126)
tmp130 = tmp129 - tmp2
tmp131 = tl_math.exp(tmp130)
tmp132 = tmp131 / tmp5
tmp133 = tmp128 * tmp132
tmp134 = tl.broadcast_to(tmp133, [XBLOCK, RBLOCK])
tmp136 = _tmp135 + tmp134
_tmp135 = tl.where(rmask & xmask, tmp136, _tmp135)
tmp139 = tmp138 - tmp2
tmp140 = tl_math.exp(tmp139)
tmp141 = tmp140 / tmp5
tmp142 = tmp137 * tmp141
tmp143 = tl.broadcast_to(tmp142, [XBLOCK, RBLOCK])
tmp145 = _tmp144 + tmp143
_tmp144 = tl.where(rmask & xmask, tmp145, _tmp144)
tmp148 = tmp147 - tmp2
tmp149 = tl_math.exp(tmp148)
tmp150 = tmp149 / tmp5
tmp151 = tmp146 * tmp150
tmp152 = tl.broadcast_to(tmp151, [XBLOCK, RBLOCK])
tmp154 = _tmp153 + tmp152
_tmp153 = tl.where(rmask & xmask, tmp154, _tmp153)
tmp157 = tmp156 - tmp2
tmp158 = tl_math.exp(tmp157)
tmp159 = tmp158 / tmp5
tmp160 = tmp155 * tmp159
tmp161 = tl.broadcast_to(tmp160, [XBLOCK, RBLOCK])
tmp163 = _tmp162 + tmp161
_tmp162 = tl.where(rmask & xmask, tmp163, _tmp162)
tmp166 = tmp165 - tmp2
tmp167 = tl_math.exp(tmp166)
tmp168 = tmp167 / tmp5
tmp169 = tmp164 * tmp168
tmp170 = tl.broadcast_to(tmp169, [XBLOCK, RBLOCK])
tmp172 = _tmp171 + tmp170
_tmp171 = tl.where(rmask & xmask, tmp172, _tmp171)
tmp175 = tmp174 - tmp2
tmp176 = tl_math.exp(tmp175)
tmp177 = tmp176 / tmp5
tmp178 = tmp173 * tmp177
tmp179 = tl.broadcast_to(tmp178, [XBLOCK, RBLOCK])
tmp181 = _tmp180 + tmp179
_tmp180 = tl.where(rmask & xmask, tmp181, _tmp180)
tmp184 = tmp183 - tmp2
tmp185 = tl_math.exp(tmp184)
tmp186 = tmp185 / tmp5
tmp187 = tmp182 * tmp186
tmp188 = tl.broadcast_to(tmp187, [XBLOCK, RBLOCK])
tmp190 = _tmp189 + tmp188
_tmp189 = tl.where(rmask & xmask, tmp190, _tmp189)
tmp193 = tmp192 - tmp2
tmp194 = tl_math.exp(tmp193)
tmp195 = tmp194 / tmp5
tmp196 = tmp191 * tmp195
tmp197 = tl.broadcast_to(tmp196, [XBLOCK, RBLOCK])
tmp199 = _tmp198 + tmp197
_tmp198 = tl.where(rmask & xmask, tmp199, _tmp198)
tmp202 = tmp201 - tmp2
tmp203 = tl_math.exp(tmp202)
tmp204 = tmp203 / tmp5
tmp205 = tmp200 * tmp204
tmp206 = tl.broadcast_to(tmp205, [XBLOCK, RBLOCK])
tmp208 = _tmp207 + tmp206
_tmp207 = tl.where(rmask & xmask, tmp208, _tmp207)
tmp211 = tmp210 - tmp2
tmp212 = tl_math.exp(tmp211)
tmp213 = tmp212 / tmp5
tmp214 = tmp209 * tmp213
tmp215 = tl.broadcast_to(tmp214, [XBLOCK, RBLOCK])
tmp217 = _tmp216 + tmp215
_tmp216 = tl.where(rmask & xmask, tmp217, _tmp216)
tmp220 = tmp219 - tmp2
tmp221 = tl_math.exp(tmp220)
tmp222 = tmp221 / tmp5
tmp223 = tmp218 * tmp222
tmp224 = tl.broadcast_to(tmp223, [XBLOCK, RBLOCK])
tmp226 = _tmp225 + tmp224
_tmp225 = tl.where(rmask & xmask, tmp226, _tmp225)
tmp229 = tmp228 - tmp2
tmp230 = tl_math.exp(tmp229)
tmp231 = tmp230 / tmp5
tmp232 = tmp227 * tmp231
tmp233 = tl.broadcast_to(tmp232, [XBLOCK, RBLOCK])
tmp235 = _tmp234 + tmp233
_tmp234 = tl.where(rmask & xmask, tmp235, _tmp234)
tmp238 = tmp237 - tmp2
tmp239 = tl_math.exp(tmp238)
tmp240 = tmp239 / tmp5
tmp241 = tmp236 * tmp240
tmp242 = tl.broadcast_to(tmp241, [XBLOCK, RBLOCK])
tmp244 = _tmp243 + tmp242
_tmp243 = tl.where(rmask & xmask, tmp244, _tmp243)
tmp247 = tmp246 - tmp2
tmp248 = tl_math.exp(tmp247)
tmp249 = tmp248 / tmp5
tmp250 = tmp245 * tmp249
tmp251 = tl.broadcast_to(tmp250, [XBLOCK, RBLOCK])
tmp253 = _tmp252 + tmp251
_tmp252 = tl.where(rmask & xmask, tmp253, _tmp252)
tmp9 = tl.sum(_tmp9, 1)[:, None]
tl.store(out_ptr0 + x3, tmp9, xmask)
tmp18 = tl.sum(_tmp18, 1)[:, None]
tl.store(out_ptr1 + x3, tmp18, xmask)
tmp27 = tl.sum(_tmp27, 1)[:, None]
tl.store(out_ptr2 + x3, tmp27, xmask)
tmp36 = tl.sum(_tmp36, 1)[:, None]
tl.store(out_ptr3 + x3, tmp36, xmask)
tmp45 = tl.sum(_tmp45, 1)[:, None]
tl.store(out_ptr4 + x3, tmp45, xmask)
tmp54 = tl.sum(_tmp54, 1)[:, None]
tl.store(out_ptr5 + x3, tmp54, xmask)
tmp63 = tl.sum(_tmp63, 1)[:, None]
tl.store(out_ptr6 + x3, tmp63, xmask)
tmp72 = tl.sum(_tmp72, 1)[:, None]
tl.store(out_ptr7 + x3, tmp72, xmask)
tmp81 = tl.sum(_tmp81, 1)[:, None]
tl.store(out_ptr8 + x3, tmp81, xmask)
tmp90 = tl.sum(_tmp90, 1)[:, None]
tl.store(out_ptr9 + x3, tmp90, xmask)
tmp99 = tl.sum(_tmp99, 1)[:, None]
tl.store(out_ptr10 + x3, tmp99, xmask)
tmp108 = tl.sum(_tmp108, 1)[:, None]
tl.store(out_ptr11 + x3, tmp108, xmask)
tmp117 = tl.sum(_tmp117, 1)[:, None]
tl.store(out_ptr12 + x3, tmp117, xmask)
tmp126 = tl.sum(_tmp126, 1)[:, None]
tl.store(out_ptr13 + x3, tmp126, xmask)
tmp135 = tl.sum(_tmp135, 1)[:, None]
tl.store(out_ptr14 + x3, tmp135, xmask)
tmp144 = tl.sum(_tmp144, 1)[:, None]
tl.store(out_ptr15 + x3, tmp144, xmask)
tmp153 = tl.sum(_tmp153, 1)[:, None]
tl.store(out_ptr16 + x3, tmp153, xmask)
tmp162 = tl.sum(_tmp162, 1)[:, None]
tl.store(out_ptr17 + x3, tmp162, xmask)
tmp171 = tl.sum(_tmp171, 1)[:, None]
tl.store(out_ptr18 + x3, tmp171, xmask)
tmp180 = tl.sum(_tmp180, 1)[:, None]
tl.store(out_ptr19 + x3, tmp180, xmask)
tmp189 = tl.sum(_tmp189, 1)[:, None]
tl.store(out_ptr20 + x3, tmp189, xmask)
tmp198 = tl.sum(_tmp198, 1)[:, None]
tl.store(out_ptr21 + x3, tmp198, xmask)
tmp207 = tl.sum(_tmp207, 1)[:, None]
tl.store(out_ptr22 + x3, tmp207, xmask)
tmp216 = tl.sum(_tmp216, 1)[:, None]
tl.store(out_ptr23 + x3, tmp216, xmask)
tmp225 = tl.sum(_tmp225, 1)[:, None]
tl.store(out_ptr24 + x3, tmp225, xmask)
tmp234 = tl.sum(_tmp234, 1)[:, None]
tl.store(out_ptr25 + x3, tmp234, xmask)
tmp243 = tl.sum(_tmp243, 1)[:, None]
tl.store(out_ptr26 + x3, tmp243, xmask)
tmp252 = tl.sum(_tmp252, 1)[:, None]
tl.store(out_ptr27 + x3, tmp252, xmask)
@triton.jit
def triton_red_fused_mul_sum_5(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4,
in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, out_ptr0, out_ptr1,
out_ptr2, out_ptr3, out_ptr4, out_ptr5, out_ptr6, xnumel, rnumel,
XBLOCK: tl.constexpr, RBLOCK: tl.constexpr):
xnumel = 512
rnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x3 = xindex
x1 = xindex // 128
_tmp9 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp18 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp27 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp36 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp45 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp54 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp63 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex
tmp0 = tl.load(in_ptr0 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp1 = tl.load(in_ptr1 + (233472 + r2 + 262144 * x1), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp2 = tl.load(in_ptr2 + (r2 + 4096 * x1), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp5 = tl.load(in_ptr3 + (r2 + 4096 * x1), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp11 = tl.load(in_ptr4 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp12 = tl.load(in_ptr1 + (237568 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp20 = tl.load(in_ptr5 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp21 = tl.load(in_ptr1 + (241664 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp29 = tl.load(in_ptr6 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp30 = tl.load(in_ptr1 + (245760 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp38 = tl.load(in_ptr7 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp39 = tl.load(in_ptr1 + (249856 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp47 = tl.load(in_ptr8 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp48 = tl.load(in_ptr1 + (253952 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp56 = tl.load(in_ptr9 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp57 = tl.load(in_ptr1 + (258048 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp3 = tmp1 - tmp2
tmp4 = tl_math.exp(tmp3)
tmp6 = tmp4 / tmp5
tmp7 = tmp0 * tmp6
tmp8 = tl.broadcast_to(tmp7, [XBLOCK, RBLOCK])
tmp10 = _tmp9 + tmp8
_tmp9 = tl.where(rmask & xmask, tmp10, _tmp9)
tmp13 = tmp12 - tmp2
tmp14 = tl_math.exp(tmp13)
tmp15 = tmp14 / tmp5
tmp16 = tmp11 * tmp15
tmp17 = tl.broadcast_to(tmp16, [XBLOCK, RBLOCK])
tmp19 = _tmp18 + tmp17
_tmp18 = tl.where(rmask & xmask, tmp19, _tmp18)
tmp22 = tmp21 - tmp2
tmp23 = tl_math.exp(tmp22)
tmp24 = tmp23 / tmp5
tmp25 = tmp20 * tmp24
tmp26 = tl.broadcast_to(tmp25, [XBLOCK, RBLOCK])
tmp28 = _tmp27 + tmp26
_tmp27 = tl.where(rmask & xmask, tmp28, _tmp27)
tmp31 = tmp30 - tmp2
tmp32 = tl_math.exp(tmp31)
tmp33 = tmp32 / tmp5
tmp34 = tmp29 * tmp33
tmp35 = tl.broadcast_to(tmp34, [XBLOCK, RBLOCK])
tmp37 = _tmp36 + tmp35
_tmp36 = tl.where(rmask & xmask, tmp37, _tmp36)
tmp40 = tmp39 - tmp2
tmp41 = tl_math.exp(tmp40)
tmp42 = tmp41 / tmp5
tmp43 = tmp38 * tmp42
tmp44 = tl.broadcast_to(tmp43, [XBLOCK, RBLOCK])
tmp46 = _tmp45 + tmp44
_tmp45 = tl.where(rmask & xmask, tmp46, _tmp45)
tmp49 = tmp48 - tmp2
tmp50 = tl_math.exp(tmp49)
tmp51 = tmp50 / tmp5
tmp52 = tmp47 * tmp51
tmp53 = tl.broadcast_to(tmp52, [XBLOCK, RBLOCK])
tmp55 = _tmp54 + tmp53
_tmp54 = tl.where(rmask & xmask, tmp55, _tmp54)
tmp58 = tmp57 - tmp2
tmp59 = tl_math.exp(tmp58)
tmp60 = tmp59 / tmp5
tmp61 = tmp56 * tmp60
tmp62 = tl.broadcast_to(tmp61, [XBLOCK, RBLOCK])
tmp64 = _tmp63 + tmp62
_tmp63 = tl.where(rmask & xmask, tmp64, _tmp63)
tmp9 = tl.sum(_tmp9, 1)[:, None]
tl.store(out_ptr0 + x3, tmp9, xmask)
tmp18 = tl.sum(_tmp18, 1)[:, None]
tl.store(out_ptr1 + x3, tmp18, xmask)
tmp27 = tl.sum(_tmp27, 1)[:, None]
tl.store(out_ptr2 + x3, tmp27, xmask)
tmp36 = tl.sum(_tmp36, 1)[:, None]
tl.store(out_ptr3 + x3, tmp36, xmask)
tmp45 = tl.sum(_tmp45, 1)[:, None]
tl.store(out_ptr4 + x3, tmp45, xmask)
tmp54 = tl.sum(_tmp54, 1)[:, None]
tl.store(out_ptr5 + x3, tmp54, xmask)
tmp63 = tl.sum(_tmp63, 1)[:, None]
tl.store(out_ptr6 + x3, tmp63, xmask)
@triton.jit
def triton_per_fused_copy_linalg_vector_norm_zeros_6(in_out_ptr0,
in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5,
in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, in_ptr12,
in_ptr13, in_ptr14, in_ptr15, in_ptr16, in_ptr17, in_ptr18, in_ptr19,
in_ptr20, in_ptr21, in_ptr22, in_ptr23, in_ptr24, in_ptr25, in_ptr26,
in_ptr27, in_ptr28, in_ptr29, in_ptr30, in_ptr31, in_ptr32, in_ptr33,
in_ptr34, in_ptr35, in_ptr36, in_ptr37, in_ptr38, in_ptr39, in_ptr40,
in_ptr41, in_ptr42, in_ptr43, in_ptr44, in_ptr45, in_ptr46, in_ptr47,
in_ptr48, in_ptr49, in_ptr50, in_ptr51, in_ptr52, in_ptr53, in_ptr54,
in_ptr55, in_ptr56, in_ptr57, in_ptr58, in_ptr59, in_ptr60, in_ptr61,
in_ptr62, in_ptr63, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 256
RBLOCK: tl.constexpr = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
x0 = xindex % 64
r2 = rindex
x1 = xindex // 64
x3 = xindex
tmp0 = x0
tmp1 = tl.full([1, 1], 4, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1, 1], 5, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = tl.load(in_ptr0 + (r2 + 128 * x1), tmp5 & xmask, eviction_policy
='evict_last', other=0.0)
tmp7 = tl.full([1, 1], 3, tl.int64)
tmp8 = tmp0 >= tmp7
tmp9 = tmp0 < tmp1
tmp10 = tmp8 & tmp9
tmp11 = tl.load(in_ptr1 + (r2 + 128 * x1), tmp10 & xmask,
eviction_policy='evict_last', other=0.0)
tmp12 = tl.full([1, 1], 2, tl.int64)
tmp13 = tmp0 >= tmp12
tmp14 = tmp0 < tmp7
tmp15 = tmp13 & tmp14
tmp16 = tl.load(in_ptr2 + (r2 + 128 * x1), tmp15 & xmask,
eviction_policy='evict_last', other=0.0)
tmp17 = tl.full([1, 1], 1, tl.int64)
tmp18 = tmp0 >= tmp17
tmp19 = tmp0 < tmp12
tmp20 = tmp18 & tmp19
tmp21 = tl.load(in_ptr3 + (r2 + 128 * x1), tmp20 & xmask,
eviction_policy='evict_last', other=0.0)
tmp22 = tmp0 < tmp17
tmp23 = tl.load(in_ptr4 + (r2 + 128 * x1), tmp22 & xmask,
eviction_policy='evict_last', other=0.0)
tmp24 = 0.0
tmp25 = tl.where(tmp22, tmp23, tmp24)
tmp26 = tl.where(tmp20, tmp21, tmp25)
tmp27 = tl.where(tmp15, tmp16, tmp26)
tmp28 = tl.where(tmp10, tmp11, tmp27)
tmp29 = tl.where(tmp5, tmp6, tmp28)
tmp30 = tl.full([1, 1], 8, tl.int64)
tmp31 = tmp0 >= tmp30
tmp32 = tl.full([1, 1], 9, tl.int64)
tmp33 = tmp0 < tmp32
tmp34 = tmp31 & tmp33
tmp35 = tl.load(in_ptr5 + (r2 + 128 * x1), tmp34 & xmask,
eviction_policy='evict_last', other=0.0)
tmp36 = tl.full([1, 1], 7, tl.int64)
tmp37 = tmp0 >= tmp36
tmp38 = tmp0 < tmp30
tmp39 = tmp37 & tmp38
tmp40 = tl.load(in_ptr6 + (r2 + 128 * x1), tmp39 & xmask,
eviction_policy='evict_last', other=0.0)
tmp41 = tl.full([1, 1], 6, tl.int64)
tmp42 = tmp0 >= tmp41
tmp43 = tmp0 < tmp36
tmp44 = tmp42 & tmp43
tmp45 = tl.load(in_ptr7 + (r2 + 128 * x1), tmp44 & xmask,
eviction_policy='evict_last', other=0.0)
tmp46 = tmp0 >= tmp3
tmp47 = tmp0 < tmp41
tmp48 = tmp46 & tmp47
tmp49 = tl.load(in_ptr8 + (r2 + 128 * x1), tmp48 & xmask,
eviction_policy='evict_last', other=0.0)
tmp50 = tl.where(tmp48, tmp49, tmp29)
tmp51 = tl.where(tmp44, tmp45, tmp50)
tmp52 = tl.where(tmp39, tmp40, tmp51)
tmp53 = tl.where(tmp34, tmp35, tmp52)
tmp54 = tl.full([1, 1], 12, tl.int64)
tmp55 = tmp0 >= tmp54
tmp56 = tl.full([1, 1], 13, tl.int64)
tmp57 = tmp0 < tmp56
tmp58 = tmp55 & tmp57
tmp59 = tl.load(in_ptr9 + (r2 + 128 * x1), tmp58 & xmask,
eviction_policy='evict_last', other=0.0)
tmp60 = tl.full([1, 1], 11, tl.int64)
tmp61 = tmp0 >= tmp60
tmp62 = tmp0 < tmp54
tmp63 = tmp61 & tmp62
tmp64 = tl.load(in_ptr10 + (r2 + 128 * x1), tmp63 & xmask,
eviction_policy='evict_last', other=0.0)
tmp65 = tl.full([1, 1], 10, tl.int64)
tmp66 = tmp0 >= tmp65
tmp67 = tmp0 < tmp60
tmp68 = tmp66 & tmp67
tmp69 = tl.load(in_ptr11 + (r2 + 128 * x1), tmp68 & xmask,
eviction_policy='evict_last', other=0.0)
tmp70 = tmp0 >= tmp32
tmp71 = tmp0 < tmp65
tmp72 = tmp70 & tmp71
tmp73 = tl.load(in_ptr12 + (r2 + 128 * x1), tmp72 & xmask,
eviction_policy='evict_last', other=0.0)
tmp74 = tl.where(tmp72, tmp73, tmp53)
tmp75 = tl.where(tmp68, tmp69, tmp74)
tmp76 = tl.where(tmp63, tmp64, tmp75)
tmp77 = tl.where(tmp58, tmp59, tmp76)
tmp78 = tl.full([1, 1], 16, tl.int64)
tmp79 = tmp0 >= tmp78
tmp80 = tl.full([1, 1], 17, tl.int64)
tmp81 = tmp0 < tmp80
tmp82 = tmp79 & tmp81
tmp83 = tl.load(in_ptr13 + (r2 + 128 * x1), tmp82 & xmask,
eviction_policy='evict_last', other=0.0)
tmp84 = tl.full([1, 1], 15, tl.int64)
tmp85 = tmp0 >= tmp84
tmp86 = tmp0 < tmp78
tmp87 = tmp85 & tmp86
tmp88 = tl.load(in_ptr14 + (r2 + 128 * x1), tmp87 & xmask,
eviction_policy='evict_last', other=0.0)
tmp89 = tl.full([1, 1], 14, tl.int64)
tmp90 = tmp0 >= tmp89
tmp91 = tmp0 < tmp84
tmp92 = tmp90 & tmp91
tmp93 = tl.load(in_ptr15 + (r2 + 128 * x1), tmp92 & xmask,
eviction_policy='evict_last', other=0.0)
tmp94 = tmp0 >= tmp56
tmp95 = tmp0 < tmp89
tmp96 = tmp94 & tmp95
tmp97 = tl.load(in_ptr16 + (r2 + 128 * x1), tmp96 & xmask,
eviction_policy='evict_last', other=0.0)
tmp98 = tl.where(tmp96, tmp97, tmp77)
tmp99 = tl.where(tmp92, tmp93, tmp98)
tmp100 = tl.where(tmp87, tmp88, tmp99)
tmp101 = tl.where(tmp82, tmp83, tmp100)
tmp102 = tl.full([1, 1], 20, tl.int64)
tmp103 = tmp0 >= tmp102
tmp104 = tl.full([1, 1], 21, tl.int64)
tmp105 = tmp0 < tmp104
tmp106 = tmp103 & tmp105
tmp107 = tl.load(in_ptr17 + (r2 + 128 * x1), tmp106 & xmask,
eviction_policy='evict_last', other=0.0)
tmp108 = tl.full([1, 1], 19, tl.int64)
tmp109 = tmp0 >= tmp108
tmp110 = tmp0 < tmp102
tmp111 = tmp109 & tmp110
tmp112 = tl.load(in_ptr18 + (r2 + 128 * x1), tmp111 & xmask,
eviction_policy='evict_last', other=0.0)
tmp113 = tl.full([1, 1], 18, tl.int64)
tmp114 = tmp0 >= tmp113
tmp115 = tmp0 < tmp108
tmp116 = tmp114 & tmp115
tmp117 = tl.load(in_ptr19 + (r2 + 128 * x1), tmp116 & xmask,
eviction_policy='evict_last', other=0.0)
tmp118 = tmp0 >= tmp80
tmp119 = tmp0 < tmp113
tmp120 = tmp118 & tmp119
tmp121 = tl.load(in_ptr20 + (r2 + 128 * x1), tmp120 & xmask,
eviction_policy='evict_last', other=0.0)
tmp122 = tl.where(tmp120, tmp121, tmp101)
tmp123 = tl.where(tmp116, tmp117, tmp122)
tmp124 = tl.where(tmp111, tmp112, tmp123)
tmp125 = tl.where(tmp106, tmp107, tmp124)
tmp126 = tl.full([1, 1], 24, tl.int64)
tmp127 = tmp0 >= tmp126
tmp128 = tl.full([1, 1], 25, tl.int64)
tmp129 = tmp0 < tmp128
tmp130 = tmp127 & tmp129
tmp131 = tl.load(in_ptr21 + (r2 + 128 * x1), tmp130 & xmask,
eviction_policy='evict_last', other=0.0)
tmp132 = tl.full([1, 1], 23, tl.int64)
tmp133 = tmp0 >= tmp132
tmp134 = tmp0 < tmp126
tmp135 = tmp133 & tmp134
tmp136 = tl.load(in_ptr22 + (r2 + 128 * x1), tmp135 & xmask,
eviction_policy='evict_last', other=0.0)
tmp137 = tl.full([1, 1], 22, tl.int64)
tmp138 = tmp0 >= tmp137
tmp139 = tmp0 < tmp132
tmp140 = tmp138 & tmp139
tmp141 = tl.load(in_ptr23 + (r2 + 128 * x1), tmp140 & xmask,
eviction_policy='evict_last', other=0.0)
tmp142 = tmp0 >= tmp104
tmp143 = tmp0 < tmp137
tmp144 = tmp142 & tmp143
tmp145 = tl.load(in_ptr24 + (r2 + 128 * x1), tmp144 & xmask,
eviction_policy='evict_last', other=0.0)
tmp146 = tl.where(tmp144, tmp145, tmp125)
tmp147 = tl.where(tmp140, tmp141, tmp146)
tmp148 = tl.where(tmp135, tmp136, tmp147)
tmp149 = tl.where(tmp130, tmp131, tmp148)
tmp150 = tl.full([1, 1], 28, tl.int64)
tmp151 = tmp0 >= tmp150
tmp152 = tl.full([1, 1], 29, tl.int64)
tmp153 = tmp0 < tmp152
tmp154 = tmp151 & tmp153
tmp155 = tl.load(in_ptr25 + (r2 + 128 * x1), tmp154 & xmask,
eviction_policy='evict_last', other=0.0)
tmp156 = tl.full([1, 1], 27, tl.int64)
tmp157 = tmp0 >= tmp156
tmp158 = tmp0 < tmp150
tmp159 = tmp157 & tmp158
tmp160 = tl.load(in_ptr26 + (r2 + 128 * x1), tmp159 & xmask,
eviction_policy='evict_last', other=0.0)
tmp161 = tl.full([1, 1], 26, tl.int64)
tmp162 = tmp0 >= tmp161
tmp163 = tmp0 < tmp156
tmp164 = tmp162 & tmp163
tmp165 = tl.load(in_ptr27 + (r2 + 128 * x1), tmp164 & xmask,
eviction_policy='evict_last', other=0.0)
tmp166 = tmp0 >= tmp128
tmp167 = tmp0 < tmp161
tmp168 = tmp166 & tmp167
tmp169 = tl.load(in_ptr28 + (r2 + 128 * x1), tmp168 & xmask,
eviction_policy='evict_last', other=0.0)
tmp170 = tl.where(tmp168, tmp169, tmp149)
tmp171 = tl.where(tmp164, tmp165, tmp170)
tmp172 = tl.where(tmp159, tmp160, tmp171)
tmp173 = tl.where(tmp154, tmp155, tmp172)
tmp174 = tl.full([1, 1], 32, tl.int64)
tmp175 = tmp0 >= tmp174
tmp176 = tl.full([1, 1], 33, tl.int64)
tmp177 = tmp0 < tmp176
tmp178 = tmp175 & tmp177
tmp179 = tl.load(in_ptr29 + (r2 + 128 * x1), tmp178 & xmask,
eviction_policy='evict_last', other=0.0)
tmp180 = tl.full([1, 1], 31, tl.int64)
tmp181 = tmp0 >= tmp180
tmp182 = tmp0 < tmp174
tmp183 = tmp181 & tmp182
tmp184 = tl.load(in_ptr30 + (r2 + 128 * x1), tmp183 & xmask,
eviction_policy='evict_last', other=0.0)
tmp185 = tl.full([1, 1], 30, tl.int64)
tmp186 = tmp0 >= tmp185
tmp187 = tmp0 < tmp180
tmp188 = tmp186 & tmp187
tmp189 = tl.load(in_ptr31 + (r2 + 128 * x1), tmp188 & xmask,
eviction_policy='evict_last', other=0.0)
tmp190 = tmp0 >= tmp152
tmp191 = tmp0 < tmp185
tmp192 = tmp190 & tmp191
tmp193 = tl.load(in_ptr32 + (r2 + 128 * x1), tmp192 & xmask,
eviction_policy='evict_last', other=0.0)
tmp194 = tl.where(tmp192, tmp193, tmp173)
tmp195 = tl.where(tmp188, tmp189, tmp194)
tmp196 = tl.where(tmp183, tmp184, tmp195)
tmp197 = tl.where(tmp178, tmp179, tmp196)
tmp198 = tl.full([1, 1], 36, tl.int64)
tmp199 = tmp0 >= tmp198
tmp200 = tl.full([1, 1], 37, tl.int64)
tmp201 = tmp0 < tmp200
tmp202 = tmp199 & tmp201
tmp203 = tl.load(in_ptr33 + (r2 + 128 * x1), tmp202 & xmask,
eviction_policy='evict_last', other=0.0)
tmp204 = tl.full([1, 1], 35, tl.int64)
tmp205 = tmp0 >= tmp204
tmp206 = tmp0 < tmp198
tmp207 = tmp205 & tmp206
tmp208 = tl.load(in_ptr34 + (r2 + 128 * x1), tmp207 & xmask,
eviction_policy='evict_last', other=0.0)
tmp209 = tl.full([1, 1], 34, tl.int64)
tmp210 = tmp0 >= tmp209
tmp211 = tmp0 < tmp204
tmp212 = tmp210 & tmp211
tmp213 = tl.load(in_ptr35 + (r2 + 128 * x1), tmp212 & xmask,
eviction_policy='evict_last', other=0.0)
tmp214 = tmp0 >= tmp176
tmp215 = tmp0 < tmp209
tmp216 = tmp214 & tmp215
tmp217 = tl.load(in_ptr36 + (r2 + 128 * x1), tmp216 & xmask,
eviction_policy='evict_last', other=0.0)
tmp218 = tl.where(tmp216, tmp217, tmp197)
tmp219 = tl.where(tmp212, tmp213, tmp218)
tmp220 = tl.where(tmp207, tmp208, tmp219)
tmp221 = tl.where(tmp202, tmp203, tmp220)
tmp222 = tl.full([1, 1], 40, tl.int64)
tmp223 = tmp0 >= tmp222
tmp224 = tl.full([1, 1], 41, tl.int64)
tmp225 = tmp0 < tmp224
tmp226 = tmp223 & tmp225
tmp227 = tl.load(in_ptr37 + (r2 + 128 * x1), tmp226 & xmask,
eviction_policy='evict_last', other=0.0)
tmp228 = tl.full([1, 1], 39, tl.int64)
tmp229 = tmp0 >= tmp228
tmp230 = tmp0 < tmp222
tmp231 = tmp229 & tmp230
tmp232 = tl.load(in_ptr38 + (r2 + 128 * x1), tmp231 & xmask,
eviction_policy='evict_last', other=0.0)
tmp233 = tl.full([1, 1], 38, tl.int64)
tmp234 = tmp0 >= tmp233
tmp235 = tmp0 < tmp228
tmp236 = tmp234 & tmp235
tmp237 = tl.load(in_ptr39 + (r2 + 128 * x1), tmp236 & xmask,
eviction_policy='evict_last', other=0.0)
tmp238 = tmp0 >= tmp200
tmp239 = tmp0 < tmp233
tmp240 = tmp238 & tmp239
tmp241 = tl.load(in_ptr40 + (r2 + 128 * x1), tmp240 & xmask,
eviction_policy='evict_last', other=0.0)
tmp242 = tl.where(tmp240, tmp241, tmp221)
tmp243 = tl.where(tmp236, tmp237, tmp242)
tmp244 = tl.where(tmp231, tmp232, tmp243)
tmp245 = tl.where(tmp226, tmp227, tmp244)
tmp246 = tl.full([1, 1], 44, tl.int64)
tmp247 = tmp0 >= tmp246
tmp248 = tl.full([1, 1], 45, tl.int64)
tmp249 = tmp0 < tmp248
tmp250 = tmp247 & tmp249
tmp251 = tl.load(in_ptr41 + (r2 + 128 * x1), tmp250 & xmask,
eviction_policy='evict_last', other=0.0)
tmp252 = tl.full([1, 1], 43, tl.int64)
tmp253 = tmp0 >= tmp252
tmp254 = tmp0 < tmp246
tmp255 = tmp253 & tmp254
tmp256 = tl.load(in_ptr42 + (r2 + 128 * x1), tmp255 & xmask,
eviction_policy='evict_last', other=0.0)
tmp257 = tl.full([1, 1], 42, tl.int64)
tmp258 = tmp0 >= tmp257
tmp259 = tmp0 < tmp252
tmp260 = tmp258 & tmp259
tmp261 = tl.load(in_ptr43 + (r2 + 128 * x1), tmp260 & xmask,
eviction_policy='evict_last', other=0.0)
tmp262 = tmp0 >= tmp224
tmp263 = tmp0 < tmp257
tmp264 = tmp262 & tmp263
tmp265 = tl.load(in_ptr44 + (r2 + 128 * x1), tmp264 & xmask,
eviction_policy='evict_last', other=0.0)
tmp266 = tl.where(tmp264, tmp265, tmp245)
tmp267 = tl.where(tmp260, tmp261, tmp266)
tmp268 = tl.where(tmp255, tmp256, tmp267)
tmp269 = tl.where(tmp250, tmp251, tmp268)
tmp270 = tl.full([1, 1], 48, tl.int64)
tmp271 = tmp0 >= tmp270
tmp272 = tl.full([1, 1], 49, tl.int64)
tmp273 = tmp0 < tmp272
tmp274 = tmp271 & tmp273
tmp275 = tl.load(in_ptr45 + (r2 + 128 * x1), tmp274 & xmask,
eviction_policy='evict_last', other=0.0)
tmp276 = tl.full([1, 1], 47, tl.int64)
tmp277 = tmp0 >= tmp276
tmp278 = tmp0 < tmp270
tmp279 = tmp277 & tmp278
tmp280 = tl.load(in_ptr46 + (r2 + 128 * x1), tmp279 & xmask,
eviction_policy='evict_last', other=0.0)
tmp281 = tl.full([1, 1], 46, tl.int64)
tmp282 = tmp0 >= tmp281
tmp283 = tmp0 < tmp276
tmp284 = tmp282 & tmp283
tmp285 = tl.load(in_ptr47 + (r2 + 128 * x1), tmp284 & xmask,
eviction_policy='evict_last', other=0.0)
tmp286 = tmp0 >= tmp248
tmp287 = tmp0 < tmp281
tmp288 = tmp286 & tmp287
tmp289 = tl.load(in_ptr48 + (r2 + 128 * x1), tmp288 & xmask,
eviction_policy='evict_last', other=0.0)
tmp290 = tl.where(tmp288, tmp289, tmp269)
tmp291 = tl.where(tmp284, tmp285, tmp290)
tmp292 = tl.where(tmp279, tmp280, tmp291)
tmp293 = tl.where(tmp274, tmp275, tmp292)
tmp294 = tl.full([1, 1], 52, tl.int64)
tmp295 = tmp0 >= tmp294
tmp296 = tl.full([1, 1], 53, tl.int64)
tmp297 = tmp0 < tmp296
tmp298 = tmp295 & tmp297
tmp299 = tl.load(in_ptr49 + (r2 + 128 * x1), tmp298 & xmask,
eviction_policy='evict_last', other=0.0)
tmp300 = tl.full([1, 1], 51, tl.int64)
tmp301 = tmp0 >= tmp300
tmp302 = tmp0 < tmp294
tmp303 = tmp301 & tmp302
tmp304 = tl.load(in_ptr50 + (r2 + 128 * x1), tmp303 & xmask,
eviction_policy='evict_last', other=0.0)
tmp305 = tl.full([1, 1], 50, tl.int64)
tmp306 = tmp0 >= tmp305
tmp307 = tmp0 < tmp300
tmp308 = tmp306 & tmp307
tmp309 = tl.load(in_ptr51 + (r2 + 128 * x1), tmp308 & xmask,
eviction_policy='evict_last', other=0.0)
tmp310 = tmp0 >= tmp272
tmp311 = tmp0 < tmp305
tmp312 = tmp310 & tmp311
tmp313 = tl.load(in_ptr52 + (r2 + 128 * x1), tmp312 & xmask,
eviction_policy='evict_last', other=0.0)
tmp314 = tl.where(tmp312, tmp313, tmp293)
tmp315 = tl.where(tmp308, tmp309, tmp314)
tmp316 = tl.where(tmp303, tmp304, tmp315)
tmp317 = tl.where(tmp298, tmp299, tmp316)
tmp318 = tl.full([1, 1], 56, tl.int64)
tmp319 = tmp0 >= tmp318
tmp320 = tl.full([1, 1], 57, tl.int64)
tmp321 = tmp0 < tmp320
tmp322 = tmp319 & tmp321
tmp323 = tl.load(in_ptr53 + (r2 + 128 * x1), tmp322 & xmask,
eviction_policy='evict_last', other=0.0)
tmp324 = tl.full([1, 1], 55, tl.int64)
tmp325 = tmp0 >= tmp324
tmp326 = tmp0 < tmp318
tmp327 = tmp325 & tmp326
tmp328 = tl.load(in_ptr54 + (r2 + 128 * x1), tmp327 & xmask,
eviction_policy='evict_last', other=0.0)
tmp329 = tl.full([1, 1], 54, tl.int64)
tmp330 = tmp0 >= tmp329
tmp331 = tmp0 < tmp324
tmp332 = tmp330 & tmp331
tmp333 = tl.load(in_ptr55 + (r2 + 128 * x1), tmp332 & xmask,
eviction_policy='evict_last', other=0.0)
tmp334 = tmp0 >= tmp296
tmp335 = tmp0 < tmp329
tmp336 = tmp334 & tmp335
tmp337 = tl.load(in_ptr56 + (r2 + 128 * x1), tmp336 & xmask,
eviction_policy='evict_last', other=0.0)
tmp338 = tl.where(tmp336, tmp337, tmp317)
tmp339 = tl.where(tmp332, tmp333, tmp338)
tmp340 = tl.where(tmp327, tmp328, tmp339)
tmp341 = tl.where(tmp322, tmp323, tmp340)
tmp342 = tl.full([1, 1], 60, tl.int64)
tmp343 = tmp0 >= tmp342
tmp344 = tl.full([1, 1], 61, tl.int64)
tmp345 = tmp0 < tmp344
tmp346 = tmp343 & tmp345
tmp347 = tl.load(in_ptr57 + (r2 + 128 * x1), tmp346 & xmask,
eviction_policy='evict_last', other=0.0)
tmp348 = tl.full([1, 1], 59, tl.int64)
tmp349 = tmp0 >= tmp348
tmp350 = tmp0 < tmp342
tmp351 = tmp349 & tmp350
tmp352 = tl.load(in_ptr58 + (r2 + 128 * x1), tmp351 & xmask,
eviction_policy='evict_last', other=0.0)
tmp353 = tl.full([1, 1], 58, tl.int64)
tmp354 = tmp0 >= tmp353
tmp355 = tmp0 < tmp348
tmp356 = tmp354 & tmp355
tmp357 = tl.load(in_ptr59 + (r2 + 128 * x1), tmp356 & xmask,
eviction_policy='evict_last', other=0.0)
tmp358 = tmp0 >= tmp320
tmp359 = tmp0 < tmp353
tmp360 = tmp358 & tmp359
tmp361 = tl.load(in_ptr60 + (r2 + 128 * x1), tmp360 & xmask,
eviction_policy='evict_last', other=0.0)
tmp362 = tl.where(tmp360, tmp361, tmp341)
tmp363 = tl.where(tmp356, tmp357, tmp362)
tmp364 = tl.where(tmp351, tmp352, tmp363)
tmp365 = tl.where(tmp346, tmp347, tmp364)
tmp366 = tl.full([1, 1], 63, tl.int64)
tmp367 = tmp0 >= tmp366
tmp368 = tl.load(in_ptr61 + (r2 + 128 * x1), tmp367 & xmask,
eviction_policy='evict_last', other=0.0)
tmp369 = tl.full([1, 1], 62, tl.int64)
tmp370 = tmp0 >= tmp369
tmp371 = tmp0 < tmp366
tmp372 = tmp370 & tmp371
tmp373 = tl.load(in_ptr62 + (r2 + 128 * x1), tmp372 & xmask,
eviction_policy='evict_last', other=0.0)
tmp374 = tmp0 >= tmp344
tmp375 = tmp0 < tmp369
tmp376 = tmp374 & tmp375
tmp377 = tl.load(in_ptr63 + (r2 + 128 * x1), tmp376 & xmask,
eviction_policy='evict_last', other=0.0)
tmp378 = tl.where(tmp376, tmp377, tmp365)
tmp379 = tl.where(tmp372, tmp373, tmp378)
tmp380 = tl.where(tmp367, tmp368, tmp379)
tmp381 = tmp380 * tmp380
tmp382 = tl.broadcast_to(tmp381, [XBLOCK, RBLOCK])
tmp384 = tl.where(xmask, tmp382, 0)
tmp385 = tl.sum(tmp384, 1)[:, None]
tmp386 = libdevice.sqrt(tmp385)
tl.store(in_out_ptr0 + (r2 + 128 * x3), tmp380, xmask)
tl.debug_barrier()
tl.store(in_out_ptr1 + x3, tmp386, xmask)
@triton.jit
def triton_red_fused_div_linalg_vector_norm_7(in_out_ptr0, in_ptr0, in_ptr1,
out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr):
xnumel = 4
rnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex
_tmp7 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp0 = tl.load(in_ptr0 + (r1 + 8192 * x0), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp1 = tl.load(in_ptr1 + (64 * x0 + r1 // 128), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp2 = 1e-12
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp4 = tmp0 / tmp3
tmp5 = tmp4 * tmp4
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp8 = _tmp7 + tmp6
_tmp7 = tl.where(rmask & xmask, tmp8, _tmp7)
tmp7 = tl.sum(_tmp7, 1)[:, None]
tmp9 = libdevice.sqrt(tmp7)
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp9, xmask)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp10 = tl.load(in_ptr0 + (r1 + 8192 * x0), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp11 = tl.load(in_ptr1 + (64 * x0 + r1 // 128), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp12 = 1e-12
tmp13 = triton_helpers.maximum(tmp11, tmp12)
tmp14 = tmp10 / tmp13
tmp15 = triton_helpers.maximum(tmp9, tmp12)
tmp16 = tmp14 / tmp15
tl.store(out_ptr0 + (r1 + 8192 * x0), tmp16, rmask & xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 128, 64, 64), (524288, 4096, 64, 1))
assert_size_stride(primals_2, (64, 128, 1, 1), (128, 1, 1, 1))
assert_size_stride(primals_3, (64, 128), (128, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 64, 64), (4096, 16384, 64, 1),
torch.float32)
get_raw_stream(0)
triton_red_fused_linalg_vector_norm_0[grid(16384)](primals_1, buf0,
16384, 128, XBLOCK=64, RBLOCK=8, num_warps=4, num_stages=1)
buf1 = empty_strided_cuda((4, 128, 64, 64), (524288, 4096, 64, 1),
torch.float32)
buf6 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096,
1), torch.float32)
buf8 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096,
1), torch.float32)
buf10 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf12 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf15 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf17 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf19 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf21 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf24 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf26 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf28 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf30 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf33 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf35 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf37 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf39 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf42 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf44 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf46 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf48 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf51 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf53 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf55 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf57 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf60 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf62 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf64 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf66 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf69 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf71 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf73 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf75 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf78 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf80 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf82 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf84 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf87 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf89 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf91 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf93 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf96 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf98 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf100 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf102 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf105 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf107 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf109 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf111 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf114 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf116 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf118 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf120 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf123 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf125 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf127 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf129 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf132 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf134 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf136 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf138 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf141 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf143 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf145 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
triton_poi_fused_div_sub_1[grid(2097152)](primals_1, buf0,
primals_3, buf1, buf6, buf8, buf10, buf12, buf15, buf17, buf19,
buf21, buf24, buf26, buf28, buf30, buf33, buf35, buf37, buf39,
buf42, buf44, buf46, buf48, buf51, buf53, buf55, buf57, buf60,
buf62, buf64, buf66, buf69, buf71, buf73, buf75, buf78, buf80,
buf82, buf84, buf87, buf89, buf91, buf93, buf96, buf98, buf100,
buf102, buf105, buf107, buf109, buf111, buf114, buf116, buf118,
buf120, buf123, buf125, buf127, buf129, buf132, buf134, buf136,
buf138, buf141, buf143, buf145, 2097152, XBLOCK=512, num_warps=
8, num_stages=1)
del primals_1
buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 64, 64, 64), (262144, 4096, 64, 1))
buf3 = reinterpret_tensor(buf0, (4, 1, 4096), (4096, 4096, 1), 0)
del buf0
buf4 = empty_strided_cuda((4, 1, 4096), (4096, 4096, 1), torch.float32)
triton_per_fused__softmax_2[grid(16384)](buf2, buf3, buf4, 16384,
64, XBLOCK=8, num_warps=4, num_stages=1)
buf5 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf7 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf9 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf11 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf13 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf16 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf18 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf20 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf22 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf25 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf27 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf29 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf31 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf34 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf36 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf38 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf40 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf43 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf45 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf47 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf49 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf52 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf54 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf56 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf58 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf61 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf63 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf65 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf67 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
triton_red_fused_mul_sub_sum_3[grid(512)](buf1, primals_3, buf2,
buf3, buf4, buf6, buf8, buf10, buf12, buf15, buf17, buf19,
buf21, buf24, buf26, buf28, buf30, buf33, buf35, buf37, buf39,
buf42, buf44, buf46, buf48, buf51, buf53, buf55, buf57, buf60,
buf62, buf64, buf66, buf5, buf7, buf9, buf11, buf13, buf16,
buf18, buf20, buf22, buf25, buf27, buf29, buf31, buf34, buf36,
buf38, buf40, buf43, buf45, buf47, buf49, buf52, buf54, buf56,
buf58, buf61, buf63, buf65, buf67, 512, 4096, XBLOCK=1, RBLOCK=
1024, num_warps=16, num_stages=1)
buf70 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf72 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf74 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf76 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf79 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf81 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf83 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf85 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf88 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf90 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf92 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf94 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf97 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf99 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf101 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf103 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf106 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf108 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf110 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf112 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf115 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf117 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf119 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf121 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf124 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf126 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf128 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf130 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
triton_red_fused_mul_sum_4[grid(512)](buf69, buf2, buf3, buf4,
buf71, buf73, buf75, buf78, buf80, buf82, buf84, buf87, buf89,
buf91, buf93, buf96, buf98, buf100, buf102, buf105, buf107,
buf109, buf111, buf114, buf116, buf118, buf120, buf123, buf125,
buf127, buf129, buf70, buf72, buf74, buf76, buf79, buf81, buf83,
buf85, buf88, buf90, buf92, buf94, buf97, buf99, buf101, buf103,
buf106, buf108, buf110, buf112, buf115, buf117, buf119, buf121,
buf124, buf126, buf128, buf130, 512, 4096, XBLOCK=1, RBLOCK=
1024, num_warps=16, num_stages=1)
buf133 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf135 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf137 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf139 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf142 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf144 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf146 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
triton_red_fused_mul_sum_5[grid(512)](buf132, buf2, buf3, buf4,
buf134, buf136, buf138, buf141, buf143, buf145, buf133, buf135,
buf137, buf139, buf142, buf144, buf146, 512, 4096, XBLOCK=1,
RBLOCK=1024, num_warps=16, num_stages=1)
buf14 = empty_strided_cuda((4, 64, 128), (8192, 128, 1), torch.float32)
buf23 = buf14
del buf14
buf32 = buf23
del buf23
buf41 = buf32
del buf32
buf50 = buf41
del buf41
buf59 = buf50
del buf50
buf68 = buf59
del buf59
buf77 = buf68
del buf68
buf86 = buf77
del buf77
buf95 = buf86
del buf86
buf104 = buf95
del buf95
buf113 = buf104
del buf104
buf122 = buf113
del buf113
buf131 = buf122
del buf122
buf140 = buf131
del buf131
buf147 = buf140
del buf140
buf148 = empty_strided_cuda((4, 64, 1), (64, 1, 256), torch.float32)
buf149 = reinterpret_tensor(buf148, (4, 64, 1), (64, 1, 1), 0)
del buf148
triton_per_fused_copy_linalg_vector_norm_zeros_6[grid(256)](buf147,
buf149, buf13, buf11, buf9, buf7, buf5, buf22, buf20, buf18,
buf16, buf31, buf29, buf27, buf25, buf40, buf38, buf36, buf34,
buf49, buf47, buf45, buf43, buf58, buf56, buf54, buf52, buf67,
buf65, buf63, buf61, buf76, buf74, buf72, buf70, buf85, buf83,
buf81, buf79, buf94, buf92, buf90, buf88, buf103, buf101, buf99,
buf97, buf112, buf110, buf108, buf106, buf121, buf119, buf117,
buf115, buf130, buf128, buf126, buf124, buf139, buf137, buf135,
buf133, buf146, buf144, buf142, 256, 128, XBLOCK=8, num_warps=8,
num_stages=1)
del buf101
del buf103
del buf106
del buf108
del buf11
del buf110
del buf112
del buf115
del buf117
del buf119
del buf121
del buf124
del buf126
del buf128
del buf13
del buf130
del buf133
del buf135
del buf137
del buf139
del buf142
del buf144
del buf146
del buf16
del buf18
del buf20
del buf22
del buf25
del buf27
del buf29
del buf31
del buf34
del buf36
del buf38
del buf40
del buf43
del buf45
del buf47
del buf49
del buf5
del buf52
del buf54
del buf56
del buf58
del buf61
del buf63
del buf65
del buf67
del buf7
del buf70
del buf72
del buf74
del buf76
del buf79
del buf81
del buf83
del buf85
del buf88
del buf9
del buf90
del buf92
del buf94
del buf97
del buf99
buf150 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
buf151 = reinterpret_tensor(buf150, (4, 1), (1, 1), 0)
del buf150
buf152 = empty_strided_cuda((4, 8192), (8192, 1), torch.float32)
triton_red_fused_div_linalg_vector_norm_7[grid(4)](buf151, buf147,
buf149, buf152, 4, 8192, XBLOCK=1, RBLOCK=2048, num_warps=16,
num_stages=1)
return (buf152, primals_2, buf1, buf2, buf3, buf4, reinterpret_tensor(
primals_3, (1, 128), (128, 1), 0), buf6, buf8, buf10, buf12, buf15,
buf17, buf19, buf21, buf24, buf26, buf28, buf30, buf33, buf35,
buf37, buf39, buf42, buf44, buf46, buf48, buf51, buf53, buf55,
buf57, buf60, buf62, buf64, buf66, buf69, buf71, buf73, buf75,
buf78, buf80, buf82, buf84, buf87, buf89, buf91, buf93, buf96,
buf98, buf100, buf102, buf105, buf107, buf109, buf111, buf114,
buf116, buf118, buf120, buf123, buf125, buf127, buf129, buf132,
buf134, buf136, buf138, buf141, buf143, buf145, buf147, buf149, buf151)
class NetVLADNew(nn.Module):
"""NetVLAD layer implementation"""
def __init__(self, num_clusters=64, dim=128, normalize_input=True,
vladv2=False, use_faiss=True):
"""
Args:
num_clusters : int
The number of clusters
dim : int
Dimension of descriptors
normalize_input : bool
If true, descriptor-wise L2 normalization is applied to input.
vladv2 : bool
If true, use vladv2 otherwise use vladv1
"""
super().__init__()
self.num_clusters = num_clusters
self.dim = dim
self.alpha = 0
self.vladv2 = vladv2
self.normalize_input = normalize_input
self.conv = nn.Conv2d(dim, num_clusters, kernel_size=(1, 1), bias=
vladv2)
self.centroids = nn.Parameter(torch.rand(num_clusters, dim))
self.use_faiss = use_faiss
def init_params(self, clsts, traindescs):
if not self.vladv2:
clstsAssign = clsts / np.linalg.norm(clsts, axis=1, keepdims=True)
dots = np.dot(clstsAssign, traindescs.T)
dots.sort(0)
dots = dots[::-1, :]
self.alpha = (-np.log(0.01) / np.mean(dots[0, :] - dots[1, :])
).item()
self.centroids = nn.Parameter(torch.from_numpy(clsts))
self.conv.weight = nn.Parameter(torch.from_numpy(self.alpha *
clstsAssign).unsqueeze(2).unsqueeze(3))
self.conv.bias = None
else:
if not self.use_faiss:
knn = NearestNeighbors(n_jobs=-1)
knn.fit(traindescs)
del traindescs
ds_sq = np.square(knn.kneighbors(clsts, 2)[1])
del knn
else:
index = faiss.IndexFlatL2(traindescs.shape[1])
index.add(traindescs)
del traindescs
ds_sq = np.square(index.search(clsts, 2)[1])
del index
self.alpha = (-np.log(0.01) / np.mean(ds_sq[:, 1] - ds_sq[:, 0])
).item()
self.centroids = nn.Parameter(torch.from_numpy(clsts))
del clsts, ds_sq
self.conv.weight = nn.Parameter((2.0 * self.alpha * self.
centroids).unsqueeze(-1).unsqueeze(-1))
self.conv.bias = nn.Parameter(-self.alpha * self.centroids.norm
(dim=1))
def forward(self, input_0):
primals_3 = self.centroids
primals_2 = self.conv.weight
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
StephenHausler/Patch-NetVLAD
|
NetVLAD
| false | 9,827 |
[
"MIT"
] | 0 |
5d8b68fb7aa686e9c08a48ce504ecc552fff7b0b
|
https://github.com/StephenHausler/Patch-NetVLAD/tree/5d8b68fb7aa686e9c08a48ce504ecc552fff7b0b
|
_leaky_relu
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/js/cjszscodslnfyiv2d7igvqacsrgsys76rucgsdtlfb7q6ntp2vru.py
# Topologically Sorted Source Nodes: [x_neg, max_1], Original ATen: [aten.mul, aten.maximum]
# Source node to ATen node mapping:
# max_1 => maximum
# x_neg => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 0.1), kwargs = {})
# %maximum : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%mul, %arg0_1), kwargs = {})
triton_poi_fused_maximum_mul_0 = async_compile.triton('triton_poi_fused_maximum_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_maximum_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_maximum_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.1
tmp2 = tmp0 * tmp1
tmp3 = triton_helpers.maximum(tmp2, tmp0)
tl.store(out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_neg, max_1], Original ATen: [aten.mul, aten.maximum]
stream0 = get_raw_stream(0)
triton_poi_fused_maximum_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
import torch.optim
import torch.utils.data
class _leaky_relu(nn.Module):
def __init__(self):
super(_leaky_relu, self).__init__()
def forward(self, x):
x_neg = 0.1 * x
return torch.max(x_neg, x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn
import torch.optim
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_maximum_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.1
tmp2 = tmp0 * tmp1
tmp3 = triton_helpers.maximum(tmp2, tmp0)
tl.store(out_ptr0 + x0, tmp3, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_maximum_mul_0[grid(256)](arg0_1, buf0, 256, XBLOCK
=128, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class _leaky_reluNew(nn.Module):
def __init__(self):
super(_leaky_reluNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
ap229997/cc
|
_leaky_relu
| false | 9,828 |
[
"MIT"
] | 0 |
d6f272b8270a371c877f4315047610b33a6e9f2d
|
https://github.com/ap229997/cc/tree/d6f272b8270a371c877f4315047610b33a6e9f2d
|
RajeevNet
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/ov/covbryzjnff2kb26c5gkcqbvct6kdwzanlx3iu6ee24itsit76o3.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# x => mean
# Graph fragment:
# %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%arg0_1, [-1, -2], True), kwargs = {})
triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/22/c22zr7o4r7kxx6ux46vudqfl2ad6pj5x7hzekpsyoygaggumtcrg.py
# Topologically Sorted Source Nodes: [x, normalize, x_1], Original ATen: [aten.mean, aten.div, aten.mul]
# Source node to ATen node mapping:
# normalize => div
# x => mean
# x_1 => mul
# Graph fragment:
# %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%arg0_1, [-1, -2], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mean, %expand), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, 20), kwargs = {})
triton_poi_fused_div_mean_mul_1 = async_compile.triton('triton_poi_fused_div_mean_mul_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_mean_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_mean_mul_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp3 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp1 = 16.0
tmp2 = tmp0 / tmp1
tmp4 = tmp3 / tmp1
tmp5 = tmp4 * tmp4
tmp7 = tmp6 / tmp1
tmp8 = tmp7 * tmp7
tmp9 = tmp5 + tmp8
tmp11 = tmp10 / tmp1
tmp12 = tmp11 * tmp11
tmp13 = tmp9 + tmp12
tmp15 = tmp14 / tmp1
tmp16 = tmp15 * tmp15
tmp17 = tmp13 + tmp16
tmp18 = libdevice.sqrt(tmp17)
tmp19 = 1e-12
tmp20 = triton_helpers.maximum(tmp18, tmp19)
tmp21 = tmp2 / tmp20
tmp22 = 20.0
tmp23 = tmp21 * tmp22
tl.store(out_ptr0 + (x2), tmp23, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_mean_0.run(arg0_1, buf0, 16, 16, grid=grid(16), stream=stream0)
del arg0_1
buf1 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [x, normalize, x_1], Original ATen: [aten.mean, aten.div, aten.mul]
triton_poi_fused_div_mean_mul_1.run(buf0, buf1, 16, grid=grid(16), stream=stream0)
del buf0
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.nn.functional as F
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
class RajeevNet(nn.Module):
def __init__(self):
super(RajeevNet, self).__init__()
def forward(self, input):
x = nn.AdaptiveAvgPool2d(1)(input)
x = 20 * F.normalize(x)
x = x.contiguous()
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_mean_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl.
constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tl.store(out_ptr0 + x0, tmp4, xmask)
@triton.jit
def triton_poi_fused_div_mean_mul_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp14 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp1 = 16.0
tmp2 = tmp0 / tmp1
tmp4 = tmp3 / tmp1
tmp5 = tmp4 * tmp4
tmp7 = tmp6 / tmp1
tmp8 = tmp7 * tmp7
tmp9 = tmp5 + tmp8
tmp11 = tmp10 / tmp1
tmp12 = tmp11 * tmp11
tmp13 = tmp9 + tmp12
tmp15 = tmp14 / tmp1
tmp16 = tmp15 * tmp15
tmp17 = tmp13 + tmp16
tmp18 = libdevice.sqrt(tmp17)
tmp19 = 1e-12
tmp20 = triton_helpers.maximum(tmp18, tmp19)
tmp21 = tmp2 / tmp20
tmp22 = 20.0
tmp23 = tmp21 * tmp22
tl.store(out_ptr0 + x2, tmp23, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
get_raw_stream(0)
triton_per_fused_mean_0[grid(16)](arg0_1, buf0, 16, 16, XBLOCK=1,
num_warps=2, num_stages=1)
del arg0_1
buf1 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32)
triton_poi_fused_div_mean_mul_1[grid(16)](buf0, buf1, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del buf0
return buf1,
class RajeevNetNew(nn.Module):
def __init__(self):
super(RajeevNetNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
carlosdcastillo/janice
|
RajeevNet
| false | 9,829 |
[
"MIT"
] | 0 |
221a94dd25ab4304d3c959a364ec89548b807509
|
https://github.com/carlosdcastillo/janice/tree/221a94dd25ab4304d3c959a364ec89548b807509
|
FeedForward
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/r3/cr3febcwm3t44fuoitsx3ou2p6xg4sk4f7unagmmrvffasxf47te.py
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# relu => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/ji/cji7mw45fbdoanjc5e6qu3e2bf5d6jnnjabskl6onjlk7uv7oqud.py
# Topologically Sorted Source Nodes: [add, layer_norm], Original ATen: [aten.add, aten.native_layer_norm]
# Source node to ATen node mapping:
# add => add
# layer_norm => var_mean
# Graph fragment:
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_3, %primals_3), kwargs = {})
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add, [3]), kwargs = {correction: 0, keepdim: True})
triton_poi_fused_add_native_layer_norm_1 = async_compile.triton('triton_poi_fused_add_native_layer_norm_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_native_layer_norm_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 + tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 + tmp12
tmp14 = tmp10 + tmp13
tmp15 = 4.0
tmp16 = tmp14 / tmp15
tmp17 = tmp2 - tmp16
tmp18 = tmp17 * tmp17
tmp19 = tmp5 - tmp16
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp22 = tmp9 - tmp16
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp25 = tmp13 - tmp16
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = tmp27 / tmp15
tl.store(out_ptr0 + (x0), tmp16, xmask)
tl.store(out_ptr1 + (x0), tmp28, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/xy/cxyvzp6lij7d3yqq2ut3vi6guk7xnzb7qwqb66dthlly44r65vfk.py
# Topologically Sorted Source Nodes: [add, layer_norm], Original ATen: [aten.add, aten.native_layer_norm]
# Source node to ATen node mapping:
# add => add
# layer_norm => add_1, add_2, mul, mul_1, rsqrt, sub
# Graph fragment:
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_3, %primals_3), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_1,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %getitem_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_6), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_7), kwargs = {})
triton_poi_fused_add_native_layer_norm_2 = async_compile.triton('triton_poi_fused_add_native_layer_norm_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_native_layer_norm_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 - tmp3
tmp6 = 1e-05
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp4 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tl.store(out_ptr0 + (x2), tmp13, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, ), (1, ))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf6, 256, grid=grid(256), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del primals_5
buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf4 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
# Topologically Sorted Source Nodes: [add, layer_norm], Original ATen: [aten.add, aten.native_layer_norm]
triton_poi_fused_add_native_layer_norm_1.run(buf2, primals_3, buf3, buf4, 64, grid=grid(64), stream=stream0)
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, layer_norm], Original ATen: [aten.add, aten.native_layer_norm]
triton_poi_fused_add_native_layer_norm_2.run(buf2, primals_3, buf3, buf4, primals_6, primals_7, buf5, 256, grid=grid(256), stream=stream0)
del buf3
del buf4
del primals_7
return (buf5, primals_3, primals_6, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), buf2, primals_4, buf6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class FeedForward(nn.Module):
def __init__(self, d_model, d_ff):
super(FeedForward, self).__init__()
self.linear1 = nn.Linear(in_features=d_model, out_features=d_ff)
self.linear2 = nn.Linear(in_features=d_ff, out_features=d_model)
self.layer_norm = nn.LayerNorm(d_model)
def forward(self, X):
"""
:param X: tensor dimension batch x len_q x d_model
:return out: tensor dimension batch x len_q x d_model
"""
out = self.linear2(nn.ReLU()(self.linear1(X)))
return self.layer_norm(out + X)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'d_model': 4, 'd_ff': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused_add_native_layer_norm_1(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 + tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 + tmp12
tmp14 = tmp10 + tmp13
tmp15 = 4.0
tmp16 = tmp14 / tmp15
tmp17 = tmp2 - tmp16
tmp18 = tmp17 * tmp17
tmp19 = tmp5 - tmp16
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp22 = tmp9 - tmp16
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp25 = tmp13 - tmp16
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = tmp27 / tmp15
tl.store(out_ptr0 + x0, tmp16, xmask)
tl.store(out_ptr1 + x0, tmp28, xmask)
@triton.jit
def triton_poi_fused_add_native_layer_norm_2(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 - tmp3
tmp6 = 1e-05
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp4 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tl.store(out_ptr0 + x2, tmp13, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4,), (1,))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(256)](buf1,
primals_2, buf6, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf2)
del primals_5
buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf4 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
triton_poi_fused_add_native_layer_norm_1[grid(64)](buf2, primals_3,
buf3, buf4, 64, XBLOCK=64, num_warps=1, num_stages=1)
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_add_native_layer_norm_2[grid(256)](buf2, primals_3,
buf3, buf4, primals_6, primals_7, buf5, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del buf3
del buf4
del primals_7
return buf5, primals_3, primals_6, reinterpret_tensor(buf1, (64, 4), (4,
1), 0), buf2, primals_4, buf6
class FeedForwardNew(nn.Module):
def __init__(self, d_model, d_ff):
super(FeedForwardNew, self).__init__()
self.linear1 = nn.Linear(in_features=d_model, out_features=d_ff)
self.linear2 = nn.Linear(in_features=d_ff, out_features=d_model)
self.layer_norm = nn.LayerNorm(d_model)
def forward(self, input_0):
primals_1 = self.linear1.weight
primals_2 = self.linear1.bias
primals_4 = self.linear2.weight
primals_5 = self.linear2.bias
primals_6 = self.layer_norm.weight
primals_7 = self.layer_norm.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
|
caixunshiren/transformer-from-scratch
|
FeedForward
| false | 9,831 |
[
"MIT"
] | 0 |
dbbacab4752f9fc5e33f583c0b1b5258572fb646
|
https://github.com/caixunshiren/transformer-from-scratch/tree/dbbacab4752f9fc5e33f583c0b1b5258572fb646
|
CosNorm_Classifier
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/wz/cwzblip7soao5x3bunymsjdaflgr4j7r7ikhlxc726esadcij44f.py
# Topologically Sorted Source Nodes: [norm_x, add, truediv, truediv_1, ex, mul_1], Original ATen: [aten.linalg_vector_norm, aten.add, aten.div, aten.mul]
# Source node to ATen node mapping:
# add => add
# ex => mul
# mul_1 => mul_1
# norm_x => pow_1, pow_2, sum_1
# truediv => div
# truediv_1 => div_1
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_1, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1], True), kwargs = {})
# %pow_2 : [num_users=3] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_2, 1), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%pow_2, %add), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_1, %pow_2), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %div_1), kwargs = {})
# %mul_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, 16), kwargs = {})
triton_poi_fused_add_div_linalg_vector_norm_mul_0 = async_compile.triton('triton_poi_fused_add_div_linalg_vector_norm_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_linalg_vector_norm_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_linalg_vector_norm_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tmp0 * tmp0
tmp3 = tmp2 * tmp2
tmp4 = tmp1 + tmp3
tmp6 = tmp5 * tmp5
tmp7 = tmp4 + tmp6
tmp9 = tmp8 * tmp8
tmp10 = tmp7 + tmp9
tmp11 = libdevice.sqrt(tmp10)
tmp12 = 1.0
tmp13 = tmp11 + tmp12
tmp14 = tmp11 / tmp13
tmp16 = tmp15 / tmp11
tmp17 = tmp14 * tmp16
tmp18 = 16.0
tmp19 = tmp17 * tmp18
tl.store(out_ptr0 + (x2), tmp19, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/6m/c6metdnckygxysmgr4vz3hy6kzlisxiamgwv4z5i6krg4kdyzyde.py
# Topologically Sorted Source Nodes: [norm_1, ew], Original ATen: [aten.linalg_vector_norm, aten.div]
# Source node to ATen node mapping:
# ew => div_2
# norm_1 => pow_3, pow_4, sum_2
# Graph fragment:
# %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_2, 2), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_3, [1], True), kwargs = {})
# %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_2, 0.5), kwargs = {})
# %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_2, %pow_4), kwargs = {})
triton_poi_fused_div_linalg_vector_norm_1 = async_compile.triton('triton_poi_fused_div_linalg_vector_norm_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_linalg_vector_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_linalg_vector_norm_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = tmp0 / tmp12
tl.store(out_ptr0 + (x2), tmp13, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [norm_x, add, truediv, truediv_1, ex, mul_1], Original ATen: [aten.linalg_vector_norm, aten.add, aten.div, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_add_div_linalg_vector_norm_mul_0.run(primals_1, buf0, 16, grid=grid(16), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [norm_1, ew], Original ATen: [aten.linalg_vector_norm, aten.div]
triton_poi_fused_div_linalg_vector_norm_1.run(primals_2, buf1, 16, grid=grid(16), stream=stream0)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mm], Original ATen: [aten.mm]
extern_kernels.mm(buf0, reinterpret_tensor(buf1, (4, 4), (1, 4), 0), out=buf2)
del buf1
return (buf2, primals_2, buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import math
import torch
from torch import nn
import torch.utils.data
from torch.nn.parameter import Parameter
class CosNorm_Classifier(nn.Module):
def __init__(self, in_dims, out_dims, scale=16, margin=0.5, init_std=0.001
):
super(CosNorm_Classifier, self).__init__()
self.in_dims = in_dims
self.out_dims = out_dims
self.scale = scale
self.margin = margin
self.weight = Parameter(torch.Tensor(out_dims, in_dims))
self.reset_parameters()
def reset_parameters(self):
stdv = 1.0 / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
def forward(self, input, *args):
norm_x = torch.norm(input.clone(), 2, 1, keepdim=True)
ex = norm_x / (1 + norm_x) * (input / norm_x)
ew = self.weight / torch.norm(self.weight, 2, 1, keepdim=True)
return torch.mm(self.scale * ex, ew.t())
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {'in_dims': 4, 'out_dims': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import math
from torch import nn
import torch.utils.data
from torch.nn.parameter import Parameter
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_div_linalg_vector_norm_mul_0(in_ptr0, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tmp0 * tmp0
tmp3 = tmp2 * tmp2
tmp4 = tmp1 + tmp3
tmp6 = tmp5 * tmp5
tmp7 = tmp4 + tmp6
tmp9 = tmp8 * tmp8
tmp10 = tmp7 + tmp9
tmp11 = libdevice.sqrt(tmp10)
tmp12 = 1.0
tmp13 = tmp11 + tmp12
tmp14 = tmp11 / tmp13
tmp16 = tmp15 / tmp11
tmp17 = tmp14 * tmp16
tmp18 = 16.0
tmp19 = tmp17 * tmp18
tl.store(out_ptr0 + x2, tmp19, xmask)
@triton.jit
def triton_poi_fused_div_linalg_vector_norm_1(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = tmp0 / tmp12
tl.store(out_ptr0 + x2, tmp13, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_div_linalg_vector_norm_mul_0[grid(16)](primals_1,
buf0, 16, XBLOCK=16, num_warps=1, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_div_linalg_vector_norm_1[grid(16)](primals_2, buf1,
16, XBLOCK=16, num_warps=1, num_stages=1)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf0, reinterpret_tensor(buf1, (4, 4), (1, 4), 0),
out=buf2)
del buf1
return buf2, primals_2, buf0
class CosNorm_ClassifierNew(nn.Module):
def __init__(self, in_dims, out_dims, scale=16, margin=0.5, init_std=0.001
):
super(CosNorm_ClassifierNew, self).__init__()
self.in_dims = in_dims
self.out_dims = out_dims
self.scale = scale
self.margin = margin
self.weight = Parameter(torch.Tensor(out_dims, in_dims))
self.reset_parameters()
def reset_parameters(self):
stdv = 1.0 / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
def forward(self, input_0):
primals_1 = self.weight
primals_2 = input_0
output = call([primals_1, primals_2])
return output[0]
|
caisarl76/classifier-balancing
|
CosNorm_Classifier
| false | 9,832 |
[
"BSD-3-Clause"
] | 0 |
b381279dc29539afb92fe40f7ca917e352aff9c6
|
https://github.com/caisarl76/classifier-balancing/tree/b381279dc29539afb92fe40f7ca917e352aff9c6
|
DAModule
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/p6/cp6vuooninjiuju55qtiu7u3yjx4izmj5jtvx2lkeddu4rheo45u.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048, 64], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 2048
xnumel = 49
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 512
y1 = (yindex // 512)
tmp0 = tl.load(in_ptr0 + (x2 + (49*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (512*x2) + (25088*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/oc/cochsno6wpkwamgsqz5legelnxxchuje5twfzhozvusus3e5bzmo.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 262144
xnumel = 9
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 512
y1 = (yindex // 512)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (512*x2) + (4608*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/kn/cknbstongwqs3wrbq3bfnzsirzut4ooksppthlbpnxztongpfx6s.py
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# linear => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_2 = async_compile.triton('triton_poi_fused_clone_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 100352
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 512
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x2), tmp2, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/5z/c5zbvh6jpdpmmwxvjaaeyoc5gh4nmeke3mou5c7akohm5ejrn7eh.py
# Topologically Sorted Source Nodes: [wrapped_sqrt, att_1], Original ATen: [aten.sqrt, aten._softmax]
# Source node to ATen node mapping:
# att_1 => div_1, exp, sum_1
# wrapped_sqrt => full_default
# Graph fragment:
# %full_default : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([], 22.62741699796952), kwargs = {dtype: torch.float64, layout: torch.strided, device: cpu, pin_memory: False})
# %scalar_tensor_default_1 : [num_users=3] = call_function[target=torch.ops.aten.scalar_tensor.default](args = (1,), kwargs = {dtype: torch.float32, device: cuda:0, pin_memory: False})
# %ge_scalar_1 : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%full_default, 0), kwargs = {})
# %neg_default_1 : [num_users=2] = call_function[target=torch.ops.aten.neg.default](args = (%scalar_tensor_default_1,), kwargs = {})
# %where_self_1 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%ge_scalar_1, %scalar_tensor_default_1, %neg_default_1), kwargs = {})
# %mul_tensor_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_12, %where_self_1), kwargs = {})
# %amax_default_1 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor_2, [-1], True), kwargs = {})
# %sub_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor_2, %amax_default_1), kwargs = {})
# %mul_tensor_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where_self_1, %full_default), kwargs = {})
# %div_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor_1, %mul_tensor_3), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor_1,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_per_fused__softmax_sqrt_3 = async_compile.triton('triton_per_fused__softmax_sqrt_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[256, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_sqrt_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__softmax_sqrt_3(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 196
rnumel = 49
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = rindex < rnumel
r1 = rindex
x0 = xindex
x2 = xindex % 49
x3 = (xindex // 49)
tmp0 = tl.load(in_ptr0 + (r1 + (49*x0)), rmask & xmask, other=0.0)
tmp1 = tl.full([1, 1], 22.62741699796952, tl.float64)
tmp2 = tl.full([1, 1], 0.0, tl.float64)
tmp3 = tmp1 >= tmp2
tmp4 = 1.0
tmp5 = -1.0
tmp6 = tl.where(tmp3, tmp4, tmp5)
tmp7 = tmp0 * tmp6
tmp8 = tl.broadcast_to(tmp7, [XBLOCK, RBLOCK])
tmp10 = tl.where(rmask & xmask, tmp8, float("-inf"))
tmp11 = triton_helpers.max2(tmp10, 1)[:, None]
tmp12 = tmp7 - tmp11
tmp13 = tmp6.to(tl.float64)
tmp14 = tmp13 * tmp1
tmp15 = tmp14.to(tl.float32)
tmp16 = tmp12 / tmp15
tmp17 = tl_math.exp(tmp16)
tmp18 = tl.broadcast_to(tmp17, [XBLOCK, RBLOCK])
tmp20 = tl.where(rmask & xmask, tmp18, 0)
tmp21 = tl.sum(tmp20, 1)[:, None]
tmp22 = tmp17 / tmp21
tl.store(out_ptr2 + (r1 + (49*x2) + (2432*x3)), tmp22, rmask & xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/rm/crmnosmbl45e7ixhpxrfpqt6wmsmhumqck6slidwiut6es7773qu.py
# Topologically Sorted Source Nodes: [wrapped_sqrt_1, att_4], Original ATen: [aten.sqrt, aten._softmax]
# Source node to ATen node mapping:
# att_4 => div_3, exp_1, sum_2
# wrapped_sqrt_1 => full_default_1
# Graph fragment:
# %scalar_tensor_default_1 : [num_users=3] = call_function[target=torch.ops.aten.scalar_tensor.default](args = (1,), kwargs = {dtype: torch.float32, device: cuda:0, pin_memory: False})
# %neg_default_1 : [num_users=2] = call_function[target=torch.ops.aten.neg.default](args = (%scalar_tensor_default_1,), kwargs = {})
# %full_default_1 : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([], 7.0), kwargs = {dtype: torch.float64, layout: torch.strided, device: cpu, pin_memory: False})
# %ge_scalar : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%full_default_1, 0), kwargs = {})
# %where_self : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%ge_scalar, %scalar_tensor_default_1, %neg_default_1), kwargs = {})
# %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_25, %where_self), kwargs = {})
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {})
# %mul_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where_self, %full_default_1), kwargs = {})
# %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, %mul_tensor_1), kwargs = {})
# %exp_1 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_1, [-1], True), kwargs = {})
# %div_3 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_1, %sum_2), kwargs = {})
triton_per_fused__softmax_sqrt_4 = async_compile.triton('triton_per_fused__softmax_sqrt_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[2048, 512],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_sqrt_4', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__softmax_sqrt_4(in_ptr0, out_ptr2, xnumel, rnumel):
xnumel = 2048
XBLOCK: tl.constexpr = 1
rnumel = 512
RBLOCK: tl.constexpr = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (512*x0)), None)
tmp1 = tl.full([1], 7.0, tl.float64)
tmp2 = tl.full([1], 0.0, tl.float64)
tmp3 = tmp1 >= tmp2
tmp4 = 1.0
tmp5 = -1.0
tmp6 = tl.where(tmp3, tmp4, tmp5)
tmp7 = tmp0 * tmp6
tmp8 = tl.broadcast_to(tmp7, [RBLOCK])
tmp10 = triton_helpers.promote_to_tensor(triton_helpers.max2(tmp8, 0))
tmp11 = tmp7 - tmp10
tmp12 = tmp6.to(tl.float64)
tmp13 = tmp12 * tmp1
tmp14 = tmp13.to(tl.float32)
tmp15 = tmp11 / tmp14
tmp16 = tl_math.exp(tmp15)
tmp17 = tl.broadcast_to(tmp16, [RBLOCK])
tmp19 = triton_helpers.promote_to_tensor(tl.sum(tmp17, 0))
tmp20 = tmp16 / tmp19
tl.store(out_ptr2 + (r1 + (512*x0)), tmp20, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/ls/clskvd4qdnewc7cysnrd6bzcenviumrko6rb6ldndg35xjjrfbzr.py
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
# Source node to ATen node mapping:
# add => add_3
# Graph fragment:
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_32, %view_33), kwargs = {})
triton_poi_fused_add_5 = async_compile.triton('triton_poi_fused_add_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256, 512], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_5(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 196
xnumel = 512
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 49
y1 = (yindex // 49)
tmp0 = tl.load(in_out_ptr0 + (x2 + (512*y3)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (x2), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (y0 + (49*x2) + (25088*y1)), xmask & ymask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr2 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + (x2 + (512*y3)), tmp6, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15 = args
args.clear()
assert_size_stride(primals_1, (4, 512, 1, 49), (25088, 49, 49, 1))
assert_size_stride(primals_2, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_3, (512, ), (1, ))
assert_size_stride(primals_4, (512, 512), (512, 1))
assert_size_stride(primals_5, (512, ), (1, ))
assert_size_stride(primals_6, (512, 512), (512, 1))
assert_size_stride(primals_7, (512, ), (1, ))
assert_size_stride(primals_8, (512, 512), (512, 1))
assert_size_stride(primals_9, (512, ), (1, ))
assert_size_stride(primals_10, (512, 512), (512, 1))
assert_size_stride(primals_11, (512, ), (1, ))
assert_size_stride(primals_12, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_13, (512, ), (1, ))
assert_size_stride(primals_14, (49, 49), (49, 1))
assert_size_stride(primals_15, (49, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 512, 1, 49), (25088, 1, 25088, 512), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
stream0 = get_raw_stream(0)
triton_poi_fused_0.run(primals_1, buf0, 2048, 49, grid=grid(2048, 49), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_1.run(primals_2, buf1, 262144, 9, grid=grid(262144, 9), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_1.run(primals_12, buf2, 262144, 9, grid=grid(262144, 9), stream=stream0)
del primals_12
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(buf0, buf1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 512, 1, 49), (25088, 1, 25088, 512))
buf4 = reinterpret_tensor(buf3, (4, 49, 512), (25088, 512, 1), 0); del buf3 # reuse
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.clone]
triton_poi_fused_clone_2.run(buf4, primals_3, 100352, grid=grid(100352), stream=stream0)
del primals_3
buf5 = empty_strided_cuda((196, 512), (512, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf4, (196, 512), (512, 1), 0), reinterpret_tensor(primals_4, (512, 512), (1, 512), 0), out=buf5)
buf6 = empty_strided_cuda((196, 512), (512, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf4, (196, 512), (512, 1), 0), reinterpret_tensor(primals_6, (512, 512), (1, 512), 0), out=buf6)
buf7 = empty_strided_cuda((196, 512), (512, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf4, (196, 512), (512, 1), 0), reinterpret_tensor(primals_8, (512, 512), (1, 512), 0), out=buf7)
buf8 = reinterpret_tensor(buf5, (4, 49, 512), (25088, 512, 1), 0); del buf5 # reuse
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.add]
triton_poi_fused_clone_2.run(buf8, primals_5, 100352, grid=grid(100352), stream=stream0)
del primals_5
buf9 = reinterpret_tensor(buf6, (4, 49, 512), (25088, 512, 1), 0); del buf6 # reuse
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.add]
triton_poi_fused_clone_2.run(buf9, primals_7, 100352, grid=grid(100352), stream=stream0)
del primals_7
buf10 = empty_strided_cuda((4, 49, 49), (2401, 49, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm]
extern_kernels.bmm(buf8, reinterpret_tensor(buf9, (4, 512, 49), (25088, 1, 512), 0), out=buf10)
buf13 = empty_strided_cuda((4, 1, 49, 49), (2432, 49, 49, 1), torch.float32)
# Topologically Sorted Source Nodes: [wrapped_sqrt, att_1], Original ATen: [aten.sqrt, aten._softmax]
triton_per_fused__softmax_sqrt_3.run(buf10, buf13, 196, 49, grid=grid(196), stream=stream0)
del buf10
buf14 = reinterpret_tensor(buf7, (4, 49, 512), (25088, 512, 1), 0); del buf7 # reuse
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.add]
triton_poi_fused_clone_2.run(buf14, primals_9, 100352, grid=grid(100352), stream=stream0)
del primals_9
buf15 = empty_strided_cuda((4, 49, 512), (25088, 512, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf13, (4, 49, 49), (2432, 49, 1), 0), buf14, out=buf15)
buf16 = empty_strided_cuda((196, 512), (512, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf15, (196, 512), (512, 1), 0), reinterpret_tensor(primals_10, (512, 512), (1, 512), 0), out=buf16)
# Topologically Sorted Source Nodes: [y_2], Original ATen: [aten.convolution]
buf17 = extern_kernels.convolution(buf0, buf2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf17, (4, 512, 1, 49), (25088, 1, 25088, 512))
buf18 = buf17; del buf17 # reuse
# Topologically Sorted Source Nodes: [y_2], Original ATen: [aten.convolution]
triton_poi_fused_clone_2.run(buf18, primals_13, 100352, grid=grid(100352), stream=stream0)
del primals_13
buf19 = empty_strided_cuda((4, 512, 512), (262144, 512, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul_2], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf18, (4, 512, 49), (25088, 1, 512), 0), reinterpret_tensor(buf18, (4, 49, 512), (25088, 512, 1), 0), out=buf19)
buf22 = empty_strided_cuda((4, 1, 512, 512), (262144, 1, 512, 1), torch.float32)
# Topologically Sorted Source Nodes: [wrapped_sqrt_1, att_4], Original ATen: [aten.sqrt, aten._softmax]
triton_per_fused__softmax_sqrt_4.run(buf19, buf22, 2048, 512, grid=grid(2048), stream=stream0)
del buf19
buf23 = empty_strided_cuda((4, 512, 49), (25088, 49, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul_3], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf22, (4, 512, 512), (262144, 512, 1), 0), reinterpret_tensor(buf18, (4, 512, 49), (25088, 1, 512), 0), out=buf23)
buf24 = empty_strided_cuda((2048, 49), (49, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf23, (2048, 49), (49, 1), 0), reinterpret_tensor(primals_14, (49, 49), (1, 49), 0), out=buf24)
buf25 = reinterpret_tensor(buf16, (4, 512, 1, 49), (25088, 1, 25088, 512), 0); del buf16 # reuse
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
triton_poi_fused_add_5.run(buf25, primals_11, buf24, primals_15, 196, 512, grid=grid(196, 512), stream=stream0)
del buf24
del primals_11
del primals_15
return (buf25, buf0, buf1, buf2, reinterpret_tensor(buf4, (196, 512), (512, 1), 0), buf13, reinterpret_tensor(buf15, (196, 512), (512, 1), 0), buf18, buf22, reinterpret_tensor(buf23, (2048, 49), (49, 1), 0), primals_14, primals_10, reinterpret_tensor(buf14, (4, 512, 49), (25088, 1, 512), 0), reinterpret_tensor(buf8, (4, 512, 49), (25088, 1, 512), 0), buf9, primals_8, primals_6, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 512, 1, 49), (25088, 49, 49, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((512, 512), (512, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((512, 512), (512, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((512, 512), (512, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((512, 512), (512, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((49, 49), (49, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((49, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import numpy as np
from torch import nn
from torch.nn import init
class ScaledDotProductAttention(nn.Module):
"""
Scaled dot-product attention
"""
def __init__(self, d_model, d_k, d_v, h, dropout=0.1):
"""
:param d_model: Output dimensionality of the model
:param d_k: Dimensionality of queries and keys
:param d_v: Dimensionality of values
:param h: Number of heads
"""
super(ScaledDotProductAttention, self).__init__()
self.fc_q = nn.Linear(d_model, h * d_k)
self.fc_k = nn.Linear(d_model, h * d_k)
self.fc_v = nn.Linear(d_model, h * d_v)
self.fc_o = nn.Linear(h * d_v, d_model)
self.dropout = nn.Dropout(dropout)
self.d_model = d_model
self.d_k = d_k
self.d_v = d_v
self.h = h
self.init_weights()
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, std=0.001)
if m.bias is not None:
init.constant_(m.bias, 0)
def forward(self, queries, keys, values, attention_mask=None,
attention_weights=None):
"""
Computes
:param queries: Queries (b_s, nq, d_model)
:param keys: Keys (b_s, nk, d_model)
:param values: Values (b_s, nk, d_model)
:param attention_mask: Mask over attention values (b_s, h, nq, nk). True indicates masking.
:param attention_weights: Multiplicative weights for attention values (b_s, h, nq, nk).
:return:
"""
b_s, nq = queries.shape[:2]
nk = keys.shape[1]
q = self.fc_q(queries).view(b_s, nq, self.h, self.d_k).permute(0, 2,
1, 3)
k = self.fc_k(keys).view(b_s, nk, self.h, self.d_k).permute(0, 2, 3, 1)
v = self.fc_v(values).view(b_s, nk, self.h, self.d_v).permute(0, 2,
1, 3)
att = torch.matmul(q, k) / np.sqrt(self.d_k)
if attention_weights is not None:
att = att * attention_weights
if attention_mask is not None:
att = att.masked_fill(attention_mask, -np.inf)
att = torch.softmax(att, -1)
att = self.dropout(att)
out = torch.matmul(att, v).permute(0, 2, 1, 3).contiguous().view(b_s,
nq, self.h * self.d_v)
out = self.fc_o(out)
return out
class PositionAttentionModule(nn.Module):
def __init__(self, d_model=512, kernel_size=3, H=7, W=7):
super().__init__()
self.cnn = nn.Conv2d(d_model, d_model, kernel_size=kernel_size,
padding=(kernel_size - 1) // 2)
self.pa = ScaledDotProductAttention(d_model, d_k=d_model, d_v=
d_model, h=1)
def forward(self, x):
bs, c, _h, _w = x.shape
y = self.cnn(x)
y = y.view(bs, c, -1).permute(0, 2, 1)
y = self.pa(y, y, y)
return y
class SimplifiedScaledDotProductAttention(nn.Module):
"""
Scaled dot-product attention
"""
def __init__(self, d_model, h, dropout=0.1):
"""
:param d_model: Output dimensionality of the model
:param d_k: Dimensionality of queries and keys
:param d_v: Dimensionality of values
:param h: Number of heads
"""
super(SimplifiedScaledDotProductAttention, self).__init__()
self.d_model = d_model
self.d_k = d_model // h
self.d_v = d_model // h
self.h = h
self.fc_o = nn.Linear(h * self.d_v, d_model)
self.dropout = nn.Dropout(dropout)
self.init_weights()
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, std=0.001)
if m.bias is not None:
init.constant_(m.bias, 0)
def forward(self, queries, keys, values, attention_mask=None,
attention_weights=None):
"""
Computes
:param queries: Queries (b_s, nq, d_model)
:param keys: Keys (b_s, nk, d_model)
:param values: Values (b_s, nk, d_model)
:param attention_mask: Mask over attention values (b_s, h, nq, nk). True indicates masking.
:param attention_weights: Multiplicative weights for attention values (b_s, h, nq, nk).
:return:
"""
b_s, nq = queries.shape[:2]
nk = keys.shape[1]
q = queries.view(b_s, nq, self.h, self.d_k).permute(0, 2, 1, 3)
k = keys.view(b_s, nk, self.h, self.d_k).permute(0, 2, 3, 1)
v = values.view(b_s, nk, self.h, self.d_v).permute(0, 2, 1, 3)
att = torch.matmul(q, k) / np.sqrt(self.d_k)
if attention_weights is not None:
att = att * attention_weights
if attention_mask is not None:
att = att.masked_fill(attention_mask, -np.inf)
att = torch.softmax(att, -1)
att = self.dropout(att)
out = torch.matmul(att, v).permute(0, 2, 1, 3).contiguous().view(b_s,
nq, self.h * self.d_v)
out = self.fc_o(out)
return out
class ChannelAttentionModule(nn.Module):
def __init__(self, d_model=512, kernel_size=3, H=7, W=7):
super().__init__()
self.cnn = nn.Conv2d(d_model, d_model, kernel_size=kernel_size,
padding=(kernel_size - 1) // 2)
self.pa = SimplifiedScaledDotProductAttention(H * W, h=1)
def forward(self, x):
bs, c, _h, _w = x.shape
y = self.cnn(x)
y = y.view(bs, c, -1)
y = self.pa(y, y, y)
return y
class DAModule(nn.Module):
def __init__(self, d_model=512, kernel_size=3, H=7, W=7):
super().__init__()
self.position_attention_module = PositionAttentionModule(d_model=
512, kernel_size=3, H=7, W=7)
self.channel_attention_module = ChannelAttentionModule(d_model=512,
kernel_size=3, H=7, W=7)
def forward(self, input):
bs, c, h, w = input.shape
p_out = self.position_attention_module(input)
c_out = self.channel_attention_module(input)
p_out = p_out.permute(0, 2, 1).view(bs, c, h, w)
c_out = c_out.view(bs, c, h, w)
return p_out + c_out
def get_inputs():
return [torch.rand([4, 512, 1, 49])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import numpy as np
from torch import nn
from torch.nn import init
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 49
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 512
y1 = yindex // 512
tmp0 = tl.load(in_ptr0 + (x2 + 49 * y3), xmask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 512 * x2 + 25088 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)
) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 512
y1 = yindex // 512
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 512 * x2 + 4608 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_clone_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 512
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x2, tmp2, None)
@triton.jit
def triton_per_fused__softmax_sqrt_3(in_ptr0, out_ptr2, xnumel, rnumel,
XBLOCK: tl.constexpr):
xnumel = 196
rnumel = 49
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
rmask = rindex < rnumel
r1 = rindex
x0 = xindex
x2 = xindex % 49
x3 = xindex // 49
tmp0 = tl.load(in_ptr0 + (r1 + 49 * x0), rmask & xmask, other=0.0)
tmp1 = tl.full([1, 1], 22.62741699796952, tl.float64)
tmp2 = tl.full([1, 1], 0.0, tl.float64)
tmp3 = tmp1 >= tmp2
tmp4 = 1.0
tmp5 = -1.0
tmp6 = tl.where(tmp3, tmp4, tmp5)
tmp7 = tmp0 * tmp6
tmp8 = tl.broadcast_to(tmp7, [XBLOCK, RBLOCK])
tmp10 = tl.where(rmask & xmask, tmp8, float('-inf'))
tmp11 = triton_helpers.max2(tmp10, 1)[:, None]
tmp12 = tmp7 - tmp11
tmp13 = tmp6.to(tl.float64)
tmp14 = tmp13 * tmp1
tmp15 = tmp14.to(tl.float32)
tmp16 = tmp12 / tmp15
tmp17 = tl_math.exp(tmp16)
tmp18 = tl.broadcast_to(tmp17, [XBLOCK, RBLOCK])
tmp20 = tl.where(rmask & xmask, tmp18, 0)
tmp21 = tl.sum(tmp20, 1)[:, None]
tmp22 = tmp17 / tmp21
tl.store(out_ptr2 + (r1 + 49 * x2 + 2432 * x3), tmp22, rmask & xmask)
@triton.jit
def triton_per_fused__softmax_sqrt_4(in_ptr0, out_ptr2, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 512 * x0), None)
tmp1 = tl.full([1], 7.0, tl.float64)
tmp2 = tl.full([1], 0.0, tl.float64)
tmp3 = tmp1 >= tmp2
tmp4 = 1.0
tmp5 = -1.0
tmp6 = tl.where(tmp3, tmp4, tmp5)
tmp7 = tmp0 * tmp6
tmp8 = tl.broadcast_to(tmp7, [RBLOCK])
tmp10 = triton_helpers.promote_to_tensor(triton_helpers.max2(tmp8, 0))
tmp11 = tmp7 - tmp10
tmp12 = tmp6.to(tl.float64)
tmp13 = tmp12 * tmp1
tmp14 = tmp13.to(tl.float32)
tmp15 = tmp11 / tmp14
tmp16 = tl_math.exp(tmp15)
tmp17 = tl.broadcast_to(tmp16, [RBLOCK])
tmp19 = triton_helpers.promote_to_tensor(tl.sum(tmp17, 0))
tmp20 = tmp16 / tmp19
tl.store(out_ptr2 + (r1 + 512 * x0), tmp20, None)
@triton.jit
def triton_poi_fused_add_5(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, ynumel,
xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 196
xnumel = 512
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 49
y1 = yindex // 49
tmp0 = tl.load(in_out_ptr0 + (x2 + 512 * y3), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + x2, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (y0 + 49 * x2 + 25088 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp4 = tl.load(in_ptr2 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + (x2 + 512 * y3), tmp6, xmask & ymask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15) = args
args.clear()
assert_size_stride(primals_1, (4, 512, 1, 49), (25088, 49, 49, 1))
assert_size_stride(primals_2, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_3, (512,), (1,))
assert_size_stride(primals_4, (512, 512), (512, 1))
assert_size_stride(primals_5, (512,), (1,))
assert_size_stride(primals_6, (512, 512), (512, 1))
assert_size_stride(primals_7, (512,), (1,))
assert_size_stride(primals_8, (512, 512), (512, 1))
assert_size_stride(primals_9, (512,), (1,))
assert_size_stride(primals_10, (512, 512), (512, 1))
assert_size_stride(primals_11, (512,), (1,))
assert_size_stride(primals_12, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_13, (512,), (1,))
assert_size_stride(primals_14, (49, 49), (49, 1))
assert_size_stride(primals_15, (49,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 512, 1, 49), (25088, 1, 25088, 512),
torch.float32)
get_raw_stream(0)
triton_poi_fused_0[grid(2048, 49)](primals_1, buf0, 2048, 49,
XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512),
torch.float32)
triton_poi_fused_1[grid(262144, 9)](primals_2, buf1, 262144, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512),
torch.float32)
triton_poi_fused_1[grid(262144, 9)](primals_12, buf2, 262144, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_12
buf3 = extern_kernels.convolution(buf0, buf1, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 512, 1, 49), (25088, 1, 25088, 512))
buf4 = reinterpret_tensor(buf3, (4, 49, 512), (25088, 512, 1), 0)
del buf3
triton_poi_fused_clone_2[grid(100352)](buf4, primals_3, 100352,
XBLOCK=1024, num_warps=4, num_stages=1)
del primals_3
buf5 = empty_strided_cuda((196, 512), (512, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf4, (196, 512), (512, 1), 0),
reinterpret_tensor(primals_4, (512, 512), (1, 512), 0), out=buf5)
buf6 = empty_strided_cuda((196, 512), (512, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf4, (196, 512), (512, 1), 0),
reinterpret_tensor(primals_6, (512, 512), (1, 512), 0), out=buf6)
buf7 = empty_strided_cuda((196, 512), (512, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf4, (196, 512), (512, 1), 0),
reinterpret_tensor(primals_8, (512, 512), (1, 512), 0), out=buf7)
buf8 = reinterpret_tensor(buf5, (4, 49, 512), (25088, 512, 1), 0)
del buf5
triton_poi_fused_clone_2[grid(100352)](buf8, primals_5, 100352,
XBLOCK=1024, num_warps=4, num_stages=1)
del primals_5
buf9 = reinterpret_tensor(buf6, (4, 49, 512), (25088, 512, 1), 0)
del buf6
triton_poi_fused_clone_2[grid(100352)](buf9, primals_7, 100352,
XBLOCK=1024, num_warps=4, num_stages=1)
del primals_7
buf10 = empty_strided_cuda((4, 49, 49), (2401, 49, 1), torch.float32)
extern_kernels.bmm(buf8, reinterpret_tensor(buf9, (4, 512, 49), (
25088, 1, 512), 0), out=buf10)
buf13 = empty_strided_cuda((4, 1, 49, 49), (2432, 49, 49, 1), torch
.float32)
triton_per_fused__softmax_sqrt_3[grid(196)](buf10, buf13, 196, 49,
XBLOCK=1, num_warps=2, num_stages=1)
del buf10
buf14 = reinterpret_tensor(buf7, (4, 49, 512), (25088, 512, 1), 0)
del buf7
triton_poi_fused_clone_2[grid(100352)](buf14, primals_9, 100352,
XBLOCK=1024, num_warps=4, num_stages=1)
del primals_9
buf15 = empty_strided_cuda((4, 49, 512), (25088, 512, 1), torch.float32
)
extern_kernels.bmm(reinterpret_tensor(buf13, (4, 49, 49), (2432, 49,
1), 0), buf14, out=buf15)
buf16 = empty_strided_cuda((196, 512), (512, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf15, (196, 512), (512, 1), 0
), reinterpret_tensor(primals_10, (512, 512), (1, 512), 0), out
=buf16)
buf17 = extern_kernels.convolution(buf0, buf2, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf17, (4, 512, 1, 49), (25088, 1, 25088, 512))
buf18 = buf17
del buf17
triton_poi_fused_clone_2[grid(100352)](buf18, primals_13, 100352,
XBLOCK=1024, num_warps=4, num_stages=1)
del primals_13
buf19 = empty_strided_cuda((4, 512, 512), (262144, 512, 1), torch.
float32)
extern_kernels.bmm(reinterpret_tensor(buf18, (4, 512, 49), (25088,
1, 512), 0), reinterpret_tensor(buf18, (4, 49, 512), (25088,
512, 1), 0), out=buf19)
buf22 = empty_strided_cuda((4, 1, 512, 512), (262144, 1, 512, 1),
torch.float32)
triton_per_fused__softmax_sqrt_4[grid(2048)](buf19, buf22, 2048,
512, num_warps=4, num_stages=1)
del buf19
buf23 = empty_strided_cuda((4, 512, 49), (25088, 49, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf22, (4, 512, 512), (262144,
512, 1), 0), reinterpret_tensor(buf18, (4, 512, 49), (25088, 1,
512), 0), out=buf23)
buf24 = empty_strided_cuda((2048, 49), (49, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf23, (2048, 49), (49, 1), 0),
reinterpret_tensor(primals_14, (49, 49), (1, 49), 0), out=buf24)
buf25 = reinterpret_tensor(buf16, (4, 512, 1, 49), (25088, 1, 25088,
512), 0)
del buf16
triton_poi_fused_add_5[grid(196, 512)](buf25, primals_11, buf24,
primals_15, 196, 512, XBLOCK=16, YBLOCK=256, num_warps=8,
num_stages=1)
del buf24
del primals_11
del primals_15
return buf25, buf0, buf1, buf2, reinterpret_tensor(buf4, (196, 512), (
512, 1), 0), buf13, reinterpret_tensor(buf15, (196, 512), (512, 1), 0
), buf18, buf22, reinterpret_tensor(buf23, (2048, 49), (49, 1), 0
), primals_14, primals_10, reinterpret_tensor(buf14, (4, 512, 49),
(25088, 1, 512), 0), reinterpret_tensor(buf8, (4, 512, 49), (25088,
1, 512), 0), buf9, primals_8, primals_6, primals_4
class ScaledDotProductAttention(nn.Module):
"""
Scaled dot-product attention
"""
def __init__(self, d_model, d_k, d_v, h, dropout=0.1):
"""
:param d_model: Output dimensionality of the model
:param d_k: Dimensionality of queries and keys
:param d_v: Dimensionality of values
:param h: Number of heads
"""
super(ScaledDotProductAttention, self).__init__()
self.fc_q = nn.Linear(d_model, h * d_k)
self.fc_k = nn.Linear(d_model, h * d_k)
self.fc_v = nn.Linear(d_model, h * d_v)
self.fc_o = nn.Linear(h * d_v, d_model)
self.dropout = nn.Dropout(dropout)
self.d_model = d_model
self.d_k = d_k
self.d_v = d_v
self.h = h
self.init_weights()
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, std=0.001)
if m.bias is not None:
init.constant_(m.bias, 0)
def forward(self, queries, keys, values, attention_mask=None,
attention_weights=None):
"""
Computes
:param queries: Queries (b_s, nq, d_model)
:param keys: Keys (b_s, nk, d_model)
:param values: Values (b_s, nk, d_model)
:param attention_mask: Mask over attention values (b_s, h, nq, nk). True indicates masking.
:param attention_weights: Multiplicative weights for attention values (b_s, h, nq, nk).
:return:
"""
b_s, nq = queries.shape[:2]
nk = keys.shape[1]
q = self.fc_q(queries).view(b_s, nq, self.h, self.d_k).permute(0, 2,
1, 3)
k = self.fc_k(keys).view(b_s, nk, self.h, self.d_k).permute(0, 2, 3, 1)
v = self.fc_v(values).view(b_s, nk, self.h, self.d_v).permute(0, 2,
1, 3)
att = torch.matmul(q, k) / np.sqrt(self.d_k)
if attention_weights is not None:
att = att * attention_weights
if attention_mask is not None:
att = att.masked_fill(attention_mask, -np.inf)
att = torch.softmax(att, -1)
att = self.dropout(att)
out = torch.matmul(att, v).permute(0, 2, 1, 3).contiguous().view(b_s,
nq, self.h * self.d_v)
out = self.fc_o(out)
return out
class PositionAttentionModule(nn.Module):
def __init__(self, d_model=512, kernel_size=3, H=7, W=7):
super().__init__()
self.cnn = nn.Conv2d(d_model, d_model, kernel_size=kernel_size,
padding=(kernel_size - 1) // 2)
self.pa = ScaledDotProductAttention(d_model, d_k=d_model, d_v=
d_model, h=1)
def forward(self, x):
bs, c, _h, _w = x.shape
y = self.cnn(x)
y = y.view(bs, c, -1).permute(0, 2, 1)
y = self.pa(y, y, y)
return y
class SimplifiedScaledDotProductAttention(nn.Module):
"""
Scaled dot-product attention
"""
def __init__(self, d_model, h, dropout=0.1):
"""
:param d_model: Output dimensionality of the model
:param d_k: Dimensionality of queries and keys
:param d_v: Dimensionality of values
:param h: Number of heads
"""
super(SimplifiedScaledDotProductAttention, self).__init__()
self.d_model = d_model
self.d_k = d_model // h
self.d_v = d_model // h
self.h = h
self.fc_o = nn.Linear(h * self.d_v, d_model)
self.dropout = nn.Dropout(dropout)
self.init_weights()
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, std=0.001)
if m.bias is not None:
init.constant_(m.bias, 0)
def forward(self, queries, keys, values, attention_mask=None,
attention_weights=None):
"""
Computes
:param queries: Queries (b_s, nq, d_model)
:param keys: Keys (b_s, nk, d_model)
:param values: Values (b_s, nk, d_model)
:param attention_mask: Mask over attention values (b_s, h, nq, nk). True indicates masking.
:param attention_weights: Multiplicative weights for attention values (b_s, h, nq, nk).
:return:
"""
b_s, nq = queries.shape[:2]
nk = keys.shape[1]
q = queries.view(b_s, nq, self.h, self.d_k).permute(0, 2, 1, 3)
k = keys.view(b_s, nk, self.h, self.d_k).permute(0, 2, 3, 1)
v = values.view(b_s, nk, self.h, self.d_v).permute(0, 2, 1, 3)
att = torch.matmul(q, k) / np.sqrt(self.d_k)
if attention_weights is not None:
att = att * attention_weights
if attention_mask is not None:
att = att.masked_fill(attention_mask, -np.inf)
att = torch.softmax(att, -1)
att = self.dropout(att)
out = torch.matmul(att, v).permute(0, 2, 1, 3).contiguous().view(b_s,
nq, self.h * self.d_v)
out = self.fc_o(out)
return out
class ChannelAttentionModule(nn.Module):
def __init__(self, d_model=512, kernel_size=3, H=7, W=7):
super().__init__()
self.cnn = nn.Conv2d(d_model, d_model, kernel_size=kernel_size,
padding=(kernel_size - 1) // 2)
self.pa = SimplifiedScaledDotProductAttention(H * W, h=1)
def forward(self, x):
bs, c, _h, _w = x.shape
y = self.cnn(x)
y = y.view(bs, c, -1)
y = self.pa(y, y, y)
return y
class DAModuleNew(nn.Module):
def __init__(self, d_model=512, kernel_size=3, H=7, W=7):
super().__init__()
self.position_attention_module = PositionAttentionModule(d_model=
512, kernel_size=3, H=7, W=7)
self.channel_attention_module = ChannelAttentionModule(d_model=512,
kernel_size=3, H=7, W=7)
def forward(self, input_0):
primals_2 = self.position_attention_module.cnn.weight
primals_3 = self.position_attention_module.cnn.bias
primals_4 = self.position_attention_module.pa.fc_q.weight
primals_5 = self.position_attention_module.pa.fc_q.bias
primals_6 = self.position_attention_module.pa.fc_k.weight
primals_7 = self.position_attention_module.pa.fc_k.bias
primals_8 = self.position_attention_module.pa.fc_v.weight
primals_9 = self.position_attention_module.pa.fc_v.bias
primals_10 = self.position_attention_module.pa.fc_o.weight
primals_11 = self.position_attention_module.pa.fc_o.bias
primals_12 = self.channel_attention_module.cnn.weight
primals_13 = self.channel_attention_module.cnn.bias
primals_14 = self.channel_attention_module.pa.fc_o.weight
primals_15 = self.channel_attention_module.pa.fc_o.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15])
return output[0]
|
LiChengChen666/DetectDee
|
DAModule
| false | 9,834 |
[
"Apache-2.0"
] | 0 |
1e6aaa0d15b1fc12d1342d8a922004e372b5f437
|
https://github.com/LiChengChen666/DetectDee/tree/1e6aaa0d15b1fc12d1342d8a922004e372b5f437
|
UFOAttention
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/oh/cohi5innigfnlg3a4vz3tzzxnyrdwyi342o5yrghstooasfjvhet.py
# Topologically Sorted Source Nodes: [kv], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# kv => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 16
y1 = (yindex // 16)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (16*x2) + (64*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/zo/czomnz74isoxx6up5u2hmx722cdztmgay2wiq7c54b4ihien6mpt.py
# Topologically Sorted Source Nodes: [kv], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# kv => clone_1
# Graph fragment:
# %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_1,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4) % 4
x2 = (xindex // 16) % 4
x3 = (xindex // 64)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (4*x2) + (16*x1) + (64*x3)), xmask)
tmp1 = tl.load(in_ptr1 + (x0 + (4*x2)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x4), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/t2/ct2mzc2szheskf3r6msdggseeexrinz2uczzpn6k3pwvv6vc2vio.py
# Topologically Sorted Source Nodes: [norm_tensor, mul, kv_norm], Original ATen: [aten.linalg_vector_norm, aten.mul, aten.div]
# Source node to ATen node mapping:
# kv_norm => div
# mul => mul
# norm_tensor => pow_1, pow_2, sum_1
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%view_11, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [-1], True), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_11, %primals_10), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, %pow_2), kwargs = {})
triton_poi_fused_div_linalg_vector_norm_mul_2 = async_compile.triton('triton_poi_fused_div_linalg_vector_norm_mul_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_linalg_vector_norm_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_linalg_vector_norm_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x2 = (xindex // 16) % 4
x5 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x4), xmask)
tmp1 = tl.load(in_ptr1 + (x2), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (4*x5), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + (4*x5)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (2 + (4*x5)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + (4*x5)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp3
tmp6 = tmp5 * tmp5
tmp7 = tmp4 + tmp6
tmp9 = tmp8 * tmp8
tmp10 = tmp7 + tmp9
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = libdevice.sqrt(tmp13)
tmp15 = tmp2 / tmp14
tl.store(out_ptr0 + (x4), tmp15, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/h6/ch65kkrcljiqxk6uhmtskijz2ynwfqf7gggfxjtnlm2uhjjju6sb.py
# Topologically Sorted Source Nodes: [norm_tensor_1, mul_1, q_norm, matmul_1], Original ATen: [aten.linalg_vector_norm, aten.mul, aten.div, aten.clone]
# Source node to ATen node mapping:
# matmul_1 => clone_2
# mul_1 => mul_1
# norm_tensor_1 => pow_3, pow_4, sum_2
# q_norm => div_1
# Graph fragment:
# %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%permute_1, 2), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_3, [-1], True), kwargs = {})
# %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_2, 0.5), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%permute_1, %primals_10), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_1, %pow_4), kwargs = {})
# %clone_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_2,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_div_linalg_vector_norm_mul_3 = async_compile.triton('triton_poi_fused_clone_div_linalg_vector_norm_mul_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_div_linalg_vector_norm_mul_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_div_linalg_vector_norm_mul_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x1 = (xindex // 4) % 4
x5 = (xindex // 4)
x0 = xindex % 4
x2 = (xindex // 16) % 4
x3 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x4), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (4*x5), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + (4*x5)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (2 + (4*x5)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + (4*x5)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp3
tmp6 = tmp5 * tmp5
tmp7 = tmp4 + tmp6
tmp9 = tmp8 * tmp8
tmp10 = tmp7 + tmp9
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = libdevice.sqrt(tmp13)
tmp15 = tmp2 / tmp14
tl.store(out_ptr0 + (x0 + (4*x2) + (16*x1) + (64*x3)), tmp15, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/6b/c6busvilz5nn36jjet3bmw7cqddirh4sgalamjr3fsrp3sbsacfi.py
# Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# contiguous => clone_3
# Graph fragment:
# %clone_3 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_6,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4) % 4
x2 = (xindex // 16) % 4
x3 = (xindex // 64)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (4*x2) + (16*x1) + (64*x3)), xmask)
tl.store(out_ptr0 + (x4), tmp0, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (16, 4), (4, 1))
assert_size_stride(primals_4, (16, ), (1, ))
assert_size_stride(primals_5, (16, 4), (4, 1))
assert_size_stride(primals_6, (16, ), (1, ))
assert_size_stride(primals_7, (16, 4), (4, 1))
assert_size_stride(primals_8, (16, ), (1, ))
assert_size_stride(primals_9, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_10, (1, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_11, (4, 16), (16, 1))
assert_size_stride(primals_12, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 16), (16, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_4, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 16), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_3
del primals_4
buf1 = empty_strided_cuda((16, 16), (16, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 16), (1, 4), 0), out=buf1)
del primals_5
buf2 = empty_strided_cuda((16, 16), (16, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_9, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 16), (1, 4), 0), out=buf2)
del primals_7
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [kv], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(buf1, primals_6, buf3, 64, 4, grid=grid(64, 4), stream=stream0)
del primals_6
buf4 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [kv], Original ATen: [aten.clone]
triton_poi_fused_clone_1.run(buf2, primals_8, buf4, 256, grid=grid(256), stream=stream0)
del primals_8
buf5 = reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [kv], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf4, (16, 4, 4), (16, 4, 1), 0), out=buf5)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [norm_tensor, mul, kv_norm], Original ATen: [aten.linalg_vector_norm, aten.mul, aten.div]
triton_poi_fused_div_linalg_vector_norm_mul_2.run(buf5, primals_10, buf6, 256, grid=grid(256), stream=stream0)
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [norm_tensor_1, mul_1, q_norm, matmul_1], Original ATen: [aten.linalg_vector_norm, aten.mul, aten.div, aten.clone]
triton_poi_fused_clone_div_linalg_vector_norm_mul_3.run(buf0, primals_10, buf7, 256, grid=grid(256), stream=stream0)
buf8 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf6, (16, 4, 4), (16, 4, 1), 0), out=buf8)
buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone]
triton_poi_fused_clone_4.run(buf8, buf9, 256, grid=grid(256), stream=stream0)
del buf8
buf10 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_12, reinterpret_tensor(buf9, (16, 16), (16, 1), 0), reinterpret_tensor(primals_11, (16, 4), (1, 16), 0), alpha=1, beta=1, out=buf10)
del primals_12
return (reinterpret_tensor(buf10, (4, 4, 4), (16, 4, 1), 0), primals_10, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), buf0, reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_9, (16, 4), (4, 1), 0), buf5, buf6, reinterpret_tensor(buf9, (16, 16), (16, 1), 0), primals_11, reinterpret_tensor(buf7, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf3, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf4, (16, 4, 4), (16, 1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, 16), (16, 1), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
from torch.nn import init
def XNorm(x, gamma):
norm_tensor = torch.norm(x, 2, -1, True)
return x * gamma / norm_tensor
class UFOAttention(nn.Module):
"""
Scaled dot-product attention
"""
def __init__(self, d_model, d_k, d_v, h, dropout=0.1):
"""
:param d_model: Output dimensionality of the model
:param d_k: Dimensionality of queries and keys
:param d_v: Dimensionality of values
:param h: Number of heads
"""
super(UFOAttention, self).__init__()
self.fc_q = nn.Linear(d_model, h * d_k)
self.fc_k = nn.Linear(d_model, h * d_k)
self.fc_v = nn.Linear(d_model, h * d_v)
self.fc_o = nn.Linear(h * d_v, d_model)
self.dropout = nn.Dropout(dropout)
self.gamma = nn.Parameter(torch.randn((1, h, 1, 1)))
self.d_model = d_model
self.d_k = d_k
self.d_v = d_v
self.h = h
self.init_weights()
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, std=0.001)
if m.bias is not None:
init.constant_(m.bias, 0)
def forward(self, queries, keys, values):
b_s, nq = queries.shape[:2]
nk = keys.shape[1]
q = self.fc_q(queries).view(b_s, nq, self.h, self.d_k).permute(0, 2,
1, 3)
k = self.fc_k(keys).view(b_s, nk, self.h, self.d_k).permute(0, 2, 3, 1)
v = self.fc_v(values).view(b_s, nk, self.h, self.d_v).permute(0, 2,
1, 3)
kv = torch.matmul(k, v)
kv_norm = XNorm(kv, self.gamma)
q_norm = XNorm(q, self.gamma)
out = torch.matmul(q_norm, kv_norm).permute(0, 2, 1, 3).contiguous(
).view(b_s, nq, self.h * self.d_v)
out = self.fc_o(out)
return out
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4])
]
def get_init_inputs():
return [[], {'d_model': 4, 'd_k': 4, 'd_v': 4, 'h': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
from torch import nn
from torch.nn import init
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 16
y1 = yindex // 16
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 16 * x2 + 64 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask)
@triton.jit
def triton_poi_fused_clone_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4 % 4
x2 = xindex // 16 % 4
x3 = xindex // 64
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 16 * x1 + 64 * x3), xmask)
tmp1 = tl.load(in_ptr1 + (x0 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + x4, tmp2, xmask)
@triton.jit
def triton_poi_fused_div_linalg_vector_norm_mul_2(in_ptr0, in_ptr1,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x2 = xindex // 16 % 4
x5 = xindex // 4
tmp0 = tl.load(in_ptr0 + x4, xmask)
tmp1 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + 4 * x5, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + 4 * x5), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (2 + 4 * x5), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x5), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp3
tmp6 = tmp5 * tmp5
tmp7 = tmp4 + tmp6
tmp9 = tmp8 * tmp8
tmp10 = tmp7 + tmp9
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = libdevice.sqrt(tmp13)
tmp15 = tmp2 / tmp14
tl.store(out_ptr0 + x4, tmp15, xmask)
@triton.jit
def triton_poi_fused_clone_div_linalg_vector_norm_mul_3(in_ptr0, in_ptr1,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x1 = xindex // 4 % 4
x5 = xindex // 4
x0 = xindex % 4
x2 = xindex // 16 % 4
x3 = xindex // 64
tmp0 = tl.load(in_ptr0 + x4, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + 4 * x5, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + 4 * x5), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (2 + 4 * x5), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x5), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp3
tmp6 = tmp5 * tmp5
tmp7 = tmp4 + tmp6
tmp9 = tmp8 * tmp8
tmp10 = tmp7 + tmp9
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = libdevice.sqrt(tmp13)
tmp15 = tmp2 / tmp14
tl.store(out_ptr0 + (x0 + 4 * x2 + 16 * x1 + 64 * x3), tmp15, xmask)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4 % 4
x2 = xindex // 16 % 4
x3 = xindex // 64
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 16 * x1 + 64 * x3), xmask)
tl.store(out_ptr0 + x4, tmp0, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12
) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (16, 4), (4, 1))
assert_size_stride(primals_4, (16,), (1,))
assert_size_stride(primals_5, (16, 4), (4, 1))
assert_size_stride(primals_6, (16,), (1,))
assert_size_stride(primals_7, (16, 4), (4, 1))
assert_size_stride(primals_8, (16,), (1,))
assert_size_stride(primals_9, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_10, (1, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_11, (4, 16), (16, 1))
assert_size_stride(primals_12, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 16), (16, 1), torch.float32)
extern_kernels.addmm(primals_4, reinterpret_tensor(primals_1, (16,
4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 16), (1, 4),
0), alpha=1, beta=1, out=buf0)
del primals_3
del primals_4
buf1 = empty_strided_cuda((16, 16), (16, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_5, (4, 16), (1, 4), 0), out=buf1)
del primals_5
buf2 = empty_strided_cuda((16, 16), (16, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_9, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_7, (4, 16), (1, 4), 0), out=buf2)
del primals_7
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(64, 4)](buf1, primals_6, buf3, 64, 4,
XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1)
del primals_6
buf4 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf1
triton_poi_fused_clone_1[grid(256)](buf2, primals_8, buf4, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_8
buf5 = reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0)
del buf2
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf4, (16, 4, 4), (16, 4, 1), 0), out=buf5)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_div_linalg_vector_norm_mul_2[grid(256)](buf5,
primals_10, buf6, 256, XBLOCK=256, num_warps=4, num_stages=1)
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_clone_div_linalg_vector_norm_mul_3[grid(256)](buf0,
primals_10, buf7, 256, XBLOCK=128, num_warps=4, num_stages=1)
buf8 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf6, (16, 4, 4), (16, 4, 1), 0), out=buf8)
buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_clone_4[grid(256)](buf8, buf9, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del buf8
buf10 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_12, reinterpret_tensor(buf9, (16, 16),
(16, 1), 0), reinterpret_tensor(primals_11, (16, 4), (1, 16), 0
), alpha=1, beta=1, out=buf10)
del primals_12
return reinterpret_tensor(buf10, (4, 4, 4), (16, 4, 1), 0
), primals_10, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0
), buf0, reinterpret_tensor(primals_2, (16, 4), (4, 1), 0
), reinterpret_tensor(primals_9, (16, 4), (4, 1), 0
), buf5, buf6, reinterpret_tensor(buf9, (16, 16), (16, 1), 0
), primals_11, reinterpret_tensor(buf7, (16, 4, 4), (16, 1, 4), 0
), reinterpret_tensor(buf3, (16, 4, 4), (16, 1, 4), 0
), reinterpret_tensor(buf4, (16, 4, 4), (16, 1, 4), 0)
def XNorm(x, gamma):
norm_tensor = torch.norm(x, 2, -1, True)
return x * gamma / norm_tensor
class UFOAttentionNew(nn.Module):
"""
Scaled dot-product attention
"""
def __init__(self, d_model, d_k, d_v, h, dropout=0.1):
"""
:param d_model: Output dimensionality of the model
:param d_k: Dimensionality of queries and keys
:param d_v: Dimensionality of values
:param h: Number of heads
"""
super(UFOAttentionNew, self).__init__()
self.fc_q = nn.Linear(d_model, h * d_k)
self.fc_k = nn.Linear(d_model, h * d_k)
self.fc_v = nn.Linear(d_model, h * d_v)
self.fc_o = nn.Linear(h * d_v, d_model)
self.dropout = nn.Dropout(dropout)
self.gamma = nn.Parameter(torch.randn((1, h, 1, 1)))
self.d_model = d_model
self.d_k = d_k
self.d_v = d_v
self.h = h
self.init_weights()
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, std=0.001)
if m.bias is not None:
init.constant_(m.bias, 0)
def forward(self, input_0, input_1, input_2):
primals_10 = self.gamma
primals_3 = self.fc_q.weight
primals_4 = self.fc_q.bias
primals_5 = self.fc_k.weight
primals_6 = self.fc_k.bias
primals_7 = self.fc_v.weight
primals_8 = self.fc_v.bias
primals_11 = self.fc_o.weight
primals_12 = self.fc_o.bias
primals_1 = input_0
primals_2 = input_1
primals_9 = input_2
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12])
return output[0]
|
LiChengChen666/DetectDee
|
UFOAttention
| false | 9,835 |
[
"Apache-2.0"
] | 0 |
1e6aaa0d15b1fc12d1342d8a922004e372b5f437
|
https://github.com/LiChengChen666/DetectDee/tree/1e6aaa0d15b1fc12d1342d8a922004e372b5f437
|
ResidualAttention
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/u3/cu3litezfpnwhpnfnfuj6dtimz6ml42wmcwnwxlnovd4p5lvyin4.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048, 4096], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 2048
xnumel = 4096
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 512
y1 = (yindex // 512)
tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), None, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (512*x2) + (2097152*y1)), tmp0, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/x3/cx3zatlapixnvnybklv4hr3jf2bzbsxdhp4jqm5sowz7qy425ovw.py
# Topologically Sorted Source Nodes: [y_avg, max_1], Original ATen: [aten.mean, aten.max]
# Source node to ATen node mapping:
# max_1 => max_1
# y_avg => mean
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%view, [2]), kwargs = {})
# %max_1 : [num_users=2] = call_function[target=torch.ops.aten.max.dim](args = (%view, 2), kwargs = {})
triton_red_fused_max_mean_1 = async_compile.triton('triton_red_fused_max_mean_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[131072, 128],
reduction_hint=ReductionHint.OUTER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_max_mean_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused_max_mean_1(in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 128000
rnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex % 1000
x1 = (xindex // 1000)
_tmp2 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
x3 = xindex
_tmp4 = tl.full([XBLOCK, RBLOCK], float("-inf"), tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex
tmp0 = tl.load(in_ptr0 + (x0 + (1000*r2) + (128000*x1)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = _tmp2 + tmp1
_tmp2 = tl.where(rmask & xmask, tmp3, _tmp2)
tmp5 = triton_helpers.maximum(_tmp4, tmp1)
_tmp4 = tl.where(rmask & xmask, tmp5, _tmp4)
tmp2 = tl.sum(_tmp2, 1)[:, None]
tl.store(out_ptr0 + (x3), tmp2, xmask)
tmp4 = triton_helpers.max2(_tmp4, 1)[:, None]
tl.store(out_ptr1 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/pr/cpraieink233y5r33a6msz5ocnfafpb4445uks3glrkdxl5pbont.py
# Topologically Sorted Source Nodes: [y_avg, max_1, mul, score], Original ATen: [aten.mean, aten.max, aten.mul, aten.add]
# Source node to ATen node mapping:
# max_1 => max_1
# mul => mul
# score => add
# y_avg => mean
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%view, [2]), kwargs = {})
# %max_1 : [num_users=2] = call_function[target=torch.ops.aten.max.dim](args = (%view, 2), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem, 0.2), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean, %mul), kwargs = {})
triton_per_fused_add_max_mean_mul_2 = async_compile.triton('triton_per_fused_add_max_mean_mul_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4096, 32],
reduction_hint=ReductionHint.OUTER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_max_mean_mul_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_max_mean_mul_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4000
rnumel = 32
RBLOCK: tl.constexpr = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x0 = xindex % 1000
x1 = (xindex // 1000)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (1000*r2) + (32000*x1)), xmask, other=0.0)
tmp5 = tl.load(in_ptr1 + (x0 + (1000*r2) + (32000*x1)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, float("-inf"))
tmp9 = triton_helpers.max2(tmp8, 1)[:, None]
tmp10 = 4096.0
tmp11 = tmp4 / tmp10
tmp12 = 0.2
tmp13 = tmp9 * tmp12
tmp14 = tmp11 + tmp13
tl.debug_barrier()
tl.store(in_out_ptr0 + (x3), tmp14, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/7d/c7dc3ovmujmnb2r4l3y6koo326v5usfc6mthj2l6e4jfcvgqvcqe.py
# Topologically Sorted Source Nodes: [max_1], Original ATen: [aten.max]
# Source node to ATen node mapping:
# max_1 => max_1
# Graph fragment:
# %max_1 : [num_users=2] = call_function[target=torch.ops.aten.max.dim](args = (%view, 2), kwargs = {})
triton_red_fused_max_3 = async_compile.triton('triton_red_fused_max_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[4096, 4096],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_max_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused_max_3(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 4000
rnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex % 1000
x1 = (xindex // 1000)
_tmp2 = tl.full([XBLOCK, RBLOCK], float("-inf"), tl.float32)
_tmp2_index = tl.full([XBLOCK, RBLOCK], 9223372036854775807, tl.int64)
x3 = xindex
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex
tmp0 = tl.load(in_ptr0 + (x0 + (1000*r2) + (4096000*x1)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
_tmp2_next, _tmp2_index_next = triton_helpers.maximum_with_index(
_tmp2, _tmp2_index, tmp1, rindex
)
_tmp2 = tl.where(rmask & xmask, _tmp2_next, _tmp2)
_tmp2_index = tl.where(rmask & xmask, _tmp2_index_next, _tmp2_index)
_, tmp2_tmp = triton_helpers.max_with_index(_tmp2, _tmp2_index, 1)
tmp2 = tmp2_tmp[:, None]
tl.store(out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 512, 64, 64), (2097152, 4096, 64, 1))
assert_size_stride(primals_2, (1000, 512, 1, 1), (512, 1, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 512, 64, 64), (2097152, 1, 32768, 512), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
stream0 = get_raw_stream(0)
triton_poi_fused_0.run(primals_1, buf0, 2048, 4096, grid=grid(2048, 4096), stream=stream0)
del primals_1
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 1000, 64, 64), (4096000, 1, 64000, 1000))
buf2 = empty_strided_cuda((4, 1000, 32), (32000, 1, 1000), torch.float32)
buf4 = empty_strided_cuda((4, 1000, 32), (32000, 1, 1000), torch.float32)
# Topologically Sorted Source Nodes: [y_avg, max_1], Original ATen: [aten.mean, aten.max]
triton_red_fused_max_mean_1.run(buf1, buf2, buf4, 128000, 128, grid=grid(128000), stream=stream0)
buf3 = empty_strided_cuda((4, 1000), (1000, 1), torch.float32)
buf7 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [y_avg, max_1, mul, score], Original ATen: [aten.mean, aten.max, aten.mul, aten.add]
triton_per_fused_add_max_mean_mul_2.run(buf7, buf2, buf4, 4000, 32, grid=grid(4000), stream=stream0)
del buf2
del buf4
buf6 = empty_strided_cuda((4, 1000), (1000, 1), torch.int64)
# Topologically Sorted Source Nodes: [max_1], Original ATen: [aten.max]
triton_red_fused_max_3.run(buf1, buf6, 4000, 4096, grid=grid(4000), stream=stream0)
del buf1
return (buf7, buf0, primals_2, reinterpret_tensor(buf6, (4, 1000, 1), (1000, 1, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 512, 64, 64), (2097152, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1000, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
class ResidualAttention(nn.Module):
def __init__(self, channel=512, num_class=1000, la=0.2):
super().__init__()
self.la = la
self.fc = nn.Conv2d(in_channels=channel, out_channels=num_class,
kernel_size=1, stride=1, bias=False)
def forward(self, x):
_b, _c, _h, _w = x.shape
y_raw = self.fc(x).flatten(2)
y_avg = torch.mean(y_raw, dim=2)
y_max = torch.max(y_raw, dim=2)[0]
score = y_avg + self.la * y_max
return score
def get_inputs():
return [torch.rand([4, 512, 64, 64])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 512
y1 = yindex // 512
tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), None, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 512 * x2 + 2097152 * y1), tmp0, None)
@triton.jit
def triton_red_fused_max_mean_1(in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel,
XBLOCK: tl.constexpr, RBLOCK: tl.constexpr):
xnumel = 128000
rnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex % 1000
x1 = xindex // 1000
_tmp2 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
x3 = xindex
_tmp4 = tl.full([XBLOCK, RBLOCK], float('-inf'), tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex
tmp0 = tl.load(in_ptr0 + (x0 + 1000 * r2 + 128000 * x1), rmask &
xmask, eviction_policy='evict_first', other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = _tmp2 + tmp1
_tmp2 = tl.where(rmask & xmask, tmp3, _tmp2)
tmp5 = triton_helpers.maximum(_tmp4, tmp1)
_tmp4 = tl.where(rmask & xmask, tmp5, _tmp4)
tmp2 = tl.sum(_tmp2, 1)[:, None]
tl.store(out_ptr0 + x3, tmp2, xmask)
tmp4 = triton_helpers.max2(_tmp4, 1)[:, None]
tl.store(out_ptr1 + x3, tmp4, xmask)
@triton.jit
def triton_per_fused_add_max_mean_mul_2(in_out_ptr0, in_ptr0, in_ptr1,
xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 4000
RBLOCK: tl.constexpr = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x0 = xindex % 1000
x1 = xindex // 1000
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 1000 * r2 + 32000 * x1), xmask, other=0.0)
tmp5 = tl.load(in_ptr1 + (x0 + 1000 * r2 + 32000 * x1), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, float('-inf'))
tmp9 = triton_helpers.max2(tmp8, 1)[:, None]
tmp10 = 4096.0
tmp11 = tmp4 / tmp10
tmp12 = 0.2
tmp13 = tmp9 * tmp12
tmp14 = tmp11 + tmp13
tl.debug_barrier()
tl.store(in_out_ptr0 + x3, tmp14, xmask)
@triton.jit
def triton_red_fused_max_3(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl.
constexpr, RBLOCK: tl.constexpr):
xnumel = 4000
rnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex % 1000
x1 = xindex // 1000
_tmp2 = tl.full([XBLOCK, RBLOCK], float('-inf'), tl.float32)
_tmp2_index = tl.full([XBLOCK, RBLOCK], 9223372036854775807, tl.int64)
x3 = xindex
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex
tmp0 = tl.load(in_ptr0 + (x0 + 1000 * r2 + 4096000 * x1), rmask &
xmask, eviction_policy='evict_first', other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
_tmp2_next, _tmp2_index_next = triton_helpers.maximum_with_index(_tmp2,
_tmp2_index, tmp1, rindex)
_tmp2 = tl.where(rmask & xmask, _tmp2_next, _tmp2)
_tmp2_index = tl.where(rmask & xmask, _tmp2_index_next, _tmp2_index)
_, tmp2_tmp = triton_helpers.max_with_index(_tmp2, _tmp2_index, 1)
tmp2 = tmp2_tmp[:, None]
tl.store(out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 512, 64, 64), (2097152, 4096, 64, 1))
assert_size_stride(primals_2, (1000, 512, 1, 1), (512, 1, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 512, 64, 64), (2097152, 1, 32768, 512
), torch.float32)
get_raw_stream(0)
triton_poi_fused_0[grid(2048, 4096)](primals_1, buf0, 2048, 4096,
XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1)
del primals_1
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 1000, 64, 64), (4096000, 1, 64000, 1000))
buf2 = empty_strided_cuda((4, 1000, 32), (32000, 1, 1000), torch.
float32)
buf4 = empty_strided_cuda((4, 1000, 32), (32000, 1, 1000), torch.
float32)
triton_red_fused_max_mean_1[grid(128000)](buf1, buf2, buf4, 128000,
128, XBLOCK=64, RBLOCK=8, num_warps=4, num_stages=1)
buf3 = empty_strided_cuda((4, 1000), (1000, 1), torch.float32)
buf7 = buf3
del buf3
triton_per_fused_add_max_mean_mul_2[grid(4000)](buf7, buf2, buf4,
4000, 32, XBLOCK=128, num_warps=8, num_stages=1)
del buf2
del buf4
buf6 = empty_strided_cuda((4, 1000), (1000, 1), torch.int64)
triton_red_fused_max_3[grid(4000)](buf1, buf6, 4000, 4096, XBLOCK=8,
RBLOCK=512, num_warps=16, num_stages=1)
del buf1
return buf7, buf0, primals_2, reinterpret_tensor(buf6, (4, 1000, 1), (
1000, 1, 1), 0)
class ResidualAttentionNew(nn.Module):
def __init__(self, channel=512, num_class=1000, la=0.2):
super().__init__()
self.la = la
self.fc = nn.Conv2d(in_channels=channel, out_channels=num_class,
kernel_size=1, stride=1, bias=False)
def forward(self, input_0):
primals_2 = self.fc.weight
primals_1 = input_0
output = call([primals_1, primals_2])
return output[0]
|
LiChengChen666/DetectDee
|
ResidualAttention
| false | 9,836 |
[
"Apache-2.0"
] | 0 |
1e6aaa0d15b1fc12d1342d8a922004e372b5f437
|
https://github.com/LiChengChen666/DetectDee/tree/1e6aaa0d15b1fc12d1342d8a922004e372b5f437
|
ActorNet
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/md/cmd3ewacyhu5w5hausgbjbmtnt5rr66cgczh4ibdypq7dz6p4v7g.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/hj/chjzotk5iydxvuetxetlv36s7car7cdb24whkuqihxwcy5kkr4o2.py
# Topologically Sorted Source Nodes: [tanh], Original ATen: [aten.tanh]
# Source node to ATen node mapping:
# tanh => tanh
# Graph fragment:
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%view_5,), kwargs = {})
triton_poi_fused_tanh_1 = async_compile.triton('triton_poi_fused_tanh_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (128, 4), (4, 1))
assert_size_stride(primals_2, (128, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (128, 128), (128, 1))
assert_size_stride(primals_5, (128, ), (1, ))
assert_size_stride(primals_6, (4, 128), (128, 1))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 128), (128, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 128), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 128), (2048, 512, 128, 1), 0); del buf0 # reuse
buf7 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf7, 8192, grid=grid(8192), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 128), (128, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 128), (128, 1), 0), reinterpret_tensor(primals_4, (128, 128), (1, 128), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 128), (2048, 512, 128, 1), 0); del buf2 # reuse
buf6 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_0.run(buf3, primals_5, buf6, 8192, grid=grid(8192), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf3, (64, 128), (128, 1), 0), reinterpret_tensor(primals_6, (128, 4), (1, 128), 0), out=buf4)
buf5 = reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf4 # reuse
# Topologically Sorted Source Nodes: [tanh], Original ATen: [aten.tanh]
triton_poi_fused_tanh_1.run(buf5, primals_7, 256, grid=grid(256), stream=stream0)
del primals_7
return (buf5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 128), (128, 1), 0), reinterpret_tensor(buf3, (64, 128), (128, 1), 0), buf5, primals_6, buf6, primals_4, buf7, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((128, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((128, 128), (128, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 128), (128, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import numpy as np
import torch.nn.functional as F
import torch.nn as nn
def hidden_init(layer):
fan_in = layer.weight.data.size()[0]
lim = 1.0 / np.sqrt(fan_in)
return -lim, lim
class ActorNet(nn.Module):
def __init__(self, state_size, action_size, fc1_units=128, fc2_units=128):
super(ActorNet, self).__init__()
self.fc1_units = fc1_units
self.fc2_units = fc2_units
self.fc1 = nn.Linear(state_size, fc1_units)
self.fc2 = nn.Linear(fc1_units, fc2_units)
self.fc3 = nn.Linear(fc2_units, action_size)
self.reset_parameters()
def reset_parameters(self):
self.fc1.weight.data.uniform_(*hidden_init(self.fc1))
self.fc2.weight.data.uniform_(*hidden_init(self.fc2))
self.fc3.weight.data.uniform_(-0.003, 0.003)
def forward(self, state):
x = F.relu(self.fc1(state))
x = F.relu(self.fc2(x))
return torch.tanh(self.fc3(x))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'state_size': 4, 'action_size': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import numpy as np
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
@triton.jit
def triton_poi_fused_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (128, 4), (4, 1))
assert_size_stride(primals_2, (128,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (128, 128), (128, 1))
assert_size_stride(primals_5, (128,), (1,))
assert_size_stride(primals_6, (4, 128), (128, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 128), (128, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 128), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 128), (2048, 512, 128, 1), 0)
del buf0
buf7 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1),
torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(8192)](buf1,
primals_2, buf7, 8192, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 128), (128, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 128), (128, 1), 0),
reinterpret_tensor(primals_4, (128, 128), (1, 128), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 128), (2048, 512, 128, 1), 0)
del buf2
buf6 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1),
torch.bool)
triton_poi_fused_relu_threshold_backward_0[grid(8192)](buf3,
primals_5, buf6, 8192, XBLOCK=128, num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf3, (64, 128), (128, 1), 0),
reinterpret_tensor(primals_6, (128, 4), (1, 128), 0), out=buf4)
buf5 = reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf4
triton_poi_fused_tanh_1[grid(256)](buf5, primals_7, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_7
return buf5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 128), (128, 1), 0
), reinterpret_tensor(buf3, (64, 128), (128, 1), 0
), buf5, primals_6, buf6, primals_4, buf7
def hidden_init(layer):
fan_in = layer.weight.data.size()[0]
lim = 1.0 / np.sqrt(fan_in)
return -lim, lim
class ActorNetNew(nn.Module):
def __init__(self, state_size, action_size, fc1_units=128, fc2_units=128):
super(ActorNetNew, self).__init__()
self.fc1_units = fc1_units
self.fc2_units = fc2_units
self.fc1 = nn.Linear(state_size, fc1_units)
self.fc2 = nn.Linear(fc1_units, fc2_units)
self.fc3 = nn.Linear(fc2_units, action_size)
self.reset_parameters()
def reset_parameters(self):
self.fc1.weight.data.uniform_(*hidden_init(self.fc1))
self.fc2.weight.data.uniform_(*hidden_init(self.fc2))
self.fc3.weight.data.uniform_(-0.003, 0.003)
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_6 = self.fc3.weight
primals_7 = self.fc3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
|
bwosh/DRL_ContinuousControl
|
ActorNet
| false | 9,837 |
[
"MIT"
] | 0 |
34314cd600f0da428bc6dddf1b89b64bc04d43df
|
https://github.com/bwosh/DRL_ContinuousControl/tree/34314cd600f0da428bc6dddf1b89b64bc04d43df
|
ResNetV2
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/a2/ca2l7bjxfwrklzvcxfa2hnyzqh3p6neak37vi6fkugdhbu26fbpz.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024, 64], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 768
xnumel = 49
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 3
y1 = (yindex // 3)
tmp0 = tl.load(in_ptr0 + (x2 + (49*y3)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (3*x2) + (147*y1)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/5b/c5brnjme4e4oybuabwsko4vuljormwjqoawce7jgxo5fbkhzx55r.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4096], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 12
xnumel = 4096
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 3
y1 = (yindex // 3)
tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (3*x2) + (12288*y1)), tmp0, ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/co/ccosum7u5lx5fx5hf5opofiygxj2ntiq67yo5gfegevmhtkaru4r.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 65536
xnumel = 9
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 256
y1 = (yindex // 256)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (256*x2) + (2304*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/qg/cqg4z653mpzmif22rwtpmv42y4lbkkxhxjqguwoxl3wb6cn5fn7k.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 262144
xnumel = 9
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 512
y1 = (yindex // 512)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (512*x2) + (4608*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/ot/cotn5a2cqhwvdw4ugt6b2a4jl2ou2mh37mnmwxgwogdqw4kcufhp.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_4 = async_compile.triton('triton_poi_fused_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1048576, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 1048576
xnumel = 9
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 1024
y1 = (yindex // 1024)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (1024*x2) + (9216*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/bh/cbh2ag2v7orygb3ziuscjd5uid7vytws6fgziabekhv6dedo4sah.py
# Topologically Sorted Source Nodes: [var_mean, sub, add, sqrt, w], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div]
# Source node to ATen node mapping:
# add => add
# sqrt => sqrt
# sub => sub
# var_mean => var_mean
# w => div
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_1, [1, 2, 3]), kwargs = {correction: 0, keepdim: True})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %getitem_1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %sqrt : [num_users=2] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %sqrt), kwargs = {})
triton_per_fused_add_div_sqrt_sub_var_mean_5 = async_compile.triton('triton_per_fused_add_div_sqrt_sub_var_mean_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[256, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_sqrt_sub_var_mean_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_sqrt_sub_var_mean_5(in_out_ptr0, in_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 256
rnumel = 147
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = rindex < rnumel
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (147*x0)), rmask & xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(rmask & xmask, tmp1, 0)
tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp6 = tl.where(rmask & xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = tl.full([XBLOCK, 1], 147, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.where(rmask & xmask, tmp13, 0)
tmp16 = tl.sum(tmp15, 1)[:, None]
tmp17 = 147.0
tmp18 = tmp16 / tmp17
tmp19 = 1e-05
tmp20 = tmp18 + tmp19
tmp21 = libdevice.sqrt(tmp20)
tmp22 = tmp0 - tmp10
tmp23 = tmp22 / tmp21
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp21, xmask)
tl.store(out_ptr1 + (r1 + (147*x0)), tmp23, rmask & xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/qd/cqdfjpoxnsihncv4uccxtrnfsf3ql6wvc6wgwpd2fj5i6yyxupol.py
# Topologically Sorted Source Nodes: [input_2], Original ATen: [aten.native_group_norm]
# Source node to ATen node mapping:
# input_2 => add_1, rsqrt, var_mean_1
# Graph fragment:
# %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [2, 3]), kwargs = {correction: 0, keepdim: True})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-06), kwargs = {})
# %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_1,), kwargs = {})
triton_red_fused_native_group_norm_6 = async_compile.triton('triton_red_fused_native_group_norm_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[128, 8192],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_native_group_norm_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused_native_group_norm_6(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 128
rnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex % 32
x1 = (xindex // 32)
tmp2_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32)
x4 = xindex
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex % 8
r3 = (rindex // 8)
tmp0 = tl.load(in_ptr0 + (r2 + (8*x0) + (256*r3) + (262144*x1)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp2_mean_next, tmp2_m2_next, tmp2_weight_next = triton_helpers.welford_reduce(
tmp1, tmp2_mean, tmp2_m2, tmp2_weight, roffset == 0
)
tmp2_mean = tl.where(rmask & xmask, tmp2_mean_next, tmp2_mean)
tmp2_m2 = tl.where(rmask & xmask, tmp2_m2_next, tmp2_m2)
tmp2_weight = tl.where(rmask & xmask, tmp2_weight_next, tmp2_weight)
tmp2_tmp, tmp3_tmp, tmp4_tmp = triton_helpers.welford(
tmp2_mean, tmp2_m2, tmp2_weight, 1
)
tmp2 = tmp2_tmp[:, None]
tmp3 = tmp3_tmp[:, None]
tmp4 = tmp4_tmp[:, None]
tl.store(out_ptr0 + (x4), tmp2, xmask)
tl.store(out_ptr1 + (x4), tmp3, xmask)
tmp5 = 8192.0
tmp6 = tmp3 / tmp5
tmp7 = 1e-06
tmp8 = tmp6 + tmp7
tmp9 = libdevice.rsqrt(tmp8)
tl.store(out_ptr2 + (x4), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/pj/cpjraohhskikqkpyyhuz5sq72665tvzjie254ptm3wjt4sw363dw.py
# Topologically Sorted Source Nodes: [input_2, input_3], Original ATen: [aten.native_group_norm, aten.relu]
# Source node to ATen node mapping:
# input_2 => add_2, mul_1
# input_3 => relu
# Graph fragment:
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %unsqueeze_5), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %unsqueeze_2), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_2,), kwargs = {})
triton_poi_fused_native_group_norm_relu_7 = async_compile.triton('triton_poi_fused_native_group_norm_relu_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1048576],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_group_norm_relu_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_group_norm_relu_7(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1048576
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 256
x2 = (xindex // 262144)
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + ((32*x2) + (x0 // 8)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + ((32*x2) + (x0 // 8)), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + (x0), None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = 8192.0
tmp5 = tmp3 / tmp4
tmp6 = 1e-06
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp2 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tmp14 = tl.full([1], 0, tl.int32)
tmp15 = triton_helpers.maximum(tmp14, tmp13)
tl.store(out_ptr0 + (x3), tmp15, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/en/cenibl6xufmpsxvh6eyb2umnz2kxwu7iax4uwtef7x45ck3jiyqm.py
# Topologically Sorted Source Nodes: [input_4], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# input_4 => getitem_4, getitem_5
# Graph fragment:
# %getitem_4 : [num_users=3] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {})
# %getitem_5 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_8 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_8(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 230400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 256
x1 = (xindex // 256) % 15
x2 = (xindex // 3840) % 15
x3 = (xindex // 57600)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (512*x1) + (16384*x2) + (262144*x3)), xmask)
tmp1 = tl.load(in_ptr0 + (256 + x0 + (512*x1) + (16384*x2) + (262144*x3)), xmask)
tmp3 = tl.load(in_ptr0 + (512 + x0 + (512*x1) + (16384*x2) + (262144*x3)), xmask)
tmp5 = tl.load(in_ptr0 + (8192 + x0 + (512*x1) + (16384*x2) + (262144*x3)), xmask)
tmp7 = tl.load(in_ptr0 + (8448 + x0 + (512*x1) + (16384*x2) + (262144*x3)), xmask)
tmp9 = tl.load(in_ptr0 + (8704 + x0 + (512*x1) + (16384*x2) + (262144*x3)), xmask)
tmp11 = tl.load(in_ptr0 + (16384 + x0 + (512*x1) + (16384*x2) + (262144*x3)), xmask)
tmp13 = tl.load(in_ptr0 + (16640 + x0 + (512*x1) + (16384*x2) + (262144*x3)), xmask)
tmp15 = tl.load(in_ptr0 + (16896 + x0 + (512*x1) + (16384*x2) + (262144*x3)), xmask)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp8 = triton_helpers.maximum(tmp7, tmp6)
tmp10 = triton_helpers.maximum(tmp9, tmp8)
tmp12 = triton_helpers.maximum(tmp11, tmp10)
tmp14 = triton_helpers.maximum(tmp13, tmp12)
tmp16 = triton_helpers.maximum(tmp15, tmp14)
tmp17 = tmp1 > tmp0
tmp18 = tl.full([1], 1, tl.int8)
tmp19 = tl.full([1], 0, tl.int8)
tmp20 = tl.where(tmp17, tmp18, tmp19)
tmp21 = tmp3 > tmp2
tmp22 = tl.full([1], 2, tl.int8)
tmp23 = tl.where(tmp21, tmp22, tmp20)
tmp24 = tmp5 > tmp4
tmp25 = tl.full([1], 3, tl.int8)
tmp26 = tl.where(tmp24, tmp25, tmp23)
tmp27 = tmp7 > tmp6
tmp28 = tl.full([1], 4, tl.int8)
tmp29 = tl.where(tmp27, tmp28, tmp26)
tmp30 = tmp9 > tmp8
tmp31 = tl.full([1], 5, tl.int8)
tmp32 = tl.where(tmp30, tmp31, tmp29)
tmp33 = tmp11 > tmp10
tmp34 = tl.full([1], 6, tl.int8)
tmp35 = tl.where(tmp33, tmp34, tmp32)
tmp36 = tmp13 > tmp12
tmp37 = tl.full([1], 7, tl.int8)
tmp38 = tl.where(tmp36, tmp37, tmp35)
tmp39 = tmp15 > tmp14
tmp40 = tl.full([1], 8, tl.int8)
tmp41 = tl.where(tmp39, tmp40, tmp38)
tl.store(out_ptr0 + (x4), tmp16, xmask)
tl.store(out_ptr1 + (x4), tmp41, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/7e/c7eyyakbx3wwdxkitvcdctegijacmtfs3f5mwqlotacqy2za6isi.py
# Topologically Sorted Source Nodes: [var_mean_1, sub_1, add_1, sqrt_1, w_1], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div]
# Source node to ATen node mapping:
# add_1 => add_3
# sqrt_1 => sqrt_1
# sub_1 => sub_2
# var_mean_1 => var_mean_2
# w_1 => div_1
# Graph fragment:
# %var_mean_2 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_5, [1, 2, 3]), kwargs = {correction: 0, keepdim: True})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_5, %getitem_7), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_6, 1e-05), kwargs = {})
# %sqrt_1 : [num_users=2] = call_function[target=torch.ops.aten.sqrt.default](args = (%add_3,), kwargs = {})
# %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_2, %sqrt_1), kwargs = {})
triton_per_fused_add_div_sqrt_sub_var_mean_9 = async_compile.triton('triton_per_fused_add_div_sqrt_sub_var_mean_9', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1024, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_sqrt_sub_var_mean_9', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_sqrt_sub_var_mean_9(in_out_ptr0, in_ptr0, out_ptr1, xnumel, rnumel):
xnumel = 1024
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (256*x0)), None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = tl.broadcast_to(tmp1, [RBLOCK])
tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0))
tmp6 = tl.full([1], 256, tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 / tmp7
tmp9 = tmp1 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tl.broadcast_to(tmp10, [RBLOCK])
tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0))
tmp14 = 256.0
tmp15 = tmp13 / tmp14
tmp16 = 1e-05
tmp17 = tmp15 + tmp16
tmp18 = libdevice.sqrt(tmp17)
tmp19 = tmp0 - tmp8
tmp20 = tmp19 / tmp18
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp18, None)
tl.store(out_ptr1 + (r1 + (256*x0)), tmp20, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/nh/cnhs4vcr657vluxkvtqufylpkhx3e46cwffrst5vsuhqb5bee2hm.py
# Topologically Sorted Source Nodes: [residual_1], Original ATen: [aten.native_group_norm]
# Source node to ATen node mapping:
# residual_1 => add_4, rsqrt_1, var_mean_3
# Graph fragment:
# %var_mean_3 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_2, [2, 3]), kwargs = {correction: 0, keepdim: True})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_8, 1e-05), kwargs = {})
# %rsqrt_1 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_4,), kwargs = {})
triton_per_fused_native_group_norm_10 = async_compile.triton('triton_per_fused_native_group_norm_10', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4096, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_native_group_norm_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_native_group_norm_10(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4096
rnumel = 225
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = rindex < rnumel
r2 = rindex
x0 = xindex % 1024
x1 = (xindex // 1024)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (1024*r2) + (230400*x1)), rmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(rmask, tmp1, 0)
tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp6 = tl.where(rmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = tl.full([XBLOCK, 1], 225, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.where(rmask, tmp13, 0)
tmp16 = tl.sum(tmp15, 1)[:, None]
tmp17 = 225.0
tmp18 = tmp16 / tmp17
tmp19 = 1e-05
tmp20 = tmp18 + tmp19
tmp21 = libdevice.rsqrt(tmp20)
tl.store(out_ptr2 + (x3), tmp21, None)
tl.store(out_ptr0 + (x3), tmp10, None)
tl.store(out_ptr1 + (x3), tmp16, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/jp/cjpyntupcqudw3ggo5knfj7ch7ghxyjxqolntzzvjzgk5am7l5vv.py
# Topologically Sorted Source Nodes: [var_mean_2, sub_2, add_2, sqrt_2, w_2], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div]
# Source node to ATen node mapping:
# add_2 => add_6
# sqrt_2 => sqrt_2
# sub_2 => sub_4
# var_mean_2 => var_mean_4
# w_2 => div_2
# Graph fragment:
# %var_mean_4 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_8, [1, 2, 3]), kwargs = {correction: 0, keepdim: True})
# %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_8, %getitem_11), kwargs = {})
# %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_10, 1e-05), kwargs = {})
# %sqrt_2 : [num_users=2] = call_function[target=torch.ops.aten.sqrt.default](args = (%add_6,), kwargs = {})
# %div_2 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_4, %sqrt_2), kwargs = {})
triton_per_fused_add_div_sqrt_sub_var_mean_11 = async_compile.triton('triton_per_fused_add_div_sqrt_sub_var_mean_11', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[256, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_sqrt_sub_var_mean_11', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_sqrt_sub_var_mean_11(in_out_ptr0, in_ptr0, out_ptr1, xnumel, rnumel):
xnumel = 256
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (256*x0)), None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = tl.broadcast_to(tmp1, [RBLOCK])
tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0))
tmp6 = tl.full([1], 256, tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 / tmp7
tmp9 = tmp1 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tl.broadcast_to(tmp10, [RBLOCK])
tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0))
tmp14 = 256.0
tmp15 = tmp13 / tmp14
tmp16 = 1e-05
tmp17 = tmp15 + tmp16
tmp18 = libdevice.sqrt(tmp17)
tmp19 = tmp0 - tmp8
tmp20 = tmp19 / tmp18
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp18, None)
tl.store(out_ptr1 + (r1 + (256*x0)), tmp20, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/hj/chj6ouuwknkysfru4ls3ofhe7alveqoisdmvuaoevumnq4wt2k6w.py
# Topologically Sorted Source Nodes: [group_norm_2], Original ATen: [aten.native_group_norm]
# Source node to ATen node mapping:
# group_norm_2 => add_7, rsqrt_2, var_mean_5
# Graph fragment:
# %var_mean_5 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_4, [2, 3]), kwargs = {correction: 0, keepdim: True})
# %add_7 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_12, 1e-06), kwargs = {})
# %rsqrt_2 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_7,), kwargs = {})
triton_red_fused_native_group_norm_12 = async_compile.triton('triton_red_fused_native_group_norm_12', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[128, 2048],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_native_group_norm_12', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused_native_group_norm_12(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 128
rnumel = 1800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex % 32
x1 = (xindex // 32)
tmp2_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32)
x4 = xindex
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex % 8
r3 = (rindex // 8)
tmp0 = tl.load(in_ptr0 + (r2 + (8*x0) + (256*r3) + (57600*x1)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp2_mean_next, tmp2_m2_next, tmp2_weight_next = triton_helpers.welford_reduce(
tmp1, tmp2_mean, tmp2_m2, tmp2_weight, roffset == 0
)
tmp2_mean = tl.where(rmask & xmask, tmp2_mean_next, tmp2_mean)
tmp2_m2 = tl.where(rmask & xmask, tmp2_m2_next, tmp2_m2)
tmp2_weight = tl.where(rmask & xmask, tmp2_weight_next, tmp2_weight)
tmp2_tmp, tmp3_tmp, tmp4_tmp = triton_helpers.welford(
tmp2_mean, tmp2_m2, tmp2_weight, 1
)
tmp2 = tmp2_tmp[:, None]
tmp3 = tmp3_tmp[:, None]
tmp4 = tmp4_tmp[:, None]
tl.store(out_ptr0 + (x4), tmp2, xmask)
tl.store(out_ptr1 + (x4), tmp3, xmask)
tmp5 = 1800.0
tmp6 = tmp3 / tmp5
tmp7 = 1e-06
tmp8 = tmp6 + tmp7
tmp9 = libdevice.rsqrt(tmp8)
tl.store(out_ptr2 + (x4), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/oj/cojzk2u64jku6zsbuoyuudooypcp7v4wisckmjekrx7w47ide3nn.py
# Topologically Sorted Source Nodes: [group_norm_2, y], Original ATen: [aten.native_group_norm, aten.relu]
# Source node to ATen node mapping:
# group_norm_2 => add_8, mul_5
# y => relu_1
# Graph fragment:
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_5, %unsqueeze_17), kwargs = {})
# %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_5, %unsqueeze_14), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_8,), kwargs = {})
triton_poi_fused_native_group_norm_relu_13 = async_compile.triton('triton_poi_fused_native_group_norm_relu_13', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_group_norm_relu_13', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_group_norm_relu_13(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 230400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 256
x2 = (xindex // 57600)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + ((32*x2) + (x0 // 8)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + ((32*x2) + (x0 // 8)), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = 1800.0
tmp5 = tmp3 / tmp4
tmp6 = 1e-06
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp2 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tmp14 = tl.full([1], 0, tl.int32)
tmp15 = triton_helpers.maximum(tmp14, tmp13)
tl.store(out_ptr0 + (x3), tmp15, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/au/cauwci26izb7zaj7j2kns6emmf3imcuzuc7mya2u5lekb2a4uxvi.py
# Topologically Sorted Source Nodes: [var_mean_3, sub_3, add_3, sqrt_3, w_3], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div]
# Source node to ATen node mapping:
# add_3 => add_9
# sqrt_3 => sqrt_3
# sub_3 => sub_6
# var_mean_3 => var_mean_6
# w_3 => div_3
# Graph fragment:
# %var_mean_6 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_11, [1, 2, 3]), kwargs = {correction: 0, keepdim: True})
# %sub_6 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_11, %getitem_15), kwargs = {})
# %add_9 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_14, 1e-05), kwargs = {})
# %sqrt_3 : [num_users=2] = call_function[target=torch.ops.aten.sqrt.default](args = (%add_9,), kwargs = {})
# %div_3 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_6, %sqrt_3), kwargs = {})
triton_red_fused_add_div_sqrt_sub_var_mean_14 = async_compile.triton('triton_red_fused_add_div_sqrt_sub_var_mean_14', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[256, 4096],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_add_div_sqrt_sub_var_mean_14', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused_add_div_sqrt_sub_var_mean_14(in_out_ptr0, in_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 256
rnumel = 2304
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex
tmp2_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp0 = tl.load(in_ptr0 + (r1 + (2304*x0)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp2_mean_next, tmp2_m2_next, tmp2_weight_next = triton_helpers.welford_reduce(
tmp1, tmp2_mean, tmp2_m2, tmp2_weight, roffset == 0
)
tmp2_mean = tl.where(rmask & xmask, tmp2_mean_next, tmp2_mean)
tmp2_m2 = tl.where(rmask & xmask, tmp2_m2_next, tmp2_m2)
tmp2_weight = tl.where(rmask & xmask, tmp2_weight_next, tmp2_weight)
tmp2_tmp, tmp3_tmp, tmp4_tmp = triton_helpers.welford(
tmp2_mean, tmp2_m2, tmp2_weight, 1
)
tmp2 = tmp2_tmp[:, None]
tmp3 = tmp3_tmp[:, None]
tmp4 = tmp4_tmp[:, None]
tmp5 = 2304.0
tmp6 = tmp3 / tmp5
tmp7 = 1e-05
tmp8 = tmp6 + tmp7
tmp9 = libdevice.sqrt(tmp8)
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp9, xmask)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp10 = tl.load(in_ptr0 + (r1 + (2304*x0)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp11 = tmp10 - tmp2
tmp12 = tmp11 / tmp9
tl.store(out_ptr1 + (r1 + (2304*x0)), tmp12, rmask & xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/j6/cj6u2qoik6ggh7klfu5csrib7fmrd5bj3x7ohmjq4r3slsaz6opp.py
# Topologically Sorted Source Nodes: [y_2], Original ATen: [aten.native_group_norm]
# Source node to ATen node mapping:
# y_2 => add_13, rsqrt_4, var_mean_9
# Graph fragment:
# %var_mean_9 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_8, [2, 3]), kwargs = {correction: 0, keepdim: True})
# %add_13 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_20, 1e-06), kwargs = {})
# %rsqrt_4 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_13,), kwargs = {})
triton_red_fused_native_group_norm_15 = async_compile.triton('triton_red_fused_native_group_norm_15', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[128, 8192],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_native_group_norm_15', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused_native_group_norm_15(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 128
rnumel = 7200
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex % 32
x1 = (xindex // 32)
tmp2_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32)
x4 = xindex
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex % 32
r3 = (rindex // 32)
tmp0 = tl.load(in_ptr0 + (r2 + (32*x0) + (1024*r3) + (230400*x1)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp2_mean_next, tmp2_m2_next, tmp2_weight_next = triton_helpers.welford_reduce(
tmp1, tmp2_mean, tmp2_m2, tmp2_weight, roffset == 0
)
tmp2_mean = tl.where(rmask & xmask, tmp2_mean_next, tmp2_mean)
tmp2_m2 = tl.where(rmask & xmask, tmp2_m2_next, tmp2_m2)
tmp2_weight = tl.where(rmask & xmask, tmp2_weight_next, tmp2_weight)
tmp2_tmp, tmp3_tmp, tmp4_tmp = triton_helpers.welford(
tmp2_mean, tmp2_m2, tmp2_weight, 1
)
tmp2 = tmp2_tmp[:, None]
tmp3 = tmp3_tmp[:, None]
tmp4 = tmp4_tmp[:, None]
tl.store(out_ptr0 + (x4), tmp2, xmask)
tl.store(out_ptr1 + (x4), tmp3, xmask)
tmp5 = 7200.0
tmp6 = tmp3 / tmp5
tmp7 = 1e-06
tmp8 = tmp6 + tmp7
tmp9 = libdevice.rsqrt(tmp8)
tl.store(out_ptr2 + (x4), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/n3/cn3wqwtcg63qqjfryzmmh4maj6kopa4zq2o4fttlkcmvufb32tlf.py
# Topologically Sorted Source Nodes: [residual_1, y_2, add_5, y_3], Original ATen: [aten.native_group_norm, aten.add, aten.relu]
# Source node to ATen node mapping:
# add_5 => add_15
# residual_1 => add_5, mul_3
# y_2 => add_14, mul_9
# y_3 => relu_3
# Graph fragment:
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_3, %unsqueeze_11), kwargs = {})
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_3, %unsqueeze_8), kwargs = {})
# %mul_9 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_9, %unsqueeze_29), kwargs = {})
# %add_14 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_9, %unsqueeze_26), kwargs = {})
# %add_15 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_5, %add_14), kwargs = {})
# %relu_3 : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%add_15,), kwargs = {})
triton_poi_fused_add_native_group_norm_relu_16 = async_compile.triton('triton_poi_fused_add_native_group_norm_relu_16', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1048576],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: '*fp32', 11: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_group_norm_relu_16', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 10, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_native_group_norm_relu_16(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, xnumel, XBLOCK : tl.constexpr):
xnumel = 921600
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 1024
x2 = (xindex // 230400)
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x0 + (1024*x2)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x0 + (1024*x2)), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + (x0), None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr5 + (x3), None)
tmp15 = tl.load(in_ptr6 + ((32*x2) + (x0 // 32)), None, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr7 + ((32*x2) + (x0 // 32)), None, eviction_policy='evict_last')
tmp24 = tl.load(in_ptr8 + (x0), None, eviction_policy='evict_last')
tmp26 = tl.load(in_ptr9 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = 225.0
tmp5 = tmp3 / tmp4
tmp6 = 1e-05
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp2 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tmp16 = tmp14 - tmp15
tmp18 = 7200.0
tmp19 = tmp17 / tmp18
tmp20 = 1e-06
tmp21 = tmp19 + tmp20
tmp22 = libdevice.rsqrt(tmp21)
tmp23 = tmp16 * tmp22
tmp25 = tmp23 * tmp24
tmp27 = tmp25 + tmp26
tmp28 = tmp13 + tmp27
tmp29 = tl.full([1], 0, tl.int32)
tmp30 = triton_helpers.maximum(tmp29, tmp28)
tl.store(in_out_ptr0 + (x3), tmp30, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/za/cza7xohy5huey54ued5pdquhp4jsmdldpvdhl7u6h6evhljn6ntg.py
# Topologically Sorted Source Nodes: [var_mean_5, sub_5, add_6, sqrt_5, w_5], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div]
# Source node to ATen node mapping:
# add_6 => add_16
# sqrt_5 => sqrt_5
# sub_5 => sub_10
# var_mean_5 => var_mean_10
# w_5 => div_5
# Graph fragment:
# %var_mean_10 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_17, [1, 2, 3]), kwargs = {correction: 0, keepdim: True})
# %sub_10 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_17, %getitem_23), kwargs = {})
# %add_16 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_22, 1e-05), kwargs = {})
# %sqrt_5 : [num_users=2] = call_function[target=torch.ops.aten.sqrt.default](args = (%add_16,), kwargs = {})
# %div_5 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_10, %sqrt_5), kwargs = {})
triton_per_fused_add_div_sqrt_sub_var_mean_17 = async_compile.triton('triton_per_fused_add_div_sqrt_sub_var_mean_17', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[256, 1024],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_sqrt_sub_var_mean_17', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_sqrt_sub_var_mean_17(in_out_ptr0, in_ptr0, out_ptr1, xnumel, rnumel):
xnumel = 256
XBLOCK: tl.constexpr = 1
rnumel = 1024
RBLOCK: tl.constexpr = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (1024*x0)), None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = tl.broadcast_to(tmp1, [RBLOCK])
tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0))
tmp6 = tl.full([1], 1024, tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 / tmp7
tmp9 = tmp1 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tl.broadcast_to(tmp10, [RBLOCK])
tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0))
tmp14 = 1024.0
tmp15 = tmp13 / tmp14
tmp16 = 1e-05
tmp17 = tmp15 + tmp16
tmp18 = libdevice.sqrt(tmp17)
tmp19 = tmp0 - tmp8
tmp20 = tmp19 / tmp18
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp18, None)
tl.store(out_ptr1 + (r1 + (1024*x0)), tmp20, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/qv/cqv2al4zrzdetvahtrxpbboyj4cdfrtikullucdr7ninla2ojfi3.py
# Topologically Sorted Source Nodes: [y_6, add_9, y_7], Original ATen: [aten.native_group_norm, aten.add, aten.relu]
# Source node to ATen node mapping:
# add_9 => add_25
# y_6 => add_24, mul_15
# y_7 => relu_6
# Graph fragment:
# %mul_15 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_15, %unsqueeze_47), kwargs = {})
# %add_24 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_15, %unsqueeze_44), kwargs = {})
# %add_25 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%relu_3, %add_24), kwargs = {})
# %relu_6 : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%add_25,), kwargs = {})
triton_poi_fused_add_native_group_norm_relu_18 = async_compile.triton('triton_poi_fused_add_native_group_norm_relu_18', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1048576],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_group_norm_relu_18', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_native_group_norm_relu_18(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 921600
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 1024
x2 = (xindex // 230400)
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x3), None)
tmp2 = tl.load(in_ptr2 + ((32*x2) + (x0 // 32)), None, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr3 + ((32*x2) + (x0 // 32)), None, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr5 + (x0), None, eviction_policy='evict_last')
tmp3 = tmp1 - tmp2
tmp5 = 7200.0
tmp6 = tmp4 / tmp5
tmp7 = 1e-06
tmp8 = tmp6 + tmp7
tmp9 = libdevice.rsqrt(tmp8)
tmp10 = tmp3 * tmp9
tmp12 = tmp10 * tmp11
tmp14 = tmp12 + tmp13
tmp15 = tmp0 + tmp14
tmp16 = tl.full([1], 0, tl.int32)
tmp17 = triton_helpers.maximum(tmp16, tmp15)
tl.store(out_ptr0 + (x3), tmp17, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/3e/c3e3jkfbcq52r6g6b6cbrryxsycoi3yklyx24onnuazrjrv64isp.py
# Topologically Sorted Source Nodes: [var_mean_14, sub_14, add_18, sqrt_14, w_14], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div]
# Source node to ATen node mapping:
# add_18 => add_46
# sqrt_14 => sqrt_14
# sub_14 => sub_28
# var_mean_14 => var_mean_28
# w_14 => div_14
# Graph fragment:
# %var_mean_28 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_44, [1, 2, 3]), kwargs = {correction: 0, keepdim: True})
# %sub_28 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_44, %getitem_59), kwargs = {})
# %add_46 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_58, 1e-05), kwargs = {})
# %sqrt_14 : [num_users=2] = call_function[target=torch.ops.aten.sqrt.default](args = (%add_46,), kwargs = {})
# %div_14 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_28, %sqrt_14), kwargs = {})
triton_per_fused_add_div_sqrt_sub_var_mean_19 = async_compile.triton('triton_per_fused_add_div_sqrt_sub_var_mean_19', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[2048, 1024],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_sqrt_sub_var_mean_19', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_sqrt_sub_var_mean_19(in_out_ptr0, in_ptr0, out_ptr1, xnumel, rnumel):
xnumel = 2048
XBLOCK: tl.constexpr = 1
rnumel = 1024
RBLOCK: tl.constexpr = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (1024*x0)), None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = tl.broadcast_to(tmp1, [RBLOCK])
tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0))
tmp6 = tl.full([1], 1024, tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 / tmp7
tmp9 = tmp1 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tl.broadcast_to(tmp10, [RBLOCK])
tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0))
tmp14 = 1024.0
tmp15 = tmp13 / tmp14
tmp16 = 1e-05
tmp17 = tmp15 + tmp16
tmp18 = libdevice.sqrt(tmp17)
tmp19 = tmp0 - tmp8
tmp20 = tmp19 / tmp18
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp18, None)
tl.store(out_ptr1 + (r1 + (1024*x0)), tmp20, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/gq/cgqqbj6ixr6xvohoqin2rmwkifwz3m65ciqtowyt5fhop4xj6y7o.py
# Topologically Sorted Source Nodes: [residual_3], Original ATen: [aten.native_group_norm]
# Source node to ATen node mapping:
# residual_3 => add_47, rsqrt_14, var_mean_29
# Graph fragment:
# %var_mean_29 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_28, [2, 3]), kwargs = {correction: 0, keepdim: True})
# %add_47 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_60, 1e-05), kwargs = {})
# %rsqrt_14 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_47,), kwargs = {})
triton_per_fused_native_group_norm_20 = async_compile.triton('triton_per_fused_native_group_norm_20', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[8192, 64],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_native_group_norm_20', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_native_group_norm_20(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 8192
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x0 = xindex % 2048
x1 = (xindex // 2048)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (2048*r2) + (131072*x1)), None)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp5 = tl.sum(tmp3, 1)[:, None]
tmp6 = tl.full([XBLOCK, 1], 64, tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 / tmp7
tmp9 = tmp1 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK])
tmp13 = tl.sum(tmp11, 1)[:, None]
tmp14 = 64.0
tmp15 = tmp13 / tmp14
tmp16 = 1e-05
tmp17 = tmp15 + tmp16
tmp18 = libdevice.rsqrt(tmp17)
tl.store(out_ptr2 + (x3), tmp18, None)
tl.store(out_ptr0 + (x3), tmp8, None)
tl.store(out_ptr1 + (x3), tmp13, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/jz/cjzjlifmtzexhth3v5uhemdz6lruuvuube75oxni47hhafmbjogo.py
# Topologically Sorted Source Nodes: [var_mean_15, sub_15, add_19, sqrt_15, w_15], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div]
# Source node to ATen node mapping:
# add_19 => add_49
# sqrt_15 => sqrt_15
# sub_15 => sub_30
# var_mean_15 => var_mean_30
# w_15 => div_15
# Graph fragment:
# %var_mean_30 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_47, [1, 2, 3]), kwargs = {correction: 0, keepdim: True})
# %sub_30 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_47, %getitem_63), kwargs = {})
# %add_49 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_62, 1e-05), kwargs = {})
# %sqrt_15 : [num_users=2] = call_function[target=torch.ops.aten.sqrt.default](args = (%add_49,), kwargs = {})
# %div_15 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_30, %sqrt_15), kwargs = {})
triton_per_fused_add_div_sqrt_sub_var_mean_21 = async_compile.triton('triton_per_fused_add_div_sqrt_sub_var_mean_21', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[512, 1024],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_sqrt_sub_var_mean_21', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_sqrt_sub_var_mean_21(in_out_ptr0, in_ptr0, out_ptr1, xnumel, rnumel):
xnumel = 512
XBLOCK: tl.constexpr = 1
rnumel = 1024
RBLOCK: tl.constexpr = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (1024*x0)), None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = tl.broadcast_to(tmp1, [RBLOCK])
tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0))
tmp6 = tl.full([1], 1024, tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 / tmp7
tmp9 = tmp1 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tl.broadcast_to(tmp10, [RBLOCK])
tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0))
tmp14 = 1024.0
tmp15 = tmp13 / tmp14
tmp16 = 1e-05
tmp17 = tmp15 + tmp16
tmp18 = libdevice.sqrt(tmp17)
tmp19 = tmp0 - tmp8
tmp20 = tmp19 / tmp18
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp18, None)
tl.store(out_ptr1 + (r1 + (1024*x0)), tmp20, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/wr/cwrn5excbg56ob6bzzhwtavbqfqb7pvzdegt7kp4lbgagsgrr2bd.py
# Topologically Sorted Source Nodes: [group_norm_15], Original ATen: [aten.native_group_norm]
# Source node to ATen node mapping:
# group_norm_15 => add_50, rsqrt_15, var_mean_31
# Graph fragment:
# %var_mean_31 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_30, [2, 3]), kwargs = {correction: 0, keepdim: True})
# %add_50 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_64, 1e-06), kwargs = {})
# %rsqrt_15 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_50,), kwargs = {})
triton_red_fused_native_group_norm_22 = async_compile.triton('triton_red_fused_native_group_norm_22', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[128, 4096],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_native_group_norm_22', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused_native_group_norm_22(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 128
rnumel = 3600
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex % 32
x1 = (xindex // 32)
tmp2_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32)
x4 = xindex
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex % 16
r3 = (rindex // 16)
tmp0 = tl.load(in_ptr0 + (r2 + (16*x0) + (512*r3) + (115200*x1)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp2_mean_next, tmp2_m2_next, tmp2_weight_next = triton_helpers.welford_reduce(
tmp1, tmp2_mean, tmp2_m2, tmp2_weight, roffset == 0
)
tmp2_mean = tl.where(rmask & xmask, tmp2_mean_next, tmp2_mean)
tmp2_m2 = tl.where(rmask & xmask, tmp2_m2_next, tmp2_m2)
tmp2_weight = tl.where(rmask & xmask, tmp2_weight_next, tmp2_weight)
tmp2_tmp, tmp3_tmp, tmp4_tmp = triton_helpers.welford(
tmp2_mean, tmp2_m2, tmp2_weight, 1
)
tmp2 = tmp2_tmp[:, None]
tmp3 = tmp3_tmp[:, None]
tmp4 = tmp4_tmp[:, None]
tl.store(out_ptr0 + (x4), tmp2, xmask)
tl.store(out_ptr1 + (x4), tmp3, xmask)
tmp5 = 3600.0
tmp6 = tmp3 / tmp5
tmp7 = 1e-06
tmp8 = tmp6 + tmp7
tmp9 = libdevice.rsqrt(tmp8)
tl.store(out_ptr2 + (x4), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/d4/cd427eloy2yjw2svol6vip5ycllxrhwgof6m2c6aujoopvoctvdd.py
# Topologically Sorted Source Nodes: [group_norm_15, y_16], Original ATen: [aten.native_group_norm, aten.relu]
# Source node to ATen node mapping:
# group_norm_15 => add_51, mul_31
# y_16 => relu_13
# Graph fragment:
# %mul_31 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_31, %unsqueeze_95), kwargs = {})
# %add_51 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_31, %unsqueeze_92), kwargs = {})
# %relu_13 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_51,), kwargs = {})
triton_poi_fused_native_group_norm_relu_23 = async_compile.triton('triton_poi_fused_native_group_norm_relu_23', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[524288],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_group_norm_relu_23', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_group_norm_relu_23(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 460800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 512
x2 = (xindex // 115200)
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + ((32*x2) + (x0 // 16)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + ((32*x2) + (x0 // 16)), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + (x0), None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = 3600.0
tmp5 = tmp3 / tmp4
tmp6 = 1e-06
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp2 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tmp14 = tl.full([1], 0, tl.int32)
tmp15 = triton_helpers.maximum(tmp14, tmp13)
tl.store(out_ptr0 + (x3), tmp15, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/ml/cmlxchcvym4okka7o4w3dtz75nwcpens7klv7see6gzrgjru4crn.py
# Topologically Sorted Source Nodes: [var_mean_16, sub_16, add_20, sqrt_16, w_16], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div]
# Source node to ATen node mapping:
# add_20 => add_52
# sqrt_16 => sqrt_16
# sub_16 => sub_32
# var_mean_16 => var_mean_32
# w_16 => div_16
# Graph fragment:
# %var_mean_32 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_50, [1, 2, 3]), kwargs = {correction: 0, keepdim: True})
# %sub_32 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_50, %getitem_67), kwargs = {})
# %add_52 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_66, 1e-05), kwargs = {})
# %sqrt_16 : [num_users=2] = call_function[target=torch.ops.aten.sqrt.default](args = (%add_52,), kwargs = {})
# %div_16 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_32, %sqrt_16), kwargs = {})
triton_red_fused_add_div_sqrt_sub_var_mean_24 = async_compile.triton('triton_red_fused_add_div_sqrt_sub_var_mean_24', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[512, 8192],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_add_div_sqrt_sub_var_mean_24', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused_add_div_sqrt_sub_var_mean_24(in_out_ptr0, in_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 512
rnumel = 4608
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex
tmp2_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp0 = tl.load(in_ptr0 + (r1 + (4608*x0)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp2_mean_next, tmp2_m2_next, tmp2_weight_next = triton_helpers.welford_reduce(
tmp1, tmp2_mean, tmp2_m2, tmp2_weight, roffset == 0
)
tmp2_mean = tl.where(rmask & xmask, tmp2_mean_next, tmp2_mean)
tmp2_m2 = tl.where(rmask & xmask, tmp2_m2_next, tmp2_m2)
tmp2_weight = tl.where(rmask & xmask, tmp2_weight_next, tmp2_weight)
tmp2_tmp, tmp3_tmp, tmp4_tmp = triton_helpers.welford(
tmp2_mean, tmp2_m2, tmp2_weight, 1
)
tmp2 = tmp2_tmp[:, None]
tmp3 = tmp3_tmp[:, None]
tmp4 = tmp4_tmp[:, None]
tmp5 = 4608.0
tmp6 = tmp3 / tmp5
tmp7 = 1e-05
tmp8 = tmp6 + tmp7
tmp9 = libdevice.sqrt(tmp8)
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp9, xmask)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp10 = tl.load(in_ptr0 + (r1 + (4608*x0)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp11 = tmp10 - tmp2
tmp12 = tmp11 / tmp9
tl.store(out_ptr1 + (r1 + (4608*x0)), tmp12, rmask & xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/ql/cqlfabfzu7z7frymncc5rvxsuisyioetxpzwyizodqojh3qbf3ww.py
# Topologically Sorted Source Nodes: [group_norm_16], Original ATen: [aten.native_group_norm]
# Source node to ATen node mapping:
# group_norm_16 => add_53, rsqrt_16, var_mean_33
# Graph fragment:
# %var_mean_33 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_32, [2, 3]), kwargs = {correction: 0, keepdim: True})
# %add_53 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_68, 1e-06), kwargs = {})
# %rsqrt_16 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_53,), kwargs = {})
triton_per_fused_native_group_norm_25 = async_compile.triton('triton_per_fused_native_group_norm_25', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[128, 1024],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_native_group_norm_25', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_native_group_norm_25(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel):
xnumel = 128
XBLOCK: tl.constexpr = 1
rnumel = 1024
RBLOCK: tl.constexpr = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r2 = rindex % 16
r3 = (rindex // 16)
x0 = xindex % 32
x1 = (xindex // 32)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (r2 + (16*x0) + (512*r3) + (32768*x1)), None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = tl.broadcast_to(tmp1, [RBLOCK])
tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0))
tmp6 = tl.full([1], 1024, tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 / tmp7
tmp9 = tmp1 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tl.broadcast_to(tmp10, [RBLOCK])
tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0))
tmp14 = 1024.0
tmp15 = tmp13 / tmp14
tmp16 = 1e-06
tmp17 = tmp15 + tmp16
tmp18 = libdevice.rsqrt(tmp17)
tl.store(out_ptr2 + (x4), tmp18, None)
tl.store(out_ptr0 + (x4), tmp8, None)
tl.store(out_ptr1 + (x4), tmp13, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/je/cje4qmnqbitm4amlfxfa3mdxapvvr5hptd7oqfvjtooh5sfigskl.py
# Topologically Sorted Source Nodes: [group_norm_16, y_17], Original ATen: [aten.native_group_norm, aten.relu]
# Source node to ATen node mapping:
# group_norm_16 => add_54, mul_33
# y_17 => relu_14
# Graph fragment:
# %mul_33 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_33, %unsqueeze_101), kwargs = {})
# %add_54 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_33, %unsqueeze_98), kwargs = {})
# %relu_14 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_54,), kwargs = {})
triton_poi_fused_native_group_norm_relu_26 = async_compile.triton('triton_poi_fused_native_group_norm_relu_26', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_group_norm_relu_26', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_group_norm_relu_26(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 131072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 512
x2 = (xindex // 32768)
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + ((32*x2) + (x0 // 16)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + ((32*x2) + (x0 // 16)), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + (x0), None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = 1024.0
tmp5 = tmp3 / tmp4
tmp6 = 1e-06
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp2 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tmp14 = tl.full([1], 0, tl.int32)
tmp15 = triton_helpers.maximum(tmp14, tmp13)
tl.store(out_ptr0 + (x3), tmp15, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/pa/cpapwllspqbtgblftrbrapxpxfewknnyrkauwrnhp7qhdxyjnjyq.py
# Topologically Sorted Source Nodes: [var_mean_17, sub_17, add_21, sqrt_17, w_17], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div]
# Source node to ATen node mapping:
# add_21 => add_55
# sqrt_17 => sqrt_17
# sub_17 => sub_34
# var_mean_17 => var_mean_34
# w_17 => div_17
# Graph fragment:
# %var_mean_34 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_53, [1, 2, 3]), kwargs = {correction: 0, keepdim: True})
# %sub_34 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_53, %getitem_71), kwargs = {})
# %add_55 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_70, 1e-05), kwargs = {})
# %sqrt_17 : [num_users=2] = call_function[target=torch.ops.aten.sqrt.default](args = (%add_55,), kwargs = {})
# %div_17 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_34, %sqrt_17), kwargs = {})
triton_per_fused_add_div_sqrt_sub_var_mean_27 = async_compile.triton('triton_per_fused_add_div_sqrt_sub_var_mean_27', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[2048, 512],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_sqrt_sub_var_mean_27', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_sqrt_sub_var_mean_27(in_out_ptr0, in_ptr0, out_ptr1, xnumel, rnumel):
xnumel = 2048
XBLOCK: tl.constexpr = 1
rnumel = 512
RBLOCK: tl.constexpr = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (512*x0)), None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = tl.broadcast_to(tmp1, [RBLOCK])
tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0))
tmp6 = tl.full([1], 512, tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 / tmp7
tmp9 = tmp1 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tl.broadcast_to(tmp10, [RBLOCK])
tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0))
tmp14 = 512.0
tmp15 = tmp13 / tmp14
tmp16 = 1e-05
tmp17 = tmp15 + tmp16
tmp18 = libdevice.sqrt(tmp17)
tmp19 = tmp0 - tmp8
tmp20 = tmp19 / tmp18
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp18, None)
tl.store(out_ptr1 + (r1 + (512*x0)), tmp20, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/mn/cmnjsvtayefkonejpy7zk4q2mcsbvzyofwxkaeldnf5t7ebemkif.py
# Topologically Sorted Source Nodes: [y_18], Original ATen: [aten.native_group_norm]
# Source node to ATen node mapping:
# y_18 => add_56, rsqrt_17, var_mean_35
# Graph fragment:
# %var_mean_35 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_34, [2, 3]), kwargs = {correction: 0, keepdim: True})
# %add_56 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_72, 1e-06), kwargs = {})
# %rsqrt_17 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_56,), kwargs = {})
triton_red_fused_native_group_norm_28 = async_compile.triton('triton_red_fused_native_group_norm_28', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[128, 4096],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_native_group_norm_28', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused_native_group_norm_28(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 128
rnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex % 32
x1 = (xindex // 32)
tmp2_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32)
x4 = xindex
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex % 64
r3 = (rindex // 64)
tmp0 = tl.load(in_ptr0 + (r2 + (64*x0) + (2048*r3) + (131072*x1)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp2_mean_next, tmp2_m2_next, tmp2_weight_next = triton_helpers.welford_reduce(
tmp1, tmp2_mean, tmp2_m2, tmp2_weight, roffset == 0
)
tmp2_mean = tl.where(rmask & xmask, tmp2_mean_next, tmp2_mean)
tmp2_m2 = tl.where(rmask & xmask, tmp2_m2_next, tmp2_m2)
tmp2_weight = tl.where(rmask & xmask, tmp2_weight_next, tmp2_weight)
tmp2_tmp, tmp3_tmp, tmp4_tmp = triton_helpers.welford(
tmp2_mean, tmp2_m2, tmp2_weight, 1
)
tmp2 = tmp2_tmp[:, None]
tmp3 = tmp3_tmp[:, None]
tmp4 = tmp4_tmp[:, None]
tl.store(out_ptr0 + (x4), tmp2, xmask)
tl.store(out_ptr1 + (x4), tmp3, xmask)
tmp5 = 4096.0
tmp6 = tmp3 / tmp5
tmp7 = 1e-06
tmp8 = tmp6 + tmp7
tmp9 = libdevice.rsqrt(tmp8)
tl.store(out_ptr2 + (x4), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/ji/cjijxahsz2tpalc64o6xljydbultwefrwydw7xdce475v6s6ttfb.py
# Topologically Sorted Source Nodes: [residual_3, y_18, add_22, y_19], Original ATen: [aten.native_group_norm, aten.add, aten.relu]
# Source node to ATen node mapping:
# add_22 => add_58
# residual_3 => add_48, mul_29
# y_18 => add_57, mul_35
# y_19 => relu_15
# Graph fragment:
# %mul_29 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_29, %unsqueeze_89), kwargs = {})
# %add_48 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_29, %unsqueeze_86), kwargs = {})
# %mul_35 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_35, %unsqueeze_107), kwargs = {})
# %add_57 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_35, %unsqueeze_104), kwargs = {})
# %add_58 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_48, %add_57), kwargs = {})
# %relu_15 : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%add_58,), kwargs = {})
triton_poi_fused_add_native_group_norm_relu_29 = async_compile.triton('triton_poi_fused_add_native_group_norm_relu_29', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[524288],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: '*fp32', 11: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_group_norm_relu_29', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 10, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_native_group_norm_relu_29(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, xnumel, XBLOCK : tl.constexpr):
xnumel = 524288
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 2048
x2 = (xindex // 131072)
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x0 + (2048*x2)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x0 + (2048*x2)), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + (x0), None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr5 + (x3), None)
tmp15 = tl.load(in_ptr6 + ((32*x2) + (x0 // 64)), None, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr7 + ((32*x2) + (x0 // 64)), None, eviction_policy='evict_last')
tmp24 = tl.load(in_ptr8 + (x0), None, eviction_policy='evict_last')
tmp26 = tl.load(in_ptr9 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = 64.0
tmp5 = tmp3 / tmp4
tmp6 = 1e-05
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp2 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tmp16 = tmp14 - tmp15
tmp18 = 4096.0
tmp19 = tmp17 / tmp18
tmp20 = 1e-06
tmp21 = tmp19 + tmp20
tmp22 = libdevice.rsqrt(tmp21)
tmp23 = tmp16 * tmp22
tmp25 = tmp23 * tmp24
tmp27 = tmp25 + tmp26
tmp28 = tmp13 + tmp27
tmp29 = tl.full([1], 0, tl.int32)
tmp30 = triton_helpers.maximum(tmp29, tmp28)
tl.store(in_out_ptr0 + (x3), tmp30, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/e5/ce5e725kxvl6jl7eeekitaoe56q5reesvisbzhqldhffeu2qrkfc.py
# Topologically Sorted Source Nodes: [var_mean_18, sub_18, add_23, sqrt_18, w_18], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div]
# Source node to ATen node mapping:
# add_23 => add_59
# sqrt_18 => sqrt_18
# sub_18 => sub_36
# var_mean_18 => var_mean_36
# w_18 => div_18
# Graph fragment:
# %var_mean_36 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_56, [1, 2, 3]), kwargs = {correction: 0, keepdim: True})
# %sub_36 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_56, %getitem_75), kwargs = {})
# %add_59 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_74, 1e-05), kwargs = {})
# %sqrt_18 : [num_users=2] = call_function[target=torch.ops.aten.sqrt.default](args = (%add_59,), kwargs = {})
# %div_18 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_36, %sqrt_18), kwargs = {})
triton_red_fused_add_div_sqrt_sub_var_mean_30 = async_compile.triton('triton_red_fused_add_div_sqrt_sub_var_mean_30', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[512, 2048],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_add_div_sqrt_sub_var_mean_30', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused_add_div_sqrt_sub_var_mean_30(in_out_ptr0, in_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 512
rnumel = 2048
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex
tmp2_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp0 = tl.load(in_ptr0 + (r1 + (2048*x0)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp2_mean_next, tmp2_m2_next, tmp2_weight_next = triton_helpers.welford_reduce(
tmp1, tmp2_mean, tmp2_m2, tmp2_weight, roffset == 0
)
tmp2_mean = tl.where(rmask & xmask, tmp2_mean_next, tmp2_mean)
tmp2_m2 = tl.where(rmask & xmask, tmp2_m2_next, tmp2_m2)
tmp2_weight = tl.where(rmask & xmask, tmp2_weight_next, tmp2_weight)
tmp2_tmp, tmp3_tmp, tmp4_tmp = triton_helpers.welford(
tmp2_mean, tmp2_m2, tmp2_weight, 1
)
tmp2 = tmp2_tmp[:, None]
tmp3 = tmp3_tmp[:, None]
tmp4 = tmp4_tmp[:, None]
tmp5 = 2048.0
tmp6 = tmp3 / tmp5
tmp7 = 1e-05
tmp8 = tmp6 + tmp7
tmp9 = libdevice.sqrt(tmp8)
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp9, xmask)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp10 = tl.load(in_ptr0 + (r1 + (2048*x0)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp11 = tmp10 - tmp2
tmp12 = tmp11 / tmp9
tl.store(out_ptr1 + (r1 + (2048*x0)), tmp12, rmask & xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/k3/ck3bygbjqyc7l2hv4slwiesyb5h7v6uvamlqu24x7fojtgjyysbk.py
# Topologically Sorted Source Nodes: [y_22, add_26, y_23], Original ATen: [aten.native_group_norm, aten.add, aten.relu]
# Source node to ATen node mapping:
# add_26 => add_68
# y_22 => add_67, mul_41
# y_23 => relu_18
# Graph fragment:
# %mul_41 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_41, %unsqueeze_125), kwargs = {})
# %add_67 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_41, %unsqueeze_122), kwargs = {})
# %add_68 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%relu_15, %add_67), kwargs = {})
# %relu_18 : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%add_68,), kwargs = {})
triton_poi_fused_add_native_group_norm_relu_31 = async_compile.triton('triton_poi_fused_add_native_group_norm_relu_31', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[524288],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_group_norm_relu_31', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_native_group_norm_relu_31(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 524288
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 2048
x2 = (xindex // 131072)
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x3), None)
tmp2 = tl.load(in_ptr2 + ((32*x2) + (x0 // 64)), None, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr3 + ((32*x2) + (x0 // 64)), None, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr5 + (x0), None, eviction_policy='evict_last')
tmp3 = tmp1 - tmp2
tmp5 = 4096.0
tmp6 = tmp4 / tmp5
tmp7 = 1e-06
tmp8 = tmp6 + tmp7
tmp9 = libdevice.rsqrt(tmp8)
tmp10 = tmp3 * tmp9
tmp12 = tmp10 * tmp11
tmp14 = tmp12 + tmp13
tmp15 = tmp0 + tmp14
tmp16 = tl.full([1], 0, tl.int32)
tmp17 = triton_helpers.maximum(tmp16, tmp15)
tl.store(out_ptr0 + (x3), tmp17, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/w7/cw7buxayjszrffyrdccjcbcic36lffdaj7qocb2wpcxz4k46hhci.py
# Topologically Sorted Source Nodes: [var_mean_27, sub_27, add_35, sqrt_27, w_27], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div]
# Source node to ATen node mapping:
# add_35 => add_89
# sqrt_27 => sqrt_27
# sub_27 => sub_54
# var_mean_27 => var_mean_54
# w_27 => div_27
# Graph fragment:
# %var_mean_54 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_83, [1, 2, 3]), kwargs = {correction: 0, keepdim: True})
# %sub_54 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_83, %getitem_111), kwargs = {})
# %add_89 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_110, 1e-05), kwargs = {})
# %sqrt_27 : [num_users=2] = call_function[target=torch.ops.aten.sqrt.default](args = (%add_89,), kwargs = {})
# %div_27 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_54, %sqrt_27), kwargs = {})
triton_red_fused_add_div_sqrt_sub_var_mean_32 = async_compile.triton('triton_red_fused_add_div_sqrt_sub_var_mean_32', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[4096, 2048],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_add_div_sqrt_sub_var_mean_32', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused_add_div_sqrt_sub_var_mean_32(in_out_ptr0, in_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 4096
rnumel = 2048
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex
tmp2_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp0 = tl.load(in_ptr0 + (r1 + (2048*x0)), rmask, eviction_policy='evict_last', other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp2_mean_next, tmp2_m2_next, tmp2_weight_next = triton_helpers.welford_reduce(
tmp1, tmp2_mean, tmp2_m2, tmp2_weight, roffset == 0
)
tmp2_mean = tl.where(rmask, tmp2_mean_next, tmp2_mean)
tmp2_m2 = tl.where(rmask, tmp2_m2_next, tmp2_m2)
tmp2_weight = tl.where(rmask, tmp2_weight_next, tmp2_weight)
tmp2_tmp, tmp3_tmp, tmp4_tmp = triton_helpers.welford(
tmp2_mean, tmp2_m2, tmp2_weight, 1
)
tmp2 = tmp2_tmp[:, None]
tmp3 = tmp3_tmp[:, None]
tmp4 = tmp4_tmp[:, None]
tmp5 = 2048.0
tmp6 = tmp3 / tmp5
tmp7 = 1e-05
tmp8 = tmp6 + tmp7
tmp9 = libdevice.sqrt(tmp8)
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp9, None)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp10 = tl.load(in_ptr0 + (r1 + (2048*x0)), rmask, eviction_policy='evict_first', other=0.0)
tmp11 = tmp10 - tmp2
tmp12 = tmp11 / tmp9
tl.store(out_ptr1 + (r1 + (2048*x0)), tmp12, rmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/a5/ca5qmfavufo2qfs3p4ctwkbe7k366d267lmsw7ioa4nlu6dbqihs.py
# Topologically Sorted Source Nodes: [residual_5], Original ATen: [aten.native_group_norm]
# Source node to ATen node mapping:
# residual_5 => add_90, rsqrt_27, var_mean_55
# Graph fragment:
# %var_mean_55 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_54, [2, 3]), kwargs = {correction: 0, keepdim: True})
# %add_90 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_112, 1e-05), kwargs = {})
# %rsqrt_27 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_90,), kwargs = {})
triton_per_fused_native_group_norm_33 = async_compile.triton('triton_per_fused_native_group_norm_33', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16384, 16],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_native_group_norm_33', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_native_group_norm_33(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16384
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x0 = xindex % 4096
x1 = (xindex // 4096)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (4096*r2) + (65536*x1)), None)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp5 = tl.sum(tmp3, 1)[:, None]
tmp6 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 / tmp7
tmp9 = tmp1 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK])
tmp13 = tl.sum(tmp11, 1)[:, None]
tmp14 = 16.0
tmp15 = tmp13 / tmp14
tmp16 = 1e-05
tmp17 = tmp15 + tmp16
tmp18 = libdevice.rsqrt(tmp17)
tl.store(out_ptr2 + (x3), tmp18, None)
tl.store(out_ptr0 + (x3), tmp8, None)
tl.store(out_ptr1 + (x3), tmp13, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/i5/ci5mqnd52qvyrtjersam7awijmxjmjmms53bnijcvka3s3m4j7xb.py
# Topologically Sorted Source Nodes: [var_mean_28, sub_28, add_36, sqrt_28, w_28], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div]
# Source node to ATen node mapping:
# add_36 => add_92
# sqrt_28 => sqrt_28
# sub_28 => sub_56
# var_mean_28 => var_mean_56
# w_28 => div_28
# Graph fragment:
# %var_mean_56 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_86, [1, 2, 3]), kwargs = {correction: 0, keepdim: True})
# %sub_56 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_86, %getitem_115), kwargs = {})
# %add_92 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_114, 1e-05), kwargs = {})
# %sqrt_28 : [num_users=2] = call_function[target=torch.ops.aten.sqrt.default](args = (%add_92,), kwargs = {})
# %div_28 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_56, %sqrt_28), kwargs = {})
triton_red_fused_add_div_sqrt_sub_var_mean_34 = async_compile.triton('triton_red_fused_add_div_sqrt_sub_var_mean_34', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[1024, 2048],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_add_div_sqrt_sub_var_mean_34', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused_add_div_sqrt_sub_var_mean_34(in_out_ptr0, in_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 1024
rnumel = 2048
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex
tmp2_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp0 = tl.load(in_ptr0 + (r1 + (2048*x0)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp2_mean_next, tmp2_m2_next, tmp2_weight_next = triton_helpers.welford_reduce(
tmp1, tmp2_mean, tmp2_m2, tmp2_weight, roffset == 0
)
tmp2_mean = tl.where(rmask & xmask, tmp2_mean_next, tmp2_mean)
tmp2_m2 = tl.where(rmask & xmask, tmp2_m2_next, tmp2_m2)
tmp2_weight = tl.where(rmask & xmask, tmp2_weight_next, tmp2_weight)
tmp2_tmp, tmp3_tmp, tmp4_tmp = triton_helpers.welford(
tmp2_mean, tmp2_m2, tmp2_weight, 1
)
tmp2 = tmp2_tmp[:, None]
tmp3 = tmp3_tmp[:, None]
tmp4 = tmp4_tmp[:, None]
tmp5 = 2048.0
tmp6 = tmp3 / tmp5
tmp7 = 1e-05
tmp8 = tmp6 + tmp7
tmp9 = libdevice.sqrt(tmp8)
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp9, xmask)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp10 = tl.load(in_ptr0 + (r1 + (2048*x0)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp11 = tmp10 - tmp2
tmp12 = tmp11 / tmp9
tl.store(out_ptr1 + (r1 + (2048*x0)), tmp12, rmask & xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/ta/ctaihcjspdz63grwe4pfyyqfgwiuwoinc6dsakq2ggu274bly3er.py
# Topologically Sorted Source Nodes: [group_norm_28], Original ATen: [aten.native_group_norm]
# Source node to ATen node mapping:
# group_norm_28 => add_93, rsqrt_28, var_mean_57
# Graph fragment:
# %var_mean_57 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_56, [2, 3]), kwargs = {correction: 0, keepdim: True})
# %add_93 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_116, 1e-06), kwargs = {})
# %rsqrt_28 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_93,), kwargs = {})
triton_red_fused_native_group_norm_35 = async_compile.triton('triton_red_fused_native_group_norm_35', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[128, 2048],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_native_group_norm_35', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused_native_group_norm_35(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 128
rnumel = 2048
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex % 32
x1 = (xindex // 32)
tmp2_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32)
x4 = xindex
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex % 32
r3 = (rindex // 32)
tmp0 = tl.load(in_ptr0 + (r2 + (32*x0) + (1024*r3) + (65536*x1)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp2_mean_next, tmp2_m2_next, tmp2_weight_next = triton_helpers.welford_reduce(
tmp1, tmp2_mean, tmp2_m2, tmp2_weight, roffset == 0
)
tmp2_mean = tl.where(rmask & xmask, tmp2_mean_next, tmp2_mean)
tmp2_m2 = tl.where(rmask & xmask, tmp2_m2_next, tmp2_m2)
tmp2_weight = tl.where(rmask & xmask, tmp2_weight_next, tmp2_weight)
tmp2_tmp, tmp3_tmp, tmp4_tmp = triton_helpers.welford(
tmp2_mean, tmp2_m2, tmp2_weight, 1
)
tmp2 = tmp2_tmp[:, None]
tmp3 = tmp3_tmp[:, None]
tmp4 = tmp4_tmp[:, None]
tl.store(out_ptr0 + (x4), tmp2, xmask)
tl.store(out_ptr1 + (x4), tmp3, xmask)
tmp5 = 2048.0
tmp6 = tmp3 / tmp5
tmp7 = 1e-06
tmp8 = tmp6 + tmp7
tmp9 = libdevice.rsqrt(tmp8)
tl.store(out_ptr2 + (x4), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/xi/cxiqxvbsz3ukssdeoyptshvpqvhiwaaf4kbrrdv5nfaasaybrl33.py
# Topologically Sorted Source Nodes: [group_norm_28, y_32], Original ATen: [aten.native_group_norm, aten.relu]
# Source node to ATen node mapping:
# group_norm_28 => add_94, mul_57
# y_32 => relu_25
# Graph fragment:
# %mul_57 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_57, %unsqueeze_173), kwargs = {})
# %add_94 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_57, %unsqueeze_170), kwargs = {})
# %relu_25 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_94,), kwargs = {})
triton_poi_fused_native_group_norm_relu_36 = async_compile.triton('triton_poi_fused_native_group_norm_relu_36', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_group_norm_relu_36', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_group_norm_relu_36(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 262144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 1024
x2 = (xindex // 65536)
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + ((32*x2) + (x0 // 32)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + ((32*x2) + (x0 // 32)), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + (x0), None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = 2048.0
tmp5 = tmp3 / tmp4
tmp6 = 1e-06
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp2 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tmp14 = tl.full([1], 0, tl.int32)
tmp15 = triton_helpers.maximum(tmp14, tmp13)
tl.store(out_ptr0 + (x3), tmp15, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/ie/ciexv24o44oxfqehcf5g5n3uw7wm3rwzhg6j6yp6xehzai7x3ppj.py
# Topologically Sorted Source Nodes: [var_mean_29, sub_29, add_37, sqrt_29, w_29], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div]
# Source node to ATen node mapping:
# add_37 => add_95
# sqrt_29 => sqrt_29
# sub_29 => sub_58
# var_mean_29 => var_mean_58
# w_29 => div_29
# Graph fragment:
# %var_mean_58 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_89, [1, 2, 3]), kwargs = {correction: 0, keepdim: True})
# %sub_58 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_89, %getitem_119), kwargs = {})
# %add_95 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_118, 1e-05), kwargs = {})
# %sqrt_29 : [num_users=2] = call_function[target=torch.ops.aten.sqrt.default](args = (%add_95,), kwargs = {})
# %div_29 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_58, %sqrt_29), kwargs = {})
triton_red_fused_add_div_sqrt_sub_var_mean_37 = async_compile.triton('triton_red_fused_add_div_sqrt_sub_var_mean_37', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[1024, 16384],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_add_div_sqrt_sub_var_mean_37', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused_add_div_sqrt_sub_var_mean_37(in_out_ptr0, in_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 1024
rnumel = 9216
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex
tmp2_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp0 = tl.load(in_ptr0 + (r1 + (9216*x0)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp2_mean_next, tmp2_m2_next, tmp2_weight_next = triton_helpers.welford_reduce(
tmp1, tmp2_mean, tmp2_m2, tmp2_weight, roffset == 0
)
tmp2_mean = tl.where(rmask & xmask, tmp2_mean_next, tmp2_mean)
tmp2_m2 = tl.where(rmask & xmask, tmp2_m2_next, tmp2_m2)
tmp2_weight = tl.where(rmask & xmask, tmp2_weight_next, tmp2_weight)
tmp2_tmp, tmp3_tmp, tmp4_tmp = triton_helpers.welford(
tmp2_mean, tmp2_m2, tmp2_weight, 1
)
tmp2 = tmp2_tmp[:, None]
tmp3 = tmp3_tmp[:, None]
tmp4 = tmp4_tmp[:, None]
tmp5 = 9216.0
tmp6 = tmp3 / tmp5
tmp7 = 1e-05
tmp8 = tmp6 + tmp7
tmp9 = libdevice.sqrt(tmp8)
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp9, xmask)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp10 = tl.load(in_ptr0 + (r1 + (9216*x0)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp11 = tmp10 - tmp2
tmp12 = tmp11 / tmp9
tl.store(out_ptr1 + (r1 + (9216*x0)), tmp12, rmask & xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/yg/cygphweqnq7pnwvkahvghd3g67zml3uufl6pze324yvsgxttpecs.py
# Topologically Sorted Source Nodes: [group_norm_29], Original ATen: [aten.native_group_norm]
# Source node to ATen node mapping:
# group_norm_29 => add_96, rsqrt_29, var_mean_59
# Graph fragment:
# %var_mean_59 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_58, [2, 3]), kwargs = {correction: 0, keepdim: True})
# %add_96 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_120, 1e-06), kwargs = {})
# %rsqrt_29 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_96,), kwargs = {})
triton_per_fused_native_group_norm_38 = async_compile.triton('triton_per_fused_native_group_norm_38', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[128, 512],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_native_group_norm_38', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_native_group_norm_38(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel):
xnumel = 128
XBLOCK: tl.constexpr = 1
rnumel = 512
RBLOCK: tl.constexpr = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r2 = rindex % 32
r3 = (rindex // 32)
x0 = xindex % 32
x1 = (xindex // 32)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (r2 + (32*x0) + (1024*r3) + (16384*x1)), None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = tl.broadcast_to(tmp1, [RBLOCK])
tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0))
tmp6 = tl.full([1], 512, tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 / tmp7
tmp9 = tmp1 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tl.broadcast_to(tmp10, [RBLOCK])
tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0))
tmp14 = 512.0
tmp15 = tmp13 / tmp14
tmp16 = 1e-06
tmp17 = tmp15 + tmp16
tmp18 = libdevice.rsqrt(tmp17)
tl.store(out_ptr2 + (x4), tmp18, None)
tl.store(out_ptr0 + (x4), tmp8, None)
tl.store(out_ptr1 + (x4), tmp13, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/l4/cl4rrnjrwmvzdp3wuhtfdwp35f7iqe3swf2ufqxhvpdgyd2ns24f.py
# Topologically Sorted Source Nodes: [group_norm_29, y_33], Original ATen: [aten.native_group_norm, aten.relu]
# Source node to ATen node mapping:
# group_norm_29 => add_97, mul_59
# y_33 => relu_26
# Graph fragment:
# %mul_59 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_59, %unsqueeze_179), kwargs = {})
# %add_97 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_59, %unsqueeze_176), kwargs = {})
# %relu_26 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_97,), kwargs = {})
triton_poi_fused_native_group_norm_relu_39 = async_compile.triton('triton_poi_fused_native_group_norm_relu_39', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_group_norm_relu_39', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_group_norm_relu_39(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 1024
x2 = (xindex // 16384)
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + ((32*x2) + (x0 // 32)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + ((32*x2) + (x0 // 32)), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + (x0), None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = 512.0
tmp5 = tmp3 / tmp4
tmp6 = 1e-06
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp2 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tmp14 = tl.full([1], 0, tl.int32)
tmp15 = triton_helpers.maximum(tmp14, tmp13)
tl.store(out_ptr0 + (x3), tmp15, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/5p/c5po2fxloubqkx7bxv5xz6kvdz6v4qojkssixn4dxk7vmlqdmvuc.py
# Topologically Sorted Source Nodes: [var_mean_30, sub_30, add_38, sqrt_30, w_30], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div]
# Source node to ATen node mapping:
# add_38 => add_98
# sqrt_30 => sqrt_30
# sub_30 => sub_60
# var_mean_30 => var_mean_60
# w_30 => div_30
# Graph fragment:
# %var_mean_60 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_92, [1, 2, 3]), kwargs = {correction: 0, keepdim: True})
# %sub_60 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_92, %getitem_123), kwargs = {})
# %add_98 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_122, 1e-05), kwargs = {})
# %sqrt_30 : [num_users=2] = call_function[target=torch.ops.aten.sqrt.default](args = (%add_98,), kwargs = {})
# %div_30 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_60, %sqrt_30), kwargs = {})
triton_per_fused_add_div_sqrt_sub_var_mean_40 = async_compile.triton('triton_per_fused_add_div_sqrt_sub_var_mean_40', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4096, 1024],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_sqrt_sub_var_mean_40', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_sqrt_sub_var_mean_40(in_out_ptr0, in_ptr0, out_ptr1, xnumel, rnumel):
xnumel = 4096
XBLOCK: tl.constexpr = 1
rnumel = 1024
RBLOCK: tl.constexpr = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (1024*x0)), None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = tl.broadcast_to(tmp1, [RBLOCK])
tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0))
tmp6 = tl.full([1], 1024, tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 / tmp7
tmp9 = tmp1 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tl.broadcast_to(tmp10, [RBLOCK])
tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0))
tmp14 = 1024.0
tmp15 = tmp13 / tmp14
tmp16 = 1e-05
tmp17 = tmp15 + tmp16
tmp18 = libdevice.sqrt(tmp17)
tmp19 = tmp0 - tmp8
tmp20 = tmp19 / tmp18
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp18, None)
tl.store(out_ptr1 + (r1 + (1024*x0)), tmp20, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/wp/cwpa5qp2ta7tnws6bdr5vxs47sehbs5clrraba3gd4l7tispuaoa.py
# Topologically Sorted Source Nodes: [y_34], Original ATen: [aten.native_group_norm]
# Source node to ATen node mapping:
# y_34 => add_99, rsqrt_30, var_mean_61
# Graph fragment:
# %var_mean_61 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_60, [2, 3]), kwargs = {correction: 0, keepdim: True})
# %add_99 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_124, 1e-06), kwargs = {})
# %rsqrt_30 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_99,), kwargs = {})
triton_red_fused_native_group_norm_41 = async_compile.triton('triton_red_fused_native_group_norm_41', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[128, 2048],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_native_group_norm_41', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused_native_group_norm_41(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 128
rnumel = 2048
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex % 32
x1 = (xindex // 32)
tmp2_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32)
x4 = xindex
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex % 128
r3 = (rindex // 128)
tmp0 = tl.load(in_ptr0 + (r2 + (128*x0) + (4096*r3) + (65536*x1)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp2_mean_next, tmp2_m2_next, tmp2_weight_next = triton_helpers.welford_reduce(
tmp1, tmp2_mean, tmp2_m2, tmp2_weight, roffset == 0
)
tmp2_mean = tl.where(rmask & xmask, tmp2_mean_next, tmp2_mean)
tmp2_m2 = tl.where(rmask & xmask, tmp2_m2_next, tmp2_m2)
tmp2_weight = tl.where(rmask & xmask, tmp2_weight_next, tmp2_weight)
tmp2_tmp, tmp3_tmp, tmp4_tmp = triton_helpers.welford(
tmp2_mean, tmp2_m2, tmp2_weight, 1
)
tmp2 = tmp2_tmp[:, None]
tmp3 = tmp3_tmp[:, None]
tmp4 = tmp4_tmp[:, None]
tl.store(out_ptr0 + (x4), tmp2, xmask)
tl.store(out_ptr1 + (x4), tmp3, xmask)
tmp5 = 2048.0
tmp6 = tmp3 / tmp5
tmp7 = 1e-06
tmp8 = tmp6 + tmp7
tmp9 = libdevice.rsqrt(tmp8)
tl.store(out_ptr2 + (x4), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/zw/czwdegbzheopnvwdl4eqnhwujnatwuxmgcovtppktuchxyyj6edp.py
# Topologically Sorted Source Nodes: [residual_5, y_34, add_39, y_35], Original ATen: [aten.native_group_norm, aten.add, aten.relu]
# Source node to ATen node mapping:
# add_39 => add_101
# residual_5 => add_91, mul_55
# y_34 => add_100, mul_61
# y_35 => relu_27
# Graph fragment:
# %mul_55 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_55, %unsqueeze_167), kwargs = {})
# %add_91 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_55, %unsqueeze_164), kwargs = {})
# %mul_61 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_61, %unsqueeze_185), kwargs = {})
# %add_100 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_61, %unsqueeze_182), kwargs = {})
# %add_101 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_91, %add_100), kwargs = {})
# %relu_27 : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%add_101,), kwargs = {})
triton_poi_fused_add_native_group_norm_relu_42 = async_compile.triton('triton_poi_fused_add_native_group_norm_relu_42', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: '*fp32', 11: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_group_norm_relu_42', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 10, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_native_group_norm_relu_42(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, xnumel, XBLOCK : tl.constexpr):
xnumel = 262144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 4096
x2 = (xindex // 65536)
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x0 + (4096*x2)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x0 + (4096*x2)), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + (x0), None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr5 + (x3), None)
tmp15 = tl.load(in_ptr6 + ((32*x2) + (x0 // 128)), None, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr7 + ((32*x2) + (x0 // 128)), None, eviction_policy='evict_last')
tmp24 = tl.load(in_ptr8 + (x0), None, eviction_policy='evict_last')
tmp26 = tl.load(in_ptr9 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = 16.0
tmp5 = tmp3 / tmp4
tmp6 = 1e-05
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp2 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tmp16 = tmp14 - tmp15
tmp18 = 2048.0
tmp19 = tmp17 / tmp18
tmp20 = 1e-06
tmp21 = tmp19 + tmp20
tmp22 = libdevice.rsqrt(tmp21)
tmp23 = tmp16 * tmp22
tmp25 = tmp23 * tmp24
tmp27 = tmp25 + tmp26
tmp28 = tmp13 + tmp27
tmp29 = tl.full([1], 0, tl.int32)
tmp30 = triton_helpers.maximum(tmp29, tmp28)
tl.store(in_out_ptr0 + (x3), tmp30, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/fc/cfccvugrjb5bchp7busa35nnjngrxenithy3hzc3iqtipvpmnaq7.py
# Topologically Sorted Source Nodes: [var_mean_31, sub_31, add_40, sqrt_31, w_31], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div]
# Source node to ATen node mapping:
# add_40 => add_102
# sqrt_31 => sqrt_31
# sub_31 => sub_62
# var_mean_31 => var_mean_62
# w_31 => div_31
# Graph fragment:
# %var_mean_62 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_95, [1, 2, 3]), kwargs = {correction: 0, keepdim: True})
# %sub_62 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_95, %getitem_127), kwargs = {})
# %add_102 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_126, 1e-05), kwargs = {})
# %sqrt_31 : [num_users=2] = call_function[target=torch.ops.aten.sqrt.default](args = (%add_102,), kwargs = {})
# %div_31 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_62, %sqrt_31), kwargs = {})
triton_red_fused_add_div_sqrt_sub_var_mean_43 = async_compile.triton('triton_red_fused_add_div_sqrt_sub_var_mean_43', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[1024, 4096],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_add_div_sqrt_sub_var_mean_43', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused_add_div_sqrt_sub_var_mean_43(in_out_ptr0, in_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 1024
rnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex
tmp2_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp0 = tl.load(in_ptr0 + (r1 + (4096*x0)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp2_mean_next, tmp2_m2_next, tmp2_weight_next = triton_helpers.welford_reduce(
tmp1, tmp2_mean, tmp2_m2, tmp2_weight, roffset == 0
)
tmp2_mean = tl.where(rmask & xmask, tmp2_mean_next, tmp2_mean)
tmp2_m2 = tl.where(rmask & xmask, tmp2_m2_next, tmp2_m2)
tmp2_weight = tl.where(rmask & xmask, tmp2_weight_next, tmp2_weight)
tmp2_tmp, tmp3_tmp, tmp4_tmp = triton_helpers.welford(
tmp2_mean, tmp2_m2, tmp2_weight, 1
)
tmp2 = tmp2_tmp[:, None]
tmp3 = tmp3_tmp[:, None]
tmp4 = tmp4_tmp[:, None]
tmp5 = 4096.0
tmp6 = tmp3 / tmp5
tmp7 = 1e-05
tmp8 = tmp6 + tmp7
tmp9 = libdevice.sqrt(tmp8)
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp9, xmask)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp10 = tl.load(in_ptr0 + (r1 + (4096*x0)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp11 = tmp10 - tmp2
tmp12 = tmp11 / tmp9
tl.store(out_ptr1 + (r1 + (4096*x0)), tmp12, rmask & xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/wz/cwzmw2mxocwzkaptk7ltuhxbrbaqhh3walrpi3otgnu3l4igiwew.py
# Topologically Sorted Source Nodes: [y_38, add_43, y_39], Original ATen: [aten.native_group_norm, aten.add, aten.relu]
# Source node to ATen node mapping:
# add_43 => add_111
# y_38 => add_110, mul_67
# y_39 => relu_30
# Graph fragment:
# %mul_67 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_67, %unsqueeze_203), kwargs = {})
# %add_110 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_67, %unsqueeze_200), kwargs = {})
# %add_111 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%relu_27, %add_110), kwargs = {})
# %relu_30 : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%add_111,), kwargs = {})
triton_poi_fused_add_native_group_norm_relu_44 = async_compile.triton('triton_poi_fused_add_native_group_norm_relu_44', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_group_norm_relu_44', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_native_group_norm_relu_44(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 262144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 4096
x2 = (xindex // 65536)
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x3), None)
tmp2 = tl.load(in_ptr2 + ((32*x2) + (x0 // 128)), None, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr3 + ((32*x2) + (x0 // 128)), None, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr5 + (x0), None, eviction_policy='evict_last')
tmp3 = tmp1 - tmp2
tmp5 = 2048.0
tmp6 = tmp4 / tmp5
tmp7 = 1e-06
tmp8 = tmp6 + tmp7
tmp9 = libdevice.rsqrt(tmp8)
tmp10 = tmp3 * tmp9
tmp12 = tmp10 * tmp11
tmp14 = tmp12 + tmp13
tmp15 = tmp0 + tmp14
tmp16 = tl.full([1], 0, tl.int32)
tmp17 = triton_helpers.maximum(tmp16, tmp15)
tl.store(out_ptr0 + (x3), tmp17, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/qr/cqrbpncc5yhew7raztwazh5qtqmewuygbnx7jaosdzutra7m33et.py
# Topologically Sorted Source Nodes: [y_46, add_51, y_47], Original ATen: [aten.native_group_norm, aten.add, aten.relu]
# Source node to ATen node mapping:
# add_51 => add_131
# y_46 => add_130, mul_79
# y_47 => relu_36
# Graph fragment:
# %mul_79 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_79, %unsqueeze_239), kwargs = {})
# %add_130 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_79, %unsqueeze_236), kwargs = {})
# %add_131 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%relu_33, %add_130), kwargs = {})
# %relu_36 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_131,), kwargs = {})
triton_poi_fused_add_native_group_norm_relu_45 = async_compile.triton('triton_poi_fused_add_native_group_norm_relu_45', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64, 4096], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_group_norm_relu_45', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_native_group_norm_relu_45(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 64
xnumel = 4096
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y1 = (yindex // 16)
y0 = yindex % 16
tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x2 + (4096*y3)), ymask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr2 + ((32*y1) + (x2 // 128)), ymask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr3 + ((32*y1) + (x2 // 128)), ymask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr4 + (x2), None, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr5 + (x2), None, eviction_policy='evict_last')
tmp3 = tmp1 - tmp2
tmp5 = 2048.0
tmp6 = tmp4 / tmp5
tmp7 = 1e-06
tmp8 = tmp6 + tmp7
tmp9 = libdevice.rsqrt(tmp8)
tmp10 = tmp3 * tmp9
tmp12 = tmp10 * tmp11
tmp14 = tmp12 + tmp13
tmp15 = tmp0 + tmp14
tmp16 = tl.full([1, 1], 0, tl.int32)
tmp17 = triton_helpers.maximum(tmp16, tmp15)
tl.store(out_ptr0 + (y0 + (16*x2) + (65536*y1)), tmp17, ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/ui/cuic7o4vbk3ddfcahfstl2n4yrl6azuxcyoqipnublq7krxibcnu.py
# Topologically Sorted Source Nodes: [], Original ATen: [aten.threshold_backward]
# Source node to ATen node mapping:
# Graph fragment:
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_36, 0), kwargs = {})
triton_poi_fused_threshold_backward_46 = async_compile.triton('triton_poi_fused_threshold_backward_46', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_threshold_backward_46', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_threshold_backward_46(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16384
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4096
y1 = (yindex // 4096)
tmp0 = tl.load(in_ptr0 + (x2 + (16*y3)), xmask, eviction_policy='evict_last')
tmp1 = 0.0
tmp2 = tmp0 <= tmp1
tl.store(out_ptr0 + (y0 + (4096*x2) + (65536*y1)), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41, primals_42, primals_43, primals_44, primals_45, primals_46, primals_47, primals_48, primals_49, primals_50, primals_51, primals_52, primals_53, primals_54, primals_55, primals_56, primals_57, primals_58, primals_59, primals_60, primals_61, primals_62, primals_63, primals_64, primals_65, primals_66, primals_67, primals_68, primals_69, primals_70, primals_71, primals_72, primals_73, primals_74, primals_75, primals_76, primals_77, primals_78, primals_79, primals_80, primals_81, primals_82, primals_83, primals_84, primals_85, primals_86, primals_87, primals_88, primals_89, primals_90, primals_91, primals_92, primals_93, primals_94, primals_95, primals_96, primals_97, primals_98, primals_99, primals_100, primals_101, primals_102, primals_103, primals_104, primals_105, primals_106, primals_107, primals_108, primals_109, primals_110, primals_111, primals_112, primals_113, primals_114, primals_115, primals_116, primals_117, primals_118, primals_119, primals_120, primals_121 = args
args.clear()
assert_size_stride(primals_1, (256, 3, 7, 7), (147, 49, 7, 1))
assert_size_stride(primals_2, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_3, (256, ), (1, ))
assert_size_stride(primals_4, (256, ), (1, ))
assert_size_stride(primals_5, (1024, 256, 1, 1), (256, 1, 1, 1))
assert_size_stride(primals_6, (1024, ), (1, ))
assert_size_stride(primals_7, (1024, ), (1, ))
assert_size_stride(primals_8, (256, 256, 1, 1), (256, 1, 1, 1))
assert_size_stride(primals_9, (256, ), (1, ))
assert_size_stride(primals_10, (256, ), (1, ))
assert_size_stride(primals_11, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_12, (256, ), (1, ))
assert_size_stride(primals_13, (256, ), (1, ))
assert_size_stride(primals_14, (1024, 256, 1, 1), (256, 1, 1, 1))
assert_size_stride(primals_15, (1024, ), (1, ))
assert_size_stride(primals_16, (1024, ), (1, ))
assert_size_stride(primals_17, (256, 1024, 1, 1), (1024, 1, 1, 1))
assert_size_stride(primals_18, (256, ), (1, ))
assert_size_stride(primals_19, (256, ), (1, ))
assert_size_stride(primals_20, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_21, (256, ), (1, ))
assert_size_stride(primals_22, (256, ), (1, ))
assert_size_stride(primals_23, (1024, 256, 1, 1), (256, 1, 1, 1))
assert_size_stride(primals_24, (1024, ), (1, ))
assert_size_stride(primals_25, (1024, ), (1, ))
assert_size_stride(primals_26, (256, 1024, 1, 1), (1024, 1, 1, 1))
assert_size_stride(primals_27, (256, ), (1, ))
assert_size_stride(primals_28, (256, ), (1, ))
assert_size_stride(primals_29, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_30, (256, ), (1, ))
assert_size_stride(primals_31, (256, ), (1, ))
assert_size_stride(primals_32, (1024, 256, 1, 1), (256, 1, 1, 1))
assert_size_stride(primals_33, (1024, ), (1, ))
assert_size_stride(primals_34, (1024, ), (1, ))
assert_size_stride(primals_35, (256, 1024, 1, 1), (1024, 1, 1, 1))
assert_size_stride(primals_36, (256, ), (1, ))
assert_size_stride(primals_37, (256, ), (1, ))
assert_size_stride(primals_38, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_39, (256, ), (1, ))
assert_size_stride(primals_40, (256, ), (1, ))
assert_size_stride(primals_41, (1024, 256, 1, 1), (256, 1, 1, 1))
assert_size_stride(primals_42, (1024, ), (1, ))
assert_size_stride(primals_43, (1024, ), (1, ))
assert_size_stride(primals_44, (2048, 1024, 1, 1), (1024, 1, 1, 1))
assert_size_stride(primals_45, (2048, ), (1, ))
assert_size_stride(primals_46, (2048, ), (1, ))
assert_size_stride(primals_47, (512, 1024, 1, 1), (1024, 1, 1, 1))
assert_size_stride(primals_48, (512, ), (1, ))
assert_size_stride(primals_49, (512, ), (1, ))
assert_size_stride(primals_50, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_51, (512, ), (1, ))
assert_size_stride(primals_52, (512, ), (1, ))
assert_size_stride(primals_53, (2048, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_54, (2048, ), (1, ))
assert_size_stride(primals_55, (2048, ), (1, ))
assert_size_stride(primals_56, (512, 2048, 1, 1), (2048, 1, 1, 1))
assert_size_stride(primals_57, (512, ), (1, ))
assert_size_stride(primals_58, (512, ), (1, ))
assert_size_stride(primals_59, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_60, (512, ), (1, ))
assert_size_stride(primals_61, (512, ), (1, ))
assert_size_stride(primals_62, (2048, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_63, (2048, ), (1, ))
assert_size_stride(primals_64, (2048, ), (1, ))
assert_size_stride(primals_65, (512, 2048, 1, 1), (2048, 1, 1, 1))
assert_size_stride(primals_66, (512, ), (1, ))
assert_size_stride(primals_67, (512, ), (1, ))
assert_size_stride(primals_68, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_69, (512, ), (1, ))
assert_size_stride(primals_70, (512, ), (1, ))
assert_size_stride(primals_71, (2048, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_72, (2048, ), (1, ))
assert_size_stride(primals_73, (2048, ), (1, ))
assert_size_stride(primals_74, (512, 2048, 1, 1), (2048, 1, 1, 1))
assert_size_stride(primals_75, (512, ), (1, ))
assert_size_stride(primals_76, (512, ), (1, ))
assert_size_stride(primals_77, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_78, (512, ), (1, ))
assert_size_stride(primals_79, (512, ), (1, ))
assert_size_stride(primals_80, (2048, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_81, (2048, ), (1, ))
assert_size_stride(primals_82, (2048, ), (1, ))
assert_size_stride(primals_83, (4096, 2048, 1, 1), (2048, 1, 1, 1))
assert_size_stride(primals_84, (4096, ), (1, ))
assert_size_stride(primals_85, (4096, ), (1, ))
assert_size_stride(primals_86, (1024, 2048, 1, 1), (2048, 1, 1, 1))
assert_size_stride(primals_87, (1024, ), (1, ))
assert_size_stride(primals_88, (1024, ), (1, ))
assert_size_stride(primals_89, (1024, 1024, 3, 3), (9216, 9, 3, 1))
assert_size_stride(primals_90, (1024, ), (1, ))
assert_size_stride(primals_91, (1024, ), (1, ))
assert_size_stride(primals_92, (4096, 1024, 1, 1), (1024, 1, 1, 1))
assert_size_stride(primals_93, (4096, ), (1, ))
assert_size_stride(primals_94, (4096, ), (1, ))
assert_size_stride(primals_95, (1024, 4096, 1, 1), (4096, 1, 1, 1))
assert_size_stride(primals_96, (1024, ), (1, ))
assert_size_stride(primals_97, (1024, ), (1, ))
assert_size_stride(primals_98, (1024, 1024, 3, 3), (9216, 9, 3, 1))
assert_size_stride(primals_99, (1024, ), (1, ))
assert_size_stride(primals_100, (1024, ), (1, ))
assert_size_stride(primals_101, (4096, 1024, 1, 1), (1024, 1, 1, 1))
assert_size_stride(primals_102, (4096, ), (1, ))
assert_size_stride(primals_103, (4096, ), (1, ))
assert_size_stride(primals_104, (1024, 4096, 1, 1), (4096, 1, 1, 1))
assert_size_stride(primals_105, (1024, ), (1, ))
assert_size_stride(primals_106, (1024, ), (1, ))
assert_size_stride(primals_107, (1024, 1024, 3, 3), (9216, 9, 3, 1))
assert_size_stride(primals_108, (1024, ), (1, ))
assert_size_stride(primals_109, (1024, ), (1, ))
assert_size_stride(primals_110, (4096, 1024, 1, 1), (1024, 1, 1, 1))
assert_size_stride(primals_111, (4096, ), (1, ))
assert_size_stride(primals_112, (4096, ), (1, ))
assert_size_stride(primals_113, (1024, 4096, 1, 1), (4096, 1, 1, 1))
assert_size_stride(primals_114, (1024, ), (1, ))
assert_size_stride(primals_115, (1024, ), (1, ))
assert_size_stride(primals_116, (1024, 1024, 3, 3), (9216, 9, 3, 1))
assert_size_stride(primals_117, (1024, ), (1, ))
assert_size_stride(primals_118, (1024, ), (1, ))
assert_size_stride(primals_119, (4096, 1024, 1, 1), (1024, 1, 1, 1))
assert_size_stride(primals_120, (4096, ), (1, ))
assert_size_stride(primals_121, (4096, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((256, 3, 7, 7), (147, 1, 21, 3), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
stream0 = get_raw_stream(0)
triton_poi_fused_0.run(primals_1, buf0, 768, 49, grid=grid(768, 49), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((4, 3, 64, 64), (12288, 1, 192, 3), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_1.run(primals_2, buf1, 12, 4096, grid=grid(12, 4096), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_2.run(primals_11, buf2, 65536, 9, grid=grid(65536, 9), stream=stream0)
del primals_11
buf3 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_2.run(primals_20, buf3, 65536, 9, grid=grid(65536, 9), stream=stream0)
del primals_20
buf4 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_2.run(primals_29, buf4, 65536, 9, grid=grid(65536, 9), stream=stream0)
del primals_29
buf5 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_2.run(primals_38, buf5, 65536, 9, grid=grid(65536, 9), stream=stream0)
del primals_38
buf6 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_3.run(primals_50, buf6, 262144, 9, grid=grid(262144, 9), stream=stream0)
del primals_50
buf7 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_3.run(primals_59, buf7, 262144, 9, grid=grid(262144, 9), stream=stream0)
del primals_59
buf8 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_3.run(primals_68, buf8, 262144, 9, grid=grid(262144, 9), stream=stream0)
del primals_68
buf9 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_3.run(primals_77, buf9, 262144, 9, grid=grid(262144, 9), stream=stream0)
del primals_77
buf10 = empty_strided_cuda((1024, 1024, 3, 3), (9216, 1, 3072, 1024), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_4.run(primals_89, buf10, 1048576, 9, grid=grid(1048576, 9), stream=stream0)
del primals_89
buf11 = empty_strided_cuda((1024, 1024, 3, 3), (9216, 1, 3072, 1024), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_4.run(primals_98, buf11, 1048576, 9, grid=grid(1048576, 9), stream=stream0)
del primals_98
buf12 = empty_strided_cuda((1024, 1024, 3, 3), (9216, 1, 3072, 1024), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_4.run(primals_107, buf12, 1048576, 9, grid=grid(1048576, 9), stream=stream0)
del primals_107
buf13 = empty_strided_cuda((1024, 1024, 3, 3), (9216, 1, 3072, 1024), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_4.run(primals_116, buf13, 1048576, 9, grid=grid(1048576, 9), stream=stream0)
del primals_116
buf15 = empty_strided_cuda((256, 1, 1, 1), (1, 256, 256, 256), torch.float32)
buf17 = reinterpret_tensor(buf15, (256, 1, 1, 1), (1, 1, 1, 1), 0); del buf15 # reuse
buf18 = empty_strided_cuda((256, 3, 7, 7), (147, 1, 21, 3), torch.float32)
# Topologically Sorted Source Nodes: [var_mean, sub, add, sqrt, w], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div]
triton_per_fused_add_div_sqrt_sub_var_mean_5.run(buf17, buf0, buf18, 256, 147, grid=grid(256), stream=stream0)
# Topologically Sorted Source Nodes: [input_1], Original ATen: [aten.convolution]
buf19 = extern_kernels.convolution(buf1, buf18, stride=(2, 2), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf19, (4, 256, 32, 32), (262144, 1, 8192, 256))
buf20 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf21 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf23 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [input_2], Original ATen: [aten.native_group_norm]
triton_red_fused_native_group_norm_6.run(buf19, buf20, buf21, buf23, 128, 8192, grid=grid(128), stream=stream0)
buf24 = empty_strided_cuda((4, 256, 32, 32), (262144, 1, 8192, 256), torch.float32)
# Topologically Sorted Source Nodes: [input_2, input_3], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_7.run(buf19, buf20, buf21, primals_3, primals_4, buf24, 1048576, grid=grid(1048576), stream=stream0)
del primals_4
buf25 = empty_strided_cuda((4, 256, 15, 15), (57600, 1, 3840, 256), torch.float32)
buf26 = empty_strided_cuda((4, 256, 15, 15), (57600, 1, 3840, 256), torch.int8)
# Topologically Sorted Source Nodes: [input_4], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_8.run(buf24, buf25, buf26, 230400, grid=grid(230400), stream=stream0)
buf28 = empty_strided_cuda((1024, 1, 1, 1), (1, 1024, 1024, 1024), torch.float32)
buf30 = reinterpret_tensor(buf28, (1024, 1, 1, 1), (1, 1, 1, 1), 0); del buf28 # reuse
buf31 = empty_strided_cuda((1024, 256, 1, 1), (256, 1, 256, 256), torch.float32)
# Topologically Sorted Source Nodes: [var_mean_1, sub_1, add_1, sqrt_1, w_1], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div]
triton_per_fused_add_div_sqrt_sub_var_mean_9.run(buf30, primals_5, buf31, 1024, 256, grid=grid(1024), stream=stream0)
# Topologically Sorted Source Nodes: [residual], Original ATen: [aten.convolution]
buf32 = extern_kernels.convolution(buf25, buf31, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf32, (4, 1024, 15, 15), (230400, 1, 15360, 1024))
buf33 = empty_strided_cuda((4, 1024, 1, 1), (1024, 1, 4096, 4096), torch.float32)
buf34 = empty_strided_cuda((4, 1024, 1, 1), (1024, 1, 4096, 4096), torch.float32)
buf36 = empty_strided_cuda((4, 1024, 1, 1), (1024, 1, 4096, 4096), torch.float32)
# Topologically Sorted Source Nodes: [residual_1], Original ATen: [aten.native_group_norm]
triton_per_fused_native_group_norm_10.run(buf32, buf33, buf34, buf36, 4096, 225, grid=grid(4096), stream=stream0)
buf38 = empty_strided_cuda((256, 1, 1, 1), (1, 256, 256, 256), torch.float32)
buf40 = reinterpret_tensor(buf38, (256, 1, 1, 1), (1, 1, 1, 1), 0); del buf38 # reuse
buf41 = empty_strided_cuda((256, 256, 1, 1), (256, 1, 256, 256), torch.float32)
# Topologically Sorted Source Nodes: [var_mean_2, sub_2, add_2, sqrt_2, w_2], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div]
triton_per_fused_add_div_sqrt_sub_var_mean_11.run(buf40, primals_8, buf41, 256, 256, grid=grid(256), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf42 = extern_kernels.convolution(buf25, buf41, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf42, (4, 256, 15, 15), (57600, 1, 3840, 256))
buf43 = buf21; del buf21 # reuse
buf44 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf46 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_2], Original ATen: [aten.native_group_norm]
triton_red_fused_native_group_norm_12.run(buf42, buf43, buf44, buf46, 128, 1800, grid=grid(128), stream=stream0)
buf47 = empty_strided_cuda((4, 256, 15, 15), (57600, 1, 3840, 256), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_2, y], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_13.run(buf42, buf43, buf44, primals_9, primals_10, buf47, 230400, grid=grid(230400), stream=stream0)
del primals_10
buf49 = empty_strided_cuda((256, 1, 1, 1), (1, 256, 256, 256), torch.float32)
buf51 = reinterpret_tensor(buf49, (256, 1, 1, 1), (1, 1, 1, 1), 0); del buf49 # reuse
buf52 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32)
# Topologically Sorted Source Nodes: [var_mean_3, sub_3, add_3, sqrt_3, w_3], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div]
triton_red_fused_add_div_sqrt_sub_var_mean_14.run(buf51, buf2, buf52, 256, 2304, grid=grid(256), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution]
buf53 = extern_kernels.convolution(buf47, buf52, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf53, (4, 256, 15, 15), (57600, 1, 3840, 256))
buf54 = buf44; del buf44 # reuse
buf55 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf57 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_3], Original ATen: [aten.native_group_norm]
triton_red_fused_native_group_norm_12.run(buf53, buf54, buf55, buf57, 128, 1800, grid=grid(128), stream=stream0)
buf58 = empty_strided_cuda((4, 256, 15, 15), (57600, 1, 3840, 256), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_3, y_1], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_13.run(buf53, buf54, buf55, primals_12, primals_13, buf58, 230400, grid=grid(230400), stream=stream0)
del primals_13
buf60 = empty_strided_cuda((1024, 1, 1, 1), (1, 1024, 1024, 1024), torch.float32)
buf62 = reinterpret_tensor(buf60, (1024, 1, 1, 1), (1, 1, 1, 1), 0); del buf60 # reuse
buf63 = empty_strided_cuda((1024, 256, 1, 1), (256, 1, 256, 256), torch.float32)
# Topologically Sorted Source Nodes: [var_mean_4, sub_4, add_4, sqrt_4, w_4], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div]
triton_per_fused_add_div_sqrt_sub_var_mean_9.run(buf62, primals_14, buf63, 1024, 256, grid=grid(1024), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution]
buf64 = extern_kernels.convolution(buf58, buf63, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf64, (4, 1024, 15, 15), (230400, 1, 15360, 1024))
buf65 = buf55; del buf55 # reuse
buf66 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf68 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [y_2], Original ATen: [aten.native_group_norm]
triton_red_fused_native_group_norm_15.run(buf64, buf65, buf66, buf68, 128, 7200, grid=grid(128), stream=stream0)
buf69 = empty_strided_cuda((4, 1024, 15, 15), (230400, 1, 15360, 1024), torch.float32)
buf70 = buf69; del buf69 # reuse
# Topologically Sorted Source Nodes: [residual_1, y_2, add_5, y_3], Original ATen: [aten.native_group_norm, aten.add, aten.relu]
triton_poi_fused_add_native_group_norm_relu_16.run(buf70, buf32, buf33, buf34, primals_6, primals_7, buf64, buf65, buf66, primals_15, primals_16, 921600, grid=grid(921600), stream=stream0)
del primals_16
del primals_7
buf72 = empty_strided_cuda((256, 1, 1, 1), (1, 256, 256, 256), torch.float32)
buf74 = reinterpret_tensor(buf72, (256, 1, 1, 1), (1, 1, 1, 1), 0); del buf72 # reuse
buf75 = empty_strided_cuda((256, 1024, 1, 1), (1024, 1, 1024, 1024), torch.float32)
# Topologically Sorted Source Nodes: [var_mean_5, sub_5, add_6, sqrt_5, w_5], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div]
triton_per_fused_add_div_sqrt_sub_var_mean_17.run(buf74, primals_17, buf75, 256, 1024, grid=grid(256), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_5], Original ATen: [aten.convolution]
buf76 = extern_kernels.convolution(buf70, buf75, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf76, (4, 256, 15, 15), (57600, 1, 3840, 256))
buf77 = buf66; del buf66 # reuse
buf78 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf80 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_5], Original ATen: [aten.native_group_norm]
triton_red_fused_native_group_norm_12.run(buf76, buf77, buf78, buf80, 128, 1800, grid=grid(128), stream=stream0)
buf81 = empty_strided_cuda((4, 256, 15, 15), (57600, 1, 3840, 256), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_5, y_4], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_13.run(buf76, buf77, buf78, primals_18, primals_19, buf81, 230400, grid=grid(230400), stream=stream0)
del primals_19
buf83 = empty_strided_cuda((256, 1, 1, 1), (1, 256, 256, 256), torch.float32)
buf85 = reinterpret_tensor(buf83, (256, 1, 1, 1), (1, 1, 1, 1), 0); del buf83 # reuse
buf86 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32)
# Topologically Sorted Source Nodes: [var_mean_6, sub_6, add_7, sqrt_6, w_6], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div]
triton_red_fused_add_div_sqrt_sub_var_mean_14.run(buf85, buf3, buf86, 256, 2304, grid=grid(256), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_6], Original ATen: [aten.convolution]
buf87 = extern_kernels.convolution(buf81, buf86, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf87, (4, 256, 15, 15), (57600, 1, 3840, 256))
buf88 = buf78; del buf78 # reuse
buf89 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf91 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_6], Original ATen: [aten.native_group_norm]
triton_red_fused_native_group_norm_12.run(buf87, buf88, buf89, buf91, 128, 1800, grid=grid(128), stream=stream0)
buf92 = empty_strided_cuda((4, 256, 15, 15), (57600, 1, 3840, 256), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_6, y_5], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_13.run(buf87, buf88, buf89, primals_21, primals_22, buf92, 230400, grid=grid(230400), stream=stream0)
del primals_22
buf94 = empty_strided_cuda((1024, 1, 1, 1), (1, 1024, 1024, 1024), torch.float32)
buf96 = reinterpret_tensor(buf94, (1024, 1, 1, 1), (1, 1, 1, 1), 0); del buf94 # reuse
buf97 = empty_strided_cuda((1024, 256, 1, 1), (256, 1, 256, 256), torch.float32)
# Topologically Sorted Source Nodes: [var_mean_7, sub_7, add_8, sqrt_7, w_7], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div]
triton_per_fused_add_div_sqrt_sub_var_mean_9.run(buf96, primals_23, buf97, 1024, 256, grid=grid(1024), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_7], Original ATen: [aten.convolution]
buf98 = extern_kernels.convolution(buf92, buf97, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf98, (4, 1024, 15, 15), (230400, 1, 15360, 1024))
buf99 = buf89; del buf89 # reuse
buf100 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf102 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [y_6], Original ATen: [aten.native_group_norm]
triton_red_fused_native_group_norm_15.run(buf98, buf99, buf100, buf102, 128, 7200, grid=grid(128), stream=stream0)
buf103 = empty_strided_cuda((4, 1024, 15, 15), (230400, 1, 15360, 1024), torch.float32)
# Topologically Sorted Source Nodes: [y_6, add_9, y_7], Original ATen: [aten.native_group_norm, aten.add, aten.relu]
triton_poi_fused_add_native_group_norm_relu_18.run(buf70, buf98, buf99, buf100, primals_24, primals_25, buf103, 921600, grid=grid(921600), stream=stream0)
del primals_25
buf105 = empty_strided_cuda((256, 1, 1, 1), (1, 256, 256, 256), torch.float32)
buf107 = reinterpret_tensor(buf105, (256, 1, 1, 1), (1, 1, 1, 1), 0); del buf105 # reuse
buf108 = empty_strided_cuda((256, 1024, 1, 1), (1024, 1, 1024, 1024), torch.float32)
# Topologically Sorted Source Nodes: [var_mean_8, sub_8, add_10, sqrt_8, w_8], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div]
triton_per_fused_add_div_sqrt_sub_var_mean_17.run(buf107, primals_26, buf108, 256, 1024, grid=grid(256), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_8], Original ATen: [aten.convolution]
buf109 = extern_kernels.convolution(buf103, buf108, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf109, (4, 256, 15, 15), (57600, 1, 3840, 256))
buf110 = buf100; del buf100 # reuse
buf111 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf113 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_8], Original ATen: [aten.native_group_norm]
triton_red_fused_native_group_norm_12.run(buf109, buf110, buf111, buf113, 128, 1800, grid=grid(128), stream=stream0)
buf114 = empty_strided_cuda((4, 256, 15, 15), (57600, 1, 3840, 256), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_8, y_8], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_13.run(buf109, buf110, buf111, primals_27, primals_28, buf114, 230400, grid=grid(230400), stream=stream0)
del primals_28
buf116 = empty_strided_cuda((256, 1, 1, 1), (1, 256, 256, 256), torch.float32)
buf118 = reinterpret_tensor(buf116, (256, 1, 1, 1), (1, 1, 1, 1), 0); del buf116 # reuse
buf119 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32)
# Topologically Sorted Source Nodes: [var_mean_9, sub_9, add_11, sqrt_9, w_9], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div]
triton_red_fused_add_div_sqrt_sub_var_mean_14.run(buf118, buf4, buf119, 256, 2304, grid=grid(256), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_9], Original ATen: [aten.convolution]
buf120 = extern_kernels.convolution(buf114, buf119, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf120, (4, 256, 15, 15), (57600, 1, 3840, 256))
buf121 = buf111; del buf111 # reuse
buf122 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf124 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_9], Original ATen: [aten.native_group_norm]
triton_red_fused_native_group_norm_12.run(buf120, buf121, buf122, buf124, 128, 1800, grid=grid(128), stream=stream0)
buf125 = empty_strided_cuda((4, 256, 15, 15), (57600, 1, 3840, 256), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_9, y_9], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_13.run(buf120, buf121, buf122, primals_30, primals_31, buf125, 230400, grid=grid(230400), stream=stream0)
del primals_31
buf127 = empty_strided_cuda((1024, 1, 1, 1), (1, 1024, 1024, 1024), torch.float32)
buf129 = reinterpret_tensor(buf127, (1024, 1, 1, 1), (1, 1, 1, 1), 0); del buf127 # reuse
buf130 = empty_strided_cuda((1024, 256, 1, 1), (256, 1, 256, 256), torch.float32)
# Topologically Sorted Source Nodes: [var_mean_10, sub_10, add_12, sqrt_10, w_10], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div]
triton_per_fused_add_div_sqrt_sub_var_mean_9.run(buf129, primals_32, buf130, 1024, 256, grid=grid(1024), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_10], Original ATen: [aten.convolution]
buf131 = extern_kernels.convolution(buf125, buf130, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf131, (4, 1024, 15, 15), (230400, 1, 15360, 1024))
buf132 = buf122; del buf122 # reuse
buf133 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf135 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [y_10], Original ATen: [aten.native_group_norm]
triton_red_fused_native_group_norm_15.run(buf131, buf132, buf133, buf135, 128, 7200, grid=grid(128), stream=stream0)
buf136 = empty_strided_cuda((4, 1024, 15, 15), (230400, 1, 15360, 1024), torch.float32)
# Topologically Sorted Source Nodes: [y_10, add_13, y_11], Original ATen: [aten.native_group_norm, aten.add, aten.relu]
triton_poi_fused_add_native_group_norm_relu_18.run(buf103, buf131, buf132, buf133, primals_33, primals_34, buf136, 921600, grid=grid(921600), stream=stream0)
del primals_34
buf138 = empty_strided_cuda((256, 1, 1, 1), (1, 256, 256, 256), torch.float32)
buf140 = reinterpret_tensor(buf138, (256, 1, 1, 1), (1, 1, 1, 1), 0); del buf138 # reuse
buf141 = empty_strided_cuda((256, 1024, 1, 1), (1024, 1, 1024, 1024), torch.float32)
# Topologically Sorted Source Nodes: [var_mean_11, sub_11, add_14, sqrt_11, w_11], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div]
triton_per_fused_add_div_sqrt_sub_var_mean_17.run(buf140, primals_35, buf141, 256, 1024, grid=grid(256), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_11], Original ATen: [aten.convolution]
buf142 = extern_kernels.convolution(buf136, buf141, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf142, (4, 256, 15, 15), (57600, 1, 3840, 256))
buf143 = buf133; del buf133 # reuse
buf144 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf146 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_11], Original ATen: [aten.native_group_norm]
triton_red_fused_native_group_norm_12.run(buf142, buf143, buf144, buf146, 128, 1800, grid=grid(128), stream=stream0)
buf147 = empty_strided_cuda((4, 256, 15, 15), (57600, 1, 3840, 256), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_11, y_12], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_13.run(buf142, buf143, buf144, primals_36, primals_37, buf147, 230400, grid=grid(230400), stream=stream0)
del primals_37
buf149 = empty_strided_cuda((256, 1, 1, 1), (1, 256, 256, 256), torch.float32)
buf151 = reinterpret_tensor(buf149, (256, 1, 1, 1), (1, 1, 1, 1), 0); del buf149 # reuse
buf152 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32)
# Topologically Sorted Source Nodes: [var_mean_12, sub_12, add_15, sqrt_12, w_12], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div]
triton_red_fused_add_div_sqrt_sub_var_mean_14.run(buf151, buf5, buf152, 256, 2304, grid=grid(256), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_12], Original ATen: [aten.convolution]
buf153 = extern_kernels.convolution(buf147, buf152, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf153, (4, 256, 15, 15), (57600, 1, 3840, 256))
buf154 = buf144; del buf144 # reuse
buf155 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf157 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_12], Original ATen: [aten.native_group_norm]
triton_red_fused_native_group_norm_12.run(buf153, buf154, buf155, buf157, 128, 1800, grid=grid(128), stream=stream0)
buf158 = empty_strided_cuda((4, 256, 15, 15), (57600, 1, 3840, 256), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_12, y_13], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_13.run(buf153, buf154, buf155, primals_39, primals_40, buf158, 230400, grid=grid(230400), stream=stream0)
del primals_40
buf160 = empty_strided_cuda((1024, 1, 1, 1), (1, 1024, 1024, 1024), torch.float32)
buf162 = reinterpret_tensor(buf160, (1024, 1, 1, 1), (1, 1, 1, 1), 0); del buf160 # reuse
buf163 = empty_strided_cuda((1024, 256, 1, 1), (256, 1, 256, 256), torch.float32)
# Topologically Sorted Source Nodes: [var_mean_13, sub_13, add_16, sqrt_13, w_13], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div]
triton_per_fused_add_div_sqrt_sub_var_mean_9.run(buf162, primals_41, buf163, 1024, 256, grid=grid(1024), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_13], Original ATen: [aten.convolution]
buf164 = extern_kernels.convolution(buf158, buf163, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf164, (4, 1024, 15, 15), (230400, 1, 15360, 1024))
buf165 = buf155; del buf155 # reuse
buf166 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf168 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [y_14], Original ATen: [aten.native_group_norm]
triton_red_fused_native_group_norm_15.run(buf164, buf165, buf166, buf168, 128, 7200, grid=grid(128), stream=stream0)
buf169 = empty_strided_cuda((4, 1024, 15, 15), (230400, 1, 15360, 1024), torch.float32)
# Topologically Sorted Source Nodes: [y_14, add_17, y_15], Original ATen: [aten.native_group_norm, aten.add, aten.relu]
triton_poi_fused_add_native_group_norm_relu_18.run(buf136, buf164, buf165, buf166, primals_42, primals_43, buf169, 921600, grid=grid(921600), stream=stream0)
del primals_43
buf171 = empty_strided_cuda((2048, 1, 1, 1), (1, 2048, 2048, 2048), torch.float32)
buf173 = reinterpret_tensor(buf171, (2048, 1, 1, 1), (1, 1, 1, 1), 0); del buf171 # reuse
buf174 = empty_strided_cuda((2048, 1024, 1, 1), (1024, 1, 1024, 1024), torch.float32)
# Topologically Sorted Source Nodes: [var_mean_14, sub_14, add_18, sqrt_14, w_14], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div]
triton_per_fused_add_div_sqrt_sub_var_mean_19.run(buf173, primals_44, buf174, 2048, 1024, grid=grid(2048), stream=stream0)
# Topologically Sorted Source Nodes: [residual_2], Original ATen: [aten.convolution]
buf175 = extern_kernels.convolution(buf169, buf174, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf175, (4, 2048, 8, 8), (131072, 1, 16384, 2048))
buf176 = empty_strided_cuda((4, 2048, 1, 1), (2048, 1, 8192, 8192), torch.float32)
buf177 = empty_strided_cuda((4, 2048, 1, 1), (2048, 1, 8192, 8192), torch.float32)
buf179 = empty_strided_cuda((4, 2048, 1, 1), (2048, 1, 8192, 8192), torch.float32)
# Topologically Sorted Source Nodes: [residual_3], Original ATen: [aten.native_group_norm]
triton_per_fused_native_group_norm_20.run(buf175, buf176, buf177, buf179, 8192, 64, grid=grid(8192), stream=stream0)
buf181 = empty_strided_cuda((512, 1, 1, 1), (1, 512, 512, 512), torch.float32)
buf183 = reinterpret_tensor(buf181, (512, 1, 1, 1), (1, 1, 1, 1), 0); del buf181 # reuse
buf184 = empty_strided_cuda((512, 1024, 1, 1), (1024, 1, 1024, 1024), torch.float32)
# Topologically Sorted Source Nodes: [var_mean_15, sub_15, add_19, sqrt_15, w_15], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div]
triton_per_fused_add_div_sqrt_sub_var_mean_21.run(buf183, primals_47, buf184, 512, 1024, grid=grid(512), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_15], Original ATen: [aten.convolution]
buf185 = extern_kernels.convolution(buf169, buf184, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf185, (4, 512, 15, 15), (115200, 1, 7680, 512))
buf186 = buf166; del buf166 # reuse
buf187 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf189 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_15], Original ATen: [aten.native_group_norm]
triton_red_fused_native_group_norm_22.run(buf185, buf186, buf187, buf189, 128, 3600, grid=grid(128), stream=stream0)
buf190 = empty_strided_cuda((4, 512, 15, 15), (115200, 1, 7680, 512), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_15, y_16], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_23.run(buf185, buf186, buf187, primals_48, primals_49, buf190, 460800, grid=grid(460800), stream=stream0)
del primals_49
buf192 = empty_strided_cuda((512, 1, 1, 1), (1, 512, 512, 512), torch.float32)
buf194 = reinterpret_tensor(buf192, (512, 1, 1, 1), (1, 1, 1, 1), 0); del buf192 # reuse
buf195 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32)
# Topologically Sorted Source Nodes: [var_mean_16, sub_16, add_20, sqrt_16, w_16], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div]
triton_red_fused_add_div_sqrt_sub_var_mean_24.run(buf194, buf6, buf195, 512, 4608, grid=grid(512), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_16], Original ATen: [aten.convolution]
buf196 = extern_kernels.convolution(buf190, buf195, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf196, (4, 512, 8, 8), (32768, 1, 4096, 512))
buf197 = buf187; del buf187 # reuse
buf198 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf200 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_16], Original ATen: [aten.native_group_norm]
triton_per_fused_native_group_norm_25.run(buf196, buf197, buf198, buf200, 128, 1024, grid=grid(128), stream=stream0)
buf201 = empty_strided_cuda((4, 512, 8, 8), (32768, 1, 4096, 512), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_16, y_17], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_26.run(buf196, buf197, buf198, primals_51, primals_52, buf201, 131072, grid=grid(131072), stream=stream0)
del primals_52
buf203 = empty_strided_cuda((2048, 1, 1, 1), (1, 2048, 2048, 2048), torch.float32)
buf205 = reinterpret_tensor(buf203, (2048, 1, 1, 1), (1, 1, 1, 1), 0); del buf203 # reuse
buf206 = empty_strided_cuda((2048, 512, 1, 1), (512, 1, 512, 512), torch.float32)
# Topologically Sorted Source Nodes: [var_mean_17, sub_17, add_21, sqrt_17, w_17], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div]
triton_per_fused_add_div_sqrt_sub_var_mean_27.run(buf205, primals_53, buf206, 2048, 512, grid=grid(2048), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_17], Original ATen: [aten.convolution]
buf207 = extern_kernels.convolution(buf201, buf206, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf207, (4, 2048, 8, 8), (131072, 1, 16384, 2048))
buf208 = buf198; del buf198 # reuse
buf209 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf211 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [y_18], Original ATen: [aten.native_group_norm]
triton_red_fused_native_group_norm_28.run(buf207, buf208, buf209, buf211, 128, 4096, grid=grid(128), stream=stream0)
buf212 = empty_strided_cuda((4, 2048, 8, 8), (131072, 1, 16384, 2048), torch.float32)
buf213 = buf212; del buf212 # reuse
# Topologically Sorted Source Nodes: [residual_3, y_18, add_22, y_19], Original ATen: [aten.native_group_norm, aten.add, aten.relu]
triton_poi_fused_add_native_group_norm_relu_29.run(buf213, buf175, buf176, buf177, primals_45, primals_46, buf207, buf208, buf209, primals_54, primals_55, 524288, grid=grid(524288), stream=stream0)
del buf177
del primals_46
del primals_55
buf215 = empty_strided_cuda((512, 1, 1, 1), (1, 512, 512, 512), torch.float32)
buf217 = reinterpret_tensor(buf215, (512, 1, 1, 1), (1, 1, 1, 1), 0); del buf215 # reuse
buf218 = empty_strided_cuda((512, 2048, 1, 1), (2048, 1, 2048, 2048), torch.float32)
# Topologically Sorted Source Nodes: [var_mean_18, sub_18, add_23, sqrt_18, w_18], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div]
triton_red_fused_add_div_sqrt_sub_var_mean_30.run(buf217, primals_56, buf218, 512, 2048, grid=grid(512), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_18], Original ATen: [aten.convolution]
buf219 = extern_kernels.convolution(buf213, buf218, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf219, (4, 512, 8, 8), (32768, 1, 4096, 512))
buf220 = buf209; del buf209 # reuse
buf221 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf223 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_18], Original ATen: [aten.native_group_norm]
triton_per_fused_native_group_norm_25.run(buf219, buf220, buf221, buf223, 128, 1024, grid=grid(128), stream=stream0)
buf224 = empty_strided_cuda((4, 512, 8, 8), (32768, 1, 4096, 512), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_18, y_20], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_26.run(buf219, buf220, buf221, primals_57, primals_58, buf224, 131072, grid=grid(131072), stream=stream0)
del primals_58
buf226 = empty_strided_cuda((512, 1, 1, 1), (1, 512, 512, 512), torch.float32)
buf228 = reinterpret_tensor(buf226, (512, 1, 1, 1), (1, 1, 1, 1), 0); del buf226 # reuse
buf229 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32)
# Topologically Sorted Source Nodes: [var_mean_19, sub_19, add_24, sqrt_19, w_19], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div]
triton_red_fused_add_div_sqrt_sub_var_mean_24.run(buf228, buf7, buf229, 512, 4608, grid=grid(512), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_19], Original ATen: [aten.convolution]
buf230 = extern_kernels.convolution(buf224, buf229, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf230, (4, 512, 8, 8), (32768, 1, 4096, 512))
buf231 = buf221; del buf221 # reuse
buf232 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf234 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_19], Original ATen: [aten.native_group_norm]
triton_per_fused_native_group_norm_25.run(buf230, buf231, buf232, buf234, 128, 1024, grid=grid(128), stream=stream0)
buf235 = empty_strided_cuda((4, 512, 8, 8), (32768, 1, 4096, 512), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_19, y_21], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_26.run(buf230, buf231, buf232, primals_60, primals_61, buf235, 131072, grid=grid(131072), stream=stream0)
del primals_61
buf237 = empty_strided_cuda((2048, 1, 1, 1), (1, 2048, 2048, 2048), torch.float32)
buf239 = reinterpret_tensor(buf237, (2048, 1, 1, 1), (1, 1, 1, 1), 0); del buf237 # reuse
buf240 = empty_strided_cuda((2048, 512, 1, 1), (512, 1, 512, 512), torch.float32)
# Topologically Sorted Source Nodes: [var_mean_20, sub_20, add_25, sqrt_20, w_20], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div]
triton_per_fused_add_div_sqrt_sub_var_mean_27.run(buf239, primals_62, buf240, 2048, 512, grid=grid(2048), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_20], Original ATen: [aten.convolution]
buf241 = extern_kernels.convolution(buf235, buf240, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf241, (4, 2048, 8, 8), (131072, 1, 16384, 2048))
buf242 = buf232; del buf232 # reuse
buf243 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf245 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [y_22], Original ATen: [aten.native_group_norm]
triton_red_fused_native_group_norm_28.run(buf241, buf242, buf243, buf245, 128, 4096, grid=grid(128), stream=stream0)
buf246 = empty_strided_cuda((4, 2048, 8, 8), (131072, 1, 16384, 2048), torch.float32)
# Topologically Sorted Source Nodes: [y_22, add_26, y_23], Original ATen: [aten.native_group_norm, aten.add, aten.relu]
triton_poi_fused_add_native_group_norm_relu_31.run(buf213, buf241, buf242, buf243, primals_63, primals_64, buf246, 524288, grid=grid(524288), stream=stream0)
del primals_64
buf248 = empty_strided_cuda((512, 1, 1, 1), (1, 512, 512, 512), torch.float32)
buf250 = reinterpret_tensor(buf248, (512, 1, 1, 1), (1, 1, 1, 1), 0); del buf248 # reuse
buf251 = empty_strided_cuda((512, 2048, 1, 1), (2048, 1, 2048, 2048), torch.float32)
# Topologically Sorted Source Nodes: [var_mean_21, sub_21, add_27, sqrt_21, w_21], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div]
triton_red_fused_add_div_sqrt_sub_var_mean_30.run(buf250, primals_65, buf251, 512, 2048, grid=grid(512), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_21], Original ATen: [aten.convolution]
buf252 = extern_kernels.convolution(buf246, buf251, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf252, (4, 512, 8, 8), (32768, 1, 4096, 512))
buf253 = buf243; del buf243 # reuse
buf254 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf256 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_21], Original ATen: [aten.native_group_norm]
triton_per_fused_native_group_norm_25.run(buf252, buf253, buf254, buf256, 128, 1024, grid=grid(128), stream=stream0)
buf257 = empty_strided_cuda((4, 512, 8, 8), (32768, 1, 4096, 512), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_21, y_24], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_26.run(buf252, buf253, buf254, primals_66, primals_67, buf257, 131072, grid=grid(131072), stream=stream0)
del primals_67
buf259 = empty_strided_cuda((512, 1, 1, 1), (1, 512, 512, 512), torch.float32)
buf261 = reinterpret_tensor(buf259, (512, 1, 1, 1), (1, 1, 1, 1), 0); del buf259 # reuse
buf262 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32)
# Topologically Sorted Source Nodes: [var_mean_22, sub_22, add_28, sqrt_22, w_22], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div]
triton_red_fused_add_div_sqrt_sub_var_mean_24.run(buf261, buf8, buf262, 512, 4608, grid=grid(512), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_22], Original ATen: [aten.convolution]
buf263 = extern_kernels.convolution(buf257, buf262, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf263, (4, 512, 8, 8), (32768, 1, 4096, 512))
buf264 = buf254; del buf254 # reuse
buf265 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf267 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_22], Original ATen: [aten.native_group_norm]
triton_per_fused_native_group_norm_25.run(buf263, buf264, buf265, buf267, 128, 1024, grid=grid(128), stream=stream0)
buf268 = empty_strided_cuda((4, 512, 8, 8), (32768, 1, 4096, 512), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_22, y_25], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_26.run(buf263, buf264, buf265, primals_69, primals_70, buf268, 131072, grid=grid(131072), stream=stream0)
del primals_70
buf270 = empty_strided_cuda((2048, 1, 1, 1), (1, 2048, 2048, 2048), torch.float32)
buf272 = reinterpret_tensor(buf270, (2048, 1, 1, 1), (1, 1, 1, 1), 0); del buf270 # reuse
buf273 = empty_strided_cuda((2048, 512, 1, 1), (512, 1, 512, 512), torch.float32)
# Topologically Sorted Source Nodes: [var_mean_23, sub_23, add_29, sqrt_23, w_23], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div]
triton_per_fused_add_div_sqrt_sub_var_mean_27.run(buf272, primals_71, buf273, 2048, 512, grid=grid(2048), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_23], Original ATen: [aten.convolution]
buf274 = extern_kernels.convolution(buf268, buf273, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf274, (4, 2048, 8, 8), (131072, 1, 16384, 2048))
buf275 = buf265; del buf265 # reuse
buf276 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf278 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [y_26], Original ATen: [aten.native_group_norm]
triton_red_fused_native_group_norm_28.run(buf274, buf275, buf276, buf278, 128, 4096, grid=grid(128), stream=stream0)
buf279 = empty_strided_cuda((4, 2048, 8, 8), (131072, 1, 16384, 2048), torch.float32)
# Topologically Sorted Source Nodes: [y_26, add_30, y_27], Original ATen: [aten.native_group_norm, aten.add, aten.relu]
triton_poi_fused_add_native_group_norm_relu_31.run(buf246, buf274, buf275, buf276, primals_72, primals_73, buf279, 524288, grid=grid(524288), stream=stream0)
del primals_73
buf281 = empty_strided_cuda((512, 1, 1, 1), (1, 512, 512, 512), torch.float32)
buf283 = reinterpret_tensor(buf281, (512, 1, 1, 1), (1, 1, 1, 1), 0); del buf281 # reuse
buf284 = empty_strided_cuda((512, 2048, 1, 1), (2048, 1, 2048, 2048), torch.float32)
# Topologically Sorted Source Nodes: [var_mean_24, sub_24, add_31, sqrt_24, w_24], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div]
triton_red_fused_add_div_sqrt_sub_var_mean_30.run(buf283, primals_74, buf284, 512, 2048, grid=grid(512), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_24], Original ATen: [aten.convolution]
buf285 = extern_kernels.convolution(buf279, buf284, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf285, (4, 512, 8, 8), (32768, 1, 4096, 512))
buf286 = buf276; del buf276 # reuse
buf287 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf289 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_24], Original ATen: [aten.native_group_norm]
triton_per_fused_native_group_norm_25.run(buf285, buf286, buf287, buf289, 128, 1024, grid=grid(128), stream=stream0)
buf290 = empty_strided_cuda((4, 512, 8, 8), (32768, 1, 4096, 512), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_24, y_28], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_26.run(buf285, buf286, buf287, primals_75, primals_76, buf290, 131072, grid=grid(131072), stream=stream0)
del primals_76
buf292 = empty_strided_cuda((512, 1, 1, 1), (1, 512, 512, 512), torch.float32)
buf294 = reinterpret_tensor(buf292, (512, 1, 1, 1), (1, 1, 1, 1), 0); del buf292 # reuse
buf295 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32)
# Topologically Sorted Source Nodes: [var_mean_25, sub_25, add_32, sqrt_25, w_25], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div]
triton_red_fused_add_div_sqrt_sub_var_mean_24.run(buf294, buf9, buf295, 512, 4608, grid=grid(512), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_25], Original ATen: [aten.convolution]
buf296 = extern_kernels.convolution(buf290, buf295, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf296, (4, 512, 8, 8), (32768, 1, 4096, 512))
buf297 = buf287; del buf287 # reuse
buf298 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf300 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_25], Original ATen: [aten.native_group_norm]
triton_per_fused_native_group_norm_25.run(buf296, buf297, buf298, buf300, 128, 1024, grid=grid(128), stream=stream0)
buf301 = empty_strided_cuda((4, 512, 8, 8), (32768, 1, 4096, 512), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_25, y_29], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_26.run(buf296, buf297, buf298, primals_78, primals_79, buf301, 131072, grid=grid(131072), stream=stream0)
del primals_79
buf303 = empty_strided_cuda((2048, 1, 1, 1), (1, 2048, 2048, 2048), torch.float32)
buf305 = reinterpret_tensor(buf303, (2048, 1, 1, 1), (1, 1, 1, 1), 0); del buf303 # reuse
buf306 = empty_strided_cuda((2048, 512, 1, 1), (512, 1, 512, 512), torch.float32)
# Topologically Sorted Source Nodes: [var_mean_26, sub_26, add_33, sqrt_26, w_26], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div]
triton_per_fused_add_div_sqrt_sub_var_mean_27.run(buf305, primals_80, buf306, 2048, 512, grid=grid(2048), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_26], Original ATen: [aten.convolution]
buf307 = extern_kernels.convolution(buf301, buf306, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf307, (4, 2048, 8, 8), (131072, 1, 16384, 2048))
buf308 = buf298; del buf298 # reuse
buf309 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf311 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [y_30], Original ATen: [aten.native_group_norm]
triton_red_fused_native_group_norm_28.run(buf307, buf308, buf309, buf311, 128, 4096, grid=grid(128), stream=stream0)
buf312 = empty_strided_cuda((4, 2048, 8, 8), (131072, 1, 16384, 2048), torch.float32)
# Topologically Sorted Source Nodes: [y_30, add_34, y_31], Original ATen: [aten.native_group_norm, aten.add, aten.relu]
triton_poi_fused_add_native_group_norm_relu_31.run(buf279, buf307, buf308, buf309, primals_81, primals_82, buf312, 524288, grid=grid(524288), stream=stream0)
del primals_82
buf314 = reinterpret_tensor(buf34, (4096, 1, 1, 1), (1, 4096, 4096, 4096), 0); del buf34 # reuse
buf316 = reinterpret_tensor(buf314, (4096, 1, 1, 1), (1, 1, 1, 1), 0); del buf314 # reuse
buf317 = empty_strided_cuda((4096, 2048, 1, 1), (2048, 1, 2048, 2048), torch.float32)
# Topologically Sorted Source Nodes: [var_mean_27, sub_27, add_35, sqrt_27, w_27], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div]
triton_red_fused_add_div_sqrt_sub_var_mean_32.run(buf316, primals_83, buf317, 4096, 2048, grid=grid(4096), stream=stream0)
# Topologically Sorted Source Nodes: [residual_4], Original ATen: [aten.convolution]
buf318 = extern_kernels.convolution(buf312, buf317, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf318, (4, 4096, 4, 4), (65536, 1, 16384, 4096))
buf319 = empty_strided_cuda((4, 4096, 1, 1), (4096, 1, 16384, 16384), torch.float32)
buf320 = empty_strided_cuda((4, 4096, 1, 1), (4096, 1, 16384, 16384), torch.float32)
buf322 = empty_strided_cuda((4, 4096, 1, 1), (4096, 1, 16384, 16384), torch.float32)
# Topologically Sorted Source Nodes: [residual_5], Original ATen: [aten.native_group_norm]
triton_per_fused_native_group_norm_33.run(buf318, buf319, buf320, buf322, 16384, 16, grid=grid(16384), stream=stream0)
buf324 = empty_strided_cuda((1024, 1, 1, 1), (1, 1024, 1024, 1024), torch.float32)
buf326 = reinterpret_tensor(buf324, (1024, 1, 1, 1), (1, 1, 1, 1), 0); del buf324 # reuse
buf327 = empty_strided_cuda((1024, 2048, 1, 1), (2048, 1, 2048, 2048), torch.float32)
# Topologically Sorted Source Nodes: [var_mean_28, sub_28, add_36, sqrt_28, w_28], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div]
triton_red_fused_add_div_sqrt_sub_var_mean_34.run(buf326, primals_86, buf327, 1024, 2048, grid=grid(1024), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_28], Original ATen: [aten.convolution]
buf328 = extern_kernels.convolution(buf312, buf327, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf328, (4, 1024, 8, 8), (65536, 1, 8192, 1024))
buf329 = buf309; del buf309 # reuse
buf330 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf332 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_28], Original ATen: [aten.native_group_norm]
triton_red_fused_native_group_norm_35.run(buf328, buf329, buf330, buf332, 128, 2048, grid=grid(128), stream=stream0)
buf333 = empty_strided_cuda((4, 1024, 8, 8), (65536, 1, 8192, 1024), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_28, y_32], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_36.run(buf328, buf329, buf330, primals_87, primals_88, buf333, 262144, grid=grid(262144), stream=stream0)
del primals_88
buf335 = empty_strided_cuda((1024, 1, 1, 1), (1, 1024, 1024, 1024), torch.float32)
buf337 = reinterpret_tensor(buf335, (1024, 1, 1, 1), (1, 1, 1, 1), 0); del buf335 # reuse
buf338 = empty_strided_cuda((1024, 1024, 3, 3), (9216, 1, 3072, 1024), torch.float32)
# Topologically Sorted Source Nodes: [var_mean_29, sub_29, add_37, sqrt_29, w_29], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div]
triton_red_fused_add_div_sqrt_sub_var_mean_37.run(buf337, buf10, buf338, 1024, 9216, grid=grid(1024), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_29], Original ATen: [aten.convolution]
buf339 = extern_kernels.convolution(buf333, buf338, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf339, (4, 1024, 4, 4), (16384, 1, 4096, 1024))
buf340 = buf330; del buf330 # reuse
buf341 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf343 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_29], Original ATen: [aten.native_group_norm]
triton_per_fused_native_group_norm_38.run(buf339, buf340, buf341, buf343, 128, 512, grid=grid(128), stream=stream0)
buf344 = empty_strided_cuda((4, 1024, 4, 4), (16384, 1, 4096, 1024), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_29, y_33], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_39.run(buf339, buf340, buf341, primals_90, primals_91, buf344, 65536, grid=grid(65536), stream=stream0)
del primals_91
buf346 = empty_strided_cuda((4096, 1, 1, 1), (1, 4096, 4096, 4096), torch.float32)
buf348 = reinterpret_tensor(buf346, (4096, 1, 1, 1), (1, 1, 1, 1), 0); del buf346 # reuse
buf349 = empty_strided_cuda((4096, 1024, 1, 1), (1024, 1, 1024, 1024), torch.float32)
# Topologically Sorted Source Nodes: [var_mean_30, sub_30, add_38, sqrt_30, w_30], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div]
triton_per_fused_add_div_sqrt_sub_var_mean_40.run(buf348, primals_92, buf349, 4096, 1024, grid=grid(4096), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_30], Original ATen: [aten.convolution]
buf350 = extern_kernels.convolution(buf344, buf349, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf350, (4, 4096, 4, 4), (65536, 1, 16384, 4096))
buf351 = buf341; del buf341 # reuse
buf352 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf354 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [y_34], Original ATen: [aten.native_group_norm]
triton_red_fused_native_group_norm_41.run(buf350, buf351, buf352, buf354, 128, 2048, grid=grid(128), stream=stream0)
buf355 = empty_strided_cuda((4, 4096, 4, 4), (65536, 1, 16384, 4096), torch.float32)
buf356 = buf355; del buf355 # reuse
# Topologically Sorted Source Nodes: [residual_5, y_34, add_39, y_35], Original ATen: [aten.native_group_norm, aten.add, aten.relu]
triton_poi_fused_add_native_group_norm_relu_42.run(buf356, buf318, buf319, buf320, primals_84, primals_85, buf350, buf351, buf352, primals_93, primals_94, 262144, grid=grid(262144), stream=stream0)
del buf320
del primals_85
del primals_94
buf358 = empty_strided_cuda((1024, 1, 1, 1), (1, 1024, 1024, 1024), torch.float32)
buf360 = reinterpret_tensor(buf358, (1024, 1, 1, 1), (1, 1, 1, 1), 0); del buf358 # reuse
buf361 = empty_strided_cuda((1024, 4096, 1, 1), (4096, 1, 4096, 4096), torch.float32)
# Topologically Sorted Source Nodes: [var_mean_31, sub_31, add_40, sqrt_31, w_31], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div]
triton_red_fused_add_div_sqrt_sub_var_mean_43.run(buf360, primals_95, buf361, 1024, 4096, grid=grid(1024), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_31], Original ATen: [aten.convolution]
buf362 = extern_kernels.convolution(buf356, buf361, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf362, (4, 1024, 4, 4), (16384, 1, 4096, 1024))
buf363 = buf352; del buf352 # reuse
buf364 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf366 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_31], Original ATen: [aten.native_group_norm]
triton_per_fused_native_group_norm_38.run(buf362, buf363, buf364, buf366, 128, 512, grid=grid(128), stream=stream0)
buf367 = empty_strided_cuda((4, 1024, 4, 4), (16384, 1, 4096, 1024), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_31, y_36], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_39.run(buf362, buf363, buf364, primals_96, primals_97, buf367, 65536, grid=grid(65536), stream=stream0)
del primals_97
buf369 = empty_strided_cuda((1024, 1, 1, 1), (1, 1024, 1024, 1024), torch.float32)
buf371 = reinterpret_tensor(buf369, (1024, 1, 1, 1), (1, 1, 1, 1), 0); del buf369 # reuse
buf372 = empty_strided_cuda((1024, 1024, 3, 3), (9216, 1, 3072, 1024), torch.float32)
# Topologically Sorted Source Nodes: [var_mean_32, sub_32, add_41, sqrt_32, w_32], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div]
triton_red_fused_add_div_sqrt_sub_var_mean_37.run(buf371, buf11, buf372, 1024, 9216, grid=grid(1024), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_32], Original ATen: [aten.convolution]
buf373 = extern_kernels.convolution(buf367, buf372, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf373, (4, 1024, 4, 4), (16384, 1, 4096, 1024))
buf374 = buf364; del buf364 # reuse
buf375 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf377 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_32], Original ATen: [aten.native_group_norm]
triton_per_fused_native_group_norm_38.run(buf373, buf374, buf375, buf377, 128, 512, grid=grid(128), stream=stream0)
buf378 = empty_strided_cuda((4, 1024, 4, 4), (16384, 1, 4096, 1024), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_32, y_37], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_39.run(buf373, buf374, buf375, primals_99, primals_100, buf378, 65536, grid=grid(65536), stream=stream0)
del primals_100
buf380 = empty_strided_cuda((4096, 1, 1, 1), (1, 4096, 4096, 4096), torch.float32)
buf382 = reinterpret_tensor(buf380, (4096, 1, 1, 1), (1, 1, 1, 1), 0); del buf380 # reuse
buf383 = empty_strided_cuda((4096, 1024, 1, 1), (1024, 1, 1024, 1024), torch.float32)
# Topologically Sorted Source Nodes: [var_mean_33, sub_33, add_42, sqrt_33, w_33], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div]
triton_per_fused_add_div_sqrt_sub_var_mean_40.run(buf382, primals_101, buf383, 4096, 1024, grid=grid(4096), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_33], Original ATen: [aten.convolution]
buf384 = extern_kernels.convolution(buf378, buf383, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf384, (4, 4096, 4, 4), (65536, 1, 16384, 4096))
buf385 = buf375; del buf375 # reuse
buf386 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf388 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [y_38], Original ATen: [aten.native_group_norm]
triton_red_fused_native_group_norm_41.run(buf384, buf385, buf386, buf388, 128, 2048, grid=grid(128), stream=stream0)
buf389 = empty_strided_cuda((4, 4096, 4, 4), (65536, 1, 16384, 4096), torch.float32)
# Topologically Sorted Source Nodes: [y_38, add_43, y_39], Original ATen: [aten.native_group_norm, aten.add, aten.relu]
triton_poi_fused_add_native_group_norm_relu_44.run(buf356, buf384, buf385, buf386, primals_102, primals_103, buf389, 262144, grid=grid(262144), stream=stream0)
del primals_103
buf391 = empty_strided_cuda((1024, 1, 1, 1), (1, 1024, 1024, 1024), torch.float32)
buf393 = reinterpret_tensor(buf391, (1024, 1, 1, 1), (1, 1, 1, 1), 0); del buf391 # reuse
buf394 = empty_strided_cuda((1024, 4096, 1, 1), (4096, 1, 4096, 4096), torch.float32)
# Topologically Sorted Source Nodes: [var_mean_34, sub_34, add_44, sqrt_34, w_34], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div]
triton_red_fused_add_div_sqrt_sub_var_mean_43.run(buf393, primals_104, buf394, 1024, 4096, grid=grid(1024), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_34], Original ATen: [aten.convolution]
buf395 = extern_kernels.convolution(buf389, buf394, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf395, (4, 1024, 4, 4), (16384, 1, 4096, 1024))
buf396 = buf386; del buf386 # reuse
buf397 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf399 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_34], Original ATen: [aten.native_group_norm]
triton_per_fused_native_group_norm_38.run(buf395, buf396, buf397, buf399, 128, 512, grid=grid(128), stream=stream0)
buf400 = empty_strided_cuda((4, 1024, 4, 4), (16384, 1, 4096, 1024), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_34, y_40], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_39.run(buf395, buf396, buf397, primals_105, primals_106, buf400, 65536, grid=grid(65536), stream=stream0)
del primals_106
buf402 = empty_strided_cuda((1024, 1, 1, 1), (1, 1024, 1024, 1024), torch.float32)
buf404 = reinterpret_tensor(buf402, (1024, 1, 1, 1), (1, 1, 1, 1), 0); del buf402 # reuse
buf405 = empty_strided_cuda((1024, 1024, 3, 3), (9216, 1, 3072, 1024), torch.float32)
# Topologically Sorted Source Nodes: [var_mean_35, sub_35, add_45, sqrt_35, w_35], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div]
triton_red_fused_add_div_sqrt_sub_var_mean_37.run(buf404, buf12, buf405, 1024, 9216, grid=grid(1024), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_35], Original ATen: [aten.convolution]
buf406 = extern_kernels.convolution(buf400, buf405, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf406, (4, 1024, 4, 4), (16384, 1, 4096, 1024))
buf407 = buf397; del buf397 # reuse
buf408 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf410 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_35], Original ATen: [aten.native_group_norm]
triton_per_fused_native_group_norm_38.run(buf406, buf407, buf408, buf410, 128, 512, grid=grid(128), stream=stream0)
buf411 = empty_strided_cuda((4, 1024, 4, 4), (16384, 1, 4096, 1024), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_35, y_41], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_39.run(buf406, buf407, buf408, primals_108, primals_109, buf411, 65536, grid=grid(65536), stream=stream0)
del primals_109
buf413 = empty_strided_cuda((4096, 1, 1, 1), (1, 4096, 4096, 4096), torch.float32)
buf415 = reinterpret_tensor(buf413, (4096, 1, 1, 1), (1, 1, 1, 1), 0); del buf413 # reuse
buf416 = empty_strided_cuda((4096, 1024, 1, 1), (1024, 1, 1024, 1024), torch.float32)
# Topologically Sorted Source Nodes: [var_mean_36, sub_36, add_46, sqrt_36, w_36], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div]
triton_per_fused_add_div_sqrt_sub_var_mean_40.run(buf415, primals_110, buf416, 4096, 1024, grid=grid(4096), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_36], Original ATen: [aten.convolution]
buf417 = extern_kernels.convolution(buf411, buf416, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf417, (4, 4096, 4, 4), (65536, 1, 16384, 4096))
buf418 = buf408; del buf408 # reuse
buf419 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf421 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [y_42], Original ATen: [aten.native_group_norm]
triton_red_fused_native_group_norm_41.run(buf417, buf418, buf419, buf421, 128, 2048, grid=grid(128), stream=stream0)
buf422 = empty_strided_cuda((4, 4096, 4, 4), (65536, 1, 16384, 4096), torch.float32)
# Topologically Sorted Source Nodes: [y_42, add_47, y_43], Original ATen: [aten.native_group_norm, aten.add, aten.relu]
triton_poi_fused_add_native_group_norm_relu_44.run(buf389, buf417, buf418, buf419, primals_111, primals_112, buf422, 262144, grid=grid(262144), stream=stream0)
del primals_112
buf424 = empty_strided_cuda((1024, 1, 1, 1), (1, 1024, 1024, 1024), torch.float32)
buf426 = reinterpret_tensor(buf424, (1024, 1, 1, 1), (1, 1, 1, 1), 0); del buf424 # reuse
buf427 = empty_strided_cuda((1024, 4096, 1, 1), (4096, 1, 4096, 4096), torch.float32)
# Topologically Sorted Source Nodes: [var_mean_37, sub_37, add_48, sqrt_37, w_37], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div]
triton_red_fused_add_div_sqrt_sub_var_mean_43.run(buf426, primals_113, buf427, 1024, 4096, grid=grid(1024), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_37], Original ATen: [aten.convolution]
buf428 = extern_kernels.convolution(buf422, buf427, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf428, (4, 1024, 4, 4), (16384, 1, 4096, 1024))
buf429 = buf419; del buf419 # reuse
buf430 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf432 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_37], Original ATen: [aten.native_group_norm]
triton_per_fused_native_group_norm_38.run(buf428, buf429, buf430, buf432, 128, 512, grid=grid(128), stream=stream0)
buf433 = empty_strided_cuda((4, 1024, 4, 4), (16384, 1, 4096, 1024), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_37, y_44], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_39.run(buf428, buf429, buf430, primals_114, primals_115, buf433, 65536, grid=grid(65536), stream=stream0)
del primals_115
buf435 = empty_strided_cuda((1024, 1, 1, 1), (1, 1024, 1024, 1024), torch.float32)
buf437 = reinterpret_tensor(buf435, (1024, 1, 1, 1), (1, 1, 1, 1), 0); del buf435 # reuse
buf438 = empty_strided_cuda((1024, 1024, 3, 3), (9216, 1, 3072, 1024), torch.float32)
# Topologically Sorted Source Nodes: [var_mean_38, sub_38, add_49, sqrt_38, w_38], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div]
triton_red_fused_add_div_sqrt_sub_var_mean_37.run(buf437, buf13, buf438, 1024, 9216, grid=grid(1024), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_38], Original ATen: [aten.convolution]
buf439 = extern_kernels.convolution(buf433, buf438, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf439, (4, 1024, 4, 4), (16384, 1, 4096, 1024))
buf440 = buf430; del buf430 # reuse
buf441 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf443 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_38], Original ATen: [aten.native_group_norm]
triton_per_fused_native_group_norm_38.run(buf439, buf440, buf441, buf443, 128, 512, grid=grid(128), stream=stream0)
buf444 = empty_strided_cuda((4, 1024, 4, 4), (16384, 1, 4096, 1024), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_38, y_45], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_39.run(buf439, buf440, buf441, primals_117, primals_118, buf444, 65536, grid=grid(65536), stream=stream0)
del primals_118
buf446 = empty_strided_cuda((4096, 1, 1, 1), (1, 4096, 4096, 4096), torch.float32)
buf448 = reinterpret_tensor(buf446, (4096, 1, 1, 1), (1, 1, 1, 1), 0); del buf446 # reuse
buf449 = empty_strided_cuda((4096, 1024, 1, 1), (1024, 1, 1024, 1024), torch.float32)
# Topologically Sorted Source Nodes: [var_mean_39, sub_39, add_50, sqrt_39, w_39], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div]
triton_per_fused_add_div_sqrt_sub_var_mean_40.run(buf448, primals_119, buf449, 4096, 1024, grid=grid(4096), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_39], Original ATen: [aten.convolution]
buf450 = extern_kernels.convolution(buf444, buf449, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf450, (4, 4096, 4, 4), (65536, 1, 16384, 4096))
buf451 = buf441; del buf441 # reuse
buf452 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf454 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [y_46], Original ATen: [aten.native_group_norm]
triton_red_fused_native_group_norm_41.run(buf450, buf451, buf452, buf454, 128, 2048, grid=grid(128), stream=stream0)
buf455 = empty_strided_cuda((4, 4096, 4, 4), (65536, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [y_46, add_51, y_47], Original ATen: [aten.native_group_norm, aten.add, aten.relu]
triton_poi_fused_add_native_group_norm_relu_45.run(buf422, buf450, buf451, buf452, primals_120, primals_121, buf455, 64, 4096, grid=grid(64, 4096), stream=stream0)
del buf452
del primals_121
buf456 = empty_strided_cuda((4, 4096, 4, 4), (65536, 1, 16384, 4096), torch.bool)
# Topologically Sorted Source Nodes: [], Original ATen: [aten.threshold_backward]
triton_poi_fused_threshold_backward_46.run(buf455, buf456, 16384, 16, grid=grid(16384, 16), stream=stream0)
return (buf455, buf0, buf1, primals_3, primals_5, primals_6, primals_8, primals_9, buf2, primals_12, primals_14, primals_15, primals_17, primals_18, buf3, primals_21, primals_23, primals_24, primals_26, primals_27, buf4, primals_30, primals_32, primals_33, primals_35, primals_36, buf5, primals_39, primals_41, primals_42, primals_44, primals_45, primals_47, primals_48, buf6, primals_51, primals_53, primals_54, primals_56, primals_57, buf7, primals_60, primals_62, primals_63, primals_65, primals_66, buf8, primals_69, primals_71, primals_72, primals_74, primals_75, buf9, primals_78, primals_80, primals_81, primals_83, primals_84, primals_86, primals_87, buf10, primals_90, primals_92, primals_93, primals_95, primals_96, buf11, primals_99, primals_101, primals_102, primals_104, primals_105, buf12, primals_108, primals_110, primals_111, primals_113, primals_114, buf13, primals_117, primals_119, primals_120, buf17, buf18, buf19, reinterpret_tensor(buf20, (4, 32), (32, 1), 0), reinterpret_tensor(buf23, (4, 32), (32, 1), 0), buf24, buf25, buf26, buf30, buf31, buf32, reinterpret_tensor(buf33, (4, 1024), (1024, 1), 0), reinterpret_tensor(buf36, (4, 1024), (1024, 1), 0), buf40, buf41, buf42, reinterpret_tensor(buf43, (4, 32), (32, 1), 0), reinterpret_tensor(buf46, (4, 32), (32, 1), 0), buf47, buf51, buf52, buf53, reinterpret_tensor(buf54, (4, 32), (32, 1), 0), reinterpret_tensor(buf57, (4, 32), (32, 1), 0), buf58, buf62, buf63, buf64, reinterpret_tensor(buf65, (4, 32), (32, 1), 0), reinterpret_tensor(buf68, (4, 32), (32, 1), 0), buf70, buf74, buf75, buf76, reinterpret_tensor(buf77, (4, 32), (32, 1), 0), reinterpret_tensor(buf80, (4, 32), (32, 1), 0), buf81, buf85, buf86, buf87, reinterpret_tensor(buf88, (4, 32), (32, 1), 0), reinterpret_tensor(buf91, (4, 32), (32, 1), 0), buf92, buf96, buf97, buf98, reinterpret_tensor(buf99, (4, 32), (32, 1), 0), reinterpret_tensor(buf102, (4, 32), (32, 1), 0), buf103, buf107, buf108, buf109, reinterpret_tensor(buf110, (4, 32), (32, 1), 0), reinterpret_tensor(buf113, (4, 32), (32, 1), 0), buf114, buf118, buf119, buf120, reinterpret_tensor(buf121, (4, 32), (32, 1), 0), reinterpret_tensor(buf124, (4, 32), (32, 1), 0), buf125, buf129, buf130, buf131, reinterpret_tensor(buf132, (4, 32), (32, 1), 0), reinterpret_tensor(buf135, (4, 32), (32, 1), 0), buf136, buf140, buf141, buf142, reinterpret_tensor(buf143, (4, 32), (32, 1), 0), reinterpret_tensor(buf146, (4, 32), (32, 1), 0), buf147, buf151, buf152, buf153, reinterpret_tensor(buf154, (4, 32), (32, 1), 0), reinterpret_tensor(buf157, (4, 32), (32, 1), 0), buf158, buf162, buf163, buf164, reinterpret_tensor(buf165, (4, 32), (32, 1), 0), reinterpret_tensor(buf168, (4, 32), (32, 1), 0), buf169, buf173, buf174, buf175, reinterpret_tensor(buf176, (4, 2048), (2048, 1), 0), reinterpret_tensor(buf179, (4, 2048), (2048, 1), 0), buf183, buf184, buf185, reinterpret_tensor(buf186, (4, 32), (32, 1), 0), reinterpret_tensor(buf189, (4, 32), (32, 1), 0), buf190, buf194, buf195, buf196, reinterpret_tensor(buf197, (4, 32), (32, 1), 0), reinterpret_tensor(buf200, (4, 32), (32, 1), 0), buf201, buf205, buf206, buf207, reinterpret_tensor(buf208, (4, 32), (32, 1), 0), reinterpret_tensor(buf211, (4, 32), (32, 1), 0), buf213, buf217, buf218, buf219, reinterpret_tensor(buf220, (4, 32), (32, 1), 0), reinterpret_tensor(buf223, (4, 32), (32, 1), 0), buf224, buf228, buf229, buf230, reinterpret_tensor(buf231, (4, 32), (32, 1), 0), reinterpret_tensor(buf234, (4, 32), (32, 1), 0), buf235, buf239, buf240, buf241, reinterpret_tensor(buf242, (4, 32), (32, 1), 0), reinterpret_tensor(buf245, (4, 32), (32, 1), 0), buf246, buf250, buf251, buf252, reinterpret_tensor(buf253, (4, 32), (32, 1), 0), reinterpret_tensor(buf256, (4, 32), (32, 1), 0), buf257, buf261, buf262, buf263, reinterpret_tensor(buf264, (4, 32), (32, 1), 0), reinterpret_tensor(buf267, (4, 32), (32, 1), 0), buf268, buf272, buf273, buf274, reinterpret_tensor(buf275, (4, 32), (32, 1), 0), reinterpret_tensor(buf278, (4, 32), (32, 1), 0), buf279, buf283, buf284, buf285, reinterpret_tensor(buf286, (4, 32), (32, 1), 0), reinterpret_tensor(buf289, (4, 32), (32, 1), 0), buf290, buf294, buf295, buf296, reinterpret_tensor(buf297, (4, 32), (32, 1), 0), reinterpret_tensor(buf300, (4, 32), (32, 1), 0), buf301, buf305, buf306, buf307, reinterpret_tensor(buf308, (4, 32), (32, 1), 0), reinterpret_tensor(buf311, (4, 32), (32, 1), 0), buf312, buf316, buf317, buf318, reinterpret_tensor(buf319, (4, 4096), (4096, 1), 0), reinterpret_tensor(buf322, (4, 4096), (4096, 1), 0), buf326, buf327, buf328, reinterpret_tensor(buf329, (4, 32), (32, 1), 0), reinterpret_tensor(buf332, (4, 32), (32, 1), 0), buf333, buf337, buf338, buf339, reinterpret_tensor(buf340, (4, 32), (32, 1), 0), reinterpret_tensor(buf343, (4, 32), (32, 1), 0), buf344, buf348, buf349, buf350, reinterpret_tensor(buf351, (4, 32), (32, 1), 0), reinterpret_tensor(buf354, (4, 32), (32, 1), 0), buf356, buf360, buf361, buf362, reinterpret_tensor(buf363, (4, 32), (32, 1), 0), reinterpret_tensor(buf366, (4, 32), (32, 1), 0), buf367, buf371, buf372, buf373, reinterpret_tensor(buf374, (4, 32), (32, 1), 0), reinterpret_tensor(buf377, (4, 32), (32, 1), 0), buf378, buf382, buf383, buf384, reinterpret_tensor(buf385, (4, 32), (32, 1), 0), reinterpret_tensor(buf388, (4, 32), (32, 1), 0), buf389, buf393, buf394, buf395, reinterpret_tensor(buf396, (4, 32), (32, 1), 0), reinterpret_tensor(buf399, (4, 32), (32, 1), 0), buf400, buf404, buf405, buf406, reinterpret_tensor(buf407, (4, 32), (32, 1), 0), reinterpret_tensor(buf410, (4, 32), (32, 1), 0), buf411, buf415, buf416, buf417, reinterpret_tensor(buf418, (4, 32), (32, 1), 0), reinterpret_tensor(buf421, (4, 32), (32, 1), 0), buf422, buf426, buf427, buf428, reinterpret_tensor(buf429, (4, 32), (32, 1), 0), reinterpret_tensor(buf432, (4, 32), (32, 1), 0), buf433, buf437, buf438, buf439, reinterpret_tensor(buf440, (4, 32), (32, 1), 0), reinterpret_tensor(buf443, (4, 32), (32, 1), 0), buf444, buf448, buf449, buf450, reinterpret_tensor(buf451, (4, 32), (32, 1), 0), reinterpret_tensor(buf454, (4, 32), (32, 1), 0), buf456, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((256, 3, 7, 7), (147, 49, 7, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((1024, 256, 1, 1), (256, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((256, 256, 1, 1), (256, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((1024, 256, 1, 1), (256, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_17 = rand_strided((256, 1024, 1, 1), (1024, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_18 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_19 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_20 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_21 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_22 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_23 = rand_strided((1024, 256, 1, 1), (256, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_24 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_25 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_26 = rand_strided((256, 1024, 1, 1), (1024, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_27 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_28 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_29 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_30 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_31 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_32 = rand_strided((1024, 256, 1, 1), (256, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_33 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_34 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_35 = rand_strided((256, 1024, 1, 1), (1024, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_36 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_37 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_38 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_39 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_40 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_41 = rand_strided((1024, 256, 1, 1), (256, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_42 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_43 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_44 = rand_strided((2048, 1024, 1, 1), (1024, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_45 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_46 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_47 = rand_strided((512, 1024, 1, 1), (1024, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_48 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_49 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_50 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_51 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_52 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_53 = rand_strided((2048, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_54 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_55 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_56 = rand_strided((512, 2048, 1, 1), (2048, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_57 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_58 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_59 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_60 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_61 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_62 = rand_strided((2048, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_63 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_64 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_65 = rand_strided((512, 2048, 1, 1), (2048, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_66 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_67 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_68 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_69 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_70 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_71 = rand_strided((2048, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_72 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_73 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_74 = rand_strided((512, 2048, 1, 1), (2048, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_75 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_76 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_77 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_78 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_79 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_80 = rand_strided((2048, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_81 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_82 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_83 = rand_strided((4096, 2048, 1, 1), (2048, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_84 = rand_strided((4096, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_85 = rand_strided((4096, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_86 = rand_strided((1024, 2048, 1, 1), (2048, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_87 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_88 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_89 = rand_strided((1024, 1024, 3, 3), (9216, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_90 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_91 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_92 = rand_strided((4096, 1024, 1, 1), (1024, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_93 = rand_strided((4096, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_94 = rand_strided((4096, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_95 = rand_strided((1024, 4096, 1, 1), (4096, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_96 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_97 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_98 = rand_strided((1024, 1024, 3, 3), (9216, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_99 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_100 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_101 = rand_strided((4096, 1024, 1, 1), (1024, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_102 = rand_strided((4096, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_103 = rand_strided((4096, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_104 = rand_strided((1024, 4096, 1, 1), (4096, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_105 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_106 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_107 = rand_strided((1024, 1024, 3, 3), (9216, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_108 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_109 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_110 = rand_strided((4096, 1024, 1, 1), (1024, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_111 = rand_strided((4096, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_112 = rand_strided((4096, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_113 = rand_strided((1024, 4096, 1, 1), (4096, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_114 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_115 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_116 = rand_strided((1024, 1024, 3, 3), (9216, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_117 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_118 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_119 = rand_strided((4096, 1024, 1, 1), (1024, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_120 = rand_strided((4096, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_121 = rand_strided((4096, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41, primals_42, primals_43, primals_44, primals_45, primals_46, primals_47, primals_48, primals_49, primals_50, primals_51, primals_52, primals_53, primals_54, primals_55, primals_56, primals_57, primals_58, primals_59, primals_60, primals_61, primals_62, primals_63, primals_64, primals_65, primals_66, primals_67, primals_68, primals_69, primals_70, primals_71, primals_72, primals_73, primals_74, primals_75, primals_76, primals_77, primals_78, primals_79, primals_80, primals_81, primals_82, primals_83, primals_84, primals_85, primals_86, primals_87, primals_88, primals_89, primals_90, primals_91, primals_92, primals_93, primals_94, primals_95, primals_96, primals_97, primals_98, primals_99, primals_100, primals_101, primals_102, primals_103, primals_104, primals_105, primals_106, primals_107, primals_108, primals_109, primals_110, primals_111, primals_112, primals_113, primals_114, primals_115, primals_116, primals_117, primals_118, primals_119, primals_120, primals_121])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
from collections import OrderedDict
import torch.nn.functional as F
def conv1x1(cin, cout, stride=1, bias=False):
return StdConv2d(cin, cout, kernel_size=1, stride=stride, padding=0,
bias=bias)
def conv3x3(cin, cout, stride=1, groups=1, bias=False):
return StdConv2d(cin, cout, kernel_size=3, stride=stride, padding=1,
bias=bias, groups=groups)
def np2th(weights, conv=False):
"""Possibly convert HWIO to OIHW."""
if conv:
weights = weights.transpose([3, 2, 0, 1])
return torch.from_numpy(weights)
class StdConv2d(nn.Conv2d):
def forward(self, x):
w = self.weight
v, m = torch.var_mean(w, dim=[1, 2, 3], keepdim=True, unbiased=False)
w = (w - m) / torch.sqrt(v + 1e-05)
return F.conv2d(x, w, self.bias, self.stride, self.padding, self.
dilation, self.groups)
class PreActBottleneck(nn.Module):
"""Pre-activation (v2) bottleneck block.
"""
def __init__(self, cin, cout=None, cmid=None, stride=1):
super().__init__()
cout = cout or cin
cmid = cmid or cout // 4
self.gn1 = nn.GroupNorm(32, cmid, eps=1e-06)
self.conv1 = conv1x1(cin, cmid, bias=False)
self.gn2 = nn.GroupNorm(32, cmid, eps=1e-06)
self.conv2 = conv3x3(cmid, cmid, stride, bias=False)
self.gn3 = nn.GroupNorm(32, cout, eps=1e-06)
self.conv3 = conv1x1(cmid, cout, bias=False)
self.relu = nn.ReLU(inplace=True)
if stride != 1 or cin != cout:
self.downsample = conv1x1(cin, cout, stride, bias=False)
self.gn_proj = nn.GroupNorm(cout, cout)
def forward(self, x):
residual = x
if hasattr(self, 'downsample'):
residual = self.downsample(x)
residual = self.gn_proj(residual)
y = self.relu(self.gn1(self.conv1(x)))
y = self.relu(self.gn2(self.conv2(y)))
y = self.gn3(self.conv3(y))
y = self.relu(residual + y)
return y
def load_from(self, weights, n_block, n_unit):
conv1_weight = np2th(weights[pjoin(n_block, n_unit, 'conv1/kernel')
], conv=True)
conv2_weight = np2th(weights[pjoin(n_block, n_unit, 'conv2/kernel')
], conv=True)
conv3_weight = np2th(weights[pjoin(n_block, n_unit, 'conv3/kernel')
], conv=True)
gn1_weight = np2th(weights[pjoin(n_block, n_unit, 'gn1/scale')])
gn1_bias = np2th(weights[pjoin(n_block, n_unit, 'gn1/bias')])
gn2_weight = np2th(weights[pjoin(n_block, n_unit, 'gn2/scale')])
gn2_bias = np2th(weights[pjoin(n_block, n_unit, 'gn2/bias')])
gn3_weight = np2th(weights[pjoin(n_block, n_unit, 'gn3/scale')])
gn3_bias = np2th(weights[pjoin(n_block, n_unit, 'gn3/bias')])
self.conv1.weight.copy_(conv1_weight)
self.conv2.weight.copy_(conv2_weight)
self.conv3.weight.copy_(conv3_weight)
self.gn1.weight.copy_(gn1_weight.view(-1))
self.gn1.bias.copy_(gn1_bias.view(-1))
self.gn2.weight.copy_(gn2_weight.view(-1))
self.gn2.bias.copy_(gn2_bias.view(-1))
self.gn3.weight.copy_(gn3_weight.view(-1))
self.gn3.bias.copy_(gn3_bias.view(-1))
if hasattr(self, 'downsample'):
proj_conv_weight = np2th(weights[pjoin(n_block, n_unit,
'conv_proj/kernel')], conv=True)
proj_gn_weight = np2th(weights[pjoin(n_block, n_unit,
'gn_proj/scale')])
proj_gn_bias = np2th(weights[pjoin(n_block, n_unit,
'gn_proj/bias')])
self.downsample.weight.copy_(proj_conv_weight)
self.gn_proj.weight.copy_(proj_gn_weight.view(-1))
self.gn_proj.bias.copy_(proj_gn_bias.view(-1))
class ResNetV2(nn.Module):
"""Implementation of Pre-activation (v2) ResNet mode."""
def __init__(self, block_units, width_factor):
super().__init__()
width = int(64 * width_factor)
self.width = width
self.root = nn.Sequential(OrderedDict([('conv', StdConv2d(3, width,
kernel_size=7, stride=2, bias=False, padding=3)), ('gn', nn.
GroupNorm(32, width, eps=1e-06)), ('relu', nn.ReLU(inplace=True
)), ('pool', nn.MaxPool2d(kernel_size=3, stride=2, padding=0))]))
self.body = nn.Sequential(OrderedDict([('block1', nn.Sequential(
OrderedDict([('unit1', PreActBottleneck(cin=width, cout=width *
4, cmid=width))] + [(f'unit{i:d}', PreActBottleneck(cin=width *
4, cout=width * 4, cmid=width)) for i in range(2, block_units[0
] + 1)]))), ('block2', nn.Sequential(OrderedDict([('unit1',
PreActBottleneck(cin=width * 4, cout=width * 8, cmid=width * 2,
stride=2))] + [(f'unit{i:d}', PreActBottleneck(cin=width * 8,
cout=width * 8, cmid=width * 2)) for i in range(2, block_units[
1] + 1)]))), ('block3', nn.Sequential(OrderedDict([('unit1',
PreActBottleneck(cin=width * 8, cout=width * 16, cmid=width * 4,
stride=2))] + [(f'unit{i:d}', PreActBottleneck(cin=width * 16,
cout=width * 16, cmid=width * 4)) for i in range(2, block_units
[2] + 1)])))]))
def forward(self, x):
x = self.root(x)
x = self.body(x)
return x
def get_inputs():
return [torch.rand([4, 3, 64, 64])]
def get_init_inputs():
return [[], {'block_units': [4, 4, 4], 'width_factor': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
from collections import OrderedDict
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 768
xnumel = 49
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 3
y1 = yindex // 3
tmp0 = tl.load(in_ptr0 + (x2 + 49 * y3), xmask & ymask, eviction_policy
='evict_last')
tl.store(out_ptr0 + (y0 + 3 * x2 + 147 * y1), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 12
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 3
y1 = yindex // 3
tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), ymask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 3 * x2 + 12288 * y1), tmp0, ymask)
@triton.jit
def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)
) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 256
y1 = yindex // 256
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 256 * x2 + 2304 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)
) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 512
y1 = yindex // 512
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 512 * x2 + 4608 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)
) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 1024
y1 = yindex // 1024
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 1024 * x2 + 9216 * y1), tmp0, xmask)
@triton.jit
def triton_per_fused_add_div_sqrt_sub_var_mean_5(in_out_ptr0, in_ptr0,
out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 256
rnumel = 147
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
rmask = rindex < rnumel
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 147 * x0), rmask & xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tl.where(rmask & xmask, tmp1, 0)
tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp6 = tl.where(rmask & xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = tl.full([XBLOCK, 1], 147, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.where(rmask & xmask, tmp13, 0)
tmp16 = tl.sum(tmp15, 1)[:, None]
tmp17 = 147.0
tmp18 = tmp16 / tmp17
tmp19 = 1e-05
tmp20 = tmp18 + tmp19
tmp21 = libdevice.sqrt(tmp20)
tmp22 = tmp0 - tmp10
tmp23 = tmp22 / tmp21
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp21, xmask)
tl.store(out_ptr1 + (r1 + 147 * x0), tmp23, rmask & xmask)
@triton.jit
def triton_red_fused_native_group_norm_6(in_ptr0, out_ptr0, out_ptr1,
out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr):
xnumel = 128
rnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex % 32
x1 = xindex // 32
tmp2_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32)
x4 = xindex
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex % 8
r3 = rindex // 8
tmp0 = tl.load(in_ptr0 + (r2 + 8 * x0 + 256 * r3 + 262144 * x1),
rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp2_mean_next, tmp2_m2_next, tmp2_weight_next = (triton_helpers.
welford_reduce(tmp1, tmp2_mean, tmp2_m2, tmp2_weight, roffset == 0)
)
tmp2_mean = tl.where(rmask & xmask, tmp2_mean_next, tmp2_mean)
tmp2_m2 = tl.where(rmask & xmask, tmp2_m2_next, tmp2_m2)
tmp2_weight = tl.where(rmask & xmask, tmp2_weight_next, tmp2_weight)
tmp2_tmp, tmp3_tmp, tmp4_tmp = triton_helpers.welford(tmp2_mean,
tmp2_m2, tmp2_weight, 1)
tmp2 = tmp2_tmp[:, None]
tmp3 = tmp3_tmp[:, None]
tmp4_tmp[:, None]
tl.store(out_ptr0 + x4, tmp2, xmask)
tl.store(out_ptr1 + x4, tmp3, xmask)
tmp5 = 8192.0
tmp6 = tmp3 / tmp5
tmp7 = 1e-06
tmp8 = tmp6 + tmp7
tmp9 = libdevice.rsqrt(tmp8)
tl.store(out_ptr2 + x4, tmp9, xmask)
@triton.jit
def triton_poi_fused_native_group_norm_relu_7(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 256
x2 = xindex // 262144
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + (32 * x2 + x0 // 8), None, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr2 + (32 * x2 + x0 // 8), None, eviction_policy=
'evict_last')
tmp10 = tl.load(in_ptr3 + x0, None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = 8192.0
tmp5 = tmp3 / tmp4
tmp6 = 1e-06
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp2 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tmp14 = tl.full([1], 0, tl.int32)
tmp15 = triton_helpers.maximum(tmp14, tmp13)
tl.store(out_ptr0 + x3, tmp15, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_8(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 230400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 256
x1 = xindex // 256 % 15
x2 = xindex // 3840 % 15
x3 = xindex // 57600
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 512 * x1 + 16384 * x2 + 262144 * x3), xmask)
tmp1 = tl.load(in_ptr0 + (256 + x0 + 512 * x1 + 16384 * x2 + 262144 *
x3), xmask)
tmp3 = tl.load(in_ptr0 + (512 + x0 + 512 * x1 + 16384 * x2 + 262144 *
x3), xmask)
tmp5 = tl.load(in_ptr0 + (8192 + x0 + 512 * x1 + 16384 * x2 + 262144 *
x3), xmask)
tmp7 = tl.load(in_ptr0 + (8448 + x0 + 512 * x1 + 16384 * x2 + 262144 *
x3), xmask)
tmp9 = tl.load(in_ptr0 + (8704 + x0 + 512 * x1 + 16384 * x2 + 262144 *
x3), xmask)
tmp11 = tl.load(in_ptr0 + (16384 + x0 + 512 * x1 + 16384 * x2 + 262144 *
x3), xmask)
tmp13 = tl.load(in_ptr0 + (16640 + x0 + 512 * x1 + 16384 * x2 + 262144 *
x3), xmask)
tmp15 = tl.load(in_ptr0 + (16896 + x0 + 512 * x1 + 16384 * x2 + 262144 *
x3), xmask)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp8 = triton_helpers.maximum(tmp7, tmp6)
tmp10 = triton_helpers.maximum(tmp9, tmp8)
tmp12 = triton_helpers.maximum(tmp11, tmp10)
tmp14 = triton_helpers.maximum(tmp13, tmp12)
tmp16 = triton_helpers.maximum(tmp15, tmp14)
tmp17 = tmp1 > tmp0
tmp18 = tl.full([1], 1, tl.int8)
tmp19 = tl.full([1], 0, tl.int8)
tmp20 = tl.where(tmp17, tmp18, tmp19)
tmp21 = tmp3 > tmp2
tmp22 = tl.full([1], 2, tl.int8)
tmp23 = tl.where(tmp21, tmp22, tmp20)
tmp24 = tmp5 > tmp4
tmp25 = tl.full([1], 3, tl.int8)
tmp26 = tl.where(tmp24, tmp25, tmp23)
tmp27 = tmp7 > tmp6
tmp28 = tl.full([1], 4, tl.int8)
tmp29 = tl.where(tmp27, tmp28, tmp26)
tmp30 = tmp9 > tmp8
tmp31 = tl.full([1], 5, tl.int8)
tmp32 = tl.where(tmp30, tmp31, tmp29)
tmp33 = tmp11 > tmp10
tmp34 = tl.full([1], 6, tl.int8)
tmp35 = tl.where(tmp33, tmp34, tmp32)
tmp36 = tmp13 > tmp12
tmp37 = tl.full([1], 7, tl.int8)
tmp38 = tl.where(tmp36, tmp37, tmp35)
tmp39 = tmp15 > tmp14
tmp40 = tl.full([1], 8, tl.int8)
tmp41 = tl.where(tmp39, tmp40, tmp38)
tl.store(out_ptr0 + x4, tmp16, xmask)
tl.store(out_ptr1 + x4, tmp41, xmask)
@triton.jit
def triton_per_fused_add_div_sqrt_sub_var_mean_9(in_out_ptr0, in_ptr0,
out_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 256 * x0), None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = tl.broadcast_to(tmp1, [RBLOCK])
tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0))
tmp6 = tl.full([1], 256, tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 / tmp7
tmp9 = tmp1 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tl.broadcast_to(tmp10, [RBLOCK])
tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0))
tmp14 = 256.0
tmp15 = tmp13 / tmp14
tmp16 = 1e-05
tmp17 = tmp15 + tmp16
tmp18 = libdevice.sqrt(tmp17)
tmp19 = tmp0 - tmp8
tmp20 = tmp19 / tmp18
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp18, None)
tl.store(out_ptr1 + (r1 + 256 * x0), tmp20, None)
@triton.jit
def triton_per_fused_native_group_norm_10(in_ptr0, out_ptr0, out_ptr1,
out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr):
rnumel = 225
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
rmask = rindex < rnumel
r2 = rindex
x0 = xindex % 1024
x1 = xindex // 1024
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 1024 * r2 + 230400 * x1), rmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tl.where(rmask, tmp1, 0)
tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp6 = tl.where(rmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = tl.full([XBLOCK, 1], 225, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.where(rmask, tmp13, 0)
tmp16 = tl.sum(tmp15, 1)[:, None]
tmp17 = 225.0
tmp18 = tmp16 / tmp17
tmp19 = 1e-05
tmp20 = tmp18 + tmp19
tmp21 = libdevice.rsqrt(tmp20)
tl.store(out_ptr2 + x3, tmp21, None)
tl.store(out_ptr0 + x3, tmp10, None)
tl.store(out_ptr1 + x3, tmp16, None)
@triton.jit
def triton_per_fused_add_div_sqrt_sub_var_mean_11(in_out_ptr0, in_ptr0,
out_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 256 * x0), None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = tl.broadcast_to(tmp1, [RBLOCK])
tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0))
tmp6 = tl.full([1], 256, tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 / tmp7
tmp9 = tmp1 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tl.broadcast_to(tmp10, [RBLOCK])
tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0))
tmp14 = 256.0
tmp15 = tmp13 / tmp14
tmp16 = 1e-05
tmp17 = tmp15 + tmp16
tmp18 = libdevice.sqrt(tmp17)
tmp19 = tmp0 - tmp8
tmp20 = tmp19 / tmp18
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp18, None)
tl.store(out_ptr1 + (r1 + 256 * x0), tmp20, None)
@triton.jit
def triton_red_fused_native_group_norm_12(in_ptr0, out_ptr0, out_ptr1,
out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr):
xnumel = 128
rnumel = 1800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex % 32
x1 = xindex // 32
tmp2_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32)
x4 = xindex
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex % 8
r3 = rindex // 8
tmp0 = tl.load(in_ptr0 + (r2 + 8 * x0 + 256 * r3 + 57600 * x1),
rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp2_mean_next, tmp2_m2_next, tmp2_weight_next = (triton_helpers.
welford_reduce(tmp1, tmp2_mean, tmp2_m2, tmp2_weight, roffset == 0)
)
tmp2_mean = tl.where(rmask & xmask, tmp2_mean_next, tmp2_mean)
tmp2_m2 = tl.where(rmask & xmask, tmp2_m2_next, tmp2_m2)
tmp2_weight = tl.where(rmask & xmask, tmp2_weight_next, tmp2_weight)
tmp2_tmp, tmp3_tmp, tmp4_tmp = triton_helpers.welford(tmp2_mean,
tmp2_m2, tmp2_weight, 1)
tmp2 = tmp2_tmp[:, None]
tmp3 = tmp3_tmp[:, None]
tmp4_tmp[:, None]
tl.store(out_ptr0 + x4, tmp2, xmask)
tl.store(out_ptr1 + x4, tmp3, xmask)
tmp5 = 1800.0
tmp6 = tmp3 / tmp5
tmp7 = 1e-06
tmp8 = tmp6 + tmp7
tmp9 = libdevice.rsqrt(tmp8)
tl.store(out_ptr2 + x4, tmp9, xmask)
@triton.jit
def triton_poi_fused_native_group_norm_relu_13(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 230400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 256
x2 = xindex // 57600
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + (32 * x2 + x0 // 8), xmask, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr2 + (32 * x2 + x0 // 8), xmask, eviction_policy=
'evict_last')
tmp10 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = 1800.0
tmp5 = tmp3 / tmp4
tmp6 = 1e-06
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp2 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tmp14 = tl.full([1], 0, tl.int32)
tmp15 = triton_helpers.maximum(tmp14, tmp13)
tl.store(out_ptr0 + x3, tmp15, xmask)
@triton.jit
def triton_red_fused_add_div_sqrt_sub_var_mean_14(in_out_ptr0, in_ptr0,
out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr):
xnumel = 256
rnumel = 2304
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex
tmp2_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp0 = tl.load(in_ptr0 + (r1 + 2304 * x0), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp2_mean_next, tmp2_m2_next, tmp2_weight_next = (triton_helpers.
welford_reduce(tmp1, tmp2_mean, tmp2_m2, tmp2_weight, roffset == 0)
)
tmp2_mean = tl.where(rmask & xmask, tmp2_mean_next, tmp2_mean)
tmp2_m2 = tl.where(rmask & xmask, tmp2_m2_next, tmp2_m2)
tmp2_weight = tl.where(rmask & xmask, tmp2_weight_next, tmp2_weight)
tmp2_tmp, tmp3_tmp, tmp4_tmp = triton_helpers.welford(tmp2_mean,
tmp2_m2, tmp2_weight, 1)
tmp2 = tmp2_tmp[:, None]
tmp3 = tmp3_tmp[:, None]
tmp4_tmp[:, None]
tmp5 = 2304.0
tmp6 = tmp3 / tmp5
tmp7 = 1e-05
tmp8 = tmp6 + tmp7
tmp9 = libdevice.sqrt(tmp8)
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp9, xmask)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp10 = tl.load(in_ptr0 + (r1 + 2304 * x0), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp11 = tmp10 - tmp2
tmp12 = tmp11 / tmp9
tl.store(out_ptr1 + (r1 + 2304 * x0), tmp12, rmask & xmask)
@triton.jit
def triton_red_fused_native_group_norm_15(in_ptr0, out_ptr0, out_ptr1,
out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr):
xnumel = 128
rnumel = 7200
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex % 32
x1 = xindex // 32
tmp2_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32)
x4 = xindex
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex % 32
r3 = rindex // 32
tmp0 = tl.load(in_ptr0 + (r2 + 32 * x0 + 1024 * r3 + 230400 * x1),
rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp2_mean_next, tmp2_m2_next, tmp2_weight_next = (triton_helpers.
welford_reduce(tmp1, tmp2_mean, tmp2_m2, tmp2_weight, roffset == 0)
)
tmp2_mean = tl.where(rmask & xmask, tmp2_mean_next, tmp2_mean)
tmp2_m2 = tl.where(rmask & xmask, tmp2_m2_next, tmp2_m2)
tmp2_weight = tl.where(rmask & xmask, tmp2_weight_next, tmp2_weight)
tmp2_tmp, tmp3_tmp, tmp4_tmp = triton_helpers.welford(tmp2_mean,
tmp2_m2, tmp2_weight, 1)
tmp2 = tmp2_tmp[:, None]
tmp3 = tmp3_tmp[:, None]
tmp4_tmp[:, None]
tl.store(out_ptr0 + x4, tmp2, xmask)
tl.store(out_ptr1 + x4, tmp3, xmask)
tmp5 = 7200.0
tmp6 = tmp3 / tmp5
tmp7 = 1e-06
tmp8 = tmp6 + tmp7
tmp9 = libdevice.rsqrt(tmp8)
tl.store(out_ptr2 + x4, tmp9, xmask)
@triton.jit
def triton_poi_fused_add_native_group_norm_relu_16(in_out_ptr0, in_ptr0,
in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8,
in_ptr9, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 1024
x2 = xindex // 230400
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + (x0 + 1024 * x2), None, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr2 + (x0 + 1024 * x2), None, eviction_policy=
'evict_last')
tmp10 = tl.load(in_ptr3 + x0, None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr5 + x3, None)
tmp15 = tl.load(in_ptr6 + (32 * x2 + x0 // 32), None, eviction_policy=
'evict_last')
tmp17 = tl.load(in_ptr7 + (32 * x2 + x0 // 32), None, eviction_policy=
'evict_last')
tmp24 = tl.load(in_ptr8 + x0, None, eviction_policy='evict_last')
tmp26 = tl.load(in_ptr9 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = 225.0
tmp5 = tmp3 / tmp4
tmp6 = 1e-05
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp2 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tmp16 = tmp14 - tmp15
tmp18 = 7200.0
tmp19 = tmp17 / tmp18
tmp20 = 1e-06
tmp21 = tmp19 + tmp20
tmp22 = libdevice.rsqrt(tmp21)
tmp23 = tmp16 * tmp22
tmp25 = tmp23 * tmp24
tmp27 = tmp25 + tmp26
tmp28 = tmp13 + tmp27
tmp29 = tl.full([1], 0, tl.int32)
tmp30 = triton_helpers.maximum(tmp29, tmp28)
tl.store(in_out_ptr0 + x3, tmp30, None)
@triton.jit
def triton_per_fused_add_div_sqrt_sub_var_mean_17(in_out_ptr0, in_ptr0,
out_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 1024 * x0), None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = tl.broadcast_to(tmp1, [RBLOCK])
tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0))
tmp6 = tl.full([1], 1024, tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 / tmp7
tmp9 = tmp1 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tl.broadcast_to(tmp10, [RBLOCK])
tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0))
tmp14 = 1024.0
tmp15 = tmp13 / tmp14
tmp16 = 1e-05
tmp17 = tmp15 + tmp16
tmp18 = libdevice.sqrt(tmp17)
tmp19 = tmp0 - tmp8
tmp20 = tmp19 / tmp18
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp18, None)
tl.store(out_ptr1 + (r1 + 1024 * x0), tmp20, None)
@triton.jit
def triton_poi_fused_add_native_group_norm_relu_18(in_ptr0, in_ptr1,
in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 1024
x2 = xindex // 230400
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x3, None)
tmp2 = tl.load(in_ptr2 + (32 * x2 + x0 // 32), None, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr3 + (32 * x2 + x0 // 32), None, eviction_policy=
'evict_last')
tmp11 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr5 + x0, None, eviction_policy='evict_last')
tmp3 = tmp1 - tmp2
tmp5 = 7200.0
tmp6 = tmp4 / tmp5
tmp7 = 1e-06
tmp8 = tmp6 + tmp7
tmp9 = libdevice.rsqrt(tmp8)
tmp10 = tmp3 * tmp9
tmp12 = tmp10 * tmp11
tmp14 = tmp12 + tmp13
tmp15 = tmp0 + tmp14
tmp16 = tl.full([1], 0, tl.int32)
tmp17 = triton_helpers.maximum(tmp16, tmp15)
tl.store(out_ptr0 + x3, tmp17, None)
@triton.jit
def triton_per_fused_add_div_sqrt_sub_var_mean_19(in_out_ptr0, in_ptr0,
out_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 1024 * x0), None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = tl.broadcast_to(tmp1, [RBLOCK])
tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0))
tmp6 = tl.full([1], 1024, tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 / tmp7
tmp9 = tmp1 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tl.broadcast_to(tmp10, [RBLOCK])
tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0))
tmp14 = 1024.0
tmp15 = tmp13 / tmp14
tmp16 = 1e-05
tmp17 = tmp15 + tmp16
tmp18 = libdevice.sqrt(tmp17)
tmp19 = tmp0 - tmp8
tmp20 = tmp19 / tmp18
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp18, None)
tl.store(out_ptr1 + (r1 + 1024 * x0), tmp20, None)
@triton.jit
def triton_per_fused_native_group_norm_20(in_ptr0, out_ptr0, out_ptr1,
out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x0 = xindex % 2048
x1 = xindex // 2048
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 2048 * r2 + 131072 * x1), None)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp5 = tl.sum(tmp3, 1)[:, None]
tmp6 = tl.full([XBLOCK, 1], 64, tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 / tmp7
tmp9 = tmp1 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK])
tmp13 = tl.sum(tmp11, 1)[:, None]
tmp14 = 64.0
tmp15 = tmp13 / tmp14
tmp16 = 1e-05
tmp17 = tmp15 + tmp16
tmp18 = libdevice.rsqrt(tmp17)
tl.store(out_ptr2 + x3, tmp18, None)
tl.store(out_ptr0 + x3, tmp8, None)
tl.store(out_ptr1 + x3, tmp13, None)
@triton.jit
def triton_per_fused_add_div_sqrt_sub_var_mean_21(in_out_ptr0, in_ptr0,
out_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 1024 * x0), None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = tl.broadcast_to(tmp1, [RBLOCK])
tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0))
tmp6 = tl.full([1], 1024, tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 / tmp7
tmp9 = tmp1 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tl.broadcast_to(tmp10, [RBLOCK])
tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0))
tmp14 = 1024.0
tmp15 = tmp13 / tmp14
tmp16 = 1e-05
tmp17 = tmp15 + tmp16
tmp18 = libdevice.sqrt(tmp17)
tmp19 = tmp0 - tmp8
tmp20 = tmp19 / tmp18
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp18, None)
tl.store(out_ptr1 + (r1 + 1024 * x0), tmp20, None)
@triton.jit
def triton_red_fused_native_group_norm_22(in_ptr0, out_ptr0, out_ptr1,
out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr):
xnumel = 128
rnumel = 3600
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex % 32
x1 = xindex // 32
tmp2_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32)
x4 = xindex
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex % 16
r3 = rindex // 16
tmp0 = tl.load(in_ptr0 + (r2 + 16 * x0 + 512 * r3 + 115200 * x1),
rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp2_mean_next, tmp2_m2_next, tmp2_weight_next = (triton_helpers.
welford_reduce(tmp1, tmp2_mean, tmp2_m2, tmp2_weight, roffset == 0)
)
tmp2_mean = tl.where(rmask & xmask, tmp2_mean_next, tmp2_mean)
tmp2_m2 = tl.where(rmask & xmask, tmp2_m2_next, tmp2_m2)
tmp2_weight = tl.where(rmask & xmask, tmp2_weight_next, tmp2_weight)
tmp2_tmp, tmp3_tmp, tmp4_tmp = triton_helpers.welford(tmp2_mean,
tmp2_m2, tmp2_weight, 1)
tmp2 = tmp2_tmp[:, None]
tmp3 = tmp3_tmp[:, None]
tmp4_tmp[:, None]
tl.store(out_ptr0 + x4, tmp2, xmask)
tl.store(out_ptr1 + x4, tmp3, xmask)
tmp5 = 3600.0
tmp6 = tmp3 / tmp5
tmp7 = 1e-06
tmp8 = tmp6 + tmp7
tmp9 = libdevice.rsqrt(tmp8)
tl.store(out_ptr2 + x4, tmp9, xmask)
@triton.jit
def triton_poi_fused_native_group_norm_relu_23(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 512
x2 = xindex // 115200
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + (32 * x2 + x0 // 16), None, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr2 + (32 * x2 + x0 // 16), None, eviction_policy=
'evict_last')
tmp10 = tl.load(in_ptr3 + x0, None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = 3600.0
tmp5 = tmp3 / tmp4
tmp6 = 1e-06
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp2 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tmp14 = tl.full([1], 0, tl.int32)
tmp15 = triton_helpers.maximum(tmp14, tmp13)
tl.store(out_ptr0 + x3, tmp15, None)
@triton.jit
def triton_red_fused_add_div_sqrt_sub_var_mean_24(in_out_ptr0, in_ptr0,
out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr):
xnumel = 512
rnumel = 4608
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex
tmp2_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp0 = tl.load(in_ptr0 + (r1 + 4608 * x0), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp2_mean_next, tmp2_m2_next, tmp2_weight_next = (triton_helpers.
welford_reduce(tmp1, tmp2_mean, tmp2_m2, tmp2_weight, roffset == 0)
)
tmp2_mean = tl.where(rmask & xmask, tmp2_mean_next, tmp2_mean)
tmp2_m2 = tl.where(rmask & xmask, tmp2_m2_next, tmp2_m2)
tmp2_weight = tl.where(rmask & xmask, tmp2_weight_next, tmp2_weight)
tmp2_tmp, tmp3_tmp, tmp4_tmp = triton_helpers.welford(tmp2_mean,
tmp2_m2, tmp2_weight, 1)
tmp2 = tmp2_tmp[:, None]
tmp3 = tmp3_tmp[:, None]
tmp4_tmp[:, None]
tmp5 = 4608.0
tmp6 = tmp3 / tmp5
tmp7 = 1e-05
tmp8 = tmp6 + tmp7
tmp9 = libdevice.sqrt(tmp8)
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp9, xmask)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp10 = tl.load(in_ptr0 + (r1 + 4608 * x0), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp11 = tmp10 - tmp2
tmp12 = tmp11 / tmp9
tl.store(out_ptr1 + (r1 + 4608 * x0), tmp12, rmask & xmask)
@triton.jit
def triton_per_fused_native_group_norm_25(in_ptr0, out_ptr0, out_ptr1,
out_ptr2, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r2 = rindex % 16
r3 = rindex // 16
x0 = xindex % 32
x1 = xindex // 32
x4 = xindex
tmp0 = tl.load(in_ptr0 + (r2 + 16 * x0 + 512 * r3 + 32768 * x1), None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = tl.broadcast_to(tmp1, [RBLOCK])
tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0))
tmp6 = tl.full([1], 1024, tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 / tmp7
tmp9 = tmp1 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tl.broadcast_to(tmp10, [RBLOCK])
tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0))
tmp14 = 1024.0
tmp15 = tmp13 / tmp14
tmp16 = 1e-06
tmp17 = tmp15 + tmp16
tmp18 = libdevice.rsqrt(tmp17)
tl.store(out_ptr2 + x4, tmp18, None)
tl.store(out_ptr0 + x4, tmp8, None)
tl.store(out_ptr1 + x4, tmp13, None)
@triton.jit
def triton_poi_fused_native_group_norm_relu_26(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 512
x2 = xindex // 32768
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + (32 * x2 + x0 // 16), None, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr2 + (32 * x2 + x0 // 16), None, eviction_policy=
'evict_last')
tmp10 = tl.load(in_ptr3 + x0, None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = 1024.0
tmp5 = tmp3 / tmp4
tmp6 = 1e-06
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp2 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tmp14 = tl.full([1], 0, tl.int32)
tmp15 = triton_helpers.maximum(tmp14, tmp13)
tl.store(out_ptr0 + x3, tmp15, None)
@triton.jit
def triton_per_fused_add_div_sqrt_sub_var_mean_27(in_out_ptr0, in_ptr0,
out_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 512 * x0), None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = tl.broadcast_to(tmp1, [RBLOCK])
tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0))
tmp6 = tl.full([1], 512, tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 / tmp7
tmp9 = tmp1 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tl.broadcast_to(tmp10, [RBLOCK])
tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0))
tmp14 = 512.0
tmp15 = tmp13 / tmp14
tmp16 = 1e-05
tmp17 = tmp15 + tmp16
tmp18 = libdevice.sqrt(tmp17)
tmp19 = tmp0 - tmp8
tmp20 = tmp19 / tmp18
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp18, None)
tl.store(out_ptr1 + (r1 + 512 * x0), tmp20, None)
@triton.jit
def triton_red_fused_native_group_norm_28(in_ptr0, out_ptr0, out_ptr1,
out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr):
xnumel = 128
rnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex % 32
x1 = xindex // 32
tmp2_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32)
x4 = xindex
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex % 64
r3 = rindex // 64
tmp0 = tl.load(in_ptr0 + (r2 + 64 * x0 + 2048 * r3 + 131072 * x1),
rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp2_mean_next, tmp2_m2_next, tmp2_weight_next = (triton_helpers.
welford_reduce(tmp1, tmp2_mean, tmp2_m2, tmp2_weight, roffset == 0)
)
tmp2_mean = tl.where(rmask & xmask, tmp2_mean_next, tmp2_mean)
tmp2_m2 = tl.where(rmask & xmask, tmp2_m2_next, tmp2_m2)
tmp2_weight = tl.where(rmask & xmask, tmp2_weight_next, tmp2_weight)
tmp2_tmp, tmp3_tmp, tmp4_tmp = triton_helpers.welford(tmp2_mean,
tmp2_m2, tmp2_weight, 1)
tmp2 = tmp2_tmp[:, None]
tmp3 = tmp3_tmp[:, None]
tmp4_tmp[:, None]
tl.store(out_ptr0 + x4, tmp2, xmask)
tl.store(out_ptr1 + x4, tmp3, xmask)
tmp5 = 4096.0
tmp6 = tmp3 / tmp5
tmp7 = 1e-06
tmp8 = tmp6 + tmp7
tmp9 = libdevice.rsqrt(tmp8)
tl.store(out_ptr2 + x4, tmp9, xmask)
@triton.jit
def triton_poi_fused_add_native_group_norm_relu_29(in_out_ptr0, in_ptr0,
in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8,
in_ptr9, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 2048
x2 = xindex // 131072
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + (x0 + 2048 * x2), None, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr2 + (x0 + 2048 * x2), None, eviction_policy=
'evict_last')
tmp10 = tl.load(in_ptr3 + x0, None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr5 + x3, None)
tmp15 = tl.load(in_ptr6 + (32 * x2 + x0 // 64), None, eviction_policy=
'evict_last')
tmp17 = tl.load(in_ptr7 + (32 * x2 + x0 // 64), None, eviction_policy=
'evict_last')
tmp24 = tl.load(in_ptr8 + x0, None, eviction_policy='evict_last')
tmp26 = tl.load(in_ptr9 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = 64.0
tmp5 = tmp3 / tmp4
tmp6 = 1e-05
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp2 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tmp16 = tmp14 - tmp15
tmp18 = 4096.0
tmp19 = tmp17 / tmp18
tmp20 = 1e-06
tmp21 = tmp19 + tmp20
tmp22 = libdevice.rsqrt(tmp21)
tmp23 = tmp16 * tmp22
tmp25 = tmp23 * tmp24
tmp27 = tmp25 + tmp26
tmp28 = tmp13 + tmp27
tmp29 = tl.full([1], 0, tl.int32)
tmp30 = triton_helpers.maximum(tmp29, tmp28)
tl.store(in_out_ptr0 + x3, tmp30, None)
@triton.jit
def triton_red_fused_add_div_sqrt_sub_var_mean_30(in_out_ptr0, in_ptr0,
out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr):
xnumel = 512
rnumel = 2048
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex
tmp2_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp0 = tl.load(in_ptr0 + (r1 + 2048 * x0), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp2_mean_next, tmp2_m2_next, tmp2_weight_next = (triton_helpers.
welford_reduce(tmp1, tmp2_mean, tmp2_m2, tmp2_weight, roffset == 0)
)
tmp2_mean = tl.where(rmask & xmask, tmp2_mean_next, tmp2_mean)
tmp2_m2 = tl.where(rmask & xmask, tmp2_m2_next, tmp2_m2)
tmp2_weight = tl.where(rmask & xmask, tmp2_weight_next, tmp2_weight)
tmp2_tmp, tmp3_tmp, tmp4_tmp = triton_helpers.welford(tmp2_mean,
tmp2_m2, tmp2_weight, 1)
tmp2 = tmp2_tmp[:, None]
tmp3 = tmp3_tmp[:, None]
tmp4_tmp[:, None]
tmp5 = 2048.0
tmp6 = tmp3 / tmp5
tmp7 = 1e-05
tmp8 = tmp6 + tmp7
tmp9 = libdevice.sqrt(tmp8)
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp9, xmask)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp10 = tl.load(in_ptr0 + (r1 + 2048 * x0), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp11 = tmp10 - tmp2
tmp12 = tmp11 / tmp9
tl.store(out_ptr1 + (r1 + 2048 * x0), tmp12, rmask & xmask)
@triton.jit
def triton_poi_fused_add_native_group_norm_relu_31(in_ptr0, in_ptr1,
in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 2048
x2 = xindex // 131072
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x3, None)
tmp2 = tl.load(in_ptr2 + (32 * x2 + x0 // 64), None, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr3 + (32 * x2 + x0 // 64), None, eviction_policy=
'evict_last')
tmp11 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr5 + x0, None, eviction_policy='evict_last')
tmp3 = tmp1 - tmp2
tmp5 = 4096.0
tmp6 = tmp4 / tmp5
tmp7 = 1e-06
tmp8 = tmp6 + tmp7
tmp9 = libdevice.rsqrt(tmp8)
tmp10 = tmp3 * tmp9
tmp12 = tmp10 * tmp11
tmp14 = tmp12 + tmp13
tmp15 = tmp0 + tmp14
tmp16 = tl.full([1], 0, tl.int32)
tmp17 = triton_helpers.maximum(tmp16, tmp15)
tl.store(out_ptr0 + x3, tmp17, None)
@triton.jit
def triton_red_fused_add_div_sqrt_sub_var_mean_32(in_out_ptr0, in_ptr0,
out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr):
rnumel = 2048
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex
tmp2_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp0 = tl.load(in_ptr0 + (r1 + 2048 * x0), rmask, eviction_policy=
'evict_last', other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp2_mean_next, tmp2_m2_next, tmp2_weight_next = (triton_helpers.
welford_reduce(tmp1, tmp2_mean, tmp2_m2, tmp2_weight, roffset == 0)
)
tmp2_mean = tl.where(rmask, tmp2_mean_next, tmp2_mean)
tmp2_m2 = tl.where(rmask, tmp2_m2_next, tmp2_m2)
tmp2_weight = tl.where(rmask, tmp2_weight_next, tmp2_weight)
tmp2_tmp, tmp3_tmp, tmp4_tmp = triton_helpers.welford(tmp2_mean,
tmp2_m2, tmp2_weight, 1)
tmp2 = tmp2_tmp[:, None]
tmp3 = tmp3_tmp[:, None]
tmp4_tmp[:, None]
tmp5 = 2048.0
tmp6 = tmp3 / tmp5
tmp7 = 1e-05
tmp8 = tmp6 + tmp7
tmp9 = libdevice.sqrt(tmp8)
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp9, None)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp10 = tl.load(in_ptr0 + (r1 + 2048 * x0), rmask, eviction_policy=
'evict_first', other=0.0)
tmp11 = tmp10 - tmp2
tmp12 = tmp11 / tmp9
tl.store(out_ptr1 + (r1 + 2048 * x0), tmp12, rmask)
@triton.jit
def triton_per_fused_native_group_norm_33(in_ptr0, out_ptr0, out_ptr1,
out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x0 = xindex % 4096
x1 = xindex // 4096
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4096 * r2 + 65536 * x1), None)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp5 = tl.sum(tmp3, 1)[:, None]
tmp6 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 / tmp7
tmp9 = tmp1 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK])
tmp13 = tl.sum(tmp11, 1)[:, None]
tmp14 = 16.0
tmp15 = tmp13 / tmp14
tmp16 = 1e-05
tmp17 = tmp15 + tmp16
tmp18 = libdevice.rsqrt(tmp17)
tl.store(out_ptr2 + x3, tmp18, None)
tl.store(out_ptr0 + x3, tmp8, None)
tl.store(out_ptr1 + x3, tmp13, None)
@triton.jit
def triton_red_fused_add_div_sqrt_sub_var_mean_34(in_out_ptr0, in_ptr0,
out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr):
xnumel = 1024
rnumel = 2048
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex
tmp2_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp0 = tl.load(in_ptr0 + (r1 + 2048 * x0), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp2_mean_next, tmp2_m2_next, tmp2_weight_next = (triton_helpers.
welford_reduce(tmp1, tmp2_mean, tmp2_m2, tmp2_weight, roffset == 0)
)
tmp2_mean = tl.where(rmask & xmask, tmp2_mean_next, tmp2_mean)
tmp2_m2 = tl.where(rmask & xmask, tmp2_m2_next, tmp2_m2)
tmp2_weight = tl.where(rmask & xmask, tmp2_weight_next, tmp2_weight)
tmp2_tmp, tmp3_tmp, tmp4_tmp = triton_helpers.welford(tmp2_mean,
tmp2_m2, tmp2_weight, 1)
tmp2 = tmp2_tmp[:, None]
tmp3 = tmp3_tmp[:, None]
tmp4_tmp[:, None]
tmp5 = 2048.0
tmp6 = tmp3 / tmp5
tmp7 = 1e-05
tmp8 = tmp6 + tmp7
tmp9 = libdevice.sqrt(tmp8)
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp9, xmask)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp10 = tl.load(in_ptr0 + (r1 + 2048 * x0), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp11 = tmp10 - tmp2
tmp12 = tmp11 / tmp9
tl.store(out_ptr1 + (r1 + 2048 * x0), tmp12, rmask & xmask)
@triton.jit
def triton_red_fused_native_group_norm_35(in_ptr0, out_ptr0, out_ptr1,
out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr):
xnumel = 128
rnumel = 2048
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex % 32
x1 = xindex // 32
tmp2_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32)
x4 = xindex
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex % 32
r3 = rindex // 32
tmp0 = tl.load(in_ptr0 + (r2 + 32 * x0 + 1024 * r3 + 65536 * x1),
rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp2_mean_next, tmp2_m2_next, tmp2_weight_next = (triton_helpers.
welford_reduce(tmp1, tmp2_mean, tmp2_m2, tmp2_weight, roffset == 0)
)
tmp2_mean = tl.where(rmask & xmask, tmp2_mean_next, tmp2_mean)
tmp2_m2 = tl.where(rmask & xmask, tmp2_m2_next, tmp2_m2)
tmp2_weight = tl.where(rmask & xmask, tmp2_weight_next, tmp2_weight)
tmp2_tmp, tmp3_tmp, tmp4_tmp = triton_helpers.welford(tmp2_mean,
tmp2_m2, tmp2_weight, 1)
tmp2 = tmp2_tmp[:, None]
tmp3 = tmp3_tmp[:, None]
tmp4_tmp[:, None]
tl.store(out_ptr0 + x4, tmp2, xmask)
tl.store(out_ptr1 + x4, tmp3, xmask)
tmp5 = 2048.0
tmp6 = tmp3 / tmp5
tmp7 = 1e-06
tmp8 = tmp6 + tmp7
tmp9 = libdevice.rsqrt(tmp8)
tl.store(out_ptr2 + x4, tmp9, xmask)
@triton.jit
def triton_poi_fused_native_group_norm_relu_36(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 1024
x2 = xindex // 65536
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + (32 * x2 + x0 // 32), None, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr2 + (32 * x2 + x0 // 32), None, eviction_policy=
'evict_last')
tmp10 = tl.load(in_ptr3 + x0, None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = 2048.0
tmp5 = tmp3 / tmp4
tmp6 = 1e-06
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp2 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tmp14 = tl.full([1], 0, tl.int32)
tmp15 = triton_helpers.maximum(tmp14, tmp13)
tl.store(out_ptr0 + x3, tmp15, None)
@triton.jit
def triton_red_fused_add_div_sqrt_sub_var_mean_37(in_out_ptr0, in_ptr0,
out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr):
xnumel = 1024
rnumel = 9216
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex
tmp2_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp0 = tl.load(in_ptr0 + (r1 + 9216 * x0), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp2_mean_next, tmp2_m2_next, tmp2_weight_next = (triton_helpers.
welford_reduce(tmp1, tmp2_mean, tmp2_m2, tmp2_weight, roffset == 0)
)
tmp2_mean = tl.where(rmask & xmask, tmp2_mean_next, tmp2_mean)
tmp2_m2 = tl.where(rmask & xmask, tmp2_m2_next, tmp2_m2)
tmp2_weight = tl.where(rmask & xmask, tmp2_weight_next, tmp2_weight)
tmp2_tmp, tmp3_tmp, tmp4_tmp = triton_helpers.welford(tmp2_mean,
tmp2_m2, tmp2_weight, 1)
tmp2 = tmp2_tmp[:, None]
tmp3 = tmp3_tmp[:, None]
tmp4_tmp[:, None]
tmp5 = 9216.0
tmp6 = tmp3 / tmp5
tmp7 = 1e-05
tmp8 = tmp6 + tmp7
tmp9 = libdevice.sqrt(tmp8)
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp9, xmask)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp10 = tl.load(in_ptr0 + (r1 + 9216 * x0), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp11 = tmp10 - tmp2
tmp12 = tmp11 / tmp9
tl.store(out_ptr1 + (r1 + 9216 * x0), tmp12, rmask & xmask)
@triton.jit
def triton_per_fused_native_group_norm_38(in_ptr0, out_ptr0, out_ptr1,
out_ptr2, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r2 = rindex % 32
r3 = rindex // 32
x0 = xindex % 32
x1 = xindex // 32
x4 = xindex
tmp0 = tl.load(in_ptr0 + (r2 + 32 * x0 + 1024 * r3 + 16384 * x1), None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = tl.broadcast_to(tmp1, [RBLOCK])
tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0))
tmp6 = tl.full([1], 512, tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 / tmp7
tmp9 = tmp1 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tl.broadcast_to(tmp10, [RBLOCK])
tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0))
tmp14 = 512.0
tmp15 = tmp13 / tmp14
tmp16 = 1e-06
tmp17 = tmp15 + tmp16
tmp18 = libdevice.rsqrt(tmp17)
tl.store(out_ptr2 + x4, tmp18, None)
tl.store(out_ptr0 + x4, tmp8, None)
tl.store(out_ptr1 + x4, tmp13, None)
@triton.jit
def triton_poi_fused_native_group_norm_relu_39(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 1024
x2 = xindex // 16384
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + (32 * x2 + x0 // 32), None, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr2 + (32 * x2 + x0 // 32), None, eviction_policy=
'evict_last')
tmp10 = tl.load(in_ptr3 + x0, None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = 512.0
tmp5 = tmp3 / tmp4
tmp6 = 1e-06
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp2 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tmp14 = tl.full([1], 0, tl.int32)
tmp15 = triton_helpers.maximum(tmp14, tmp13)
tl.store(out_ptr0 + x3, tmp15, None)
@triton.jit
def triton_per_fused_add_div_sqrt_sub_var_mean_40(in_out_ptr0, in_ptr0,
out_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 1024 * x0), None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = tl.broadcast_to(tmp1, [RBLOCK])
tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0))
tmp6 = tl.full([1], 1024, tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 / tmp7
tmp9 = tmp1 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tl.broadcast_to(tmp10, [RBLOCK])
tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0))
tmp14 = 1024.0
tmp15 = tmp13 / tmp14
tmp16 = 1e-05
tmp17 = tmp15 + tmp16
tmp18 = libdevice.sqrt(tmp17)
tmp19 = tmp0 - tmp8
tmp20 = tmp19 / tmp18
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp18, None)
tl.store(out_ptr1 + (r1 + 1024 * x0), tmp20, None)
@triton.jit
def triton_red_fused_native_group_norm_41(in_ptr0, out_ptr0, out_ptr1,
out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr):
xnumel = 128
rnumel = 2048
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex % 32
x1 = xindex // 32
tmp2_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32)
x4 = xindex
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex % 128
r3 = rindex // 128
tmp0 = tl.load(in_ptr0 + (r2 + 128 * x0 + 4096 * r3 + 65536 * x1),
rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp2_mean_next, tmp2_m2_next, tmp2_weight_next = (triton_helpers.
welford_reduce(tmp1, tmp2_mean, tmp2_m2, tmp2_weight, roffset == 0)
)
tmp2_mean = tl.where(rmask & xmask, tmp2_mean_next, tmp2_mean)
tmp2_m2 = tl.where(rmask & xmask, tmp2_m2_next, tmp2_m2)
tmp2_weight = tl.where(rmask & xmask, tmp2_weight_next, tmp2_weight)
tmp2_tmp, tmp3_tmp, tmp4_tmp = triton_helpers.welford(tmp2_mean,
tmp2_m2, tmp2_weight, 1)
tmp2 = tmp2_tmp[:, None]
tmp3 = tmp3_tmp[:, None]
tmp4_tmp[:, None]
tl.store(out_ptr0 + x4, tmp2, xmask)
tl.store(out_ptr1 + x4, tmp3, xmask)
tmp5 = 2048.0
tmp6 = tmp3 / tmp5
tmp7 = 1e-06
tmp8 = tmp6 + tmp7
tmp9 = libdevice.rsqrt(tmp8)
tl.store(out_ptr2 + x4, tmp9, xmask)
@triton.jit
def triton_poi_fused_add_native_group_norm_relu_42(in_out_ptr0, in_ptr0,
in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8,
in_ptr9, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 4096
x2 = xindex // 65536
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + (x0 + 4096 * x2), None, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr2 + (x0 + 4096 * x2), None, eviction_policy=
'evict_last')
tmp10 = tl.load(in_ptr3 + x0, None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr5 + x3, None)
tmp15 = tl.load(in_ptr6 + (32 * x2 + x0 // 128), None, eviction_policy=
'evict_last')
tmp17 = tl.load(in_ptr7 + (32 * x2 + x0 // 128), None, eviction_policy=
'evict_last')
tmp24 = tl.load(in_ptr8 + x0, None, eviction_policy='evict_last')
tmp26 = tl.load(in_ptr9 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = 16.0
tmp5 = tmp3 / tmp4
tmp6 = 1e-05
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp2 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tmp16 = tmp14 - tmp15
tmp18 = 2048.0
tmp19 = tmp17 / tmp18
tmp20 = 1e-06
tmp21 = tmp19 + tmp20
tmp22 = libdevice.rsqrt(tmp21)
tmp23 = tmp16 * tmp22
tmp25 = tmp23 * tmp24
tmp27 = tmp25 + tmp26
tmp28 = tmp13 + tmp27
tmp29 = tl.full([1], 0, tl.int32)
tmp30 = triton_helpers.maximum(tmp29, tmp28)
tl.store(in_out_ptr0 + x3, tmp30, None)
@triton.jit
def triton_red_fused_add_div_sqrt_sub_var_mean_43(in_out_ptr0, in_ptr0,
out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr):
xnumel = 1024
rnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex
tmp2_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp0 = tl.load(in_ptr0 + (r1 + 4096 * x0), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp2_mean_next, tmp2_m2_next, tmp2_weight_next = (triton_helpers.
welford_reduce(tmp1, tmp2_mean, tmp2_m2, tmp2_weight, roffset == 0)
)
tmp2_mean = tl.where(rmask & xmask, tmp2_mean_next, tmp2_mean)
tmp2_m2 = tl.where(rmask & xmask, tmp2_m2_next, tmp2_m2)
tmp2_weight = tl.where(rmask & xmask, tmp2_weight_next, tmp2_weight)
tmp2_tmp, tmp3_tmp, tmp4_tmp = triton_helpers.welford(tmp2_mean,
tmp2_m2, tmp2_weight, 1)
tmp2 = tmp2_tmp[:, None]
tmp3 = tmp3_tmp[:, None]
tmp4_tmp[:, None]
tmp5 = 4096.0
tmp6 = tmp3 / tmp5
tmp7 = 1e-05
tmp8 = tmp6 + tmp7
tmp9 = libdevice.sqrt(tmp8)
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp9, xmask)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp10 = tl.load(in_ptr0 + (r1 + 4096 * x0), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp11 = tmp10 - tmp2
tmp12 = tmp11 / tmp9
tl.store(out_ptr1 + (r1 + 4096 * x0), tmp12, rmask & xmask)
@triton.jit
def triton_poi_fused_add_native_group_norm_relu_44(in_ptr0, in_ptr1,
in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 4096
x2 = xindex // 65536
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x3, None)
tmp2 = tl.load(in_ptr2 + (32 * x2 + x0 // 128), None, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr3 + (32 * x2 + x0 // 128), None, eviction_policy=
'evict_last')
tmp11 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr5 + x0, None, eviction_policy='evict_last')
tmp3 = tmp1 - tmp2
tmp5 = 2048.0
tmp6 = tmp4 / tmp5
tmp7 = 1e-06
tmp8 = tmp6 + tmp7
tmp9 = libdevice.rsqrt(tmp8)
tmp10 = tmp3 * tmp9
tmp12 = tmp10 * tmp11
tmp14 = tmp12 + tmp13
tmp15 = tmp0 + tmp14
tmp16 = tl.full([1], 0, tl.int32)
tmp17 = triton_helpers.maximum(tmp16, tmp15)
tl.store(out_ptr0 + x3, tmp17, None)
@triton.jit
def triton_poi_fused_add_native_group_norm_relu_45(in_ptr0, in_ptr1,
in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, ynumel, xnumel, YBLOCK:
tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 64
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y1 = yindex // 16
y0 = yindex % 16
tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), ymask, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr1 + (x2 + 4096 * y3), ymask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr2 + (32 * y1 + x2 // 128), ymask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr3 + (32 * y1 + x2 // 128), ymask, eviction_policy=
'evict_last')
tmp11 = tl.load(in_ptr4 + x2, None, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr5 + x2, None, eviction_policy='evict_last')
tmp3 = tmp1 - tmp2
tmp5 = 2048.0
tmp6 = tmp4 / tmp5
tmp7 = 1e-06
tmp8 = tmp6 + tmp7
tmp9 = libdevice.rsqrt(tmp8)
tmp10 = tmp3 * tmp9
tmp12 = tmp10 * tmp11
tmp14 = tmp12 + tmp13
tmp15 = tmp0 + tmp14
tmp16 = tl.full([1, 1], 0, tl.int32)
tmp17 = triton_helpers.maximum(tmp16, tmp15)
tl.store(out_ptr0 + (y0 + 16 * x2 + 65536 * y1), tmp17, ymask)
@triton.jit
def triton_poi_fused_threshold_backward_46(in_ptr0, out_ptr0, ynumel,
xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4096
y1 = yindex // 4096
tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask, eviction_policy=
'evict_last')
tmp1 = 0.0
tmp2 = tmp0 <= tmp1
tl.store(out_ptr0 + (y0 + 4096 * x2 + 65536 * y1), tmp2, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17,
primals_18, primals_19, primals_20, primals_21, primals_22,
primals_23, primals_24, primals_25, primals_26, primals_27,
primals_28, primals_29, primals_30, primals_31, primals_32,
primals_33, primals_34, primals_35, primals_36, primals_37,
primals_38, primals_39, primals_40, primals_41, primals_42,
primals_43, primals_44, primals_45, primals_46, primals_47,
primals_48, primals_49, primals_50, primals_51, primals_52,
primals_53, primals_54, primals_55, primals_56, primals_57,
primals_58, primals_59, primals_60, primals_61, primals_62,
primals_63, primals_64, primals_65, primals_66, primals_67,
primals_68, primals_69, primals_70, primals_71, primals_72,
primals_73, primals_74, primals_75, primals_76, primals_77,
primals_78, primals_79, primals_80, primals_81, primals_82,
primals_83, primals_84, primals_85, primals_86, primals_87,
primals_88, primals_89, primals_90, primals_91, primals_92,
primals_93, primals_94, primals_95, primals_96, primals_97,
primals_98, primals_99, primals_100, primals_101, primals_102,
primals_103, primals_104, primals_105, primals_106, primals_107,
primals_108, primals_109, primals_110, primals_111, primals_112,
primals_113, primals_114, primals_115, primals_116, primals_117,
primals_118, primals_119, primals_120, primals_121) = args
args.clear()
assert_size_stride(primals_1, (256, 3, 7, 7), (147, 49, 7, 1))
assert_size_stride(primals_2, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_3, (256,), (1,))
assert_size_stride(primals_4, (256,), (1,))
assert_size_stride(primals_5, (1024, 256, 1, 1), (256, 1, 1, 1))
assert_size_stride(primals_6, (1024,), (1,))
assert_size_stride(primals_7, (1024,), (1,))
assert_size_stride(primals_8, (256, 256, 1, 1), (256, 1, 1, 1))
assert_size_stride(primals_9, (256,), (1,))
assert_size_stride(primals_10, (256,), (1,))
assert_size_stride(primals_11, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_12, (256,), (1,))
assert_size_stride(primals_13, (256,), (1,))
assert_size_stride(primals_14, (1024, 256, 1, 1), (256, 1, 1, 1))
assert_size_stride(primals_15, (1024,), (1,))
assert_size_stride(primals_16, (1024,), (1,))
assert_size_stride(primals_17, (256, 1024, 1, 1), (1024, 1, 1, 1))
assert_size_stride(primals_18, (256,), (1,))
assert_size_stride(primals_19, (256,), (1,))
assert_size_stride(primals_20, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_21, (256,), (1,))
assert_size_stride(primals_22, (256,), (1,))
assert_size_stride(primals_23, (1024, 256, 1, 1), (256, 1, 1, 1))
assert_size_stride(primals_24, (1024,), (1,))
assert_size_stride(primals_25, (1024,), (1,))
assert_size_stride(primals_26, (256, 1024, 1, 1), (1024, 1, 1, 1))
assert_size_stride(primals_27, (256,), (1,))
assert_size_stride(primals_28, (256,), (1,))
assert_size_stride(primals_29, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_30, (256,), (1,))
assert_size_stride(primals_31, (256,), (1,))
assert_size_stride(primals_32, (1024, 256, 1, 1), (256, 1, 1, 1))
assert_size_stride(primals_33, (1024,), (1,))
assert_size_stride(primals_34, (1024,), (1,))
assert_size_stride(primals_35, (256, 1024, 1, 1), (1024, 1, 1, 1))
assert_size_stride(primals_36, (256,), (1,))
assert_size_stride(primals_37, (256,), (1,))
assert_size_stride(primals_38, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_39, (256,), (1,))
assert_size_stride(primals_40, (256,), (1,))
assert_size_stride(primals_41, (1024, 256, 1, 1), (256, 1, 1, 1))
assert_size_stride(primals_42, (1024,), (1,))
assert_size_stride(primals_43, (1024,), (1,))
assert_size_stride(primals_44, (2048, 1024, 1, 1), (1024, 1, 1, 1))
assert_size_stride(primals_45, (2048,), (1,))
assert_size_stride(primals_46, (2048,), (1,))
assert_size_stride(primals_47, (512, 1024, 1, 1), (1024, 1, 1, 1))
assert_size_stride(primals_48, (512,), (1,))
assert_size_stride(primals_49, (512,), (1,))
assert_size_stride(primals_50, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_51, (512,), (1,))
assert_size_stride(primals_52, (512,), (1,))
assert_size_stride(primals_53, (2048, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_54, (2048,), (1,))
assert_size_stride(primals_55, (2048,), (1,))
assert_size_stride(primals_56, (512, 2048, 1, 1), (2048, 1, 1, 1))
assert_size_stride(primals_57, (512,), (1,))
assert_size_stride(primals_58, (512,), (1,))
assert_size_stride(primals_59, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_60, (512,), (1,))
assert_size_stride(primals_61, (512,), (1,))
assert_size_stride(primals_62, (2048, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_63, (2048,), (1,))
assert_size_stride(primals_64, (2048,), (1,))
assert_size_stride(primals_65, (512, 2048, 1, 1), (2048, 1, 1, 1))
assert_size_stride(primals_66, (512,), (1,))
assert_size_stride(primals_67, (512,), (1,))
assert_size_stride(primals_68, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_69, (512,), (1,))
assert_size_stride(primals_70, (512,), (1,))
assert_size_stride(primals_71, (2048, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_72, (2048,), (1,))
assert_size_stride(primals_73, (2048,), (1,))
assert_size_stride(primals_74, (512, 2048, 1, 1), (2048, 1, 1, 1))
assert_size_stride(primals_75, (512,), (1,))
assert_size_stride(primals_76, (512,), (1,))
assert_size_stride(primals_77, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_78, (512,), (1,))
assert_size_stride(primals_79, (512,), (1,))
assert_size_stride(primals_80, (2048, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_81, (2048,), (1,))
assert_size_stride(primals_82, (2048,), (1,))
assert_size_stride(primals_83, (4096, 2048, 1, 1), (2048, 1, 1, 1))
assert_size_stride(primals_84, (4096,), (1,))
assert_size_stride(primals_85, (4096,), (1,))
assert_size_stride(primals_86, (1024, 2048, 1, 1), (2048, 1, 1, 1))
assert_size_stride(primals_87, (1024,), (1,))
assert_size_stride(primals_88, (1024,), (1,))
assert_size_stride(primals_89, (1024, 1024, 3, 3), (9216, 9, 3, 1))
assert_size_stride(primals_90, (1024,), (1,))
assert_size_stride(primals_91, (1024,), (1,))
assert_size_stride(primals_92, (4096, 1024, 1, 1), (1024, 1, 1, 1))
assert_size_stride(primals_93, (4096,), (1,))
assert_size_stride(primals_94, (4096,), (1,))
assert_size_stride(primals_95, (1024, 4096, 1, 1), (4096, 1, 1, 1))
assert_size_stride(primals_96, (1024,), (1,))
assert_size_stride(primals_97, (1024,), (1,))
assert_size_stride(primals_98, (1024, 1024, 3, 3), (9216, 9, 3, 1))
assert_size_stride(primals_99, (1024,), (1,))
assert_size_stride(primals_100, (1024,), (1,))
assert_size_stride(primals_101, (4096, 1024, 1, 1), (1024, 1, 1, 1))
assert_size_stride(primals_102, (4096,), (1,))
assert_size_stride(primals_103, (4096,), (1,))
assert_size_stride(primals_104, (1024, 4096, 1, 1), (4096, 1, 1, 1))
assert_size_stride(primals_105, (1024,), (1,))
assert_size_stride(primals_106, (1024,), (1,))
assert_size_stride(primals_107, (1024, 1024, 3, 3), (9216, 9, 3, 1))
assert_size_stride(primals_108, (1024,), (1,))
assert_size_stride(primals_109, (1024,), (1,))
assert_size_stride(primals_110, (4096, 1024, 1, 1), (1024, 1, 1, 1))
assert_size_stride(primals_111, (4096,), (1,))
assert_size_stride(primals_112, (4096,), (1,))
assert_size_stride(primals_113, (1024, 4096, 1, 1), (4096, 1, 1, 1))
assert_size_stride(primals_114, (1024,), (1,))
assert_size_stride(primals_115, (1024,), (1,))
assert_size_stride(primals_116, (1024, 1024, 3, 3), (9216, 9, 3, 1))
assert_size_stride(primals_117, (1024,), (1,))
assert_size_stride(primals_118, (1024,), (1,))
assert_size_stride(primals_119, (4096, 1024, 1, 1), (1024, 1, 1, 1))
assert_size_stride(primals_120, (4096,), (1,))
assert_size_stride(primals_121, (4096,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((256, 3, 7, 7), (147, 1, 21, 3), torch.
float32)
get_raw_stream(0)
triton_poi_fused_0[grid(768, 49)](primals_1, buf0, 768, 49, XBLOCK=
32, YBLOCK=32, num_warps=4, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((4, 3, 64, 64), (12288, 1, 192, 3), torch
.float32)
triton_poi_fused_1[grid(12, 4096)](primals_2, buf1, 12, 4096,
XBLOCK=64, YBLOCK=16, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256),
torch.float32)
triton_poi_fused_2[grid(65536, 9)](primals_11, buf2, 65536, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_11
buf3 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256),
torch.float32)
triton_poi_fused_2[grid(65536, 9)](primals_20, buf3, 65536, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_20
buf4 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256),
torch.float32)
triton_poi_fused_2[grid(65536, 9)](primals_29, buf4, 65536, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_29
buf5 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256),
torch.float32)
triton_poi_fused_2[grid(65536, 9)](primals_38, buf5, 65536, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_38
buf6 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512),
torch.float32)
triton_poi_fused_3[grid(262144, 9)](primals_50, buf6, 262144, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_50
buf7 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512),
torch.float32)
triton_poi_fused_3[grid(262144, 9)](primals_59, buf7, 262144, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_59
buf8 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512),
torch.float32)
triton_poi_fused_3[grid(262144, 9)](primals_68, buf8, 262144, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_68
buf9 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512),
torch.float32)
triton_poi_fused_3[grid(262144, 9)](primals_77, buf9, 262144, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_77
buf10 = empty_strided_cuda((1024, 1024, 3, 3), (9216, 1, 3072, 1024
), torch.float32)
triton_poi_fused_4[grid(1048576, 9)](primals_89, buf10, 1048576, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_89
buf11 = empty_strided_cuda((1024, 1024, 3, 3), (9216, 1, 3072, 1024
), torch.float32)
triton_poi_fused_4[grid(1048576, 9)](primals_98, buf11, 1048576, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_98
buf12 = empty_strided_cuda((1024, 1024, 3, 3), (9216, 1, 3072, 1024
), torch.float32)
triton_poi_fused_4[grid(1048576, 9)](primals_107, buf12, 1048576, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_107
buf13 = empty_strided_cuda((1024, 1024, 3, 3), (9216, 1, 3072, 1024
), torch.float32)
triton_poi_fused_4[grid(1048576, 9)](primals_116, buf13, 1048576, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_116
buf15 = empty_strided_cuda((256, 1, 1, 1), (1, 256, 256, 256),
torch.float32)
buf17 = reinterpret_tensor(buf15, (256, 1, 1, 1), (1, 1, 1, 1), 0)
del buf15
buf18 = empty_strided_cuda((256, 3, 7, 7), (147, 1, 21, 3), torch.
float32)
triton_per_fused_add_div_sqrt_sub_var_mean_5[grid(256)](buf17, buf0,
buf18, 256, 147, XBLOCK=1, num_warps=2, num_stages=1)
buf19 = extern_kernels.convolution(buf1, buf18, stride=(2, 2),
padding=(3, 3), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf19, (4, 256, 32, 32), (262144, 1, 8192, 256))
buf20 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.
float32)
buf21 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.
float32)
buf23 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.
float32)
triton_red_fused_native_group_norm_6[grid(128)](buf19, buf20, buf21,
buf23, 128, 8192, XBLOCK=1, RBLOCK=2048, num_warps=16, num_stages=1
)
buf24 = empty_strided_cuda((4, 256, 32, 32), (262144, 1, 8192, 256),
torch.float32)
triton_poi_fused_native_group_norm_relu_7[grid(1048576)](buf19,
buf20, buf21, primals_3, primals_4, buf24, 1048576, XBLOCK=1024,
num_warps=4, num_stages=1)
del primals_4
buf25 = empty_strided_cuda((4, 256, 15, 15), (57600, 1, 3840, 256),
torch.float32)
buf26 = empty_strided_cuda((4, 256, 15, 15), (57600, 1, 3840, 256),
torch.int8)
triton_poi_fused_max_pool2d_with_indices_8[grid(230400)](buf24,
buf25, buf26, 230400, XBLOCK=512, num_warps=8, num_stages=1)
buf28 = empty_strided_cuda((1024, 1, 1, 1), (1, 1024, 1024, 1024),
torch.float32)
buf30 = reinterpret_tensor(buf28, (1024, 1, 1, 1), (1, 1, 1, 1), 0)
del buf28
buf31 = empty_strided_cuda((1024, 256, 1, 1), (256, 1, 256, 256),
torch.float32)
triton_per_fused_add_div_sqrt_sub_var_mean_9[grid(1024)](buf30,
primals_5, buf31, 1024, 256, num_warps=2, num_stages=1)
buf32 = extern_kernels.convolution(buf25, buf31, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf32, (4, 1024, 15, 15), (230400, 1, 15360, 1024))
buf33 = empty_strided_cuda((4, 1024, 1, 1), (1024, 1, 4096, 4096),
torch.float32)
buf34 = empty_strided_cuda((4, 1024, 1, 1), (1024, 1, 4096, 4096),
torch.float32)
buf36 = empty_strided_cuda((4, 1024, 1, 1), (1024, 1, 4096, 4096),
torch.float32)
triton_per_fused_native_group_norm_10[grid(4096)](buf32, buf33,
buf34, buf36, 4096, 225, XBLOCK=1, num_warps=2, num_stages=1)
buf38 = empty_strided_cuda((256, 1, 1, 1), (1, 256, 256, 256),
torch.float32)
buf40 = reinterpret_tensor(buf38, (256, 1, 1, 1), (1, 1, 1, 1), 0)
del buf38
buf41 = empty_strided_cuda((256, 256, 1, 1), (256, 1, 256, 256),
torch.float32)
triton_per_fused_add_div_sqrt_sub_var_mean_11[grid(256)](buf40,
primals_8, buf41, 256, 256, num_warps=2, num_stages=1)
buf42 = extern_kernels.convolution(buf25, buf41, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf42, (4, 256, 15, 15), (57600, 1, 3840, 256))
buf43 = buf21
del buf21
buf44 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.
float32)
buf46 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.
float32)
triton_red_fused_native_group_norm_12[grid(128)](buf42, buf43,
buf44, buf46, 128, 1800, XBLOCK=1, RBLOCK=2048, num_warps=16,
num_stages=1)
buf47 = empty_strided_cuda((4, 256, 15, 15), (57600, 1, 3840, 256),
torch.float32)
triton_poi_fused_native_group_norm_relu_13[grid(230400)](buf42,
buf43, buf44, primals_9, primals_10, buf47, 230400, XBLOCK=1024,
num_warps=4, num_stages=1)
del primals_10
buf49 = empty_strided_cuda((256, 1, 1, 1), (1, 256, 256, 256),
torch.float32)
buf51 = reinterpret_tensor(buf49, (256, 1, 1, 1), (1, 1, 1, 1), 0)
del buf49
buf52 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256),
torch.float32)
triton_red_fused_add_div_sqrt_sub_var_mean_14[grid(256)](buf51,
buf2, buf52, 256, 2304, XBLOCK=1, RBLOCK=2048, num_warps=16,
num_stages=1)
buf53 = extern_kernels.convolution(buf47, buf52, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf53, (4, 256, 15, 15), (57600, 1, 3840, 256))
buf54 = buf44
del buf44
buf55 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.
float32)
buf57 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.
float32)
triton_red_fused_native_group_norm_12[grid(128)](buf53, buf54,
buf55, buf57, 128, 1800, XBLOCK=1, RBLOCK=2048, num_warps=16,
num_stages=1)
buf58 = empty_strided_cuda((4, 256, 15, 15), (57600, 1, 3840, 256),
torch.float32)
triton_poi_fused_native_group_norm_relu_13[grid(230400)](buf53,
buf54, buf55, primals_12, primals_13, buf58, 230400, XBLOCK=
1024, num_warps=4, num_stages=1)
del primals_13
buf60 = empty_strided_cuda((1024, 1, 1, 1), (1, 1024, 1024, 1024),
torch.float32)
buf62 = reinterpret_tensor(buf60, (1024, 1, 1, 1), (1, 1, 1, 1), 0)
del buf60
buf63 = empty_strided_cuda((1024, 256, 1, 1), (256, 1, 256, 256),
torch.float32)
triton_per_fused_add_div_sqrt_sub_var_mean_9[grid(1024)](buf62,
primals_14, buf63, 1024, 256, num_warps=2, num_stages=1)
buf64 = extern_kernels.convolution(buf58, buf63, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf64, (4, 1024, 15, 15), (230400, 1, 15360, 1024))
buf65 = buf55
del buf55
buf66 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.
float32)
buf68 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.
float32)
triton_red_fused_native_group_norm_15[grid(128)](buf64, buf65,
buf66, buf68, 128, 7200, XBLOCK=1, RBLOCK=2048, num_warps=16,
num_stages=1)
buf69 = empty_strided_cuda((4, 1024, 15, 15), (230400, 1, 15360,
1024), torch.float32)
buf70 = buf69
del buf69
triton_poi_fused_add_native_group_norm_relu_16[grid(921600)](buf70,
buf32, buf33, buf34, primals_6, primals_7, buf64, buf65, buf66,
primals_15, primals_16, 921600, XBLOCK=512, num_warps=8,
num_stages=1)
del primals_16
del primals_7
buf72 = empty_strided_cuda((256, 1, 1, 1), (1, 256, 256, 256),
torch.float32)
buf74 = reinterpret_tensor(buf72, (256, 1, 1, 1), (1, 1, 1, 1), 0)
del buf72
buf75 = empty_strided_cuda((256, 1024, 1, 1), (1024, 1, 1024, 1024),
torch.float32)
triton_per_fused_add_div_sqrt_sub_var_mean_17[grid(256)](buf74,
primals_17, buf75, 256, 1024, num_warps=8, num_stages=1)
buf76 = extern_kernels.convolution(buf70, buf75, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf76, (4, 256, 15, 15), (57600, 1, 3840, 256))
buf77 = buf66
del buf66
buf78 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.
float32)
buf80 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.
float32)
triton_red_fused_native_group_norm_12[grid(128)](buf76, buf77,
buf78, buf80, 128, 1800, XBLOCK=1, RBLOCK=2048, num_warps=16,
num_stages=1)
buf81 = empty_strided_cuda((4, 256, 15, 15), (57600, 1, 3840, 256),
torch.float32)
triton_poi_fused_native_group_norm_relu_13[grid(230400)](buf76,
buf77, buf78, primals_18, primals_19, buf81, 230400, XBLOCK=
1024, num_warps=4, num_stages=1)
del primals_19
buf83 = empty_strided_cuda((256, 1, 1, 1), (1, 256, 256, 256),
torch.float32)
buf85 = reinterpret_tensor(buf83, (256, 1, 1, 1), (1, 1, 1, 1), 0)
del buf83
buf86 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256),
torch.float32)
triton_red_fused_add_div_sqrt_sub_var_mean_14[grid(256)](buf85,
buf3, buf86, 256, 2304, XBLOCK=1, RBLOCK=2048, num_warps=16,
num_stages=1)
buf87 = extern_kernels.convolution(buf81, buf86, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf87, (4, 256, 15, 15), (57600, 1, 3840, 256))
buf88 = buf78
del buf78
buf89 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.
float32)
buf91 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.
float32)
triton_red_fused_native_group_norm_12[grid(128)](buf87, buf88,
buf89, buf91, 128, 1800, XBLOCK=1, RBLOCK=2048, num_warps=16,
num_stages=1)
buf92 = empty_strided_cuda((4, 256, 15, 15), (57600, 1, 3840, 256),
torch.float32)
triton_poi_fused_native_group_norm_relu_13[grid(230400)](buf87,
buf88, buf89, primals_21, primals_22, buf92, 230400, XBLOCK=
1024, num_warps=4, num_stages=1)
del primals_22
buf94 = empty_strided_cuda((1024, 1, 1, 1), (1, 1024, 1024, 1024),
torch.float32)
buf96 = reinterpret_tensor(buf94, (1024, 1, 1, 1), (1, 1, 1, 1), 0)
del buf94
buf97 = empty_strided_cuda((1024, 256, 1, 1), (256, 1, 256, 256),
torch.float32)
triton_per_fused_add_div_sqrt_sub_var_mean_9[grid(1024)](buf96,
primals_23, buf97, 1024, 256, num_warps=2, num_stages=1)
buf98 = extern_kernels.convolution(buf92, buf97, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf98, (4, 1024, 15, 15), (230400, 1, 15360, 1024))
buf99 = buf89
del buf89
buf100 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf102 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_red_fused_native_group_norm_15[grid(128)](buf98, buf99,
buf100, buf102, 128, 7200, XBLOCK=1, RBLOCK=2048, num_warps=16,
num_stages=1)
buf103 = empty_strided_cuda((4, 1024, 15, 15), (230400, 1, 15360,
1024), torch.float32)
triton_poi_fused_add_native_group_norm_relu_18[grid(921600)](buf70,
buf98, buf99, buf100, primals_24, primals_25, buf103, 921600,
XBLOCK=1024, num_warps=4, num_stages=1)
del primals_25
buf105 = empty_strided_cuda((256, 1, 1, 1), (1, 256, 256, 256),
torch.float32)
buf107 = reinterpret_tensor(buf105, (256, 1, 1, 1), (1, 1, 1, 1), 0)
del buf105
buf108 = empty_strided_cuda((256, 1024, 1, 1), (1024, 1, 1024, 1024
), torch.float32)
triton_per_fused_add_div_sqrt_sub_var_mean_17[grid(256)](buf107,
primals_26, buf108, 256, 1024, num_warps=8, num_stages=1)
buf109 = extern_kernels.convolution(buf103, buf108, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf109, (4, 256, 15, 15), (57600, 1, 3840, 256))
buf110 = buf100
del buf100
buf111 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf113 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_red_fused_native_group_norm_12[grid(128)](buf109, buf110,
buf111, buf113, 128, 1800, XBLOCK=1, RBLOCK=2048, num_warps=16,
num_stages=1)
buf114 = empty_strided_cuda((4, 256, 15, 15), (57600, 1, 3840, 256),
torch.float32)
triton_poi_fused_native_group_norm_relu_13[grid(230400)](buf109,
buf110, buf111, primals_27, primals_28, buf114, 230400, XBLOCK=
1024, num_warps=4, num_stages=1)
del primals_28
buf116 = empty_strided_cuda((256, 1, 1, 1), (1, 256, 256, 256),
torch.float32)
buf118 = reinterpret_tensor(buf116, (256, 1, 1, 1), (1, 1, 1, 1), 0)
del buf116
buf119 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256),
torch.float32)
triton_red_fused_add_div_sqrt_sub_var_mean_14[grid(256)](buf118,
buf4, buf119, 256, 2304, XBLOCK=1, RBLOCK=2048, num_warps=16,
num_stages=1)
buf120 = extern_kernels.convolution(buf114, buf119, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf120, (4, 256, 15, 15), (57600, 1, 3840, 256))
buf121 = buf111
del buf111
buf122 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf124 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_red_fused_native_group_norm_12[grid(128)](buf120, buf121,
buf122, buf124, 128, 1800, XBLOCK=1, RBLOCK=2048, num_warps=16,
num_stages=1)
buf125 = empty_strided_cuda((4, 256, 15, 15), (57600, 1, 3840, 256),
torch.float32)
triton_poi_fused_native_group_norm_relu_13[grid(230400)](buf120,
buf121, buf122, primals_30, primals_31, buf125, 230400, XBLOCK=
1024, num_warps=4, num_stages=1)
del primals_31
buf127 = empty_strided_cuda((1024, 1, 1, 1), (1, 1024, 1024, 1024),
torch.float32)
buf129 = reinterpret_tensor(buf127, (1024, 1, 1, 1), (1, 1, 1, 1), 0)
del buf127
buf130 = empty_strided_cuda((1024, 256, 1, 1), (256, 1, 256, 256),
torch.float32)
triton_per_fused_add_div_sqrt_sub_var_mean_9[grid(1024)](buf129,
primals_32, buf130, 1024, 256, num_warps=2, num_stages=1)
buf131 = extern_kernels.convolution(buf125, buf130, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf131, (4, 1024, 15, 15), (230400, 1, 15360, 1024))
buf132 = buf122
del buf122
buf133 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf135 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_red_fused_native_group_norm_15[grid(128)](buf131, buf132,
buf133, buf135, 128, 7200, XBLOCK=1, RBLOCK=2048, num_warps=16,
num_stages=1)
buf136 = empty_strided_cuda((4, 1024, 15, 15), (230400, 1, 15360,
1024), torch.float32)
triton_poi_fused_add_native_group_norm_relu_18[grid(921600)](buf103,
buf131, buf132, buf133, primals_33, primals_34, buf136, 921600,
XBLOCK=1024, num_warps=4, num_stages=1)
del primals_34
buf138 = empty_strided_cuda((256, 1, 1, 1), (1, 256, 256, 256),
torch.float32)
buf140 = reinterpret_tensor(buf138, (256, 1, 1, 1), (1, 1, 1, 1), 0)
del buf138
buf141 = empty_strided_cuda((256, 1024, 1, 1), (1024, 1, 1024, 1024
), torch.float32)
triton_per_fused_add_div_sqrt_sub_var_mean_17[grid(256)](buf140,
primals_35, buf141, 256, 1024, num_warps=8, num_stages=1)
buf142 = extern_kernels.convolution(buf136, buf141, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf142, (4, 256, 15, 15), (57600, 1, 3840, 256))
buf143 = buf133
del buf133
buf144 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf146 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_red_fused_native_group_norm_12[grid(128)](buf142, buf143,
buf144, buf146, 128, 1800, XBLOCK=1, RBLOCK=2048, num_warps=16,
num_stages=1)
buf147 = empty_strided_cuda((4, 256, 15, 15), (57600, 1, 3840, 256),
torch.float32)
triton_poi_fused_native_group_norm_relu_13[grid(230400)](buf142,
buf143, buf144, primals_36, primals_37, buf147, 230400, XBLOCK=
1024, num_warps=4, num_stages=1)
del primals_37
buf149 = empty_strided_cuda((256, 1, 1, 1), (1, 256, 256, 256),
torch.float32)
buf151 = reinterpret_tensor(buf149, (256, 1, 1, 1), (1, 1, 1, 1), 0)
del buf149
buf152 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256),
torch.float32)
triton_red_fused_add_div_sqrt_sub_var_mean_14[grid(256)](buf151,
buf5, buf152, 256, 2304, XBLOCK=1, RBLOCK=2048, num_warps=16,
num_stages=1)
buf153 = extern_kernels.convolution(buf147, buf152, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf153, (4, 256, 15, 15), (57600, 1, 3840, 256))
buf154 = buf144
del buf144
buf155 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf157 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_red_fused_native_group_norm_12[grid(128)](buf153, buf154,
buf155, buf157, 128, 1800, XBLOCK=1, RBLOCK=2048, num_warps=16,
num_stages=1)
buf158 = empty_strided_cuda((4, 256, 15, 15), (57600, 1, 3840, 256),
torch.float32)
triton_poi_fused_native_group_norm_relu_13[grid(230400)](buf153,
buf154, buf155, primals_39, primals_40, buf158, 230400, XBLOCK=
1024, num_warps=4, num_stages=1)
del primals_40
buf160 = empty_strided_cuda((1024, 1, 1, 1), (1, 1024, 1024, 1024),
torch.float32)
buf162 = reinterpret_tensor(buf160, (1024, 1, 1, 1), (1, 1, 1, 1), 0)
del buf160
buf163 = empty_strided_cuda((1024, 256, 1, 1), (256, 1, 256, 256),
torch.float32)
triton_per_fused_add_div_sqrt_sub_var_mean_9[grid(1024)](buf162,
primals_41, buf163, 1024, 256, num_warps=2, num_stages=1)
buf164 = extern_kernels.convolution(buf158, buf163, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf164, (4, 1024, 15, 15), (230400, 1, 15360, 1024))
buf165 = buf155
del buf155
buf166 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf168 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_red_fused_native_group_norm_15[grid(128)](buf164, buf165,
buf166, buf168, 128, 7200, XBLOCK=1, RBLOCK=2048, num_warps=16,
num_stages=1)
buf169 = empty_strided_cuda((4, 1024, 15, 15), (230400, 1, 15360,
1024), torch.float32)
triton_poi_fused_add_native_group_norm_relu_18[grid(921600)](buf136,
buf164, buf165, buf166, primals_42, primals_43, buf169, 921600,
XBLOCK=1024, num_warps=4, num_stages=1)
del primals_43
buf171 = empty_strided_cuda((2048, 1, 1, 1), (1, 2048, 2048, 2048),
torch.float32)
buf173 = reinterpret_tensor(buf171, (2048, 1, 1, 1), (1, 1, 1, 1), 0)
del buf171
buf174 = empty_strided_cuda((2048, 1024, 1, 1), (1024, 1, 1024,
1024), torch.float32)
triton_per_fused_add_div_sqrt_sub_var_mean_19[grid(2048)](buf173,
primals_44, buf174, 2048, 1024, num_warps=8, num_stages=1)
buf175 = extern_kernels.convolution(buf169, buf174, stride=(2, 2),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf175, (4, 2048, 8, 8), (131072, 1, 16384, 2048))
buf176 = empty_strided_cuda((4, 2048, 1, 1), (2048, 1, 8192, 8192),
torch.float32)
buf177 = empty_strided_cuda((4, 2048, 1, 1), (2048, 1, 8192, 8192),
torch.float32)
buf179 = empty_strided_cuda((4, 2048, 1, 1), (2048, 1, 8192, 8192),
torch.float32)
triton_per_fused_native_group_norm_20[grid(8192)](buf175, buf176,
buf177, buf179, 8192, 64, XBLOCK=8, num_warps=4, num_stages=1)
buf181 = empty_strided_cuda((512, 1, 1, 1), (1, 512, 512, 512),
torch.float32)
buf183 = reinterpret_tensor(buf181, (512, 1, 1, 1), (1, 1, 1, 1), 0)
del buf181
buf184 = empty_strided_cuda((512, 1024, 1, 1), (1024, 1, 1024, 1024
), torch.float32)
triton_per_fused_add_div_sqrt_sub_var_mean_21[grid(512)](buf183,
primals_47, buf184, 512, 1024, num_warps=8, num_stages=1)
buf185 = extern_kernels.convolution(buf169, buf184, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf185, (4, 512, 15, 15), (115200, 1, 7680, 512))
buf186 = buf166
del buf166
buf187 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf189 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_red_fused_native_group_norm_22[grid(128)](buf185, buf186,
buf187, buf189, 128, 3600, XBLOCK=1, RBLOCK=2048, num_warps=16,
num_stages=1)
buf190 = empty_strided_cuda((4, 512, 15, 15), (115200, 1, 7680, 512
), torch.float32)
triton_poi_fused_native_group_norm_relu_23[grid(460800)](buf185,
buf186, buf187, primals_48, primals_49, buf190, 460800, XBLOCK=
512, num_warps=8, num_stages=1)
del primals_49
buf192 = empty_strided_cuda((512, 1, 1, 1), (1, 512, 512, 512),
torch.float32)
buf194 = reinterpret_tensor(buf192, (512, 1, 1, 1), (1, 1, 1, 1), 0)
del buf192
buf195 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512),
torch.float32)
triton_red_fused_add_div_sqrt_sub_var_mean_24[grid(512)](buf194,
buf6, buf195, 512, 4608, XBLOCK=1, RBLOCK=2048, num_warps=16,
num_stages=1)
buf196 = extern_kernels.convolution(buf190, buf195, stride=(2, 2),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf196, (4, 512, 8, 8), (32768, 1, 4096, 512))
buf197 = buf187
del buf187
buf198 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf200 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_per_fused_native_group_norm_25[grid(128)](buf196, buf197,
buf198, buf200, 128, 1024, num_warps=8, num_stages=1)
buf201 = empty_strided_cuda((4, 512, 8, 8), (32768, 1, 4096, 512),
torch.float32)
triton_poi_fused_native_group_norm_relu_26[grid(131072)](buf196,
buf197, buf198, primals_51, primals_52, buf201, 131072, XBLOCK=
1024, num_warps=4, num_stages=1)
del primals_52
buf203 = empty_strided_cuda((2048, 1, 1, 1), (1, 2048, 2048, 2048),
torch.float32)
buf205 = reinterpret_tensor(buf203, (2048, 1, 1, 1), (1, 1, 1, 1), 0)
del buf203
buf206 = empty_strided_cuda((2048, 512, 1, 1), (512, 1, 512, 512),
torch.float32)
triton_per_fused_add_div_sqrt_sub_var_mean_27[grid(2048)](buf205,
primals_53, buf206, 2048, 512, num_warps=4, num_stages=1)
buf207 = extern_kernels.convolution(buf201, buf206, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf207, (4, 2048, 8, 8), (131072, 1, 16384, 2048))
buf208 = buf198
del buf198
buf209 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf211 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_red_fused_native_group_norm_28[grid(128)](buf207, buf208,
buf209, buf211, 128, 4096, XBLOCK=1, RBLOCK=2048, num_warps=16,
num_stages=1)
buf212 = empty_strided_cuda((4, 2048, 8, 8), (131072, 1, 16384,
2048), torch.float32)
buf213 = buf212
del buf212
triton_poi_fused_add_native_group_norm_relu_29[grid(524288)](buf213,
buf175, buf176, buf177, primals_45, primals_46, buf207, buf208,
buf209, primals_54, primals_55, 524288, XBLOCK=512, num_warps=8,
num_stages=1)
del buf177
del primals_46
del primals_55
buf215 = empty_strided_cuda((512, 1, 1, 1), (1, 512, 512, 512),
torch.float32)
buf217 = reinterpret_tensor(buf215, (512, 1, 1, 1), (1, 1, 1, 1), 0)
del buf215
buf218 = empty_strided_cuda((512, 2048, 1, 1), (2048, 1, 2048, 2048
), torch.float32)
triton_red_fused_add_div_sqrt_sub_var_mean_30[grid(512)](buf217,
primals_56, buf218, 512, 2048, XBLOCK=1, RBLOCK=2048, num_warps
=16, num_stages=1)
buf219 = extern_kernels.convolution(buf213, buf218, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf219, (4, 512, 8, 8), (32768, 1, 4096, 512))
buf220 = buf209
del buf209
buf221 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf223 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_per_fused_native_group_norm_25[grid(128)](buf219, buf220,
buf221, buf223, 128, 1024, num_warps=8, num_stages=1)
buf224 = empty_strided_cuda((4, 512, 8, 8), (32768, 1, 4096, 512),
torch.float32)
triton_poi_fused_native_group_norm_relu_26[grid(131072)](buf219,
buf220, buf221, primals_57, primals_58, buf224, 131072, XBLOCK=
1024, num_warps=4, num_stages=1)
del primals_58
buf226 = empty_strided_cuda((512, 1, 1, 1), (1, 512, 512, 512),
torch.float32)
buf228 = reinterpret_tensor(buf226, (512, 1, 1, 1), (1, 1, 1, 1), 0)
del buf226
buf229 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512),
torch.float32)
triton_red_fused_add_div_sqrt_sub_var_mean_24[grid(512)](buf228,
buf7, buf229, 512, 4608, XBLOCK=1, RBLOCK=2048, num_warps=16,
num_stages=1)
buf230 = extern_kernels.convolution(buf224, buf229, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf230, (4, 512, 8, 8), (32768, 1, 4096, 512))
buf231 = buf221
del buf221
buf232 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf234 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_per_fused_native_group_norm_25[grid(128)](buf230, buf231,
buf232, buf234, 128, 1024, num_warps=8, num_stages=1)
buf235 = empty_strided_cuda((4, 512, 8, 8), (32768, 1, 4096, 512),
torch.float32)
triton_poi_fused_native_group_norm_relu_26[grid(131072)](buf230,
buf231, buf232, primals_60, primals_61, buf235, 131072, XBLOCK=
1024, num_warps=4, num_stages=1)
del primals_61
buf237 = empty_strided_cuda((2048, 1, 1, 1), (1, 2048, 2048, 2048),
torch.float32)
buf239 = reinterpret_tensor(buf237, (2048, 1, 1, 1), (1, 1, 1, 1), 0)
del buf237
buf240 = empty_strided_cuda((2048, 512, 1, 1), (512, 1, 512, 512),
torch.float32)
triton_per_fused_add_div_sqrt_sub_var_mean_27[grid(2048)](buf239,
primals_62, buf240, 2048, 512, num_warps=4, num_stages=1)
buf241 = extern_kernels.convolution(buf235, buf240, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf241, (4, 2048, 8, 8), (131072, 1, 16384, 2048))
buf242 = buf232
del buf232
buf243 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf245 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_red_fused_native_group_norm_28[grid(128)](buf241, buf242,
buf243, buf245, 128, 4096, XBLOCK=1, RBLOCK=2048, num_warps=16,
num_stages=1)
buf246 = empty_strided_cuda((4, 2048, 8, 8), (131072, 1, 16384,
2048), torch.float32)
triton_poi_fused_add_native_group_norm_relu_31[grid(524288)](buf213,
buf241, buf242, buf243, primals_63, primals_64, buf246, 524288,
XBLOCK=1024, num_warps=4, num_stages=1)
del primals_64
buf248 = empty_strided_cuda((512, 1, 1, 1), (1, 512, 512, 512),
torch.float32)
buf250 = reinterpret_tensor(buf248, (512, 1, 1, 1), (1, 1, 1, 1), 0)
del buf248
buf251 = empty_strided_cuda((512, 2048, 1, 1), (2048, 1, 2048, 2048
), torch.float32)
triton_red_fused_add_div_sqrt_sub_var_mean_30[grid(512)](buf250,
primals_65, buf251, 512, 2048, XBLOCK=1, RBLOCK=2048, num_warps
=16, num_stages=1)
buf252 = extern_kernels.convolution(buf246, buf251, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf252, (4, 512, 8, 8), (32768, 1, 4096, 512))
buf253 = buf243
del buf243
buf254 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf256 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_per_fused_native_group_norm_25[grid(128)](buf252, buf253,
buf254, buf256, 128, 1024, num_warps=8, num_stages=1)
buf257 = empty_strided_cuda((4, 512, 8, 8), (32768, 1, 4096, 512),
torch.float32)
triton_poi_fused_native_group_norm_relu_26[grid(131072)](buf252,
buf253, buf254, primals_66, primals_67, buf257, 131072, XBLOCK=
1024, num_warps=4, num_stages=1)
del primals_67
buf259 = empty_strided_cuda((512, 1, 1, 1), (1, 512, 512, 512),
torch.float32)
buf261 = reinterpret_tensor(buf259, (512, 1, 1, 1), (1, 1, 1, 1), 0)
del buf259
buf262 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512),
torch.float32)
triton_red_fused_add_div_sqrt_sub_var_mean_24[grid(512)](buf261,
buf8, buf262, 512, 4608, XBLOCK=1, RBLOCK=2048, num_warps=16,
num_stages=1)
buf263 = extern_kernels.convolution(buf257, buf262, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf263, (4, 512, 8, 8), (32768, 1, 4096, 512))
buf264 = buf254
del buf254
buf265 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf267 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_per_fused_native_group_norm_25[grid(128)](buf263, buf264,
buf265, buf267, 128, 1024, num_warps=8, num_stages=1)
buf268 = empty_strided_cuda((4, 512, 8, 8), (32768, 1, 4096, 512),
torch.float32)
triton_poi_fused_native_group_norm_relu_26[grid(131072)](buf263,
buf264, buf265, primals_69, primals_70, buf268, 131072, XBLOCK=
1024, num_warps=4, num_stages=1)
del primals_70
buf270 = empty_strided_cuda((2048, 1, 1, 1), (1, 2048, 2048, 2048),
torch.float32)
buf272 = reinterpret_tensor(buf270, (2048, 1, 1, 1), (1, 1, 1, 1), 0)
del buf270
buf273 = empty_strided_cuda((2048, 512, 1, 1), (512, 1, 512, 512),
torch.float32)
triton_per_fused_add_div_sqrt_sub_var_mean_27[grid(2048)](buf272,
primals_71, buf273, 2048, 512, num_warps=4, num_stages=1)
buf274 = extern_kernels.convolution(buf268, buf273, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf274, (4, 2048, 8, 8), (131072, 1, 16384, 2048))
buf275 = buf265
del buf265
buf276 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf278 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_red_fused_native_group_norm_28[grid(128)](buf274, buf275,
buf276, buf278, 128, 4096, XBLOCK=1, RBLOCK=2048, num_warps=16,
num_stages=1)
buf279 = empty_strided_cuda((4, 2048, 8, 8), (131072, 1, 16384,
2048), torch.float32)
triton_poi_fused_add_native_group_norm_relu_31[grid(524288)](buf246,
buf274, buf275, buf276, primals_72, primals_73, buf279, 524288,
XBLOCK=1024, num_warps=4, num_stages=1)
del primals_73
buf281 = empty_strided_cuda((512, 1, 1, 1), (1, 512, 512, 512),
torch.float32)
buf283 = reinterpret_tensor(buf281, (512, 1, 1, 1), (1, 1, 1, 1), 0)
del buf281
buf284 = empty_strided_cuda((512, 2048, 1, 1), (2048, 1, 2048, 2048
), torch.float32)
triton_red_fused_add_div_sqrt_sub_var_mean_30[grid(512)](buf283,
primals_74, buf284, 512, 2048, XBLOCK=1, RBLOCK=2048, num_warps
=16, num_stages=1)
buf285 = extern_kernels.convolution(buf279, buf284, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf285, (4, 512, 8, 8), (32768, 1, 4096, 512))
buf286 = buf276
del buf276
buf287 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf289 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_per_fused_native_group_norm_25[grid(128)](buf285, buf286,
buf287, buf289, 128, 1024, num_warps=8, num_stages=1)
buf290 = empty_strided_cuda((4, 512, 8, 8), (32768, 1, 4096, 512),
torch.float32)
triton_poi_fused_native_group_norm_relu_26[grid(131072)](buf285,
buf286, buf287, primals_75, primals_76, buf290, 131072, XBLOCK=
1024, num_warps=4, num_stages=1)
del primals_76
buf292 = empty_strided_cuda((512, 1, 1, 1), (1, 512, 512, 512),
torch.float32)
buf294 = reinterpret_tensor(buf292, (512, 1, 1, 1), (1, 1, 1, 1), 0)
del buf292
buf295 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512),
torch.float32)
triton_red_fused_add_div_sqrt_sub_var_mean_24[grid(512)](buf294,
buf9, buf295, 512, 4608, XBLOCK=1, RBLOCK=2048, num_warps=16,
num_stages=1)
buf296 = extern_kernels.convolution(buf290, buf295, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf296, (4, 512, 8, 8), (32768, 1, 4096, 512))
buf297 = buf287
del buf287
buf298 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf300 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_per_fused_native_group_norm_25[grid(128)](buf296, buf297,
buf298, buf300, 128, 1024, num_warps=8, num_stages=1)
buf301 = empty_strided_cuda((4, 512, 8, 8), (32768, 1, 4096, 512),
torch.float32)
triton_poi_fused_native_group_norm_relu_26[grid(131072)](buf296,
buf297, buf298, primals_78, primals_79, buf301, 131072, XBLOCK=
1024, num_warps=4, num_stages=1)
del primals_79
buf303 = empty_strided_cuda((2048, 1, 1, 1), (1, 2048, 2048, 2048),
torch.float32)
buf305 = reinterpret_tensor(buf303, (2048, 1, 1, 1), (1, 1, 1, 1), 0)
del buf303
buf306 = empty_strided_cuda((2048, 512, 1, 1), (512, 1, 512, 512),
torch.float32)
triton_per_fused_add_div_sqrt_sub_var_mean_27[grid(2048)](buf305,
primals_80, buf306, 2048, 512, num_warps=4, num_stages=1)
buf307 = extern_kernels.convolution(buf301, buf306, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf307, (4, 2048, 8, 8), (131072, 1, 16384, 2048))
buf308 = buf298
del buf298
buf309 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf311 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_red_fused_native_group_norm_28[grid(128)](buf307, buf308,
buf309, buf311, 128, 4096, XBLOCK=1, RBLOCK=2048, num_warps=16,
num_stages=1)
buf312 = empty_strided_cuda((4, 2048, 8, 8), (131072, 1, 16384,
2048), torch.float32)
triton_poi_fused_add_native_group_norm_relu_31[grid(524288)](buf279,
buf307, buf308, buf309, primals_81, primals_82, buf312, 524288,
XBLOCK=1024, num_warps=4, num_stages=1)
del primals_82
buf314 = reinterpret_tensor(buf34, (4096, 1, 1, 1), (1, 4096, 4096,
4096), 0)
del buf34
buf316 = reinterpret_tensor(buf314, (4096, 1, 1, 1), (1, 1, 1, 1), 0)
del buf314
buf317 = empty_strided_cuda((4096, 2048, 1, 1), (2048, 1, 2048,
2048), torch.float32)
triton_red_fused_add_div_sqrt_sub_var_mean_32[grid(4096)](buf316,
primals_83, buf317, 4096, 2048, XBLOCK=1, RBLOCK=2048,
num_warps=16, num_stages=1)
buf318 = extern_kernels.convolution(buf312, buf317, stride=(2, 2),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf318, (4, 4096, 4, 4), (65536, 1, 16384, 4096))
buf319 = empty_strided_cuda((4, 4096, 1, 1), (4096, 1, 16384, 16384
), torch.float32)
buf320 = empty_strided_cuda((4, 4096, 1, 1), (4096, 1, 16384, 16384
), torch.float32)
buf322 = empty_strided_cuda((4, 4096, 1, 1), (4096, 1, 16384, 16384
), torch.float32)
triton_per_fused_native_group_norm_33[grid(16384)](buf318, buf319,
buf320, buf322, 16384, 16, XBLOCK=32, num_warps=4, num_stages=1)
buf324 = empty_strided_cuda((1024, 1, 1, 1), (1, 1024, 1024, 1024),
torch.float32)
buf326 = reinterpret_tensor(buf324, (1024, 1, 1, 1), (1, 1, 1, 1), 0)
del buf324
buf327 = empty_strided_cuda((1024, 2048, 1, 1), (2048, 1, 2048,
2048), torch.float32)
triton_red_fused_add_div_sqrt_sub_var_mean_34[grid(1024)](buf326,
primals_86, buf327, 1024, 2048, XBLOCK=1, RBLOCK=2048,
num_warps=16, num_stages=1)
buf328 = extern_kernels.convolution(buf312, buf327, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf328, (4, 1024, 8, 8), (65536, 1, 8192, 1024))
buf329 = buf309
del buf309
buf330 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf332 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_red_fused_native_group_norm_35[grid(128)](buf328, buf329,
buf330, buf332, 128, 2048, XBLOCK=1, RBLOCK=2048, num_warps=16,
num_stages=1)
buf333 = empty_strided_cuda((4, 1024, 8, 8), (65536, 1, 8192, 1024),
torch.float32)
triton_poi_fused_native_group_norm_relu_36[grid(262144)](buf328,
buf329, buf330, primals_87, primals_88, buf333, 262144, XBLOCK=
512, num_warps=8, num_stages=1)
del primals_88
buf335 = empty_strided_cuda((1024, 1, 1, 1), (1, 1024, 1024, 1024),
torch.float32)
buf337 = reinterpret_tensor(buf335, (1024, 1, 1, 1), (1, 1, 1, 1), 0)
del buf335
buf338 = empty_strided_cuda((1024, 1024, 3, 3), (9216, 1, 3072,
1024), torch.float32)
triton_red_fused_add_div_sqrt_sub_var_mean_37[grid(1024)](buf337,
buf10, buf338, 1024, 9216, XBLOCK=1, RBLOCK=2048, num_warps=16,
num_stages=1)
buf339 = extern_kernels.convolution(buf333, buf338, stride=(2, 2),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf339, (4, 1024, 4, 4), (16384, 1, 4096, 1024))
buf340 = buf330
del buf330
buf341 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf343 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_per_fused_native_group_norm_38[grid(128)](buf339, buf340,
buf341, buf343, 128, 512, num_warps=4, num_stages=1)
buf344 = empty_strided_cuda((4, 1024, 4, 4), (16384, 1, 4096, 1024),
torch.float32)
triton_poi_fused_native_group_norm_relu_39[grid(65536)](buf339,
buf340, buf341, primals_90, primals_91, buf344, 65536, XBLOCK=
512, num_warps=4, num_stages=1)
del primals_91
buf346 = empty_strided_cuda((4096, 1, 1, 1), (1, 4096, 4096, 4096),
torch.float32)
buf348 = reinterpret_tensor(buf346, (4096, 1, 1, 1), (1, 1, 1, 1), 0)
del buf346
buf349 = empty_strided_cuda((4096, 1024, 1, 1), (1024, 1, 1024,
1024), torch.float32)
triton_per_fused_add_div_sqrt_sub_var_mean_40[grid(4096)](buf348,
primals_92, buf349, 4096, 1024, num_warps=8, num_stages=1)
buf350 = extern_kernels.convolution(buf344, buf349, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf350, (4, 4096, 4, 4), (65536, 1, 16384, 4096))
buf351 = buf341
del buf341
buf352 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf354 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_red_fused_native_group_norm_41[grid(128)](buf350, buf351,
buf352, buf354, 128, 2048, XBLOCK=1, RBLOCK=2048, num_warps=16,
num_stages=1)
buf355 = empty_strided_cuda((4, 4096, 4, 4), (65536, 1, 16384, 4096
), torch.float32)
buf356 = buf355
del buf355
triton_poi_fused_add_native_group_norm_relu_42[grid(262144)](buf356,
buf318, buf319, buf320, primals_84, primals_85, buf350, buf351,
buf352, primals_93, primals_94, 262144, XBLOCK=512, num_warps=8,
num_stages=1)
del buf320
del primals_85
del primals_94
buf358 = empty_strided_cuda((1024, 1, 1, 1), (1, 1024, 1024, 1024),
torch.float32)
buf360 = reinterpret_tensor(buf358, (1024, 1, 1, 1), (1, 1, 1, 1), 0)
del buf358
buf361 = empty_strided_cuda((1024, 4096, 1, 1), (4096, 1, 4096,
4096), torch.float32)
triton_red_fused_add_div_sqrt_sub_var_mean_43[grid(1024)](buf360,
primals_95, buf361, 1024, 4096, XBLOCK=1, RBLOCK=2048,
num_warps=16, num_stages=1)
buf362 = extern_kernels.convolution(buf356, buf361, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf362, (4, 1024, 4, 4), (16384, 1, 4096, 1024))
buf363 = buf352
del buf352
buf364 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf366 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_per_fused_native_group_norm_38[grid(128)](buf362, buf363,
buf364, buf366, 128, 512, num_warps=4, num_stages=1)
buf367 = empty_strided_cuda((4, 1024, 4, 4), (16384, 1, 4096, 1024),
torch.float32)
triton_poi_fused_native_group_norm_relu_39[grid(65536)](buf362,
buf363, buf364, primals_96, primals_97, buf367, 65536, XBLOCK=
512, num_warps=4, num_stages=1)
del primals_97
buf369 = empty_strided_cuda((1024, 1, 1, 1), (1, 1024, 1024, 1024),
torch.float32)
buf371 = reinterpret_tensor(buf369, (1024, 1, 1, 1), (1, 1, 1, 1), 0)
del buf369
buf372 = empty_strided_cuda((1024, 1024, 3, 3), (9216, 1, 3072,
1024), torch.float32)
triton_red_fused_add_div_sqrt_sub_var_mean_37[grid(1024)](buf371,
buf11, buf372, 1024, 9216, XBLOCK=1, RBLOCK=2048, num_warps=16,
num_stages=1)
buf373 = extern_kernels.convolution(buf367, buf372, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf373, (4, 1024, 4, 4), (16384, 1, 4096, 1024))
buf374 = buf364
del buf364
buf375 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf377 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_per_fused_native_group_norm_38[grid(128)](buf373, buf374,
buf375, buf377, 128, 512, num_warps=4, num_stages=1)
buf378 = empty_strided_cuda((4, 1024, 4, 4), (16384, 1, 4096, 1024),
torch.float32)
triton_poi_fused_native_group_norm_relu_39[grid(65536)](buf373,
buf374, buf375, primals_99, primals_100, buf378, 65536, XBLOCK=
512, num_warps=4, num_stages=1)
del primals_100
buf380 = empty_strided_cuda((4096, 1, 1, 1), (1, 4096, 4096, 4096),
torch.float32)
buf382 = reinterpret_tensor(buf380, (4096, 1, 1, 1), (1, 1, 1, 1), 0)
del buf380
buf383 = empty_strided_cuda((4096, 1024, 1, 1), (1024, 1, 1024,
1024), torch.float32)
triton_per_fused_add_div_sqrt_sub_var_mean_40[grid(4096)](buf382,
primals_101, buf383, 4096, 1024, num_warps=8, num_stages=1)
buf384 = extern_kernels.convolution(buf378, buf383, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf384, (4, 4096, 4, 4), (65536, 1, 16384, 4096))
buf385 = buf375
del buf375
buf386 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf388 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_red_fused_native_group_norm_41[grid(128)](buf384, buf385,
buf386, buf388, 128, 2048, XBLOCK=1, RBLOCK=2048, num_warps=16,
num_stages=1)
buf389 = empty_strided_cuda((4, 4096, 4, 4), (65536, 1, 16384, 4096
), torch.float32)
triton_poi_fused_add_native_group_norm_relu_44[grid(262144)](buf356,
buf384, buf385, buf386, primals_102, primals_103, buf389,
262144, XBLOCK=512, num_warps=8, num_stages=1)
del primals_103
buf391 = empty_strided_cuda((1024, 1, 1, 1), (1, 1024, 1024, 1024),
torch.float32)
buf393 = reinterpret_tensor(buf391, (1024, 1, 1, 1), (1, 1, 1, 1), 0)
del buf391
buf394 = empty_strided_cuda((1024, 4096, 1, 1), (4096, 1, 4096,
4096), torch.float32)
triton_red_fused_add_div_sqrt_sub_var_mean_43[grid(1024)](buf393,
primals_104, buf394, 1024, 4096, XBLOCK=1, RBLOCK=2048,
num_warps=16, num_stages=1)
buf395 = extern_kernels.convolution(buf389, buf394, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf395, (4, 1024, 4, 4), (16384, 1, 4096, 1024))
buf396 = buf386
del buf386
buf397 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf399 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_per_fused_native_group_norm_38[grid(128)](buf395, buf396,
buf397, buf399, 128, 512, num_warps=4, num_stages=1)
buf400 = empty_strided_cuda((4, 1024, 4, 4), (16384, 1, 4096, 1024),
torch.float32)
triton_poi_fused_native_group_norm_relu_39[grid(65536)](buf395,
buf396, buf397, primals_105, primals_106, buf400, 65536, XBLOCK
=512, num_warps=4, num_stages=1)
del primals_106
buf402 = empty_strided_cuda((1024, 1, 1, 1), (1, 1024, 1024, 1024),
torch.float32)
buf404 = reinterpret_tensor(buf402, (1024, 1, 1, 1), (1, 1, 1, 1), 0)
del buf402
buf405 = empty_strided_cuda((1024, 1024, 3, 3), (9216, 1, 3072,
1024), torch.float32)
triton_red_fused_add_div_sqrt_sub_var_mean_37[grid(1024)](buf404,
buf12, buf405, 1024, 9216, XBLOCK=1, RBLOCK=2048, num_warps=16,
num_stages=1)
buf406 = extern_kernels.convolution(buf400, buf405, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf406, (4, 1024, 4, 4), (16384, 1, 4096, 1024))
buf407 = buf397
del buf397
buf408 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf410 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_per_fused_native_group_norm_38[grid(128)](buf406, buf407,
buf408, buf410, 128, 512, num_warps=4, num_stages=1)
buf411 = empty_strided_cuda((4, 1024, 4, 4), (16384, 1, 4096, 1024),
torch.float32)
triton_poi_fused_native_group_norm_relu_39[grid(65536)](buf406,
buf407, buf408, primals_108, primals_109, buf411, 65536, XBLOCK
=512, num_warps=4, num_stages=1)
del primals_109
buf413 = empty_strided_cuda((4096, 1, 1, 1), (1, 4096, 4096, 4096),
torch.float32)
buf415 = reinterpret_tensor(buf413, (4096, 1, 1, 1), (1, 1, 1, 1), 0)
del buf413
buf416 = empty_strided_cuda((4096, 1024, 1, 1), (1024, 1, 1024,
1024), torch.float32)
triton_per_fused_add_div_sqrt_sub_var_mean_40[grid(4096)](buf415,
primals_110, buf416, 4096, 1024, num_warps=8, num_stages=1)
buf417 = extern_kernels.convolution(buf411, buf416, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf417, (4, 4096, 4, 4), (65536, 1, 16384, 4096))
buf418 = buf408
del buf408
buf419 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf421 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_red_fused_native_group_norm_41[grid(128)](buf417, buf418,
buf419, buf421, 128, 2048, XBLOCK=1, RBLOCK=2048, num_warps=16,
num_stages=1)
buf422 = empty_strided_cuda((4, 4096, 4, 4), (65536, 1, 16384, 4096
), torch.float32)
triton_poi_fused_add_native_group_norm_relu_44[grid(262144)](buf389,
buf417, buf418, buf419, primals_111, primals_112, buf422,
262144, XBLOCK=512, num_warps=8, num_stages=1)
del primals_112
buf424 = empty_strided_cuda((1024, 1, 1, 1), (1, 1024, 1024, 1024),
torch.float32)
buf426 = reinterpret_tensor(buf424, (1024, 1, 1, 1), (1, 1, 1, 1), 0)
del buf424
buf427 = empty_strided_cuda((1024, 4096, 1, 1), (4096, 1, 4096,
4096), torch.float32)
triton_red_fused_add_div_sqrt_sub_var_mean_43[grid(1024)](buf426,
primals_113, buf427, 1024, 4096, XBLOCK=1, RBLOCK=2048,
num_warps=16, num_stages=1)
buf428 = extern_kernels.convolution(buf422, buf427, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf428, (4, 1024, 4, 4), (16384, 1, 4096, 1024))
buf429 = buf419
del buf419
buf430 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf432 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_per_fused_native_group_norm_38[grid(128)](buf428, buf429,
buf430, buf432, 128, 512, num_warps=4, num_stages=1)
buf433 = empty_strided_cuda((4, 1024, 4, 4), (16384, 1, 4096, 1024),
torch.float32)
triton_poi_fused_native_group_norm_relu_39[grid(65536)](buf428,
buf429, buf430, primals_114, primals_115, buf433, 65536, XBLOCK
=512, num_warps=4, num_stages=1)
del primals_115
buf435 = empty_strided_cuda((1024, 1, 1, 1), (1, 1024, 1024, 1024),
torch.float32)
buf437 = reinterpret_tensor(buf435, (1024, 1, 1, 1), (1, 1, 1, 1), 0)
del buf435
buf438 = empty_strided_cuda((1024, 1024, 3, 3), (9216, 1, 3072,
1024), torch.float32)
triton_red_fused_add_div_sqrt_sub_var_mean_37[grid(1024)](buf437,
buf13, buf438, 1024, 9216, XBLOCK=1, RBLOCK=2048, num_warps=16,
num_stages=1)
buf439 = extern_kernels.convolution(buf433, buf438, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf439, (4, 1024, 4, 4), (16384, 1, 4096, 1024))
buf440 = buf430
del buf430
buf441 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf443 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_per_fused_native_group_norm_38[grid(128)](buf439, buf440,
buf441, buf443, 128, 512, num_warps=4, num_stages=1)
buf444 = empty_strided_cuda((4, 1024, 4, 4), (16384, 1, 4096, 1024),
torch.float32)
triton_poi_fused_native_group_norm_relu_39[grid(65536)](buf439,
buf440, buf441, primals_117, primals_118, buf444, 65536, XBLOCK
=512, num_warps=4, num_stages=1)
del primals_118
buf446 = empty_strided_cuda((4096, 1, 1, 1), (1, 4096, 4096, 4096),
torch.float32)
buf448 = reinterpret_tensor(buf446, (4096, 1, 1, 1), (1, 1, 1, 1), 0)
del buf446
buf449 = empty_strided_cuda((4096, 1024, 1, 1), (1024, 1, 1024,
1024), torch.float32)
triton_per_fused_add_div_sqrt_sub_var_mean_40[grid(4096)](buf448,
primals_119, buf449, 4096, 1024, num_warps=8, num_stages=1)
buf450 = extern_kernels.convolution(buf444, buf449, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf450, (4, 4096, 4, 4), (65536, 1, 16384, 4096))
buf451 = buf441
del buf441
buf452 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf454 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_red_fused_native_group_norm_41[grid(128)](buf450, buf451,
buf452, buf454, 128, 2048, XBLOCK=1, RBLOCK=2048, num_warps=16,
num_stages=1)
buf455 = empty_strided_cuda((4, 4096, 4, 4), (65536, 16, 4, 1),
torch.float32)
triton_poi_fused_add_native_group_norm_relu_45[grid(64, 4096)](buf422,
buf450, buf451, buf452, primals_120, primals_121, buf455, 64,
4096, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1)
del buf452
del primals_121
buf456 = empty_strided_cuda((4, 4096, 4, 4), (65536, 1, 16384, 4096
), torch.bool)
triton_poi_fused_threshold_backward_46[grid(16384, 16)](buf455,
buf456, 16384, 16, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
return (buf455, buf0, buf1, primals_3, primals_5, primals_6, primals_8,
primals_9, buf2, primals_12, primals_14, primals_15, primals_17,
primals_18, buf3, primals_21, primals_23, primals_24, primals_26,
primals_27, buf4, primals_30, primals_32, primals_33, primals_35,
primals_36, buf5, primals_39, primals_41, primals_42, primals_44,
primals_45, primals_47, primals_48, buf6, primals_51, primals_53,
primals_54, primals_56, primals_57, buf7, primals_60, primals_62,
primals_63, primals_65, primals_66, buf8, primals_69, primals_71,
primals_72, primals_74, primals_75, buf9, primals_78, primals_80,
primals_81, primals_83, primals_84, primals_86, primals_87, buf10,
primals_90, primals_92, primals_93, primals_95, primals_96, buf11,
primals_99, primals_101, primals_102, primals_104, primals_105,
buf12, primals_108, primals_110, primals_111, primals_113,
primals_114, buf13, primals_117, primals_119, primals_120, buf17,
buf18, buf19, reinterpret_tensor(buf20, (4, 32), (32, 1), 0),
reinterpret_tensor(buf23, (4, 32), (32, 1), 0), buf24, buf25, buf26,
buf30, buf31, buf32, reinterpret_tensor(buf33, (4, 1024), (1024, 1),
0), reinterpret_tensor(buf36, (4, 1024), (1024, 1), 0), buf40,
buf41, buf42, reinterpret_tensor(buf43, (4, 32), (32, 1), 0),
reinterpret_tensor(buf46, (4, 32), (32, 1), 0), buf47, buf51, buf52,
buf53, reinterpret_tensor(buf54, (4, 32), (32, 1), 0),
reinterpret_tensor(buf57, (4, 32), (32, 1), 0), buf58, buf62, buf63,
buf64, reinterpret_tensor(buf65, (4, 32), (32, 1), 0),
reinterpret_tensor(buf68, (4, 32), (32, 1), 0), buf70, buf74, buf75,
buf76, reinterpret_tensor(buf77, (4, 32), (32, 1), 0),
reinterpret_tensor(buf80, (4, 32), (32, 1), 0), buf81, buf85, buf86,
buf87, reinterpret_tensor(buf88, (4, 32), (32, 1), 0),
reinterpret_tensor(buf91, (4, 32), (32, 1), 0), buf92, buf96, buf97,
buf98, reinterpret_tensor(buf99, (4, 32), (32, 1), 0),
reinterpret_tensor(buf102, (4, 32), (32, 1), 0), buf103, buf107,
buf108, buf109, reinterpret_tensor(buf110, (4, 32), (32, 1), 0),
reinterpret_tensor(buf113, (4, 32), (32, 1), 0), buf114, buf118,
buf119, buf120, reinterpret_tensor(buf121, (4, 32), (32, 1), 0),
reinterpret_tensor(buf124, (4, 32), (32, 1), 0), buf125, buf129,
buf130, buf131, reinterpret_tensor(buf132, (4, 32), (32, 1), 0),
reinterpret_tensor(buf135, (4, 32), (32, 1), 0), buf136, buf140,
buf141, buf142, reinterpret_tensor(buf143, (4, 32), (32, 1), 0),
reinterpret_tensor(buf146, (4, 32), (32, 1), 0), buf147, buf151,
buf152, buf153, reinterpret_tensor(buf154, (4, 32), (32, 1), 0),
reinterpret_tensor(buf157, (4, 32), (32, 1), 0), buf158, buf162,
buf163, buf164, reinterpret_tensor(buf165, (4, 32), (32, 1), 0),
reinterpret_tensor(buf168, (4, 32), (32, 1), 0), buf169, buf173,
buf174, buf175, reinterpret_tensor(buf176, (4, 2048), (2048, 1), 0),
reinterpret_tensor(buf179, (4, 2048), (2048, 1), 0), buf183, buf184,
buf185, reinterpret_tensor(buf186, (4, 32), (32, 1), 0),
reinterpret_tensor(buf189, (4, 32), (32, 1), 0), buf190, buf194,
buf195, buf196, reinterpret_tensor(buf197, (4, 32), (32, 1), 0),
reinterpret_tensor(buf200, (4, 32), (32, 1), 0), buf201, buf205,
buf206, buf207, reinterpret_tensor(buf208, (4, 32), (32, 1), 0),
reinterpret_tensor(buf211, (4, 32), (32, 1), 0), buf213, buf217,
buf218, buf219, reinterpret_tensor(buf220, (4, 32), (32, 1), 0),
reinterpret_tensor(buf223, (4, 32), (32, 1), 0), buf224, buf228,
buf229, buf230, reinterpret_tensor(buf231, (4, 32), (32, 1), 0),
reinterpret_tensor(buf234, (4, 32), (32, 1), 0), buf235, buf239,
buf240, buf241, reinterpret_tensor(buf242, (4, 32), (32, 1), 0),
reinterpret_tensor(buf245, (4, 32), (32, 1), 0), buf246, buf250,
buf251, buf252, reinterpret_tensor(buf253, (4, 32), (32, 1), 0),
reinterpret_tensor(buf256, (4, 32), (32, 1), 0), buf257, buf261,
buf262, buf263, reinterpret_tensor(buf264, (4, 32), (32, 1), 0),
reinterpret_tensor(buf267, (4, 32), (32, 1), 0), buf268, buf272,
buf273, buf274, reinterpret_tensor(buf275, (4, 32), (32, 1), 0),
reinterpret_tensor(buf278, (4, 32), (32, 1), 0), buf279, buf283,
buf284, buf285, reinterpret_tensor(buf286, (4, 32), (32, 1), 0),
reinterpret_tensor(buf289, (4, 32), (32, 1), 0), buf290, buf294,
buf295, buf296, reinterpret_tensor(buf297, (4, 32), (32, 1), 0),
reinterpret_tensor(buf300, (4, 32), (32, 1), 0), buf301, buf305,
buf306, buf307, reinterpret_tensor(buf308, (4, 32), (32, 1), 0),
reinterpret_tensor(buf311, (4, 32), (32, 1), 0), buf312, buf316,
buf317, buf318, reinterpret_tensor(buf319, (4, 4096), (4096, 1), 0),
reinterpret_tensor(buf322, (4, 4096), (4096, 1), 0), buf326, buf327,
buf328, reinterpret_tensor(buf329, (4, 32), (32, 1), 0),
reinterpret_tensor(buf332, (4, 32), (32, 1), 0), buf333, buf337,
buf338, buf339, reinterpret_tensor(buf340, (4, 32), (32, 1), 0),
reinterpret_tensor(buf343, (4, 32), (32, 1), 0), buf344, buf348,
buf349, buf350, reinterpret_tensor(buf351, (4, 32), (32, 1), 0),
reinterpret_tensor(buf354, (4, 32), (32, 1), 0), buf356, buf360,
buf361, buf362, reinterpret_tensor(buf363, (4, 32), (32, 1), 0),
reinterpret_tensor(buf366, (4, 32), (32, 1), 0), buf367, buf371,
buf372, buf373, reinterpret_tensor(buf374, (4, 32), (32, 1), 0),
reinterpret_tensor(buf377, (4, 32), (32, 1), 0), buf378, buf382,
buf383, buf384, reinterpret_tensor(buf385, (4, 32), (32, 1), 0),
reinterpret_tensor(buf388, (4, 32), (32, 1), 0), buf389, buf393,
buf394, buf395, reinterpret_tensor(buf396, (4, 32), (32, 1), 0),
reinterpret_tensor(buf399, (4, 32), (32, 1), 0), buf400, buf404,
buf405, buf406, reinterpret_tensor(buf407, (4, 32), (32, 1), 0),
reinterpret_tensor(buf410, (4, 32), (32, 1), 0), buf411, buf415,
buf416, buf417, reinterpret_tensor(buf418, (4, 32), (32, 1), 0),
reinterpret_tensor(buf421, (4, 32), (32, 1), 0), buf422, buf426,
buf427, buf428, reinterpret_tensor(buf429, (4, 32), (32, 1), 0),
reinterpret_tensor(buf432, (4, 32), (32, 1), 0), buf433, buf437,
buf438, buf439, reinterpret_tensor(buf440, (4, 32), (32, 1), 0),
reinterpret_tensor(buf443, (4, 32), (32, 1), 0), buf444, buf448,
buf449, buf450, reinterpret_tensor(buf451, (4, 32), (32, 1), 0),
reinterpret_tensor(buf454, (4, 32), (32, 1), 0), buf456)
def conv1x1(cin, cout, stride=1, bias=False):
return StdConv2d(cin, cout, kernel_size=1, stride=stride, padding=0,
bias=bias)
def conv3x3(cin, cout, stride=1, groups=1, bias=False):
return StdConv2d(cin, cout, kernel_size=3, stride=stride, padding=1,
bias=bias, groups=groups)
def np2th(weights, conv=False):
"""Possibly convert HWIO to OIHW."""
if conv:
weights = weights.transpose([3, 2, 0, 1])
return torch.from_numpy(weights)
class StdConv2d(nn.Conv2d):
def forward(self, x):
w = self.weight
v, m = torch.var_mean(w, dim=[1, 2, 3], keepdim=True, unbiased=False)
w = (w - m) / torch.sqrt(v + 1e-05)
return F.conv2d(x, w, self.bias, self.stride, self.padding, self.
dilation, self.groups)
class PreActBottleneck(nn.Module):
"""Pre-activation (v2) bottleneck block.
"""
def __init__(self, cin, cout=None, cmid=None, stride=1):
super().__init__()
cout = cout or cin
cmid = cmid or cout // 4
self.gn1 = nn.GroupNorm(32, cmid, eps=1e-06)
self.conv1 = conv1x1(cin, cmid, bias=False)
self.gn2 = nn.GroupNorm(32, cmid, eps=1e-06)
self.conv2 = conv3x3(cmid, cmid, stride, bias=False)
self.gn3 = nn.GroupNorm(32, cout, eps=1e-06)
self.conv3 = conv1x1(cmid, cout, bias=False)
self.relu = nn.ReLU(inplace=True)
if stride != 1 or cin != cout:
self.downsample = conv1x1(cin, cout, stride, bias=False)
self.gn_proj = nn.GroupNorm(cout, cout)
def forward(self, x):
residual = x
if hasattr(self, 'downsample'):
residual = self.downsample(x)
residual = self.gn_proj(residual)
y = self.relu(self.gn1(self.conv1(x)))
y = self.relu(self.gn2(self.conv2(y)))
y = self.gn3(self.conv3(y))
y = self.relu(residual + y)
return y
def load_from(self, weights, n_block, n_unit):
conv1_weight = np2th(weights[pjoin(n_block, n_unit, 'conv1/kernel')
], conv=True)
conv2_weight = np2th(weights[pjoin(n_block, n_unit, 'conv2/kernel')
], conv=True)
conv3_weight = np2th(weights[pjoin(n_block, n_unit, 'conv3/kernel')
], conv=True)
gn1_weight = np2th(weights[pjoin(n_block, n_unit, 'gn1/scale')])
gn1_bias = np2th(weights[pjoin(n_block, n_unit, 'gn1/bias')])
gn2_weight = np2th(weights[pjoin(n_block, n_unit, 'gn2/scale')])
gn2_bias = np2th(weights[pjoin(n_block, n_unit, 'gn2/bias')])
gn3_weight = np2th(weights[pjoin(n_block, n_unit, 'gn3/scale')])
gn3_bias = np2th(weights[pjoin(n_block, n_unit, 'gn3/bias')])
self.conv1.weight.copy_(conv1_weight)
self.conv2.weight.copy_(conv2_weight)
self.conv3.weight.copy_(conv3_weight)
self.gn1.weight.copy_(gn1_weight.view(-1))
self.gn1.bias.copy_(gn1_bias.view(-1))
self.gn2.weight.copy_(gn2_weight.view(-1))
self.gn2.bias.copy_(gn2_bias.view(-1))
self.gn3.weight.copy_(gn3_weight.view(-1))
self.gn3.bias.copy_(gn3_bias.view(-1))
if hasattr(self, 'downsample'):
proj_conv_weight = np2th(weights[pjoin(n_block, n_unit,
'conv_proj/kernel')], conv=True)
proj_gn_weight = np2th(weights[pjoin(n_block, n_unit,
'gn_proj/scale')])
proj_gn_bias = np2th(weights[pjoin(n_block, n_unit,
'gn_proj/bias')])
self.downsample.weight.copy_(proj_conv_weight)
self.gn_proj.weight.copy_(proj_gn_weight.view(-1))
self.gn_proj.bias.copy_(proj_gn_bias.view(-1))
class ResNetV2New(nn.Module):
"""Implementation of Pre-activation (v2) ResNet mode."""
def __init__(self, block_units, width_factor):
super().__init__()
width = int(64 * width_factor)
self.width = width
self.root = nn.Sequential(OrderedDict([('conv', StdConv2d(3, width,
kernel_size=7, stride=2, bias=False, padding=3)), ('gn', nn.
GroupNorm(32, width, eps=1e-06)), ('relu', nn.ReLU(inplace=True
)), ('pool', nn.MaxPool2d(kernel_size=3, stride=2, padding=0))]))
self.body = nn.Sequential(OrderedDict([('block1', nn.Sequential(
OrderedDict([('unit1', PreActBottleneck(cin=width, cout=width *
4, cmid=width))] + [(f'unit{i:d}', PreActBottleneck(cin=width *
4, cout=width * 4, cmid=width)) for i in range(2, block_units[0
] + 1)]))), ('block2', nn.Sequential(OrderedDict([('unit1',
PreActBottleneck(cin=width * 4, cout=width * 8, cmid=width * 2,
stride=2))] + [(f'unit{i:d}', PreActBottleneck(cin=width * 8,
cout=width * 8, cmid=width * 2)) for i in range(2, block_units[
1] + 1)]))), ('block3', nn.Sequential(OrderedDict([('unit1',
PreActBottleneck(cin=width * 8, cout=width * 16, cmid=width * 4,
stride=2))] + [(f'unit{i:d}', PreActBottleneck(cin=width * 16,
cout=width * 16, cmid=width * 4)) for i in range(2, block_units
[2] + 1)])))]))
def forward(self, input_0):
primals_1 = self.root.conv.weight
primals_3 = self.root.gn.weight
primals_4 = self.root.gn.bias
primals_9 = self.body.block1.unit1.gn1.weight
primals_10 = self.body.block1.unit1.gn1.bias
primals_8 = self.body.block1.unit1.conv1.weight
primals_12 = self.body.block1.unit1.gn2.weight
primals_13 = self.body.block1.unit1.gn2.bias
primals_11 = self.body.block1.unit1.conv2.weight
primals_6 = self.body.block1.unit1.gn3.weight
primals_7 = self.body.block1.unit1.gn3.bias
primals_5 = self.body.block1.unit1.conv3.weight
primals_14 = self.body.block1.unit1.downsample.weight
primals_15 = self.body.block1.unit1.gn_proj.weight
primals_16 = self.body.block1.unit1.gn_proj.bias
primals_18 = self.body.block1.unit2.gn1.weight
primals_19 = self.body.block1.unit2.gn1.bias
primals_17 = self.body.block1.unit2.conv1.weight
primals_21 = self.body.block1.unit2.gn2.weight
primals_22 = self.body.block1.unit2.gn2.bias
primals_20 = self.body.block1.unit2.conv2.weight
primals_24 = self.body.block1.unit2.gn3.weight
primals_25 = self.body.block1.unit2.gn3.bias
primals_23 = self.body.block1.unit2.conv3.weight
primals_27 = self.body.block1.unit3.gn1.weight
primals_28 = self.body.block1.unit3.gn1.bias
primals_26 = self.body.block1.unit3.conv1.weight
primals_30 = self.body.block1.unit3.gn2.weight
primals_31 = self.body.block1.unit3.gn2.bias
primals_29 = self.body.block1.unit3.conv2.weight
primals_33 = self.body.block1.unit3.gn3.weight
primals_34 = self.body.block1.unit3.gn3.bias
primals_32 = self.body.block1.unit3.conv3.weight
primals_36 = self.body.block1.unit4.gn1.weight
primals_37 = self.body.block1.unit4.gn1.bias
primals_35 = self.body.block1.unit4.conv1.weight
primals_39 = self.body.block1.unit4.gn2.weight
primals_40 = self.body.block1.unit4.gn2.bias
primals_38 = self.body.block1.unit4.conv2.weight
primals_42 = self.body.block1.unit4.gn3.weight
primals_43 = self.body.block1.unit4.gn3.bias
primals_41 = self.body.block1.unit4.conv3.weight
primals_48 = self.body.block2.unit1.gn1.weight
primals_49 = self.body.block2.unit1.gn1.bias
primals_47 = self.body.block2.unit1.conv1.weight
primals_51 = self.body.block2.unit1.gn2.weight
primals_52 = self.body.block2.unit1.gn2.bias
primals_50 = self.body.block2.unit1.conv2.weight
primals_45 = self.body.block2.unit1.gn3.weight
primals_46 = self.body.block2.unit1.gn3.bias
primals_53 = self.body.block2.unit1.conv3.weight
primals_44 = self.body.block2.unit1.downsample.weight
primals_54 = self.body.block2.unit1.gn_proj.weight
primals_55 = self.body.block2.unit1.gn_proj.bias
primals_57 = self.body.block2.unit2.gn1.weight
primals_58 = self.body.block2.unit2.gn1.bias
primals_56 = self.body.block2.unit2.conv1.weight
primals_60 = self.body.block2.unit2.gn2.weight
primals_61 = self.body.block2.unit2.gn2.bias
primals_59 = self.body.block2.unit2.conv2.weight
primals_63 = self.body.block2.unit2.gn3.weight
primals_64 = self.body.block2.unit2.gn3.bias
primals_62 = self.body.block2.unit2.conv3.weight
primals_66 = self.body.block2.unit3.gn1.weight
primals_67 = self.body.block2.unit3.gn1.bias
primals_65 = self.body.block2.unit3.conv1.weight
primals_69 = self.body.block2.unit3.gn2.weight
primals_70 = self.body.block2.unit3.gn2.bias
primals_68 = self.body.block2.unit3.conv2.weight
primals_72 = self.body.block2.unit3.gn3.weight
primals_73 = self.body.block2.unit3.gn3.bias
primals_71 = self.body.block2.unit3.conv3.weight
primals_75 = self.body.block2.unit4.gn1.weight
primals_76 = self.body.block2.unit4.gn1.bias
primals_74 = self.body.block2.unit4.conv1.weight
primals_78 = self.body.block2.unit4.gn2.weight
primals_79 = self.body.block2.unit4.gn2.bias
primals_77 = self.body.block2.unit4.conv2.weight
primals_81 = self.body.block2.unit4.gn3.weight
primals_82 = self.body.block2.unit4.gn3.bias
primals_80 = self.body.block2.unit4.conv3.weight
primals_87 = self.body.block3.unit1.gn1.weight
primals_88 = self.body.block3.unit1.gn1.bias
primals_86 = self.body.block3.unit1.conv1.weight
primals_90 = self.body.block3.unit1.gn2.weight
primals_91 = self.body.block3.unit1.gn2.bias
primals_89 = self.body.block3.unit1.conv2.weight
primals_84 = self.body.block3.unit1.gn3.weight
primals_85 = self.body.block3.unit1.gn3.bias
primals_92 = self.body.block3.unit1.conv3.weight
primals_83 = self.body.block3.unit1.downsample.weight
primals_93 = self.body.block3.unit1.gn_proj.weight
primals_94 = self.body.block3.unit1.gn_proj.bias
primals_96 = self.body.block3.unit2.gn1.weight
primals_97 = self.body.block3.unit2.gn1.bias
primals_95 = self.body.block3.unit2.conv1.weight
primals_99 = self.body.block3.unit2.gn2.weight
primals_100 = self.body.block3.unit2.gn2.bias
primals_98 = self.body.block3.unit2.conv2.weight
primals_102 = self.body.block3.unit2.gn3.weight
primals_103 = self.body.block3.unit2.gn3.bias
primals_101 = self.body.block3.unit2.conv3.weight
primals_105 = self.body.block3.unit3.gn1.weight
primals_106 = self.body.block3.unit3.gn1.bias
primals_104 = self.body.block3.unit3.conv1.weight
primals_108 = self.body.block3.unit3.gn2.weight
primals_109 = self.body.block3.unit3.gn2.bias
primals_107 = self.body.block3.unit3.conv2.weight
primals_111 = self.body.block3.unit3.gn3.weight
primals_112 = self.body.block3.unit3.gn3.bias
primals_110 = self.body.block3.unit3.conv3.weight
primals_114 = self.body.block3.unit4.gn1.weight
primals_115 = self.body.block3.unit4.gn1.bias
primals_113 = self.body.block3.unit4.conv1.weight
primals_117 = self.body.block3.unit4.gn2.weight
primals_118 = self.body.block3.unit4.gn2.bias
primals_116 = self.body.block3.unit4.conv2.weight
primals_120 = self.body.block3.unit4.gn3.weight
primals_121 = self.body.block3.unit4.gn3.bias
primals_119 = self.body.block3.unit4.conv3.weight
primals_2 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17, primals_18, primals_19,
primals_20, primals_21, primals_22, primals_23, primals_24,
primals_25, primals_26, primals_27, primals_28, primals_29,
primals_30, primals_31, primals_32, primals_33, primals_34,
primals_35, primals_36, primals_37, primals_38, primals_39,
primals_40, primals_41, primals_42, primals_43, primals_44,
primals_45, primals_46, primals_47, primals_48, primals_49,
primals_50, primals_51, primals_52, primals_53, primals_54,
primals_55, primals_56, primals_57, primals_58, primals_59,
primals_60, primals_61, primals_62, primals_63, primals_64,
primals_65, primals_66, primals_67, primals_68, primals_69,
primals_70, primals_71, primals_72, primals_73, primals_74,
primals_75, primals_76, primals_77, primals_78, primals_79,
primals_80, primals_81, primals_82, primals_83, primals_84,
primals_85, primals_86, primals_87, primals_88, primals_89,
primals_90, primals_91, primals_92, primals_93, primals_94,
primals_95, primals_96, primals_97, primals_98, primals_99,
primals_100, primals_101, primals_102, primals_103, primals_104,
primals_105, primals_106, primals_107, primals_108, primals_109,
primals_110, primals_111, primals_112, primals_113, primals_114,
primals_115, primals_116, primals_117, primals_118, primals_119,
primals_120, primals_121])
return output[0]
|
YLtrees2/ViT-pytorch-Low-rank-Approximation
|
ResNetV2
| false | 9,838 |
[
"MIT"
] | 0 |
249a8db1ab99b6a482c527853e4aa0cf52659bb8
|
https://github.com/YLtrees2/ViT-pytorch-Low-rank-Approximation/tree/249a8db1ab99b6a482c527853e4aa0cf52659bb8
|
AttentionSortNet
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/kz/ckzubvynqqylkbtesq44ei5dhmaikt24m3b6d6dkfsjcgebzr5ul.py
# Topologically Sorted Source Nodes: [mean, sq], Original ATen: [aten.mean, aten.add]
# Source node to ATen node mapping:
# mean => mean
# sq => add
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%view, [2]), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean, %view_2), kwargs = {})
triton_poi_fused_add_mean_0 = async_compile.triton('triton_poi_fused_add_mean_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mean_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mean_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x2), xmask)
tmp1 = 1.0
tmp2 = tmp0 / tmp1
tmp4 = tmp2 + tmp3
tl.store(out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/hz/chzi3aam26mikdhljz5x7jlqazm7kpktzeptsf36thgfhsg7ub6a.py
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# softmax => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_7, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_7, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/em/cem6qbxwbiqnjqybzk5arf2obt5uggy4qs7otwwpovvnrhvdc6h4.py
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# softmax => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (1, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (1, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mean, sq], Original ATen: [aten.mean, aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_mean_0.run(primals_1, primals_3, buf0, 64, grid=grid(64), stream=stream0)
del primals_1
del primals_3
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mean_1, sk], Original ATen: [aten.mean, aten.add]
triton_poi_fused_add_mean_0.run(primals_2, primals_4, buf1, 64, grid=grid(64), stream=stream0)
del primals_2
del primals_4
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [R], Original ATen: [aten.bmm]
extern_kernels.bmm(buf0, reinterpret_tensor(buf1, (4, 4, 4), (16, 1, 4), 0), out=buf2)
buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf2, buf3, 64, grid=grid(64), stream=stream0)
buf4 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf3, buf4, 64, grid=grid(64), stream=stream0)
del buf3
return (buf4, buf4, reinterpret_tensor(buf0, (4, 4, 4), (16, 1, 4), 0), buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((1, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch.nn import functional as F
from functools import partial
from torch import nn
def bucket(buckets, t, dim=1):
shape = list(t.shape)
shape[dim:dim + 1] = [buckets, -1]
return t.reshape(*shape)
def expand_dim(t, dim, k):
expand_shape = [-1] * len(t.shape)
expand_shape[dim] = k
return t.expand(*expand_shape)
def expand_batch_and_merge_head(b, t):
shape = list(t.squeeze(0).shape)
t = expand_dim(t, 0, b)
shape[0] = shape[0] * b
return t.reshape(*shape)
def log(t, eps=1e-06):
return torch.log(t + eps)
def sample_gumbel(shape, device, dtype, eps=1e-06):
u = torch.empty(shape, device=device, dtype=dtype).uniform_(0, 1)
return -log(-log(u, eps), eps)
def sinkhorn_sorting_operator(r, n_iters=8):
r.shape[1]
for _ in range(n_iters):
r = r - torch.logsumexp(r, dim=2, keepdim=True)
r = r - torch.logsumexp(r, dim=1, keepdim=True)
return torch.exp(r)
def gumbel_sinkhorn(r, n_iters=8, temperature=0.7):
r = log(r)
gumbel = sample_gumbel(r.shape, r.device, r.dtype)
r = (r + gumbel) / temperature
return sinkhorn_sorting_operator(r, n_iters)
class AttentionSortNet(nn.Module):
def __init__(self, heads, buckets, dim, non_permutative, temperature,
sinkhorn_iter, n_sortcut=0):
super().__init__()
self.heads = heads
self.buckets = buckets
self.dim = dim
self.non_permutative = non_permutative
self.temperature = temperature
self.sinkhorn_iter = sinkhorn_iter
self.n_sortcut = n_sortcut
self.q_pos_emb = nn.Parameter(torch.randn(1, heads, buckets if
n_sortcut == 0 else 1, dim))
self.k_pos_emb = nn.Parameter(torch.randn(1, heads, buckets, dim))
def forward(self, q, k):
bh, *_, buckets, device, dtype, _dim = (*q.shape, self.buckets, q.
device, q.dtype, self.dim)
b = bh // self.heads
b_q = bucket(buckets, q) if self.n_sortcut == 0 else bucket(1, q)
b_k = bucket(buckets, k)
pos_q, pos_k = map(partial(expand_batch_and_merge_head, b), (self.
q_pos_emb, self.k_pos_emb))
sq = b_q.mean(dim=2) + pos_q
sk = b_k.mean(dim=2) + pos_k
R = torch.einsum('bie,bje->bij', sq, sk)
if self.n_sortcut > 0:
values, indices = torch.topk(R, self.n_sortcut)
values = values.reshape(bh, self.n_sortcut, -1)
indices = indices.reshape(bh, self.n_sortcut, -1)
R = torch.zeros(bh, self.n_sortcut, buckets, device=device,
dtype=dtype).scatter(2, indices, values)
return R.softmax(dim=-1) if self.non_permutative else gumbel_sinkhorn(F
.relu(R), self.sinkhorn_iter, self.temperature)
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'heads': 4, 'buckets': 4, 'dim': 4, 'non_permutative': 4,
'temperature': 4, 'sinkhorn_iter': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_mean_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + x2, xmask)
tmp1 = 1.0
tmp2 = tmp0 / tmp1
tmp4 = tmp2 + tmp3
tl.store(out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (1, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (1, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_mean_0[grid(64)](primals_1, primals_3, buf0,
64, XBLOCK=64, num_warps=1, num_stages=1)
del primals_1
del primals_3
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_add_mean_0[grid(64)](primals_2, primals_4, buf1,
64, XBLOCK=64, num_warps=1, num_stages=1)
del primals_2
del primals_4
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(buf0, reinterpret_tensor(buf1, (4, 4, 4), (16, 1,
4), 0), out=buf2)
buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused__softmax_1[grid(64)](buf2, buf3, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf4 = buf2
del buf2
triton_poi_fused__softmax_2[grid(64)](buf3, buf4, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del buf3
return buf4, buf4, reinterpret_tensor(buf0, (4, 4, 4), (16, 1, 4), 0), buf1
def bucket(buckets, t, dim=1):
shape = list(t.shape)
shape[dim:dim + 1] = [buckets, -1]
return t.reshape(*shape)
def expand_dim(t, dim, k):
expand_shape = [-1] * len(t.shape)
expand_shape[dim] = k
return t.expand(*expand_shape)
def expand_batch_and_merge_head(b, t):
shape = list(t.squeeze(0).shape)
t = expand_dim(t, 0, b)
shape[0] = shape[0] * b
return t.reshape(*shape)
def log(t, eps=1e-06):
return torch.log(t + eps)
def sample_gumbel(shape, device, dtype, eps=1e-06):
u = torch.empty(shape, device=device, dtype=dtype).uniform_(0, 1)
return -log(-log(u, eps), eps)
def sinkhorn_sorting_operator(r, n_iters=8):
r.shape[1]
for _ in range(n_iters):
r = r - torch.logsumexp(r, dim=2, keepdim=True)
r = r - torch.logsumexp(r, dim=1, keepdim=True)
return torch.exp(r)
def gumbel_sinkhorn(r, n_iters=8, temperature=0.7):
r = log(r)
gumbel = sample_gumbel(r.shape, r.device, r.dtype)
r = (r + gumbel) / temperature
return sinkhorn_sorting_operator(r, n_iters)
class AttentionSortNetNew(nn.Module):
def __init__(self, heads, buckets, dim, non_permutative, temperature,
sinkhorn_iter, n_sortcut=0):
super().__init__()
self.heads = heads
self.buckets = buckets
self.dim = dim
self.non_permutative = non_permutative
self.temperature = temperature
self.sinkhorn_iter = sinkhorn_iter
self.n_sortcut = n_sortcut
self.q_pos_emb = nn.Parameter(torch.randn(1, heads, buckets if
n_sortcut == 0 else 1, dim))
self.k_pos_emb = nn.Parameter(torch.randn(1, heads, buckets, dim))
def forward(self, input_0, input_1):
primals_3 = self.q_pos_emb
primals_4 = self.k_pos_emb
primals_1 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
|
blizda/sinkhorn-transformer
|
AttentionSortNet
| false | 9,839 |
[
"MIT"
] | 0 |
4b626a40759010e4cb1752f22387fdbda438f37c
|
https://github.com/blizda/sinkhorn-transformer/tree/4b626a40759010e4cb1752f22387fdbda438f37c
|
GroupedChannelNorm
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/iw/ciwneupqau4kn2jj7timx3ubvnhllst5w6ftifgvb35ru3sw54dr.py
# Topologically Sorted Source Nodes: [mean, sub, std, add, x_norm], Original ATen: [aten.mean, aten.sub, aten.std, aten.add, aten.div]
# Source node to ATen node mapping:
# add => add
# mean => mean
# std => sqrt, var
# sub => sub
# x_norm => div
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%view, [2], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %mean), kwargs = {})
# %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%view, [2]), kwargs = {correction: 1.0, keepdim: True})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%var,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sqrt, 1e-07), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %add), kwargs = {})
triton_poi_fused_add_div_mean_std_sub_0 = async_compile.triton('triton_poi_fused_add_div_mean_std_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mean_std_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_mean_std_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = 4.0
tmp9 = tmp7 / tmp8
tmp10 = tmp0 - tmp9
tmp11 = tmp1 - tmp9
tmp12 = tmp11 * tmp11
tmp13 = tmp2 - tmp9
tmp14 = tmp13 * tmp13
tmp15 = tmp12 + tmp14
tmp16 = tmp4 - tmp9
tmp17 = tmp16 * tmp16
tmp18 = tmp15 + tmp17
tmp19 = tmp6 - tmp9
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp22 = 3.0
tmp23 = tmp21 / tmp22
tmp24 = libdevice.sqrt(tmp23)
tmp25 = 1e-07
tmp26 = tmp24 + tmp25
tmp27 = tmp10 / tmp26
tl.store(out_ptr0 + (x3), tmp27, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 4, 4, 4), (64, 1, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mean, sub, std, add, x_norm], Original ATen: [aten.mean, aten.sub, aten.std, aten.add, aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_add_div_mean_std_sub_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.utils.data
import torch
import torch.nn as nn
class GroupedChannelNorm(nn.Module):
def __init__(self, num_groups):
super().__init__()
self.num_groups = num_groups
def forward(self, x):
shape = list(x.shape)
new_shape = [shape[0], self.num_groups, shape[1] // self.num_groups
] + shape[2:]
x = x.view(*new_shape)
mean = x.mean(dim=2, keepdim=True)
std = x.std(dim=2, keepdim=True)
x_norm = (x - mean) / (std + 1e-07)
return x_norm.view(*shape)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'num_groups': 1}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.utils.data
import torch
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_div_mean_std_sub_0(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = 4.0
tmp9 = tmp7 / tmp8
tmp10 = tmp0 - tmp9
tmp11 = tmp1 - tmp9
tmp12 = tmp11 * tmp11
tmp13 = tmp2 - tmp9
tmp14 = tmp13 * tmp13
tmp15 = tmp12 + tmp14
tmp16 = tmp4 - tmp9
tmp17 = tmp16 * tmp16
tmp18 = tmp15 + tmp17
tmp19 = tmp6 - tmp9
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp22 = 3.0
tmp23 = tmp21 / tmp22
tmp24 = libdevice.sqrt(tmp23)
tmp25 = 1e-07
tmp26 = tmp24 + tmp25
tmp27 = tmp10 / tmp26
tl.store(out_ptr0 + x3, tmp27, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 4, 4, 4), (64, 1, 16, 4, 1), torch
.float32)
get_raw_stream(0)
triton_poi_fused_add_div_mean_std_sub_0[grid(256)](arg0_1, buf0,
256, XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0),
class GroupedChannelNormNew(nn.Module):
def __init__(self, num_groups):
super().__init__()
self.num_groups = num_groups
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
a11isonliu/contrastive-unpaired-translation
|
GroupedChannelNorm
| false | 9,840 |
[
"BSD-3-Clause"
] | 0 |
67651ed9877cae121d9398f46094ce8dbc678802
|
https://github.com/a11isonliu/contrastive-unpaired-translation/tree/67651ed9877cae121d9398f46094ce8dbc678802
|
ParallelPolarizedSelfAttention
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/u3/cu3litezfpnwhpnfnfuj6dtimz6ml42wmcwnwxlnovd4p5lvyin4.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048, 4096], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 2048
xnumel = 4096
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 512
y1 = (yindex // 512)
tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), None, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (512*x2) + (2097152*y1)), tmp0, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/iq/ciqt7v5dvn4ukgyyy6maxezu54tu2k6htitfxylgvyziqck3gwix.py
# Topologically Sorted Source Nodes: [channel_wq_2], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# channel_wq_2 => amax, div, exp, sub, sum_1
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_1, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_red_fused__softmax_1 = async_compile.triton('triton_red_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[4, 4096],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused__softmax_1(in_ptr0, in_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 4
rnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex
tmp1 = tl.load(in_ptr1 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
_tmp5 = tl.full([XBLOCK, RBLOCK], float("-inf"), tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp0 = tl.load(in_ptr0 + (r1 + (4096*x0)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp3 = tmp0 + tmp2
tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp6 = triton_helpers.maximum(_tmp5, tmp4)
_tmp5 = tl.where(rmask & xmask, tmp6, _tmp5)
tmp5 = triton_helpers.max2(_tmp5, 1)[:, None]
tmp8 = tl.load(in_ptr1 + (0))
tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK])
_tmp14 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp7 = tl.load(in_ptr0 + (r1 + (4096*x0)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tmp7 + tmp9
tmp11 = tmp10 - tmp5
tmp12 = tl_math.exp(tmp11)
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = _tmp14 + tmp13
_tmp14 = tl.where(rmask & xmask, tmp15, _tmp14)
tmp14 = tl.sum(_tmp14, 1)[:, None]
tmp17 = tl.load(in_ptr1 + (0))
tmp18 = tl.broadcast_to(tmp17, [XBLOCK, RBLOCK])
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp16 = tl.load(in_ptr0 + (r1 + (4096*x0)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp19 = tmp16 + tmp18
tmp20 = tmp19 - tmp5
tmp21 = tl_math.exp(tmp20)
tmp22 = tmp21 / tmp14
tl.store(out_ptr2 + (r1 + (4096*x0)), tmp22, rmask & xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/ap/capazybbmitbuviukrgvztks4tyvg3dpptakn7q4vjslonrba25g.py
# Topologically Sorted Source Nodes: [channel_wv], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# channel_wv => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024, 4096], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_2(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 1024
xnumel = 4096
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y0 = yindex % 256
y1 = (yindex // 256)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (256*x2) + (1048576*y1)), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + (4096*y3)), tmp2, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/rw/crwczp7wd3om4xrznty4rti6kiafa2tzqyvn6po6scyvmhmtcnmw.py
# Topologically Sorted Source Nodes: [conv2d_2, layer_norm, sigmoid], Original ATen: [aten.convolution, aten.native_layer_norm, aten.sigmoid]
# Source node to ATen node mapping:
# conv2d_2 => convolution_2
# layer_norm => add, add_1, mul, mul_1, rsqrt, sub_1, var_mean
# sigmoid => sigmoid
# Graph fragment:
# %convolution_2 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%unsqueeze, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%permute, [2]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %getitem_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %rsqrt), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_8), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_9), kwargs = {})
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add_1,), kwargs = {})
triton_per_fused_convolution_native_layer_norm_sigmoid_3 = async_compile.triton('triton_per_fused_convolution_native_layer_norm_sigmoid_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 512],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 8), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_convolution_native_layer_norm_sigmoid_3', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': True, 'num_load': 4, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_convolution_native_layer_norm_sigmoid_3(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, rnumel):
xnumel = 4
XBLOCK: tl.constexpr = 1
rnumel = 512
RBLOCK: tl.constexpr = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (r1 + (512*x0)), None)
tmp1 = tl.load(in_ptr0 + (r1), None, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr1 + (r1), None, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr2 + (r1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.broadcast_to(tmp2, [RBLOCK])
tmp5 = tl.broadcast_to(tmp3, [RBLOCK])
tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0))
tmp8 = tl.full([1], 512, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp3 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [RBLOCK])
tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0))
tmp16 = 512.0
tmp17 = tmp15 / tmp16
tmp18 = 1e-05
tmp19 = tmp17 + tmp18
tmp20 = libdevice.rsqrt(tmp19)
tmp21 = tmp2 - tmp10
tmp22 = tmp21 * tmp20
tmp24 = tmp22 * tmp23
tmp26 = tmp24 + tmp25
tmp27 = tl.sigmoid(tmp26)
tl.store(in_out_ptr0 + (r1 + (512*x0)), tmp2, None)
tl.debug_barrier()
tl.store(in_out_ptr1 + (x0), tmp20, None)
tl.store(out_ptr1 + (r1 + (512*x0)), tmp27, None)
tl.store(out_ptr0 + (x0), tmp10, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/4q/c4qd62sdhyd4fglxwxeivg7nkbd43odbdwdvxiybb2xu7tqa2uxs.py
# Topologically Sorted Source Nodes: [spatial_wq, spatial_wq_1], Original ATen: [aten.convolution, aten.mean]
# Source node to ATen node mapping:
# spatial_wq => convolution_4
# spatial_wq_1 => mean
# Graph fragment:
# %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_12, %primals_13, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%convolution_4, [-1, -2], True), kwargs = {})
triton_red_fused_convolution_mean_4 = async_compile.triton('triton_red_fused_convolution_mean_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[32768, 128],
reduction_hint=ReductionHint.OUTER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_convolution_mean_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused_convolution_mean_4(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 32768
rnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex % 256
x1 = (xindex // 256)
tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last')
_tmp4 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
x3 = xindex
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex
tmp0 = tl.load(in_ptr0 + (x0 + (256*r2) + (32768*x1)), rmask, eviction_policy='evict_first', other=0.0)
tmp2 = tmp0 + tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = _tmp4 + tmp3
_tmp4 = tl.where(rmask, tmp5, _tmp4)
tmp4 = tl.sum(_tmp4, 1)[:, None]
tl.store(out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/mi/cminjfxbzpwu3wpqzd7rt3ll256xfebkzux3hh5qykvjrgsawjdj.py
# Topologically Sorted Source Nodes: [spatial_wq, spatial_wq_1], Original ATen: [aten.convolution, aten.mean]
# Source node to ATen node mapping:
# spatial_wq => convolution_4
# spatial_wq_1 => mean
# Graph fragment:
# %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_12, %primals_13, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%convolution_4, [-1, -2], True), kwargs = {})
triton_per_fused_convolution_mean_5 = async_compile.triton('triton_per_fused_convolution_mean_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1024, 32],
reduction_hint=ReductionHint.OUTER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_convolution_mean_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_convolution_mean_5(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1024
rnumel = 32
RBLOCK: tl.constexpr = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x0 = xindex % 256
x1 = (xindex // 256)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (256*r2) + (8192*x1)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tl.store(out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/ji/cjiocwcpglmk3orhjwyrchueogqsp53hxepr45cwdplqbplk7tvb.py
# Topologically Sorted Source Nodes: [spatial_wq_3], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# spatial_wq_3 => amax_1, div_1, exp_1, sub_2, sum_2
# Graph fragment:
# %amax_1 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_8, [-1], True), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_8, %amax_1), kwargs = {})
# %exp_1 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_2,), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_1, [-1], True), kwargs = {})
# %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_1, %sum_2), kwargs = {})
triton_per_fused__softmax_6 = async_compile.triton('triton_per_fused__softmax_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_6', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__softmax_6(in_ptr0, out_ptr2, xnumel, rnumel):
xnumel = 4
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (256*x0)), None)
tmp1 = 4096.0
tmp2 = tmp0 / tmp1
tmp3 = tl.broadcast_to(tmp2, [RBLOCK])
tmp5 = triton_helpers.promote_to_tensor(triton_helpers.max2(tmp3, 0))
tmp6 = tmp2 - tmp5
tmp7 = tl_math.exp(tmp6)
tmp8 = tl.broadcast_to(tmp7, [RBLOCK])
tmp10 = triton_helpers.promote_to_tensor(tl.sum(tmp8, 0))
tmp11 = tmp7 / tmp10
tl.store(out_ptr2 + (r1 + (256*x0)), tmp11, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/4q/c4qcgqgap2qx55qlbkmr6i7aulzzwfidlkqpvvrhhbpq2j4mbsfz.py
# Topologically Sorted Source Nodes: [channel_out, spatial_weight, spatial_out, out], Original ATen: [aten.mul, aten.sigmoid, aten.add]
# Source node to ATen node mapping:
# channel_out => mul_2
# out => add_2
# spatial_out => mul_3
# spatial_weight => sigmoid_1
# Graph fragment:
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_6, %primals_1), kwargs = {})
# %sigmoid_1 : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_12,), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid_1, %primals_1), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_3, %mul_2), kwargs = {})
triton_poi_fused_add_mul_sigmoid_7 = async_compile.triton('triton_poi_fused_add_mul_sigmoid_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384, 512], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_sigmoid_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_sigmoid_7(in_ptr0, in_ptr1, in_ptr2, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16384
xnumel = 512
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
y3 = yindex
x2 = xindex
y1 = (yindex // 4096)
y0 = yindex % 4096
tmp0 = tl.load(in_ptr0 + (y3), None, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr1 + (x2 + (512*y3)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr2 + (x2 + (512*y1)), xmask, eviction_policy='evict_last')
tmp1 = tl.sigmoid(tmp0)
tmp3 = tmp1 * tmp2
tmp5 = tmp4 * tmp2
tmp6 = tmp3 + tmp5
tl.store(out_ptr0 + (y0 + (4096*x2) + (2097152*y1)), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13 = args
args.clear()
assert_size_stride(primals_1, (4, 512, 64, 64), (2097152, 4096, 64, 1))
assert_size_stride(primals_2, (256, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_3, (256, ), (1, ))
assert_size_stride(primals_4, (1, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_5, (1, ), (1, ))
assert_size_stride(primals_6, (512, 256, 1, 1), (256, 1, 1, 1))
assert_size_stride(primals_7, (512, ), (1, ))
assert_size_stride(primals_8, (512, ), (1, ))
assert_size_stride(primals_9, (512, ), (1, ))
assert_size_stride(primals_10, (256, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_11, (256, ), (1, ))
assert_size_stride(primals_12, (256, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_13, (256, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 512, 64, 64), (2097152, 1, 32768, 512), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
stream0 = get_raw_stream(0)
triton_poi_fused_0.run(primals_1, buf0, 2048, 4096, grid=grid(2048, 4096), stream=stream0)
del primals_1
# Topologically Sorted Source Nodes: [channel_wv], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 256, 64, 64), (1048576, 1, 16384, 256))
# Topologically Sorted Source Nodes: [channel_wq], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf0, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 1, 64, 64), (4096, 1, 64, 1))
buf5 = empty_strided_cuda((4, 4096, 1), (4096, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [channel_wq_2], Original ATen: [aten._softmax]
triton_red_fused__softmax_1.run(buf2, primals_5, buf5, 4, 4096, grid=grid(4), stream=stream0)
del primals_5
buf6 = empty_strided_cuda((4, 256, 64, 64), (1048576, 4096, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [channel_wv], Original ATen: [aten.convolution]
triton_poi_fused_convolution_2.run(buf1, primals_3, buf6, 1024, 4096, grid=grid(1024, 4096), stream=stream0)
del buf1
del primals_3
buf7 = empty_strided_cuda((4, 256, 1), (256, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf6, (4, 256, 4096), (1048576, 4096, 1), 0), buf5, out=buf7)
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf8 = extern_kernels.convolution(reinterpret_tensor(buf7, (4, 256, 1, 1), (256, 1, 1, 1), 0), primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 512, 1, 1), (512, 1, 1, 1))
buf9 = reinterpret_tensor(buf8, (4, 512, 1, 1), (512, 1, 512, 512), 0); del buf8 # reuse
buf10 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32)
buf11 = empty_strided_cuda((4, 1, 1), (1, 4, 4), torch.float32)
buf13 = reinterpret_tensor(buf11, (4, 1, 1), (1, 1, 1), 0); del buf11 # reuse
buf14 = empty_strided_cuda((4, 1, 512), (512, 2048, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_2, layer_norm, sigmoid], Original ATen: [aten.convolution, aten.native_layer_norm, aten.sigmoid]
triton_per_fused_convolution_native_layer_norm_sigmoid_3.run(buf9, buf13, primals_7, primals_8, primals_9, buf10, buf14, 4, 512, grid=grid(4), stream=stream0)
del primals_7
# Topologically Sorted Source Nodes: [spatial_wv], Original ATen: [aten.convolution]
buf15 = extern_kernels.convolution(buf0, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf15, (4, 256, 64, 64), (1048576, 1, 16384, 256))
# Topologically Sorted Source Nodes: [spatial_wq], Original ATen: [aten.convolution]
buf16 = extern_kernels.convolution(buf0, primals_12, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf16, (4, 256, 64, 64), (1048576, 1, 16384, 256))
buf17 = empty_strided_cuda((4, 256, 1, 1, 32), (8192, 1, 32768, 32768, 256), torch.float32)
# Topologically Sorted Source Nodes: [spatial_wq, spatial_wq_1], Original ATen: [aten.convolution, aten.mean]
triton_red_fused_convolution_mean_4.run(buf16, primals_13, buf17, 32768, 128, grid=grid(32768), stream=stream0)
del primals_13
buf18 = empty_strided_cuda((4, 256, 1, 1), (256, 1, 1024, 1024), torch.float32)
# Topologically Sorted Source Nodes: [spatial_wq, spatial_wq_1], Original ATen: [aten.convolution, aten.mean]
triton_per_fused_convolution_mean_5.run(buf17, buf18, 1024, 32, grid=grid(1024), stream=stream0)
del buf17
buf21 = empty_strided_cuda((4, 1, 256), (256, 256, 1), torch.float32)
# Topologically Sorted Source Nodes: [spatial_wq_3], Original ATen: [aten._softmax]
triton_per_fused__softmax_6.run(buf18, buf21, 4, 256, grid=grid(4), stream=stream0)
del buf18
buf22 = reinterpret_tensor(buf16, (4, 256, 64, 64), (1048576, 4096, 64, 1), 0); del buf16 # reuse
# Topologically Sorted Source Nodes: [spatial_wv], Original ATen: [aten.convolution]
triton_poi_fused_convolution_2.run(buf15, primals_11, buf22, 1024, 4096, grid=grid(1024, 4096), stream=stream0)
del buf15
del primals_11
buf23 = reinterpret_tensor(buf2, (4, 1, 4096), (4096, 4096, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [spatial_wz], Original ATen: [aten.bmm]
extern_kernels.bmm(buf21, reinterpret_tensor(buf22, (4, 256, 4096), (1048576, 4096, 1), 0), out=buf23)
buf24 = empty_strided_cuda((4, 512, 64, 64), (2097152, 4096, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [channel_out, spatial_weight, spatial_out, out], Original ATen: [aten.mul, aten.sigmoid, aten.add]
triton_poi_fused_add_mul_sigmoid_7.run(buf23, buf0, buf14, buf24, 16384, 512, grid=grid(16384, 512), stream=stream0)
del buf14
return (buf24, buf0, primals_2, primals_4, primals_6, primals_8, primals_9, primals_10, primals_12, buf5, reinterpret_tensor(buf7, (4, 256, 1, 1), (256, 1, 1, 1), 0), buf9, buf10, buf13, buf21, buf23, reinterpret_tensor(buf22, (4, 4096, 256), (1048576, 1, 4096), 0), reinterpret_tensor(buf6, (4, 4096, 256), (1048576, 1, 4096), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 512, 64, 64), (2097152, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((256, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((1, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((512, 256, 1, 1), (256, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((256, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((256, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
class ParallelPolarizedSelfAttention(nn.Module):
def __init__(self, channel=512):
super().__init__()
self.ch_wv = nn.Conv2d(channel, channel // 2, kernel_size=(1, 1))
self.ch_wq = nn.Conv2d(channel, 1, kernel_size=(1, 1))
self.softmax_channel = nn.Softmax(1)
self.softmax_spatial = nn.Softmax(-1)
self.ch_wz = nn.Conv2d(channel // 2, channel, kernel_size=(1, 1))
self.ln = nn.LayerNorm(channel)
self.sigmoid = nn.Sigmoid()
self.sp_wv = nn.Conv2d(channel, channel // 2, kernel_size=(1, 1))
self.sp_wq = nn.Conv2d(channel, channel // 2, kernel_size=(1, 1))
self.agp = nn.AdaptiveAvgPool2d((1, 1))
def forward(self, x):
b, c, h, w = x.size()
channel_wv = self.ch_wv(x)
channel_wq = self.ch_wq(x)
channel_wv = channel_wv.reshape(b, c // 2, -1)
channel_wq = channel_wq.reshape(b, -1, 1)
channel_wq = self.softmax_channel(channel_wq)
channel_wz = torch.matmul(channel_wv, channel_wq).unsqueeze(-1)
channel_weight = self.sigmoid(self.ln(self.ch_wz(channel_wz).
reshape(b, c, 1).permute(0, 2, 1))).permute(0, 2, 1).reshape(b,
c, 1, 1)
channel_out = channel_weight * x
spatial_wv = self.sp_wv(x)
spatial_wq = self.sp_wq(x)
spatial_wq = self.agp(spatial_wq)
spatial_wv = spatial_wv.reshape(b, c // 2, -1)
spatial_wq = spatial_wq.permute(0, 2, 3, 1).reshape(b, 1, c // 2)
spatial_wq = self.softmax_spatial(spatial_wq)
spatial_wz = torch.matmul(spatial_wq, spatial_wv)
spatial_weight = self.sigmoid(spatial_wz.reshape(b, 1, h, w))
spatial_out = spatial_weight * x
out = spatial_out + channel_out
return out
def get_inputs():
return [torch.rand([4, 512, 64, 64])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 512
y1 = yindex // 512
tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), None, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 512 * x2 + 2097152 * y1), tmp0, None)
@triton.jit
def triton_red_fused__softmax_1(in_ptr0, in_ptr1, out_ptr2, xnumel, rnumel,
XBLOCK: tl.constexpr, RBLOCK: tl.constexpr):
xnumel = 4
rnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex
tmp1 = tl.load(in_ptr1 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
_tmp5 = tl.full([XBLOCK, RBLOCK], float('-inf'), tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp0 = tl.load(in_ptr0 + (r1 + 4096 * x0), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp3 = tmp0 + tmp2
tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp6 = triton_helpers.maximum(_tmp5, tmp4)
_tmp5 = tl.where(rmask & xmask, tmp6, _tmp5)
tmp5 = triton_helpers.max2(_tmp5, 1)[:, None]
tmp8 = tl.load(in_ptr1 + 0)
tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK])
_tmp14 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp7 = tl.load(in_ptr0 + (r1 + 4096 * x0), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp10 = tmp7 + tmp9
tmp11 = tmp10 - tmp5
tmp12 = tl_math.exp(tmp11)
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = _tmp14 + tmp13
_tmp14 = tl.where(rmask & xmask, tmp15, _tmp14)
tmp14 = tl.sum(_tmp14, 1)[:, None]
tmp17 = tl.load(in_ptr1 + 0)
tmp18 = tl.broadcast_to(tmp17, [XBLOCK, RBLOCK])
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp16 = tl.load(in_ptr0 + (r1 + 4096 * x0), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp19 = tmp16 + tmp18
tmp20 = tmp19 - tmp5
tmp21 = tl_math.exp(tmp20)
tmp22 = tmp21 / tmp14
tl.store(out_ptr2 + (r1 + 4096 * x0), tmp22, rmask & xmask)
@triton.jit
def triton_poi_fused_convolution_2(in_ptr0, in_ptr1, out_ptr0, ynumel,
xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y0 = yindex % 256
y1 = yindex // 256
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 256 * x2 + 1048576 * y1), None,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + 4096 * y3), tmp2, None)
@triton.jit
def triton_per_fused_convolution_native_layer_norm_sigmoid_3(in_out_ptr0,
in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, rnumel
):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (r1 + 512 * x0), None)
tmp1 = tl.load(in_ptr0 + r1, None, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr1 + r1, None, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr2 + r1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.broadcast_to(tmp2, [RBLOCK])
tmp5 = tl.broadcast_to(tmp3, [RBLOCK])
tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0))
tmp8 = tl.full([1], 512, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp3 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [RBLOCK])
tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0))
tmp16 = 512.0
tmp17 = tmp15 / tmp16
tmp18 = 1e-05
tmp19 = tmp17 + tmp18
tmp20 = libdevice.rsqrt(tmp19)
tmp21 = tmp2 - tmp10
tmp22 = tmp21 * tmp20
tmp24 = tmp22 * tmp23
tmp26 = tmp24 + tmp25
tmp27 = tl.sigmoid(tmp26)
tl.store(in_out_ptr0 + (r1 + 512 * x0), tmp2, None)
tl.debug_barrier()
tl.store(in_out_ptr1 + x0, tmp20, None)
tl.store(out_ptr1 + (r1 + 512 * x0), tmp27, None)
tl.store(out_ptr0 + x0, tmp10, None)
@triton.jit
def triton_red_fused_convolution_mean_4(in_ptr0, in_ptr1, out_ptr0, xnumel,
rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr):
rnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex % 256
x1 = xindex // 256
tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last')
_tmp4 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
x3 = xindex
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex
tmp0 = tl.load(in_ptr0 + (x0 + 256 * r2 + 32768 * x1), rmask,
eviction_policy='evict_first', other=0.0)
tmp2 = tmp0 + tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = _tmp4 + tmp3
_tmp4 = tl.where(rmask, tmp5, _tmp4)
tmp4 = tl.sum(_tmp4, 1)[:, None]
tl.store(out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_per_fused_convolution_mean_5(in_ptr0, out_ptr0, xnumel, rnumel,
XBLOCK: tl.constexpr):
xnumel = 1024
RBLOCK: tl.constexpr = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x0 = xindex % 256
x1 = xindex // 256
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 256 * r2 + 8192 * x1), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tl.store(out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_per_fused__softmax_6(in_ptr0, out_ptr2, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 256 * x0), None)
tmp1 = 4096.0
tmp2 = tmp0 / tmp1
tmp3 = tl.broadcast_to(tmp2, [RBLOCK])
tmp5 = triton_helpers.promote_to_tensor(triton_helpers.max2(tmp3, 0))
tmp6 = tmp2 - tmp5
tmp7 = tl_math.exp(tmp6)
tmp8 = tl.broadcast_to(tmp7, [RBLOCK])
tmp10 = triton_helpers.promote_to_tensor(tl.sum(tmp8, 0))
tmp11 = tmp7 / tmp10
tl.store(out_ptr2 + (r1 + 256 * x0), tmp11, None)
@triton.jit
def triton_poi_fused_add_mul_sigmoid_7(in_ptr0, in_ptr1, in_ptr2, out_ptr0,
ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
xnumel = 512
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
y3 = yindex
x2 = xindex
y1 = yindex // 4096
y0 = yindex % 4096
tmp0 = tl.load(in_ptr0 + y3, None, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr1 + (x2 + 512 * y3), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr2 + (x2 + 512 * y1), xmask, eviction_policy=
'evict_last')
tmp1 = tl.sigmoid(tmp0)
tmp3 = tmp1 * tmp2
tmp5 = tmp4 * tmp2
tmp6 = tmp3 + tmp5
tl.store(out_ptr0 + (y0 + 4096 * x2 + 2097152 * y1), tmp6, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13) = args
args.clear()
assert_size_stride(primals_1, (4, 512, 64, 64), (2097152, 4096, 64, 1))
assert_size_stride(primals_2, (256, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_3, (256,), (1,))
assert_size_stride(primals_4, (1, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_5, (1,), (1,))
assert_size_stride(primals_6, (512, 256, 1, 1), (256, 1, 1, 1))
assert_size_stride(primals_7, (512,), (1,))
assert_size_stride(primals_8, (512,), (1,))
assert_size_stride(primals_9, (512,), (1,))
assert_size_stride(primals_10, (256, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_11, (256,), (1,))
assert_size_stride(primals_12, (256, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_13, (256,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 512, 64, 64), (2097152, 1, 32768, 512
), torch.float32)
get_raw_stream(0)
triton_poi_fused_0[grid(2048, 4096)](primals_1, buf0, 2048, 4096,
XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1)
del primals_1
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 256, 64, 64), (1048576, 1, 16384, 256))
buf2 = extern_kernels.convolution(buf0, primals_4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 1, 64, 64), (4096, 1, 64, 1))
buf5 = empty_strided_cuda((4, 4096, 1), (4096, 1, 1), torch.float32)
triton_red_fused__softmax_1[grid(4)](buf2, primals_5, buf5, 4, 4096,
XBLOCK=1, RBLOCK=2048, num_warps=16, num_stages=1)
del primals_5
buf6 = empty_strided_cuda((4, 256, 64, 64), (1048576, 4096, 64, 1),
torch.float32)
triton_poi_fused_convolution_2[grid(1024, 4096)](buf1, primals_3,
buf6, 1024, 4096, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1)
del buf1
del primals_3
buf7 = empty_strided_cuda((4, 256, 1), (256, 1, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf6, (4, 256, 4096), (
1048576, 4096, 1), 0), buf5, out=buf7)
buf8 = extern_kernels.convolution(reinterpret_tensor(buf7, (4, 256,
1, 1), (256, 1, 1, 1), 0), primals_6, stride=(1, 1), padding=(0,
0), dilation=(1, 1), transposed=False, output_padding=(0, 0),
groups=1, bias=None)
assert_size_stride(buf8, (4, 512, 1, 1), (512, 1, 1, 1))
buf9 = reinterpret_tensor(buf8, (4, 512, 1, 1), (512, 1, 512, 512), 0)
del buf8
buf10 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32)
buf11 = empty_strided_cuda((4, 1, 1), (1, 4, 4), torch.float32)
buf13 = reinterpret_tensor(buf11, (4, 1, 1), (1, 1, 1), 0)
del buf11
buf14 = empty_strided_cuda((4, 1, 512), (512, 2048, 1), torch.float32)
triton_per_fused_convolution_native_layer_norm_sigmoid_3[grid(4)](buf9,
buf13, primals_7, primals_8, primals_9, buf10, buf14, 4, 512,
num_warps=4, num_stages=1)
del primals_7
buf15 = extern_kernels.convolution(buf0, primals_10, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf15, (4, 256, 64, 64), (1048576, 1, 16384, 256))
buf16 = extern_kernels.convolution(buf0, primals_12, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf16, (4, 256, 64, 64), (1048576, 1, 16384, 256))
buf17 = empty_strided_cuda((4, 256, 1, 1, 32), (8192, 1, 32768,
32768, 256), torch.float32)
triton_red_fused_convolution_mean_4[grid(32768)](buf16, primals_13,
buf17, 32768, 128, XBLOCK=64, RBLOCK=8, num_warps=4, num_stages=1)
del primals_13
buf18 = empty_strided_cuda((4, 256, 1, 1), (256, 1, 1024, 1024),
torch.float32)
triton_per_fused_convolution_mean_5[grid(1024)](buf17, buf18, 1024,
32, XBLOCK=128, num_warps=8, num_stages=1)
del buf17
buf21 = empty_strided_cuda((4, 1, 256), (256, 256, 1), torch.float32)
triton_per_fused__softmax_6[grid(4)](buf18, buf21, 4, 256,
num_warps=2, num_stages=1)
del buf18
buf22 = reinterpret_tensor(buf16, (4, 256, 64, 64), (1048576, 4096,
64, 1), 0)
del buf16
triton_poi_fused_convolution_2[grid(1024, 4096)](buf15, primals_11,
buf22, 1024, 4096, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1)
del buf15
del primals_11
buf23 = reinterpret_tensor(buf2, (4, 1, 4096), (4096, 4096, 1), 0)
del buf2
extern_kernels.bmm(buf21, reinterpret_tensor(buf22, (4, 256, 4096),
(1048576, 4096, 1), 0), out=buf23)
buf24 = empty_strided_cuda((4, 512, 64, 64), (2097152, 4096, 64, 1),
torch.float32)
triton_poi_fused_add_mul_sigmoid_7[grid(16384, 512)](buf23, buf0,
buf14, buf24, 16384, 512, XBLOCK=32, YBLOCK=32, num_warps=4,
num_stages=1)
del buf14
return (buf24, buf0, primals_2, primals_4, primals_6, primals_8,
primals_9, primals_10, primals_12, buf5, reinterpret_tensor(buf7, (
4, 256, 1, 1), (256, 1, 1, 1), 0), buf9, buf10, buf13, buf21, buf23,
reinterpret_tensor(buf22, (4, 4096, 256), (1048576, 1, 4096), 0),
reinterpret_tensor(buf6, (4, 4096, 256), (1048576, 1, 4096), 0))
class ParallelPolarizedSelfAttentionNew(nn.Module):
def __init__(self, channel=512):
super().__init__()
self.ch_wv = nn.Conv2d(channel, channel // 2, kernel_size=(1, 1))
self.ch_wq = nn.Conv2d(channel, 1, kernel_size=(1, 1))
self.softmax_channel = nn.Softmax(1)
self.softmax_spatial = nn.Softmax(-1)
self.ch_wz = nn.Conv2d(channel // 2, channel, kernel_size=(1, 1))
self.ln = nn.LayerNorm(channel)
self.sigmoid = nn.Sigmoid()
self.sp_wv = nn.Conv2d(channel, channel // 2, kernel_size=(1, 1))
self.sp_wq = nn.Conv2d(channel, channel // 2, kernel_size=(1, 1))
self.agp = nn.AdaptiveAvgPool2d((1, 1))
def forward(self, input_0):
primals_2 = self.ch_wv.weight
primals_3 = self.ch_wv.bias
primals_4 = self.ch_wq.weight
primals_5 = self.ch_wq.bias
primals_6 = self.ch_wz.weight
primals_7 = self.ch_wz.bias
primals_8 = self.ln.weight
primals_9 = self.ln.bias
primals_10 = self.sp_wv.weight
primals_11 = self.sp_wv.bias
primals_12 = self.sp_wq.weight
primals_13 = self.sp_wq.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13])
return output[0]
|
LiChengChen666/DetectDee
|
ParallelPolarizedSelfAttention
| false | 9,841 |
[
"Apache-2.0"
] | 0 |
1e6aaa0d15b1fc12d1342d8a922004e372b5f437
|
https://github.com/LiChengChen666/DetectDee/tree/1e6aaa0d15b1fc12d1342d8a922004e372b5f437
|
FusedLeakyReLU
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/cx/ccxnongcgusvhvf5whrpjbz4ddnlsjovjzjngbpjfxvhdw7ihrhu.py
# Topologically Sorted Source Nodes: [add, leaky_relu, out], Original ATen: [aten.add, aten.leaky_relu, aten.mul]
# Source node to ATen node mapping:
# add => add
# leaky_relu => gt, mul, where
# out => mul_1
# Graph fragment:
# %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_2, %primals_1), kwargs = {})
# %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add, 0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 0.2), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %add, %mul), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where, 1.4142135623730951), kwargs = {})
triton_poi_fused_add_leaky_relu_mul_0 = async_compile.triton('triton_poi_fused_add_leaky_relu_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_leaky_relu_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_leaky_relu_mul_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tmp8 = 1.4142135623730951
tmp9 = tmp7 * tmp8
tl.store(out_ptr0 + (x3), tmp4, xmask)
tl.store(out_ptr1 + (x3), tmp9, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (1, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, leaky_relu, out], Original ATen: [aten.add, aten.leaky_relu, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_add_leaky_relu_mul_0.run(primals_2, primals_1, buf0, buf1, 256, grid=grid(256), stream=stream0)
del primals_1
del primals_2
return (buf1, buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.utils.data
import torch
import torch.nn as nn
import torch.nn.functional as F
def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5):
return F.leaky_relu(input + bias, negative_slope) * scale
class FusedLeakyReLU(nn.Module):
def __init__(self, channel, negative_slope=0.2, scale=2 ** 0.5):
super().__init__()
self.bias = nn.Parameter(torch.zeros(1, channel, 1, 1))
self.negative_slope = negative_slope
self.scale = scale
def forward(self, input):
out = fused_leaky_relu(input, self.bias, self.negative_slope, self.
scale)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'channel': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.utils.data
import torch
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_leaky_relu_mul_0(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tmp8 = 1.4142135623730951
tmp9 = tmp7 * tmp8
tl.store(out_ptr0 + x3, tmp4, xmask)
tl.store(out_ptr1 + x3, tmp9, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (1, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_leaky_relu_mul_0[grid(256)](primals_2,
primals_1, buf0, buf1, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
del primals_2
return buf1, buf0
def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5):
return F.leaky_relu(input + bias, negative_slope) * scale
class FusedLeakyReLUNew(nn.Module):
def __init__(self, channel, negative_slope=0.2, scale=2 ** 0.5):
super().__init__()
self.bias = nn.Parameter(torch.zeros(1, channel, 1, 1))
self.negative_slope = negative_slope
self.scale = scale
def forward(self, input_0):
primals_1 = self.bias
primals_2 = input_0
output = call([primals_1, primals_2])
return output[0]
|
a11isonliu/contrastive-unpaired-translation
|
FusedLeakyReLU
| false | 9,842 |
[
"BSD-3-Clause"
] | 0 |
67651ed9877cae121d9398f46094ce8dbc678802
|
https://github.com/a11isonliu/contrastive-unpaired-translation/tree/67651ed9877cae121d9398f46094ce8dbc678802
|
ReshapeF
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/ef/cef2l3ajjzplmrqfzg25ehcs22rwnbbsdt4r6sobviedge5satl2.py
# Topologically Sorted Source Nodes: [pow_1, sum_1, norm, add, out], Original ATen: [aten.pow, aten.sum, aten.add, aten.div]
# Source node to ATen node mapping:
# add => add
# norm => pow_2
# out => div
# pow_1 => pow_1
# sum_1 => sum_1
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%view, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1], True), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_2, 1e-07), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view, %add), kwargs = {})
triton_poi_fused_add_div_pow_sum_0 = async_compile.triton('triton_poi_fused_add_div_pow_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_pow_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_pow_sum_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + ((16*x1) + (64*(y0 // 16)) + (y0 % 16)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + ((64*(y0 // 16)) + (y0 % 16)), ymask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (16 + (64*(y0 // 16)) + (y0 % 16)), ymask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (32 + (64*(y0 // 16)) + (y0 % 16)), ymask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (48 + (64*(y0 // 16)) + (y0 % 16)), ymask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-07
tmp14 = tmp12 + tmp13
tmp15 = tmp0 / tmp14
tl.store(out_ptr0 + (x1 + (4*y0)), tmp15, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [pow_1, sum_1, norm, add, out], Original ATen: [aten.pow, aten.sum, aten.add, aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_add_div_pow_sum_0.run(arg0_1, buf0, 64, 4, grid=grid(64, 4), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.utils.data
import torch
import torch.nn as nn
class Normalize(nn.Module):
def __init__(self, power=2):
super(Normalize, self).__init__()
self.power = power
def forward(self, x):
norm = x.pow(self.power).sum(1, keepdim=True).pow(1.0 / self.power)
out = x.div(norm + 1e-07)
return out
class ReshapeF(nn.Module):
def __init__(self):
super(ReshapeF, self).__init__()
model = [nn.AdaptiveAvgPool2d(4)]
self.model = nn.Sequential(*model)
self.l2norm = Normalize(2)
def forward(self, x):
x = self.model(x)
x_reshape = x.permute(0, 2, 3, 1).flatten(0, 2)
return self.l2norm(x_reshape)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.utils.data
import torch
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_div_pow_sum_0(in_ptr0, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (16 * x1 + 64 * (y0 // 16) + y0 % 16), xmask &
ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (64 * (y0 // 16) + y0 % 16), ymask,
eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (16 + 64 * (y0 // 16) + y0 % 16), ymask,
eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (32 + 64 * (y0 // 16) + y0 % 16), ymask,
eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (48 + 64 * (y0 // 16) + y0 % 16), ymask,
eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-07
tmp14 = tmp12 + tmp13
tmp15 = tmp0 / tmp14
tl.store(out_ptr0 + (x1 + 4 * y0), tmp15, xmask & ymask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_div_pow_sum_0[grid(64, 4)](arg0_1, buf0, 64, 4,
XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class Normalize(nn.Module):
def __init__(self, power=2):
super(Normalize, self).__init__()
self.power = power
def forward(self, x):
norm = x.pow(self.power).sum(1, keepdim=True).pow(1.0 / self.power)
out = x.div(norm + 1e-07)
return out
class ReshapeFNew(nn.Module):
def __init__(self):
super(ReshapeFNew, self).__init__()
model = [nn.AdaptiveAvgPool2d(4)]
self.model = nn.Sequential(*model)
self.l2norm = Normalize(2)
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
a11isonliu/contrastive-unpaired-translation
|
ReshapeF
| false | 9,843 |
[
"BSD-3-Clause"
] | 0 |
67651ed9877cae121d9398f46094ce8dbc678802
|
https://github.com/a11isonliu/contrastive-unpaired-translation/tree/67651ed9877cae121d9398f46094ce8dbc678802
|
CriticNet
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/cx/ccxj5mx36tl2zezvd7cfl4qjbxj2iebjymfhg7g4wimudrlvd4ab.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# x_1 => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%relu, %primals_4], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 528
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 132
x1 = (xindex // 132)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 128, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((128*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tl.load(in_ptr1 + (x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full([1], 0, tl.int32)
tmp9 = triton_helpers.maximum(tmp8, tmp7)
tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype)
tmp11 = tl.where(tmp4, tmp9, tmp10)
tmp12 = tmp0 >= tmp3
tmp13 = tl.full([1], 132, tl.int64)
tmp14 = tmp0 < tmp13
tmp15 = tl.load(in_ptr2 + ((4*x1) + ((-128) + x0)), tmp12 & xmask, eviction_policy='evict_last', other=0.0)
tmp16 = tl.where(tmp4, tmp11, tmp15)
tl.store(out_ptr0 + (x2), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/i5/ci5f4nyelvfg4yf2o65ompoikj7ejkd32vb6hqtyrgycc5eswrpx.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x_2 => relu_1
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_6), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/vf/cvfeaikqpgjlmd42te4x666gwcwskdnlf3u7myjkpedcmt7nm4ad.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x => relu
# Graph fragment:
# %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_2), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_relu_threshold_backward_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args
args.clear()
assert_size_stride(primals_1, (128, 4), (4, 1))
assert_size_stride(primals_2, (128, ), (1, ))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (128, 132), (132, 1))
assert_size_stride(primals_6, (128, ), (1, ))
assert_size_stride(primals_7, (4, 128), (128, 1))
assert_size_stride(primals_8, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 128), (128, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 128), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 132), (132, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(buf0, primals_2, primals_4, buf1, 528, grid=grid(528), stream=stream0)
del primals_4
buf2 = empty_strided_cuda((4, 128), (128, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf1, reinterpret_tensor(primals_5, (132, 128), (1, 132), 0), out=buf2)
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf3, primals_6, 512, grid=grid(512), stream=stream0)
del primals_6
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_8, buf3, reinterpret_tensor(primals_7, (128, 4), (1, 128), 0), alpha=1, beta=1, out=buf4)
del primals_8
buf5 = empty_strided_cuda((4, 128), (128, 1), torch.bool)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_2.run(buf0, primals_2, buf5, 512, grid=grid(512), stream=stream0)
del buf0
del primals_2
return (buf4, primals_3, buf1, buf3, primals_7, primals_5, buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((128, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((128, 132), (132, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 128), (128, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import numpy as np
import torch.nn.functional as F
import torch.nn as nn
def hidden_init(layer):
fan_in = layer.weight.data.size()[0]
lim = 1.0 / np.sqrt(fan_in)
return -lim, lim
class CriticNet(nn.Module):
def __init__(self, state_size, action_size, fc1_units=128, fc2_units=128):
super(CriticNet, self).__init__()
self.fc1_units = fc1_units
self.fc2_units = fc2_units
self.fc1 = nn.Linear(state_size, fc1_units)
self.fc2 = nn.Linear(fc1_units + action_size, fc2_units)
self.fc3 = nn.Linear(fc2_units, action_size)
self.reset_parameters()
def reset_parameters(self):
self.fc1.weight.data.uniform_(*hidden_init(self.fc1))
self.fc2.weight.data.uniform_(*hidden_init(self.fc2))
self.fc3.weight.data.uniform_(-0.003, 0.003)
def forward(self, state, action):
x = F.relu(self.fc1(state))
x = torch.cat([x, action], dim=1)
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'state_size': 4, 'action_size': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import numpy as np
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 528
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 132
x1 = xindex // 132
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 128, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (128 * x1 + x0), tmp4 & xmask, eviction_policy
='evict_last', other=0.0)
tmp6 = tl.load(in_ptr1 + x0, tmp4 & xmask, eviction_policy='evict_last',
other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full([1], 0, tl.int32)
tmp9 = triton_helpers.maximum(tmp8, tmp7)
tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype)
tmp11 = tl.where(tmp4, tmp9, tmp10)
tmp12 = tmp0 >= tmp3
tl.full([1], 132, tl.int64)
tmp15 = tl.load(in_ptr2 + (4 * x1 + (-128 + x0)), tmp12 & xmask,
eviction_policy='evict_last', other=0.0)
tmp16 = tl.where(tmp4, tmp11, tmp15)
tl.store(out_ptr0 + x2, tmp16, xmask)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_2(in_ptr0, in_ptr1, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8) = args
args.clear()
assert_size_stride(primals_1, (128, 4), (4, 1))
assert_size_stride(primals_2, (128,), (1,))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (128, 132), (132, 1))
assert_size_stride(primals_6, (128,), (1,))
assert_size_stride(primals_7, (4, 128), (128, 1))
assert_size_stride(primals_8, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 128), (128, 1), torch.float32)
extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 128),
(1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 132), (132, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(528)](buf0, primals_2, primals_4, buf1,
528, XBLOCK=128, num_warps=4, num_stages=1)
del primals_4
buf2 = empty_strided_cuda((4, 128), (128, 1), torch.float32)
extern_kernels.mm(buf1, reinterpret_tensor(primals_5, (132, 128), (
1, 132), 0), out=buf2)
buf3 = buf2
del buf2
triton_poi_fused_relu_1[grid(512)](buf3, primals_6, 512, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_6
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_8, buf3, reinterpret_tensor(primals_7,
(128, 4), (1, 128), 0), alpha=1, beta=1, out=buf4)
del primals_8
buf5 = empty_strided_cuda((4, 128), (128, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_2[grid(512)](buf0,
primals_2, buf5, 512, XBLOCK=256, num_warps=4, num_stages=1)
del buf0
del primals_2
return buf4, primals_3, buf1, buf3, primals_7, primals_5, buf5
def hidden_init(layer):
fan_in = layer.weight.data.size()[0]
lim = 1.0 / np.sqrt(fan_in)
return -lim, lim
class CriticNetNew(nn.Module):
def __init__(self, state_size, action_size, fc1_units=128, fc2_units=128):
super(CriticNetNew, self).__init__()
self.fc1_units = fc1_units
self.fc2_units = fc2_units
self.fc1 = nn.Linear(state_size, fc1_units)
self.fc2 = nn.Linear(fc1_units + action_size, fc2_units)
self.fc3 = nn.Linear(fc2_units, action_size)
self.reset_parameters()
def reset_parameters(self):
self.fc1.weight.data.uniform_(*hidden_init(self.fc1))
self.fc2.weight.data.uniform_(*hidden_init(self.fc2))
self.fc3.weight.data.uniform_(-0.003, 0.003)
def forward(self, input_0, input_1):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_5 = self.fc2.weight
primals_6 = self.fc2.bias
primals_7 = self.fc3.weight
primals_8 = self.fc3.bias
primals_3 = input_0
primals_4 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8])
return output[0]
|
bwosh/DRL_ContinuousControl
|
CriticNet
| false | 9,844 |
[
"MIT"
] | 0 |
34314cd600f0da428bc6dddf1b89b64bc04d43df
|
https://github.com/bwosh/DRL_ContinuousControl/tree/34314cd600f0da428bc6dddf1b89b64bc04d43df
|
fully_connected
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/do/cdo22no4lmipk7byduyah2xsadvdcbfr22puoptl5br3l66r6jra.py
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.leaky_relu]
# Source node to ATen node mapping:
# out_1 => gt, mul, where
# Graph fragment:
# %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_1, 0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.01), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %view_1, %mul), kwargs = {})
triton_poi_fused_leaky_relu_0 = async_compile.triton('triton_poi_fused_leaky_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.01
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr1 + (x2), tmp7, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.leaky_relu]
stream0 = get_raw_stream(0)
triton_poi_fused_leaky_relu_0.run(buf0, primals_2, buf1, buf2, 256, grid=grid(256), stream=stream0)
del primals_2
buf3 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3)
del primals_5
return (reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, reinterpret_tensor(buf2, (64, 4), (4, 1), 0), primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
class fully_connected(nn.Module):
def __init__(self, input_dims, hidden_dims, out_dims, bias=True, drop=True
):
super(fully_connected, self).__init__()
self.input_dims = input_dims
self.hidden_dims = hidden_dims
self.out_dims = out_dims
self.drop = drop
self.fc1 = nn.Linear(input_dims, hidden_dims, bias=bias)
self.activate = nn.LeakyReLU()
if drop:
self.drop = nn.Dropout(p=0.15)
self.fc2 = nn.Linear(hidden_dims, out_dims, bias=bias)
for i in [self.fc1, self.fc2]:
nn.init.kaiming_normal_(i.weight, a=1)
def forward(self, x):
out = self.fc1(x)
out = self.activate(out)
if self.drop:
out = self.drop(out)
out = self.fc2(out)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_dims': 4, 'hidden_dims': 4, 'out_dims': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.01
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr1 + x2, tmp7, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_leaky_relu_0[grid(256)](buf0, primals_2, buf1,
buf2, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf3 = buf0
del buf0
extern_kernels.addmm(primals_5, reinterpret_tensor(buf2, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf3)
del primals_5
return reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), buf1, reinterpret_tensor(buf2, (64, 4), (4, 1), 0), primals_4
class fully_connectedNew(nn.Module):
def __init__(self, input_dims, hidden_dims, out_dims, bias=True, drop=True
):
super(fully_connectedNew, self).__init__()
self.input_dims = input_dims
self.hidden_dims = hidden_dims
self.out_dims = out_dims
self.drop = drop
self.fc1 = nn.Linear(input_dims, hidden_dims, bias=bias)
self.activate = nn.LeakyReLU()
if drop:
self.drop = nn.Dropout(p=0.15)
self.fc2 = nn.Linear(hidden_dims, out_dims, bias=bias)
for i in [self.fc1, self.fc2]:
nn.init.kaiming_normal_(i.weight, a=1)
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
cankucuksozen/COMP551--ComputerVision-with-DL
|
fully_connected
| false | 9,845 |
[
"MIT"
] | 0 |
44c4510a7163ad4bcf00ce0e9d112ae1ba59b143
|
https://github.com/cankucuksozen/COMP551--ComputerVision-with-DL/tree/44c4510a7163ad4bcf00ce0e9d112ae1ba59b143
|
PoolingF
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/ku/ckuooqx6q27vkk7tqqmkpsydmkdv3enwjhqctsyozm4owufb7yb6.py
# Topologically Sorted Source Nodes: [input_1], Original ATen: [aten.adaptive_max_pool2d]
# Source node to ATen node mapping:
# input_1 => adaptive_max_pool2d
# Graph fragment:
# %adaptive_max_pool2d : [num_users=1] = call_function[target=torch.ops.aten.adaptive_max_pool2d.default](args = (%arg0_1, [1, 1]), kwargs = {})
triton_poi_fused_adaptive_max_pool2d_0 = async_compile.triton('triton_poi_fused_adaptive_max_pool2d_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_adaptive_max_pool2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_adaptive_max_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (16*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (16*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (16*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (16*x0)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (4 + (16*x0)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (5 + (16*x0)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (6 + (16*x0)), xmask, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr0 + (7 + (16*x0)), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr0 + (8 + (16*x0)), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr0 + (9 + (16*x0)), xmask, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr0 + (10 + (16*x0)), xmask, eviction_policy='evict_last')
tmp21 = tl.load(in_ptr0 + (11 + (16*x0)), xmask, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr0 + (12 + (16*x0)), xmask, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr0 + (13 + (16*x0)), xmask, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr0 + (14 + (16*x0)), xmask, eviction_policy='evict_last')
tmp29 = tl.load(in_ptr0 + (15 + (16*x0)), xmask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp8 = triton_helpers.maximum(tmp7, tmp6)
tmp10 = triton_helpers.maximum(tmp9, tmp8)
tmp12 = triton_helpers.maximum(tmp11, tmp10)
tmp14 = triton_helpers.maximum(tmp13, tmp12)
tmp16 = triton_helpers.maximum(tmp15, tmp14)
tmp18 = triton_helpers.maximum(tmp17, tmp16)
tmp20 = triton_helpers.maximum(tmp19, tmp18)
tmp22 = triton_helpers.maximum(tmp21, tmp20)
tmp24 = triton_helpers.maximum(tmp23, tmp22)
tmp26 = triton_helpers.maximum(tmp25, tmp24)
tmp28 = triton_helpers.maximum(tmp27, tmp26)
tmp30 = triton_helpers.maximum(tmp29, tmp28)
tl.store(out_ptr0 + (x0), tmp30, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/oy/coyfug4lezxxlpdfds2pbopjbi4465nns5jojyud3gmda7742ba5.py
# Topologically Sorted Source Nodes: [pow_1, sum_1, norm, add, out], Original ATen: [aten.pow, aten.sum, aten.add, aten.div]
# Source node to ATen node mapping:
# add => add
# norm => pow_2
# out => div
# pow_1 => pow_1
# sum_1 => sum_1
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%getitem, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1], True), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_2, 1e-07), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%getitem, %add), kwargs = {})
triton_poi_fused_add_div_pow_sum_1 = async_compile.triton('triton_poi_fused_add_div_pow_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_pow_sum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_pow_sum_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-07
tmp14 = tmp12 + tmp13
tmp15 = tmp0 / tmp14
tl.store(out_ptr0 + (x2), tmp15, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
# Topologically Sorted Source Nodes: [input_1], Original ATen: [aten.adaptive_max_pool2d]
stream0 = get_raw_stream(0)
triton_poi_fused_adaptive_max_pool2d_0.run(arg0_1, buf0, 16, grid=grid(16), stream=stream0)
del arg0_1
buf1 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [pow_1, sum_1, norm, add, out], Original ATen: [aten.pow, aten.sum, aten.add, aten.div]
triton_poi_fused_add_div_pow_sum_1.run(buf0, buf1, 16, grid=grid(16), stream=stream0)
del buf0
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.utils.data
import torch
import torch.nn as nn
class Normalize(nn.Module):
def __init__(self, power=2):
super(Normalize, self).__init__()
self.power = power
def forward(self, x):
norm = x.pow(self.power).sum(1, keepdim=True).pow(1.0 / self.power)
out = x.div(norm + 1e-07)
return out
class PoolingF(nn.Module):
def __init__(self):
super(PoolingF, self).__init__()
model = [nn.AdaptiveMaxPool2d(1)]
self.model = nn.Sequential(*model)
self.l2norm = Normalize(2)
def forward(self, x):
return self.l2norm(self.model(x))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torch.utils.data
import torch
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_adaptive_max_pool2d_0(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 16 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp3 = tl.load(in_ptr0 + (2 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp5 = tl.load(in_ptr0 + (3 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp7 = tl.load(in_ptr0 + (4 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp9 = tl.load(in_ptr0 + (5 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp11 = tl.load(in_ptr0 + (6 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp13 = tl.load(in_ptr0 + (7 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp15 = tl.load(in_ptr0 + (8 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp17 = tl.load(in_ptr0 + (9 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp19 = tl.load(in_ptr0 + (10 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp21 = tl.load(in_ptr0 + (11 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp23 = tl.load(in_ptr0 + (12 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp25 = tl.load(in_ptr0 + (13 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp27 = tl.load(in_ptr0 + (14 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp29 = tl.load(in_ptr0 + (15 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp8 = triton_helpers.maximum(tmp7, tmp6)
tmp10 = triton_helpers.maximum(tmp9, tmp8)
tmp12 = triton_helpers.maximum(tmp11, tmp10)
tmp14 = triton_helpers.maximum(tmp13, tmp12)
tmp16 = triton_helpers.maximum(tmp15, tmp14)
tmp18 = triton_helpers.maximum(tmp17, tmp16)
tmp20 = triton_helpers.maximum(tmp19, tmp18)
tmp22 = triton_helpers.maximum(tmp21, tmp20)
tmp24 = triton_helpers.maximum(tmp23, tmp22)
tmp26 = triton_helpers.maximum(tmp25, tmp24)
tmp28 = triton_helpers.maximum(tmp27, tmp26)
tmp30 = triton_helpers.maximum(tmp29, tmp28)
tl.store(out_ptr0 + x0, tmp30, xmask)
@triton.jit
def triton_poi_fused_add_div_pow_sum_1(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-07
tmp14 = tmp12 + tmp13
tmp15 = tmp0 / tmp14
tl.store(out_ptr0 + x2, tmp15, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
get_raw_stream(0)
triton_poi_fused_adaptive_max_pool2d_0[grid(16)](arg0_1, buf0, 16,
XBLOCK=16, num_warps=1, num_stages=1)
del arg0_1
buf1 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32)
triton_poi_fused_add_div_pow_sum_1[grid(16)](buf0, buf1, 16, XBLOCK
=16, num_warps=1, num_stages=1)
del buf0
return buf1,
class Normalize(nn.Module):
def __init__(self, power=2):
super(Normalize, self).__init__()
self.power = power
def forward(self, x):
norm = x.pow(self.power).sum(1, keepdim=True).pow(1.0 / self.power)
out = x.div(norm + 1e-07)
return out
class PoolingFNew(nn.Module):
def __init__(self):
super(PoolingFNew, self).__init__()
model = [nn.AdaptiveMaxPool2d(1)]
self.model = nn.Sequential(*model)
self.l2norm = Normalize(2)
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
a11isonliu/contrastive-unpaired-translation
|
PoolingF
| false | 9,846 |
[
"BSD-3-Clause"
] | 0 |
67651ed9877cae121d9398f46094ce8dbc678802
|
https://github.com/a11isonliu/contrastive-unpaired-translation/tree/67651ed9877cae121d9398f46094ce8dbc678802
|
PositionwiseFeedForward
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/iu/ciuxern2omgit5ovksuiwlddxkww6e3pkid4q2h3sauzn5rbd35z.py
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv1d => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_2, %primals_3, [1], [0], [1], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/i3/ci3nuuurbsrmcufle642yc7udhwn4itsu6aptfssij5nzrnylpne.py
# Topologically Sorted Source Nodes: [conv1d, output], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv1d => convolution
# output => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_2, %primals_3, [1], [0], [1], False, [0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 4) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/lf/clf7hs52i4bd5d3e73uio27ntyjfqmszkbsw6dta3r6rzgeftva3.py
# Topologically Sorted Source Nodes: [conv1d_1], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv1d_1 => convolution_1
# Graph fragment:
# %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1], [0], [1], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 4) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/xh/cxh4iyrddqmxt3enz74gv2f7xmktjj3z24wtgocbfmulcllknj6v.py
# Topologically Sorted Source Nodes: [add, mu, sigma], Original ATen: [aten.add, aten.mean, aten.std]
# Source node to ATen node mapping:
# add => add
# mu => mean
# sigma => var
# Graph fragment:
# %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%permute_1, %primals_1), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%add, [1]), kwargs = {})
# %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%add, [1]), kwargs = {correction: 1.0})
triton_poi_fused_add_mean_std_3 = async_compile.triton('triton_poi_fused_add_mean_std_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mean_std_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mean_std_3(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (4*x2), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x0 + (16*x1)), xmask)
tmp3 = tl.load(in_ptr0 + (1 + (4*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (4 + x0 + (16*x1)), xmask)
tmp7 = tl.load(in_ptr0 + (2 + (4*x2)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (8 + x0 + (16*x1)), xmask)
tmp11 = tl.load(in_ptr0 + (3 + (4*x2)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (12 + x0 + (16*x1)), xmask)
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 + tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 + tmp12
tmp14 = tmp10 + tmp13
tmp15 = 4.0
tmp16 = tmp14 / tmp15
tmp17 = tmp2 - tmp16
tmp18 = tmp17 * tmp17
tmp19 = tmp5 - tmp16
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp22 = tmp9 - tmp16
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp25 = tmp13 - tmp16
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = 3.0
tmp29 = tmp27 / tmp28
tl.store(in_out_ptr0 + (x2), tmp29, xmask)
tl.store(out_ptr0 + (x2), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/el/celbjzulegxlpowfr6ubji6rp3f5kjxz7hctucy4e4oirffqvbtx.py
# Topologically Sorted Source Nodes: [add, sub, add_1, ln_out, mul, ln_out_1], Original ATen: [aten.add, aten.sub, aten.div, aten.mul]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# ln_out => div
# ln_out_1 => add_2
# mul => mul
# sub => sub
# Graph fragment:
# %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%permute_1, %primals_1), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %expand), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%expand_1, 0.001), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %add_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %expand_2), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %expand_3), kwargs = {})
triton_poi_fused_add_div_mul_sub_4 = async_compile.triton('triton_poi_fused_add_div_mul_sub_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mul_sub_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_mul_sub_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x2 + (4*y3)), xmask & ymask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x2 + (4*y0)), xmask & ymask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x2 + (4*y0)), xmask & ymask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr4 + (x2), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr5 + (x2), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 - tmp3
tmp6 = libdevice.sqrt(tmp5)
tmp7 = 0.001
tmp8 = tmp6 + tmp7
tmp9 = tmp4 / tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tl.store(out_ptr0 + (y0 + (4*x2) + (16*y1)), tmp13, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, ), (1, ))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(primals_1, buf0, 16, 4, grid=grid(16, 4), stream=stream0)
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 4), (16, 4, 1))
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [conv1d, output], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_1.run(buf2, primals_3, 64, grid=grid(64), stream=stream0)
del primals_3
# Topologically Sorted Source Nodes: [conv1d_1], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 4), (16, 4, 1))
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [conv1d_1], Original ATen: [aten.convolution]
triton_poi_fused_convolution_2.run(buf4, primals_5, 64, grid=grid(64), stream=stream0)
del primals_5
buf5 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32)
buf6 = reinterpret_tensor(buf5, (4, 4), (4, 1), 0); del buf5 # reuse
buf7 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, mu, sigma], Original ATen: [aten.add, aten.mean, aten.std]
triton_poi_fused_add_mean_std_3.run(buf6, buf4, primals_1, buf7, 16, grid=grid(16), stream=stream0)
buf8 = reinterpret_tensor(buf0, (4, 4, 4), (16, 1, 4), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [add, sub, add_1, ln_out, mul, ln_out_1], Original ATen: [aten.add, aten.sub, aten.div, aten.mul]
triton_poi_fused_add_div_mul_sub_4.run(buf4, primals_1, buf7, buf6, primals_6, primals_7, buf8, 16, 4, grid=grid(16, 4), stream=stream0)
del buf6
del buf7
del primals_7
return (buf8, primals_1, primals_2, primals_4, primals_6, buf2, buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class LayerNormalization(nn.Module):
""" Layer normalization module """
def __init__(self, d_hid, eps=0.001):
super(LayerNormalization, self).__init__()
self.eps = eps
self.a_2 = nn.Parameter(torch.ones(d_hid), requires_grad=True)
self.b_2 = nn.Parameter(torch.zeros(d_hid), requires_grad=True)
def forward(self, z):
mu = torch.mean(z, dim=1)
sigma = torch.std(z, dim=1)
ln_out = (z - mu.expand_as(z)) / (sigma.expand_as(z) + self.eps)
ln_out = ln_out * self.a_2.expand_as(ln_out) + self.b_2.expand_as(
ln_out)
return ln_out
class PositionwiseFeedForward(nn.Module):
""" A two-feed-forward-layer module """
def __init__(self, d_hid, d_inner_hid, res_dropout=0.1):
super(PositionwiseFeedForward, self).__init__()
self.w_1 = nn.Conv1d(d_hid, d_inner_hid, 1)
self.w_2 = nn.Conv1d(d_inner_hid, d_hid, 1)
self.layer_norm = LayerNormalization(d_hid)
self.dropout = nn.Dropout(res_dropout)
self.relu = nn.ReLU()
def forward(self, x):
residual = x
output = self.relu(self.w_1(x.transpose(1, 2)))
output = self.w_2(output).transpose(2, 1)
output = self.dropout(output)
return self.layer_norm(output + residual)
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'d_hid': 4, 'd_inner_hid': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 4 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 4 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
@triton.jit
def triton_poi_fused_add_mean_std_3(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + 4 * x2, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x0 + 16 * x1), xmask)
tmp3 = tl.load(in_ptr0 + (1 + 4 * x2), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (4 + x0 + 16 * x1), xmask)
tmp7 = tl.load(in_ptr0 + (2 + 4 * x2), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (8 + x0 + 16 * x1), xmask)
tmp11 = tl.load(in_ptr0 + (3 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp12 = tl.load(in_ptr1 + (12 + x0 + 16 * x1), xmask)
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 + tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 + tmp12
tmp14 = tmp10 + tmp13
tmp15 = 4.0
tmp16 = tmp14 / tmp15
tmp17 = tmp2 - tmp16
tmp18 = tmp17 * tmp17
tmp19 = tmp5 - tmp16
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp22 = tmp9 - tmp16
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp25 = tmp13 - tmp16
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = 3.0
tmp29 = tmp27 / tmp28
tl.store(in_out_ptr0 + x2, tmp29, xmask)
tl.store(out_ptr0 + x2, tmp16, xmask)
@triton.jit
def triton_poi_fused_add_div_mul_sub_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
in_ptr4, in_ptr5, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr,
XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x2 + 4 * y3), xmask & ymask, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr2 + (x2 + 4 * y0), xmask & ymask, eviction_policy=
'evict_last')
tmp5 = tl.load(in_ptr3 + (x2 + 4 * y0), xmask & ymask, eviction_policy=
'evict_last')
tmp10 = tl.load(in_ptr4 + x2, xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr5 + x2, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 - tmp3
tmp6 = libdevice.sqrt(tmp5)
tmp7 = 0.001
tmp8 = tmp6 + tmp7
tmp9 = tmp4 / tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tl.store(out_ptr0 + (y0 + 4 * x2 + 16 * y1), tmp13, xmask & ymask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4,), (1,))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(16, 4)](primals_1, buf0, 16, 4,
XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1)
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,),
padding=(0,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 4), (16, 4, 1))
buf2 = buf1
del buf1
triton_poi_fused_convolution_relu_1[grid(64)](buf2, primals_3, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del primals_3
buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1,),
padding=(0,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 4), (16, 4, 1))
buf4 = buf3
del buf3
triton_poi_fused_convolution_2[grid(64)](buf4, primals_5, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del primals_5
buf5 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32)
buf6 = reinterpret_tensor(buf5, (4, 4), (4, 1), 0)
del buf5
buf7 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_add_mean_std_3[grid(16)](buf6, buf4, primals_1,
buf7, 16, XBLOCK=16, num_warps=1, num_stages=1)
buf8 = reinterpret_tensor(buf0, (4, 4, 4), (16, 1, 4), 0)
del buf0
triton_poi_fused_add_div_mul_sub_4[grid(16, 4)](buf4, primals_1,
buf7, buf6, primals_6, primals_7, buf8, 16, 4, XBLOCK=4, YBLOCK
=16, num_warps=1, num_stages=1)
del buf6
del buf7
del primals_7
return buf8, primals_1, primals_2, primals_4, primals_6, buf2, buf4
class LayerNormalization(nn.Module):
""" Layer normalization module """
def __init__(self, d_hid, eps=0.001):
super(LayerNormalization, self).__init__()
self.eps = eps
self.a_2 = nn.Parameter(torch.ones(d_hid), requires_grad=True)
self.b_2 = nn.Parameter(torch.zeros(d_hid), requires_grad=True)
def forward(self, z):
mu = torch.mean(z, dim=1)
sigma = torch.std(z, dim=1)
ln_out = (z - mu.expand_as(z)) / (sigma.expand_as(z) + self.eps)
ln_out = ln_out * self.a_2.expand_as(ln_out) + self.b_2.expand_as(
ln_out)
return ln_out
class PositionwiseFeedForwardNew(nn.Module):
""" A two-feed-forward-layer module """
def __init__(self, d_hid, d_inner_hid, res_dropout=0.1):
super(PositionwiseFeedForwardNew, self).__init__()
self.w_1 = nn.Conv1d(d_hid, d_inner_hid, 1)
self.w_2 = nn.Conv1d(d_inner_hid, d_hid, 1)
self.layer_norm = LayerNormalization(d_hid)
self.dropout = nn.Dropout(res_dropout)
self.relu = nn.ReLU()
def forward(self, input_0):
primals_2 = self.w_1.weight
primals_3 = self.w_1.bias
primals_4 = self.w_2.weight
primals_5 = self.w_2.bias
primals_6 = self.layer_norm.a_2
primals_7 = self.layer_norm.b_2
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
|
awesome-archive/attention-is-all-you-need-pytorch
|
PositionwiseFeedForward
| false | 9,847 |
[
"MIT"
] | 0 |
d1fb26fafaf7170a7c3a45968cd555f3c6aeb3bc
|
https://github.com/awesome-archive/attention-is-all-you-need-pytorch/tree/d1fb26fafaf7170a7c3a45968cd555f3c6aeb3bc
|
Discriminator
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/lp/clpbjzfuwjqmfvjrcfnqcojovtilicn2ovnr64o5debiu7it2tda.py
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.leaky_relu]
# Source node to ATen node mapping:
# x => convolution
# x_1 => gt, mul, where
# Graph fragment:
# %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [2, 2], [2, 2], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.01), kwargs = {})
# %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul), kwargs = {})
triton_poi_fused_convolution_leaky_relu_0 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 262144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 1024) % 64
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.01
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + (x3), tmp4, None)
tl.store(out_ptr1 + (x3), tmp7, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/2i/c2ikvkvm7g6ycpmztz34ydjdaeyixf7cwanoyqbdvfopf6fi6ebv.py
# Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.convolution, aten.leaky_relu]
# Source node to ATen node mapping:
# x_2 => convolution_1
# x_3 => gt_1, mul_1, where_1
# Graph fragment:
# %convolution_1 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where, %primals_4, %primals_5, [2, 2], [2, 2], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_1 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_1, 0), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_1, 0.01), kwargs = {})
# %where_1 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %convolution_1, %mul_1), kwargs = {})
triton_poi_fused_convolution_leaky_relu_1 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 131072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 256) % 128
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.01
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + (x3), tmp4, None)
tl.store(out_ptr1 + (x3), tmp7, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/aj/caj32wz62too77y6uaxmpjjj4jbnvh5dlupja6nqwsqr3px5l6tc.py
# Topologically Sorted Source Nodes: [x_4, x_5], Original ATen: [aten.convolution, aten.leaky_relu]
# Source node to ATen node mapping:
# x_4 => convolution_2
# x_5 => gt_2, mul_2, where_2
# Graph fragment:
# %convolution_2 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where_1, %primals_6, %primals_7, [2, 2], [2, 2], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_2 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_2, 0), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_2, 0.01), kwargs = {})
# %where_2 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %convolution_2, %mul_2), kwargs = {})
triton_poi_fused_convolution_leaky_relu_2 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 64) % 256
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.01
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + (x3), tmp4, None)
tl.store(out_ptr1 + (x3), tmp7, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/rn/crnvqngnyeozruwvtkc2ve3lsfenk4pelop5l63t7pkgytwzv65d.py
# Topologically Sorted Source Nodes: [x_6, x_7], Original ATen: [aten.convolution, aten.leaky_relu]
# Source node to ATen node mapping:
# x_6 => convolution_3
# x_7 => gt_3, mul_3, where_3
# Graph fragment:
# %convolution_3 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where_2, %primals_8, %primals_9, [2, 2], [2, 2], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_3 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_3, 0), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_3, 0.01), kwargs = {})
# %where_3 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_3, %convolution_3, %mul_3), kwargs = {})
triton_poi_fused_convolution_leaky_relu_3 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_3(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 32768
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 16) % 512
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.01
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + (x3), tmp4, None)
tl.store(out_ptr1 + (x3), tmp7, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/gf/cgfk4hjnbodl6dq542ea4g5jso4522kaxrpyqxr5ustrsaxckzl6.py
# Topologically Sorted Source Nodes: [x_8, x_9], Original ATen: [aten.convolution, aten.sigmoid]
# Source node to ATen node mapping:
# x_8 => convolution_4
# x_9 => sigmoid
# Graph fragment:
# %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%where_3, %primals_10, %primals_11, [2, 2], [2, 2], [1, 1], False, [0, 0], 1), kwargs = {})
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_4,), kwargs = {})
triton_poi_fused_convolution_sigmoid_4 = async_compile.triton('triton_poi_fused_convolution_sigmoid_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_sigmoid_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_sigmoid_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.sigmoid(tmp3)
tl.store(in_out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args
args.clear()
assert_size_stride(primals_1, (64, 3, 5, 5), (75, 25, 5, 1))
assert_size_stride(primals_2, (64, ), (1, ))
assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_4, (128, 64, 5, 5), (1600, 25, 5, 1))
assert_size_stride(primals_5, (128, ), (1, ))
assert_size_stride(primals_6, (256, 128, 5, 5), (3200, 25, 5, 1))
assert_size_stride(primals_7, (256, ), (1, ))
assert_size_stride(primals_8, (512, 256, 5, 5), (6400, 25, 5, 1))
assert_size_stride(primals_9, (512, ), (1, ))
assert_size_stride(primals_10, (1, 512, 5, 5), (12800, 25, 5, 1))
assert_size_stride(primals_11, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 64, 32, 32), (65536, 1024, 32, 1))
buf1 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.bool)
buf2 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.float32)
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.leaky_relu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_leaky_relu_0.run(buf0, primals_2, buf1, buf2, 262144, grid=grid(262144), stream=stream0)
del buf0
del primals_2
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(buf2, primals_4, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 128, 16, 16), (32768, 256, 16, 1))
buf4 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.bool)
buf5 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_1.run(buf3, primals_5, buf4, buf5, 131072, grid=grid(131072), stream=stream0)
del buf3
del primals_5
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(buf5, primals_6, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 256, 8, 8), (16384, 64, 8, 1))
buf7 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch.bool)
buf8 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_4, x_5], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_2.run(buf6, primals_7, buf7, buf8, 65536, grid=grid(65536), stream=stream0)
del buf6
del primals_7
# Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.convolution]
buf9 = extern_kernels.convolution(buf8, primals_8, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf9, (4, 512, 4, 4), (8192, 16, 4, 1))
buf10 = empty_strided_cuda((4, 512, 4, 4), (8192, 16, 4, 1), torch.bool)
buf11 = empty_strided_cuda((4, 512, 4, 4), (8192, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_6, x_7], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_3.run(buf9, primals_9, buf10, buf11, 32768, grid=grid(32768), stream=stream0)
del buf9
del primals_9
# Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.convolution]
buf12 = extern_kernels.convolution(buf11, primals_10, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 1, 2, 2), (4, 4, 2, 1))
buf13 = buf12; del buf12 # reuse
# Topologically Sorted Source Nodes: [x_8, x_9], Original ATen: [aten.convolution, aten.sigmoid]
triton_poi_fused_convolution_sigmoid_4.run(buf13, primals_11, 16, grid=grid(16), stream=stream0)
del primals_11
return (buf13, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, buf1, buf2, buf4, buf5, buf7, buf8, buf10, buf11, buf13, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((64, 3, 5, 5), (75, 25, 5, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((128, 64, 5, 5), (1600, 25, 5, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((256, 128, 5, 5), (3200, 25, 5, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((512, 256, 5, 5), (6400, 25, 5, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((1, 512, 5, 5), (12800, 25, 5, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class BaseModel(nn.Module):
def __init__(self):
super(BaseModel, self).__init__()
def weights_init(self):
classname = self.__class__.__name__
if classname.find('Conv') != -1:
nn.init.normal_(self.weight.data, 0.0, 0.02)
elif classname.find('BatchNorm') != -1:
nn.init.normal_(self.weight.data, 1.0, 0.02)
nn.init.constant_(self.bias.data, 0)
def load_model(self, model_path):
self.load_state_dict(torch.load(model_path, map_location=self.device))
self.eval()
class Discriminator(BaseModel):
def __init__(self, device):
super(Discriminator, self).__init__()
self.device = device
self.conv1 = nn.Conv2d(3, 64, 5, 2, 2)
self.conv2 = nn.Conv2d(64, 128, 5, 2, 2)
self.conv3 = nn.Conv2d(128, 256, 5, 2, 2)
self.conv4 = nn.Conv2d(256, 512, 5, 2, 2)
self.conv5 = nn.Conv2d(512, 1, 5, 2, 2)
self.leaky_relu = nn.LeakyReLU()
self.sigmoid = nn.Sigmoid()
self.weights_init()
def forward(self, x):
x = self.conv1(x)
x = self.leaky_relu(x)
x = self.conv2(x)
x = self.leaky_relu(x)
x = self.conv3(x)
x = self.leaky_relu(x)
x = self.conv4(x)
x = self.leaky_relu(x)
x = self.conv5(x)
x = self.sigmoid(x)
return x
def get_inputs():
return [torch.rand([4, 3, 64, 64])]
def get_init_inputs():
return [[], {'device': 0}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_convolution_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 1024 % 64
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.01
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + x3, tmp4, None)
tl.store(out_ptr1 + x3, tmp7, None)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 256 % 128
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.01
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + x3, tmp4, None)
tl.store(out_ptr1 + x3, tmp7, None)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_2(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 64 % 256
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.01
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + x3, tmp4, None)
tl.store(out_ptr1 + x3, tmp7, None)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_3(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 16 % 512
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.01
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + x3, tmp4, None)
tl.store(out_ptr1 + x3, tmp7, None)
@triton.jit
def triton_poi_fused_convolution_sigmoid_4(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.sigmoid(tmp3)
tl.store(in_out_ptr0 + x0, tmp4, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11) = args
args.clear()
assert_size_stride(primals_1, (64, 3, 5, 5), (75, 25, 5, 1))
assert_size_stride(primals_2, (64,), (1,))
assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_4, (128, 64, 5, 5), (1600, 25, 5, 1))
assert_size_stride(primals_5, (128,), (1,))
assert_size_stride(primals_6, (256, 128, 5, 5), (3200, 25, 5, 1))
assert_size_stride(primals_7, (256,), (1,))
assert_size_stride(primals_8, (512, 256, 5, 5), (6400, 25, 5, 1))
assert_size_stride(primals_9, (512,), (1,))
assert_size_stride(primals_10, (1, 512, 5, 5), (12800, 25, 5, 1))
assert_size_stride(primals_11, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(2,
2), padding=(2, 2), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 64, 32, 32), (65536, 1024, 32, 1))
buf1 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1),
torch.bool)
buf2 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_leaky_relu_0[grid(262144)](buf0,
primals_2, buf1, buf2, 262144, XBLOCK=1024, num_warps=4,
num_stages=1)
del buf0
del primals_2
buf3 = extern_kernels.convolution(buf2, primals_4, stride=(2, 2),
padding=(2, 2), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 128, 16, 16), (32768, 256, 16, 1))
buf4 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1),
torch.bool)
buf5 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1),
torch.float32)
triton_poi_fused_convolution_leaky_relu_1[grid(131072)](buf3,
primals_5, buf4, buf5, 131072, XBLOCK=512, num_warps=8,
num_stages=1)
del buf3
del primals_5
buf6 = extern_kernels.convolution(buf5, primals_6, stride=(2, 2),
padding=(2, 2), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 256, 8, 8), (16384, 64, 8, 1))
buf7 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch.bool
)
buf8 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch.
float32)
triton_poi_fused_convolution_leaky_relu_2[grid(65536)](buf6,
primals_7, buf7, buf8, 65536, XBLOCK=512, num_warps=4, num_stages=1
)
del buf6
del primals_7
buf9 = extern_kernels.convolution(buf8, primals_8, stride=(2, 2),
padding=(2, 2), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf9, (4, 512, 4, 4), (8192, 16, 4, 1))
buf10 = empty_strided_cuda((4, 512, 4, 4), (8192, 16, 4, 1), torch.bool
)
buf11 = empty_strided_cuda((4, 512, 4, 4), (8192, 16, 4, 1), torch.
float32)
triton_poi_fused_convolution_leaky_relu_3[grid(32768)](buf9,
primals_9, buf10, buf11, 32768, XBLOCK=256, num_warps=4,
num_stages=1)
del buf9
del primals_9
buf12 = extern_kernels.convolution(buf11, primals_10, stride=(2, 2),
padding=(2, 2), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 1, 2, 2), (4, 4, 2, 1))
buf13 = buf12
del buf12
triton_poi_fused_convolution_sigmoid_4[grid(16)](buf13, primals_11,
16, XBLOCK=16, num_warps=1, num_stages=1)
del primals_11
return (buf13, primals_1, primals_3, primals_4, primals_6, primals_8,
primals_10, buf1, buf2, buf4, buf5, buf7, buf8, buf10, buf11, buf13)
class BaseModel(nn.Module):
def __init__(self):
super(BaseModel, self).__init__()
def weights_init(self):
classname = self.__class__.__name__
if classname.find('Conv') != -1:
nn.init.normal_(self.weight.data, 0.0, 0.02)
elif classname.find('BatchNorm') != -1:
nn.init.normal_(self.weight.data, 1.0, 0.02)
nn.init.constant_(self.bias.data, 0)
def load_model(self, model_path):
self.load_state_dict(torch.load(model_path, map_location=self.device))
self.eval()
class DiscriminatorNew(BaseModel):
def __init__(self, device):
super(DiscriminatorNew, self).__init__()
self.device = device
self.conv1 = nn.Conv2d(3, 64, 5, 2, 2)
self.conv2 = nn.Conv2d(64, 128, 5, 2, 2)
self.conv3 = nn.Conv2d(128, 256, 5, 2, 2)
self.conv4 = nn.Conv2d(256, 512, 5, 2, 2)
self.conv5 = nn.Conv2d(512, 1, 5, 2, 2)
self.leaky_relu = nn.LeakyReLU()
self.sigmoid = nn.Sigmoid()
self.weights_init()
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_6 = self.conv3.weight
primals_7 = self.conv3.bias
primals_8 = self.conv4.weight
primals_9 = self.conv4.bias
primals_10 = self.conv5.weight
primals_11 = self.conv5.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11])
return output[0]
|
by256/PSGAN
|
Discriminator
| false | 9,848 |
[
"MIT"
] | 0 |
ac086d4e25f6fbbe024cb4cdaf9075c88849ef01
|
https://github.com/by256/PSGAN/tree/ac086d4e25f6fbbe024cb4cdaf9075c88849ef01
|
Net
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/y3/cy3bfx7suhzmqovrmgwr7kipqmduyq6otbqkuvdqlaprgg7g2dgl.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x_1 => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 5120
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 80
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/nv/cnvjblkh4wuvijpe4b7v23lbcmwdc73rdiwtpgiuzrtfq62dtxni.py
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x_3 => relu_1
# Graph fragment:
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 3840
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 60
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (80, 4), (4, 1))
assert_size_stride(primals_2, (80, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (60, 80), (80, 1))
assert_size_stride(primals_5, (60, ), (1, ))
assert_size_stride(primals_6, (4, 60), (60, 1))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 80), (80, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 80), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 80), (1280, 320, 80, 1), 0); del buf0 # reuse
buf6 = empty_strided_cuda((4, 4, 4, 80), (1280, 320, 80, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf6, 5120, grid=grid(5120), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 60), (60, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 80), (80, 1), 0), reinterpret_tensor(primals_4, (80, 60), (1, 80), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 60), (960, 240, 60, 1), 0); del buf2 # reuse
buf5 = empty_strided_cuda((4, 4, 4, 60), (960, 240, 60, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_1.run(buf3, primals_5, buf5, 3840, grid=grid(3840), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [actions_value], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 60), (60, 1), 0), reinterpret_tensor(primals_6, (60, 4), (1, 60), 0), alpha=1, beta=1, out=buf4)
del primals_7
return (reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 80), (80, 1), 0), reinterpret_tensor(buf3, (64, 60), (60, 1), 0), primals_6, buf5, primals_4, buf6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((80, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((80, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((60, 80), (80, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((60, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 60), (60, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn.functional as F
import torch.nn as nn
class Net(nn.Module):
def __init__(self, N_STATES, N_ACTIONS):
super(Net, self).__init__()
self.fc1 = nn.Linear(N_STATES, 80)
self.fc1.weight.data.normal_(0, 0.1)
self.fc2 = nn.Linear(80, 60)
self.fc2.weight.data.normal_(0, 0.1)
self.out = nn.Linear(60, N_ACTIONS)
self.out.weight.data.normal_(0, 0.1)
def forward(self, x):
x = self.fc1(x)
x = F.relu(x)
x = self.fc2(x)
x = F.relu(x)
actions_value = self.out(x)
return actions_value
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'N_STATES': 4, 'N_ACTIONS': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 5120
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 80
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 3840
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 60
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (80, 4), (4, 1))
assert_size_stride(primals_2, (80,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (60, 80), (80, 1))
assert_size_stride(primals_5, (60,), (1,))
assert_size_stride(primals_6, (4, 60), (60, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 80), (80, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 80), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 80), (1280, 320, 80, 1), 0)
del buf0
buf6 = empty_strided_cuda((4, 4, 4, 80), (1280, 320, 80, 1), torch.bool
)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(5120)](buf1,
primals_2, buf6, 5120, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 60), (60, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 80), (80, 1), 0),
reinterpret_tensor(primals_4, (80, 60), (1, 80), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 60), (960, 240, 60, 1), 0)
del buf2
buf5 = empty_strided_cuda((4, 4, 4, 60), (960, 240, 60, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_1[grid(3840)](buf3,
primals_5, buf5, 3840, XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 60),
(60, 1), 0), reinterpret_tensor(primals_6, (60, 4), (1, 60), 0),
alpha=1, beta=1, out=buf4)
del primals_7
return reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 80), (80, 1), 0), reinterpret_tensor(
buf3, (64, 60), (60, 1), 0), primals_6, buf5, primals_4, buf6
class NetNew(nn.Module):
def __init__(self, N_STATES, N_ACTIONS):
super(NetNew, self).__init__()
self.fc1 = nn.Linear(N_STATES, 80)
self.fc1.weight.data.normal_(0, 0.1)
self.fc2 = nn.Linear(80, 60)
self.fc2.weight.data.normal_(0, 0.1)
self.out = nn.Linear(60, N_ACTIONS)
self.out.weight.data.normal_(0, 0.1)
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_6 = self.out.weight
primals_7 = self.out.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
|
cariosr/States-Joeynmt
|
Net
| false | 9,849 |
[
"MIT"
] | 0 |
6b2eb67b990b586fe2bc4fb49004d749bc4f33be
|
https://github.com/cariosr/States-Joeynmt/tree/6b2eb67b990b586fe2bc4fb49004d749bc4f33be
|
Normalize
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/6o/c6ojhuuvyz43ogs3olib4lkalnymxhhnoqfyye667gq5hhhh5aqy.py
# Topologically Sorted Source Nodes: [pow_1, sum_1, norm, add, out], Original ATen: [aten.pow, aten.sum, aten.add, aten.div]
# Source node to ATen node mapping:
# add => add
# norm => pow_2
# out => div
# pow_1 => pow_1
# sum_1 => sum_1
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg0_1, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1], True), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_2, 1e-07), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, %add), kwargs = {})
triton_poi_fused_add_div_pow_sum_0 = async_compile.triton('triton_poi_fused_add_div_pow_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_pow_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_pow_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-07
tmp14 = tmp12 + tmp13
tmp15 = tmp0 / tmp14
tl.store(out_ptr0 + (x3), tmp15, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [pow_1, sum_1, norm, add, out], Original ATen: [aten.pow, aten.sum, aten.add, aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_add_div_pow_sum_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.utils.data
import torch
import torch.nn as nn
class Normalize(nn.Module):
def __init__(self, power=2):
super(Normalize, self).__init__()
self.power = power
def forward(self, x):
norm = x.pow(self.power).sum(1, keepdim=True).pow(1.0 / self.power)
out = x.div(norm + 1e-07)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.utils.data
import torch
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_div_pow_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp9 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-07
tmp14 = tmp12 + tmp13
tmp15 = tmp0 / tmp14
tl.store(out_ptr0 + x3, tmp15, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_div_pow_sum_0[grid(256)](arg0_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class NormalizeNew(nn.Module):
def __init__(self, power=2):
super(NormalizeNew, self).__init__()
self.power = power
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
a11isonliu/contrastive-unpaired-translation
|
Normalize
| false | 9,850 |
[
"BSD-3-Clause"
] | 0 |
67651ed9877cae121d9398f46094ce8dbc678802
|
https://github.com/a11isonliu/contrastive-unpaired-translation/tree/67651ed9877cae121d9398f46094ce8dbc678802
|
SequentialPolarizedSelfAttention
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/u3/cu3litezfpnwhpnfnfuj6dtimz6ml42wmcwnwxlnovd4p5lvyin4.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048, 4096], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 2048
xnumel = 4096
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 512
y1 = (yindex // 512)
tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), None, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (512*x2) + (2097152*y1)), tmp0, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/iq/ciqt7v5dvn4ukgyyy6maxezu54tu2k6htitfxylgvyziqck3gwix.py
# Topologically Sorted Source Nodes: [channel_wq_2], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# channel_wq_2 => amax, div, exp, sub, sum_1
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_1, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_red_fused__softmax_1 = async_compile.triton('triton_red_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[4, 4096],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused__softmax_1(in_ptr0, in_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 4
rnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex
tmp1 = tl.load(in_ptr1 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
_tmp5 = tl.full([XBLOCK, RBLOCK], float("-inf"), tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp0 = tl.load(in_ptr0 + (r1 + (4096*x0)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp3 = tmp0 + tmp2
tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp6 = triton_helpers.maximum(_tmp5, tmp4)
_tmp5 = tl.where(rmask & xmask, tmp6, _tmp5)
tmp5 = triton_helpers.max2(_tmp5, 1)[:, None]
tmp8 = tl.load(in_ptr1 + (0))
tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK])
_tmp14 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp7 = tl.load(in_ptr0 + (r1 + (4096*x0)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tmp7 + tmp9
tmp11 = tmp10 - tmp5
tmp12 = tl_math.exp(tmp11)
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = _tmp14 + tmp13
_tmp14 = tl.where(rmask & xmask, tmp15, _tmp14)
tmp14 = tl.sum(_tmp14, 1)[:, None]
tmp17 = tl.load(in_ptr1 + (0))
tmp18 = tl.broadcast_to(tmp17, [XBLOCK, RBLOCK])
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp16 = tl.load(in_ptr0 + (r1 + (4096*x0)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp19 = tmp16 + tmp18
tmp20 = tmp19 - tmp5
tmp21 = tl_math.exp(tmp20)
tmp22 = tmp21 / tmp14
tl.store(out_ptr2 + (r1 + (4096*x0)), tmp22, rmask & xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/ap/capazybbmitbuviukrgvztks4tyvg3dpptakn7q4vjslonrba25g.py
# Topologically Sorted Source Nodes: [channel_wv], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# channel_wv => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024, 4096], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_2(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 1024
xnumel = 4096
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y0 = yindex % 256
y1 = (yindex // 256)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (256*x2) + (1048576*y1)), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + (4096*y3)), tmp2, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/rw/crwczp7wd3om4xrznty4rti6kiafa2tzqyvn6po6scyvmhmtcnmw.py
# Topologically Sorted Source Nodes: [conv2d_2, layer_norm, sigmoid], Original ATen: [aten.convolution, aten.native_layer_norm, aten.sigmoid]
# Source node to ATen node mapping:
# conv2d_2 => convolution_2
# layer_norm => add, add_1, mul, mul_1, rsqrt, sub_1, var_mean
# sigmoid => sigmoid
# Graph fragment:
# %convolution_2 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%unsqueeze, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%permute, [2]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %getitem_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %rsqrt), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_8), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_9), kwargs = {})
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add_1,), kwargs = {})
triton_per_fused_convolution_native_layer_norm_sigmoid_3 = async_compile.triton('triton_per_fused_convolution_native_layer_norm_sigmoid_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 512],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 8), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_convolution_native_layer_norm_sigmoid_3', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': True, 'num_load': 4, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_convolution_native_layer_norm_sigmoid_3(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, rnumel):
xnumel = 4
XBLOCK: tl.constexpr = 1
rnumel = 512
RBLOCK: tl.constexpr = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (r1 + (512*x0)), None)
tmp1 = tl.load(in_ptr0 + (r1), None, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr1 + (r1), None, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr2 + (r1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.broadcast_to(tmp2, [RBLOCK])
tmp5 = tl.broadcast_to(tmp3, [RBLOCK])
tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0))
tmp8 = tl.full([1], 512, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp3 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [RBLOCK])
tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0))
tmp16 = 512.0
tmp17 = tmp15 / tmp16
tmp18 = 1e-05
tmp19 = tmp17 + tmp18
tmp20 = libdevice.rsqrt(tmp19)
tmp21 = tmp2 - tmp10
tmp22 = tmp21 * tmp20
tmp24 = tmp22 * tmp23
tmp26 = tmp24 + tmp25
tmp27 = tl.sigmoid(tmp26)
tl.store(in_out_ptr0 + (r1 + (512*x0)), tmp2, None)
tl.debug_barrier()
tl.store(in_out_ptr1 + (x0), tmp20, None)
tl.store(out_ptr1 + (r1 + (512*x0)), tmp27, None)
tl.store(out_ptr0 + (x0), tmp10, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/7i/c7imzedyptzfxt2vgr3k6bffmwfpaeyua4jsjocwv6fjlirpf7x5.py
# Topologically Sorted Source Nodes: [channel_out], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# channel_out => mul_2
# Graph fragment:
# %mul_2 : [num_users=4] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_6, %primals_1), kwargs = {})
triton_poi_fused_mul_4 = async_compile.triton('triton_poi_fused_mul_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8388608],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8388608
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 512
x2 = (xindex // 2097152)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (512*x2)), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x3), None)
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x3), tmp2, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/au/caujl2tq6bs3qovx53ootns3c3h5xsrg3e7jadpmwpwwfswihcgz.py
# Topologically Sorted Source Nodes: [spatial_wq, spatial_wq_1], Original ATen: [aten.convolution, aten.mean]
# Source node to ATen node mapping:
# spatial_wq => convolution_4
# spatial_wq_1 => mean
# Graph fragment:
# %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%mul_2, %primals_12, %primals_13, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%convolution_4, [-1, -2], True), kwargs = {})
triton_red_fused_convolution_mean_5 = async_compile.triton('triton_red_fused_convolution_mean_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[32768, 128],
reduction_hint=ReductionHint.OUTER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_convolution_mean_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused_convolution_mean_5(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 32768
rnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex % 256
x1 = (xindex // 256)
tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last')
_tmp4 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
x3 = xindex
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex
tmp0 = tl.load(in_ptr0 + (x0 + (256*r2) + (32768*x1)), rmask, eviction_policy='evict_first', other=0.0)
tmp2 = tmp0 + tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = _tmp4 + tmp3
_tmp4 = tl.where(rmask, tmp5, _tmp4)
tmp4 = tl.sum(_tmp4, 1)[:, None]
tl.store(out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/fn/cfnj7f7h2gjgdklco4terukop2ftgjuqvstzhw36dsvm4f77sb5r.py
# Topologically Sorted Source Nodes: [spatial_wq, spatial_wq_1], Original ATen: [aten.convolution, aten.mean]
# Source node to ATen node mapping:
# spatial_wq => convolution_4
# spatial_wq_1 => mean
# Graph fragment:
# %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%mul_2, %primals_12, %primals_13, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%convolution_4, [-1, -2], True), kwargs = {})
triton_per_fused_convolution_mean_6 = async_compile.triton('triton_per_fused_convolution_mean_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1024, 32],
reduction_hint=ReductionHint.OUTER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_convolution_mean_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_convolution_mean_6(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1024
rnumel = 32
RBLOCK: tl.constexpr = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x0 = xindex % 256
x1 = (xindex // 256)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (256*r2) + (8192*x1)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tl.store(out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/a3/ca3tf2cm62zevu3v2rtbukpzj6gti7pbckdddwcpizhzhqpcvstv.py
# Topologically Sorted Source Nodes: [spatial_wq_3], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# spatial_wq_3 => amax_1, div_1, exp_1, sub_2, sum_2
# Graph fragment:
# %amax_1 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_8, [-1], True), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_8, %amax_1), kwargs = {})
# %exp_1 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_2,), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_1, [-1], True), kwargs = {})
# %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_1, %sum_2), kwargs = {})
triton_per_fused__softmax_7 = async_compile.triton('triton_per_fused__softmax_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_7', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__softmax_7(in_ptr0, out_ptr2, xnumel, rnumel):
xnumel = 4
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (256*x0)), None)
tmp1 = 4096.0
tmp2 = tmp0 / tmp1
tmp3 = tl.broadcast_to(tmp2, [RBLOCK])
tmp5 = triton_helpers.promote_to_tensor(triton_helpers.max2(tmp3, 0))
tmp6 = tmp2 - tmp5
tmp7 = tl_math.exp(tmp6)
tmp8 = tl.broadcast_to(tmp7, [RBLOCK])
tmp10 = triton_helpers.promote_to_tensor(tl.sum(tmp8, 0))
tmp11 = tmp7 / tmp10
tl.store(out_ptr2 + (r1 + (256*x0)), tmp11, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/3j/c3j3xc5yosmtafu2xjvpoq3fymvzyjnac4rstke5d445pc7rwhy2.py
# Topologically Sorted Source Nodes: [spatial_weight, spatial_out], Original ATen: [aten.sigmoid, aten.mul]
# Source node to ATen node mapping:
# spatial_out => mul_3
# spatial_weight => sigmoid_1
# Graph fragment:
# %sigmoid_1 : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_12,), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid_1, %mul_2), kwargs = {})
triton_poi_fused_mul_sigmoid_8 = async_compile.triton('triton_poi_fused_mul_sigmoid_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048, 4096], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_sigmoid_8(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 2048
xnumel = 4096
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y1 = (yindex // 512)
y0 = yindex % 512
y3 = yindex
tmp0 = tl.load(in_ptr0 + (x2 + (4096*y1)), None, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr1 + (y0 + (512*x2) + (2097152*y1)), None, eviction_policy='evict_last')
tmp1 = tl.sigmoid(tmp0)
tmp3 = tmp1 * tmp2
tl.store(out_ptr0 + (x2 + (4096*y3)), tmp3, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13 = args
args.clear()
assert_size_stride(primals_1, (4, 512, 64, 64), (2097152, 4096, 64, 1))
assert_size_stride(primals_2, (256, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_3, (256, ), (1, ))
assert_size_stride(primals_4, (1, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_5, (1, ), (1, ))
assert_size_stride(primals_6, (512, 256, 1, 1), (256, 1, 1, 1))
assert_size_stride(primals_7, (512, ), (1, ))
assert_size_stride(primals_8, (512, ), (1, ))
assert_size_stride(primals_9, (512, ), (1, ))
assert_size_stride(primals_10, (256, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_11, (256, ), (1, ))
assert_size_stride(primals_12, (256, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_13, (256, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 512, 64, 64), (2097152, 1, 32768, 512), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
stream0 = get_raw_stream(0)
triton_poi_fused_0.run(primals_1, buf0, 2048, 4096, grid=grid(2048, 4096), stream=stream0)
del primals_1
# Topologically Sorted Source Nodes: [channel_wv], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 256, 64, 64), (1048576, 1, 16384, 256))
# Topologically Sorted Source Nodes: [channel_wq], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf0, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 1, 64, 64), (4096, 1, 64, 1))
buf5 = empty_strided_cuda((4, 4096, 1), (4096, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [channel_wq_2], Original ATen: [aten._softmax]
triton_red_fused__softmax_1.run(buf2, primals_5, buf5, 4, 4096, grid=grid(4), stream=stream0)
del primals_5
buf6 = empty_strided_cuda((4, 256, 64, 64), (1048576, 4096, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [channel_wv], Original ATen: [aten.convolution]
triton_poi_fused_convolution_2.run(buf1, primals_3, buf6, 1024, 4096, grid=grid(1024, 4096), stream=stream0)
del buf1
del primals_3
buf7 = empty_strided_cuda((4, 256, 1), (256, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf6, (4, 256, 4096), (1048576, 4096, 1), 0), buf5, out=buf7)
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf8 = extern_kernels.convolution(reinterpret_tensor(buf7, (4, 256, 1, 1), (256, 1, 1, 1), 0), primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 512, 1, 1), (512, 1, 1, 1))
buf9 = reinterpret_tensor(buf8, (4, 512, 1, 1), (512, 1, 512, 512), 0); del buf8 # reuse
buf10 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32)
buf11 = empty_strided_cuda((4, 1, 1), (1, 4, 4), torch.float32)
buf13 = reinterpret_tensor(buf11, (4, 1, 1), (1, 1, 1), 0); del buf11 # reuse
buf14 = empty_strided_cuda((4, 1, 512), (512, 2048, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_2, layer_norm, sigmoid], Original ATen: [aten.convolution, aten.native_layer_norm, aten.sigmoid]
triton_per_fused_convolution_native_layer_norm_sigmoid_3.run(buf9, buf13, primals_7, primals_8, primals_9, buf10, buf14, 4, 512, grid=grid(4), stream=stream0)
del primals_7
buf15 = empty_strided_cuda((4, 512, 64, 64), (2097152, 1, 32768, 512), torch.float32)
# Topologically Sorted Source Nodes: [channel_out], Original ATen: [aten.mul]
triton_poi_fused_mul_4.run(buf14, buf0, buf15, 8388608, grid=grid(8388608), stream=stream0)
del buf14
# Topologically Sorted Source Nodes: [spatial_wv], Original ATen: [aten.convolution]
buf16 = extern_kernels.convolution(buf15, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf16, (4, 256, 64, 64), (1048576, 1, 16384, 256))
# Topologically Sorted Source Nodes: [spatial_wq], Original ATen: [aten.convolution]
buf17 = extern_kernels.convolution(buf15, primals_12, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf17, (4, 256, 64, 64), (1048576, 1, 16384, 256))
buf18 = empty_strided_cuda((4, 256, 1, 1, 32), (8192, 1, 32768, 32768, 256), torch.float32)
# Topologically Sorted Source Nodes: [spatial_wq, spatial_wq_1], Original ATen: [aten.convolution, aten.mean]
triton_red_fused_convolution_mean_5.run(buf17, primals_13, buf18, 32768, 128, grid=grid(32768), stream=stream0)
del primals_13
buf19 = empty_strided_cuda((4, 256, 1, 1), (256, 1, 1024, 1024), torch.float32)
# Topologically Sorted Source Nodes: [spatial_wq, spatial_wq_1], Original ATen: [aten.convolution, aten.mean]
triton_per_fused_convolution_mean_6.run(buf18, buf19, 1024, 32, grid=grid(1024), stream=stream0)
del buf18
buf22 = empty_strided_cuda((4, 1, 256), (256, 256, 1), torch.float32)
# Topologically Sorted Source Nodes: [spatial_wq_3], Original ATen: [aten._softmax]
triton_per_fused__softmax_7.run(buf19, buf22, 4, 256, grid=grid(4), stream=stream0)
del buf19
buf23 = reinterpret_tensor(buf17, (4, 256, 64, 64), (1048576, 4096, 64, 1), 0); del buf17 # reuse
# Topologically Sorted Source Nodes: [spatial_wv], Original ATen: [aten.convolution]
triton_poi_fused_convolution_2.run(buf16, primals_11, buf23, 1024, 4096, grid=grid(1024, 4096), stream=stream0)
del buf16
del primals_11
buf24 = reinterpret_tensor(buf2, (4, 1, 4096), (4096, 4096, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [spatial_wz], Original ATen: [aten.bmm]
extern_kernels.bmm(buf22, reinterpret_tensor(buf23, (4, 256, 4096), (1048576, 4096, 1), 0), out=buf24)
buf25 = empty_strided_cuda((4, 512, 64, 64), (2097152, 4096, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [spatial_weight, spatial_out], Original ATen: [aten.sigmoid, aten.mul]
triton_poi_fused_mul_sigmoid_8.run(buf24, buf15, buf25, 2048, 4096, grid=grid(2048, 4096), stream=stream0)
return (buf25, buf0, primals_2, primals_4, primals_6, primals_8, primals_9, primals_10, primals_12, buf5, reinterpret_tensor(buf7, (4, 256, 1, 1), (256, 1, 1, 1), 0), buf9, buf10, buf13, buf15, buf22, buf24, reinterpret_tensor(buf23, (4, 4096, 256), (1048576, 1, 4096), 0), reinterpret_tensor(buf6, (4, 4096, 256), (1048576, 1, 4096), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 512, 64, 64), (2097152, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((256, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((1, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((512, 256, 1, 1), (256, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((256, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((256, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
class SequentialPolarizedSelfAttention(nn.Module):
def __init__(self, channel=512):
super().__init__()
self.ch_wv = nn.Conv2d(channel, channel // 2, kernel_size=(1, 1))
self.ch_wq = nn.Conv2d(channel, 1, kernel_size=(1, 1))
self.softmax_channel = nn.Softmax(1)
self.softmax_spatial = nn.Softmax(-1)
self.ch_wz = nn.Conv2d(channel // 2, channel, kernel_size=(1, 1))
self.ln = nn.LayerNorm(channel)
self.sigmoid = nn.Sigmoid()
self.sp_wv = nn.Conv2d(channel, channel // 2, kernel_size=(1, 1))
self.sp_wq = nn.Conv2d(channel, channel // 2, kernel_size=(1, 1))
self.agp = nn.AdaptiveAvgPool2d((1, 1))
def forward(self, x):
b, c, h, w = x.size()
channel_wv = self.ch_wv(x)
channel_wq = self.ch_wq(x)
channel_wv = channel_wv.reshape(b, c // 2, -1)
channel_wq = channel_wq.reshape(b, -1, 1)
channel_wq = self.softmax_channel(channel_wq)
channel_wz = torch.matmul(channel_wv, channel_wq).unsqueeze(-1)
channel_weight = self.sigmoid(self.ln(self.ch_wz(channel_wz).
reshape(b, c, 1).permute(0, 2, 1))).permute(0, 2, 1).reshape(b,
c, 1, 1)
channel_out = channel_weight * x
spatial_wv = self.sp_wv(channel_out)
spatial_wq = self.sp_wq(channel_out)
spatial_wq = self.agp(spatial_wq)
spatial_wv = spatial_wv.reshape(b, c // 2, -1)
spatial_wq = spatial_wq.permute(0, 2, 3, 1).reshape(b, 1, c // 2)
spatial_wq = self.softmax_spatial(spatial_wq)
spatial_wz = torch.matmul(spatial_wq, spatial_wv)
spatial_weight = self.sigmoid(spatial_wz.reshape(b, 1, h, w))
spatial_out = spatial_weight * channel_out
return spatial_out
def get_inputs():
return [torch.rand([4, 512, 64, 64])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 512
y1 = yindex // 512
tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), None, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 512 * x2 + 2097152 * y1), tmp0, None)
@triton.jit
def triton_red_fused__softmax_1(in_ptr0, in_ptr1, out_ptr2, xnumel, rnumel,
XBLOCK: tl.constexpr, RBLOCK: tl.constexpr):
xnumel = 4
rnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex
tmp1 = tl.load(in_ptr1 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
_tmp5 = tl.full([XBLOCK, RBLOCK], float('-inf'), tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp0 = tl.load(in_ptr0 + (r1 + 4096 * x0), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp3 = tmp0 + tmp2
tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp6 = triton_helpers.maximum(_tmp5, tmp4)
_tmp5 = tl.where(rmask & xmask, tmp6, _tmp5)
tmp5 = triton_helpers.max2(_tmp5, 1)[:, None]
tmp8 = tl.load(in_ptr1 + 0)
tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK])
_tmp14 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp7 = tl.load(in_ptr0 + (r1 + 4096 * x0), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp10 = tmp7 + tmp9
tmp11 = tmp10 - tmp5
tmp12 = tl_math.exp(tmp11)
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = _tmp14 + tmp13
_tmp14 = tl.where(rmask & xmask, tmp15, _tmp14)
tmp14 = tl.sum(_tmp14, 1)[:, None]
tmp17 = tl.load(in_ptr1 + 0)
tmp18 = tl.broadcast_to(tmp17, [XBLOCK, RBLOCK])
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp16 = tl.load(in_ptr0 + (r1 + 4096 * x0), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp19 = tmp16 + tmp18
tmp20 = tmp19 - tmp5
tmp21 = tl_math.exp(tmp20)
tmp22 = tmp21 / tmp14
tl.store(out_ptr2 + (r1 + 4096 * x0), tmp22, rmask & xmask)
@triton.jit
def triton_poi_fused_convolution_2(in_ptr0, in_ptr1, out_ptr0, ynumel,
xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y0 = yindex % 256
y1 = yindex // 256
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 256 * x2 + 1048576 * y1), None,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + 4096 * y3), tmp2, None)
@triton.jit
def triton_per_fused_convolution_native_layer_norm_sigmoid_3(in_out_ptr0,
in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, rnumel
):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (r1 + 512 * x0), None)
tmp1 = tl.load(in_ptr0 + r1, None, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr1 + r1, None, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr2 + r1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.broadcast_to(tmp2, [RBLOCK])
tmp5 = tl.broadcast_to(tmp3, [RBLOCK])
tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0))
tmp8 = tl.full([1], 512, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp3 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [RBLOCK])
tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0))
tmp16 = 512.0
tmp17 = tmp15 / tmp16
tmp18 = 1e-05
tmp19 = tmp17 + tmp18
tmp20 = libdevice.rsqrt(tmp19)
tmp21 = tmp2 - tmp10
tmp22 = tmp21 * tmp20
tmp24 = tmp22 * tmp23
tmp26 = tmp24 + tmp25
tmp27 = tl.sigmoid(tmp26)
tl.store(in_out_ptr0 + (r1 + 512 * x0), tmp2, None)
tl.debug_barrier()
tl.store(in_out_ptr1 + x0, tmp20, None)
tl.store(out_ptr1 + (r1 + 512 * x0), tmp27, None)
tl.store(out_ptr0 + x0, tmp10, None)
@triton.jit
def triton_poi_fused_mul_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 512
x2 = xindex // 2097152
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 512 * x2), None, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr1 + x3, None)
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x3, tmp2, None)
@triton.jit
def triton_red_fused_convolution_mean_5(in_ptr0, in_ptr1, out_ptr0, xnumel,
rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr):
rnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex % 256
x1 = xindex // 256
tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last')
_tmp4 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
x3 = xindex
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex
tmp0 = tl.load(in_ptr0 + (x0 + 256 * r2 + 32768 * x1), rmask,
eviction_policy='evict_first', other=0.0)
tmp2 = tmp0 + tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = _tmp4 + tmp3
_tmp4 = tl.where(rmask, tmp5, _tmp4)
tmp4 = tl.sum(_tmp4, 1)[:, None]
tl.store(out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_per_fused_convolution_mean_6(in_ptr0, out_ptr0, xnumel, rnumel,
XBLOCK: tl.constexpr):
xnumel = 1024
RBLOCK: tl.constexpr = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x0 = xindex % 256
x1 = xindex // 256
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 256 * r2 + 8192 * x1), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tl.store(out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_per_fused__softmax_7(in_ptr0, out_ptr2, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 256 * x0), None)
tmp1 = 4096.0
tmp2 = tmp0 / tmp1
tmp3 = tl.broadcast_to(tmp2, [RBLOCK])
tmp5 = triton_helpers.promote_to_tensor(triton_helpers.max2(tmp3, 0))
tmp6 = tmp2 - tmp5
tmp7 = tl_math.exp(tmp6)
tmp8 = tl.broadcast_to(tmp7, [RBLOCK])
tmp10 = triton_helpers.promote_to_tensor(tl.sum(tmp8, 0))
tmp11 = tmp7 / tmp10
tl.store(out_ptr2 + (r1 + 256 * x0), tmp11, None)
@triton.jit
def triton_poi_fused_mul_sigmoid_8(in_ptr0, in_ptr1, out_ptr0, ynumel,
xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y1 = yindex // 512
y0 = yindex % 512
y3 = yindex
tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y1), None, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr1 + (y0 + 512 * x2 + 2097152 * y1), None,
eviction_policy='evict_last')
tmp1 = tl.sigmoid(tmp0)
tmp3 = tmp1 * tmp2
tl.store(out_ptr0 + (x2 + 4096 * y3), tmp3, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13) = args
args.clear()
assert_size_stride(primals_1, (4, 512, 64, 64), (2097152, 4096, 64, 1))
assert_size_stride(primals_2, (256, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_3, (256,), (1,))
assert_size_stride(primals_4, (1, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_5, (1,), (1,))
assert_size_stride(primals_6, (512, 256, 1, 1), (256, 1, 1, 1))
assert_size_stride(primals_7, (512,), (1,))
assert_size_stride(primals_8, (512,), (1,))
assert_size_stride(primals_9, (512,), (1,))
assert_size_stride(primals_10, (256, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_11, (256,), (1,))
assert_size_stride(primals_12, (256, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_13, (256,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 512, 64, 64), (2097152, 1, 32768, 512
), torch.float32)
get_raw_stream(0)
triton_poi_fused_0[grid(2048, 4096)](primals_1, buf0, 2048, 4096,
XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1)
del primals_1
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 256, 64, 64), (1048576, 1, 16384, 256))
buf2 = extern_kernels.convolution(buf0, primals_4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 1, 64, 64), (4096, 1, 64, 1))
buf5 = empty_strided_cuda((4, 4096, 1), (4096, 1, 1), torch.float32)
triton_red_fused__softmax_1[grid(4)](buf2, primals_5, buf5, 4, 4096,
XBLOCK=1, RBLOCK=2048, num_warps=16, num_stages=1)
del primals_5
buf6 = empty_strided_cuda((4, 256, 64, 64), (1048576, 4096, 64, 1),
torch.float32)
triton_poi_fused_convolution_2[grid(1024, 4096)](buf1, primals_3,
buf6, 1024, 4096, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1)
del buf1
del primals_3
buf7 = empty_strided_cuda((4, 256, 1), (256, 1, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf6, (4, 256, 4096), (
1048576, 4096, 1), 0), buf5, out=buf7)
buf8 = extern_kernels.convolution(reinterpret_tensor(buf7, (4, 256,
1, 1), (256, 1, 1, 1), 0), primals_6, stride=(1, 1), padding=(0,
0), dilation=(1, 1), transposed=False, output_padding=(0, 0),
groups=1, bias=None)
assert_size_stride(buf8, (4, 512, 1, 1), (512, 1, 1, 1))
buf9 = reinterpret_tensor(buf8, (4, 512, 1, 1), (512, 1, 512, 512), 0)
del buf8
buf10 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32)
buf11 = empty_strided_cuda((4, 1, 1), (1, 4, 4), torch.float32)
buf13 = reinterpret_tensor(buf11, (4, 1, 1), (1, 1, 1), 0)
del buf11
buf14 = empty_strided_cuda((4, 1, 512), (512, 2048, 1), torch.float32)
triton_per_fused_convolution_native_layer_norm_sigmoid_3[grid(4)](buf9,
buf13, primals_7, primals_8, primals_9, buf10, buf14, 4, 512,
num_warps=4, num_stages=1)
del primals_7
buf15 = empty_strided_cuda((4, 512, 64, 64), (2097152, 1, 32768,
512), torch.float32)
triton_poi_fused_mul_4[grid(8388608)](buf14, buf0, buf15, 8388608,
XBLOCK=1024, num_warps=4, num_stages=1)
del buf14
buf16 = extern_kernels.convolution(buf15, primals_10, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf16, (4, 256, 64, 64), (1048576, 1, 16384, 256))
buf17 = extern_kernels.convolution(buf15, primals_12, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf17, (4, 256, 64, 64), (1048576, 1, 16384, 256))
buf18 = empty_strided_cuda((4, 256, 1, 1, 32), (8192, 1, 32768,
32768, 256), torch.float32)
triton_red_fused_convolution_mean_5[grid(32768)](buf17, primals_13,
buf18, 32768, 128, XBLOCK=64, RBLOCK=8, num_warps=4, num_stages=1)
del primals_13
buf19 = empty_strided_cuda((4, 256, 1, 1), (256, 1, 1024, 1024),
torch.float32)
triton_per_fused_convolution_mean_6[grid(1024)](buf18, buf19, 1024,
32, XBLOCK=128, num_warps=8, num_stages=1)
del buf18
buf22 = empty_strided_cuda((4, 1, 256), (256, 256, 1), torch.float32)
triton_per_fused__softmax_7[grid(4)](buf19, buf22, 4, 256,
num_warps=2, num_stages=1)
del buf19
buf23 = reinterpret_tensor(buf17, (4, 256, 64, 64), (1048576, 4096,
64, 1), 0)
del buf17
triton_poi_fused_convolution_2[grid(1024, 4096)](buf16, primals_11,
buf23, 1024, 4096, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1)
del buf16
del primals_11
buf24 = reinterpret_tensor(buf2, (4, 1, 4096), (4096, 4096, 1), 0)
del buf2
extern_kernels.bmm(buf22, reinterpret_tensor(buf23, (4, 256, 4096),
(1048576, 4096, 1), 0), out=buf24)
buf25 = empty_strided_cuda((4, 512, 64, 64), (2097152, 4096, 64, 1),
torch.float32)
triton_poi_fused_mul_sigmoid_8[grid(2048, 4096)](buf24, buf15,
buf25, 2048, 4096, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1)
return (buf25, buf0, primals_2, primals_4, primals_6, primals_8,
primals_9, primals_10, primals_12, buf5, reinterpret_tensor(buf7, (
4, 256, 1, 1), (256, 1, 1, 1), 0), buf9, buf10, buf13, buf15, buf22,
buf24, reinterpret_tensor(buf23, (4, 4096, 256), (1048576, 1, 4096),
0), reinterpret_tensor(buf6, (4, 4096, 256), (1048576, 1, 4096), 0))
class SequentialPolarizedSelfAttentionNew(nn.Module):
def __init__(self, channel=512):
super().__init__()
self.ch_wv = nn.Conv2d(channel, channel // 2, kernel_size=(1, 1))
self.ch_wq = nn.Conv2d(channel, 1, kernel_size=(1, 1))
self.softmax_channel = nn.Softmax(1)
self.softmax_spatial = nn.Softmax(-1)
self.ch_wz = nn.Conv2d(channel // 2, channel, kernel_size=(1, 1))
self.ln = nn.LayerNorm(channel)
self.sigmoid = nn.Sigmoid()
self.sp_wv = nn.Conv2d(channel, channel // 2, kernel_size=(1, 1))
self.sp_wq = nn.Conv2d(channel, channel // 2, kernel_size=(1, 1))
self.agp = nn.AdaptiveAvgPool2d((1, 1))
def forward(self, input_0):
primals_2 = self.ch_wv.weight
primals_3 = self.ch_wv.bias
primals_4 = self.ch_wq.weight
primals_5 = self.ch_wq.bias
primals_6 = self.ch_wz.weight
primals_7 = self.ch_wz.bias
primals_8 = self.ln.weight
primals_9 = self.ln.bias
primals_10 = self.sp_wv.weight
primals_11 = self.sp_wv.bias
primals_12 = self.sp_wq.weight
primals_13 = self.sp_wq.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13])
return output[0]
|
LiChengChen666/DetectDee
|
SequentialPolarizedSelfAttention
| false | 9,851 |
[
"Apache-2.0"
] | 0 |
1e6aaa0d15b1fc12d1342d8a922004e372b5f437
|
https://github.com/LiChengChen666/DetectDee/tree/1e6aaa0d15b1fc12d1342d8a922004e372b5f437
|
BinaryReg
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/xv/cxvmw3cj73pbluyhs55g26ddnx4e2dxv4ffbedccm5i2ysd6lqbc.py
# Topologically Sorted Source Nodes: [pred, diff, abs_1, diff_1, loss, mean], Original ATen: [aten.sigmoid, aten.sub, aten.abs, aten.clamp, aten.reciprocal, aten.mul, aten.mean]
# Source node to ATen node mapping:
# abs_1 => abs_1
# diff => sub
# diff_1 => clamp_min
# loss => mul, reciprocal
# mean => mean
# pred => sigmoid
# Graph fragment:
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%arg0_1,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sigmoid, 0.5), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%abs_1, 0.01), kwargs = {})
# %reciprocal : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%clamp_min,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal, 1.0), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%mul,), kwargs = {})
triton_per_fused_abs_clamp_mean_mul_reciprocal_sigmoid_sub_0 = async_compile.triton('triton_per_fused_abs_clamp_mean_mul_reciprocal_sigmoid_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_clamp_mean_mul_reciprocal_sigmoid_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_abs_clamp_mean_mul_reciprocal_sigmoid_sub_0(in_out_ptr0, in_ptr0, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.sigmoid(tmp0)
tmp2 = 0.5
tmp3 = tmp1 - tmp2
tmp4 = tl_math.abs(tmp3)
tmp5 = 0.01
tmp6 = triton_helpers.maximum(tmp4, tmp5)
tmp7 = tl.full([1], 1, tl.int32)
tmp8 = tmp7 / tmp6
tmp9 = 1.0
tmp10 = tmp8 * tmp9
tmp11 = tl.broadcast_to(tmp10, [RBLOCK])
tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0))
tmp14 = 256.0
tmp15 = tmp13 / tmp14
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp15, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [pred, diff, abs_1, diff_1, loss, mean], Original ATen: [aten.sigmoid, aten.sub, aten.abs, aten.clamp, aten.reciprocal, aten.mul, aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_abs_clamp_mean_mul_reciprocal_sigmoid_sub_0.run(buf1, arg0_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from typing import Optional
import torch.utils.data
import torch.nn as nn
import torch.nn.parallel
class BinaryReg(nn.Module):
"""Regularization for encouraging the outputs to be binary.
Args:
pred (torch.Tensor): foreground logits.
mask (Optional[torch.Tensor], optional): weight mask. Defaults: None
"""
def forward(self, pred: 'torch.Tensor', mask: 'Optional[torch.Tensor]'=None
):
pred = torch.sigmoid(pred)
diff = pred - 0.5
diff = torch.clamp(torch.abs(diff), min=0.01)
loss = 1.0 / diff
if mask is not None:
loss *= mask
return loss.mean()
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.utils.data
import torch.nn as nn
import torch.nn.parallel
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_abs_clamp_mean_mul_reciprocal_sigmoid_sub_0(in_out_ptr0,
in_ptr0, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.sigmoid(tmp0)
tmp2 = 0.5
tmp3 = tmp1 - tmp2
tmp4 = tl_math.abs(tmp3)
tmp5 = 0.01
tmp6 = triton_helpers.maximum(tmp4, tmp5)
tmp7 = tl.full([1], 1, tl.int32)
tmp8 = tmp7 / tmp6
tmp9 = 1.0
tmp10 = tmp8 * tmp9
tmp11 = tl.broadcast_to(tmp10, [RBLOCK])
tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0))
tmp14 = 256.0
tmp15 = tmp13 / tmp14
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp15, None)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_abs_clamp_mean_mul_reciprocal_sigmoid_sub_0[grid(1)](
buf1, arg0_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
return buf1,
class BinaryRegNew(nn.Module):
"""Regularization for encouraging the outputs to be binary.
Args:
pred (torch.Tensor): foreground logits.
mask (Optional[torch.Tensor], optional): weight mask. Defaults: None
"""
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
HarshSulakhe/pytorch_connectomics
|
BinaryReg
| false | 9,852 |
[
"MIT"
] | 0 |
73402e654afde69a43a5836cc90a32ef75c75dc2
|
https://github.com/HarshSulakhe/pytorch_connectomics/tree/73402e654afde69a43a5836cc90a32ef75c75dc2
|
Conv2dBlock
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/z3/cz3vliqlpgih6ihwoaxl6cmnicfmv2ygutcuphilcsragp3evc57.py
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x => convolution
# x_1 => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_convolution_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1))
buf1 = buf0; del buf0 # reuse
buf2 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.bool)
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_relu_threshold_backward_0.run(buf1, primals_3, buf2, 16, grid=grid(16), stream=stream0)
del primals_3
return (buf1, primals_1, primals_2, buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.utils.data
import torch
import torch.nn as nn
class LayerNorm(nn.Module):
def __init__(self, num_features, eps=1e-05, affine=True):
super(LayerNorm, self).__init__()
self.num_features = num_features
self.affine = affine
self.eps = eps
if self.affine:
self.gamma = nn.Parameter(torch.Tensor(num_features).uniform_())
self.beta = nn.Parameter(torch.zeros(num_features))
def forward(self, x):
shape = [-1] + [1] * (x.dim() - 1)
mean = x.view(x.size(0), -1).mean(1).view(*shape)
std = x.view(x.size(0), -1).std(1).view(*shape)
x = (x - mean) / (std + self.eps)
if self.affine:
shape = [1, -1] + [1] * (x.dim() - 2)
x = x * self.gamma.view(*shape) + self.beta.view(*shape)
return x
class Conv2dBlock(nn.Module):
def __init__(self, input_dim, output_dim, kernel_size, stride, padding=
0, norm='none', activation='relu', pad_type='zero'):
super(Conv2dBlock, self).__init__()
self.use_bias = True
if pad_type == 'reflect':
self.pad = nn.ReflectionPad2d(padding)
elif pad_type == 'zero':
self.pad = nn.ZeroPad2d(padding)
else:
assert 0, 'Unsupported padding type: {}'.format(pad_type)
norm_dim = output_dim
if norm == 'batch':
self.norm = nn.BatchNorm2d(norm_dim)
elif norm == 'inst':
self.norm = nn.InstanceNorm2d(norm_dim, track_running_stats=False)
elif norm == 'ln':
self.norm = LayerNorm(norm_dim)
elif norm == 'none':
self.norm = None
else:
assert 0, 'Unsupported normalization: {}'.format(norm)
if activation == 'relu':
self.activation = nn.ReLU(inplace=True)
elif activation == 'lrelu':
self.activation = nn.LeakyReLU(0.2, inplace=True)
elif activation == 'prelu':
self.activation = nn.PReLU()
elif activation == 'selu':
self.activation = nn.SELU(inplace=True)
elif activation == 'tanh':
self.activation = nn.Tanh()
elif activation == 'none':
self.activation = None
else:
assert 0, 'Unsupported activation: {}'.format(activation)
self.conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride,
bias=self.use_bias)
def forward(self, x):
x = self.conv(self.pad(x))
if self.norm:
x = self.norm(x)
if self.activation:
x = self.activation(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_dim': 4, 'output_dim': 4, 'kernel_size': 4,
'stride': 1}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.utils.data
import torch
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_0(in_out_ptr0,
in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1))
buf1 = buf0
del buf0
buf2 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_convolution_relu_threshold_backward_0[grid(16)](buf1,
primals_3, buf2, 16, XBLOCK=16, num_warps=1, num_stages=1)
del primals_3
return buf1, primals_1, primals_2, buf2
class LayerNorm(nn.Module):
def __init__(self, num_features, eps=1e-05, affine=True):
super(LayerNorm, self).__init__()
self.num_features = num_features
self.affine = affine
self.eps = eps
if self.affine:
self.gamma = nn.Parameter(torch.Tensor(num_features).uniform_())
self.beta = nn.Parameter(torch.zeros(num_features))
def forward(self, x):
shape = [-1] + [1] * (x.dim() - 1)
mean = x.view(x.size(0), -1).mean(1).view(*shape)
std = x.view(x.size(0), -1).std(1).view(*shape)
x = (x - mean) / (std + self.eps)
if self.affine:
shape = [1, -1] + [1] * (x.dim() - 2)
x = x * self.gamma.view(*shape) + self.beta.view(*shape)
return x
class Conv2dBlockNew(nn.Module):
def __init__(self, input_dim, output_dim, kernel_size, stride, padding=
0, norm='none', activation='relu', pad_type='zero'):
super(Conv2dBlockNew, self).__init__()
self.use_bias = True
if pad_type == 'reflect':
self.pad = nn.ReflectionPad2d(padding)
elif pad_type == 'zero':
self.pad = nn.ZeroPad2d(padding)
else:
assert 0, 'Unsupported padding type: {}'.format(pad_type)
norm_dim = output_dim
if norm == 'batch':
self.norm = nn.BatchNorm2d(norm_dim)
elif norm == 'inst':
self.norm = nn.InstanceNorm2d(norm_dim, track_running_stats=False)
elif norm == 'ln':
self.norm = LayerNorm(norm_dim)
elif norm == 'none':
self.norm = None
else:
assert 0, 'Unsupported normalization: {}'.format(norm)
if activation == 'relu':
self.activation = nn.ReLU(inplace=True)
elif activation == 'lrelu':
self.activation = nn.LeakyReLU(0.2, inplace=True)
elif activation == 'prelu':
self.activation = nn.PReLU()
elif activation == 'selu':
self.activation = nn.SELU(inplace=True)
elif activation == 'tanh':
self.activation = nn.Tanh()
elif activation == 'none':
self.activation = None
else:
assert 0, 'Unsupported activation: {}'.format(activation)
self.conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride,
bias=self.use_bias)
def forward(self, input_0):
primals_1 = self.conv.weight
primals_3 = self.conv.bias
primals_2 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
a11isonliu/contrastive-unpaired-translation
|
Conv2dBlock
| false | 9,853 |
[
"BSD-3-Clause"
] | 0 |
67651ed9877cae121d9398f46094ce8dbc678802
|
https://github.com/a11isonliu/contrastive-unpaired-translation/tree/67651ed9877cae121d9398f46094ce8dbc678802
|
ContourDTConsistency
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/vw/cvwhzwe7nr2czo4lankyqvprnbtioxmxcr6bh6ogg35kpocqr5li.py
# Topologically Sorted Source Nodes: [contour_prob, tanh, distance_abs, loss, loss_1, mean], Original ATen: [aten.sigmoid, aten.tanh, aten.abs, aten.mul, aten.pow, aten.mean]
# Source node to ATen node mapping:
# contour_prob => sigmoid
# distance_abs => abs_1
# loss => mul
# loss_1 => pow_1
# mean => mean
# tanh => tanh
# Graph fragment:
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%arg0_1,), kwargs = {})
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%arg1_1,), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%tanh,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %abs_1), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%mul, 2), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_1,), kwargs = {})
triton_per_fused_abs_mean_mul_pow_sigmoid_tanh_0 = async_compile.triton('triton_per_fused_abs_mean_mul_pow_sigmoid_tanh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_mean_mul_pow_sigmoid_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_abs_mean_mul_pow_sigmoid_tanh_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp2 = tl.load(in_ptr1 + (r0), None)
tmp1 = tl.sigmoid(tmp0)
tmp3 = libdevice.tanh(tmp2)
tmp4 = tl_math.abs(tmp3)
tmp5 = tmp1 * tmp4
tmp6 = tmp5 * tmp5
tmp7 = tl.broadcast_to(tmp6, [RBLOCK])
tmp9 = triton_helpers.promote_to_tensor(tl.sum(tmp7, 0))
tmp10 = 256.0
tmp11 = tmp9 / tmp10
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp11, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [contour_prob, tanh, distance_abs, loss, loss_1, mean], Original ATen: [aten.sigmoid, aten.tanh, aten.abs, aten.mul, aten.pow, aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_abs_mean_mul_pow_sigmoid_tanh_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from typing import Optional
import torch.utils.data
import torch.nn as nn
import torch.nn.parallel
class ContourDTConsistency(nn.Module):
"""Consistency regularization between the instance contour map and
signed distance transform.
Args:
pred1 (torch.Tensor): contour logits.
pred2 (torch.Tensor): signed distance transform.
mask (Optional[torch.Tensor], optional): weight mask. Defaults: None.
"""
def forward(self, pred1: 'torch.Tensor', pred2: 'torch.Tensor', mask:
'Optional[torch.Tensor]'=None):
contour_prob = torch.sigmoid(pred1)
distance_abs = torch.abs(torch.tanh(pred2))
assert contour_prob.shape == distance_abs.shape
loss = contour_prob * distance_abs
loss = loss ** 2
if mask is not None:
loss *= mask
return loss.mean()
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.utils.data
import torch.nn as nn
import torch.nn.parallel
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_abs_mean_mul_pow_sigmoid_tanh_0(in_out_ptr0, in_ptr0,
in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp2 = tl.load(in_ptr1 + r0, None)
tmp1 = tl.sigmoid(tmp0)
tmp3 = libdevice.tanh(tmp2)
tmp4 = tl_math.abs(tmp3)
tmp5 = tmp1 * tmp4
tmp6 = tmp5 * tmp5
tmp7 = tl.broadcast_to(tmp6, [RBLOCK])
tmp9 = triton_helpers.promote_to_tensor(tl.sum(tmp7, 0))
tmp10 = 256.0
tmp11 = tmp9 / tmp10
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp11, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_abs_mean_mul_pow_sigmoid_tanh_0[grid(1)](buf1,
arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf1,
class ContourDTConsistencyNew(nn.Module):
"""Consistency regularization between the instance contour map and
signed distance transform.
Args:
pred1 (torch.Tensor): contour logits.
pred2 (torch.Tensor): signed distance transform.
mask (Optional[torch.Tensor], optional): weight mask. Defaults: None.
"""
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
HarshSulakhe/pytorch_connectomics
|
ContourDTConsistency
| false | 9,854 |
[
"MIT"
] | 0 |
73402e654afde69a43a5836cc90a32ef75c75dc2
|
https://github.com/HarshSulakhe/pytorch_connectomics/tree/73402e654afde69a43a5836cc90a32ef75c75dc2
|
DiceLoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/a3/ca3vvpqpywk4rvgx62dwfu3n3zclaw4nyjbkbdcjlgl3synpwaxy.py
# Topologically Sorted Source Nodes: [input_3, target_1, mul_2, a, mul_3, sum_2, mul_4, sum_3], Original ATen: [aten.mul, aten.sum]
# Source node to ATen node mapping:
# a => sum_1
# input_3 => mul
# mul_2 => mul_2
# mul_3 => mul_3
# mul_4 => mul_4
# sum_2 => sum_2
# sum_3 => sum_3
# target_1 => mul_1
# Graph fragment:
# %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %view_2), kwargs = {})
# %mul_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %view_2), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %mul_1), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_2, [1]), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %mul), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_3, [1]), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %mul_1), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_4, [1]), kwargs = {})
triton_per_fused_mul_sum_0 = async_compile.triton('triton_per_fused_mul_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mul_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 3, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mul_sum_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0)
tmp2 = tl.load(in_ptr1 + (r1 + (64*x0)), xmask, other=0.0)
tmp4 = tl.load(in_ptr2 + (r1 + (64*x0)), xmask, other=0.0)
tmp1 = tl.sigmoid(tmp0)
tmp3 = tmp1 * tmp2
tmp5 = tmp4 * tmp2
tmp6 = tmp3 * tmp5
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.where(xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tmp11 = tmp3 * tmp3
tmp12 = tl.broadcast_to(tmp11, [XBLOCK, RBLOCK])
tmp14 = tl.where(xmask, tmp12, 0)
tmp15 = tl.sum(tmp14, 1)[:, None]
tmp16 = tmp5 * tmp5
tmp17 = tl.broadcast_to(tmp16, [XBLOCK, RBLOCK])
tmp19 = tl.where(xmask, tmp17, 0)
tmp20 = tl.sum(tmp19, 1)[:, None]
tl.store(out_ptr0 + (x0), tmp10, xmask)
tl.store(out_ptr1 + (x0), tmp15, xmask)
tl.store(out_ptr2 + (x0), tmp20, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/p4/cp4zb7h34ju4tzmweu56zah2tphr5lah7rtpq6penelo2tjsjqfm.py
# Topologically Sorted Source Nodes: [mul_5, b, c, add_2, d, loss, loss_1, loss_2], Original ATen: [aten.mul, aten.add, aten.div, aten.rsub, aten.mean]
# Source node to ATen node mapping:
# add_2 => add_2
# b => add
# c => add_1
# d => div
# loss => sub
# loss_1 => mul_6
# loss_2 => mean
# mul_5 => mul_5
# Graph fragment:
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, 2), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_2, 0.001), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_3, 0.001), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %add_1), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_5, %add_2), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %div), kwargs = {})
# %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, 1.0), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%mul_6,), kwargs = {})
triton_per_fused_add_div_mean_mul_rsub_1 = async_compile.triton('triton_per_fused_add_div_mean_mul_rsub_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 4],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=(4,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mean_mul_rsub_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_mean_mul_rsub_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp3 = tl.load(in_ptr1 + (r0), None)
tmp6 = tl.load(in_ptr2 + (r0), None)
tmp1 = 2.0
tmp2 = tmp0 * tmp1
tmp4 = 0.001
tmp5 = tmp3 + tmp4
tmp7 = tmp6 + tmp4
tmp8 = tmp5 + tmp7
tmp9 = tmp2 / tmp8
tmp10 = 1.0
tmp11 = tmp10 - tmp9
tmp12 = tmp11 * tmp10
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.sum(tmp13, 1)[:, None]
tmp16 = 4.0
tmp17 = tmp15 / tmp16
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp17, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, ), (1, ), torch.float32)
buf1 = empty_strided_cuda((4, ), (1, ), torch.float32)
buf2 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [input_3, target_1, mul_2, a, mul_3, sum_2, mul_4, sum_3], Original ATen: [aten.mul, aten.sum]
stream0 = get_raw_stream(0)
triton_per_fused_mul_sum_0.run(arg0_1, arg2_1, arg1_1, buf0, buf1, buf2, 4, 64, grid=grid(4), stream=stream0)
del arg0_1
del arg1_1
del arg2_1
buf3 = empty_strided_cuda((), (), torch.float32)
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [mul_5, b, c, add_2, d, loss, loss_1, loss_2], Original ATen: [aten.mul, aten.add, aten.div, aten.rsub, aten.mean]
triton_per_fused_add_div_mean_mul_rsub_1.run(buf4, buf0, buf1, buf2, 1, 4, grid=grid(1), stream=stream0)
del buf0
del buf1
del buf2
return (buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class DiceLoss(nn.Module):
def __init__(self, loss_weight=1.0):
super(DiceLoss, self).__init__()
self.loss_weight = loss_weight
def forward(self, input, target, mask, reduce=True):
batch_size = input.size(0)
input = torch.sigmoid(input)
input = input.contiguous().view(batch_size, -1)
target = target.contiguous().view(batch_size, -1).float()
mask = mask.contiguous().view(batch_size, -1).float()
input = input * mask
target = target * mask
a = torch.sum(input * target, dim=1)
b = torch.sum(input * input, dim=1) + 0.001
c = torch.sum(target * target, dim=1) + 0.001
d = 2 * a / (b + c)
loss = 1 - d
loss = self.loss_weight * loss
if reduce:
loss = torch.mean(loss)
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_mul_sum_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0,
out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0)
tmp2 = tl.load(in_ptr1 + (r1 + 64 * x0), xmask, other=0.0)
tmp4 = tl.load(in_ptr2 + (r1 + 64 * x0), xmask, other=0.0)
tmp1 = tl.sigmoid(tmp0)
tmp3 = tmp1 * tmp2
tmp5 = tmp4 * tmp2
tmp6 = tmp3 * tmp5
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.where(xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tmp11 = tmp3 * tmp3
tmp12 = tl.broadcast_to(tmp11, [XBLOCK, RBLOCK])
tmp14 = tl.where(xmask, tmp12, 0)
tmp15 = tl.sum(tmp14, 1)[:, None]
tmp16 = tmp5 * tmp5
tmp17 = tl.broadcast_to(tmp16, [XBLOCK, RBLOCK])
tmp19 = tl.where(xmask, tmp17, 0)
tmp20 = tl.sum(tmp19, 1)[:, None]
tl.store(out_ptr0 + x0, tmp10, xmask)
tl.store(out_ptr1 + x0, tmp15, xmask)
tl.store(out_ptr2 + x0, tmp20, xmask)
@triton.jit
def triton_per_fused_add_div_mean_mul_rsub_1(in_out_ptr0, in_ptr0, in_ptr1,
in_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp3 = tl.load(in_ptr1 + r0, None)
tmp6 = tl.load(in_ptr2 + r0, None)
tmp1 = 2.0
tmp2 = tmp0 * tmp1
tmp4 = 0.001
tmp5 = tmp3 + tmp4
tmp7 = tmp6 + tmp4
tmp8 = tmp5 + tmp7
tmp9 = tmp2 / tmp8
tmp10 = 1.0
tmp11 = tmp10 - tmp9
tmp12 = tmp11 * tmp10
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.sum(tmp13, 1)[:, None]
tmp16 = 4.0
tmp17 = tmp15 / tmp16
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp17, None)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4,), (1,), torch.float32)
buf1 = empty_strided_cuda((4,), (1,), torch.float32)
buf2 = empty_strided_cuda((4,), (1,), torch.float32)
get_raw_stream(0)
triton_per_fused_mul_sum_0[grid(4)](arg0_1, arg2_1, arg1_1, buf0,
buf1, buf2, 4, 64, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
del arg2_1
buf3 = empty_strided_cuda((), (), torch.float32)
buf4 = buf3
del buf3
triton_per_fused_add_div_mean_mul_rsub_1[grid(1)](buf4, buf0, buf1,
buf2, 1, 4, XBLOCK=1, num_warps=2, num_stages=1)
del buf0
del buf1
del buf2
return buf4,
class DiceLossNew(nn.Module):
def __init__(self, loss_weight=1.0):
super(DiceLossNew, self).__init__()
self.loss_weight = loss_weight
def forward(self, input_0, input_1, input_2):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
output = call([arg0_1, arg1_1, arg2_1])
return output[0]
|
bhuyle/PAN_ocr
|
DiceLoss
| false | 9,855 |
[
"Apache-2.0"
] | 0 |
bcd03892d4eb08a779a0a7ae63d526d8ea38cb01
|
https://github.com/bhuyle/PAN_ocr/tree/bcd03892d4eb08a779a0a7ae63d526d8ea38cb01
|
WeightedBCEFocalLoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/ot/cot3iokaq5qj7fk7xcq34uf742bupzp5cerqfhhwmxoilvk3c2ml.py
# Topologically Sorted Source Nodes: [mul_2, sub_2, mul_3, at, sub, pred_sig, sub_1, mul, mul_1, pt, sub_3, pow_1, wt, clamp, bce, mul_5, mean], Original ATen: [aten.mul, aten.rsub, aten.add, aten.sigmoid, aten.pow, aten.clamp, aten.binary_cross_entropy_with_logits, aten.mean]
# Source node to ATen node mapping:
# at => add_1
# bce => abs_1, exp, full_default, log1p, minimum, mul_5, neg, sub_4, sub_5, sub_6
# clamp => clamp_max, clamp_min
# mean => mean
# mul => mul
# mul_1 => mul_1
# mul_2 => mul_2
# mul_3 => mul_3
# mul_5 => mul_6
# pow_1 => pow_1
# pred_sig => sigmoid
# pt => add
# sub => sub
# sub_1 => sub_1
# sub_2 => sub_2
# sub_3 => sub_3
# wt => mul_4
# Graph fragment:
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, 0.75), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg1_1), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, 0.25), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %mul_3), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg1_1), kwargs = {})
# %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%arg0_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %sub_1), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, %sigmoid), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %add), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_3, 2.0), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_1, %pow_1), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%arg1_1, 0.0), kwargs = {})
# %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 1.0), kwargs = {})
# %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %clamp_max), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_4, %arg0_1), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %minimum : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%full_default, %arg0_1), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%arg0_1,), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%abs_1,), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg,), kwargs = {})
# %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {})
# %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum, %log1p), kwargs = {})
# %sub_6 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_5, %sub_5), kwargs = {})
# %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_4, %sub_6), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%mul_6,), kwargs = {})
triton_per_fused_add_binary_cross_entropy_with_logits_clamp_mean_mul_pow_rsub_sigmoid_0 = async_compile.triton('triton_per_fused_add_binary_cross_entropy_with_logits_clamp_mean_mul_pow_rsub_sigmoid_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_binary_cross_entropy_with_logits_clamp_mean_mul_pow_rsub_sigmoid_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_binary_cross_entropy_with_logits_clamp_mean_mul_pow_rsub_sigmoid_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp8 = tl.load(in_ptr1 + (r0), None)
tmp1 = 0.75
tmp2 = tmp0 * tmp1
tmp3 = 1.0
tmp4 = tmp3 - tmp0
tmp5 = 0.25
tmp6 = tmp4 * tmp5
tmp7 = tmp2 + tmp6
tmp9 = tl.sigmoid(tmp8)
tmp10 = tmp3 - tmp9
tmp11 = tmp4 * tmp10
tmp12 = tmp0 * tmp9
tmp13 = tmp11 + tmp12
tmp14 = tmp3 - tmp13
tmp15 = tmp14 * tmp14
tmp16 = tmp7 * tmp15
tmp17 = 0.0
tmp18 = triton_helpers.maximum(tmp0, tmp17)
tmp19 = triton_helpers.minimum(tmp18, tmp3)
tmp20 = tmp3 - tmp19
tmp21 = tmp20 * tmp8
tmp22 = triton_helpers.minimum(tmp17, tmp8)
tmp23 = tl_math.abs(tmp8)
tmp24 = -tmp23
tmp25 = tl_math.exp(tmp24)
tmp26 = libdevice.log1p(tmp25)
tmp27 = tmp22 - tmp26
tmp28 = tmp21 - tmp27
tmp29 = tmp16 * tmp28
tmp30 = tl.broadcast_to(tmp29, [RBLOCK])
tmp32 = triton_helpers.promote_to_tensor(tl.sum(tmp30, 0))
tmp33 = 256.0
tmp34 = tmp32 / tmp33
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp34, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf1 = empty_strided_cuda((), (), torch.float32)
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [mul_2, sub_2, mul_3, at, sub, pred_sig, sub_1, mul, mul_1, pt, sub_3, pow_1, wt, clamp, bce, mul_5, mean], Original ATen: [aten.mul, aten.rsub, aten.add, aten.sigmoid, aten.pow, aten.clamp, aten.binary_cross_entropy_with_logits, aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_add_binary_cross_entropy_with_logits_clamp_mean_mul_pow_rsub_sigmoid_0.run(buf2, arg1_1, arg0_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.utils.data
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.parallel
class WeightedBCEFocalLoss(nn.Module):
"""Weighted binary focal loss with logits.
"""
def __init__(self, gamma=2.0, alpha=0.25, eps=0.0):
super().__init__()
self.eps = eps
self.gamma = gamma
self.alpha = alpha
def forward(self, pred, target, weight_mask=None):
pred_sig = pred.sigmoid()
pt = (1 - target) * (1 - pred_sig) + target * pred_sig
at = (1 - self.alpha) * target + self.alpha * (1 - target)
wt = at * (1 - pt) ** self.gamma
if weight_mask is not None:
wt *= weight_mask
bce = F.binary_cross_entropy_with_logits(pred, target.clamp(self.
eps, 1 - self.eps), reduction='none')
return (wt * bce).mean()
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.utils.data
import torch.nn as nn
import torch.nn.parallel
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_binary_cross_entropy_with_logits_clamp_mean_mul_pow_rsub_sigmoid_0(
in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp8 = tl.load(in_ptr1 + r0, None)
tmp1 = 0.75
tmp2 = tmp0 * tmp1
tmp3 = 1.0
tmp4 = tmp3 - tmp0
tmp5 = 0.25
tmp6 = tmp4 * tmp5
tmp7 = tmp2 + tmp6
tmp9 = tl.sigmoid(tmp8)
tmp10 = tmp3 - tmp9
tmp11 = tmp4 * tmp10
tmp12 = tmp0 * tmp9
tmp13 = tmp11 + tmp12
tmp14 = tmp3 - tmp13
tmp15 = tmp14 * tmp14
tmp16 = tmp7 * tmp15
tmp17 = 0.0
tmp18 = triton_helpers.maximum(tmp0, tmp17)
tmp19 = triton_helpers.minimum(tmp18, tmp3)
tmp20 = tmp3 - tmp19
tmp21 = tmp20 * tmp8
tmp22 = triton_helpers.minimum(tmp17, tmp8)
tmp23 = tl_math.abs(tmp8)
tmp24 = -tmp23
tmp25 = tl_math.exp(tmp24)
tmp26 = libdevice.log1p(tmp25)
tmp27 = tmp22 - tmp26
tmp28 = tmp21 - tmp27
tmp29 = tmp16 * tmp28
tmp30 = tl.broadcast_to(tmp29, [RBLOCK])
tmp32 = triton_helpers.promote_to_tensor(tl.sum(tmp30, 0))
tmp33 = 256.0
tmp34 = tmp32 / tmp33
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp34, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf1 = empty_strided_cuda((), (), torch.float32)
buf2 = buf1
del buf1
get_raw_stream(0)
triton_per_fused_add_binary_cross_entropy_with_logits_clamp_mean_mul_pow_rsub_sigmoid_0[
grid(1)](buf2, arg1_1, arg0_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf2,
class WeightedBCEFocalLossNew(nn.Module):
"""Weighted binary focal loss with logits.
"""
def __init__(self, gamma=2.0, alpha=0.25, eps=0.0):
super().__init__()
self.eps = eps
self.gamma = gamma
self.alpha = alpha
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
HarshSulakhe/pytorch_connectomics
|
WeightedBCEFocalLoss
| false | 9,856 |
[
"MIT"
] | 0 |
73402e654afde69a43a5836cc90a32ef75c75dc2
|
https://github.com/HarshSulakhe/pytorch_connectomics/tree/73402e654afde69a43a5836cc90a32ef75c75dc2
|
ForegroundDTConsistency
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/p7/cp7u62s2u3b5zgws6tu4i5yrpsaefdeepksykmydecn2kxgk5ioc.py
# Topologically Sorted Source Nodes: [log_prob_pos, neg_2, distance, dist_pos, loss_pos, log_prob_neg, neg, neg_3, clamp_1, dist_neg, loss_neg, loss, mean], Original ATen: [aten.log_sigmoid_forward, aten.neg, aten.tanh, aten.clamp, aten.mul, aten.add, aten.mean]
# Source node to ATen node mapping:
# clamp_1 => clamp_max
# dist_neg => neg_3
# dist_pos => clamp_min
# distance => tanh
# log_prob_neg => abs_2, exp_1, full_default_1, log1p_1, minimum_1, neg_2, sub_1
# log_prob_pos => abs_1, exp, full_default, log1p, minimum, neg, sub
# loss => add
# loss_neg => mul_1
# loss_pos => mul
# mean => mean
# neg => neg_1
# neg_2 => neg_4
# neg_3 => neg_5
# Graph fragment:
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %minimum : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%full_default, %arg0_1), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%arg0_1,), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%abs_1,), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg,), kwargs = {})
# %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum, %log1p), kwargs = {})
# %neg_4 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sub,), kwargs = {})
# %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%arg1_1,), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%tanh, 0.0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%neg_4, %clamp_min), kwargs = {})
# %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %neg_1 : [num_users=2] = call_function[target=torch.ops.aten.neg.default](args = (%arg0_1,), kwargs = {})
# %minimum_1 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%full_default_1, %neg_1), kwargs = {})
# %abs_2 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%neg_1,), kwargs = {})
# %neg_2 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%abs_2,), kwargs = {})
# %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg_2,), kwargs = {})
# %log1p_1 : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_1, %log1p_1), kwargs = {})
# %neg_5 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sub_1,), kwargs = {})
# %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%tanh, 0.0), kwargs = {})
# %neg_3 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%clamp_max,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%neg_5, %neg_3), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%add,), kwargs = {})
triton_per_fused_add_clamp_log_sigmoid_forward_mean_mul_neg_tanh_0 = async_compile.triton('triton_per_fused_add_clamp_log_sigmoid_forward_mean_mul_neg_tanh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_clamp_log_sigmoid_forward_mean_mul_neg_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_clamp_log_sigmoid_forward_mean_mul_neg_tanh_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp9 = tl.load(in_ptr1 + (r0), None)
tmp1 = 0.0
tmp2 = triton_helpers.minimum(tmp1, tmp0)
tmp3 = tl_math.abs(tmp0)
tmp4 = -tmp3
tmp5 = tl_math.exp(tmp4)
tmp6 = libdevice.log1p(tmp5)
tmp7 = tmp2 - tmp6
tmp8 = -tmp7
tmp10 = libdevice.tanh(tmp9)
tmp11 = triton_helpers.maximum(tmp10, tmp1)
tmp12 = tmp8 * tmp11
tmp13 = -tmp0
tmp14 = triton_helpers.minimum(tmp1, tmp13)
tmp15 = tl_math.abs(tmp13)
tmp16 = -tmp15
tmp17 = tl_math.exp(tmp16)
tmp18 = libdevice.log1p(tmp17)
tmp19 = tmp14 - tmp18
tmp20 = -tmp19
tmp21 = triton_helpers.minimum(tmp10, tmp1)
tmp22 = -tmp21
tmp23 = tmp20 * tmp22
tmp24 = tmp12 + tmp23
tmp25 = tl.broadcast_to(tmp24, [RBLOCK])
tmp27 = triton_helpers.promote_to_tensor(tl.sum(tmp25, 0))
tmp28 = 256.0
tmp29 = tmp27 / tmp28
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp29, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [log_prob_pos, neg_2, distance, dist_pos, loss_pos, log_prob_neg, neg, neg_3, clamp_1, dist_neg, loss_neg, loss, mean], Original ATen: [aten.log_sigmoid_forward, aten.neg, aten.tanh, aten.clamp, aten.mul, aten.add, aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_add_clamp_log_sigmoid_forward_mean_mul_neg_tanh_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from typing import Optional
import torch.utils.data
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.parallel
class ForegroundDTConsistency(nn.Module):
"""Consistency regularization between the binary foreground mask and
signed distance transform.
Args:
pred1 (torch.Tensor): foreground logits.
pred2 (torch.Tensor): signed distance transform.
mask (Optional[torch.Tensor], optional): weight mask. Defaults: None
"""
def forward(self, pred1: 'torch.Tensor', pred2: 'torch.Tensor', mask:
'Optional[torch.Tensor]'=None):
log_prob_pos = F.logsigmoid(pred1)
log_prob_neg = F.logsigmoid(-pred1)
distance = torch.tanh(pred2)
dist_pos = torch.clamp(distance, min=0.0)
dist_neg = -torch.clamp(distance, max=0.0)
loss_pos = -log_prob_pos * dist_pos
loss_neg = -log_prob_neg * dist_neg
loss = loss_pos + loss_neg
if mask is not None:
loss *= mask
return loss.mean()
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.utils.data
import torch.nn as nn
import torch.nn.parallel
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_clamp_log_sigmoid_forward_mean_mul_neg_tanh_0(
in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp9 = tl.load(in_ptr1 + r0, None)
tmp1 = 0.0
tmp2 = triton_helpers.minimum(tmp1, tmp0)
tmp3 = tl_math.abs(tmp0)
tmp4 = -tmp3
tmp5 = tl_math.exp(tmp4)
tmp6 = libdevice.log1p(tmp5)
tmp7 = tmp2 - tmp6
tmp8 = -tmp7
tmp10 = libdevice.tanh(tmp9)
tmp11 = triton_helpers.maximum(tmp10, tmp1)
tmp12 = tmp8 * tmp11
tmp13 = -tmp0
tmp14 = triton_helpers.minimum(tmp1, tmp13)
tmp15 = tl_math.abs(tmp13)
tmp16 = -tmp15
tmp17 = tl_math.exp(tmp16)
tmp18 = libdevice.log1p(tmp17)
tmp19 = tmp14 - tmp18
tmp20 = -tmp19
tmp21 = triton_helpers.minimum(tmp10, tmp1)
tmp22 = -tmp21
tmp23 = tmp20 * tmp22
tmp24 = tmp12 + tmp23
tmp25 = tl.broadcast_to(tmp24, [RBLOCK])
tmp27 = triton_helpers.promote_to_tensor(tl.sum(tmp25, 0))
tmp28 = 256.0
tmp29 = tmp27 / tmp28
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp29, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_add_clamp_log_sigmoid_forward_mean_mul_neg_tanh_0[grid
(1)](buf1, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf1,
class ForegroundDTConsistencyNew(nn.Module):
"""Consistency regularization between the binary foreground mask and
signed distance transform.
Args:
pred1 (torch.Tensor): foreground logits.
pred2 (torch.Tensor): signed distance transform.
mask (Optional[torch.Tensor], optional): weight mask. Defaults: None
"""
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
HarshSulakhe/pytorch_connectomics
|
ForegroundDTConsistency
| false | 9,857 |
[
"MIT"
] | 0 |
73402e654afde69a43a5836cc90a32ef75c75dc2
|
https://github.com/HarshSulakhe/pytorch_connectomics/tree/73402e654afde69a43a5836cc90a32ef75c75dc2
|
ToRGB
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/wi/cwiyl3lwwtancorrifw77xt3aqb4lermdintht45zvkj3bg54nbl.py
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_3, 0.5), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/2o/c2oqkq7zaubqmw7vuixxlseb2ff5jzqqbyczicxlmsahuxwdpdyp.py
# Topologically Sorted Source Nodes: [mul_1], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul_1 => mul_1
# Graph fragment:
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_4, 1), kwargs = {})
triton_poi_fused_mul_1 = async_compile.triton('triton_poi_fused_mul_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/on/conl6eemb3vyjzkllydlouehrcxphkzifo5kmslz6fgiz6ixsw5h.py
# Topologically Sorted Source Nodes: [mul_2, weight], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul_2 => mul_2
# weight => mul_3
# Graph fragment:
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_5, 0.5), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %view), kwargs = {})
triton_poi_fused_mul_2 = async_compile.triton('triton_poi_fused_mul_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex % 12
x0 = xindex % 4
x2 = (xindex // 12)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x3), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x0 + (4*x2)), xmask, eviction_policy='evict_last')
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + (x4), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/go/cgoav6av4bzem4wmdmkiowlmjpeiubwc67bqu6es4aivwlfpxzhh.py
# Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.add]
# Source node to ATen node mapping:
# out_3 => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_3, %primals_6), kwargs = {})
triton_poi_fused_add_3 = async_compile.triton('triton_poi_fused_add_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 3
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (1, 3, 4, 1, 1), (12, 4, 1, 1, 1))
assert_size_stride(primals_6, (1, 3, 1, 1), (3, 1, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(primals_3, buf0, 16, grid=grid(16), stream=stream0)
del primals_3
buf1 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [mul_1], Original ATen: [aten.mul]
triton_poi_fused_mul_1.run(primals_4, buf1, 4, grid=grid(4), stream=stream0)
del primals_4
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul_1, out], Original ATen: [aten.mul, aten.addmm]
extern_kernels.addmm(buf1, primals_2, reinterpret_tensor(buf0, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del buf0
del buf1
buf3 = empty_strided_cuda((4, 3, 4, 1, 1), (12, 4, 1, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul_2, weight], Original ATen: [aten.mul]
triton_poi_fused_mul_2.run(primals_5, buf2, buf3, 48, grid=grid(48), stream=stream0)
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(reinterpret_tensor(primals_1, (1, 16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf3, (12, 4, 1, 1), (4, 1, 0, 0), 0), stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf4, (1, 12, 4, 4), (192, 16, 4, 1))
buf5 = reinterpret_tensor(buf4, (4, 3, 4, 4), (48, 16, 4, 1), 0); del buf4 # reuse
# Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.add]
triton_poi_fused_add_3.run(buf5, primals_6, 192, grid=grid(192), stream=stream0)
del primals_6
return (buf5, primals_2, primals_5, buf2, reinterpret_tensor(buf3, (12, 4, 1, 1), (4, 1, 1, 1), 0), reinterpret_tensor(primals_1, (1, 16, 4, 4), (256, 16, 4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((1, 3, 4, 1, 1), (12, 4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((1, 3, 1, 1), (3, 1, 1, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import math
import torch
import torch.utils.data
import torch
import torch.nn as nn
import torch.nn.functional as F
def make_kernel(k):
k = torch.tensor(k, dtype=torch.float32)
if len(k.shape) == 1:
k = k[None, :] * k[:, None]
k /= k.sum()
return k
def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0,
pad_x1, pad_y0, pad_y1):
_, minor, in_h, in_w = input.shape
kernel_h, kernel_w = kernel.shape
out = input.view(-1, minor, in_h, 1, in_w, 1)
out = F.pad(out, [0, up_x - 1, 0, 0, 0, up_y - 1, 0, 0])
out = out.view(-1, minor, in_h * up_y, in_w * up_x)
out = F.pad(out, [max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(
pad_y1, 0)])
out = out[:, :, max(-pad_y0, 0):out.shape[2] - max(-pad_y1, 0), max(-
pad_x0, 0):out.shape[3] - max(-pad_x1, 0)]
out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x +
pad_x0 + pad_x1])
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
out = F.conv2d(out, w)
out = out.reshape(-1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h +
1, in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1)
return out[:, :, ::down_y, ::down_x]
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
return upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[
1], pad[0], pad[1])
def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5):
return F.leaky_relu(input + bias, negative_slope) * scale
class Upsample(nn.Module):
def __init__(self, kernel, factor=2):
super().__init__()
self.factor = factor
kernel = make_kernel(kernel) * factor ** 2
self.register_buffer('kernel', kernel)
p = kernel.shape[0] - factor
pad0 = (p + 1) // 2 + factor - 1
pad1 = p // 2
self.pad = pad0, pad1
def forward(self, input):
out = upfirdn2d(input, self.kernel, up=self.factor, down=1, pad=
self.pad)
return out
class Blur(nn.Module):
def __init__(self, kernel, pad, upsample_factor=1):
super().__init__()
kernel = make_kernel(kernel)
if upsample_factor > 1:
kernel = kernel * upsample_factor ** 2
self.register_buffer('kernel', kernel)
self.pad = pad
def forward(self, input):
out = upfirdn2d(input, self.kernel, pad=self.pad)
return out
class EqualLinear(nn.Module):
def __init__(self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1,
activation=None):
super().__init__()
self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul))
if bias:
self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init))
else:
self.bias = None
self.activation = activation
self.scale = math.sqrt(1) / math.sqrt(in_dim) * lr_mul
self.lr_mul = lr_mul
def forward(self, input):
if self.activation:
out = F.linear(input, self.weight * self.scale)
out = fused_leaky_relu(out, self.bias * self.lr_mul)
else:
out = F.linear(input, self.weight * self.scale, bias=self.bias *
self.lr_mul)
return out
def __repr__(self):
return (
f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})'
)
class ModulatedConv2d(nn.Module):
def __init__(self, in_channel, out_channel, kernel_size, style_dim,
demodulate=True, upsample=False, downsample=False, blur_kernel=[1,
3, 3, 1]):
super().__init__()
self.eps = 1e-08
self.kernel_size = kernel_size
self.in_channel = in_channel
self.out_channel = out_channel
self.upsample = upsample
self.downsample = downsample
if upsample:
factor = 2
p = len(blur_kernel) - factor - (kernel_size - 1)
pad0 = (p + 1) // 2 + factor - 1
pad1 = p // 2 + 1
self.blur = Blur(blur_kernel, pad=(pad0, pad1), upsample_factor
=factor)
if downsample:
factor = 2
p = len(blur_kernel) - factor + (kernel_size - 1)
pad0 = (p + 1) // 2
pad1 = p // 2
self.blur = Blur(blur_kernel, pad=(pad0, pad1))
fan_in = in_channel * kernel_size ** 2
self.scale = math.sqrt(1) / math.sqrt(fan_in)
self.padding = kernel_size // 2
self.weight = nn.Parameter(torch.randn(1, out_channel, in_channel,
kernel_size, kernel_size))
if style_dim is not None and style_dim > 0:
self.modulation = EqualLinear(style_dim, in_channel, bias_init=1)
self.demodulate = demodulate
def __repr__(self):
return (
f'{self.__class__.__name__}({self.in_channel}, {self.out_channel}, {self.kernel_size}, upsample={self.upsample}, downsample={self.downsample})'
)
def forward(self, input, style):
batch, in_channel, height, width = input.shape
if style is not None:
style = self.modulation(style).view(batch, 1, in_channel, 1, 1)
else:
style = torch.ones(batch, 1, in_channel, 1, 1)
weight = self.scale * self.weight * style
if self.demodulate:
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-08)
weight = weight * demod.view(batch, self.out_channel, 1, 1, 1)
weight = weight.view(batch * self.out_channel, in_channel, self.
kernel_size, self.kernel_size)
if self.upsample:
input = input.view(1, batch * in_channel, height, width)
weight = weight.view(batch, self.out_channel, in_channel, self.
kernel_size, self.kernel_size)
weight = weight.transpose(1, 2).reshape(batch * in_channel,
self.out_channel, self.kernel_size, self.kernel_size)
out = F.conv_transpose2d(input, weight, padding=0, stride=2,
groups=batch)
_, _, height, width = out.shape
out = out.view(batch, self.out_channel, height, width)
out = self.blur(out)
elif self.downsample:
input = self.blur(input)
_, _, height, width = input.shape
input = input.view(1, batch * in_channel, height, width)
out = F.conv2d(input, weight, padding=0, stride=2, groups=batch)
_, _, height, width = out.shape
out = out.view(batch, self.out_channel, height, width)
else:
input = input.view(1, batch * in_channel, height, width)
out = F.conv2d(input, weight, padding=self.padding, groups=batch)
_, _, height, width = out.shape
out = out.view(batch, self.out_channel, height, width)
return out
class ToRGB(nn.Module):
def __init__(self, in_channel, style_dim, upsample=True, blur_kernel=[1,
3, 3, 1]):
super().__init__()
if upsample:
self.upsample = Upsample(blur_kernel)
self.conv = ModulatedConv2d(in_channel, 3, 1, style_dim, demodulate
=False)
self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
def forward(self, input, style, skip=None):
out = self.conv(input, style)
out = out + self.bias
if skip is not None:
skip = self.upsample(skip)
out = out + skip
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'in_channel': 4, 'style_dim': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import math
import torch.utils.data
import torch
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused_mul_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex % 12
x0 = xindex % 4
x2 = xindex // 12
x4 = xindex
tmp0 = tl.load(in_ptr0 + x3, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x0 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + x4, tmp4, xmask)
@triton.jit
def triton_poi_fused_add_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 3
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (1, 3, 4, 1, 1), (12, 4, 1, 1, 1))
assert_size_stride(primals_6, (1, 3, 1, 1), (3, 1, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_0[grid(16)](primals_3, buf0, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_3
buf1 = empty_strided_cuda((4,), (1,), torch.float32)
triton_poi_fused_mul_1[grid(4)](primals_4, buf1, 4, XBLOCK=4,
num_warps=1, num_stages=1)
del primals_4
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(buf1, primals_2, reinterpret_tensor(buf0, (4,
4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del buf0
del buf1
buf3 = empty_strided_cuda((4, 3, 4, 1, 1), (12, 4, 1, 1, 1), torch.
float32)
triton_poi_fused_mul_2[grid(48)](primals_5, buf2, buf3, 48, XBLOCK=
64, num_warps=1, num_stages=1)
buf4 = extern_kernels.convolution(reinterpret_tensor(primals_1, (1,
16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf3, (12, 4,
1, 1), (4, 1, 0, 0), 0), stride=(1, 1), padding=(0, 0),
dilation=(1, 1), transposed=False, output_padding=(0, 0),
groups=4, bias=None)
assert_size_stride(buf4, (1, 12, 4, 4), (192, 16, 4, 1))
buf5 = reinterpret_tensor(buf4, (4, 3, 4, 4), (48, 16, 4, 1), 0)
del buf4
triton_poi_fused_add_3[grid(192)](buf5, primals_6, 192, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_6
return buf5, primals_2, primals_5, buf2, reinterpret_tensor(buf3, (12,
4, 1, 1), (4, 1, 1, 1), 0), reinterpret_tensor(primals_1, (1, 16, 4,
4), (256, 16, 4, 1), 0)
def make_kernel(k):
k = torch.tensor(k, dtype=torch.float32)
if len(k.shape) == 1:
k = k[None, :] * k[:, None]
k /= k.sum()
return k
def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0,
pad_x1, pad_y0, pad_y1):
_, minor, in_h, in_w = input.shape
kernel_h, kernel_w = kernel.shape
out = input.view(-1, minor, in_h, 1, in_w, 1)
out = F.pad(out, [0, up_x - 1, 0, 0, 0, up_y - 1, 0, 0])
out = out.view(-1, minor, in_h * up_y, in_w * up_x)
out = F.pad(out, [max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(
pad_y1, 0)])
out = out[:, :, max(-pad_y0, 0):out.shape[2] - max(-pad_y1, 0), max(-
pad_x0, 0):out.shape[3] - max(-pad_x1, 0)]
out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x +
pad_x0 + pad_x1])
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
out = F.conv2d(out, w)
out = out.reshape(-1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h +
1, in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1)
return out[:, :, ::down_y, ::down_x]
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
return upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[
1], pad[0], pad[1])
def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5):
return F.leaky_relu(input + bias, negative_slope) * scale
class Upsample(nn.Module):
def __init__(self, kernel, factor=2):
super().__init__()
self.factor = factor
kernel = make_kernel(kernel) * factor ** 2
self.register_buffer('kernel', kernel)
p = kernel.shape[0] - factor
pad0 = (p + 1) // 2 + factor - 1
pad1 = p // 2
self.pad = pad0, pad1
def forward(self, input):
out = upfirdn2d(input, self.kernel, up=self.factor, down=1, pad=
self.pad)
return out
class Blur(nn.Module):
def __init__(self, kernel, pad, upsample_factor=1):
super().__init__()
kernel = make_kernel(kernel)
if upsample_factor > 1:
kernel = kernel * upsample_factor ** 2
self.register_buffer('kernel', kernel)
self.pad = pad
def forward(self, input):
out = upfirdn2d(input, self.kernel, pad=self.pad)
return out
class EqualLinear(nn.Module):
def __init__(self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1,
activation=None):
super().__init__()
self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul))
if bias:
self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init))
else:
self.bias = None
self.activation = activation
self.scale = math.sqrt(1) / math.sqrt(in_dim) * lr_mul
self.lr_mul = lr_mul
def forward(self, input):
if self.activation:
out = F.linear(input, self.weight * self.scale)
out = fused_leaky_relu(out, self.bias * self.lr_mul)
else:
out = F.linear(input, self.weight * self.scale, bias=self.bias *
self.lr_mul)
return out
def __repr__(self):
return (
f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})'
)
class ModulatedConv2d(nn.Module):
def __init__(self, in_channel, out_channel, kernel_size, style_dim,
demodulate=True, upsample=False, downsample=False, blur_kernel=[1,
3, 3, 1]):
super().__init__()
self.eps = 1e-08
self.kernel_size = kernel_size
self.in_channel = in_channel
self.out_channel = out_channel
self.upsample = upsample
self.downsample = downsample
if upsample:
factor = 2
p = len(blur_kernel) - factor - (kernel_size - 1)
pad0 = (p + 1) // 2 + factor - 1
pad1 = p // 2 + 1
self.blur = Blur(blur_kernel, pad=(pad0, pad1), upsample_factor
=factor)
if downsample:
factor = 2
p = len(blur_kernel) - factor + (kernel_size - 1)
pad0 = (p + 1) // 2
pad1 = p // 2
self.blur = Blur(blur_kernel, pad=(pad0, pad1))
fan_in = in_channel * kernel_size ** 2
self.scale = math.sqrt(1) / math.sqrt(fan_in)
self.padding = kernel_size // 2
self.weight = nn.Parameter(torch.randn(1, out_channel, in_channel,
kernel_size, kernel_size))
if style_dim is not None and style_dim > 0:
self.modulation = EqualLinear(style_dim, in_channel, bias_init=1)
self.demodulate = demodulate
def __repr__(self):
return (
f'{self.__class__.__name__}({self.in_channel}, {self.out_channel}, {self.kernel_size}, upsample={self.upsample}, downsample={self.downsample})'
)
def forward(self, input, style):
batch, in_channel, height, width = input.shape
if style is not None:
style = self.modulation(style).view(batch, 1, in_channel, 1, 1)
else:
style = torch.ones(batch, 1, in_channel, 1, 1)
weight = self.scale * self.weight * style
if self.demodulate:
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-08)
weight = weight * demod.view(batch, self.out_channel, 1, 1, 1)
weight = weight.view(batch * self.out_channel, in_channel, self.
kernel_size, self.kernel_size)
if self.upsample:
input = input.view(1, batch * in_channel, height, width)
weight = weight.view(batch, self.out_channel, in_channel, self.
kernel_size, self.kernel_size)
weight = weight.transpose(1, 2).reshape(batch * in_channel,
self.out_channel, self.kernel_size, self.kernel_size)
out = F.conv_transpose2d(input, weight, padding=0, stride=2,
groups=batch)
_, _, height, width = out.shape
out = out.view(batch, self.out_channel, height, width)
out = self.blur(out)
elif self.downsample:
input = self.blur(input)
_, _, height, width = input.shape
input = input.view(1, batch * in_channel, height, width)
out = F.conv2d(input, weight, padding=0, stride=2, groups=batch)
_, _, height, width = out.shape
out = out.view(batch, self.out_channel, height, width)
else:
input = input.view(1, batch * in_channel, height, width)
out = F.conv2d(input, weight, padding=self.padding, groups=batch)
_, _, height, width = out.shape
out = out.view(batch, self.out_channel, height, width)
return out
class ToRGBNew(nn.Module):
def __init__(self, in_channel, style_dim, upsample=True, blur_kernel=[1,
3, 3, 1]):
super().__init__()
if upsample:
self.upsample = Upsample(blur_kernel)
self.conv = ModulatedConv2d(in_channel, 3, 1, style_dim, demodulate
=False)
self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
def forward(self, input_0, input_1):
primals_6 = self.bias
primals_5 = self.conv.weight
primals_2 = self.conv.modulation.weight
primals_4 = self.conv.modulation.bias
primals_1 = input_0
primals_3 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0]
|
a11isonliu/contrastive-unpaired-translation
|
ToRGB
| false | 9,858 |
[
"BSD-3-Clause"
] | 0 |
67651ed9877cae121d9398f46094ce8dbc678802
|
https://github.com/a11isonliu/contrastive-unpaired-translation/tree/67651ed9877cae121d9398f46094ce8dbc678802
|
WSDiceLoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/mz/cmz5p6zca3yecahcbga3tvqgpa5b3g637odbbpvmooy7ns67yt4k.py
# Topologically Sorted Source Nodes: [mul, wt, mul_1, sub, g_pred, mul_3, sub_1, g, mul_5, intersection, pow_1, sum_2, pow_2, sum_3], Original ATen: [aten.mul, aten.add, aten.sub, aten.sum, aten.pow]
# Source node to ATen node mapping:
# g => mul_4
# g_pred => mul_2
# intersection => sum_1
# mul => mul
# mul_1 => mul_1
# mul_3 => mul_3
# mul_5 => mul_5
# pow_1 => pow_1
# pow_2 => pow_2
# sub => sub
# sub_1 => sub_1
# sum_2 => sum_2
# sum_3 => sum_3
# wt => add
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.7), kwargs = {})
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 0.15), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, 2), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_1, 1), kwargs = {})
# %mul_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, %sub), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 2), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_3, 1), kwargs = {})
# %mul_4 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, %sub_1), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %mul_4), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_5, [-1]), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%mul_2, 2.0), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [-1]), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%mul_4, 2.0), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_2, [-1]), kwargs = {})
triton_per_fused_add_mul_pow_sub_sum_0 = async_compile.triton('triton_per_fused_add_mul_pow_sub_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mul_pow_sub_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 3, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_mul_pow_sub_sum_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0)
tmp5 = tl.load(in_ptr1 + (r1 + (64*x0)), xmask, other=0.0)
tmp1 = 0.7
tmp2 = tmp0 * tmp1
tmp3 = 0.15
tmp4 = tmp2 + tmp3
tmp6 = 2.0
tmp7 = tmp5 * tmp6
tmp8 = 1.0
tmp9 = tmp7 - tmp8
tmp10 = tmp4 * tmp9
tmp11 = tmp0 * tmp6
tmp12 = tmp11 - tmp8
tmp13 = tmp4 * tmp12
tmp14 = tmp10 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = tmp10 * tmp10
tmp20 = tl.broadcast_to(tmp19, [XBLOCK, RBLOCK])
tmp22 = tl.where(xmask, tmp20, 0)
tmp23 = tl.sum(tmp22, 1)[:, None]
tmp24 = tmp13 * tmp13
tmp25 = tl.broadcast_to(tmp24, [XBLOCK, RBLOCK])
tmp27 = tl.where(xmask, tmp25, 0)
tmp28 = tl.sum(tmp27, 1)[:, None]
tl.store(out_ptr0 + (x0), tmp18, xmask)
tl.store(out_ptr1 + (x0), tmp23, xmask)
tl.store(out_ptr2 + (x0), tmp28, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/jo/cjo432xww7vctyrb7ojy7nnu3oefdpgj6fe4hswstyckuyu2qbg4.py
# Topologically Sorted Source Nodes: [mul_6, add_1, add_2, add_3, truediv, loss, loss_1], Original ATen: [aten.mul, aten.add, aten.div, aten.rsub, aten.mean]
# Source node to ATen node mapping:
# add_1 => add_1
# add_2 => add_2
# add_3 => add_3
# loss => sub_2
# loss_1 => mean
# mul_6 => mul_6
# truediv => div
# Graph fragment:
# %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, 2.0), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_6, 100.0), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_2, %sum_3), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, 100.0), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_1, %add_3), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %div), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub_2,), kwargs = {})
triton_per_fused_add_div_mean_mul_rsub_1 = async_compile.triton('triton_per_fused_add_div_mean_mul_rsub_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 4],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=(4,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mean_mul_rsub_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_mean_mul_rsub_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp5 = tl.load(in_ptr1 + (r0), None)
tmp6 = tl.load(in_ptr2 + (r0), None)
tmp1 = 2.0
tmp2 = tmp0 * tmp1
tmp3 = 100.0
tmp4 = tmp2 + tmp3
tmp7 = tmp5 + tmp6
tmp8 = tmp7 + tmp3
tmp9 = tmp4 / tmp8
tmp10 = 1.0
tmp11 = tmp10 - tmp9
tmp12 = tl.broadcast_to(tmp11, [XBLOCK, RBLOCK])
tmp14 = tl.sum(tmp12, 1)[:, None]
tmp15 = 4.0
tmp16 = tmp14 / tmp15
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp16, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, ), (1, ), torch.float32)
buf1 = empty_strided_cuda((4, ), (1, ), torch.float32)
buf2 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [mul, wt, mul_1, sub, g_pred, mul_3, sub_1, g, mul_5, intersection, pow_1, sum_2, pow_2, sum_3], Original ATen: [aten.mul, aten.add, aten.sub, aten.sum, aten.pow]
stream0 = get_raw_stream(0)
triton_per_fused_add_mul_pow_sub_sum_0.run(arg1_1, arg0_1, buf0, buf1, buf2, 4, 64, grid=grid(4), stream=stream0)
del arg0_1
del arg1_1
buf3 = empty_strided_cuda((), (), torch.float32)
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [mul_6, add_1, add_2, add_3, truediv, loss, loss_1], Original ATen: [aten.mul, aten.add, aten.div, aten.rsub, aten.mean]
triton_per_fused_add_div_mean_mul_rsub_1.run(buf4, buf0, buf1, buf2, 1, 4, grid=grid(1), stream=stream0)
del buf0
del buf1
del buf2
return (buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.utils.data
import torch.nn as nn
import torch.nn.parallel
class WSDiceLoss(nn.Module):
def __init__(self, smooth=100.0, power=2.0, v2=0.85, v1=0.15):
super().__init__()
self.smooth = smooth
self.power = power
self.v2 = v2
self.v1 = v1
def dice_loss(self, pred, target):
iflat = pred.reshape(pred.shape[0], -1)
tflat = target.reshape(pred.shape[0], -1)
wt = tflat * (self.v2 - self.v1) + self.v1
g_pred = wt * (2 * iflat - 1)
g = wt * (2 * tflat - 1)
intersection = (g_pred * g).sum(-1)
loss = 1 - (2.0 * intersection + self.smooth) / ((g_pred ** self.
power).sum(-1) + (g ** self.power).sum(-1) + self.smooth)
return loss.mean()
def forward(self, pred, target, weight_mask=None):
loss = self.dice_loss(pred, target)
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.utils.data
import torch.nn as nn
import torch.nn.parallel
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_mul_pow_sub_sum_0(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0)
tmp5 = tl.load(in_ptr1 + (r1 + 64 * x0), xmask, other=0.0)
tmp1 = 0.7
tmp2 = tmp0 * tmp1
tmp3 = 0.15
tmp4 = tmp2 + tmp3
tmp6 = 2.0
tmp7 = tmp5 * tmp6
tmp8 = 1.0
tmp9 = tmp7 - tmp8
tmp10 = tmp4 * tmp9
tmp11 = tmp0 * tmp6
tmp12 = tmp11 - tmp8
tmp13 = tmp4 * tmp12
tmp14 = tmp10 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = tmp10 * tmp10
tmp20 = tl.broadcast_to(tmp19, [XBLOCK, RBLOCK])
tmp22 = tl.where(xmask, tmp20, 0)
tmp23 = tl.sum(tmp22, 1)[:, None]
tmp24 = tmp13 * tmp13
tmp25 = tl.broadcast_to(tmp24, [XBLOCK, RBLOCK])
tmp27 = tl.where(xmask, tmp25, 0)
tmp28 = tl.sum(tmp27, 1)[:, None]
tl.store(out_ptr0 + x0, tmp18, xmask)
tl.store(out_ptr1 + x0, tmp23, xmask)
tl.store(out_ptr2 + x0, tmp28, xmask)
@triton.jit
def triton_per_fused_add_div_mean_mul_rsub_1(in_out_ptr0, in_ptr0, in_ptr1,
in_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp5 = tl.load(in_ptr1 + r0, None)
tmp6 = tl.load(in_ptr2 + r0, None)
tmp1 = 2.0
tmp2 = tmp0 * tmp1
tmp3 = 100.0
tmp4 = tmp2 + tmp3
tmp7 = tmp5 + tmp6
tmp8 = tmp7 + tmp3
tmp9 = tmp4 / tmp8
tmp10 = 1.0
tmp11 = tmp10 - tmp9
tmp12 = tl.broadcast_to(tmp11, [XBLOCK, RBLOCK])
tmp14 = tl.sum(tmp12, 1)[:, None]
tmp15 = 4.0
tmp16 = tmp14 / tmp15
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp16, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4,), (1,), torch.float32)
buf1 = empty_strided_cuda((4,), (1,), torch.float32)
buf2 = empty_strided_cuda((4,), (1,), torch.float32)
get_raw_stream(0)
triton_per_fused_add_mul_pow_sub_sum_0[grid(4)](arg1_1, arg0_1,
buf0, buf1, buf2, 4, 64, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
buf3 = empty_strided_cuda((), (), torch.float32)
buf4 = buf3
del buf3
triton_per_fused_add_div_mean_mul_rsub_1[grid(1)](buf4, buf0, buf1,
buf2, 1, 4, XBLOCK=1, num_warps=2, num_stages=1)
del buf0
del buf1
del buf2
return buf4,
class WSDiceLossNew(nn.Module):
def __init__(self, smooth=100.0, power=2.0, v2=0.85, v1=0.15):
super().__init__()
self.smooth = smooth
self.power = power
self.v2 = v2
self.v1 = v1
def dice_loss(self, pred, target):
iflat = pred.reshape(pred.shape[0], -1)
tflat = target.reshape(pred.shape[0], -1)
wt = tflat * (self.v2 - self.v1) + self.v1
g_pred = wt * (2 * iflat - 1)
g = wt * (2 * tflat - 1)
intersection = (g_pred * g).sum(-1)
loss = 1 - (2.0 * intersection + self.smooth) / ((g_pred ** self.
power).sum(-1) + (g ** self.power).sum(-1) + self.smooth)
return loss.mean()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
HarshSulakhe/pytorch_connectomics
|
WSDiceLoss
| false | 9,859 |
[
"MIT"
] | 0 |
73402e654afde69a43a5836cc90a32ef75c75dc2
|
https://github.com/HarshSulakhe/pytorch_connectomics/tree/73402e654afde69a43a5836cc90a32ef75c75dc2
|
WeightedCE
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/td/ctdj5kazgiki6gdaadhqtp2x7tq2ee5ey5hqqdcoqmp54jyhf74f.py
# Topologically Sorted Source Nodes: [loss], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# loss => amax, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg1_1, [1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %amax), kwargs = {})
triton_poi_fused__log_softmax_0 = async_compile.triton('triton_poi_fused__log_softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/hl/chlfdbgpszjgvc5lbbjy2patr43syrsegknoj2ftqczeybmrnw76.py
# Topologically Sorted Source Nodes: [loss, mean], Original ATen: [aten._log_softmax, aten.mul, aten.sum, aten.neg, aten.mean]
# Source node to ATen node mapping:
# loss => exp, log, mul, neg, sub_1, sum_1, sum_2
# mean => mean
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %arg0_1), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sum_2,), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%neg,), kwargs = {})
triton_per_fused__log_softmax_mean_mul_neg_sum_1 = async_compile.triton('triton_per_fused__log_softmax_mean_mul_neg_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax_mean_mul_neg_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__log_softmax_mean_mul_neg_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex % 16
r1 = (rindex // 16)
tmp0 = tl.load(in_ptr0 + (r0 + (64*r1)), None)
tmp2 = tl.load(in_ptr0 + (16 + r0 + (64*r1)), None)
tmp5 = tl.load(in_ptr0 + (32 + r0 + (64*r1)), None)
tmp8 = tl.load(in_ptr0 + (48 + r0 + (64*r1)), None)
tmp13 = tl.load(in_ptr1 + (r0 + (64*r1)), None)
tmp16 = tl.load(in_ptr1 + (16 + r0 + (64*r1)), None)
tmp20 = tl.load(in_ptr1 + (32 + r0 + (64*r1)), None)
tmp24 = tl.load(in_ptr1 + (48 + r0 + (64*r1)), None)
tmp1 = tl_math.exp(tmp0)
tmp3 = tl_math.exp(tmp2)
tmp4 = tmp1 + tmp3
tmp6 = tl_math.exp(tmp5)
tmp7 = tmp4 + tmp6
tmp9 = tl_math.exp(tmp8)
tmp10 = tmp7 + tmp9
tmp11 = tl_math.log(tmp10)
tmp12 = tmp0 - tmp11
tmp14 = tmp12 * tmp13
tmp15 = tmp2 - tmp11
tmp17 = tmp15 * tmp16
tmp18 = tmp14 + tmp17
tmp19 = tmp5 - tmp11
tmp21 = tmp19 * tmp20
tmp22 = tmp18 + tmp21
tmp23 = tmp8 - tmp11
tmp25 = tmp23 * tmp24
tmp26 = tmp22 + tmp25
tmp27 = -tmp26
tmp28 = tl.broadcast_to(tmp27, [XBLOCK, RBLOCK])
tmp30 = tl.sum(tmp28, 1)[:, None]
tmp31 = 64.0
tmp32 = tmp30 / tmp31
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp32, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [loss], Original ATen: [aten._log_softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__log_softmax_0.run(arg1_1, buf0, 256, grid=grid(256), stream=stream0)
del arg1_1
buf1 = empty_strided_cuda((), (), torch.float32)
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [loss, mean], Original ATen: [aten._log_softmax, aten.mul, aten.sum, aten.neg, aten.mean]
triton_per_fused__log_softmax_mean_mul_neg_sum_1.run(buf2, buf0, arg0_1, 1, 64, grid=grid(1), stream=stream0)
del arg0_1
del buf0
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from typing import Optional
from typing import List
import torch.utils.data
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.parallel
class WeightedCE(nn.Module):
"""Mask weighted multi-class cross-entropy (CE) loss.
"""
def __init__(self, class_weight: 'Optional[List[float]]'=None):
super().__init__()
self.class_weight = None
if class_weight is not None:
self.class_weight = torch.tensor(class_weight)
def forward(self, pred, target, weight_mask=None):
if self.class_weight is not None:
self.class_weight = self.class_weight
loss = F.cross_entropy(pred, target, weight=self.class_weight,
reduction='none')
if weight_mask is not None:
loss = loss * weight_mask
return loss.mean()
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
from typing import Optional
from typing import List
import torch.utils.data
import torch.nn as nn
import torch.nn.parallel
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + x3, tmp8, xmask)
@triton.jit
def triton_per_fused__log_softmax_mean_mul_neg_sum_1(in_out_ptr0, in_ptr0,
in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex % 16
r1 = rindex // 16
tmp0 = tl.load(in_ptr0 + (r0 + 64 * r1), None)
tmp2 = tl.load(in_ptr0 + (16 + r0 + 64 * r1), None)
tmp5 = tl.load(in_ptr0 + (32 + r0 + 64 * r1), None)
tmp8 = tl.load(in_ptr0 + (48 + r0 + 64 * r1), None)
tmp13 = tl.load(in_ptr1 + (r0 + 64 * r1), None)
tmp16 = tl.load(in_ptr1 + (16 + r0 + 64 * r1), None)
tmp20 = tl.load(in_ptr1 + (32 + r0 + 64 * r1), None)
tmp24 = tl.load(in_ptr1 + (48 + r0 + 64 * r1), None)
tmp1 = tl_math.exp(tmp0)
tmp3 = tl_math.exp(tmp2)
tmp4 = tmp1 + tmp3
tmp6 = tl_math.exp(tmp5)
tmp7 = tmp4 + tmp6
tmp9 = tl_math.exp(tmp8)
tmp10 = tmp7 + tmp9
tmp11 = tl_math.log(tmp10)
tmp12 = tmp0 - tmp11
tmp14 = tmp12 * tmp13
tmp15 = tmp2 - tmp11
tmp17 = tmp15 * tmp16
tmp18 = tmp14 + tmp17
tmp19 = tmp5 - tmp11
tmp21 = tmp19 * tmp20
tmp22 = tmp18 + tmp21
tmp23 = tmp8 - tmp11
tmp25 = tmp23 * tmp24
tmp26 = tmp22 + tmp25
tmp27 = -tmp26
tmp28 = tl.broadcast_to(tmp27, [XBLOCK, RBLOCK])
tmp30 = tl.sum(tmp28, 1)[:, None]
tmp31 = 64.0
tmp32 = tmp30 / tmp31
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp32, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__log_softmax_0[grid(256)](arg1_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg1_1
buf1 = empty_strided_cuda((), (), torch.float32)
buf2 = buf1
del buf1
triton_per_fused__log_softmax_mean_mul_neg_sum_1[grid(1)](buf2,
buf0, arg0_1, 1, 64, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
del buf0
return buf2,
class WeightedCENew(nn.Module):
"""Mask weighted multi-class cross-entropy (CE) loss.
"""
def __init__(self, class_weight: 'Optional[List[float]]'=None):
super().__init__()
self.class_weight = None
if class_weight is not None:
self.class_weight = torch.tensor(class_weight)
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
HarshSulakhe/pytorch_connectomics
|
WeightedCE
| false | 9,860 |
[
"MIT"
] | 0 |
73402e654afde69a43a5836cc90a32ef75c75dc2
|
https://github.com/HarshSulakhe/pytorch_connectomics/tree/73402e654afde69a43a5836cc90a32ef75c75dc2
|
ModulatedConv2d
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/wi/cwiyl3lwwtancorrifw77xt3aqb4lermdintht45zvkj3bg54nbl.py
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_3, 0.5), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/2o/c2oqkq7zaubqmw7vuixxlseb2ff5jzqqbyczicxlmsahuxwdpdyp.py
# Topologically Sorted Source Nodes: [mul_1], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul_1 => mul_1
# Graph fragment:
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_4, 1), kwargs = {})
triton_poi_fused_mul_1 = async_compile.triton('triton_poi_fused_mul_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/ri/criuvsdl3sferb4bb6ci5zaps3wys7xxcpybz7vfo2ba4q7cuq6c.py
# Topologically Sorted Source Nodes: [mul_2, weight, pow_1, sum_1, add, demod, weight_1], Original ATen: [aten.mul, aten.pow, aten.sum, aten.add, aten.rsqrt]
# Source node to ATen node mapping:
# add => add
# demod => rsqrt
# mul_2 => mul_2
# pow_1 => pow_1
# sum_1 => sum_1
# weight => mul_3
# weight_1 => mul_4
# Graph fragment:
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_5, 0.125), kwargs = {})
# %mul_3 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %view), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%mul_3, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [2, 3, 4]), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, 1e-08), kwargs = {})
# %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_3, %view_1), kwargs = {})
triton_per_fused_add_mul_pow_rsqrt_sum_2 = async_compile.triton('triton_per_fused_add_mul_pow_rsqrt_sum_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 64],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mul_pow_rsqrt_sum_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_mul_pow_rsqrt_sum_2(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r5 = rindex
x0 = xindex % 4
r3 = (rindex // 16)
x1 = (xindex // 4)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (r5 + (64*x0)), xmask, eviction_policy='evict_last', other=0.0)
tmp3 = tl.load(in_ptr1 + (r3 + (4*x1)), xmask, eviction_policy='evict_last', other=0.0)
tmp1 = 0.125
tmp2 = tmp0 * tmp1
tmp4 = tmp2 * tmp3
tmp5 = tmp4 * tmp4
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = 1e-08
tmp11 = tmp9 + tmp10
tmp12 = libdevice.rsqrt(tmp11)
tmp13 = tmp4 * tmp12
tl.debug_barrier()
tl.store(in_out_ptr0 + (x4), tmp12, xmask)
tl.store(out_ptr0 + (r5 + (64*x4)), tmp13, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(primals_3, buf0, 16, grid=grid(16), stream=stream0)
del primals_3
buf1 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [mul_1], Original ATen: [aten.mul]
triton_poi_fused_mul_1.run(primals_4, buf1, 4, grid=grid(4), stream=stream0)
del primals_4
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul_1, out], Original ATen: [aten.mul, aten.addmm]
extern_kernels.addmm(buf1, primals_2, reinterpret_tensor(buf0, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del buf1
buf3 = buf0; del buf0 # reuse
buf4 = buf3; del buf3 # reuse
buf5 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul_2, weight, pow_1, sum_1, add, demod, weight_1], Original ATen: [aten.mul, aten.pow, aten.sum, aten.add, aten.rsqrt]
triton_per_fused_add_mul_pow_rsqrt_sum_2.run(buf4, primals_5, buf2, buf5, 16, 64, grid=grid(16), stream=stream0)
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(reinterpret_tensor(primals_1, (1, 16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf5, (16, 4, 4, 4), (64, 16, 4, 1), 0), stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf6, (1, 16, 5, 5), (400, 25, 5, 1))
return (reinterpret_tensor(buf6, (4, 4, 5, 5), (100, 25, 5, 1), 0), primals_2, primals_5, buf2, buf4, reinterpret_tensor(buf5, (16, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_1, (1, 16, 4, 4), (256, 16, 4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((1, 4, 4, 4, 4), (256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import math
import torch
import torch.utils.data
import torch
import torch.nn as nn
import torch.nn.functional as F
def make_kernel(k):
k = torch.tensor(k, dtype=torch.float32)
if len(k.shape) == 1:
k = k[None, :] * k[:, None]
k /= k.sum()
return k
def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0,
pad_x1, pad_y0, pad_y1):
_, minor, in_h, in_w = input.shape
kernel_h, kernel_w = kernel.shape
out = input.view(-1, minor, in_h, 1, in_w, 1)
out = F.pad(out, [0, up_x - 1, 0, 0, 0, up_y - 1, 0, 0])
out = out.view(-1, minor, in_h * up_y, in_w * up_x)
out = F.pad(out, [max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(
pad_y1, 0)])
out = out[:, :, max(-pad_y0, 0):out.shape[2] - max(-pad_y1, 0), max(-
pad_x0, 0):out.shape[3] - max(-pad_x1, 0)]
out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x +
pad_x0 + pad_x1])
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
out = F.conv2d(out, w)
out = out.reshape(-1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h +
1, in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1)
return out[:, :, ::down_y, ::down_x]
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
return upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[
1], pad[0], pad[1])
def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5):
return F.leaky_relu(input + bias, negative_slope) * scale
class Blur(nn.Module):
def __init__(self, kernel, pad, upsample_factor=1):
super().__init__()
kernel = make_kernel(kernel)
if upsample_factor > 1:
kernel = kernel * upsample_factor ** 2
self.register_buffer('kernel', kernel)
self.pad = pad
def forward(self, input):
out = upfirdn2d(input, self.kernel, pad=self.pad)
return out
class EqualLinear(nn.Module):
def __init__(self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1,
activation=None):
super().__init__()
self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul))
if bias:
self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init))
else:
self.bias = None
self.activation = activation
self.scale = math.sqrt(1) / math.sqrt(in_dim) * lr_mul
self.lr_mul = lr_mul
def forward(self, input):
if self.activation:
out = F.linear(input, self.weight * self.scale)
out = fused_leaky_relu(out, self.bias * self.lr_mul)
else:
out = F.linear(input, self.weight * self.scale, bias=self.bias *
self.lr_mul)
return out
def __repr__(self):
return (
f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})'
)
class ModulatedConv2d(nn.Module):
def __init__(self, in_channel, out_channel, kernel_size, style_dim,
demodulate=True, upsample=False, downsample=False, blur_kernel=[1,
3, 3, 1]):
super().__init__()
self.eps = 1e-08
self.kernel_size = kernel_size
self.in_channel = in_channel
self.out_channel = out_channel
self.upsample = upsample
self.downsample = downsample
if upsample:
factor = 2
p = len(blur_kernel) - factor - (kernel_size - 1)
pad0 = (p + 1) // 2 + factor - 1
pad1 = p // 2 + 1
self.blur = Blur(blur_kernel, pad=(pad0, pad1), upsample_factor
=factor)
if downsample:
factor = 2
p = len(blur_kernel) - factor + (kernel_size - 1)
pad0 = (p + 1) // 2
pad1 = p // 2
self.blur = Blur(blur_kernel, pad=(pad0, pad1))
fan_in = in_channel * kernel_size ** 2
self.scale = math.sqrt(1) / math.sqrt(fan_in)
self.padding = kernel_size // 2
self.weight = nn.Parameter(torch.randn(1, out_channel, in_channel,
kernel_size, kernel_size))
if style_dim is not None and style_dim > 0:
self.modulation = EqualLinear(style_dim, in_channel, bias_init=1)
self.demodulate = demodulate
def __repr__(self):
return (
f'{self.__class__.__name__}({self.in_channel}, {self.out_channel}, {self.kernel_size}, upsample={self.upsample}, downsample={self.downsample})'
)
def forward(self, input, style):
batch, in_channel, height, width = input.shape
if style is not None:
style = self.modulation(style).view(batch, 1, in_channel, 1, 1)
else:
style = torch.ones(batch, 1, in_channel, 1, 1)
weight = self.scale * self.weight * style
if self.demodulate:
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-08)
weight = weight * demod.view(batch, self.out_channel, 1, 1, 1)
weight = weight.view(batch * self.out_channel, in_channel, self.
kernel_size, self.kernel_size)
if self.upsample:
input = input.view(1, batch * in_channel, height, width)
weight = weight.view(batch, self.out_channel, in_channel, self.
kernel_size, self.kernel_size)
weight = weight.transpose(1, 2).reshape(batch * in_channel,
self.out_channel, self.kernel_size, self.kernel_size)
out = F.conv_transpose2d(input, weight, padding=0, stride=2,
groups=batch)
_, _, height, width = out.shape
out = out.view(batch, self.out_channel, height, width)
out = self.blur(out)
elif self.downsample:
input = self.blur(input)
_, _, height, width = input.shape
input = input.view(1, batch * in_channel, height, width)
out = F.conv2d(input, weight, padding=0, stride=2, groups=batch)
_, _, height, width = out.shape
out = out.view(batch, self.out_channel, height, width)
else:
input = input.view(1, batch * in_channel, height, width)
out = F.conv2d(input, weight, padding=self.padding, groups=batch)
_, _, height, width = out.shape
out = out.view(batch, self.out_channel, height, width)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'in_channel': 4, 'out_channel': 4, 'kernel_size': 4,
'style_dim': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import math
import torch.utils.data
import torch
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused_mul_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_per_fused_add_mul_pow_rsqrt_sum_2(in_out_ptr0, in_ptr0, in_ptr1,
out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r5 = rindex
x0 = xindex % 4
r3 = rindex // 16
x1 = xindex // 4
x4 = xindex
tmp0 = tl.load(in_ptr0 + (r5 + 64 * x0), xmask, eviction_policy=
'evict_last', other=0.0)
tmp3 = tl.load(in_ptr1 + (r3 + 4 * x1), xmask, eviction_policy=
'evict_last', other=0.0)
tmp1 = 0.125
tmp2 = tmp0 * tmp1
tmp4 = tmp2 * tmp3
tmp5 = tmp4 * tmp4
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = 1e-08
tmp11 = tmp9 + tmp10
tmp12 = libdevice.rsqrt(tmp11)
tmp13 = tmp4 * tmp12
tl.debug_barrier()
tl.store(in_out_ptr0 + x4, tmp12, xmask)
tl.store(out_ptr0 + (r5 + 64 * x4), tmp13, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_0[grid(16)](primals_3, buf0, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_3
buf1 = empty_strided_cuda((4,), (1,), torch.float32)
triton_poi_fused_mul_1[grid(4)](primals_4, buf1, 4, XBLOCK=4,
num_warps=1, num_stages=1)
del primals_4
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(buf1, primals_2, reinterpret_tensor(buf0, (4,
4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del buf1
buf3 = buf0
del buf0
buf4 = buf3
del buf3
buf5 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
triton_per_fused_add_mul_pow_rsqrt_sum_2[grid(16)](buf4, primals_5,
buf2, buf5, 16, 64, XBLOCK=1, num_warps=2, num_stages=1)
buf6 = extern_kernels.convolution(reinterpret_tensor(primals_1, (1,
16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf5, (16, 4,
4, 4), (64, 16, 4, 1), 0), stride=(1, 1), padding=(2, 2),
dilation=(1, 1), transposed=False, output_padding=(0, 0),
groups=4, bias=None)
assert_size_stride(buf6, (1, 16, 5, 5), (400, 25, 5, 1))
return reinterpret_tensor(buf6, (4, 4, 5, 5), (100, 25, 5, 1), 0
), primals_2, primals_5, buf2, buf4, reinterpret_tensor(buf5, (16,
4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_1, (1, 16,
4, 4), (256, 16, 4, 1), 0)
def make_kernel(k):
k = torch.tensor(k, dtype=torch.float32)
if len(k.shape) == 1:
k = k[None, :] * k[:, None]
k /= k.sum()
return k
def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0,
pad_x1, pad_y0, pad_y1):
_, minor, in_h, in_w = input.shape
kernel_h, kernel_w = kernel.shape
out = input.view(-1, minor, in_h, 1, in_w, 1)
out = F.pad(out, [0, up_x - 1, 0, 0, 0, up_y - 1, 0, 0])
out = out.view(-1, minor, in_h * up_y, in_w * up_x)
out = F.pad(out, [max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(
pad_y1, 0)])
out = out[:, :, max(-pad_y0, 0):out.shape[2] - max(-pad_y1, 0), max(-
pad_x0, 0):out.shape[3] - max(-pad_x1, 0)]
out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x +
pad_x0 + pad_x1])
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
out = F.conv2d(out, w)
out = out.reshape(-1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h +
1, in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1)
return out[:, :, ::down_y, ::down_x]
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
return upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[
1], pad[0], pad[1])
def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5):
return F.leaky_relu(input + bias, negative_slope) * scale
class Blur(nn.Module):
def __init__(self, kernel, pad, upsample_factor=1):
super().__init__()
kernel = make_kernel(kernel)
if upsample_factor > 1:
kernel = kernel * upsample_factor ** 2
self.register_buffer('kernel', kernel)
self.pad = pad
def forward(self, input):
out = upfirdn2d(input, self.kernel, pad=self.pad)
return out
class EqualLinear(nn.Module):
def __init__(self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1,
activation=None):
super().__init__()
self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul))
if bias:
self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init))
else:
self.bias = None
self.activation = activation
self.scale = math.sqrt(1) / math.sqrt(in_dim) * lr_mul
self.lr_mul = lr_mul
def forward(self, input):
if self.activation:
out = F.linear(input, self.weight * self.scale)
out = fused_leaky_relu(out, self.bias * self.lr_mul)
else:
out = F.linear(input, self.weight * self.scale, bias=self.bias *
self.lr_mul)
return out
def __repr__(self):
return (
f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})'
)
class ModulatedConv2dNew(nn.Module):
def __init__(self, in_channel, out_channel, kernel_size, style_dim,
demodulate=True, upsample=False, downsample=False, blur_kernel=[1,
3, 3, 1]):
super().__init__()
self.eps = 1e-08
self.kernel_size = kernel_size
self.in_channel = in_channel
self.out_channel = out_channel
self.upsample = upsample
self.downsample = downsample
if upsample:
factor = 2
p = len(blur_kernel) - factor - (kernel_size - 1)
pad0 = (p + 1) // 2 + factor - 1
pad1 = p // 2 + 1
self.blur = Blur(blur_kernel, pad=(pad0, pad1), upsample_factor
=factor)
if downsample:
factor = 2
p = len(blur_kernel) - factor + (kernel_size - 1)
pad0 = (p + 1) // 2
pad1 = p // 2
self.blur = Blur(blur_kernel, pad=(pad0, pad1))
fan_in = in_channel * kernel_size ** 2
self.scale = math.sqrt(1) / math.sqrt(fan_in)
self.padding = kernel_size // 2
self.weight = nn.Parameter(torch.randn(1, out_channel, in_channel,
kernel_size, kernel_size))
if style_dim is not None and style_dim > 0:
self.modulation = EqualLinear(style_dim, in_channel, bias_init=1)
self.demodulate = demodulate
def __repr__(self):
return (
f'{self.__class__.__name__}({self.in_channel}, {self.out_channel}, {self.kernel_size}, upsample={self.upsample}, downsample={self.downsample})'
)
def forward(self, input_0, input_1):
primals_5 = self.weight
primals_2 = self.modulation.weight
primals_4 = self.modulation.bias
primals_1 = input_0
primals_3 = input_1
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
a11isonliu/contrastive-unpaired-translation
|
ModulatedConv2d
| false | 9,861 |
[
"BSD-3-Clause"
] | 0 |
67651ed9877cae121d9398f46094ce8dbc678802
|
https://github.com/a11isonliu/contrastive-unpaired-translation/tree/67651ed9877cae121d9398f46094ce8dbc678802
|
PatchMerging3D
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/2j/c2jskczly24ilkcdwwjvkvq74mjuqo2ltaw546orkjkjvbgvgeei.py
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.cat, aten.native_layer_norm]
# Source node to ATen node mapping:
# x => cat
# x_1 => add, add_1, mul, mul_1, rsqrt, sub, var_mean
# Graph fragment:
# %cat : [num_users=3] = call_function[target=torch.ops.aten.cat.default](args = ([%slice_4, %slice_9, %slice_14, %slice_19], -1), kwargs = {})
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%cat, [4]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%cat, %getitem_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_2), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_3), kwargs = {})
triton_per_fused_cat_native_layer_norm_0 = async_compile.triton('triton_per_fused_cat_native_layer_norm_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[64, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_cat_native_layer_norm_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_cat_native_layer_norm_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 64
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x0 = xindex % 2
x1 = (xindex // 2)
x3 = xindex
tmp46 = tl.load(in_ptr1 + (r2), None, eviction_policy='evict_last')
tmp48 = tl.load(in_ptr2 + (r2), None, eviction_policy='evict_last')
tmp0 = r2
tmp1 = tl.full([1, 1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1, 1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((8*x0) + (32*x1) + r2), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1, 1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr0 + (16 + (8*x0) + (32*x1) + ((-4) + r2)), tmp9 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1, 1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr0 + (4 + (8*x0) + (32*x1) + ((-8) + r2)), tmp14 & xmask, eviction_policy='evict_last', other=0.0)
tmp16 = tmp0 >= tmp12
tmp17 = tl.full([1, 1], 16, tl.int64)
tmp18 = tmp0 < tmp17
tmp19 = tl.load(in_ptr0 + (20 + (8*x0) + (32*x1) + ((-12) + r2)), tmp16 & xmask, eviction_policy='evict_last', other=0.0)
tmp20 = tl.where(tmp14, tmp15, tmp19)
tmp21 = tl.where(tmp9, tmp10, tmp20)
tmp22 = tl.where(tmp4, tmp5, tmp21)
tmp23 = tl.broadcast_to(tmp22, [XBLOCK, RBLOCK])
tmp25 = tl.where(xmask, tmp23, 0)
tmp26 = tl.broadcast_to(tmp23, [XBLOCK, RBLOCK])
tmp28 = tl.where(xmask, tmp26, 0)
tmp29 = tl.sum(tmp28, 1)[:, None]
tmp30 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp31 = tmp30.to(tl.float32)
tmp32 = tmp29 / tmp31
tmp33 = tmp23 - tmp32
tmp34 = tmp33 * tmp33
tmp35 = tl.broadcast_to(tmp34, [XBLOCK, RBLOCK])
tmp37 = tl.where(xmask, tmp35, 0)
tmp38 = tl.sum(tmp37, 1)[:, None]
tmp39 = 16.0
tmp40 = tmp38 / tmp39
tmp41 = 1e-05
tmp42 = tmp40 + tmp41
tmp43 = libdevice.rsqrt(tmp42)
tmp44 = tmp22 - tmp32
tmp45 = tmp44 * tmp43
tmp47 = tmp45 * tmp46
tmp49 = tmp47 + tmp48
tl.store(out_ptr0 + (r2 + (16*x3)), tmp22, xmask)
tl.debug_barrier()
tl.store(in_out_ptr0 + (x3), tmp43, xmask)
tl.store(out_ptr2 + (r2 + (16*x3)), tmp49, xmask)
tl.store(out_ptr1 + (x3), tmp32, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1))
assert_size_stride(primals_2, (16, ), (1, ))
assert_size_stride(primals_3, (16, ), (1, ))
assert_size_stride(primals_4, (8, 16), (16, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 2, 2, 16), (256, 64, 32, 16, 1), torch.float32)
buf1 = empty_strided_cuda((4, 4, 2, 2, 1), (16, 4, 2, 1, 1), torch.float32)
buf2 = empty_strided_cuda((4, 4, 2, 2, 1), (16, 4, 2, 1, 64), torch.float32)
buf4 = reinterpret_tensor(buf2, (4, 4, 2, 2, 1), (16, 4, 2, 1, 1), 0); del buf2 # reuse
buf5 = empty_strided_cuda((4, 4, 2, 2, 16), (256, 64, 32, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.cat, aten.native_layer_norm]
stream0 = get_raw_stream(0)
triton_per_fused_cat_native_layer_norm_0.run(buf4, primals_1, primals_2, primals_3, buf0, buf1, buf5, 64, 16, grid=grid(64), stream=stream0)
del primals_1
del primals_2
del primals_3
buf6 = empty_strided_cuda((64, 8), (8, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf5, (64, 16), (16, 1), 0), reinterpret_tensor(primals_4, (16, 8), (1, 16), 0), out=buf6)
return (reinterpret_tensor(buf6, (4, 4, 2, 2, 8), (128, 32, 16, 8, 1), 0), buf0, buf1, buf4, reinterpret_tensor(buf5, (64, 16), (16, 1), 0), primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((8, 16), (16, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.utils.data
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.parallel
class PatchMerging3D(nn.Module):
""" Patch Merging Layer
Args:
dim (int): Number of input channels.
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
"""
def __init__(self, dim, norm_layer=nn.LayerNorm, isotropy=False):
super().__init__()
self.dim = dim
self.isotropy = isotropy
if self.isotropy:
self.reduction = nn.Linear(8 * dim, 2 * dim, bias=False)
self.norm = norm_layer(8 * dim)
else:
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
self.norm = norm_layer(4 * dim)
def forward(self, x):
""" Forward function.
Args:
x: Input feature, tensor size (B, D, H, W, C).
"""
_B, _D, H, W, _C = x.shape
pad_input = H % 2 == 1 or W % 2 == 1
if pad_input:
x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))
if self.isotropy:
x0 = x[:, 0::2, 0::2, 0::2, :]
x1 = x[:, 0::2, 1::2, 0::2, :]
x2 = x[:, 0::2, 0::2, 1::2, :]
x3 = x[:, 0::2, 1::2, 1::2, :]
x4 = x[:, 1::2, 0::2, 0::2, :]
x5 = x[:, 1::2, 1::2, 0::2, :]
x6 = x[:, 1::2, 0::2, 1::2, :]
x7 = x[:, 1::2, 1::2, 1::2, :]
x = torch.cat([x0, x1, x2, x3, x4, x5, x6, x7], -1)
else:
x0 = x[:, :, 0::2, 0::2, :]
x1 = x[:, :, 1::2, 0::2, :]
x2 = x[:, :, 0::2, 1::2, :]
x3 = x[:, :, 1::2, 1::2, :]
x = torch.cat([x0, x1, x2, x3], -1)
x = self.norm(x)
x = self.reduction(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4, 4])]
def get_init_inputs():
return [[], {'dim': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.utils.data
import torch.nn as nn
import torch.nn.parallel
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_cat_native_layer_norm_0(in_out_ptr0, in_ptr0, in_ptr1,
in_ptr2, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr
):
xnumel = 64
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x0 = xindex % 2
x1 = xindex // 2
x3 = xindex
tmp46 = tl.load(in_ptr1 + r2, None, eviction_policy='evict_last')
tmp48 = tl.load(in_ptr2 + r2, None, eviction_policy='evict_last')
tmp0 = r2
tl.full([1, 1], 0, tl.int64)
tmp3 = tl.full([1, 1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (8 * x0 + 32 * x1 + r2), tmp4 & xmask,
eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1, 1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr0 + (16 + 8 * x0 + 32 * x1 + (-4 + r2)), tmp9 &
xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1, 1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr0 + (4 + 8 * x0 + 32 * x1 + (-8 + r2)), tmp14 &
xmask, eviction_policy='evict_last', other=0.0)
tmp16 = tmp0 >= tmp12
tl.full([1, 1], 16, tl.int64)
tmp19 = tl.load(in_ptr0 + (20 + 8 * x0 + 32 * x1 + (-12 + r2)), tmp16 &
xmask, eviction_policy='evict_last', other=0.0)
tmp20 = tl.where(tmp14, tmp15, tmp19)
tmp21 = tl.where(tmp9, tmp10, tmp20)
tmp22 = tl.where(tmp4, tmp5, tmp21)
tmp23 = tl.broadcast_to(tmp22, [XBLOCK, RBLOCK])
tl.where(xmask, tmp23, 0)
tmp26 = tl.broadcast_to(tmp23, [XBLOCK, RBLOCK])
tmp28 = tl.where(xmask, tmp26, 0)
tmp29 = tl.sum(tmp28, 1)[:, None]
tmp30 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp31 = tmp30.to(tl.float32)
tmp32 = tmp29 / tmp31
tmp33 = tmp23 - tmp32
tmp34 = tmp33 * tmp33
tmp35 = tl.broadcast_to(tmp34, [XBLOCK, RBLOCK])
tmp37 = tl.where(xmask, tmp35, 0)
tmp38 = tl.sum(tmp37, 1)[:, None]
tmp39 = 16.0
tmp40 = tmp38 / tmp39
tmp41 = 1e-05
tmp42 = tmp40 + tmp41
tmp43 = libdevice.rsqrt(tmp42)
tmp44 = tmp22 - tmp32
tmp45 = tmp44 * tmp43
tmp47 = tmp45 * tmp46
tmp49 = tmp47 + tmp48
tl.store(out_ptr0 + (r2 + 16 * x3), tmp22, xmask)
tl.debug_barrier()
tl.store(in_out_ptr0 + x3, tmp43, xmask)
tl.store(out_ptr2 + (r2 + 16 * x3), tmp49, xmask)
tl.store(out_ptr1 + x3, tmp32, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1))
assert_size_stride(primals_2, (16,), (1,))
assert_size_stride(primals_3, (16,), (1,))
assert_size_stride(primals_4, (8, 16), (16, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 2, 2, 16), (256, 64, 32, 16, 1),
torch.float32)
buf1 = empty_strided_cuda((4, 4, 2, 2, 1), (16, 4, 2, 1, 1), torch.
float32)
buf2 = empty_strided_cuda((4, 4, 2, 2, 1), (16, 4, 2, 1, 64), torch
.float32)
buf4 = reinterpret_tensor(buf2, (4, 4, 2, 2, 1), (16, 4, 2, 1, 1), 0)
del buf2
buf5 = empty_strided_cuda((4, 4, 2, 2, 16), (256, 64, 32, 16, 1),
torch.float32)
get_raw_stream(0)
triton_per_fused_cat_native_layer_norm_0[grid(64)](buf4, primals_1,
primals_2, primals_3, buf0, buf1, buf5, 64, 16, XBLOCK=1,
num_warps=2, num_stages=1)
del primals_1
del primals_2
del primals_3
buf6 = empty_strided_cuda((64, 8), (8, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf5, (64, 16), (16, 1), 0),
reinterpret_tensor(primals_4, (16, 8), (1, 16), 0), out=buf6)
return reinterpret_tensor(buf6, (4, 4, 2, 2, 8), (128, 32, 16, 8, 1), 0
), buf0, buf1, buf4, reinterpret_tensor(buf5, (64, 16), (16, 1), 0
), primals_4
class PatchMerging3DNew(nn.Module):
""" Patch Merging Layer
Args:
dim (int): Number of input channels.
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
"""
def __init__(self, dim, norm_layer=nn.LayerNorm, isotropy=False):
super().__init__()
self.dim = dim
self.isotropy = isotropy
if self.isotropy:
self.reduction = nn.Linear(8 * dim, 2 * dim, bias=False)
self.norm = norm_layer(8 * dim)
else:
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
self.norm = norm_layer(4 * dim)
def forward(self, input_0):
primals_4 = self.reduction.weight
primals_2 = self.norm.weight
primals_3 = self.norm.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
|
HarshSulakhe/pytorch_connectomics
|
PatchMerging3D
| false | 9,862 |
[
"MIT"
] | 0 |
73402e654afde69a43a5836cc90a32ef75c75dc2
|
https://github.com/HarshSulakhe/pytorch_connectomics/tree/73402e654afde69a43a5836cc90a32ef75c75dc2
|
WeightedBCEWithLogitsLoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/bg/cbglmyuo44dcmjmu4ptcnr2cdnf4xko5oxdceffmpjxq5uxkftpe.py
# Topologically Sorted Source Nodes: [clamp, binary_cross_entropy_with_logits], Original ATen: [aten.clamp, aten.binary_cross_entropy_with_logits]
# Source node to ATen node mapping:
# binary_cross_entropy_with_logits => abs_1, exp, full_default, log1p, mean, minimum, mul, neg, sub, sub_1, sub_2
# clamp => clamp_max, clamp_min
# Graph fragment:
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%arg0_1, 0.0), kwargs = {})
# %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 1.0), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %clamp_max), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %arg1_1), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %minimum : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%full_default, %arg1_1), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%arg1_1,), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%abs_1,), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg,), kwargs = {})
# %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum, %log1p), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %sub_1), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub_2,), kwargs = {})
triton_per_fused_binary_cross_entropy_with_logits_clamp_0 = async_compile.triton('triton_per_fused_binary_cross_entropy_with_logits_clamp_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_binary_cross_entropy_with_logits_clamp_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_binary_cross_entropy_with_logits_clamp_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp6 = tl.load(in_ptr1 + (r0), None)
tmp1 = 0.0
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp3 = 1.0
tmp4 = triton_helpers.minimum(tmp2, tmp3)
tmp5 = tmp3 - tmp4
tmp7 = tmp5 * tmp6
tmp8 = triton_helpers.minimum(tmp1, tmp6)
tmp9 = tl_math.abs(tmp6)
tmp10 = -tmp9
tmp11 = tl_math.exp(tmp10)
tmp12 = libdevice.log1p(tmp11)
tmp13 = tmp8 - tmp12
tmp14 = tmp7 - tmp13
tmp15 = tl.broadcast_to(tmp14, [RBLOCK])
tmp17 = triton_helpers.promote_to_tensor(tl.sum(tmp15, 0))
tmp18 = 256.0
tmp19 = tmp17 / tmp18
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp19, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [clamp, binary_cross_entropy_with_logits], Original ATen: [aten.clamp, aten.binary_cross_entropy_with_logits]
stream0 = get_raw_stream(0)
triton_per_fused_binary_cross_entropy_with_logits_clamp_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.utils.data
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.parallel
class WeightedBCEWithLogitsLoss(nn.Module):
"""Weighted binary cross-entropy with logits.
"""
def __init__(self, size_average=True, reduce=True, eps=0.0):
super().__init__()
self.size_average = size_average
self.reduce = reduce
self.eps = eps
def forward(self, pred, target, weight_mask=None):
return F.binary_cross_entropy_with_logits(pred, target.clamp(self.
eps, 1 - self.eps), weight_mask)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.utils.data
import torch.nn as nn
import torch.nn.parallel
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_binary_cross_entropy_with_logits_clamp_0(in_out_ptr0,
in_ptr0, in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp6 = tl.load(in_ptr1 + r0, None)
tmp1 = 0.0
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp3 = 1.0
tmp4 = triton_helpers.minimum(tmp2, tmp3)
tmp5 = tmp3 - tmp4
tmp7 = tmp5 * tmp6
tmp8 = triton_helpers.minimum(tmp1, tmp6)
tmp9 = tl_math.abs(tmp6)
tmp10 = -tmp9
tmp11 = tl_math.exp(tmp10)
tmp12 = libdevice.log1p(tmp11)
tmp13 = tmp8 - tmp12
tmp14 = tmp7 - tmp13
tmp15 = tl.broadcast_to(tmp14, [RBLOCK])
tmp17 = triton_helpers.promote_to_tensor(tl.sum(tmp15, 0))
tmp18 = 256.0
tmp19 = tmp17 / tmp18
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp19, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_binary_cross_entropy_with_logits_clamp_0[grid(1)](buf1
, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf1,
class WeightedBCEWithLogitsLossNew(nn.Module):
"""Weighted binary cross-entropy with logits.
"""
def __init__(self, size_average=True, reduce=True, eps=0.0):
super().__init__()
self.size_average = size_average
self.reduce = reduce
self.eps = eps
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
HarshSulakhe/pytorch_connectomics
|
WeightedBCEWithLogitsLoss
| false | 9,863 |
[
"MIT"
] | 0 |
73402e654afde69a43a5836cc90a32ef75c75dc2
|
https://github.com/HarshSulakhe/pytorch_connectomics/tree/73402e654afde69a43a5836cc90a32ef75c75dc2
|
DiceLoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/6w/c6w5co4dtm742onnu6cfhocrraus7gvrlx7vlhimud6tk4fkpuai.py
# Topologically Sorted Source Nodes: [mul, intersection, mul_1, add, sum_2, sum_3, add_1, add_2, truediv, sub, loss, mul_2, intersection_1, mul_3, add_4, sum_5, sum_6, add_5, add_6, truediv_1, sub_1, loss_1, mul_4, intersection_2, mul_5, add_7, sum_8, sum_9, add_8, add_9, truediv_2, sub_2, loss_2, mul_6, intersection_3, mul_7, add_10, sum_11, sum_12, add_11, add_12, truediv_3, sub_3, loss_3, loss_4], Original ATen: [aten.mul, aten.sum, aten.add, aten.div, aten.rsub]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# add_10 => add_12
# add_11 => add_13
# add_12 => add_14
# add_2 => add_2
# add_4 => add_4
# add_5 => add_5
# add_6 => add_6
# add_7 => add_8
# add_8 => add_9
# add_9 => add_10
# intersection => sum_1
# intersection_1 => sum_4
# intersection_2 => sum_7
# intersection_3 => sum_10
# loss => add_3
# loss_1 => add_7
# loss_2 => add_11
# loss_3 => add_15
# loss_4 => div_4
# mul => mul
# mul_1 => mul_1
# mul_2 => mul_2
# mul_3 => mul_3
# mul_4 => mul_4
# mul_5 => mul_5
# mul_6 => mul_6
# mul_7 => mul_7
# sub => sub
# sub_1 => sub_1
# sub_2 => sub_2
# sub_3 => sub_3
# sum_11 => sum_11
# sum_12 => sum_12
# sum_2 => sum_2
# sum_3 => sum_3
# sum_5 => sum_5
# sum_6 => sum_6
# sum_8 => sum_8
# sum_9 => sum_9
# truediv => div
# truediv_1 => div_1
# truediv_2 => div_2
# truediv_3 => div_3
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %view_1), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, 2.0), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, 100.0), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%view,), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%view_1,), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_2, %sum_3), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, 100.0), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add, %add_2), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %div), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub, 0.0), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_2, %view_3), kwargs = {})
# %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_2,), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_4, 2.0), kwargs = {})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_3, 100.0), kwargs = {})
# %sum_5 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%view_2,), kwargs = {})
# %sum_6 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%view_3,), kwargs = {})
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_5, %sum_6), kwargs = {})
# %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_5, 100.0), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_4, %add_6), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %div_1), kwargs = {})
# %add_7 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_3, %sub_1), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_4, %view_5), kwargs = {})
# %sum_7 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_4,), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_7, 2.0), kwargs = {})
# %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_5, 100.0), kwargs = {})
# %sum_8 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%view_4,), kwargs = {})
# %sum_9 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%view_5,), kwargs = {})
# %add_9 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_8, %sum_9), kwargs = {})
# %add_10 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_9, 100.0), kwargs = {})
# %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_8, %add_10), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %div_2), kwargs = {})
# %add_11 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_7, %sub_2), kwargs = {})
# %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_6, %view_7), kwargs = {})
# %sum_10 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_6,), kwargs = {})
# %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_10, 2.0), kwargs = {})
# %add_12 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_7, 100.0), kwargs = {})
# %sum_11 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%view_6,), kwargs = {})
# %sum_12 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%view_7,), kwargs = {})
# %add_13 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_11, %sum_12), kwargs = {})
# %add_14 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_13, 100.0), kwargs = {})
# %div_3 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_12, %add_14), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %div_3), kwargs = {})
# %add_15 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_11, %sub_3), kwargs = {})
# %div_4 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_15, 4.0), kwargs = {})
triton_per_fused_add_div_mul_rsub_sum_0 = async_compile.triton('triton_per_fused_add_div_mul_rsub_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mul_rsub_sum_0', 'mutated_arg_names': ['in_out_ptr1'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 12, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_mul_rsub_sum_0(in_out_ptr1, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr1 + (r0), None)
tmp12 = tl.load(in_ptr0 + (64 + r0), None)
tmp13 = tl.load(in_ptr1 + (64 + r0), None)
tmp24 = tl.load(in_ptr0 + (192 + r0), None)
tmp25 = tl.load(in_ptr1 + (192 + r0), None)
tmp36 = tl.load(in_ptr0 + (128 + r0), None)
tmp37 = tl.load(in_ptr1 + (128 + r0), None)
tmp2 = tmp0 * tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.sum(tmp3, 1)[:, None]
tmp6 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp8 = tl.sum(tmp6, 1)[:, None]
tmp9 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp11 = tl.sum(tmp9, 1)[:, None]
tmp14 = tmp12 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.sum(tmp15, 1)[:, None]
tmp18 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp20 = tl.sum(tmp18, 1)[:, None]
tmp21 = tl.broadcast_to(tmp13, [XBLOCK, RBLOCK])
tmp23 = tl.sum(tmp21, 1)[:, None]
tmp26 = tmp24 * tmp25
tmp27 = tl.broadcast_to(tmp26, [XBLOCK, RBLOCK])
tmp29 = tl.sum(tmp27, 1)[:, None]
tmp30 = tl.broadcast_to(tmp24, [XBLOCK, RBLOCK])
tmp32 = tl.sum(tmp30, 1)[:, None]
tmp33 = tl.broadcast_to(tmp25, [XBLOCK, RBLOCK])
tmp35 = tl.sum(tmp33, 1)[:, None]
tmp38 = tmp36 * tmp37
tmp39 = tl.broadcast_to(tmp38, [XBLOCK, RBLOCK])
tmp41 = tl.sum(tmp39, 1)[:, None]
tmp42 = tl.broadcast_to(tmp36, [XBLOCK, RBLOCK])
tmp44 = tl.sum(tmp42, 1)[:, None]
tmp45 = tl.broadcast_to(tmp37, [XBLOCK, RBLOCK])
tmp47 = tl.sum(tmp45, 1)[:, None]
tmp48 = 2.0
tmp49 = tmp5 * tmp48
tmp50 = 100.0
tmp51 = tmp49 + tmp50
tmp52 = tmp8 + tmp11
tmp53 = tmp52 + tmp50
tmp54 = tmp51 / tmp53
tmp55 = 1.0
tmp56 = tmp55 - tmp54
tmp57 = 0.0
tmp58 = tmp56 + tmp57
tmp59 = tmp17 * tmp48
tmp60 = tmp59 + tmp50
tmp61 = tmp20 + tmp23
tmp62 = tmp61 + tmp50
tmp63 = tmp60 / tmp62
tmp64 = tmp55 - tmp63
tmp65 = tmp58 + tmp64
tmp66 = tmp41 * tmp48
tmp67 = tmp66 + tmp50
tmp68 = tmp44 + tmp47
tmp69 = tmp68 + tmp50
tmp70 = tmp67 / tmp69
tmp71 = tmp55 - tmp70
tmp72 = tmp65 + tmp71
tmp73 = tmp29 * tmp48
tmp74 = tmp73 + tmp50
tmp75 = tmp32 + tmp35
tmp76 = tmp75 + tmp50
tmp77 = tmp74 / tmp76
tmp78 = tmp55 - tmp77
tmp79 = tmp72 + tmp78
tmp80 = 0.25
tmp81 = tmp79 * tmp80
tl.debug_barrier()
tl.store(in_out_ptr1 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp81, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf10 = empty_strided_cuda((), (), torch.float32)
buf13 = buf10; del buf10 # reuse
# Topologically Sorted Source Nodes: [mul, intersection, mul_1, add, sum_2, sum_3, add_1, add_2, truediv, sub, loss, mul_2, intersection_1, mul_3, add_4, sum_5, sum_6, add_5, add_6, truediv_1, sub_1, loss_1, mul_4, intersection_2, mul_5, add_7, sum_8, sum_9, add_8, add_9, truediv_2, sub_2, loss_2, mul_6, intersection_3, mul_7, add_10, sum_11, sum_12, add_11, add_12, truediv_3, sub_3, loss_3, loss_4], Original ATen: [aten.mul, aten.sum, aten.add, aten.div, aten.rsub]
stream0 = get_raw_stream(0)
triton_per_fused_add_div_mul_rsub_sum_0.run(buf13, arg1_1, arg0_1, 1, 64, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf13, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.utils.data
import torch.nn as nn
import torch.nn.parallel
class DiceLoss(nn.Module):
"""DICE loss.
"""
def __init__(self, reduce=True, smooth=100.0, power=1):
super(DiceLoss, self).__init__()
self.smooth = smooth
self.reduce = reduce
self.power = power
def dice_loss(self, pred, target):
loss = 0.0
for index in range(pred.size()[0]):
iflat = pred[index].contiguous().view(-1)
tflat = target[index].contiguous().view(-1)
intersection = (iflat * tflat).sum()
if self.power == 1:
loss += 1 - (2.0 * intersection + self.smooth) / (iflat.sum
() + tflat.sum() + self.smooth)
else:
loss += 1 - (2.0 * intersection + self.smooth) / ((iflat **
self.power).sum() + (tflat ** self.power).sum() + self.
smooth)
return loss / float(pred.size()[0])
def dice_loss_batch(self, pred, target):
iflat = pred.view(-1)
tflat = target.view(-1)
intersection = (iflat * tflat).sum()
if self.power == 1:
loss = 1 - (2.0 * intersection + self.smooth) / (iflat.sum() +
tflat.sum() + self.smooth)
else:
loss = 1 - (2.0 * intersection + self.smooth) / ((iflat ** self
.power).sum() + (tflat ** self.power).sum() + self.smooth)
return loss
def forward(self, pred, target, weight_mask=None):
if not target.size() == pred.size():
raise ValueError(
'Target size ({}) must be the same as pred size ({})'.
format(target.size(), pred.size()))
if self.reduce:
loss = self.dice_loss(pred, target)
else:
loss = self.dice_loss_batch(pred, target)
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.utils.data
import torch.nn as nn
import torch.nn.parallel
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_div_mul_rsub_sum_0(in_out_ptr1, in_ptr0, in_ptr1,
xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp12 = tl.load(in_ptr0 + (64 + r0), None)
tmp13 = tl.load(in_ptr1 + (64 + r0), None)
tmp24 = tl.load(in_ptr0 + (192 + r0), None)
tmp25 = tl.load(in_ptr1 + (192 + r0), None)
tmp36 = tl.load(in_ptr0 + (128 + r0), None)
tmp37 = tl.load(in_ptr1 + (128 + r0), None)
tmp2 = tmp0 * tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.sum(tmp3, 1)[:, None]
tmp6 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp8 = tl.sum(tmp6, 1)[:, None]
tmp9 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp11 = tl.sum(tmp9, 1)[:, None]
tmp14 = tmp12 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.sum(tmp15, 1)[:, None]
tmp18 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp20 = tl.sum(tmp18, 1)[:, None]
tmp21 = tl.broadcast_to(tmp13, [XBLOCK, RBLOCK])
tmp23 = tl.sum(tmp21, 1)[:, None]
tmp26 = tmp24 * tmp25
tmp27 = tl.broadcast_to(tmp26, [XBLOCK, RBLOCK])
tmp29 = tl.sum(tmp27, 1)[:, None]
tmp30 = tl.broadcast_to(tmp24, [XBLOCK, RBLOCK])
tmp32 = tl.sum(tmp30, 1)[:, None]
tmp33 = tl.broadcast_to(tmp25, [XBLOCK, RBLOCK])
tmp35 = tl.sum(tmp33, 1)[:, None]
tmp38 = tmp36 * tmp37
tmp39 = tl.broadcast_to(tmp38, [XBLOCK, RBLOCK])
tmp41 = tl.sum(tmp39, 1)[:, None]
tmp42 = tl.broadcast_to(tmp36, [XBLOCK, RBLOCK])
tmp44 = tl.sum(tmp42, 1)[:, None]
tmp45 = tl.broadcast_to(tmp37, [XBLOCK, RBLOCK])
tmp47 = tl.sum(tmp45, 1)[:, None]
tmp48 = 2.0
tmp49 = tmp5 * tmp48
tmp50 = 100.0
tmp51 = tmp49 + tmp50
tmp52 = tmp8 + tmp11
tmp53 = tmp52 + tmp50
tmp54 = tmp51 / tmp53
tmp55 = 1.0
tmp56 = tmp55 - tmp54
tmp57 = 0.0
tmp58 = tmp56 + tmp57
tmp59 = tmp17 * tmp48
tmp60 = tmp59 + tmp50
tmp61 = tmp20 + tmp23
tmp62 = tmp61 + tmp50
tmp63 = tmp60 / tmp62
tmp64 = tmp55 - tmp63
tmp65 = tmp58 + tmp64
tmp66 = tmp41 * tmp48
tmp67 = tmp66 + tmp50
tmp68 = tmp44 + tmp47
tmp69 = tmp68 + tmp50
tmp70 = tmp67 / tmp69
tmp71 = tmp55 - tmp70
tmp72 = tmp65 + tmp71
tmp73 = tmp29 * tmp48
tmp74 = tmp73 + tmp50
tmp75 = tmp32 + tmp35
tmp76 = tmp75 + tmp50
tmp77 = tmp74 / tmp76
tmp78 = tmp55 - tmp77
tmp79 = tmp72 + tmp78
tmp80 = 0.25
tmp81 = tmp79 * tmp80
tl.debug_barrier()
tl.store(in_out_ptr1 + tl.full([XBLOCK, 1], 0, tl.int32), tmp81, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf10 = empty_strided_cuda((), (), torch.float32)
buf13 = buf10
del buf10
get_raw_stream(0)
triton_per_fused_add_div_mul_rsub_sum_0[grid(1)](buf13, arg1_1,
arg0_1, 1, 64, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf13,
class DiceLossNew(nn.Module):
"""DICE loss.
"""
def __init__(self, reduce=True, smooth=100.0, power=1):
super(DiceLossNew, self).__init__()
self.smooth = smooth
self.reduce = reduce
self.power = power
def dice_loss(self, pred, target):
loss = 0.0
for index in range(pred.size()[0]):
iflat = pred[index].contiguous().view(-1)
tflat = target[index].contiguous().view(-1)
intersection = (iflat * tflat).sum()
if self.power == 1:
loss += 1 - (2.0 * intersection + self.smooth) / (iflat.sum
() + tflat.sum() + self.smooth)
else:
loss += 1 - (2.0 * intersection + self.smooth) / ((iflat **
self.power).sum() + (tflat ** self.power).sum() + self.
smooth)
return loss / float(pred.size()[0])
def dice_loss_batch(self, pred, target):
iflat = pred.view(-1)
tflat = target.view(-1)
intersection = (iflat * tflat).sum()
if self.power == 1:
loss = 1 - (2.0 * intersection + self.smooth) / (iflat.sum() +
tflat.sum() + self.smooth)
else:
loss = 1 - (2.0 * intersection + self.smooth) / ((iflat ** self
.power).sum() + (tflat ** self.power).sum() + self.smooth)
return loss
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
HarshSulakhe/pytorch_connectomics
|
DiceLoss
| false | 9,864 |
[
"MIT"
] | 0 |
73402e654afde69a43a5836cc90a32ef75c75dc2
|
https://github.com/HarshSulakhe/pytorch_connectomics/tree/73402e654afde69a43a5836cc90a32ef75c75dc2
|
AdaptiveConcatPool2d
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/k4/ck4n5tdf6davbcws4dl4srbcvwr32b7mii5iws2ikdlxcnct5azp.py
# Topologically Sorted Source Nodes: [adaptive_max_pool2d], Original ATen: [aten.adaptive_max_pool2d]
# Source node to ATen node mapping:
# adaptive_max_pool2d => adaptive_max_pool2d
# Graph fragment:
# %adaptive_max_pool2d : [num_users=1] = call_function[target=torch.ops.aten.adaptive_max_pool2d.default](args = (%arg0_1, [1, 1]), kwargs = {})
triton_poi_fused_adaptive_max_pool2d_0 = async_compile.triton('triton_poi_fused_adaptive_max_pool2d_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_adaptive_max_pool2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_adaptive_max_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (16*x2), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (16*x2)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (16*x2)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (16*x2)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (4 + (16*x2)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (5 + (16*x2)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (6 + (16*x2)), xmask, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr0 + (7 + (16*x2)), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr0 + (8 + (16*x2)), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr0 + (9 + (16*x2)), xmask, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr0 + (10 + (16*x2)), xmask, eviction_policy='evict_last')
tmp21 = tl.load(in_ptr0 + (11 + (16*x2)), xmask, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr0 + (12 + (16*x2)), xmask, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr0 + (13 + (16*x2)), xmask, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr0 + (14 + (16*x2)), xmask, eviction_policy='evict_last')
tmp29 = tl.load(in_ptr0 + (15 + (16*x2)), xmask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp8 = triton_helpers.maximum(tmp7, tmp6)
tmp10 = triton_helpers.maximum(tmp9, tmp8)
tmp12 = triton_helpers.maximum(tmp11, tmp10)
tmp14 = triton_helpers.maximum(tmp13, tmp12)
tmp16 = triton_helpers.maximum(tmp15, tmp14)
tmp18 = triton_helpers.maximum(tmp17, tmp16)
tmp20 = triton_helpers.maximum(tmp19, tmp18)
tmp22 = triton_helpers.maximum(tmp21, tmp20)
tmp24 = triton_helpers.maximum(tmp23, tmp22)
tmp26 = triton_helpers.maximum(tmp25, tmp24)
tmp28 = triton_helpers.maximum(tmp27, tmp26)
tmp30 = triton_helpers.maximum(tmp29, tmp28)
tl.store(out_ptr0 + (x0 + (8*x1)), tmp30, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/bq/cbq374nmg2wjieph77t53feytfu37kp7eyuymtfg6in2myzkzehm.py
# Topologically Sorted Source Nodes: [adaptive_avg_pool2d], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# adaptive_avg_pool2d => mean
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%arg0_1, [-1, -2], True), kwargs = {})
triton_per_fused_mean_1 = async_compile.triton('triton_per_fused_mean_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_1(in_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
x2 = xindex % 4
x3 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 16.0
tmp6 = tmp4 / tmp5
tl.store(out_ptr1 + (x2 + (8*x3)), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf3 = empty_strided_cuda((4, 8, 1, 1), (8, 1, 1, 1), torch.float32)
buf0 = reinterpret_tensor(buf3, (4, 4, 1, 1), (8, 1, 1, 1), 0) # alias
# Topologically Sorted Source Nodes: [adaptive_max_pool2d], Original ATen: [aten.adaptive_max_pool2d]
stream0 = get_raw_stream(0)
triton_poi_fused_adaptive_max_pool2d_0.run(arg0_1, buf0, 16, grid=grid(16), stream=stream0)
buf2 = reinterpret_tensor(buf3, (4, 4, 1, 1), (8, 1, 1, 1), 4) # alias
# Topologically Sorted Source Nodes: [adaptive_avg_pool2d], Original ATen: [aten.mean]
triton_per_fused_mean_1.run(arg0_1, buf2, 16, 16, grid=grid(16), stream=stream0)
del arg0_1
return (buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.nn.init
class AdaptiveConcatPool2d(nn.Module):
def __init__(self, sz=None):
super().__init__()
sz = sz or (1, 1)
self.ap = nn.AdaptiveAvgPool2d(sz)
self.mp = nn.AdaptiveMaxPool2d(sz)
def forward(self, x):
return torch.cat([self.mp(x), self.ap(x)], 1)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.nn.init
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_adaptive_max_pool2d_0(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + 16 * x2, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 16 * x2), xmask, eviction_policy='evict_last'
)
tmp3 = tl.load(in_ptr0 + (2 + 16 * x2), xmask, eviction_policy='evict_last'
)
tmp5 = tl.load(in_ptr0 + (3 + 16 * x2), xmask, eviction_policy='evict_last'
)
tmp7 = tl.load(in_ptr0 + (4 + 16 * x2), xmask, eviction_policy='evict_last'
)
tmp9 = tl.load(in_ptr0 + (5 + 16 * x2), xmask, eviction_policy='evict_last'
)
tmp11 = tl.load(in_ptr0 + (6 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp13 = tl.load(in_ptr0 + (7 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp15 = tl.load(in_ptr0 + (8 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp17 = tl.load(in_ptr0 + (9 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp19 = tl.load(in_ptr0 + (10 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp21 = tl.load(in_ptr0 + (11 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp23 = tl.load(in_ptr0 + (12 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp25 = tl.load(in_ptr0 + (13 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp27 = tl.load(in_ptr0 + (14 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp29 = tl.load(in_ptr0 + (15 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp8 = triton_helpers.maximum(tmp7, tmp6)
tmp10 = triton_helpers.maximum(tmp9, tmp8)
tmp12 = triton_helpers.maximum(tmp11, tmp10)
tmp14 = triton_helpers.maximum(tmp13, tmp12)
tmp16 = triton_helpers.maximum(tmp15, tmp14)
tmp18 = triton_helpers.maximum(tmp17, tmp16)
tmp20 = triton_helpers.maximum(tmp19, tmp18)
tmp22 = triton_helpers.maximum(tmp21, tmp20)
tmp24 = triton_helpers.maximum(tmp23, tmp22)
tmp26 = triton_helpers.maximum(tmp25, tmp24)
tmp28 = triton_helpers.maximum(tmp27, tmp26)
tmp30 = triton_helpers.maximum(tmp29, tmp28)
tl.store(out_ptr0 + (x0 + 8 * x1), tmp30, xmask)
@triton.jit
def triton_per_fused_mean_1(in_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.
constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
x2 = xindex % 4
x3 = xindex // 4
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 16.0
tmp6 = tmp4 / tmp5
tl.store(out_ptr1 + (x2 + 8 * x3), tmp6, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf3 = empty_strided_cuda((4, 8, 1, 1), (8, 1, 1, 1), torch.float32)
buf0 = reinterpret_tensor(buf3, (4, 4, 1, 1), (8, 1, 1, 1), 0)
get_raw_stream(0)
triton_poi_fused_adaptive_max_pool2d_0[grid(16)](arg0_1, buf0, 16,
XBLOCK=16, num_warps=1, num_stages=1)
buf2 = reinterpret_tensor(buf3, (4, 4, 1, 1), (8, 1, 1, 1), 4)
triton_per_fused_mean_1[grid(16)](arg0_1, buf2, 16, 16, XBLOCK=8,
num_warps=2, num_stages=1)
del arg0_1
return buf3,
class AdaptiveConcatPool2dNew(nn.Module):
def __init__(self, sz=None):
super().__init__()
sz = sz or (1, 1)
self.ap = nn.AdaptiveAvgPool2d(sz)
self.mp = nn.AdaptiveMaxPool2d(sz)
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
MichoelSnow/data_science
|
AdaptiveConcatPool2d
| false | 9,865 |
[
"MIT"
] | 0 |
7f6c054624268308ec4126a601c9fa8bc5de157c
|
https://github.com/MichoelSnow/data_science/tree/7f6c054624268308ec4126a601c9fa8bc5de157c
|
AvgPoolPad
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/pr/cprzlfpjjqlj6tudvbc455jxno35xlnta4wgmkbc6uo5zmcxii4s.py
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.constant_pad_nd, aten.avg_pool2d]
# Source node to ATen node mapping:
# x => constant_pad_nd
# x_1 => avg_pool2d
# Graph fragment:
# %constant_pad_nd : [num_users=1] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%arg0_1, [1, 0, 1, 0], 0.0), kwargs = {})
# %avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%constant_pad_nd, [3, 3], [2, 2], [1, 1], False, False), kwargs = {})
triton_poi_fused_avg_pool2d_constant_pad_nd_0 = async_compile.triton('triton_poi_fused_avg_pool2d_constant_pad_nd_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_constant_pad_nd_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_avg_pool2d_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 3) % 3
x0 = xindex % 3
x2 = (xindex // 9)
x4 = xindex
tmp0 = (-1) + (2*x1)
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 5, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = (-1) + (2*x0)
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp5 & tmp9
tmp11 = (-2) + (2*x1)
tmp12 = tmp11 >= tmp1
tmp13 = (-2) + (2*x0)
tmp14 = tmp13 >= tmp1
tmp15 = tmp12 & tmp14
tmp16 = tmp15 & tmp10
tmp17 = tl.load(in_ptr0 + ((-10) + (2*x0) + (8*x1) + (16*x2)), tmp16 & xmask, eviction_policy='evict_last', other=0.0)
tmp18 = tl.full(tmp17.shape, 0.0, tmp17.dtype)
tmp19 = tl.where(tmp10, tmp17, tmp18)
tmp20 = 2*x0
tmp21 = tmp20 >= tmp1
tmp22 = tmp20 < tmp3
tmp23 = tmp21 & tmp22
tmp24 = tmp5 & tmp23
tmp25 = tmp12 & tmp7
tmp26 = tmp25 & tmp24
tmp27 = tl.load(in_ptr0 + ((-9) + (2*x0) + (8*x1) + (16*x2)), tmp26 & xmask, eviction_policy='evict_last', other=0.0)
tmp28 = tl.full(tmp27.shape, 0.0, tmp27.dtype)
tmp29 = tl.where(tmp24, tmp27, tmp28)
tmp30 = tmp29 + tmp19
tmp31 = 1 + (2*x0)
tmp32 = tmp31 >= tmp1
tmp33 = tmp31 < tmp3
tmp34 = tmp32 & tmp33
tmp35 = tmp5 & tmp34
tmp36 = tmp12 & tmp21
tmp37 = tmp36 & tmp35
tmp38 = tl.load(in_ptr0 + ((-8) + (2*x0) + (8*x1) + (16*x2)), tmp37 & xmask, eviction_policy='evict_last', other=0.0)
tmp39 = tl.full(tmp38.shape, 0.0, tmp38.dtype)
tmp40 = tl.where(tmp35, tmp38, tmp39)
tmp41 = tmp40 + tmp30
tmp42 = 2*x1
tmp43 = tmp42 >= tmp1
tmp44 = tmp42 < tmp3
tmp45 = tmp43 & tmp44
tmp46 = tmp45 & tmp9
tmp47 = tmp2 & tmp14
tmp48 = tmp47 & tmp46
tmp49 = tl.load(in_ptr0 + ((-6) + (2*x0) + (8*x1) + (16*x2)), tmp48 & xmask, eviction_policy='evict_last', other=0.0)
tmp50 = tl.full(tmp49.shape, 0.0, tmp49.dtype)
tmp51 = tl.where(tmp46, tmp49, tmp50)
tmp52 = tmp51 + tmp41
tmp53 = tmp45 & tmp23
tmp54 = tmp2 & tmp7
tmp55 = tmp54 & tmp53
tmp56 = tl.load(in_ptr0 + ((-5) + (2*x0) + (8*x1) + (16*x2)), tmp55 & xmask, eviction_policy='evict_last', other=0.0)
tmp57 = tl.full(tmp56.shape, 0.0, tmp56.dtype)
tmp58 = tl.where(tmp53, tmp56, tmp57)
tmp59 = tmp58 + tmp52
tmp60 = tmp45 & tmp34
tmp61 = tmp2 & tmp21
tmp62 = tmp61 & tmp60
tmp63 = tl.load(in_ptr0 + ((-4) + (2*x0) + (8*x1) + (16*x2)), tmp62 & xmask, eviction_policy='evict_last', other=0.0)
tmp64 = tl.full(tmp63.shape, 0.0, tmp63.dtype)
tmp65 = tl.where(tmp60, tmp63, tmp64)
tmp66 = tmp65 + tmp59
tmp67 = 1 + (2*x1)
tmp68 = tmp67 >= tmp1
tmp69 = tmp67 < tmp3
tmp70 = tmp68 & tmp69
tmp71 = tmp70 & tmp9
tmp72 = tmp43 & tmp14
tmp73 = tmp72 & tmp71
tmp74 = tl.load(in_ptr0 + ((-2) + (2*x0) + (8*x1) + (16*x2)), tmp73 & xmask, eviction_policy='evict_last', other=0.0)
tmp75 = tl.full(tmp74.shape, 0.0, tmp74.dtype)
tmp76 = tl.where(tmp71, tmp74, tmp75)
tmp77 = tmp76 + tmp66
tmp78 = tmp70 & tmp23
tmp79 = tmp43 & tmp7
tmp80 = tmp79 & tmp78
tmp81 = tl.load(in_ptr0 + ((-1) + (2*x0) + (8*x1) + (16*x2)), tmp80 & xmask, eviction_policy='evict_last', other=0.0)
tmp82 = tl.full(tmp81.shape, 0.0, tmp81.dtype)
tmp83 = tl.where(tmp78, tmp81, tmp82)
tmp84 = tmp83 + tmp77
tmp85 = tmp70 & tmp34
tmp86 = tmp43 & tmp21
tmp87 = tmp86 & tmp85
tmp88 = tl.load(in_ptr0 + ((2*x0) + (8*x1) + (16*x2)), tmp87 & xmask, eviction_policy='evict_last', other=0.0)
tmp89 = tl.full(tmp88.shape, 0.0, tmp88.dtype)
tmp90 = tl.where(tmp85, tmp88, tmp89)
tmp91 = tmp90 + tmp84
tmp92 = (((0) * ((0) >= ((-1) + (2*x0))) + ((-1) + (2*x0)) * (((-1) + (2*x0)) > (0)))*((0) * ((0) >= ((-1) + (2*x1))) + ((-1) + (2*x1)) * (((-1) + (2*x1)) > (0)))) + (((5) * ((5) <= (2 + (2*x0))) + (2 + (2*x0)) * ((2 + (2*x0)) < (5)))*((5) * ((5) <= (2 + (2*x1))) + (2 + (2*x1)) * ((2 + (2*x1)) < (5)))) + ((-1)*((0) * ((0) >= ((-1) + (2*x0))) + ((-1) + (2*x0)) * (((-1) + (2*x0)) > (0)))*((5) * ((5) <= (2 + (2*x1))) + (2 + (2*x1)) * ((2 + (2*x1)) < (5)))) + ((-1)*((0) * ((0) >= ((-1) + (2*x1))) + ((-1) + (2*x1)) * (((-1) + (2*x1)) > (0)))*((5) * ((5) <= (2 + (2*x0))) + (2 + (2*x0)) * ((2 + (2*x0)) < (5))))
tmp93 = tmp91 / tmp92
tl.store(out_ptr0 + (x4), tmp93, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.float32)
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.constant_pad_nd, aten.avg_pool2d]
stream0 = get_raw_stream(0)
triton_poi_fused_avg_pool2d_constant_pad_nd_0.run(arg0_1, buf0, 144, grid=grid(144), stream=stream0)
del arg0_1
return (reinterpret_tensor(buf0, (4, 4, 2, 2), (36, 9, 3, 1), 4), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.nn.init
class AvgPoolPad(nn.Module):
def __init__(self, stride=2, padding=1):
super(AvgPoolPad, self).__init__()
self.pad = nn.ZeroPad2d((1, 0, 1, 0))
self.pool = nn.AvgPool2d(3, stride=stride, padding=padding,
count_include_pad=False)
def forward(self, x):
x = self.pad(x)
x = self.pool(x)
x = x[:, :, 1:, 1:]
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
import torch.nn.init
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_avg_pool2d_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 3 % 3
x0 = xindex % 3
x2 = xindex // 9
x4 = xindex
tmp0 = -1 + 2 * x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 5, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = -1 + 2 * x0
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp5 & tmp9
tmp11 = -2 + 2 * x1
tmp12 = tmp11 >= tmp1
tmp13 = -2 + 2 * x0
tmp14 = tmp13 >= tmp1
tmp15 = tmp12 & tmp14
tmp16 = tmp15 & tmp10
tmp17 = tl.load(in_ptr0 + (-10 + 2 * x0 + 8 * x1 + 16 * x2), tmp16 &
xmask, eviction_policy='evict_last', other=0.0)
tmp18 = tl.full(tmp17.shape, 0.0, tmp17.dtype)
tmp19 = tl.where(tmp10, tmp17, tmp18)
tmp20 = 2 * x0
tmp21 = tmp20 >= tmp1
tmp22 = tmp20 < tmp3
tmp23 = tmp21 & tmp22
tmp24 = tmp5 & tmp23
tmp25 = tmp12 & tmp7
tmp26 = tmp25 & tmp24
tmp27 = tl.load(in_ptr0 + (-9 + 2 * x0 + 8 * x1 + 16 * x2), tmp26 &
xmask, eviction_policy='evict_last', other=0.0)
tmp28 = tl.full(tmp27.shape, 0.0, tmp27.dtype)
tmp29 = tl.where(tmp24, tmp27, tmp28)
tmp30 = tmp29 + tmp19
tmp31 = 1 + 2 * x0
tmp32 = tmp31 >= tmp1
tmp33 = tmp31 < tmp3
tmp34 = tmp32 & tmp33
tmp35 = tmp5 & tmp34
tmp36 = tmp12 & tmp21
tmp37 = tmp36 & tmp35
tmp38 = tl.load(in_ptr0 + (-8 + 2 * x0 + 8 * x1 + 16 * x2), tmp37 &
xmask, eviction_policy='evict_last', other=0.0)
tmp39 = tl.full(tmp38.shape, 0.0, tmp38.dtype)
tmp40 = tl.where(tmp35, tmp38, tmp39)
tmp41 = tmp40 + tmp30
tmp42 = 2 * x1
tmp43 = tmp42 >= tmp1
tmp44 = tmp42 < tmp3
tmp45 = tmp43 & tmp44
tmp46 = tmp45 & tmp9
tmp47 = tmp2 & tmp14
tmp48 = tmp47 & tmp46
tmp49 = tl.load(in_ptr0 + (-6 + 2 * x0 + 8 * x1 + 16 * x2), tmp48 &
xmask, eviction_policy='evict_last', other=0.0)
tmp50 = tl.full(tmp49.shape, 0.0, tmp49.dtype)
tmp51 = tl.where(tmp46, tmp49, tmp50)
tmp52 = tmp51 + tmp41
tmp53 = tmp45 & tmp23
tmp54 = tmp2 & tmp7
tmp55 = tmp54 & tmp53
tmp56 = tl.load(in_ptr0 + (-5 + 2 * x0 + 8 * x1 + 16 * x2), tmp55 &
xmask, eviction_policy='evict_last', other=0.0)
tmp57 = tl.full(tmp56.shape, 0.0, tmp56.dtype)
tmp58 = tl.where(tmp53, tmp56, tmp57)
tmp59 = tmp58 + tmp52
tmp60 = tmp45 & tmp34
tmp61 = tmp2 & tmp21
tmp62 = tmp61 & tmp60
tmp63 = tl.load(in_ptr0 + (-4 + 2 * x0 + 8 * x1 + 16 * x2), tmp62 &
xmask, eviction_policy='evict_last', other=0.0)
tmp64 = tl.full(tmp63.shape, 0.0, tmp63.dtype)
tmp65 = tl.where(tmp60, tmp63, tmp64)
tmp66 = tmp65 + tmp59
tmp67 = 1 + 2 * x1
tmp68 = tmp67 >= tmp1
tmp69 = tmp67 < tmp3
tmp70 = tmp68 & tmp69
tmp71 = tmp70 & tmp9
tmp72 = tmp43 & tmp14
tmp73 = tmp72 & tmp71
tmp74 = tl.load(in_ptr0 + (-2 + 2 * x0 + 8 * x1 + 16 * x2), tmp73 &
xmask, eviction_policy='evict_last', other=0.0)
tmp75 = tl.full(tmp74.shape, 0.0, tmp74.dtype)
tmp76 = tl.where(tmp71, tmp74, tmp75)
tmp77 = tmp76 + tmp66
tmp78 = tmp70 & tmp23
tmp79 = tmp43 & tmp7
tmp80 = tmp79 & tmp78
tmp81 = tl.load(in_ptr0 + (-1 + 2 * x0 + 8 * x1 + 16 * x2), tmp80 &
xmask, eviction_policy='evict_last', other=0.0)
tmp82 = tl.full(tmp81.shape, 0.0, tmp81.dtype)
tmp83 = tl.where(tmp78, tmp81, tmp82)
tmp84 = tmp83 + tmp77
tmp85 = tmp70 & tmp34
tmp86 = tmp43 & tmp21
tmp87 = tmp86 & tmp85
tmp88 = tl.load(in_ptr0 + (2 * x0 + 8 * x1 + 16 * x2), tmp87 & xmask,
eviction_policy='evict_last', other=0.0)
tmp89 = tl.full(tmp88.shape, 0.0, tmp88.dtype)
tmp90 = tl.where(tmp85, tmp88, tmp89)
tmp91 = tmp90 + tmp84
tmp92 = (0 * (0 >= -1 + 2 * x0) + (-1 + 2 * x0) * (-1 + 2 * x0 > 0)) * (
0 * (0 >= -1 + 2 * x1) + (-1 + 2 * x1) * (-1 + 2 * x1 > 0)) + (5 *
(5 <= 2 + 2 * x0) + (2 + 2 * x0) * (2 + 2 * x0 < 5)) * (5 * (5 <= 2 +
2 * x1) + (2 + 2 * x1) * (2 + 2 * x1 < 5)) + -1 * (0 * (0 >= -1 + 2 *
x0) + (-1 + 2 * x0) * (-1 + 2 * x0 > 0)) * (5 * (5 <= 2 + 2 * x1) +
(2 + 2 * x1) * (2 + 2 * x1 < 5)) + -1 * (0 * (0 >= -1 + 2 * x1) + (
-1 + 2 * x1) * (-1 + 2 * x1 > 0)) * (5 * (5 <= 2 + 2 * x0) + (2 + 2 *
x0) * (2 + 2 * x0 < 5))
tmp93 = tmp91 / tmp92
tl.store(out_ptr0 + x4, tmp93, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_avg_pool2d_constant_pad_nd_0[grid(144)](arg0_1,
buf0, 144, XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
return reinterpret_tensor(buf0, (4, 4, 2, 2), (36, 9, 3, 1), 4),
class AvgPoolPadNew(nn.Module):
def __init__(self, stride=2, padding=1):
super(AvgPoolPadNew, self).__init__()
self.pad = nn.ZeroPad2d((1, 0, 1, 0))
self.pool = nn.AvgPool2d(3, stride=stride, padding=padding,
count_include_pad=False)
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
MichoelSnow/data_science
|
AvgPoolPad
| false | 9,866 |
[
"MIT"
] | 0 |
7f6c054624268308ec4126a601c9fa8bc5de157c
|
https://github.com/MichoelSnow/data_science/tree/7f6c054624268308ec4126a601c9fa8bc5de157c
|
CausalAttentionSortNet
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/fd/cfdx66zl4254e3wmlgrklcqmkb6eqboub6fpmwu4o33z2dij6xke.py
# Topologically Sorted Source Nodes: [cumsum], Original ATen: [aten.cumsum]
# Source node to ATen node mapping:
# cumsum => cumsum
# Graph fragment:
# %cumsum : [num_users=1] = call_function[target=torch.ops.aten.cumsum.default](args = (%primals_1, 1), kwargs = {})
triton_per_fused_cumsum_0 = async_compile.triton('triton_per_fused_cumsum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton.jit
def _triton_helper_fn_add0(arg0_0, arg1_0):
tmp0 = arg0_0 + arg1_0
return tmp0
@triton_heuristics.persistent_reduction(
size_hints=[4, 4],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_cumsum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_cumsum_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (4*x0)), xmask, other=0.0)
tmp1 = tmp0.to(tl.float32)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp3, = tl.associative_scan((tmp2,), 1, _triton_helper_fn_add0)
tl.store(out_ptr0 + (r1 + (4*x0)), tmp3, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/2s/c2sayahpuhbu7rbygl4n62bnypotycyr7hnrbototi6dpx3h3d2u.py
# Topologically Sorted Source Nodes: [sq], Original ATen: [aten.add]
# Source node to ATen node mapping:
# sq => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%select, %view), kwargs = {})
triton_poi_fused_add_1 = async_compile.triton('triton_poi_fused_add_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex % 16
x0 = xindex % 4
x5 = xindex
tmp0 = tl.load(in_ptr0 + (x3), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (x5), xmask)
tmp1 = 1 + x0
tmp2 = tmp1.to(tl.float32)
tmp3 = tmp0 / tmp2
tmp5 = tmp3 + tmp4
tl.store(out_ptr0 + (x5), tmp5, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/2j/c2jjtkxrbf45fydgbmbxldeievsjn7ybuwsj2gjr752am3yq3dgt.py
# Topologically Sorted Source Nodes: [b_k_r, sk, sk_1], Original ATen: [aten.sum, aten.add, aten.constant_pad_nd]
# Source node to ATen node mapping:
# b_k_r => sum_1
# sk => add_1
# sk_1 => constant_pad_nd
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%view_3, [2]), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, %view_1), kwargs = {})
# %constant_pad_nd : [num_users=1] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%add_1, [0, 0, 1, 0], 0.0), kwargs = {})
triton_poi_fused_add_constant_pad_nd_sum_2 = async_compile.triton('triton_poi_fused_add_constant_pad_nd_sum_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_constant_pad_nd_sum_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_constant_pad_nd_sum_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 80
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4) % 5
x3 = xindex % 20
x0 = xindex % 4
x2 = (xindex // 20)
x5 = xindex
tmp0 = (-1) + x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.load(in_ptr0 + ((-4) + x3), tmp2 & xmask, eviction_policy='evict_last', other=0.0)
tmp4 = 1 + x0
tmp5 = tmp4.to(tl.float32)
tmp6 = tmp3 / tmp5
tmp7 = tl.load(in_ptr1 + ((-4) + x3 + (16*x2)), tmp2 & xmask, other=0.0)
tmp8 = tmp6 + tmp7
tmp9 = tl.full(tmp8.shape, 0.0, tmp8.dtype)
tmp10 = tl.where(tmp2, tmp8, tmp9)
tl.store(out_ptr0 + (x5), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/kx/ckxxdgiylfy52szzmwxthnn4a5llczmvc5ig7yeka2wmefvxnnjc.py
# Topologically Sorted Source Nodes: [triu_indices], Original ATen: [aten.triu_indices]
# Source node to ATen node mapping:
# triu_indices => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%add_3, %add_4],), kwargs = {})
triton_poi_fused_triu_indices_3 = async_compile.triton('triton_poi_fused_triu_indices_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_triu_indices_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_triu_indices_3(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 20
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 10, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp0.to(tl.float64)
tmp6 = tl.full([1], 2.0, tl.float64)
tmp7 = tmp5 * tmp6
tmp8 = tl.full([1], 20.25, tl.float64)
tmp9 = tmp8 - tmp7
tmp10 = libdevice.sqrt(tmp9)
tmp11 = tl.full([1], 4.5, tl.float64)
tmp12 = tmp11 - tmp10
tmp13 = libdevice.floor(tmp12)
tmp14 = tmp13.to(tl.int64)
tmp15 = tmp14 + tmp1
tmp16 = tl.full(tmp15.shape, 0.0, tmp15.dtype)
tmp17 = tl.where(tmp4, tmp15, tmp16)
tmp18 = tmp0 >= tmp3
tmp19 = tl.full([1], 20, tl.int64)
tmp20 = tmp0 < tmp19
tmp21 = (-10) + x0
tmp22 = tmp21.to(tl.float64)
tmp23 = tmp22 * tmp6
tmp24 = tmp8 - tmp23
tmp25 = libdevice.sqrt(tmp24)
tmp26 = tmp11 - tmp25
tmp27 = libdevice.floor(tmp26)
tmp28 = tl.full([1], 7.0, tl.float64)
tmp29 = tmp28 - tmp27
tmp30 = tmp29 * tmp27
tmp31 = tl.full([1], 0.5, tl.float64)
tmp32 = tmp30 * tmp31
tmp33 = tmp22 - tmp32
tmp34 = libdevice.floor(tmp33)
tmp35 = tmp34.to(tl.int64)
tmp36 = tmp35 + tmp1
tmp37 = tl.full(tmp36.shape, 0.0, tmp36.dtype)
tmp38 = tl.where(tmp18, tmp36, tmp37)
tmp39 = tl.where(tmp4, tmp17, tmp38)
tl.store(out_ptr0 + (x0), tmp39, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/mt/cmtuioa7yvegaefkickdkbylvluixxvcmep3opfcbevrlmuy3nki.py
# Topologically Sorted Source Nodes: [mask], Original ATen: [aten._to_copy]
# Source node to ATen node mapping:
# mask => full_default
# Graph fragment:
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 5], False), kwargs = {dtype: torch.bool, layout: torch.strided, device: cuda:0, pin_memory: False})
triton_poi_fused__to_copy_4 = async_compile.triton('triton_poi_fused__to_copy_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*i1', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_4(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 80
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.full([1], False, tl.int1)
tl.store(out_ptr0 + (x0), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/aw/cawmkayvx5gj7pqrlhulfvdgfycrgpa44nx66pjb3tbte6bz65ey.py
# Topologically Sorted Source Nodes: [mask, setitem], Original ATen: [aten._to_copy, aten.lift_fresh, aten.index_put]
# Source node to ATen node mapping:
# mask => full_default
# setitem => full_default_1, index_put
# Graph fragment:
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 5], False), kwargs = {dtype: torch.bool, layout: torch.strided, device: cuda:0, pin_memory: False})
# %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], True), kwargs = {dtype: torch.bool, layout: torch.strided, device: cuda:0, pin_memory: False})
# %index_put : [num_users=2] = call_function[target=torch.ops.aten.index_put_.default](args = (%full_default, [None, %select_1, %add_5], %full_default_1), kwargs = {})
triton_poi_fused__to_copy_index_put_lift_fresh_5 = async_compile.triton('triton_poi_fused__to_copy_index_put_lift_fresh_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_index_put_lift_fresh_5', 'mutated_arg_names': ['out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_index_put_lift_fresh_5(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 40
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 10
x1 = (xindex // 10)
tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (10 + x0), xmask, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 4, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tl.device_assert(((0 <= tmp4) & (tmp4 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp4 < 4")
tmp7 = tl.full([1], 1, tl.int64)
tmp8 = tmp6 + tmp7
tmp9 = tl.full([XBLOCK], 5, tl.int32)
tmp10 = tmp8 + tmp9
tmp11 = tmp8 < 0
tmp12 = tl.where(tmp11, tmp10, tmp8)
tl.device_assert(((0 <= tmp12) & (tmp12 < 5)) | ~(xmask), "index out of bounds: 0 <= tmp12 < 5")
tmp14 = tl.full([1], True, tl.int1)
tl.store(out_ptr0 + (tmp12 + (5*tmp4) + (20*x1)), tmp14, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/xc/cxcqnmpzsocx4dzlfxh4awc2uchnbw3lqqbwwsoe7g5wjg3psa6h.py
# Topologically Sorted Source Nodes: [R_1], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# R_1 => amax, exp, sub_4, sum_2
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_13, [-1], True), kwargs = {})
# %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_13, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_4,), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
triton_poi_fused__softmax_6 = async_compile.triton('triton_poi_fused__softmax_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*i1', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 10, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_6(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (5*x0), xmask, eviction_policy='evict_last').to(tl.int1)
tmp1 = tl.load(in_ptr1 + (5*x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (1 + (5*x0)), xmask, eviction_policy='evict_last').to(tl.int1)
tmp5 = tl.load(in_ptr1 + (1 + (5*x0)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (2 + (5*x0)), xmask, eviction_policy='evict_last').to(tl.int1)
tmp9 = tl.load(in_ptr1 + (2 + (5*x0)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (3 + (5*x0)), xmask, eviction_policy='evict_last').to(tl.int1)
tmp13 = tl.load(in_ptr1 + (3 + (5*x0)), xmask, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr0 + (4 + (5*x0)), xmask, eviction_policy='evict_last').to(tl.int1)
tmp17 = tl.load(in_ptr1 + (4 + (5*x0)), xmask, eviction_policy='evict_last')
tmp2 = -3.4028234663852886e+38
tmp3 = tl.where(tmp0, tmp2, tmp1)
tmp6 = tl.where(tmp4, tmp2, tmp5)
tmp7 = triton_helpers.maximum(tmp3, tmp6)
tmp10 = tl.where(tmp8, tmp2, tmp9)
tmp11 = triton_helpers.maximum(tmp7, tmp10)
tmp14 = tl.where(tmp12, tmp2, tmp13)
tmp15 = triton_helpers.maximum(tmp11, tmp14)
tmp18 = tl.where(tmp16, tmp2, tmp17)
tmp19 = triton_helpers.maximum(tmp15, tmp18)
tmp20 = tmp3 - tmp19
tmp21 = tl_math.exp(tmp20)
tmp22 = tmp6 - tmp19
tmp23 = tl_math.exp(tmp22)
tmp24 = tmp21 + tmp23
tmp25 = tmp10 - tmp19
tmp26 = tl_math.exp(tmp25)
tmp27 = tmp24 + tmp26
tmp28 = tmp14 - tmp19
tmp29 = tl_math.exp(tmp28)
tmp30 = tmp27 + tmp29
tmp31 = tmp18 - tmp19
tmp32 = tl_math.exp(tmp31)
tmp33 = tmp30 + tmp32
tl.store(out_ptr0 + (x0), tmp19, xmask)
tl.store(out_ptr1 + (x0), tmp33, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/is/cisrenddjnxqu6tvoi2hsenqeki76sitqi7tg4ydnyua4xw6aimj.py
# Topologically Sorted Source Nodes: [R_2], Original ATen: [aten.tril]
# Source node to ATen node mapping:
# R_2 => le, sub_5
# Graph fragment:
# %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%unsqueeze_4, %unsqueeze_5), kwargs = {})
# %le : [num_users=2] = call_function[target=torch.ops.aten.le.Scalar](args = (%sub_5, -1), kwargs = {})
triton_poi_fused_tril_7 = async_compile.triton('triton_poi_fused_tril_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*i1', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tril_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_tril_7(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 20
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 5
x1 = (xindex // 5)
x2 = xindex
tmp0 = x0 + ((-1)*x1)
tmp1 = tl.full([1], -1, tl.int64)
tmp2 = tmp0 <= tmp1
tl.store(out_ptr0 + (x2), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/tc/ctcsr4z6jiqtjwhyg6kjczs7xdoo3gawcrtqvrkp3uy2j7s5mg35.py
# Topologically Sorted Source Nodes: [R_1, R_2], Original ATen: [aten._softmax, aten.tril]
# Source node to ATen node mapping:
# R_1 => div_3, exp, sub_4
# R_2 => full_default_3, where_1
# Graph fragment:
# %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_13, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_4,), kwargs = {})
# %div_3 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_2), kwargs = {})
# %full_default_3 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%le, %div_3, %full_default_3), kwargs = {})
triton_poi_fused__softmax_tril_8 = async_compile.triton('triton_poi_fused__softmax_tril_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: '*fp32', 3: '*fp32', 4: '*i1', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_tril_8', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_tril_8(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 80
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x1 = (xindex // 5)
x2 = xindex % 20
tmp0 = tl.load(in_ptr0 + (x4), xmask).to(tl.int1)
tmp1 = tl.load(in_out_ptr0 + (x4), xmask)
tmp4 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr3 + (x2), xmask, eviction_policy='evict_last').to(tl.int1)
tmp2 = -3.4028234663852886e+38
tmp3 = tl.where(tmp0, tmp2, tmp1)
tmp5 = tmp3 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp8 = tmp6 / tmp7
tmp10 = 0.0
tmp11 = tl.where(tmp9, tmp8, tmp10)
tl.store(in_out_ptr0 + (x4), tmp8, xmask)
tl.store(out_ptr0 + (x4), tmp11, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (1, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (1, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [cumsum], Original ATen: [aten.cumsum]
stream0 = get_raw_stream(0)
triton_per_fused_cumsum_0.run(primals_1, buf0, 4, 4, grid=grid(4), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [cumsum_1], Original ATen: [aten.cumsum]
triton_per_fused_cumsum_0.run(primals_4, buf1, 4, 4, grid=grid(4), stream=stream0)
del primals_4
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sq], Original ATen: [aten.add]
triton_poi_fused_add_1.run(buf0, primals_2, buf2, 64, grid=grid(64), stream=stream0)
del primals_2
buf3 = empty_strided_cuda((4, 5, 4), (20, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [b_k_r, sk, sk_1], Original ATen: [aten.sum, aten.add, aten.constant_pad_nd]
triton_poi_fused_add_constant_pad_nd_sum_2.run(buf1, primals_3, buf3, 80, grid=grid(80), stream=stream0)
del primals_3
buf4 = empty_strided_cuda((4, 4, 5), (20, 5, 1), torch.float32)
# Topologically Sorted Source Nodes: [R], Original ATen: [aten.bmm]
extern_kernels.bmm(buf2, reinterpret_tensor(buf3, (4, 4, 5), (20, 1, 4), 0), out=buf4)
buf5 = empty_strided_cuda((20, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [triu_indices], Original ATen: [aten.triu_indices]
triton_poi_fused_triu_indices_3.run(buf5, 20, grid=grid(20), stream=stream0)
buf6 = empty_strided_cuda((4, 4, 5), (20, 5, 1), torch.bool)
# Topologically Sorted Source Nodes: [mask], Original ATen: [aten._to_copy]
triton_poi_fused__to_copy_4.run(buf6, 80, grid=grid(80), stream=stream0)
# Topologically Sorted Source Nodes: [mask, setitem], Original ATen: [aten._to_copy, aten.lift_fresh, aten.index_put]
triton_poi_fused__to_copy_index_put_lift_fresh_5.run(buf5, buf6, 40, grid=grid(40), stream=stream0)
del buf5
buf8 = reinterpret_tensor(buf1, (4, 4, 1), (4, 1, 16), 0); del buf1 # reuse
buf9 = reinterpret_tensor(buf0, (4, 4, 1), (4, 1, 16), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [R_1], Original ATen: [aten._softmax]
triton_poi_fused__softmax_6.run(buf6, buf4, buf8, buf9, 16, grid=grid(16), stream=stream0)
buf11 = empty_strided_cuda((4, 5), (5, 1), torch.bool)
# Topologically Sorted Source Nodes: [R_2], Original ATen: [aten.tril]
triton_poi_fused_tril_7.run(buf11, 20, grid=grid(20), stream=stream0)
buf10 = buf4; del buf4 # reuse
buf12 = empty_strided_cuda((4, 4, 5), (20, 5, 1), torch.float32)
# Topologically Sorted Source Nodes: [R_1, R_2], Original ATen: [aten._softmax, aten.tril]
triton_poi_fused__softmax_tril_8.run(buf10, buf6, buf8, buf9, buf11, buf12, 80, grid=grid(80), stream=stream0)
del buf8
del buf9
return (buf12, buf6, buf10, buf11, reinterpret_tensor(buf2, (4, 4, 4), (16, 1, 4), 0), buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch.nn import functional as F
from functools import partial
from torch import nn
def bucket(buckets, t, dim=1):
shape = list(t.shape)
shape[dim:dim + 1] = [buckets, -1]
return t.reshape(*shape)
def max_neg_value(tensor):
return -torch.finfo(tensor.dtype).max
def expand_dim(t, dim, k):
expand_shape = [-1] * len(t.shape)
expand_shape[dim] = k
return t.expand(*expand_shape)
def expand_batch_and_merge_head(b, t):
shape = list(t.squeeze(0).shape)
t = expand_dim(t, 0, b)
shape[0] = shape[0] * b
return t.reshape(*shape)
def cumavg(t, dim):
r = torch.arange(1, t.shape[dim] + 1, device=t.device)
expand_slice = [None] * len(t.shape)
expand_slice[dim] = slice(None, None)
return t.cumsum(dim=dim) / r[tuple(expand_slice)]
def mask_reordering_matrix(R):
buckets = R.shape[1]
mask_value = max_neg_value(R)
mask = torch.zeros(R.shape, device=R.device).bool()
i, j = torch.triu_indices(buckets, buckets)
mask[:, i, j + 1] = True
R.masked_fill_(mask, mask_value)
del mask
R = R.softmax(dim=-1)
R = R.tril(diagonal=-1)
return R
class CausalAttentionSortNet(nn.Module):
def __init__(self, heads, buckets, dim):
super().__init__()
self.heads = heads
self.buckets = buckets
self.dim = dim
self.q_pos_emb = nn.Parameter(torch.randn(1, heads, buckets, dim))
self.k_pos_emb = nn.Parameter(torch.randn(1, heads, buckets, dim))
def forward(self, q, k):
bh, *_, h, buckets, _dim = *q.shape, self.heads, self.buckets, self.dim
b = bh // h
pos_q, pos_k = map(partial(expand_batch_and_merge_head, b), (self.
q_pos_emb, self.k_pos_emb))
q_r = bucket(buckets, cumavg(q, dim=1))
k_r = bucket(buckets, cumavg(k, dim=1))
b_q_r = q_r[:, :, 0]
b_k_r = k_r.sum(dim=2)
sq = b_q_r + pos_q
sk = b_k_r + pos_k
sk = F.pad(sk, (0, 0, 1, 0))
R = torch.einsum('bie,bje->bij', sq, sk)
return mask_reordering_matrix(R)
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'heads': 4, 'buckets': 4, 'dim': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def _triton_helper_fn_add0(arg0_0, arg1_0):
tmp0 = arg0_0 + arg1_0
return tmp0
@triton.jit
def triton_per_fused_cumsum_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl
.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 4 * x0), xmask, other=0.0)
tmp1 = tmp0.to(tl.float32)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp3, = tl.associative_scan((tmp2,), 1, _triton_helper_fn_add0)
tl.store(out_ptr0 + (r1 + 4 * x0), tmp3, xmask)
@triton.jit
def triton_poi_fused_add_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex % 16
x0 = xindex % 4
x5 = xindex
tmp0 = tl.load(in_ptr0 + x3, xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + x5, xmask)
tmp1 = 1 + x0
tmp2 = tmp1.to(tl.float32)
tmp3 = tmp0 / tmp2
tmp5 = tmp3 + tmp4
tl.store(out_ptr0 + x5, tmp5, xmask)
@triton.jit
def triton_poi_fused_add_constant_pad_nd_sum_2(in_ptr0, in_ptr1, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 80
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4 % 5
x3 = xindex % 20
x0 = xindex % 4
x2 = xindex // 20
x5 = xindex
tmp0 = -1 + x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.load(in_ptr0 + (-4 + x3), tmp2 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp4 = 1 + x0
tmp5 = tmp4.to(tl.float32)
tmp6 = tmp3 / tmp5
tmp7 = tl.load(in_ptr1 + (-4 + x3 + 16 * x2), tmp2 & xmask, other=0.0)
tmp8 = tmp6 + tmp7
tmp9 = tl.full(tmp8.shape, 0.0, tmp8.dtype)
tmp10 = tl.where(tmp2, tmp8, tmp9)
tl.store(out_ptr0 + x5, tmp10, xmask)
@triton.jit
def triton_poi_fused_triu_indices_3(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 20
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 10, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp0.to(tl.float64)
tmp6 = tl.full([1], 2.0, tl.float64)
tmp7 = tmp5 * tmp6
tmp8 = tl.full([1], 20.25, tl.float64)
tmp9 = tmp8 - tmp7
tmp10 = libdevice.sqrt(tmp9)
tmp11 = tl.full([1], 4.5, tl.float64)
tmp12 = tmp11 - tmp10
tmp13 = libdevice.floor(tmp12)
tmp14 = tmp13.to(tl.int64)
tmp15 = tmp14 + tmp1
tmp16 = tl.full(tmp15.shape, 0.0, tmp15.dtype)
tmp17 = tl.where(tmp4, tmp15, tmp16)
tmp18 = tmp0 >= tmp3
tl.full([1], 20, tl.int64)
tmp21 = -10 + x0
tmp22 = tmp21.to(tl.float64)
tmp23 = tmp22 * tmp6
tmp24 = tmp8 - tmp23
tmp25 = libdevice.sqrt(tmp24)
tmp26 = tmp11 - tmp25
tmp27 = libdevice.floor(tmp26)
tmp28 = tl.full([1], 7.0, tl.float64)
tmp29 = tmp28 - tmp27
tmp30 = tmp29 * tmp27
tmp31 = tl.full([1], 0.5, tl.float64)
tmp32 = tmp30 * tmp31
tmp33 = tmp22 - tmp32
tmp34 = libdevice.floor(tmp33)
tmp35 = tmp34.to(tl.int64)
tmp36 = tmp35 + tmp1
tmp37 = tl.full(tmp36.shape, 0.0, tmp36.dtype)
tmp38 = tl.where(tmp18, tmp36, tmp37)
tmp39 = tl.where(tmp4, tmp17, tmp38)
tl.store(out_ptr0 + x0, tmp39, xmask)
@triton.jit
def triton_poi_fused__to_copy_4(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 80
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.full([1], False, tl.int1)
tl.store(out_ptr0 + x0, tmp0, xmask)
@triton.jit
def triton_poi_fused__to_copy_index_put_lift_fresh_5(in_ptr0, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 40
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 10
x1 = xindex // 10
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (10 + x0), xmask, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 4, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tl.device_assert((0 <= tmp4) & (tmp4 < 4) | ~xmask,
'index out of bounds: 0 <= tmp4 < 4')
tmp7 = tl.full([1], 1, tl.int64)
tmp8 = tmp6 + tmp7
tmp9 = tl.full([XBLOCK], 5, tl.int32)
tmp10 = tmp8 + tmp9
tmp11 = tmp8 < 0
tmp12 = tl.where(tmp11, tmp10, tmp8)
tl.device_assert((0 <= tmp12) & (tmp12 < 5) | ~xmask,
'index out of bounds: 0 <= tmp12 < 5')
tmp14 = tl.full([1], True, tl.int1)
tl.store(out_ptr0 + (tmp12 + 5 * tmp4 + 20 * x1), tmp14, xmask)
@triton.jit
def triton_poi_fused__softmax_6(in_ptr0, in_ptr1, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 5 * x0, xmask, eviction_policy='evict_last').to(tl
.int1)
tmp1 = tl.load(in_ptr1 + 5 * x0, xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (1 + 5 * x0), xmask, eviction_policy='evict_last'
).to(tl.int1)
tmp5 = tl.load(in_ptr1 + (1 + 5 * x0), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (2 + 5 * x0), xmask, eviction_policy='evict_last'
).to(tl.int1)
tmp9 = tl.load(in_ptr1 + (2 + 5 * x0), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (3 + 5 * x0), xmask, eviction_policy='evict_last'
).to(tl.int1)
tmp13 = tl.load(in_ptr1 + (3 + 5 * x0), xmask, eviction_policy='evict_last'
)
tmp16 = tl.load(in_ptr0 + (4 + 5 * x0), xmask, eviction_policy='evict_last'
).to(tl.int1)
tmp17 = tl.load(in_ptr1 + (4 + 5 * x0), xmask, eviction_policy='evict_last'
)
tmp2 = -3.4028234663852886e+38
tmp3 = tl.where(tmp0, tmp2, tmp1)
tmp6 = tl.where(tmp4, tmp2, tmp5)
tmp7 = triton_helpers.maximum(tmp3, tmp6)
tmp10 = tl.where(tmp8, tmp2, tmp9)
tmp11 = triton_helpers.maximum(tmp7, tmp10)
tmp14 = tl.where(tmp12, tmp2, tmp13)
tmp15 = triton_helpers.maximum(tmp11, tmp14)
tmp18 = tl.where(tmp16, tmp2, tmp17)
tmp19 = triton_helpers.maximum(tmp15, tmp18)
tmp20 = tmp3 - tmp19
tmp21 = tl_math.exp(tmp20)
tmp22 = tmp6 - tmp19
tmp23 = tl_math.exp(tmp22)
tmp24 = tmp21 + tmp23
tmp25 = tmp10 - tmp19
tmp26 = tl_math.exp(tmp25)
tmp27 = tmp24 + tmp26
tmp28 = tmp14 - tmp19
tmp29 = tl_math.exp(tmp28)
tmp30 = tmp27 + tmp29
tmp31 = tmp18 - tmp19
tmp32 = tl_math.exp(tmp31)
tmp33 = tmp30 + tmp32
tl.store(out_ptr0 + x0, tmp19, xmask)
tl.store(out_ptr1 + x0, tmp33, xmask)
@triton.jit
def triton_poi_fused_tril_7(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 20
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 5
x1 = xindex // 5
x2 = xindex
tmp0 = x0 + -1 * x1
tmp1 = tl.full([1], -1, tl.int64)
tmp2 = tmp0 <= tmp1
tl.store(out_ptr0 + x2, tmp2, xmask)
@triton.jit
def triton_poi_fused__softmax_tril_8(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2,
in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 80
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x1 = xindex // 5
x2 = xindex % 20
tmp0 = tl.load(in_ptr0 + x4, xmask).to(tl.int1)
tmp1 = tl.load(in_out_ptr0 + x4, xmask)
tmp4 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr3 + x2, xmask, eviction_policy='evict_last').to(tl
.int1)
tmp2 = -3.4028234663852886e+38
tmp3 = tl.where(tmp0, tmp2, tmp1)
tmp5 = tmp3 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp8 = tmp6 / tmp7
tmp10 = 0.0
tmp11 = tl.where(tmp9, tmp8, tmp10)
tl.store(in_out_ptr0 + x4, tmp8, xmask)
tl.store(out_ptr0 + x4, tmp11, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (1, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (1, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_per_fused_cumsum_0[grid(4)](primals_1, buf0, 4, 4, XBLOCK=1,
num_warps=2, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_per_fused_cumsum_0[grid(4)](primals_4, buf1, 4, 4, XBLOCK=1,
num_warps=2, num_stages=1)
del primals_4
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_add_1[grid(64)](buf0, primals_2, buf2, 64, XBLOCK=
64, num_warps=1, num_stages=1)
del primals_2
buf3 = empty_strided_cuda((4, 5, 4), (20, 4, 1), torch.float32)
triton_poi_fused_add_constant_pad_nd_sum_2[grid(80)](buf1,
primals_3, buf3, 80, XBLOCK=128, num_warps=4, num_stages=1)
del primals_3
buf4 = empty_strided_cuda((4, 4, 5), (20, 5, 1), torch.float32)
extern_kernels.bmm(buf2, reinterpret_tensor(buf3, (4, 4, 5), (20, 1,
4), 0), out=buf4)
buf5 = empty_strided_cuda((20,), (1,), torch.int64)
triton_poi_fused_triu_indices_3[grid(20)](buf5, 20, XBLOCK=32,
num_warps=1, num_stages=1)
buf6 = empty_strided_cuda((4, 4, 5), (20, 5, 1), torch.bool)
triton_poi_fused__to_copy_4[grid(80)](buf6, 80, XBLOCK=128,
num_warps=4, num_stages=1)
triton_poi_fused__to_copy_index_put_lift_fresh_5[grid(40)](buf5,
buf6, 40, XBLOCK=64, num_warps=1, num_stages=1)
del buf5
buf8 = reinterpret_tensor(buf1, (4, 4, 1), (4, 1, 16), 0)
del buf1
buf9 = reinterpret_tensor(buf0, (4, 4, 1), (4, 1, 16), 0)
del buf0
triton_poi_fused__softmax_6[grid(16)](buf6, buf4, buf8, buf9, 16,
XBLOCK=16, num_warps=1, num_stages=1)
buf11 = empty_strided_cuda((4, 5), (5, 1), torch.bool)
triton_poi_fused_tril_7[grid(20)](buf11, 20, XBLOCK=32, num_warps=1,
num_stages=1)
buf10 = buf4
del buf4
buf12 = empty_strided_cuda((4, 4, 5), (20, 5, 1), torch.float32)
triton_poi_fused__softmax_tril_8[grid(80)](buf10, buf6, buf8, buf9,
buf11, buf12, 80, XBLOCK=128, num_warps=4, num_stages=1)
del buf8
del buf9
return buf12, buf6, buf10, buf11, reinterpret_tensor(buf2, (4, 4, 4), (
16, 1, 4), 0), buf3
def bucket(buckets, t, dim=1):
shape = list(t.shape)
shape[dim:dim + 1] = [buckets, -1]
return t.reshape(*shape)
def max_neg_value(tensor):
return -torch.finfo(tensor.dtype).max
def expand_dim(t, dim, k):
expand_shape = [-1] * len(t.shape)
expand_shape[dim] = k
return t.expand(*expand_shape)
def expand_batch_and_merge_head(b, t):
shape = list(t.squeeze(0).shape)
t = expand_dim(t, 0, b)
shape[0] = shape[0] * b
return t.reshape(*shape)
def cumavg(t, dim):
r = torch.arange(1, t.shape[dim] + 1, device=t.device)
expand_slice = [None] * len(t.shape)
expand_slice[dim] = slice(None, None)
return t.cumsum(dim=dim) / r[tuple(expand_slice)]
def mask_reordering_matrix(R):
buckets = R.shape[1]
mask_value = max_neg_value(R)
mask = torch.zeros(R.shape, device=R.device).bool()
i, j = torch.triu_indices(buckets, buckets)
mask[:, i, j + 1] = True
R.masked_fill_(mask, mask_value)
del mask
R = R.softmax(dim=-1)
R = R.tril(diagonal=-1)
return R
class CausalAttentionSortNetNew(nn.Module):
def __init__(self, heads, buckets, dim):
super().__init__()
self.heads = heads
self.buckets = buckets
self.dim = dim
self.q_pos_emb = nn.Parameter(torch.randn(1, heads, buckets, dim))
self.k_pos_emb = nn.Parameter(torch.randn(1, heads, buckets, dim))
def forward(self, input_0, input_1):
primals_2 = self.q_pos_emb
primals_3 = self.k_pos_emb
primals_1 = input_0
primals_4 = input_1
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
|
blizda/sinkhorn-transformer
|
CausalAttentionSortNet
| false | 9,867 |
[
"MIT"
] | 0 |
4b626a40759010e4cb1752f22387fdbda438f37c
|
https://github.com/blizda/sinkhorn-transformer/tree/4b626a40759010e4cb1752f22387fdbda438f37c
|
MaxPoolPad
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/jf/cjf7zenaxtvwhbfrvvghsyyrrhxyrlvtj5rotfw7n2nqtvscv3l7.py
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.constant_pad_nd, aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# x => constant_pad_nd
# x_1 => _low_memory_max_pool2d_with_offsets
# Graph fragment:
# %constant_pad_nd : [num_users=1] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%arg0_1, [1, 0, 1, 0], 0.0), kwargs = {})
# %_low_memory_max_pool2d_with_offsets : [num_users=1] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%constant_pad_nd, [3, 3], [2, 2], [1, 1], [1, 1], False), kwargs = {})
triton_poi_fused_constant_pad_nd_max_pool2d_with_indices_0 = async_compile.triton('triton_poi_fused_constant_pad_nd_max_pool2d_with_indices_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_max_pool2d_with_indices_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_constant_pad_nd_max_pool2d_with_indices_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 3) % 3
x0 = xindex % 3
x2 = (xindex // 9)
x4 = xindex
tmp0 = (-1) + (2*x1)
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 5, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = (-1) + (2*x0)
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp5 & tmp9
tmp11 = (-2) + (2*x1)
tmp12 = tmp11 >= tmp1
tmp13 = (-2) + (2*x0)
tmp14 = tmp13 >= tmp1
tmp15 = tmp12 & tmp14
tmp16 = tmp15 & tmp10
tmp17 = tl.load(in_ptr0 + ((-10) + (2*x0) + (8*x1) + (16*x2)), tmp16 & xmask, eviction_policy='evict_last', other=0.0)
tmp18 = tl.full(tmp17.shape, float("-inf"), tmp17.dtype)
tmp19 = tl.where(tmp10, tmp17, tmp18)
tmp20 = 2*x0
tmp21 = tmp20 >= tmp1
tmp22 = tmp20 < tmp3
tmp23 = tmp21 & tmp22
tmp24 = tmp5 & tmp23
tmp25 = tmp12 & tmp7
tmp26 = tmp25 & tmp24
tmp27 = tl.load(in_ptr0 + ((-9) + (2*x0) + (8*x1) + (16*x2)), tmp26 & xmask, eviction_policy='evict_last', other=0.0)
tmp28 = tl.full(tmp27.shape, float("-inf"), tmp27.dtype)
tmp29 = tl.where(tmp24, tmp27, tmp28)
tmp30 = triton_helpers.maximum(tmp29, tmp19)
tmp31 = 1 + (2*x0)
tmp32 = tmp31 >= tmp1
tmp33 = tmp31 < tmp3
tmp34 = tmp32 & tmp33
tmp35 = tmp5 & tmp34
tmp36 = tmp12 & tmp21
tmp37 = tmp36 & tmp35
tmp38 = tl.load(in_ptr0 + ((-8) + (2*x0) + (8*x1) + (16*x2)), tmp37 & xmask, eviction_policy='evict_last', other=0.0)
tmp39 = tl.full(tmp38.shape, float("-inf"), tmp38.dtype)
tmp40 = tl.where(tmp35, tmp38, tmp39)
tmp41 = triton_helpers.maximum(tmp40, tmp30)
tmp42 = 2*x1
tmp43 = tmp42 >= tmp1
tmp44 = tmp42 < tmp3
tmp45 = tmp43 & tmp44
tmp46 = tmp45 & tmp9
tmp47 = tmp2 & tmp14
tmp48 = tmp47 & tmp46
tmp49 = tl.load(in_ptr0 + ((-6) + (2*x0) + (8*x1) + (16*x2)), tmp48 & xmask, eviction_policy='evict_last', other=0.0)
tmp50 = tl.full(tmp49.shape, float("-inf"), tmp49.dtype)
tmp51 = tl.where(tmp46, tmp49, tmp50)
tmp52 = triton_helpers.maximum(tmp51, tmp41)
tmp53 = tmp45 & tmp23
tmp54 = tmp2 & tmp7
tmp55 = tmp54 & tmp53
tmp56 = tl.load(in_ptr0 + ((-5) + (2*x0) + (8*x1) + (16*x2)), tmp55 & xmask, eviction_policy='evict_last', other=0.0)
tmp57 = tl.full(tmp56.shape, float("-inf"), tmp56.dtype)
tmp58 = tl.where(tmp53, tmp56, tmp57)
tmp59 = triton_helpers.maximum(tmp58, tmp52)
tmp60 = tmp45 & tmp34
tmp61 = tmp2 & tmp21
tmp62 = tmp61 & tmp60
tmp63 = tl.load(in_ptr0 + ((-4) + (2*x0) + (8*x1) + (16*x2)), tmp62 & xmask, eviction_policy='evict_last', other=0.0)
tmp64 = tl.full(tmp63.shape, float("-inf"), tmp63.dtype)
tmp65 = tl.where(tmp60, tmp63, tmp64)
tmp66 = triton_helpers.maximum(tmp65, tmp59)
tmp67 = 1 + (2*x1)
tmp68 = tmp67 >= tmp1
tmp69 = tmp67 < tmp3
tmp70 = tmp68 & tmp69
tmp71 = tmp70 & tmp9
tmp72 = tmp43 & tmp14
tmp73 = tmp72 & tmp71
tmp74 = tl.load(in_ptr0 + ((-2) + (2*x0) + (8*x1) + (16*x2)), tmp73 & xmask, eviction_policy='evict_last', other=0.0)
tmp75 = tl.full(tmp74.shape, float("-inf"), tmp74.dtype)
tmp76 = tl.where(tmp71, tmp74, tmp75)
tmp77 = triton_helpers.maximum(tmp76, tmp66)
tmp78 = tmp70 & tmp23
tmp79 = tmp43 & tmp7
tmp80 = tmp79 & tmp78
tmp81 = tl.load(in_ptr0 + ((-1) + (2*x0) + (8*x1) + (16*x2)), tmp80 & xmask, eviction_policy='evict_last', other=0.0)
tmp82 = tl.full(tmp81.shape, float("-inf"), tmp81.dtype)
tmp83 = tl.where(tmp78, tmp81, tmp82)
tmp84 = triton_helpers.maximum(tmp83, tmp77)
tmp85 = tmp70 & tmp34
tmp86 = tmp43 & tmp21
tmp87 = tmp86 & tmp85
tmp88 = tl.load(in_ptr0 + ((2*x0) + (8*x1) + (16*x2)), tmp87 & xmask, eviction_policy='evict_last', other=0.0)
tmp89 = tl.full(tmp88.shape, float("-inf"), tmp88.dtype)
tmp90 = tl.where(tmp85, tmp88, tmp89)
tmp91 = triton_helpers.maximum(tmp90, tmp84)
tl.store(out_ptr0 + (x4), tmp91, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.float32)
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.constant_pad_nd, aten.max_pool2d_with_indices]
stream0 = get_raw_stream(0)
triton_poi_fused_constant_pad_nd_max_pool2d_with_indices_0.run(arg0_1, buf0, 144, grid=grid(144), stream=stream0)
del arg0_1
return (reinterpret_tensor(buf0, (4, 4, 2, 2), (36, 9, 3, 1), 4), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.nn.init
class MaxPoolPad(nn.Module):
def __init__(self):
super(MaxPoolPad, self).__init__()
self.pad = nn.ZeroPad2d((1, 0, 1, 0))
self.pool = nn.MaxPool2d(3, stride=2, padding=1)
def forward(self, x):
x = self.pad(x)
x = self.pool(x)
x = x[:, :, 1:, 1:]
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.nn.init
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_constant_pad_nd_max_pool2d_with_indices_0(in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 3 % 3
x0 = xindex % 3
x2 = xindex // 9
x4 = xindex
tmp0 = -1 + 2 * x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 5, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = -1 + 2 * x0
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp5 & tmp9
tmp11 = -2 + 2 * x1
tmp12 = tmp11 >= tmp1
tmp13 = -2 + 2 * x0
tmp14 = tmp13 >= tmp1
tmp15 = tmp12 & tmp14
tmp16 = tmp15 & tmp10
tmp17 = tl.load(in_ptr0 + (-10 + 2 * x0 + 8 * x1 + 16 * x2), tmp16 &
xmask, eviction_policy='evict_last', other=0.0)
tmp18 = tl.full(tmp17.shape, float('-inf'), tmp17.dtype)
tmp19 = tl.where(tmp10, tmp17, tmp18)
tmp20 = 2 * x0
tmp21 = tmp20 >= tmp1
tmp22 = tmp20 < tmp3
tmp23 = tmp21 & tmp22
tmp24 = tmp5 & tmp23
tmp25 = tmp12 & tmp7
tmp26 = tmp25 & tmp24
tmp27 = tl.load(in_ptr0 + (-9 + 2 * x0 + 8 * x1 + 16 * x2), tmp26 &
xmask, eviction_policy='evict_last', other=0.0)
tmp28 = tl.full(tmp27.shape, float('-inf'), tmp27.dtype)
tmp29 = tl.where(tmp24, tmp27, tmp28)
tmp30 = triton_helpers.maximum(tmp29, tmp19)
tmp31 = 1 + 2 * x0
tmp32 = tmp31 >= tmp1
tmp33 = tmp31 < tmp3
tmp34 = tmp32 & tmp33
tmp35 = tmp5 & tmp34
tmp36 = tmp12 & tmp21
tmp37 = tmp36 & tmp35
tmp38 = tl.load(in_ptr0 + (-8 + 2 * x0 + 8 * x1 + 16 * x2), tmp37 &
xmask, eviction_policy='evict_last', other=0.0)
tmp39 = tl.full(tmp38.shape, float('-inf'), tmp38.dtype)
tmp40 = tl.where(tmp35, tmp38, tmp39)
tmp41 = triton_helpers.maximum(tmp40, tmp30)
tmp42 = 2 * x1
tmp43 = tmp42 >= tmp1
tmp44 = tmp42 < tmp3
tmp45 = tmp43 & tmp44
tmp46 = tmp45 & tmp9
tmp47 = tmp2 & tmp14
tmp48 = tmp47 & tmp46
tmp49 = tl.load(in_ptr0 + (-6 + 2 * x0 + 8 * x1 + 16 * x2), tmp48 &
xmask, eviction_policy='evict_last', other=0.0)
tmp50 = tl.full(tmp49.shape, float('-inf'), tmp49.dtype)
tmp51 = tl.where(tmp46, tmp49, tmp50)
tmp52 = triton_helpers.maximum(tmp51, tmp41)
tmp53 = tmp45 & tmp23
tmp54 = tmp2 & tmp7
tmp55 = tmp54 & tmp53
tmp56 = tl.load(in_ptr0 + (-5 + 2 * x0 + 8 * x1 + 16 * x2), tmp55 &
xmask, eviction_policy='evict_last', other=0.0)
tmp57 = tl.full(tmp56.shape, float('-inf'), tmp56.dtype)
tmp58 = tl.where(tmp53, tmp56, tmp57)
tmp59 = triton_helpers.maximum(tmp58, tmp52)
tmp60 = tmp45 & tmp34
tmp61 = tmp2 & tmp21
tmp62 = tmp61 & tmp60
tmp63 = tl.load(in_ptr0 + (-4 + 2 * x0 + 8 * x1 + 16 * x2), tmp62 &
xmask, eviction_policy='evict_last', other=0.0)
tmp64 = tl.full(tmp63.shape, float('-inf'), tmp63.dtype)
tmp65 = tl.where(tmp60, tmp63, tmp64)
tmp66 = triton_helpers.maximum(tmp65, tmp59)
tmp67 = 1 + 2 * x1
tmp68 = tmp67 >= tmp1
tmp69 = tmp67 < tmp3
tmp70 = tmp68 & tmp69
tmp71 = tmp70 & tmp9
tmp72 = tmp43 & tmp14
tmp73 = tmp72 & tmp71
tmp74 = tl.load(in_ptr0 + (-2 + 2 * x0 + 8 * x1 + 16 * x2), tmp73 &
xmask, eviction_policy='evict_last', other=0.0)
tmp75 = tl.full(tmp74.shape, float('-inf'), tmp74.dtype)
tmp76 = tl.where(tmp71, tmp74, tmp75)
tmp77 = triton_helpers.maximum(tmp76, tmp66)
tmp78 = tmp70 & tmp23
tmp79 = tmp43 & tmp7
tmp80 = tmp79 & tmp78
tmp81 = tl.load(in_ptr0 + (-1 + 2 * x0 + 8 * x1 + 16 * x2), tmp80 &
xmask, eviction_policy='evict_last', other=0.0)
tmp82 = tl.full(tmp81.shape, float('-inf'), tmp81.dtype)
tmp83 = tl.where(tmp78, tmp81, tmp82)
tmp84 = triton_helpers.maximum(tmp83, tmp77)
tmp85 = tmp70 & tmp34
tmp86 = tmp43 & tmp21
tmp87 = tmp86 & tmp85
tmp88 = tl.load(in_ptr0 + (2 * x0 + 8 * x1 + 16 * x2), tmp87 & xmask,
eviction_policy='evict_last', other=0.0)
tmp89 = tl.full(tmp88.shape, float('-inf'), tmp88.dtype)
tmp90 = tl.where(tmp85, tmp88, tmp89)
tmp91 = triton_helpers.maximum(tmp90, tmp84)
tl.store(out_ptr0 + x4, tmp91, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_constant_pad_nd_max_pool2d_with_indices_0[grid(144)](
arg0_1, buf0, 144, XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return reinterpret_tensor(buf0, (4, 4, 2, 2), (36, 9, 3, 1), 4),
class MaxPoolPadNew(nn.Module):
def __init__(self):
super(MaxPoolPadNew, self).__init__()
self.pad = nn.ZeroPad2d((1, 0, 1, 0))
self.pool = nn.MaxPool2d(3, stride=2, padding=1)
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
MichoelSnow/data_science
|
MaxPoolPad
| false | 9,868 |
[
"MIT"
] | 0 |
7f6c054624268308ec4126a601c9fa8bc5de157c
|
https://github.com/MichoelSnow/data_science/tree/7f6c054624268308ec4126a601c9fa8bc5de157c
|
CoxPHLossSorted
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/5s/c5shsgehfk5krlitzfx6dsoni2ot3vtyhzwhw5d6md32oxwp3feg.py
# Topologically Sorted Source Nodes: [gamma, sub, exp, cumsum, add, log, log_cumsum_h, sub_1, mul, sum_1, sum_2, div, neg], Original ATen: [aten.max, aten.sub, aten.exp, aten.cumsum, aten.add, aten.log, aten.mul, aten.sum, aten.div, aten.neg]
# Source node to ATen node mapping:
# add => add
# cumsum => cumsum
# div => div
# exp => exp
# gamma => max_1
# log => log
# log_cumsum_h => add_1
# mul => mul
# neg => neg
# sub => sub
# sub_1 => sub_1
# sum_1 => sum_1
# sum_2 => sum_2
# Graph fragment:
# %max_1 : [num_users=2] = call_function[target=torch.ops.aten.max.default](args = (%view_1,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, %max_1), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %cumsum : [num_users=1] = call_function[target=torch.ops.aten.cumsum.default](args = (%exp, 0), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%cumsum, 1e-07), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add,), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%log, %max_1), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, %add_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %view), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%view,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %sum_2), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%div,), kwargs = {})
triton_per_fused_add_cumsum_div_exp_log_max_mul_neg_sub_sum_0 = async_compile.triton('triton_per_fused_add_cumsum_div_exp_log_max_mul_neg_sub_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton.jit
def _triton_helper_fn_add0(arg0_0, arg1_0):
tmp0 = arg0_0 + arg1_0
return tmp0
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_cumsum_div_exp_log_max_mul_neg_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 3, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_cumsum_div_exp_log_max_mul_neg_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp14 = tl.load(in_ptr1 + (r0), None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = triton_helpers.promote_to_tensor(triton_helpers.max2(tmp1, 0))
tmp4 = tmp0 - tmp3
tmp5 = tl_math.exp(tmp4)
tmp6 = tmp5.to(tl.float32)
tmp7 = tl.broadcast_to(tmp6, [RBLOCK])
tmp8, = tl.associative_scan((tmp7,), 0, _triton_helper_fn_add0)
tmp9 = 1e-07
tmp10 = tmp8 + tmp9
tmp11 = tl_math.log(tmp10)
tmp12 = tmp11 + tmp3
tmp13 = tmp0 - tmp12
tmp15 = tmp13 * tmp14
tmp16 = tl.broadcast_to(tmp15, [RBLOCK])
tmp18 = triton_helpers.promote_to_tensor(tl.sum(tmp16, 0))
tmp19 = tl.broadcast_to(tmp14, [RBLOCK])
tmp21 = triton_helpers.promote_to_tensor(tl.sum(tmp19, 0))
tmp22 = tmp18 / tmp21
tmp23 = -tmp22
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp23, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf2 = empty_strided_cuda((), (), torch.float32)
buf4 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [gamma, sub, exp, cumsum, add, log, log_cumsum_h, sub_1, mul, sum_1, sum_2, div, neg], Original ATen: [aten.max, aten.sub, aten.exp, aten.cumsum, aten.add, aten.log, aten.mul, aten.sum, aten.div, aten.neg]
stream0 = get_raw_stream(0)
triton_per_fused_add_cumsum_div_exp_log_max_mul_neg_sub_sum_0.run(buf4, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import Tensor
def cox_ph_loss_sorted(log_h: 'Tensor', events: 'Tensor', eps: 'float'=1e-07
) ->Tensor:
"""Requires the input to be sorted by descending duration time.
See DatasetDurationSorted.
We calculate the negative log of $(rac{h_i}{\\sum_{j \\in R_i} h_j})^d$,
where h = exp(log_h) are the hazards and R is the risk set, and d is event.
We just compute a cumulative sum, and not the true Risk sets. This is a
limitation, but simple and fast.
"""
if events.dtype is torch.bool:
events = events.float()
events = events.view(-1)
log_h = log_h.view(-1)
gamma = log_h.max()
log_cumsum_h = log_h.sub(gamma).exp().cumsum(0).add(eps).log().add(gamma)
return -log_h.sub(log_cumsum_h).mul(events).sum().div(events.sum())
class CoxPHLossSorted(torch.nn.Module):
"""Loss for CoxPH.
Requires the input to be sorted by descending duration time.
See DatasetDurationSorted.
We calculate the negative log of $(rac{h_i}{\\sum_{j \\in R_i} h_j})^d$,
where h = exp(log_h) are the hazards and R is the risk set, and d is event.
We just compute a cumulative sum, and not the true Risk sets. This is a
limitation, but simple and fast.
"""
def __init__(self):
super().__init__()
def forward(self, log_h: 'Tensor', events: 'Tensor') ->Tensor:
return cox_ph_loss_sorted(log_h, events)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch import Tensor
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def _triton_helper_fn_add0(arg0_0, arg1_0):
tmp0 = arg0_0 + arg1_0
return tmp0
@triton.jit
def triton_per_fused_add_cumsum_div_exp_log_max_mul_neg_sub_sum_0(in_out_ptr0,
in_ptr0, in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp14 = tl.load(in_ptr1 + r0, None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = triton_helpers.promote_to_tensor(triton_helpers.max2(tmp1, 0))
tmp4 = tmp0 - tmp3
tmp5 = tl_math.exp(tmp4)
tmp6 = tmp5.to(tl.float32)
tmp7 = tl.broadcast_to(tmp6, [RBLOCK])
tmp8, = tl.associative_scan((tmp7,), 0, _triton_helper_fn_add0)
tmp9 = 1e-07
tmp10 = tmp8 + tmp9
tmp11 = tl_math.log(tmp10)
tmp12 = tmp11 + tmp3
tmp13 = tmp0 - tmp12
tmp15 = tmp13 * tmp14
tmp16 = tl.broadcast_to(tmp15, [RBLOCK])
tmp18 = triton_helpers.promote_to_tensor(tl.sum(tmp16, 0))
tmp19 = tl.broadcast_to(tmp14, [RBLOCK])
tmp21 = triton_helpers.promote_to_tensor(tl.sum(tmp19, 0))
tmp22 = tmp18 / tmp21
tmp23 = -tmp22
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp23, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf2 = empty_strided_cuda((), (), torch.float32)
buf4 = buf2
del buf2
get_raw_stream(0)
triton_per_fused_add_cumsum_div_exp_log_max_mul_neg_sub_sum_0[grid(1)](
buf4, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf4,
def cox_ph_loss_sorted(log_h: 'Tensor', events: 'Tensor', eps: 'float'=1e-07
) ->Tensor:
"""Requires the input to be sorted by descending duration time.
See DatasetDurationSorted.
We calculate the negative log of $(rac{h_i}{\\sum_{j \\in R_i} h_j})^d$,
where h = exp(log_h) are the hazards and R is the risk set, and d is event.
We just compute a cumulative sum, and not the true Risk sets. This is a
limitation, but simple and fast.
"""
if events.dtype is torch.bool:
events = events.float()
events = events.view(-1)
log_h = log_h.view(-1)
gamma = log_h.max()
log_cumsum_h = log_h.sub(gamma).exp().cumsum(0).add(eps).log().add(gamma)
return -log_h.sub(log_cumsum_h).mul(events).sum().div(events.sum())
class CoxPHLossSortedNew(torch.nn.Module):
"""Loss for CoxPH.
Requires the input to be sorted by descending duration time.
See DatasetDurationSorted.
We calculate the negative log of $(rac{h_i}{\\sum_{j \\in R_i} h_j})^d$,
where h = exp(log_h) are the hazards and R is the risk set, and d is event.
We just compute a cumulative sum, and not the true Risk sets. This is a
limitation, but simple and fast.
"""
def __init__(self):
super().__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
bseewald/pycox
|
CoxPHLossSorted
| false | 9,869 |
[
"BSD-2-Clause"
] | 0 |
366348d51ecd902a01ab830b2f0a4cf1694d9ae2
|
https://github.com/bseewald/pycox/tree/366348d51ecd902a01ab830b2f0a4cf1694d9ae2
|
down
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/e6/ce6fwb7cuhy3qppzvzwzq3dqytlyhklktwnjhzdza6cxmtqodq25.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.avg_pool2d]
# Source node to ATen node mapping:
# x => avg_pool2d
# Graph fragment:
# %avg_pool2d : [num_users=2] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%primals_1, [2, 2]), kwargs = {})
triton_poi_fused_avg_pool2d_0 = async_compile.triton('triton_poi_fused_avg_pool2d_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 32
x1 = (xindex // 32)
x2 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (64 + (2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (65 + (2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp2 = tmp1 + tmp0
tmp4 = tmp3 + tmp2
tmp6 = tmp5 + tmp4
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tl.store(out_ptr0 + (x2), tmp8, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/j6/cj6n5qdz5f6f2g4oatwbm2xfskl6mdyix2skekye6ilanaqhphqv.py
# Topologically Sorted Source Nodes: [conv2d, x_1], Original ATen: [aten.convolution, aten.leaky_relu]
# Source node to ATen node mapping:
# conv2d => convolution
# x_1 => gt, mul, where
# Graph fragment:
# %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%avg_pool2d, %primals_2, %primals_3, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.1), kwargs = {})
# %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul), kwargs = {})
triton_poi_fused_convolution_leaky_relu_1 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 15376
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 961) % 4
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + (x3), tmp4, xmask)
tl.store(out_ptr1 + (x3), tmp7, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/zg/czgcv4szvzqiitflipuf2423tmuqp5ogktsqdb2cvy5thsi6rpqj.py
# Topologically Sorted Source Nodes: [conv2d_1, x_2], Original ATen: [aten.convolution, aten.leaky_relu]
# Source node to ATen node mapping:
# conv2d_1 => convolution_1
# x_2 => gt_1, mul_1, where_1
# Graph fragment:
# %convolution_1 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_1 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_1, 0), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_1, 0.1), kwargs = {})
# %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %convolution_1, %mul_1), kwargs = {})
triton_poi_fused_convolution_leaky_relu_2 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 14400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 900) % 4
x2 = (xindex // 3600)
x4 = xindex % 3600
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + (x4 + (3712*x2)), tmp4, xmask)
tl.store(out_ptr1 + (x3), tmp7, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 64, 64), (16384, 4096, 64, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 32, 32), (4096, 1024, 32, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.avg_pool2d]
stream0 = get_raw_stream(0)
triton_poi_fused_avg_pool2d_0.run(primals_1, buf0, 16384, grid=grid(16384), stream=stream0)
del primals_1
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 31, 31), (3844, 961, 31, 1))
buf2 = empty_strided_cuda((4, 4, 31, 31), (3844, 961, 31, 1), torch.bool)
buf3 = empty_strided_cuda((4, 4, 31, 31), (3844, 961, 31, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d, x_1], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_1.run(buf1, primals_3, buf2, buf3, 15376, grid=grid(15376), stream=stream0)
del buf1
del primals_3
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 4, 30, 30), (3600, 900, 30, 1))
buf5 = empty_strided_cuda((4, 4, 30, 30), (3712, 900, 30, 1), torch.bool)
buf6 = empty_strided_cuda((4, 4, 30, 30), (3600, 900, 30, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_1, x_2], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_2.run(buf4, primals_5, buf5, buf6, 14400, grid=grid(14400), stream=stream0)
del buf4
del primals_5
return (buf6, primals_2, primals_4, buf0, buf2, buf3, buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 64, 64), (16384, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class down(nn.Module):
def __init__(self, inChannels, outChannels, filterSize):
super(down, self).__init__()
self.conv1 = nn.Conv2d(inChannels, outChannels, filterSize, stride=
1, padding=int((filterSize - 1) / 2))
self.conv2 = nn.Conv2d(outChannels, outChannels, filterSize, stride
=1, padding=int((filterSize - 1) / 2))
def forward(self, x):
x = F.avg_pool2d(x, 2)
x = F.leaky_relu(self.conv1(x), negative_slope=0.1)
x = F.leaky_relu(self.conv2(x), negative_slope=0.1)
return x
def get_inputs():
return [torch.rand([4, 4, 64, 64])]
def get_init_inputs():
return [[], {'inChannels': 4, 'outChannels': 4, 'filterSize': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 32
x1 = xindex // 32
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 128 * x1), None, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 128 * x1), None, eviction_policy
='evict_last')
tmp3 = tl.load(in_ptr0 + (64 + 2 * x0 + 128 * x1), None,
eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (65 + 2 * x0 + 128 * x1), None,
eviction_policy='evict_last')
tmp2 = tmp1 + tmp0
tmp4 = tmp3 + tmp2
tmp6 = tmp5 + tmp4
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tl.store(out_ptr0 + x2, tmp8, None)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 15376
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 961 % 4
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + x3, tmp4, xmask)
tl.store(out_ptr1 + x3, tmp7, xmask)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_2(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 14400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 900 % 4
x2 = xindex // 3600
x4 = xindex % 3600
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + (x4 + 3712 * x2), tmp4, xmask)
tl.store(out_ptr1 + x3, tmp7, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 64, 64), (16384, 4096, 64, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 32, 32), (4096, 1024, 32, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_avg_pool2d_0[grid(16384)](primals_1, buf0, 16384,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 31, 31), (3844, 961, 31, 1))
buf2 = empty_strided_cuda((4, 4, 31, 31), (3844, 961, 31, 1), torch
.bool)
buf3 = empty_strided_cuda((4, 4, 31, 31), (3844, 961, 31, 1), torch
.float32)
triton_poi_fused_convolution_leaky_relu_1[grid(15376)](buf1,
primals_3, buf2, buf3, 15376, XBLOCK=256, num_warps=4, num_stages=1
)
del buf1
del primals_3
buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 4, 30, 30), (3600, 900, 30, 1))
buf5 = empty_strided_cuda((4, 4, 30, 30), (3712, 900, 30, 1), torch
.bool)
buf6 = empty_strided_cuda((4, 4, 30, 30), (3600, 900, 30, 1), torch
.float32)
triton_poi_fused_convolution_leaky_relu_2[grid(14400)](buf4,
primals_5, buf5, buf6, 14400, XBLOCK=256, num_warps=4, num_stages=1
)
del buf4
del primals_5
return buf6, primals_2, primals_4, buf0, buf2, buf3, buf5
class downNew(nn.Module):
def __init__(self, inChannels, outChannels, filterSize):
super(downNew, self).__init__()
self.conv1 = nn.Conv2d(inChannels, outChannels, filterSize, stride=
1, padding=int((filterSize - 1) / 2))
self.conv2 = nn.Conv2d(outChannels, outChannels, filterSize, stride
=1, padding=int((filterSize - 1) / 2))
def forward(self, input_0):
primals_2 = self.conv1.weight
primals_3 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
brainma/ASRNet
|
down
| false | 9,870 |
[
"MIT"
] | 0 |
b88edbcfbcee2cc77f7f4b2a8d139ced303a4f14
|
https://github.com/brainma/ASRNet/tree/b88edbcfbcee2cc77f7f4b2a8d139ced303a4f14
|
NormedLinear
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/zk/czk5xfokmwnuegxn53eciq25366p2is3a6lxx47tlosf3q225vha.py
# Topologically Sorted Source Nodes: [normalize], Original ATen: [aten.div]
# Source node to ATen node mapping:
# normalize => div
# Graph fragment:
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_1, %expand), kwargs = {})
triton_poi_fused_div_0 = async_compile.triton('triton_poi_fused_div_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-12
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tl.store(out_ptr0 + (x2), tmp15, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/xe/cxewggzrfqe57dzglxrzfhfgpsywlh36utvtdulp5oi75wfs7ml3.py
# Topologically Sorted Source Nodes: [normalize_1], Original ATen: [aten.div]
# Source node to ATen node mapping:
# normalize_1 => div_1
# Graph fragment:
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_2, %expand_1), kwargs = {})
triton_poi_fused_div_1 = async_compile.triton('triton_poi_fused_div_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (4 + x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (8 + x0), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (12 + x0), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-12
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tl.store(out_ptr0 + (x2), tmp15, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [normalize], Original ATen: [aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_div_0.run(primals_1, buf0, 16, grid=grid(16), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [normalize_1], Original ATen: [aten.div]
triton_poi_fused_div_1.run(primals_2, buf1, 16, grid=grid(16), stream=stream0)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [normalize_1, out], Original ATen: [aten.div, aten.mm]
extern_kernels.mm(buf0, buf1, out=buf2)
del buf1
return (buf2, primals_2, reinterpret_tensor(buf0, (4, 4), (1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch
import torch.nn.functional as F
from torch.nn import Parameter
class NormedLinear(nn.Module):
def __init__(self, in_features, out_features):
super(NormedLinear, self).__init__()
self.weight = Parameter(torch.Tensor(in_features, out_features))
self.weight.data.uniform_(-1, 1).renorm_(2, 1, 1e-05).mul_(100000.0)
def forward(self, x):
out = F.normalize(x, dim=1).mm(F.normalize(self.weight, dim=0))
return out
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {'in_features': 4, 'out_features': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch
from torch.nn import Parameter
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-12
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tl.store(out_ptr0 + x2, tmp15, xmask)
@triton.jit
def triton_poi_fused_div_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (4 + x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (8 + x0), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (12 + x0), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-12
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tl.store(out_ptr0 + x2, tmp15, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_div_0[grid(16)](primals_1, buf0, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_div_1[grid(16)](primals_2, buf1, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf0, buf1, out=buf2)
del buf1
return buf2, primals_2, reinterpret_tensor(buf0, (4, 4), (1, 4), 0)
class NormedLinearNew(nn.Module):
def __init__(self, in_features, out_features):
super(NormedLinearNew, self).__init__()
self.weight = Parameter(torch.Tensor(in_features, out_features))
self.weight.data.uniform_(-1, 1).renorm_(2, 1, 1e-05).mul_(100000.0)
def forward(self, input_0):
primals_1 = self.weight
primals_2 = input_0
output = call([primals_1, primals_2])
return output[0]
|
caisarl76/LDAM-DRW
|
NormedLinear
| false | 9,871 |
[
"MIT"
] | 0 |
f3d7e98ec40bfbf2c9a806387764a54c5a31d22d
|
https://github.com/caisarl76/LDAM-DRW/tree/f3d7e98ec40bfbf2c9a806387764a54c5a31d22d
|
FocalLoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/td/ctdj5kazgiki6gdaadhqtp2x7tq2ee5ey5hqqdcoqmp54jyhf74f.py
# Topologically Sorted Source Nodes: [cross_entropy], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# cross_entropy => amax, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg1_1, [1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %amax), kwargs = {})
triton_poi_fused__log_softmax_0 = async_compile.triton('triton_poi_fused__log_softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/s5/cs5wshnrdka3xma3btqijhothwpkw4ctmtyvsdzkv6seotnt4jpf.py
# Topologically Sorted Source Nodes: [cross_entropy, neg, p, sub, pow_1, loss, mean], Original ATen: [aten._log_softmax, aten.mul, aten.sum, aten.neg, aten.exp, aten.rsub, aten.pow, aten.mean]
# Source node to ATen node mapping:
# cross_entropy => exp, log, mul, neg, sub_1, sum_1, sum_2
# loss => mul_1
# mean => mean
# neg => neg_1
# p => exp_1
# pow_1 => pow_1
# sub => sub_2
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %arg0_1), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {})
# %neg : [num_users=2] = call_function[target=torch.ops.aten.neg.default](args = (%sum_2,), kwargs = {})
# %neg_1 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%neg,), kwargs = {})
# %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg_1,), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %exp_1), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_2, 0.0), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, %neg), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%mul_1,), kwargs = {})
triton_per_fused__log_softmax_exp_mean_mul_neg_pow_rsub_sum_1 = async_compile.triton('triton_per_fused__log_softmax_exp_mean_mul_neg_pow_rsub_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax_exp_mean_mul_neg_pow_rsub_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__log_softmax_exp_mean_mul_neg_pow_rsub_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex % 16
r1 = (rindex // 16)
r2 = rindex
tmp0 = tl.load(in_ptr0 + (r0 + (64*r1)), None)
tmp2 = tl.load(in_ptr0 + (16 + r0 + (64*r1)), None)
tmp5 = tl.load(in_ptr0 + (32 + r0 + (64*r1)), None)
tmp8 = tl.load(in_ptr0 + (48 + r0 + (64*r1)), None)
tmp13 = tl.load(in_ptr1 + (r0 + (64*r1)), None)
tmp16 = tl.load(in_ptr1 + (16 + r0 + (64*r1)), None)
tmp20 = tl.load(in_ptr1 + (32 + r0 + (64*r1)), None)
tmp24 = tl.load(in_ptr1 + (48 + r0 + (64*r1)), None)
tmp1 = tl_math.exp(tmp0)
tmp3 = tl_math.exp(tmp2)
tmp4 = tmp1 + tmp3
tmp6 = tl_math.exp(tmp5)
tmp7 = tmp4 + tmp6
tmp9 = tl_math.exp(tmp8)
tmp10 = tmp7 + tmp9
tmp11 = tl_math.log(tmp10)
tmp12 = tmp0 - tmp11
tmp14 = tmp12 * tmp13
tmp15 = tmp2 - tmp11
tmp17 = tmp15 * tmp16
tmp18 = tmp14 + tmp17
tmp19 = tmp5 - tmp11
tmp21 = tmp19 * tmp20
tmp22 = tmp18 + tmp21
tmp23 = tmp8 - tmp11
tmp25 = tmp23 * tmp24
tmp26 = tmp22 + tmp25
tmp27 = -tmp26
tmp28 = -tmp27
tmp29 = tl_math.exp(tmp28)
tmp30 = 1.0
tmp31 = tmp30 - tmp29
tmp32 = tmp30 * tmp27
tmp33 = tl.broadcast_to(tmp32, [XBLOCK, RBLOCK])
tmp35 = tl.sum(tmp33, 1)[:, None]
tmp36 = 64.0
tmp37 = tmp35 / tmp36
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp37, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [cross_entropy], Original ATen: [aten._log_softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__log_softmax_0.run(arg1_1, buf0, 256, grid=grid(256), stream=stream0)
del arg1_1
buf2 = empty_strided_cuda((), (), torch.float32)
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [cross_entropy, neg, p, sub, pow_1, loss, mean], Original ATen: [aten._log_softmax, aten.mul, aten.sum, aten.neg, aten.exp, aten.rsub, aten.pow, aten.mean]
triton_per_fused__log_softmax_exp_mean_mul_neg_pow_rsub_sum_1.run(buf3, buf0, arg0_1, 1, 64, grid=grid(1), stream=stream0)
del arg0_1
del buf0
return (buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch
import torch.nn.functional as F
def focal_loss(input_values, gamma):
"""Computes the focal loss"""
p = torch.exp(-input_values)
loss = (1 - p) ** gamma * input_values
return loss.mean()
class FocalLoss(nn.Module):
def __init__(self, weight=None, gamma=0.0):
super(FocalLoss, self).__init__()
assert gamma >= 0
self.gamma = gamma
self.weight = weight
def forward(self, input, target):
return focal_loss(F.cross_entropy(input, target, reduction='none',
weight=self.weight), self.gamma)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + x3, tmp8, xmask)
@triton.jit
def triton_per_fused__log_softmax_exp_mean_mul_neg_pow_rsub_sum_1(in_out_ptr0,
in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex % 16
r1 = rindex // 16
tmp0 = tl.load(in_ptr0 + (r0 + 64 * r1), None)
tmp2 = tl.load(in_ptr0 + (16 + r0 + 64 * r1), None)
tmp5 = tl.load(in_ptr0 + (32 + r0 + 64 * r1), None)
tmp8 = tl.load(in_ptr0 + (48 + r0 + 64 * r1), None)
tmp13 = tl.load(in_ptr1 + (r0 + 64 * r1), None)
tmp16 = tl.load(in_ptr1 + (16 + r0 + 64 * r1), None)
tmp20 = tl.load(in_ptr1 + (32 + r0 + 64 * r1), None)
tmp24 = tl.load(in_ptr1 + (48 + r0 + 64 * r1), None)
tmp1 = tl_math.exp(tmp0)
tmp3 = tl_math.exp(tmp2)
tmp4 = tmp1 + tmp3
tmp6 = tl_math.exp(tmp5)
tmp7 = tmp4 + tmp6
tmp9 = tl_math.exp(tmp8)
tmp10 = tmp7 + tmp9
tmp11 = tl_math.log(tmp10)
tmp12 = tmp0 - tmp11
tmp14 = tmp12 * tmp13
tmp15 = tmp2 - tmp11
tmp17 = tmp15 * tmp16
tmp18 = tmp14 + tmp17
tmp19 = tmp5 - tmp11
tmp21 = tmp19 * tmp20
tmp22 = tmp18 + tmp21
tmp23 = tmp8 - tmp11
tmp25 = tmp23 * tmp24
tmp26 = tmp22 + tmp25
tmp27 = -tmp26
tmp28 = -tmp27
tmp29 = tl_math.exp(tmp28)
tmp30 = 1.0
tmp30 - tmp29
tmp32 = tmp30 * tmp27
tmp33 = tl.broadcast_to(tmp32, [XBLOCK, RBLOCK])
tmp35 = tl.sum(tmp33, 1)[:, None]
tmp36 = 64.0
tmp37 = tmp35 / tmp36
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp37, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__log_softmax_0[grid(256)](arg1_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg1_1
buf2 = empty_strided_cuda((), (), torch.float32)
buf3 = buf2
del buf2
triton_per_fused__log_softmax_exp_mean_mul_neg_pow_rsub_sum_1[grid(1)](
buf3, buf0, arg0_1, 1, 64, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
del buf0
return buf3,
def focal_loss(input_values, gamma):
"""Computes the focal loss"""
p = torch.exp(-input_values)
loss = (1 - p) ** gamma * input_values
return loss.mean()
class FocalLossNew(nn.Module):
def __init__(self, weight=None, gamma=0.0):
super(FocalLossNew, self).__init__()
assert gamma >= 0
self.gamma = gamma
self.weight = weight
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
caisarl76/LDAM-DRW
|
FocalLoss
| false | 9,872 |
[
"MIT"
] | 0 |
f3d7e98ec40bfbf2c9a806387764a54c5a31d22d
|
https://github.com/caisarl76/LDAM-DRW/tree/f3d7e98ec40bfbf2c9a806387764a54c5a31d22d
|
CenterLoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/wa/cwazhyh2k3kbygjysxt5lvcsufydhsqcjpvd5llwl2jtdnfqw74r.py
# Topologically Sorted Source Nodes: [mse_loss, truediv], Original ATen: [aten.mse_loss, aten.div]
# Source node to ATen node mapping:
# mse_loss => pow_1, sub, sum_1
# truediv => div
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %arg0_1), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%pow_1,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, 4), kwargs = {})
triton_per_fused_div_mse_loss_0 = async_compile.triton('triton_per_fused_div_mse_loss_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_mse_loss_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_div_mse_loss_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr1 + (r0), None)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp4 = tl.broadcast_to(tmp3, [RBLOCK])
tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0))
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp8, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [mse_loss, truediv], Original ATen: [aten.mse_loss, aten.div]
stream0 = get_raw_stream(0)
triton_per_fused_div_mse_loss_0.run(buf1, arg1_1, arg0_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class CenterLoss(nn.Module):
def __init__(self):
super(CenterLoss, self).__init__()
self.l2_loss = nn.MSELoss(reduction='sum')
def forward(self, outputs, targets):
return self.l2_loss(outputs, targets) / outputs.size(0)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_div_mse_loss_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel,
rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp4 = tl.broadcast_to(tmp3, [RBLOCK])
tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0))
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp8, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_div_mse_loss_0[grid(1)](buf1, arg1_1, arg0_1, 1,
256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf1,
class CenterLossNew(nn.Module):
def __init__(self):
super(CenterLossNew, self).__init__()
self.l2_loss = nn.MSELoss(reduction='sum')
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
bysen32/WS-DAN.PyTorch
|
CenterLoss
| false | 9,873 |
[
"MIT"
] | 0 |
de206591f037ea82fc52eaf6915de7f64375e0c9
|
https://github.com/bysen32/WS-DAN.PyTorch/tree/de206591f037ea82fc52eaf6915de7f64375e0c9
|
PatchEmbed3D
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/xv/cxvyxp6qh5llintn5jz7ixmjsap4tzaig7itbosate6caxtzghom.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [2, 4, 4], [0, 0, 0], [1, 1, 1], False, [0, 0, 0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4194304],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 3145728
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 8192) % 96
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 3, 64, 64, 64), (786432, 262144, 4096, 64, 1))
assert_size_stride(primals_2, (96, 3, 2, 4, 4), (96, 32, 16, 4, 1))
assert_size_stride(primals_3, (96, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(2, 4, 4), padding=(0, 0, 0), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 96, 32, 16, 16), (786432, 8192, 256, 16, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(buf1, primals_3, 3145728, grid=grid(3145728), stream=stream0)
del primals_3
return (buf1, primals_1, primals_2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 3, 64, 64, 64), (786432, 262144, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((96, 3, 2, 4, 4), (96, 32, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((96, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.utils.data
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.parallel
class PatchEmbed3D(nn.Module):
""" Video to Patch Embedding.
Args:
patch_size (int): Patch token size. Default: (2,4,4).
in_channel (int): Number of input video channels. Default: 3.
embed_dim (int): Number of linear projection output channels. Default: 96.
norm_layer (nn.Module, optional): Normalization layer. Default: None
"""
def __init__(self, patch_size=(2, 4, 4), in_channel=3, embed_dim=96,
norm_layer=None):
super().__init__()
self.patch_size = patch_size
self.in_channel = in_channel
self.embed_dim = embed_dim
self.proj = nn.Conv3d(in_channel, embed_dim, kernel_size=patch_size,
stride=patch_size)
if norm_layer is not None:
self.norm = norm_layer(embed_dim)
else:
self.norm = None
def forward(self, x):
"""Forward function."""
_, _, D, H, W = x.size()
if W % self.patch_size[2] != 0:
x = F.pad(x, (0, self.patch_size[2] - W % self.patch_size[2]))
if H % self.patch_size[1] != 0:
x = F.pad(x, (0, 0, 0, self.patch_size[1] - H % self.patch_size[1])
)
if D % self.patch_size[0] != 0:
x = F.pad(x, (0, 0, 0, 0, 0, self.patch_size[0] - D % self.
patch_size[0]))
x = self.proj(x)
if self.norm is not None:
D, Wh, Ww = x.size(2), x.size(3), x.size(4)
x = x.flatten(2).transpose(1, 2)
x = self.norm(x)
x = x.transpose(1, 2).view(-1, self.embed_dim, D, Wh, Ww)
return x
def get_inputs():
return [torch.rand([4, 3, 64, 64, 64])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.utils.data
import torch.nn as nn
import torch.nn.parallel
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 8192 % 96
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, None)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 3, 64, 64, 64), (786432, 262144, 4096,
64, 1))
assert_size_stride(primals_2, (96, 3, 2, 4, 4), (96, 32, 16, 4, 1))
assert_size_stride(primals_3, (96,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(2,
4, 4), padding=(0, 0, 0), dilation=(1, 1, 1), transposed=False,
output_padding=(0, 0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 96, 32, 16, 16), (786432, 8192, 256,
16, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(3145728)](buf1, primals_3,
3145728, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_3
return buf1, primals_1, primals_2
class PatchEmbed3DNew(nn.Module):
""" Video to Patch Embedding.
Args:
patch_size (int): Patch token size. Default: (2,4,4).
in_channel (int): Number of input video channels. Default: 3.
embed_dim (int): Number of linear projection output channels. Default: 96.
norm_layer (nn.Module, optional): Normalization layer. Default: None
"""
def __init__(self, patch_size=(2, 4, 4), in_channel=3, embed_dim=96,
norm_layer=None):
super().__init__()
self.patch_size = patch_size
self.in_channel = in_channel
self.embed_dim = embed_dim
self.proj = nn.Conv3d(in_channel, embed_dim, kernel_size=patch_size,
stride=patch_size)
if norm_layer is not None:
self.norm = norm_layer(embed_dim)
else:
self.norm = None
def forward(self, input_0):
primals_2 = self.proj.weight
primals_3 = self.proj.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
HarshSulakhe/pytorch_connectomics
|
PatchEmbed3D
| false | 9,874 |
[
"MIT"
] | 0 |
73402e654afde69a43a5836cc90a32ef75c75dc2
|
https://github.com/HarshSulakhe/pytorch_connectomics/tree/73402e654afde69a43a5836cc90a32ef75c75dc2
|
PositionAttentionModule
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/u3/cu3litezfpnwhpnfnfuj6dtimz6ml42wmcwnwxlnovd4p5lvyin4.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048, 4096], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 2048
xnumel = 4096
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 512
y1 = (yindex // 512)
tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), None, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (512*x2) + (2097152*y1)), tmp0, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/oc/cochsno6wpkwamgsqz5legelnxxchuje5twfzhozvusus3e5bzmo.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 262144
xnumel = 9
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 512
y1 = (yindex // 512)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (512*x2) + (4608*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/a3/ca3b7scxnvwtz5kednjbz6knhbbsrdcpcqxmv2rtdrxdr73frape.py
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# linear => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_2 = async_compile.triton('triton_poi_fused_clone_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8388608],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8388608
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 512
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x2), tmp2, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/ub/cubtzfxsytxlbhhtcnbpcrd7btnmqhljo6a5wycfz3ohm45phqdm.py
# Topologically Sorted Source Nodes: [wrapped_sqrt, att_1], Original ATen: [aten.sqrt, aten._softmax]
# Source node to ATen node mapping:
# att_1 => div_1, exp, sum_1
# wrapped_sqrt => full_default
# Graph fragment:
# %full_default : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([], 22.62741699796952), kwargs = {dtype: torch.float64, layout: torch.strided, device: cpu, pin_memory: False})
# %scalar_tensor_default : [num_users=2] = call_function[target=torch.ops.aten.scalar_tensor.default](args = (1,), kwargs = {dtype: torch.float32, device: cuda:0, pin_memory: False})
# %ge_scalar : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%full_default, 0), kwargs = {})
# %neg_default : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%scalar_tensor_default,), kwargs = {})
# %where_self : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%ge_scalar, %scalar_tensor_default, %neg_default), kwargs = {})
# %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_12, %where_self), kwargs = {})
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {})
# %mul_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where_self, %full_default), kwargs = {})
# %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, %mul_tensor_1), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_red_fused__softmax_sqrt_3 = async_compile.triton('triton_red_fused__softmax_sqrt_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[16384, 4096],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused__softmax_sqrt_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused__softmax_sqrt_3(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 16384
rnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex
_tmp9 = tl.full([XBLOCK, RBLOCK], float("-inf"), tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp0 = tl.load(in_ptr0 + (r1 + (4096*x0)), rmask, eviction_policy='evict_last', other=0.0)
tmp1 = tl.full([1, 1], 22.62741699796952, tl.float64)
tmp2 = tl.full([1, 1], 0.0, tl.float64)
tmp3 = tmp1 >= tmp2
tmp4 = 1.0
tmp5 = -1.0
tmp6 = tl.where(tmp3, tmp4, tmp5)
tmp7 = tmp0 * tmp6
tmp8 = tl.broadcast_to(tmp7, [XBLOCK, RBLOCK])
tmp10 = triton_helpers.maximum(_tmp9, tmp8)
_tmp9 = tl.where(rmask, tmp10, _tmp9)
tmp9 = triton_helpers.max2(_tmp9, 1)[:, None]
_tmp26 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp11 = tl.load(in_ptr0 + (r1 + (4096*x0)), rmask, eviction_policy='evict_last', other=0.0)
tmp12 = tl.full([1, 1], 22.62741699796952, tl.float64)
tmp13 = tl.full([1, 1], 0.0, tl.float64)
tmp14 = tmp12 >= tmp13
tmp15 = 1.0
tmp16 = -1.0
tmp17 = tl.where(tmp14, tmp15, tmp16)
tmp18 = tmp11 * tmp17
tmp19 = tmp18 - tmp9
tmp20 = tmp17.to(tl.float64)
tmp21 = tmp20 * tmp12
tmp22 = tmp21.to(tl.float32)
tmp23 = tmp19 / tmp22
tmp24 = tl_math.exp(tmp23)
tmp25 = tl.broadcast_to(tmp24, [XBLOCK, RBLOCK])
tmp27 = _tmp26 + tmp25
_tmp26 = tl.where(rmask, tmp27, _tmp26)
tmp26 = tl.sum(_tmp26, 1)[:, None]
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp28 = tl.load(in_ptr0 + (r1 + (4096*x0)), rmask, eviction_policy='evict_first', other=0.0)
tmp29 = tl.full([1, 1], 22.62741699796952, tl.float64)
tmp30 = tl.full([1, 1], 0.0, tl.float64)
tmp31 = tmp29 >= tmp30
tmp32 = 1.0
tmp33 = -1.0
tmp34 = tl.where(tmp31, tmp32, tmp33)
tmp35 = tmp28 * tmp34
tmp36 = tmp35 - tmp9
tmp37 = tmp34.to(tl.float64)
tmp38 = tmp37 * tmp29
tmp39 = tmp38.to(tl.float32)
tmp40 = tmp36 / tmp39
tmp41 = tl_math.exp(tmp40)
tmp42 = tmp41 / tmp26
tl.store(out_ptr2 + (r1 + (4096*x0)), tmp42, rmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args
args.clear()
assert_size_stride(primals_1, (4, 512, 64, 64), (2097152, 4096, 64, 1))
assert_size_stride(primals_2, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_3, (512, ), (1, ))
assert_size_stride(primals_4, (512, 512), (512, 1))
assert_size_stride(primals_5, (512, ), (1, ))
assert_size_stride(primals_6, (512, 512), (512, 1))
assert_size_stride(primals_7, (512, ), (1, ))
assert_size_stride(primals_8, (512, 512), (512, 1))
assert_size_stride(primals_9, (512, ), (1, ))
assert_size_stride(primals_10, (512, 512), (512, 1))
assert_size_stride(primals_11, (512, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 512, 64, 64), (2097152, 1, 32768, 512), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
stream0 = get_raw_stream(0)
triton_poi_fused_0.run(primals_1, buf0, 2048, 4096, grid=grid(2048, 4096), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_1.run(primals_2, buf1, 262144, 9, grid=grid(262144, 9), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf0, buf1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 512, 64, 64), (2097152, 1, 32768, 512))
buf3 = reinterpret_tensor(buf2, (4, 4096, 512), (2097152, 512, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.clone]
triton_poi_fused_clone_2.run(buf3, primals_3, 8388608, grid=grid(8388608), stream=stream0)
del primals_3
buf4 = empty_strided_cuda((16384, 512), (512, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf3, (16384, 512), (512, 1), 0), reinterpret_tensor(primals_4, (512, 512), (1, 512), 0), out=buf4)
buf5 = empty_strided_cuda((16384, 512), (512, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf3, (16384, 512), (512, 1), 0), reinterpret_tensor(primals_6, (512, 512), (1, 512), 0), out=buf5)
buf6 = empty_strided_cuda((16384, 512), (512, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf3, (16384, 512), (512, 1), 0), reinterpret_tensor(primals_8, (512, 512), (1, 512), 0), out=buf6)
buf7 = reinterpret_tensor(buf4, (4, 4096, 512), (2097152, 512, 1), 0); del buf4 # reuse
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.add]
triton_poi_fused_clone_2.run(buf7, primals_5, 8388608, grid=grid(8388608), stream=stream0)
del primals_5
buf8 = reinterpret_tensor(buf5, (4, 4096, 512), (2097152, 512, 1), 0); del buf5 # reuse
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.add]
triton_poi_fused_clone_2.run(buf8, primals_7, 8388608, grid=grid(8388608), stream=stream0)
del primals_7
buf9 = empty_strided_cuda((4, 4096, 4096), (16777216, 4096, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm]
extern_kernels.bmm(buf7, reinterpret_tensor(buf8, (4, 512, 4096), (2097152, 1, 512), 0), out=buf9)
buf12 = empty_strided_cuda((4, 1, 4096, 4096), (16777216, 1, 4096, 1), torch.float32)
# Topologically Sorted Source Nodes: [wrapped_sqrt, att_1], Original ATen: [aten.sqrt, aten._softmax]
triton_red_fused__softmax_sqrt_3.run(buf9, buf12, 16384, 4096, grid=grid(16384), stream=stream0)
del buf9
buf13 = reinterpret_tensor(buf6, (4, 4096, 512), (2097152, 512, 1), 0); del buf6 # reuse
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.add]
triton_poi_fused_clone_2.run(buf13, primals_9, 8388608, grid=grid(8388608), stream=stream0)
del primals_9
buf14 = empty_strided_cuda((4, 4096, 512), (2097152, 512, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf12, (4, 4096, 4096), (16777216, 4096, 1), 0), buf13, out=buf14)
buf15 = empty_strided_cuda((16384, 512), (512, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_11, reinterpret_tensor(buf14, (16384, 512), (512, 1), 0), reinterpret_tensor(primals_10, (512, 512), (1, 512), 0), alpha=1, beta=1, out=buf15)
del primals_11
return (reinterpret_tensor(buf15, (4, 4096, 512), (2097152, 512, 1), 0), buf0, buf1, reinterpret_tensor(buf3, (16384, 512), (512, 1), 0), buf12, reinterpret_tensor(buf14, (16384, 512), (512, 1), 0), primals_10, reinterpret_tensor(buf13, (4, 512, 4096), (2097152, 1, 512), 0), reinterpret_tensor(buf7, (4, 512, 4096), (2097152, 1, 512), 0), buf8, primals_8, primals_6, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 512, 64, 64), (2097152, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((512, 512), (512, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((512, 512), (512, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((512, 512), (512, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((512, 512), (512, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import numpy as np
from torch import nn
from torch.nn import init
class ScaledDotProductAttention(nn.Module):
"""
Scaled dot-product attention
"""
def __init__(self, d_model, d_k, d_v, h, dropout=0.1):
"""
:param d_model: Output dimensionality of the model
:param d_k: Dimensionality of queries and keys
:param d_v: Dimensionality of values
:param h: Number of heads
"""
super(ScaledDotProductAttention, self).__init__()
self.fc_q = nn.Linear(d_model, h * d_k)
self.fc_k = nn.Linear(d_model, h * d_k)
self.fc_v = nn.Linear(d_model, h * d_v)
self.fc_o = nn.Linear(h * d_v, d_model)
self.dropout = nn.Dropout(dropout)
self.d_model = d_model
self.d_k = d_k
self.d_v = d_v
self.h = h
self.init_weights()
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, std=0.001)
if m.bias is not None:
init.constant_(m.bias, 0)
def forward(self, queries, keys, values, attention_mask=None,
attention_weights=None):
"""
Computes
:param queries: Queries (b_s, nq, d_model)
:param keys: Keys (b_s, nk, d_model)
:param values: Values (b_s, nk, d_model)
:param attention_mask: Mask over attention values (b_s, h, nq, nk). True indicates masking.
:param attention_weights: Multiplicative weights for attention values (b_s, h, nq, nk).
:return:
"""
b_s, nq = queries.shape[:2]
nk = keys.shape[1]
q = self.fc_q(queries).view(b_s, nq, self.h, self.d_k).permute(0, 2,
1, 3)
k = self.fc_k(keys).view(b_s, nk, self.h, self.d_k).permute(0, 2, 3, 1)
v = self.fc_v(values).view(b_s, nk, self.h, self.d_v).permute(0, 2,
1, 3)
att = torch.matmul(q, k) / np.sqrt(self.d_k)
if attention_weights is not None:
att = att * attention_weights
if attention_mask is not None:
att = att.masked_fill(attention_mask, -np.inf)
att = torch.softmax(att, -1)
att = self.dropout(att)
out = torch.matmul(att, v).permute(0, 2, 1, 3).contiguous().view(b_s,
nq, self.h * self.d_v)
out = self.fc_o(out)
return out
class PositionAttentionModule(nn.Module):
def __init__(self, d_model=512, kernel_size=3, H=7, W=7):
super().__init__()
self.cnn = nn.Conv2d(d_model, d_model, kernel_size=kernel_size,
padding=(kernel_size - 1) // 2)
self.pa = ScaledDotProductAttention(d_model, d_k=d_model, d_v=
d_model, h=1)
def forward(self, x):
bs, c, _h, _w = x.shape
y = self.cnn(x)
y = y.view(bs, c, -1).permute(0, 2, 1)
y = self.pa(y, y, y)
return y
def get_inputs():
return [torch.rand([4, 512, 64, 64])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import numpy as np
from torch import nn
from torch.nn import init
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 512
y1 = yindex // 512
tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), None, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 512 * x2 + 2097152 * y1), tmp0, None)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)
) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 512
y1 = yindex // 512
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 512 * x2 + 4608 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_clone_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 512
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x2, tmp2, None)
@triton.jit
def triton_red_fused__softmax_sqrt_3(in_ptr0, out_ptr2, xnumel, rnumel,
XBLOCK: tl.constexpr, RBLOCK: tl.constexpr):
rnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex
_tmp9 = tl.full([XBLOCK, RBLOCK], float('-inf'), tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp0 = tl.load(in_ptr0 + (r1 + 4096 * x0), rmask, eviction_policy=
'evict_last', other=0.0)
tmp1 = tl.full([1, 1], 22.62741699796952, tl.float64)
tmp2 = tl.full([1, 1], 0.0, tl.float64)
tmp3 = tmp1 >= tmp2
tmp4 = 1.0
tmp5 = -1.0
tmp6 = tl.where(tmp3, tmp4, tmp5)
tmp7 = tmp0 * tmp6
tmp8 = tl.broadcast_to(tmp7, [XBLOCK, RBLOCK])
tmp10 = triton_helpers.maximum(_tmp9, tmp8)
_tmp9 = tl.where(rmask, tmp10, _tmp9)
tmp9 = triton_helpers.max2(_tmp9, 1)[:, None]
_tmp26 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp11 = tl.load(in_ptr0 + (r1 + 4096 * x0), rmask, eviction_policy=
'evict_last', other=0.0)
tmp12 = tl.full([1, 1], 22.62741699796952, tl.float64)
tmp13 = tl.full([1, 1], 0.0, tl.float64)
tmp14 = tmp12 >= tmp13
tmp15 = 1.0
tmp16 = -1.0
tmp17 = tl.where(tmp14, tmp15, tmp16)
tmp18 = tmp11 * tmp17
tmp19 = tmp18 - tmp9
tmp20 = tmp17.to(tl.float64)
tmp21 = tmp20 * tmp12
tmp22 = tmp21.to(tl.float32)
tmp23 = tmp19 / tmp22
tmp24 = tl_math.exp(tmp23)
tmp25 = tl.broadcast_to(tmp24, [XBLOCK, RBLOCK])
tmp27 = _tmp26 + tmp25
_tmp26 = tl.where(rmask, tmp27, _tmp26)
tmp26 = tl.sum(_tmp26, 1)[:, None]
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp28 = tl.load(in_ptr0 + (r1 + 4096 * x0), rmask, eviction_policy=
'evict_first', other=0.0)
tmp29 = tl.full([1, 1], 22.62741699796952, tl.float64)
tmp30 = tl.full([1, 1], 0.0, tl.float64)
tmp31 = tmp29 >= tmp30
tmp32 = 1.0
tmp33 = -1.0
tmp34 = tl.where(tmp31, tmp32, tmp33)
tmp35 = tmp28 * tmp34
tmp36 = tmp35 - tmp9
tmp37 = tmp34.to(tl.float64)
tmp38 = tmp37 * tmp29
tmp39 = tmp38.to(tl.float32)
tmp40 = tmp36 / tmp39
tmp41 = tl_math.exp(tmp40)
tmp42 = tmp41 / tmp26
tl.store(out_ptr2 + (r1 + 4096 * x0), tmp42, rmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11) = args
args.clear()
assert_size_stride(primals_1, (4, 512, 64, 64), (2097152, 4096, 64, 1))
assert_size_stride(primals_2, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_3, (512,), (1,))
assert_size_stride(primals_4, (512, 512), (512, 1))
assert_size_stride(primals_5, (512,), (1,))
assert_size_stride(primals_6, (512, 512), (512, 1))
assert_size_stride(primals_7, (512,), (1,))
assert_size_stride(primals_8, (512, 512), (512, 1))
assert_size_stride(primals_9, (512,), (1,))
assert_size_stride(primals_10, (512, 512), (512, 1))
assert_size_stride(primals_11, (512,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 512, 64, 64), (2097152, 1, 32768, 512
), torch.float32)
get_raw_stream(0)
triton_poi_fused_0[grid(2048, 4096)](primals_1, buf0, 2048, 4096,
XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512),
torch.float32)
triton_poi_fused_1[grid(262144, 9)](primals_2, buf1, 262144, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_2
buf2 = extern_kernels.convolution(buf0, buf1, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 512, 64, 64), (2097152, 1, 32768, 512))
buf3 = reinterpret_tensor(buf2, (4, 4096, 512), (2097152, 512, 1), 0)
del buf2
triton_poi_fused_clone_2[grid(8388608)](buf3, primals_3, 8388608,
XBLOCK=1024, num_warps=4, num_stages=1)
del primals_3
buf4 = empty_strided_cuda((16384, 512), (512, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf3, (16384, 512), (512, 1),
0), reinterpret_tensor(primals_4, (512, 512), (1, 512), 0), out
=buf4)
buf5 = empty_strided_cuda((16384, 512), (512, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf3, (16384, 512), (512, 1),
0), reinterpret_tensor(primals_6, (512, 512), (1, 512), 0), out
=buf5)
buf6 = empty_strided_cuda((16384, 512), (512, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf3, (16384, 512), (512, 1),
0), reinterpret_tensor(primals_8, (512, 512), (1, 512), 0), out
=buf6)
buf7 = reinterpret_tensor(buf4, (4, 4096, 512), (2097152, 512, 1), 0)
del buf4
triton_poi_fused_clone_2[grid(8388608)](buf7, primals_5, 8388608,
XBLOCK=1024, num_warps=4, num_stages=1)
del primals_5
buf8 = reinterpret_tensor(buf5, (4, 4096, 512), (2097152, 512, 1), 0)
del buf5
triton_poi_fused_clone_2[grid(8388608)](buf8, primals_7, 8388608,
XBLOCK=1024, num_warps=4, num_stages=1)
del primals_7
buf9 = empty_strided_cuda((4, 4096, 4096), (16777216, 4096, 1),
torch.float32)
extern_kernels.bmm(buf7, reinterpret_tensor(buf8, (4, 512, 4096), (
2097152, 1, 512), 0), out=buf9)
buf12 = empty_strided_cuda((4, 1, 4096, 4096), (16777216, 1, 4096,
1), torch.float32)
triton_red_fused__softmax_sqrt_3[grid(16384)](buf9, buf12, 16384,
4096, XBLOCK=1, RBLOCK=2048, num_warps=16, num_stages=1)
del buf9
buf13 = reinterpret_tensor(buf6, (4, 4096, 512), (2097152, 512, 1), 0)
del buf6
triton_poi_fused_clone_2[grid(8388608)](buf13, primals_9, 8388608,
XBLOCK=1024, num_warps=4, num_stages=1)
del primals_9
buf14 = empty_strided_cuda((4, 4096, 512), (2097152, 512, 1), torch
.float32)
extern_kernels.bmm(reinterpret_tensor(buf12, (4, 4096, 4096), (
16777216, 4096, 1), 0), buf13, out=buf14)
buf15 = empty_strided_cuda((16384, 512), (512, 1), torch.float32)
extern_kernels.addmm(primals_11, reinterpret_tensor(buf14, (16384,
512), (512, 1), 0), reinterpret_tensor(primals_10, (512, 512),
(1, 512), 0), alpha=1, beta=1, out=buf15)
del primals_11
return reinterpret_tensor(buf15, (4, 4096, 512), (2097152, 512, 1), 0
), buf0, buf1, reinterpret_tensor(buf3, (16384, 512), (512, 1), 0
), buf12, reinterpret_tensor(buf14, (16384, 512), (512, 1), 0
), primals_10, reinterpret_tensor(buf13, (4, 512, 4096), (2097152,
1, 512), 0), reinterpret_tensor(buf7, (4, 512, 4096), (2097152, 1,
512), 0), buf8, primals_8, primals_6, primals_4
class ScaledDotProductAttention(nn.Module):
"""
Scaled dot-product attention
"""
def __init__(self, d_model, d_k, d_v, h, dropout=0.1):
"""
:param d_model: Output dimensionality of the model
:param d_k: Dimensionality of queries and keys
:param d_v: Dimensionality of values
:param h: Number of heads
"""
super(ScaledDotProductAttention, self).__init__()
self.fc_q = nn.Linear(d_model, h * d_k)
self.fc_k = nn.Linear(d_model, h * d_k)
self.fc_v = nn.Linear(d_model, h * d_v)
self.fc_o = nn.Linear(h * d_v, d_model)
self.dropout = nn.Dropout(dropout)
self.d_model = d_model
self.d_k = d_k
self.d_v = d_v
self.h = h
self.init_weights()
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, std=0.001)
if m.bias is not None:
init.constant_(m.bias, 0)
def forward(self, queries, keys, values, attention_mask=None,
attention_weights=None):
"""
Computes
:param queries: Queries (b_s, nq, d_model)
:param keys: Keys (b_s, nk, d_model)
:param values: Values (b_s, nk, d_model)
:param attention_mask: Mask over attention values (b_s, h, nq, nk). True indicates masking.
:param attention_weights: Multiplicative weights for attention values (b_s, h, nq, nk).
:return:
"""
b_s, nq = queries.shape[:2]
nk = keys.shape[1]
q = self.fc_q(queries).view(b_s, nq, self.h, self.d_k).permute(0, 2,
1, 3)
k = self.fc_k(keys).view(b_s, nk, self.h, self.d_k).permute(0, 2, 3, 1)
v = self.fc_v(values).view(b_s, nk, self.h, self.d_v).permute(0, 2,
1, 3)
att = torch.matmul(q, k) / np.sqrt(self.d_k)
if attention_weights is not None:
att = att * attention_weights
if attention_mask is not None:
att = att.masked_fill(attention_mask, -np.inf)
att = torch.softmax(att, -1)
att = self.dropout(att)
out = torch.matmul(att, v).permute(0, 2, 1, 3).contiguous().view(b_s,
nq, self.h * self.d_v)
out = self.fc_o(out)
return out
class PositionAttentionModuleNew(nn.Module):
def __init__(self, d_model=512, kernel_size=3, H=7, W=7):
super().__init__()
self.cnn = nn.Conv2d(d_model, d_model, kernel_size=kernel_size,
padding=(kernel_size - 1) // 2)
self.pa = ScaledDotProductAttention(d_model, d_k=d_model, d_v=
d_model, h=1)
def forward(self, input_0):
primals_2 = self.cnn.weight
primals_3 = self.cnn.bias
primals_4 = self.pa.fc_q.weight
primals_5 = self.pa.fc_q.bias
primals_6 = self.pa.fc_k.weight
primals_7 = self.pa.fc_k.bias
primals_8 = self.pa.fc_v.weight
primals_9 = self.pa.fc_v.bias
primals_10 = self.pa.fc_o.weight
primals_11 = self.pa.fc_o.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11])
return output[0]
|
LiChengChen666/DetectDee
|
PositionAttentionModule
| false | 9,875 |
[
"Apache-2.0"
] | 0 |
1e6aaa0d15b1fc12d1342d8a922004e372b5f437
|
https://github.com/LiChengChen666/DetectDee/tree/1e6aaa0d15b1fc12d1342d8a922004e372b5f437
|
tri_att
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/ni/cniyxcyxhhw75myuraxjok7vp42hokitnjolwdzbfiliok2xucyk.py
# Topologically Sorted Source Nodes: [f_norm], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# f_norm => exp, sum_1
# Graph fragment:
# %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, 1), kwargs = {})
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [2], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {})
# %mul_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_tensor, 2), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%mul_tensor_1,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [2], True), kwargs = {})
# %_scaled_dot_product_efficient_attention_default : [num_users=1] = call_function[target=torch.ops.aten._scaled_dot_product_efficient_attention.default](args = (%unsqueeze_default, %unsqueeze_default_1, %unsqueeze_default_2, None, False), kwargs = {scale: 1.0})
triton_per_fused__softmax_0 = async_compile.triton('triton_per_fused__softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__softmax_0(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.where(xmask, tmp3, float("-inf"))
tmp6 = triton_helpers.max2(tmp5, 1)[:, None]
tmp7 = tmp2 - tmp6
tmp8 = 2.0
tmp9 = tmp7 * tmp8
tmp10 = tl_math.exp(tmp9)
tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK])
tmp13 = tl.where(xmask, tmp11, 0)
tmp14 = tl.sum(tmp13, 1)[:, None]
tmp15 = tmp10 / tmp14
tl.store(out_ptr2 + (r1 + (16*x0)), tmp15, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf2 = empty_strided_cuda((1, 4, 4, 16), (256, 64, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [f_norm], Original ATen: [aten._softmax]
stream0 = get_raw_stream(0)
triton_per_fused__softmax_0.run(arg0_1, buf2, 16, 16, grid=grid(16), stream=stream0)
# Topologically Sorted Source Nodes: [], Original ATen: []
buf3 = torch.ops.aten._scaled_dot_product_efficient_attention.default(buf2, reinterpret_tensor(arg0_1, (1, 4, 4, 16), (256, 64, 16, 1), 0), reinterpret_tensor(arg0_1, (1, 4, 4, 16), (256, 64, 16, 1), 0), None, False, scale=1.0)
del arg0_1
del buf2
buf4 = buf3[0]
del buf3
return (reinterpret_tensor(buf4, (4, 4, 4, 4), (16, 64, 4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class tri_att(nn.Module):
def __init__(self):
super(tri_att, self).__init__()
self.feature_norm = nn.Softmax(dim=2)
self.bilinear_norm = nn.Softmax(dim=2)
def forward(self, x):
n = x.size(0)
c = x.size(1)
h = x.size(2)
w = x.size(3)
f = x.reshape(n, c, -1)
f_norm = self.feature_norm(f * 2)
bilinear = f_norm.bmm(f.transpose(1, 2))
bilinear = self.bilinear_norm(bilinear)
trilinear_atts = bilinear.bmm(f).view(n, c, h, w).detach()
return trilinear_atts
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused__softmax_0(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK:
tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.where(xmask, tmp3, float('-inf'))
tmp6 = triton_helpers.max2(tmp5, 1)[:, None]
tmp7 = tmp2 - tmp6
tmp8 = 2.0
tmp9 = tmp7 * tmp8
tmp10 = tl_math.exp(tmp9)
tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK])
tmp13 = tl.where(xmask, tmp11, 0)
tmp14 = tl.sum(tmp13, 1)[:, None]
tmp15 = tmp10 / tmp14
tl.store(out_ptr2 + (r1 + 16 * x0), tmp15, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf2 = empty_strided_cuda((1, 4, 4, 16), (256, 64, 16, 1), torch.
float32)
get_raw_stream(0)
triton_per_fused__softmax_0[grid(16)](arg0_1, buf2, 16, 16, XBLOCK=
1, num_warps=2, num_stages=1)
buf3 = torch.ops.aten._scaled_dot_product_efficient_attention.default(
buf2, reinterpret_tensor(arg0_1, (1, 4, 4, 16), (256, 64, 16, 1
), 0), reinterpret_tensor(arg0_1, (1, 4, 4, 16), (256, 64, 16,
1), 0), None, False, scale=1.0)
del arg0_1
del buf2
buf4 = buf3[0]
del buf3
return reinterpret_tensor(buf4, (4, 4, 4, 4), (16, 64, 4, 1), 0),
class tri_attNew(nn.Module):
def __init__(self):
super(tri_attNew, self).__init__()
self.feature_norm = nn.Softmax(dim=2)
self.bilinear_norm = nn.Softmax(dim=2)
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
bysen32/WS-DAN.PyTorch
|
tri_att
| false | 9,876 |
[
"MIT"
] | 0 |
de206591f037ea82fc52eaf6915de7f64375e0c9
|
https://github.com/bysen32/WS-DAN.PyTorch/tree/de206591f037ea82fc52eaf6915de7f64375e0c9
|
CharbonnierCompLoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/lc/clcduj6g2ymqc7h3ffa4va3domvxzvdiu55ogmltuljc3midllwe.py
# Topologically Sorted Source Nodes: [mul, sub, mul_1, pred_merged, sub_1, pow_1, add_1, loss, loss_1, mul_2], Original ATen: [aten.mul, aten.rsub, aten.add, aten.sub, aten.pow, aten.sqrt, aten.mean]
# Source node to ATen node mapping:
# add_1 => add_1
# loss => sqrt
# loss_1 => mean
# mul => mul
# mul_1 => mul_1
# mul_2 => mul_2
# pow_1 => pow_1
# pred_merged => add
# sub => sub
# sub_1 => sub_1
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %arg1_1), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %arg0_1), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %arg2_1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %arg3_1), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_1, 2), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_1, 1e-12), kwargs = {})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add_1,), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sqrt,), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 1.0), kwargs = {})
triton_per_fused_add_mean_mul_pow_rsub_sqrt_sub_0 = async_compile.triton('triton_per_fused_add_mean_mul_pow_rsub_sqrt_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {5: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 6), equal_to_1=(5,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mean_mul_pow_rsub_sqrt_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 4, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_mean_mul_pow_rsub_sqrt_sub_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr1 + (r0), None)
tmp5 = tl.load(in_ptr2 + (r0), None)
tmp8 = tl.load(in_ptr3 + (r0), None)
tmp2 = tmp0 * tmp1
tmp3 = 1.0
tmp4 = tmp3 - tmp0
tmp6 = tmp4 * tmp5
tmp7 = tmp2 + tmp6
tmp9 = tmp7 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = 1e-12
tmp12 = tmp10 + tmp11
tmp13 = libdevice.sqrt(tmp12)
tmp14 = tl.broadcast_to(tmp13, [RBLOCK])
tmp16 = triton_helpers.promote_to_tensor(tl.sum(tmp14, 0))
tmp17 = 256.0
tmp18 = tmp16 / tmp17
tmp19 = tmp18 * tmp3
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp19, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1, arg3_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [mul, sub, mul_1, pred_merged, sub_1, pow_1, add_1, loss, loss_1, mul_2], Original ATen: [aten.mul, aten.rsub, aten.add, aten.sub, aten.pow, aten.sqrt, aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_add_mean_mul_pow_rsub_sqrt_sub_0.run(buf1, arg0_1, arg1_1, arg2_1, arg3_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
del arg2_1
del arg3_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg3_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1, arg3_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import functools
import torch
import torch.nn as nn
from torch.nn import functional as F
def reduce_loss(loss, reduction):
"""Reduce loss as specified.
Args:
loss (Tensor): Elementwise loss tensor.
reduction (str): Options are "none", "mean" and "sum".
Returns:
Tensor: Reduced loss tensor.
"""
reduction_enum = F._Reduction.get_enum(reduction)
if reduction_enum == 0:
return loss
if reduction_enum == 1:
return loss.mean()
return loss.sum()
def mask_reduce_loss(loss, weight=None, reduction='mean', sample_wise=False):
"""Apply element-wise weight and reduce loss.
Args:
loss (Tensor): Element-wise loss.
weight (Tensor): Element-wise weights. Default: None.
reduction (str): Same as built-in losses of PyTorch. Options are
"none", "mean" and "sum". Default: 'mean'.
sample_wise (bool): Whether calculate the loss sample-wise. This
argument only takes effect when `reduction` is 'mean' and `weight`
(argument of `forward()`) is not None. It will first reduces loss
with 'mean' per-sample, and then it means over all the samples.
Default: False.
Returns:
Tensor: Processed loss values.
"""
if weight is not None:
assert weight.dim() == loss.dim()
assert weight.size(1) == 1 or weight.size(1) == loss.size(1)
loss = loss * weight
if weight is None or reduction == 'sum':
loss = reduce_loss(loss, reduction)
elif reduction == 'mean':
if weight.size(1) == 1:
weight = weight.expand_as(loss)
eps = 1e-12
if sample_wise:
weight = weight.sum(dim=[1, 2, 3], keepdim=True)
loss = (loss / (weight + eps)).sum() / weight.size(0)
else:
loss = loss.sum() / (weight.sum() + eps)
return loss
def masked_loss(loss_func):
"""Create a masked version of a given loss function.
To use this decorator, the loss function must have the signature like
`loss_func(pred, target, **kwargs)`. The function only needs to compute
element-wise loss without any reduction. This decorator will add weight
and reduction arguments to the function. The decorated function will have
the signature like `loss_func(pred, target, weight=None, reduction='mean',
avg_factor=None, **kwargs)`.
:Example:
>>> import torch
>>> @masked_loss
>>> def l1_loss(pred, target):
>>> return (pred - target).abs()
>>> pred = torch.Tensor([0, 2, 3])
>>> target = torch.Tensor([1, 1, 1])
>>> weight = torch.Tensor([1, 0, 1])
>>> l1_loss(pred, target)
tensor(1.3333)
>>> l1_loss(pred, target, weight)
tensor(1.5000)
>>> l1_loss(pred, target, reduction='none')
tensor([1., 1., 2.])
>>> l1_loss(pred, target, weight, reduction='sum')
tensor(3.)
"""
@functools.wraps(loss_func)
def wrapper(pred, target, weight=None, reduction='mean', sample_wise=
False, **kwargs):
loss = loss_func(pred, target, **kwargs)
loss = mask_reduce_loss(loss, weight, reduction, sample_wise)
return loss
return wrapper
@masked_loss
def charbonnier_loss(pred, target, eps=1e-12):
"""Charbonnier loss.
Args:
pred (Tensor): Prediction Tensor with shape (n, c, h, w).
target ([type]): Target Tensor with shape (n, c, h, w).
Returns:
Tensor: Calculated Charbonnier loss.
"""
return torch.sqrt((pred - target) ** 2 + eps)
class CharbonnierCompLoss(nn.Module):
"""Charbonnier composition loss.
Args:
loss_weight (float): Loss weight for L1 loss. Default: 1.0.
reduction (str): Specifies the reduction to apply to the output.
Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'.
sample_wise (bool): Whether calculate the loss sample-wise. This
argument only takes effect when `reduction` is 'mean' and `weight`
(argument of `forward()`) is not None. It will first reduces loss
with 'mean' per-sample, and then it means over all the samples.
Default: False.
eps (float): A value used to control the curvature near zero.
Default: 1e-12.
"""
def __init__(self, loss_weight=1.0, reduction='mean', sample_wise=False,
eps=1e-12):
super().__init__()
if reduction not in ['none', 'mean', 'sum']:
raise ValueError(
f'Unsupported reduction mode: {reduction}. Supported ones are: {_reduction_modes}'
)
self.loss_weight = loss_weight
self.reduction = reduction
self.sample_wise = sample_wise
self.eps = eps
def forward(self, pred_alpha, fg, bg, ori_merged, weight=None, **kwargs):
"""
Args:
pred_alpha (Tensor): of shape (N, 1, H, W). Predicted alpha matte.
fg (Tensor): of shape (N, 3, H, W). Tensor of foreground object.
bg (Tensor): of shape (N, 3, H, W). Tensor of background object.
ori_merged (Tensor): of shape (N, 3, H, W). Tensor of origin merged
image before normalized by ImageNet mean and std.
weight (Tensor, optional): of shape (N, 1, H, W). It is an
indicating matrix: weight[trimap == 128] = 1. Default: None.
"""
pred_merged = pred_alpha * fg + (1.0 - pred_alpha) * bg
if weight is not None:
weight = weight.expand(-1, 3, -1, -1)
return self.loss_weight * charbonnier_loss(pred_merged, ori_merged,
weight, eps=self.eps, reduction=self.reduction, sample_wise=
self.sample_wise)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import functools
import torch.nn as nn
from torch.nn import functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_mean_mul_pow_rsub_sqrt_sub_0(in_out_ptr0, in_ptr0,
in_ptr1, in_ptr2, in_ptr3, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp5 = tl.load(in_ptr2 + r0, None)
tmp8 = tl.load(in_ptr3 + r0, None)
tmp2 = tmp0 * tmp1
tmp3 = 1.0
tmp4 = tmp3 - tmp0
tmp6 = tmp4 * tmp5
tmp7 = tmp2 + tmp6
tmp9 = tmp7 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = 1e-12
tmp12 = tmp10 + tmp11
tmp13 = libdevice.sqrt(tmp12)
tmp14 = tl.broadcast_to(tmp13, [RBLOCK])
tmp16 = triton_helpers.promote_to_tensor(tl.sum(tmp14, 0))
tmp17 = 256.0
tmp18 = tmp16 / tmp17
tmp19 = tmp18 * tmp3
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp19, None)
def call(args):
arg0_1, arg1_1, arg2_1, arg3_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_add_mean_mul_pow_rsub_sqrt_sub_0[grid(1)](buf1,
arg0_1, arg1_1, arg2_1, arg3_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
del arg2_1
del arg3_1
return buf1,
def reduce_loss(loss, reduction):
"""Reduce loss as specified.
Args:
loss (Tensor): Elementwise loss tensor.
reduction (str): Options are "none", "mean" and "sum".
Returns:
Tensor: Reduced loss tensor.
"""
reduction_enum = F._Reduction.get_enum(reduction)
if reduction_enum == 0:
return loss
if reduction_enum == 1:
return loss.mean()
return loss.sum()
def mask_reduce_loss(loss, weight=None, reduction='mean', sample_wise=False):
"""Apply element-wise weight and reduce loss.
Args:
loss (Tensor): Element-wise loss.
weight (Tensor): Element-wise weights. Default: None.
reduction (str): Same as built-in losses of PyTorch. Options are
"none", "mean" and "sum". Default: 'mean'.
sample_wise (bool): Whether calculate the loss sample-wise. This
argument only takes effect when `reduction` is 'mean' and `weight`
(argument of `forward()`) is not None. It will first reduces loss
with 'mean' per-sample, and then it means over all the samples.
Default: False.
Returns:
Tensor: Processed loss values.
"""
if weight is not None:
assert weight.dim() == loss.dim()
assert weight.size(1) == 1 or weight.size(1) == loss.size(1)
loss = loss * weight
if weight is None or reduction == 'sum':
loss = reduce_loss(loss, reduction)
elif reduction == 'mean':
if weight.size(1) == 1:
weight = weight.expand_as(loss)
eps = 1e-12
if sample_wise:
weight = weight.sum(dim=[1, 2, 3], keepdim=True)
loss = (loss / (weight + eps)).sum() / weight.size(0)
else:
loss = loss.sum() / (weight.sum() + eps)
return loss
def masked_loss(loss_func):
"""Create a masked version of a given loss function.
To use this decorator, the loss function must have the signature like
`loss_func(pred, target, **kwargs)`. The function only needs to compute
element-wise loss without any reduction. This decorator will add weight
and reduction arguments to the function. The decorated function will have
the signature like `loss_func(pred, target, weight=None, reduction='mean',
avg_factor=None, **kwargs)`.
:Example:
>>> import torch
>>> @masked_loss
>>> def l1_loss(pred, target):
>>> return (pred - target).abs()
>>> pred = torch.Tensor([0, 2, 3])
>>> target = torch.Tensor([1, 1, 1])
>>> weight = torch.Tensor([1, 0, 1])
>>> l1_loss(pred, target)
tensor(1.3333)
>>> l1_loss(pred, target, weight)
tensor(1.5000)
>>> l1_loss(pred, target, reduction='none')
tensor([1., 1., 2.])
>>> l1_loss(pred, target, weight, reduction='sum')
tensor(3.)
"""
@functools.wraps(loss_func)
def wrapper(pred, target, weight=None, reduction='mean', sample_wise=
False, **kwargs):
loss = loss_func(pred, target, **kwargs)
loss = mask_reduce_loss(loss, weight, reduction, sample_wise)
return loss
return wrapper
@masked_loss
def charbonnier_loss(pred, target, eps=1e-12):
"""Charbonnier loss.
Args:
pred (Tensor): Prediction Tensor with shape (n, c, h, w).
target ([type]): Target Tensor with shape (n, c, h, w).
Returns:
Tensor: Calculated Charbonnier loss.
"""
return torch.sqrt((pred - target) ** 2 + eps)
class CharbonnierCompLossNew(nn.Module):
"""Charbonnier composition loss.
Args:
loss_weight (float): Loss weight for L1 loss. Default: 1.0.
reduction (str): Specifies the reduction to apply to the output.
Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'.
sample_wise (bool): Whether calculate the loss sample-wise. This
argument only takes effect when `reduction` is 'mean' and `weight`
(argument of `forward()`) is not None. It will first reduces loss
with 'mean' per-sample, and then it means over all the samples.
Default: False.
eps (float): A value used to control the curvature near zero.
Default: 1e-12.
"""
def __init__(self, loss_weight=1.0, reduction='mean', sample_wise=False,
eps=1e-12):
super().__init__()
if reduction not in ['none', 'mean', 'sum']:
raise ValueError(
f'Unsupported reduction mode: {reduction}. Supported ones are: {_reduction_modes}'
)
self.loss_weight = loss_weight
self.reduction = reduction
self.sample_wise = sample_wise
self.eps = eps
def forward(self, input_0, input_1, input_2, input_3):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
arg3_1 = input_3
output = call([arg0_1, arg1_1, arg2_1, arg3_1])
return output[0]
|
Sardhendu/mmediting
|
CharbonnierCompLoss
| false | 9,877 |
[
"Apache-2.0"
] | 0 |
623b59ac758d856abc9fab7e845beeab61074d8f
|
https://github.com/Sardhendu/mmediting/tree/623b59ac758d856abc9fab7e845beeab61074d8f
|
DiscShiftLoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/re/crek4nuwb2qmcio2vdn52756wis557jmlcfgmxomsorwtitkl7tg.py
# Topologically Sorted Source Nodes: [pow_1, loss, mul], Original ATen: [aten.pow, aten.mean, aten.mul]
# Source node to ATen node mapping:
# loss => mean
# mul => mul
# pow_1 => pow_1
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg0_1, 2), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_1,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 0.1), kwargs = {})
triton_per_fused_mean_mul_pow_0 = async_compile.triton('triton_per_fused_mean_mul_pow_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_mul_pow_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_mul_pow_0(in_out_ptr0, in_ptr0, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tmp0 * tmp0
tmp2 = tl.broadcast_to(tmp1, [RBLOCK])
tmp4 = triton_helpers.promote_to_tensor(tl.sum(tmp2, 0))
tmp5 = 256.0
tmp6 = tmp4 / tmp5
tmp7 = 0.1
tmp8 = tmp6 * tmp7
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp8, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [pow_1, loss, mul], Original ATen: [aten.pow, aten.mean, aten.mul]
stream0 = get_raw_stream(0)
triton_per_fused_mean_mul_pow_0.run(buf1, arg0_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class DiscShiftLoss(nn.Module):
"""Disc shift loss.
Args:
loss_weight (float, optional): Loss weight. Defaults to 1.0.
"""
def __init__(self, loss_weight=0.1):
super().__init__()
self.loss_weight = loss_weight
def forward(self, x):
"""Forward function.
Args:
x (Tensor): Tensor with shape (n, c, h, w)
Returns:
Tensor: Loss.
"""
loss = torch.mean(x ** 2)
return loss * self.loss_weight
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_mean_mul_pow_0(in_out_ptr0, in_ptr0, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tmp0 * tmp0
tmp2 = tl.broadcast_to(tmp1, [RBLOCK])
tmp4 = triton_helpers.promote_to_tensor(tl.sum(tmp2, 0))
tmp5 = 256.0
tmp6 = tmp4 / tmp5
tmp7 = 0.1
tmp8 = tmp6 * tmp7
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp8, None)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_mean_mul_pow_0[grid(1)](buf1, arg0_1, 1, 256,
num_warps=2, num_stages=1)
del arg0_1
return buf1,
class DiscShiftLossNew(nn.Module):
"""Disc shift loss.
Args:
loss_weight (float, optional): Loss weight. Defaults to 1.0.
"""
def __init__(self, loss_weight=0.1):
super().__init__()
self.loss_weight = loss_weight
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
Sardhendu/mmediting
|
DiscShiftLoss
| false | 9,878 |
[
"Apache-2.0"
] | 0 |
623b59ac758d856abc9fab7e845beeab61074d8f
|
https://github.com/Sardhendu/mmediting/tree/623b59ac758d856abc9fab7e845beeab61074d8f
|
DoubleInputNet
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/uv/cuvjvzeq7pezapqtbtsbf6bxukefzumm2tamyimvezxecx4iw6vk.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# x => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%relu, %relu_1], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 128
x1 = (xindex // 128)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 64, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((64*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tl.load(in_ptr1 + (x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full([1], 0, tl.int32)
tmp9 = triton_helpers.maximum(tmp8, tmp7)
tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype)
tmp11 = tl.where(tmp4, tmp9, tmp10)
tmp12 = tmp0 >= tmp3
tmp13 = tl.full([1], 128, tl.int64)
tmp14 = tmp0 < tmp13
tmp15 = tl.load(in_ptr2 + ((64*x1) + ((-64) + x0)), tmp12 & xmask, eviction_policy='evict_last', other=0.0)
tmp16 = tl.load(in_ptr3 + ((-64) + x0), tmp12 & xmask, eviction_policy='evict_last', other=0.0)
tmp17 = tmp15 + tmp16
tmp18 = triton_helpers.maximum(tmp8, tmp17)
tmp19 = tl.full(tmp18.shape, 0.0, tmp18.dtype)
tmp20 = tl.where(tmp12, tmp18, tmp19)
tmp21 = tl.where(tmp4, tmp11, tmp20)
tl.store(out_ptr0 + (x2), tmp21, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/mt/cmttmov7q7l6eww5wgel4xbdmlbbf53sgwydh2ovfk4ks65mt3ki.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x_1 => relu_2
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_8), kwargs = {})
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/it/cit4qjb7wmwrbvv2rtchpn3duppvfiyliqnz2jz3tymwbqqane7m.py
# Topologically Sorted Source Nodes: [x2], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x2 => relu_1
# Graph fragment:
# %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_5), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_relu_threshold_backward_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10 = args
args.clear()
assert_size_stride(primals_1, (64, 4), (4, 1))
assert_size_stride(primals_2, (64, ), (1, ))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (64, 4), (4, 1))
assert_size_stride(primals_5, (64, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (64, 128), (128, 1))
assert_size_stride(primals_8, (64, ), (1, ))
assert_size_stride(primals_9, (4, 64), (64, 1))
assert_size_stride(primals_10, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 64), (64, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 64), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 64), (64, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(primals_6, reinterpret_tensor(primals_4, (4, 64), (1, 4), 0), out=buf1)
del primals_4
buf2 = empty_strided_cuda((4, 128), (128, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(buf0, primals_2, buf1, primals_5, buf2, 512, grid=grid(512), stream=stream0)
buf3 = empty_strided_cuda((4, 64), (64, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf2, reinterpret_tensor(primals_7, (128, 64), (1, 128), 0), out=buf3)
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf4, primals_8, 256, grid=grid(256), stream=stream0)
del primals_8
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_3], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_10, buf4, reinterpret_tensor(primals_9, (64, 4), (1, 64), 0), alpha=1, beta=1, out=buf5)
del primals_10
buf6 = empty_strided_cuda((4, 64), (64, 1), torch.bool)
# Topologically Sorted Source Nodes: [x2], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_2.run(buf1, primals_5, buf6, 256, grid=grid(256), stream=stream0)
del buf1
del primals_5
buf7 = empty_strided_cuda((4, 64), (64, 1), torch.bool)
# Topologically Sorted Source Nodes: [x1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_2.run(buf0, primals_2, buf7, 256, grid=grid(256), stream=stream0)
del buf0
del primals_2
return (buf5, primals_3, primals_6, buf2, buf4, primals_9, primals_7, buf6, buf7, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((64, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((64, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((64, 128), (128, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, 64), (64, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch as t
import torch.nn as nn
class DoubleInputNet(nn.Module):
def __init__(self, firstinsize, secondinsize, outsize, activation=lambda
x: x):
super().__init__()
self.firstinsize = firstinsize
self.secondinsize = secondinsize
self.outsize = outsize
self.activation = activation
self.fc1_1 = nn.Linear(firstinsize, 64)
self.fc1_2 = nn.Linear(secondinsize, 64)
self.fc2 = nn.Linear(128, 64)
self.head = nn.Linear(64, self.outsize)
def forward(self, firstin, secondin):
x1 = nn.functional.relu(self.fc1_1(firstin))
x2 = nn.functional.relu(self.fc1_2(secondin))
x = t.cat([x1, x2], dim=1)
x = nn.functional.relu(self.fc2(x))
return self.activation(self.head(x))
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'firstinsize': 4, 'secondinsize': 4, 'outsize': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 128
x1 = xindex // 128
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 64, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (64 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tl.load(in_ptr1 + x0, tmp4 & xmask, eviction_policy='evict_last',
other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full([1], 0, tl.int32)
tmp9 = triton_helpers.maximum(tmp8, tmp7)
tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype)
tmp11 = tl.where(tmp4, tmp9, tmp10)
tmp12 = tmp0 >= tmp3
tl.full([1], 128, tl.int64)
tmp15 = tl.load(in_ptr2 + (64 * x1 + (-64 + x0)), tmp12 & xmask,
eviction_policy='evict_last', other=0.0)
tmp16 = tl.load(in_ptr3 + (-64 + x0), tmp12 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp17 = tmp15 + tmp16
tmp18 = triton_helpers.maximum(tmp8, tmp17)
tmp19 = tl.full(tmp18.shape, 0.0, tmp18.dtype)
tmp20 = tl.where(tmp12, tmp18, tmp19)
tmp21 = tl.where(tmp4, tmp11, tmp20)
tl.store(out_ptr0 + x2, tmp21, xmask)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_2(in_ptr0, in_ptr1, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10) = args
args.clear()
assert_size_stride(primals_1, (64, 4), (4, 1))
assert_size_stride(primals_2, (64,), (1,))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (64, 4), (4, 1))
assert_size_stride(primals_5, (64,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (64, 128), (128, 1))
assert_size_stride(primals_8, (64,), (1,))
assert_size_stride(primals_9, (4, 64), (64, 1))
assert_size_stride(primals_10, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 64), (64, 1), torch.float32)
extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 64),
(1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 64), (64, 1), torch.float32)
extern_kernels.mm(primals_6, reinterpret_tensor(primals_4, (4, 64),
(1, 4), 0), out=buf1)
del primals_4
buf2 = empty_strided_cuda((4, 128), (128, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(512)](buf0, primals_2, buf1, primals_5,
buf2, 512, XBLOCK=256, num_warps=4, num_stages=1)
buf3 = empty_strided_cuda((4, 64), (64, 1), torch.float32)
extern_kernels.mm(buf2, reinterpret_tensor(primals_7, (128, 64), (1,
128), 0), out=buf3)
buf4 = buf3
del buf3
triton_poi_fused_relu_1[grid(256)](buf4, primals_8, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_8
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_10, buf4, reinterpret_tensor(primals_9,
(64, 4), (1, 64), 0), alpha=1, beta=1, out=buf5)
del primals_10
buf6 = empty_strided_cuda((4, 64), (64, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_2[grid(256)](buf1,
primals_5, buf6, 256, XBLOCK=128, num_warps=4, num_stages=1)
del buf1
del primals_5
buf7 = empty_strided_cuda((4, 64), (64, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_2[grid(256)](buf0,
primals_2, buf7, 256, XBLOCK=128, num_warps=4, num_stages=1)
del buf0
del primals_2
return (buf5, primals_3, primals_6, buf2, buf4, primals_9, primals_7,
buf6, buf7)
class DoubleInputNetNew(nn.Module):
def __init__(self, firstinsize, secondinsize, outsize, activation=lambda
x: x):
super().__init__()
self.firstinsize = firstinsize
self.secondinsize = secondinsize
self.outsize = outsize
self.activation = activation
self.fc1_1 = nn.Linear(firstinsize, 64)
self.fc1_2 = nn.Linear(secondinsize, 64)
self.fc2 = nn.Linear(128, 64)
self.head = nn.Linear(64, self.outsize)
def forward(self, input_0, input_1):
primals_1 = self.fc1_1.weight
primals_2 = self.fc1_1.bias
primals_4 = self.fc1_2.weight
primals_5 = self.fc1_2.bias
primals_7 = self.fc2.weight
primals_8 = self.fc2.bias
primals_9 = self.head.weight
primals_10 = self.head.bias
primals_3 = input_0
primals_6 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9, primals_10])
return output[0]
|
cbekar/DRL_Project
|
DoubleInputNet
| false | 9,879 |
[
"MIT"
] | 0 |
90d197773c7746b253ee7d997d0526e15d05578a
|
https://github.com/cbekar/DRL_Project/tree/90d197773c7746b253ee7d997d0526e15d05578a
|
PixelNorm
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/uq/cuqlfvqfeznifrvz7odrw3ezlfid2vgqb7wezw6nc6yrrg5447bi.py
# Topologically Sorted Source Nodes: [norm, sqrt, norm_1, add, truediv_1], Original ATen: [aten.linalg_vector_norm, aten.sqrt, aten.div, aten.add]
# Source node to ATen node mapping:
# add => add
# norm => pow_1, pow_2, sum_1
# norm_1 => div
# sqrt => full_default
# truediv_1 => div_1
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg0_1, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1], True), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 2.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cpu, pin_memory: False})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%pow_2, %full_default), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div, 1e-06), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, %add), kwargs = {})
triton_poi_fused_add_div_linalg_vector_norm_sqrt_0 = async_compile.triton('triton_poi_fused_add_div_linalg_vector_norm_sqrt_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_linalg_vector_norm_sqrt_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_linalg_vector_norm_sqrt_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 0.5
tmp14 = tmp12 * tmp13
tmp15 = 1e-06
tmp16 = tmp14 + tmp15
tmp17 = tmp0 / tmp16
tl.store(out_ptr0 + (x3), tmp17, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [norm, sqrt, norm_1, add, truediv_1], Original ATen: [aten.linalg_vector_norm, aten.sqrt, aten.div, aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_div_linalg_vector_norm_sqrt_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
def pixel_norm(x, eps=1e-06):
"""Pixel Normalization.
This normalization is proposed in:
Progressive Growing of GANs for Improved Quality, Stability, and Variation
Args:
x (torch.Tensor): Tensor to be normalized.
eps (float, optional): Epsilon to avoid divising zero.
Defaults to 1e-6.
Returns:
torch.Tensor: Normalized tensor.
"""
if torch.__version__ >= '1.7.0':
norm = torch.linalg.norm(x, ord=2, dim=1, keepdim=True)
else:
norm = torch.norm(x, p=2, dim=1, keepdim=True)
norm = norm / torch.sqrt(torch.tensor(x.shape[1]))
return x / (norm + eps)
class PixelNorm(nn.Module):
"""Pixel Normalization.
This module is proposed in:
Progressive Growing of GANs for Improved Quality, Stability, and Variation
Args:
eps (float, optional): Epsilon value. Defaults to 1e-6.
"""
_abbr_ = 'pn'
def __init__(self, in_channels=None, eps=1e-06):
super(PixelNorm, self).__init__()
self.eps = eps
def forward(self, x):
return pixel_norm(x, self.eps)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_div_linalg_vector_norm_sqrt_0(in_ptr0, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp9 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 0.5
tmp14 = tmp12 * tmp13
tmp15 = 1e-06
tmp16 = tmp14 + tmp15
tmp17 = tmp0 / tmp16
tl.store(out_ptr0 + x3, tmp17, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_div_linalg_vector_norm_sqrt_0[grid(256)](arg0_1,
buf0, 256, XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
def pixel_norm(x, eps=1e-06):
"""Pixel Normalization.
This normalization is proposed in:
Progressive Growing of GANs for Improved Quality, Stability, and Variation
Args:
x (torch.Tensor): Tensor to be normalized.
eps (float, optional): Epsilon to avoid divising zero.
Defaults to 1e-6.
Returns:
torch.Tensor: Normalized tensor.
"""
if torch.__version__ >= '1.7.0':
norm = torch.linalg.norm(x, ord=2, dim=1, keepdim=True)
else:
norm = torch.norm(x, p=2, dim=1, keepdim=True)
norm = norm / torch.sqrt(torch.tensor(x.shape[1]))
return x / (norm + eps)
class PixelNormNew(nn.Module):
"""Pixel Normalization.
This module is proposed in:
Progressive Growing of GANs for Improved Quality, Stability, and Variation
Args:
eps (float, optional): Epsilon value. Defaults to 1e-6.
"""
_abbr_ = 'pn'
def __init__(self, in_channels=None, eps=1e-06):
super(PixelNormNew, self).__init__()
self.eps = eps
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
Sardhendu/mmediting
|
PixelNorm
| false | 9,880 |
[
"Apache-2.0"
] | 0 |
623b59ac758d856abc9fab7e845beeab61074d8f
|
https://github.com/Sardhendu/mmediting/tree/623b59ac758d856abc9fab7e845beeab61074d8f
|
MaxPool
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/ud/cude6zl4nio2ly5l3l5cwlmxkoqtt4qkekbvrzk6nz7rpwc6ypf3.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# x => getitem
# Graph fragment:
# %getitem : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_0 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 3) % 3
x0 = xindex % 3
x2 = (xindex // 9)
x4 = xindex
tmp0 = (-1) + x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = (-1) + x0
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp5 & tmp9
tmp11 = tl.load(in_ptr0 + ((-5) + x0 + (4*x1) + (16*x2)), tmp10 & xmask, other=float("-inf"))
tmp12 = x0
tmp13 = tmp12 >= tmp1
tmp14 = tmp12 < tmp3
tmp15 = tmp13 & tmp14
tmp16 = tmp5 & tmp15
tmp17 = tl.load(in_ptr0 + ((-4) + x0 + (4*x1) + (16*x2)), tmp16 & xmask, other=float("-inf"))
tmp18 = triton_helpers.maximum(tmp17, tmp11)
tmp19 = 1 + x0
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp20 & tmp21
tmp23 = tmp5 & tmp22
tmp24 = tl.load(in_ptr0 + ((-3) + x0 + (4*x1) + (16*x2)), tmp23 & xmask, other=float("-inf"))
tmp25 = triton_helpers.maximum(tmp24, tmp18)
tmp26 = 2 + x0
tmp27 = tmp26 >= tmp1
tmp28 = tmp26 < tmp3
tmp29 = tmp27 & tmp28
tmp30 = tmp5 & tmp29
tmp31 = tl.load(in_ptr0 + ((-2) + x0 + (4*x1) + (16*x2)), tmp30 & xmask, other=float("-inf"))
tmp32 = triton_helpers.maximum(tmp31, tmp25)
tmp33 = x1
tmp34 = tmp33 >= tmp1
tmp35 = tmp33 < tmp3
tmp36 = tmp34 & tmp35
tmp37 = tmp36 & tmp9
tmp38 = tl.load(in_ptr0 + ((-1) + x0 + (4*x1) + (16*x2)), tmp37 & xmask, other=float("-inf"))
tmp39 = triton_helpers.maximum(tmp38, tmp32)
tmp40 = tmp36 & tmp15
tmp41 = tl.load(in_ptr0 + (x0 + (4*x1) + (16*x2)), tmp40 & xmask, other=float("-inf"))
tmp42 = triton_helpers.maximum(tmp41, tmp39)
tmp43 = tmp36 & tmp22
tmp44 = tl.load(in_ptr0 + (1 + x0 + (4*x1) + (16*x2)), tmp43 & xmask, other=float("-inf"))
tmp45 = triton_helpers.maximum(tmp44, tmp42)
tmp46 = tmp36 & tmp29
tmp47 = tl.load(in_ptr0 + (2 + x0 + (4*x1) + (16*x2)), tmp46 & xmask, other=float("-inf"))
tmp48 = triton_helpers.maximum(tmp47, tmp45)
tmp49 = 1 + x1
tmp50 = tmp49 >= tmp1
tmp51 = tmp49 < tmp3
tmp52 = tmp50 & tmp51
tmp53 = tmp52 & tmp9
tmp54 = tl.load(in_ptr0 + (3 + x0 + (4*x1) + (16*x2)), tmp53 & xmask, other=float("-inf"))
tmp55 = triton_helpers.maximum(tmp54, tmp48)
tmp56 = tmp52 & tmp15
tmp57 = tl.load(in_ptr0 + (4 + x0 + (4*x1) + (16*x2)), tmp56 & xmask, other=float("-inf"))
tmp58 = triton_helpers.maximum(tmp57, tmp55)
tmp59 = tmp52 & tmp22
tmp60 = tl.load(in_ptr0 + (5 + x0 + (4*x1) + (16*x2)), tmp59 & xmask, other=float("-inf"))
tmp61 = triton_helpers.maximum(tmp60, tmp58)
tmp62 = tmp52 & tmp29
tmp63 = tl.load(in_ptr0 + (6 + x0 + (4*x1) + (16*x2)), tmp62 & xmask, other=float("-inf"))
tmp64 = triton_helpers.maximum(tmp63, tmp61)
tmp65 = 2 + x1
tmp66 = tmp65 >= tmp1
tmp67 = tmp65 < tmp3
tmp68 = tmp66 & tmp67
tmp69 = tmp68 & tmp9
tmp70 = tl.load(in_ptr0 + (7 + x0 + (4*x1) + (16*x2)), tmp69 & xmask, other=float("-inf"))
tmp71 = triton_helpers.maximum(tmp70, tmp64)
tmp72 = tmp68 & tmp15
tmp73 = tl.load(in_ptr0 + (8 + x0 + (4*x1) + (16*x2)), tmp72 & xmask, other=float("-inf"))
tmp74 = triton_helpers.maximum(tmp73, tmp71)
tmp75 = tmp68 & tmp22
tmp76 = tl.load(in_ptr0 + (9 + x0 + (4*x1) + (16*x2)), tmp75 & xmask, other=float("-inf"))
tmp77 = triton_helpers.maximum(tmp76, tmp74)
tmp78 = tmp68 & tmp29
tmp79 = tl.load(in_ptr0 + (10 + x0 + (4*x1) + (16*x2)), tmp78 & xmask, other=float("-inf"))
tmp80 = triton_helpers.maximum(tmp79, tmp77)
tl.store(out_ptr0 + (x4), tmp80, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.max_pool2d_with_indices]
stream0 = get_raw_stream(0)
triton_poi_fused_max_pool2d_with_indices_0.run(arg0_1, buf0, 144, grid=grid(144), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
class MaxPool(nn.Module):
def __init__(self, kernel_size, stride=1, padding=1, zero_pad=False):
super(MaxPool, self).__init__()
self.zero_pad = nn.ZeroPad2d((1, 0, 1, 0)) if zero_pad else None
self.pool = nn.MaxPool2d(kernel_size, stride=stride, padding=padding)
def forward(self, x):
if self.zero_pad:
x = self.zero_pad(x)
x = self.pool(x)
if self.zero_pad:
x = x[:, :, 1:, 1:]
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'kernel_size': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_0(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 3 % 3
x0 = xindex % 3
x2 = xindex // 9
x4 = xindex
tmp0 = -1 + x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = -1 + x0
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp5 & tmp9
tmp11 = tl.load(in_ptr0 + (-5 + x0 + 4 * x1 + 16 * x2), tmp10 & xmask,
other=float('-inf'))
tmp12 = x0
tmp13 = tmp12 >= tmp1
tmp14 = tmp12 < tmp3
tmp15 = tmp13 & tmp14
tmp16 = tmp5 & tmp15
tmp17 = tl.load(in_ptr0 + (-4 + x0 + 4 * x1 + 16 * x2), tmp16 & xmask,
other=float('-inf'))
tmp18 = triton_helpers.maximum(tmp17, tmp11)
tmp19 = 1 + x0
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp20 & tmp21
tmp23 = tmp5 & tmp22
tmp24 = tl.load(in_ptr0 + (-3 + x0 + 4 * x1 + 16 * x2), tmp23 & xmask,
other=float('-inf'))
tmp25 = triton_helpers.maximum(tmp24, tmp18)
tmp26 = 2 + x0
tmp27 = tmp26 >= tmp1
tmp28 = tmp26 < tmp3
tmp29 = tmp27 & tmp28
tmp30 = tmp5 & tmp29
tmp31 = tl.load(in_ptr0 + (-2 + x0 + 4 * x1 + 16 * x2), tmp30 & xmask,
other=float('-inf'))
tmp32 = triton_helpers.maximum(tmp31, tmp25)
tmp33 = x1
tmp34 = tmp33 >= tmp1
tmp35 = tmp33 < tmp3
tmp36 = tmp34 & tmp35
tmp37 = tmp36 & tmp9
tmp38 = tl.load(in_ptr0 + (-1 + x0 + 4 * x1 + 16 * x2), tmp37 & xmask,
other=float('-inf'))
tmp39 = triton_helpers.maximum(tmp38, tmp32)
tmp40 = tmp36 & tmp15
tmp41 = tl.load(in_ptr0 + (x0 + 4 * x1 + 16 * x2), tmp40 & xmask, other
=float('-inf'))
tmp42 = triton_helpers.maximum(tmp41, tmp39)
tmp43 = tmp36 & tmp22
tmp44 = tl.load(in_ptr0 + (1 + x0 + 4 * x1 + 16 * x2), tmp43 & xmask,
other=float('-inf'))
tmp45 = triton_helpers.maximum(tmp44, tmp42)
tmp46 = tmp36 & tmp29
tmp47 = tl.load(in_ptr0 + (2 + x0 + 4 * x1 + 16 * x2), tmp46 & xmask,
other=float('-inf'))
tmp48 = triton_helpers.maximum(tmp47, tmp45)
tmp49 = 1 + x1
tmp50 = tmp49 >= tmp1
tmp51 = tmp49 < tmp3
tmp52 = tmp50 & tmp51
tmp53 = tmp52 & tmp9
tmp54 = tl.load(in_ptr0 + (3 + x0 + 4 * x1 + 16 * x2), tmp53 & xmask,
other=float('-inf'))
tmp55 = triton_helpers.maximum(tmp54, tmp48)
tmp56 = tmp52 & tmp15
tmp57 = tl.load(in_ptr0 + (4 + x0 + 4 * x1 + 16 * x2), tmp56 & xmask,
other=float('-inf'))
tmp58 = triton_helpers.maximum(tmp57, tmp55)
tmp59 = tmp52 & tmp22
tmp60 = tl.load(in_ptr0 + (5 + x0 + 4 * x1 + 16 * x2), tmp59 & xmask,
other=float('-inf'))
tmp61 = triton_helpers.maximum(tmp60, tmp58)
tmp62 = tmp52 & tmp29
tmp63 = tl.load(in_ptr0 + (6 + x0 + 4 * x1 + 16 * x2), tmp62 & xmask,
other=float('-inf'))
tmp64 = triton_helpers.maximum(tmp63, tmp61)
tmp65 = 2 + x1
tmp66 = tmp65 >= tmp1
tmp67 = tmp65 < tmp3
tmp68 = tmp66 & tmp67
tmp69 = tmp68 & tmp9
tmp70 = tl.load(in_ptr0 + (7 + x0 + 4 * x1 + 16 * x2), tmp69 & xmask,
other=float('-inf'))
tmp71 = triton_helpers.maximum(tmp70, tmp64)
tmp72 = tmp68 & tmp15
tmp73 = tl.load(in_ptr0 + (8 + x0 + 4 * x1 + 16 * x2), tmp72 & xmask,
other=float('-inf'))
tmp74 = triton_helpers.maximum(tmp73, tmp71)
tmp75 = tmp68 & tmp22
tmp76 = tl.load(in_ptr0 + (9 + x0 + 4 * x1 + 16 * x2), tmp75 & xmask,
other=float('-inf'))
tmp77 = triton_helpers.maximum(tmp76, tmp74)
tmp78 = tmp68 & tmp29
tmp79 = tl.load(in_ptr0 + (10 + x0 + 4 * x1 + 16 * x2), tmp78 & xmask,
other=float('-inf'))
tmp80 = triton_helpers.maximum(tmp79, tmp77)
tl.store(out_ptr0 + x4, tmp80, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_max_pool2d_with_indices_0[grid(144)](arg0_1, buf0,
144, XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class MaxPoolNew(nn.Module):
def __init__(self, kernel_size, stride=1, padding=1, zero_pad=False):
super(MaxPoolNew, self).__init__()
self.zero_pad = nn.ZeroPad2d((1, 0, 1, 0)) if zero_pad else None
self.pool = nn.MaxPool2d(kernel_size, stride=stride, padding=padding)
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
OrKatz7/kaggle-hubmap
|
MaxPool
| false | 9,881 |
[
"MIT"
] | 0 |
5cf8c5aebe956c256fa7f3db432639e28f29c6a3
|
https://github.com/OrKatz7/kaggle-hubmap/tree/5cf8c5aebe956c256fa7f3db432639e28f29c6a3
|
SpatialCrossMapLRN
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/t4/ct42qpaygn7av2p6rystjl4hk3ybzwp5jyvmk3jaiukfiri3pq65.py
# Topologically Sorted Source Nodes: [mul, add, div_2, x], Original ATen: [aten.mul, aten.add, aten.pow, aten.div]
# Source node to ATen node mapping:
# add => add
# div_2 => pow_2
# mul => mul
# x => div
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze, 1.0), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 1), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%add, 0.75), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, %pow_2), kwargs = {})
triton_poi_fused_add_div_mul_pow_0 = async_compile.triton('triton_poi_fused_add_div_mul_pow_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mul_pow_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_mul_pow_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0 * tmp0
tmp2 = 1.0
tmp3 = tmp1 * tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 + tmp2
tmp6 = 0.75
tmp7 = libdevice.pow(tmp5, tmp6)
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x0), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, add, div_2, x], Original ATen: [aten.mul, aten.add, aten.pow, aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_add_div_mul_pow_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
class SpatialCrossMapLRN(nn.Module):
def __init__(self, local_size=1, alpha=1.0, beta=0.75, k=1,
ACROSS_CHANNELS=True):
super(SpatialCrossMapLRN, self).__init__()
self.ACROSS_CHANNELS = ACROSS_CHANNELS
if ACROSS_CHANNELS:
self.average = nn.AvgPool3d(kernel_size=(local_size, 1, 1),
stride=1, padding=(int((local_size - 1.0) / 2), 0, 0))
else:
self.average = nn.AvgPool2d(kernel_size=local_size, stride=1,
padding=int((local_size - 1.0) / 2))
self.alpha = alpha
self.beta = beta
self.k = k
def forward(self, x):
if self.ACROSS_CHANNELS:
div = x.pow(2).unsqueeze(1)
div = self.average(div).squeeze(1)
div = div.mul(self.alpha).add(self.k).pow(self.beta)
else:
div = x.pow(2)
div = self.average(div)
div = div.mul(self.alpha).add(self.k).pow(self.beta)
x = x.div(div)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
from torch import nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_div_mul_pow_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 * tmp0
tmp2 = 1.0
tmp3 = tmp1 * tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 + tmp2
tmp6 = 0.75
tmp7 = libdevice.pow(tmp5, tmp6)
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x0, tmp8, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_div_mul_pow_0[grid(256)](arg0_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class SpatialCrossMapLRNNew(nn.Module):
def __init__(self, local_size=1, alpha=1.0, beta=0.75, k=1,
ACROSS_CHANNELS=True):
super(SpatialCrossMapLRNNew, self).__init__()
self.ACROSS_CHANNELS = ACROSS_CHANNELS
if ACROSS_CHANNELS:
self.average = nn.AvgPool3d(kernel_size=(local_size, 1, 1),
stride=1, padding=(int((local_size - 1.0) / 2), 0, 0))
else:
self.average = nn.AvgPool2d(kernel_size=local_size, stride=1,
padding=int((local_size - 1.0) / 2))
self.alpha = alpha
self.beta = beta
self.k = k
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
OrKatz7/kaggle-hubmap
|
SpatialCrossMapLRN
| false | 9,882 |
[
"MIT"
] | 0 |
5cf8c5aebe956c256fa7f3db432639e28f29c6a3
|
https://github.com/OrKatz7/kaggle-hubmap/tree/5cf8c5aebe956c256fa7f3db432639e28f29c6a3
|
L1CompositionLoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/am/camwpeehokwg5kta3nxp4pdqaj4l6nldns4yhguxa3yy3jfhld4k.py
# Topologically Sorted Source Nodes: [mul, sub, mul_1, pred_merged, loss, loss_1, mul_2], Original ATen: [aten.mul, aten.rsub, aten.add, aten.sub, aten.abs, aten.mean]
# Source node to ATen node mapping:
# loss => abs_1, sub_1
# loss_1 => mean
# mul => mul
# mul_1 => mul_1
# mul_2 => mul_2
# pred_merged => add
# sub => sub
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %arg1_1), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %arg0_1), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %arg2_1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %arg3_1), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_1,), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_1,), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 1.0), kwargs = {})
triton_per_fused_abs_add_mean_mul_rsub_sub_0 = async_compile.triton('triton_per_fused_abs_add_mean_mul_rsub_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {5: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 6), equal_to_1=(5,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_add_mean_mul_rsub_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 4, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_abs_add_mean_mul_rsub_sub_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr1 + (r0), None)
tmp5 = tl.load(in_ptr2 + (r0), None)
tmp8 = tl.load(in_ptr3 + (r0), None)
tmp2 = tmp0 * tmp1
tmp3 = 1.0
tmp4 = tmp3 - tmp0
tmp6 = tmp4 * tmp5
tmp7 = tmp2 + tmp6
tmp9 = tmp7 - tmp8
tmp10 = tl_math.abs(tmp9)
tmp11 = tl.broadcast_to(tmp10, [RBLOCK])
tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0))
tmp14 = 256.0
tmp15 = tmp13 / tmp14
tmp16 = tmp15 * tmp3
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp16, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1, arg3_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [mul, sub, mul_1, pred_merged, loss, loss_1, mul_2], Original ATen: [aten.mul, aten.rsub, aten.add, aten.sub, aten.abs, aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_abs_add_mean_mul_rsub_sub_0.run(buf1, arg0_1, arg1_1, arg2_1, arg3_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
del arg2_1
del arg3_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg3_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1, arg3_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import functools
import torch
import torch.nn as nn
from torch.nn import functional as F
def reduce_loss(loss, reduction):
"""Reduce loss as specified.
Args:
loss (Tensor): Elementwise loss tensor.
reduction (str): Options are "none", "mean" and "sum".
Returns:
Tensor: Reduced loss tensor.
"""
reduction_enum = F._Reduction.get_enum(reduction)
if reduction_enum == 0:
return loss
if reduction_enum == 1:
return loss.mean()
return loss.sum()
def mask_reduce_loss(loss, weight=None, reduction='mean', sample_wise=False):
"""Apply element-wise weight and reduce loss.
Args:
loss (Tensor): Element-wise loss.
weight (Tensor): Element-wise weights. Default: None.
reduction (str): Same as built-in losses of PyTorch. Options are
"none", "mean" and "sum". Default: 'mean'.
sample_wise (bool): Whether calculate the loss sample-wise. This
argument only takes effect when `reduction` is 'mean' and `weight`
(argument of `forward()`) is not None. It will first reduces loss
with 'mean' per-sample, and then it means over all the samples.
Default: False.
Returns:
Tensor: Processed loss values.
"""
if weight is not None:
assert weight.dim() == loss.dim()
assert weight.size(1) == 1 or weight.size(1) == loss.size(1)
loss = loss * weight
if weight is None or reduction == 'sum':
loss = reduce_loss(loss, reduction)
elif reduction == 'mean':
if weight.size(1) == 1:
weight = weight.expand_as(loss)
eps = 1e-12
if sample_wise:
weight = weight.sum(dim=[1, 2, 3], keepdim=True)
loss = (loss / (weight + eps)).sum() / weight.size(0)
else:
loss = loss.sum() / (weight.sum() + eps)
return loss
def masked_loss(loss_func):
"""Create a masked version of a given loss function.
To use this decorator, the loss function must have the signature like
`loss_func(pred, target, **kwargs)`. The function only needs to compute
element-wise loss without any reduction. This decorator will add weight
and reduction arguments to the function. The decorated function will have
the signature like `loss_func(pred, target, weight=None, reduction='mean',
avg_factor=None, **kwargs)`.
:Example:
>>> import torch
>>> @masked_loss
>>> def l1_loss(pred, target):
>>> return (pred - target).abs()
>>> pred = torch.Tensor([0, 2, 3])
>>> target = torch.Tensor([1, 1, 1])
>>> weight = torch.Tensor([1, 0, 1])
>>> l1_loss(pred, target)
tensor(1.3333)
>>> l1_loss(pred, target, weight)
tensor(1.5000)
>>> l1_loss(pred, target, reduction='none')
tensor([1., 1., 2.])
>>> l1_loss(pred, target, weight, reduction='sum')
tensor(3.)
"""
@functools.wraps(loss_func)
def wrapper(pred, target, weight=None, reduction='mean', sample_wise=
False, **kwargs):
loss = loss_func(pred, target, **kwargs)
loss = mask_reduce_loss(loss, weight, reduction, sample_wise)
return loss
return wrapper
@masked_loss
def l1_loss(pred, target):
"""L1 loss.
Args:
pred (Tensor): Prediction Tensor with shape (n, c, h, w).
target ([type]): Target Tensor with shape (n, c, h, w).
Returns:
Tensor: Calculated L1 loss.
"""
return F.l1_loss(pred, target, reduction='none')
class L1CompositionLoss(nn.Module):
"""L1 composition loss.
Args:
loss_weight (float): Loss weight for L1 loss. Default: 1.0.
reduction (str): Specifies the reduction to apply to the output.
Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'.
sample_wise (bool): Whether calculate the loss sample-wise. This
argument only takes effect when `reduction` is 'mean' and `weight`
(argument of `forward()`) is not None. It will first reduces loss
with 'mean' per-sample, and then it means over all the samples.
Default: False.
"""
def __init__(self, loss_weight=1.0, reduction='mean', sample_wise=False):
super().__init__()
if reduction not in ['none', 'mean', 'sum']:
raise ValueError(
f'Unsupported reduction mode: {reduction}. Supported ones are: {_reduction_modes}'
)
self.loss_weight = loss_weight
self.reduction = reduction
self.sample_wise = sample_wise
def forward(self, pred_alpha, fg, bg, ori_merged, weight=None, **kwargs):
"""
Args:
pred_alpha (Tensor): of shape (N, 1, H, W). Predicted alpha matte.
fg (Tensor): of shape (N, 3, H, W). Tensor of foreground object.
bg (Tensor): of shape (N, 3, H, W). Tensor of background object.
ori_merged (Tensor): of shape (N, 3, H, W). Tensor of origin merged
image before normalized by ImageNet mean and std.
weight (Tensor, optional): of shape (N, 1, H, W). It is an
indicating matrix: weight[trimap == 128] = 1. Default: None.
"""
pred_merged = pred_alpha * fg + (1.0 - pred_alpha) * bg
if weight is not None:
weight = weight.expand(-1, 3, -1, -1)
return self.loss_weight * l1_loss(pred_merged, ori_merged, weight,
reduction=self.reduction, sample_wise=self.sample_wise)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import functools
import torch.nn as nn
from torch.nn import functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_abs_add_mean_mul_rsub_sub_0(in_out_ptr0, in_ptr0,
in_ptr1, in_ptr2, in_ptr3, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp5 = tl.load(in_ptr2 + r0, None)
tmp8 = tl.load(in_ptr3 + r0, None)
tmp2 = tmp0 * tmp1
tmp3 = 1.0
tmp4 = tmp3 - tmp0
tmp6 = tmp4 * tmp5
tmp7 = tmp2 + tmp6
tmp9 = tmp7 - tmp8
tmp10 = tl_math.abs(tmp9)
tmp11 = tl.broadcast_to(tmp10, [RBLOCK])
tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0))
tmp14 = 256.0
tmp15 = tmp13 / tmp14
tmp16 = tmp15 * tmp3
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp16, None)
def call(args):
arg0_1, arg1_1, arg2_1, arg3_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_abs_add_mean_mul_rsub_sub_0[grid(1)](buf1, arg0_1,
arg1_1, arg2_1, arg3_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
del arg2_1
del arg3_1
return buf1,
def reduce_loss(loss, reduction):
"""Reduce loss as specified.
Args:
loss (Tensor): Elementwise loss tensor.
reduction (str): Options are "none", "mean" and "sum".
Returns:
Tensor: Reduced loss tensor.
"""
reduction_enum = F._Reduction.get_enum(reduction)
if reduction_enum == 0:
return loss
if reduction_enum == 1:
return loss.mean()
return loss.sum()
def mask_reduce_loss(loss, weight=None, reduction='mean', sample_wise=False):
"""Apply element-wise weight and reduce loss.
Args:
loss (Tensor): Element-wise loss.
weight (Tensor): Element-wise weights. Default: None.
reduction (str): Same as built-in losses of PyTorch. Options are
"none", "mean" and "sum". Default: 'mean'.
sample_wise (bool): Whether calculate the loss sample-wise. This
argument only takes effect when `reduction` is 'mean' and `weight`
(argument of `forward()`) is not None. It will first reduces loss
with 'mean' per-sample, and then it means over all the samples.
Default: False.
Returns:
Tensor: Processed loss values.
"""
if weight is not None:
assert weight.dim() == loss.dim()
assert weight.size(1) == 1 or weight.size(1) == loss.size(1)
loss = loss * weight
if weight is None or reduction == 'sum':
loss = reduce_loss(loss, reduction)
elif reduction == 'mean':
if weight.size(1) == 1:
weight = weight.expand_as(loss)
eps = 1e-12
if sample_wise:
weight = weight.sum(dim=[1, 2, 3], keepdim=True)
loss = (loss / (weight + eps)).sum() / weight.size(0)
else:
loss = loss.sum() / (weight.sum() + eps)
return loss
def masked_loss(loss_func):
"""Create a masked version of a given loss function.
To use this decorator, the loss function must have the signature like
`loss_func(pred, target, **kwargs)`. The function only needs to compute
element-wise loss without any reduction. This decorator will add weight
and reduction arguments to the function. The decorated function will have
the signature like `loss_func(pred, target, weight=None, reduction='mean',
avg_factor=None, **kwargs)`.
:Example:
>>> import torch
>>> @masked_loss
>>> def l1_loss(pred, target):
>>> return (pred - target).abs()
>>> pred = torch.Tensor([0, 2, 3])
>>> target = torch.Tensor([1, 1, 1])
>>> weight = torch.Tensor([1, 0, 1])
>>> l1_loss(pred, target)
tensor(1.3333)
>>> l1_loss(pred, target, weight)
tensor(1.5000)
>>> l1_loss(pred, target, reduction='none')
tensor([1., 1., 2.])
>>> l1_loss(pred, target, weight, reduction='sum')
tensor(3.)
"""
@functools.wraps(loss_func)
def wrapper(pred, target, weight=None, reduction='mean', sample_wise=
False, **kwargs):
loss = loss_func(pred, target, **kwargs)
loss = mask_reduce_loss(loss, weight, reduction, sample_wise)
return loss
return wrapper
@masked_loss
def l1_loss(pred, target):
"""L1 loss.
Args:
pred (Tensor): Prediction Tensor with shape (n, c, h, w).
target ([type]): Target Tensor with shape (n, c, h, w).
Returns:
Tensor: Calculated L1 loss.
"""
return F.l1_loss(pred, target, reduction='none')
class L1CompositionLossNew(nn.Module):
"""L1 composition loss.
Args:
loss_weight (float): Loss weight for L1 loss. Default: 1.0.
reduction (str): Specifies the reduction to apply to the output.
Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'.
sample_wise (bool): Whether calculate the loss sample-wise. This
argument only takes effect when `reduction` is 'mean' and `weight`
(argument of `forward()`) is not None. It will first reduces loss
with 'mean' per-sample, and then it means over all the samples.
Default: False.
"""
def __init__(self, loss_weight=1.0, reduction='mean', sample_wise=False):
super().__init__()
if reduction not in ['none', 'mean', 'sum']:
raise ValueError(
f'Unsupported reduction mode: {reduction}. Supported ones are: {_reduction_modes}'
)
self.loss_weight = loss_weight
self.reduction = reduction
self.sample_wise = sample_wise
def forward(self, input_0, input_1, input_2, input_3):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
arg3_1 = input_3
output = call([arg0_1, arg1_1, arg2_1, arg3_1])
return output[0]
|
Sardhendu/mmediting
|
L1CompositionLoss
| false | 9,883 |
[
"Apache-2.0"
] | 0 |
623b59ac758d856abc9fab7e845beeab61074d8f
|
https://github.com/Sardhendu/mmediting/tree/623b59ac758d856abc9fab7e845beeab61074d8f
|
MSECompositionLoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/bv/cbvrs5xmjnaa5kevipbtguhjfkbeqz3fqzbe2wyky7pkkyvy5djt.py
# Topologically Sorted Source Nodes: [mul, sub, mul_1, pred_merged, loss, loss_1, mul_2], Original ATen: [aten.mul, aten.rsub, aten.add, aten.mse_loss, aten.mean]
# Source node to ATen node mapping:
# loss => pow_1, sub_1
# loss_1 => mean
# mul => mul
# mul_1 => mul_1
# mul_2 => mul_2
# pred_merged => add
# sub => sub
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %arg1_1), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %arg0_1), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %arg2_1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %arg3_1), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_1, 2), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_1,), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 1.0), kwargs = {})
triton_per_fused_add_mean_mse_loss_mul_rsub_0 = async_compile.triton('triton_per_fused_add_mean_mse_loss_mul_rsub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {5: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 6), equal_to_1=(5,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mean_mse_loss_mul_rsub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 4, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_mean_mse_loss_mul_rsub_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr1 + (r0), None)
tmp5 = tl.load(in_ptr2 + (r0), None)
tmp8 = tl.load(in_ptr3 + (r0), None)
tmp2 = tmp0 * tmp1
tmp3 = 1.0
tmp4 = tmp3 - tmp0
tmp6 = tmp4 * tmp5
tmp7 = tmp2 + tmp6
tmp9 = tmp7 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tl.broadcast_to(tmp10, [RBLOCK])
tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0))
tmp14 = 256.0
tmp15 = tmp13 / tmp14
tmp16 = tmp15 * tmp3
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp16, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1, arg3_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [mul, sub, mul_1, pred_merged, loss, loss_1, mul_2], Original ATen: [aten.mul, aten.rsub, aten.add, aten.mse_loss, aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_add_mean_mse_loss_mul_rsub_0.run(buf1, arg0_1, arg1_1, arg2_1, arg3_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
del arg2_1
del arg3_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg3_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1, arg3_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import functools
import torch
import torch.nn as nn
from torch.nn import functional as F
def reduce_loss(loss, reduction):
"""Reduce loss as specified.
Args:
loss (Tensor): Elementwise loss tensor.
reduction (str): Options are "none", "mean" and "sum".
Returns:
Tensor: Reduced loss tensor.
"""
reduction_enum = F._Reduction.get_enum(reduction)
if reduction_enum == 0:
return loss
if reduction_enum == 1:
return loss.mean()
return loss.sum()
def mask_reduce_loss(loss, weight=None, reduction='mean', sample_wise=False):
"""Apply element-wise weight and reduce loss.
Args:
loss (Tensor): Element-wise loss.
weight (Tensor): Element-wise weights. Default: None.
reduction (str): Same as built-in losses of PyTorch. Options are
"none", "mean" and "sum". Default: 'mean'.
sample_wise (bool): Whether calculate the loss sample-wise. This
argument only takes effect when `reduction` is 'mean' and `weight`
(argument of `forward()`) is not None. It will first reduces loss
with 'mean' per-sample, and then it means over all the samples.
Default: False.
Returns:
Tensor: Processed loss values.
"""
if weight is not None:
assert weight.dim() == loss.dim()
assert weight.size(1) == 1 or weight.size(1) == loss.size(1)
loss = loss * weight
if weight is None or reduction == 'sum':
loss = reduce_loss(loss, reduction)
elif reduction == 'mean':
if weight.size(1) == 1:
weight = weight.expand_as(loss)
eps = 1e-12
if sample_wise:
weight = weight.sum(dim=[1, 2, 3], keepdim=True)
loss = (loss / (weight + eps)).sum() / weight.size(0)
else:
loss = loss.sum() / (weight.sum() + eps)
return loss
def masked_loss(loss_func):
"""Create a masked version of a given loss function.
To use this decorator, the loss function must have the signature like
`loss_func(pred, target, **kwargs)`. The function only needs to compute
element-wise loss without any reduction. This decorator will add weight
and reduction arguments to the function. The decorated function will have
the signature like `loss_func(pred, target, weight=None, reduction='mean',
avg_factor=None, **kwargs)`.
:Example:
>>> import torch
>>> @masked_loss
>>> def l1_loss(pred, target):
>>> return (pred - target).abs()
>>> pred = torch.Tensor([0, 2, 3])
>>> target = torch.Tensor([1, 1, 1])
>>> weight = torch.Tensor([1, 0, 1])
>>> l1_loss(pred, target)
tensor(1.3333)
>>> l1_loss(pred, target, weight)
tensor(1.5000)
>>> l1_loss(pred, target, reduction='none')
tensor([1., 1., 2.])
>>> l1_loss(pred, target, weight, reduction='sum')
tensor(3.)
"""
@functools.wraps(loss_func)
def wrapper(pred, target, weight=None, reduction='mean', sample_wise=
False, **kwargs):
loss = loss_func(pred, target, **kwargs)
loss = mask_reduce_loss(loss, weight, reduction, sample_wise)
return loss
return wrapper
@masked_loss
def mse_loss(pred, target):
"""MSE loss.
Args:
pred (Tensor): Prediction Tensor with shape (n, c, h, w).
target ([type]): Target Tensor with shape (n, c, h, w).
Returns:
Tensor: Calculated MSE loss.
"""
return F.mse_loss(pred, target, reduction='none')
class MSECompositionLoss(nn.Module):
"""MSE (L2) composition loss.
Args:
loss_weight (float): Loss weight for MSE loss. Default: 1.0.
reduction (str): Specifies the reduction to apply to the output.
Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'.
sample_wise (bool): Whether calculate the loss sample-wise. This
argument only takes effect when `reduction` is 'mean' and `weight`
(argument of `forward()`) is not None. It will first reduces loss
with 'mean' per-sample, and then it means over all the samples.
Default: False.
"""
def __init__(self, loss_weight=1.0, reduction='mean', sample_wise=False):
super().__init__()
if reduction not in ['none', 'mean', 'sum']:
raise ValueError(
f'Unsupported reduction mode: {reduction}. Supported ones are: {_reduction_modes}'
)
self.loss_weight = loss_weight
self.reduction = reduction
self.sample_wise = sample_wise
def forward(self, pred_alpha, fg, bg, ori_merged, weight=None, **kwargs):
"""
Args:
pred_alpha (Tensor): of shape (N, 1, H, W). Predicted alpha matte.
fg (Tensor): of shape (N, 3, H, W). Tensor of foreground object.
bg (Tensor): of shape (N, 3, H, W). Tensor of background object.
ori_merged (Tensor): of shape (N, 3, H, W). Tensor of origin merged
image before normalized by ImageNet mean and std.
weight (Tensor, optional): of shape (N, 1, H, W). It is an
indicating matrix: weight[trimap == 128] = 1. Default: None.
"""
pred_merged = pred_alpha * fg + (1.0 - pred_alpha) * bg
if weight is not None:
weight = weight.expand(-1, 3, -1, -1)
return self.loss_weight * mse_loss(pred_merged, ori_merged, weight,
reduction=self.reduction, sample_wise=self.sample_wise)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import functools
import torch.nn as nn
from torch.nn import functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_mean_mse_loss_mul_rsub_0(in_out_ptr0, in_ptr0,
in_ptr1, in_ptr2, in_ptr3, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp5 = tl.load(in_ptr2 + r0, None)
tmp8 = tl.load(in_ptr3 + r0, None)
tmp2 = tmp0 * tmp1
tmp3 = 1.0
tmp4 = tmp3 - tmp0
tmp6 = tmp4 * tmp5
tmp7 = tmp2 + tmp6
tmp9 = tmp7 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tl.broadcast_to(tmp10, [RBLOCK])
tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0))
tmp14 = 256.0
tmp15 = tmp13 / tmp14
tmp16 = tmp15 * tmp3
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp16, None)
def call(args):
arg0_1, arg1_1, arg2_1, arg3_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_add_mean_mse_loss_mul_rsub_0[grid(1)](buf1, arg0_1,
arg1_1, arg2_1, arg3_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
del arg2_1
del arg3_1
return buf1,
def reduce_loss(loss, reduction):
"""Reduce loss as specified.
Args:
loss (Tensor): Elementwise loss tensor.
reduction (str): Options are "none", "mean" and "sum".
Returns:
Tensor: Reduced loss tensor.
"""
reduction_enum = F._Reduction.get_enum(reduction)
if reduction_enum == 0:
return loss
if reduction_enum == 1:
return loss.mean()
return loss.sum()
def mask_reduce_loss(loss, weight=None, reduction='mean', sample_wise=False):
"""Apply element-wise weight and reduce loss.
Args:
loss (Tensor): Element-wise loss.
weight (Tensor): Element-wise weights. Default: None.
reduction (str): Same as built-in losses of PyTorch. Options are
"none", "mean" and "sum". Default: 'mean'.
sample_wise (bool): Whether calculate the loss sample-wise. This
argument only takes effect when `reduction` is 'mean' and `weight`
(argument of `forward()`) is not None. It will first reduces loss
with 'mean' per-sample, and then it means over all the samples.
Default: False.
Returns:
Tensor: Processed loss values.
"""
if weight is not None:
assert weight.dim() == loss.dim()
assert weight.size(1) == 1 or weight.size(1) == loss.size(1)
loss = loss * weight
if weight is None or reduction == 'sum':
loss = reduce_loss(loss, reduction)
elif reduction == 'mean':
if weight.size(1) == 1:
weight = weight.expand_as(loss)
eps = 1e-12
if sample_wise:
weight = weight.sum(dim=[1, 2, 3], keepdim=True)
loss = (loss / (weight + eps)).sum() / weight.size(0)
else:
loss = loss.sum() / (weight.sum() + eps)
return loss
def masked_loss(loss_func):
"""Create a masked version of a given loss function.
To use this decorator, the loss function must have the signature like
`loss_func(pred, target, **kwargs)`. The function only needs to compute
element-wise loss without any reduction. This decorator will add weight
and reduction arguments to the function. The decorated function will have
the signature like `loss_func(pred, target, weight=None, reduction='mean',
avg_factor=None, **kwargs)`.
:Example:
>>> import torch
>>> @masked_loss
>>> def l1_loss(pred, target):
>>> return (pred - target).abs()
>>> pred = torch.Tensor([0, 2, 3])
>>> target = torch.Tensor([1, 1, 1])
>>> weight = torch.Tensor([1, 0, 1])
>>> l1_loss(pred, target)
tensor(1.3333)
>>> l1_loss(pred, target, weight)
tensor(1.5000)
>>> l1_loss(pred, target, reduction='none')
tensor([1., 1., 2.])
>>> l1_loss(pred, target, weight, reduction='sum')
tensor(3.)
"""
@functools.wraps(loss_func)
def wrapper(pred, target, weight=None, reduction='mean', sample_wise=
False, **kwargs):
loss = loss_func(pred, target, **kwargs)
loss = mask_reduce_loss(loss, weight, reduction, sample_wise)
return loss
return wrapper
@masked_loss
def mse_loss(pred, target):
"""MSE loss.
Args:
pred (Tensor): Prediction Tensor with shape (n, c, h, w).
target ([type]): Target Tensor with shape (n, c, h, w).
Returns:
Tensor: Calculated MSE loss.
"""
return F.mse_loss(pred, target, reduction='none')
class MSECompositionLossNew(nn.Module):
"""MSE (L2) composition loss.
Args:
loss_weight (float): Loss weight for MSE loss. Default: 1.0.
reduction (str): Specifies the reduction to apply to the output.
Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'.
sample_wise (bool): Whether calculate the loss sample-wise. This
argument only takes effect when `reduction` is 'mean' and `weight`
(argument of `forward()`) is not None. It will first reduces loss
with 'mean' per-sample, and then it means over all the samples.
Default: False.
"""
def __init__(self, loss_weight=1.0, reduction='mean', sample_wise=False):
super().__init__()
if reduction not in ['none', 'mean', 'sum']:
raise ValueError(
f'Unsupported reduction mode: {reduction}. Supported ones are: {_reduction_modes}'
)
self.loss_weight = loss_weight
self.reduction = reduction
self.sample_wise = sample_wise
def forward(self, input_0, input_1, input_2, input_3):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
arg3_1 = input_3
output = call([arg0_1, arg1_1, arg2_1, arg3_1])
return output[0]
|
Sardhendu/mmediting
|
MSECompositionLoss
| false | 9,884 |
[
"Apache-2.0"
] | 0 |
623b59ac758d856abc9fab7e845beeab61074d8f
|
https://github.com/Sardhendu/mmediting/tree/623b59ac758d856abc9fab7e845beeab61074d8f
|
ConvNet
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/ft/cftqaeqt35oge5l3bbpv3uhleqvp2lsejqwbjdklod7sy6k66dz2.py
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv2d => convolution
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 46128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 3844) % 3
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/iv/civnax7wqicboqqn4dgl5wdes7sneuhnrvfbndkqy6eukxxukgmy.py
# Topologically Sorted Source Nodes: [max_pool2d, x], Original ATen: [aten.max_pool2d_with_indices, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# max_pool2d => _low_memory_max_pool2d_with_offsets, getitem_1
# x => relu
# Graph fragment:
# %_low_memory_max_pool2d_with_offsets : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%convolution, [3, 3], [3, 3], [0, 0], [1, 1], False), kwargs = {})
# %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%getitem,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 4800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 20
x1 = (xindex // 20) % 20
x5 = (xindex // 400)
x3 = (xindex // 1200)
x4 = xindex % 1200
tmp0 = tl.load(in_ptr0 + ((3*x0) + (186*x1) + (3844*x5)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (3*x0) + (186*x1) + (3844*x5)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (3*x0) + (186*x1) + (3844*x5)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (62 + (3*x0) + (186*x1) + (3844*x5)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (63 + (3*x0) + (186*x1) + (3844*x5)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (64 + (3*x0) + (186*x1) + (3844*x5)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (124 + (3*x0) + (186*x1) + (3844*x5)), xmask, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr0 + (125 + (3*x0) + (186*x1) + (3844*x5)), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr0 + (126 + (3*x0) + (186*x1) + (3844*x5)), xmask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp8 = triton_helpers.maximum(tmp7, tmp6)
tmp10 = triton_helpers.maximum(tmp9, tmp8)
tmp12 = triton_helpers.maximum(tmp11, tmp10)
tmp14 = triton_helpers.maximum(tmp13, tmp12)
tmp16 = triton_helpers.maximum(tmp15, tmp14)
tmp17 = tmp1 > tmp0
tmp18 = tl.full([1], 1, tl.int8)
tmp19 = tl.full([1], 0, tl.int8)
tmp20 = tl.where(tmp17, tmp18, tmp19)
tmp21 = tmp3 > tmp2
tmp22 = tl.full([1], 2, tl.int8)
tmp23 = tl.where(tmp21, tmp22, tmp20)
tmp24 = tmp5 > tmp4
tmp25 = tl.full([1], 3, tl.int8)
tmp26 = tl.where(tmp24, tmp25, tmp23)
tmp27 = tmp7 > tmp6
tmp28 = tl.full([1], 4, tl.int8)
tmp29 = tl.where(tmp27, tmp28, tmp26)
tmp30 = tmp9 > tmp8
tmp31 = tl.full([1], 5, tl.int8)
tmp32 = tl.where(tmp30, tmp31, tmp29)
tmp33 = tmp11 > tmp10
tmp34 = tl.full([1], 6, tl.int8)
tmp35 = tl.where(tmp33, tmp34, tmp32)
tmp36 = tmp13 > tmp12
tmp37 = tl.full([1], 7, tl.int8)
tmp38 = tl.where(tmp36, tmp37, tmp35)
tmp39 = tmp15 > tmp14
tmp40 = tl.full([1], 8, tl.int8)
tmp41 = tl.where(tmp39, tmp40, tmp38)
tmp42 = tl.full([1], 0, tl.int32)
tmp43 = triton_helpers.maximum(tmp42, tmp16)
tmp44 = 0.0
tmp45 = tmp43 <= tmp44
tl.store(out_ptr0 + (x4 + (1280*x3)), tmp41, xmask)
tl.store(in_out_ptr0 + (x4 + (1216*x3)), tmp43, xmask)
tl.store(out_ptr1 + (x4 + (1280*x3)), tmp45, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/6j/c6jxic53xcwskw4sutgcmasi3quyeifp26ovg4ohwmby6vzwxsqj.py
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.relu, aten.view]
# Source node to ATen node mapping:
# x => relu
# x_1 => view
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%getitem,), kwargs = {})
# %view : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%relu, [-1, 192]), kwargs = {})
triton_poi_fused_relu_view_2 = async_compile.triton('triton_poi_fused_relu_view_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_view_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_view_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + ((1216*(x0 // 1200)) + (x0 % 1200)), xmask)
tl.store(out_ptr0 + (x0), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/xk/cxka33fsjgumiuk2joc3cs43ddlpebgh572xevw74a3o7munm2c6.py
# Topologically Sorted Source Nodes: [out], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# out => amax, exp, log, sub, sub_1, sum_1
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%addmm, [1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%addmm, %amax), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {})
triton_per_fused__log_softmax_3 = async_compile.triton('triton_per_fused__log_softmax_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[32, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__log_softmax_3(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 25
rnumel = 10
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = rindex < rnumel
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (10*x0)), rmask & xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(rmask & xmask, tmp1, float("-inf"))
tmp4 = triton_helpers.max2(tmp3, 1)[:, None]
tmp5 = tmp0 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.where(rmask & xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tmp11 = tl_math.log(tmp10)
tmp12 = tmp5 - tmp11
tl.store(out_ptr2 + (r1 + (10*x0)), tmp12, rmask & xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (3, 1, 3, 3), (9, 9, 3, 1))
assert_size_stride(primals_2, (3, ), (1, ))
assert_size_stride(primals_3, (4, 1, 64, 64), (4096, 4096, 64, 1))
assert_size_stride(primals_4, (10, 192), (192, 1))
assert_size_stride(primals_5, (10, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 3, 62, 62), (11532, 3844, 62, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(buf1, primals_2, 46128, grid=grid(46128), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((4, 3, 20, 20), (1216, 400, 20, 1), torch.float32)
buf3 = empty_strided_cuda((4, 3, 20, 20), (1280, 400, 20, 1), torch.int8)
buf4 = buf2; del buf2 # reuse
buf10 = empty_strided_cuda((4, 3, 20, 20), (1280, 400, 20, 1), torch.bool)
# Topologically Sorted Source Nodes: [max_pool2d, x], Original ATen: [aten.max_pool2d_with_indices, aten.relu, aten.threshold_backward]
triton_poi_fused_max_pool2d_with_indices_relu_threshold_backward_1.run(buf4, buf1, buf3, buf10, 4800, grid=grid(4800), stream=stream0)
buf5 = empty_strided_cuda((25, 192), (192, 1), torch.float32)
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.relu, aten.view]
triton_poi_fused_relu_view_2.run(buf4, buf5, 4800, grid=grid(4800), stream=stream0)
del buf4
buf6 = empty_strided_cuda((25, 10), (10, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, buf5, reinterpret_tensor(primals_4, (192, 10), (1, 192), 0), alpha=1, beta=1, out=buf6)
del primals_5
buf9 = empty_strided_cuda((25, 10), (10, 1), torch.float32)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten._log_softmax]
triton_per_fused__log_softmax_3.run(buf6, buf9, 25, 10, grid=grid(25), stream=stream0)
del buf6
return (buf9, primals_1, primals_3, buf1, buf3, buf5, buf9, primals_4, buf10, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((3, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 1, 64, 64), (4096, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((10, 192), (192, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class ConvNet(nn.Module):
def __init__(self):
super(ConvNet, self).__init__()
self.conv1 = nn.Conv2d(1, 3, kernel_size=3)
self.fc = nn.Linear(192, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 3))
x = x.view(-1, 192)
x = self.fc(x)
out = F.log_softmax(x, dim=1)
None
return out
def get_inputs():
return [torch.rand([4, 1, 64, 64])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 46128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 3844 % 3
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_relu_threshold_backward_1(
in_out_ptr0, in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 4800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 20
x1 = xindex // 20 % 20
x5 = xindex // 400
x3 = xindex // 1200
x4 = xindex % 1200
tmp0 = tl.load(in_ptr0 + (3 * x0 + 186 * x1 + 3844 * x5), xmask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 3 * x0 + 186 * x1 + 3844 * x5), xmask,
eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 3 * x0 + 186 * x1 + 3844 * x5), xmask,
eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (62 + 3 * x0 + 186 * x1 + 3844 * x5), xmask,
eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (63 + 3 * x0 + 186 * x1 + 3844 * x5), xmask,
eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (64 + 3 * x0 + 186 * x1 + 3844 * x5), xmask,
eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (124 + 3 * x0 + 186 * x1 + 3844 * x5), xmask,
eviction_policy='evict_last')
tmp13 = tl.load(in_ptr0 + (125 + 3 * x0 + 186 * x1 + 3844 * x5), xmask,
eviction_policy='evict_last')
tmp15 = tl.load(in_ptr0 + (126 + 3 * x0 + 186 * x1 + 3844 * x5), xmask,
eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp8 = triton_helpers.maximum(tmp7, tmp6)
tmp10 = triton_helpers.maximum(tmp9, tmp8)
tmp12 = triton_helpers.maximum(tmp11, tmp10)
tmp14 = triton_helpers.maximum(tmp13, tmp12)
tmp16 = triton_helpers.maximum(tmp15, tmp14)
tmp17 = tmp1 > tmp0
tmp18 = tl.full([1], 1, tl.int8)
tmp19 = tl.full([1], 0, tl.int8)
tmp20 = tl.where(tmp17, tmp18, tmp19)
tmp21 = tmp3 > tmp2
tmp22 = tl.full([1], 2, tl.int8)
tmp23 = tl.where(tmp21, tmp22, tmp20)
tmp24 = tmp5 > tmp4
tmp25 = tl.full([1], 3, tl.int8)
tmp26 = tl.where(tmp24, tmp25, tmp23)
tmp27 = tmp7 > tmp6
tmp28 = tl.full([1], 4, tl.int8)
tmp29 = tl.where(tmp27, tmp28, tmp26)
tmp30 = tmp9 > tmp8
tmp31 = tl.full([1], 5, tl.int8)
tmp32 = tl.where(tmp30, tmp31, tmp29)
tmp33 = tmp11 > tmp10
tmp34 = tl.full([1], 6, tl.int8)
tmp35 = tl.where(tmp33, tmp34, tmp32)
tmp36 = tmp13 > tmp12
tmp37 = tl.full([1], 7, tl.int8)
tmp38 = tl.where(tmp36, tmp37, tmp35)
tmp39 = tmp15 > tmp14
tmp40 = tl.full([1], 8, tl.int8)
tmp41 = tl.where(tmp39, tmp40, tmp38)
tmp42 = tl.full([1], 0, tl.int32)
tmp43 = triton_helpers.maximum(tmp42, tmp16)
tmp44 = 0.0
tmp45 = tmp43 <= tmp44
tl.store(out_ptr0 + (x4 + 1280 * x3), tmp41, xmask)
tl.store(in_out_ptr0 + (x4 + 1216 * x3), tmp43, xmask)
tl.store(out_ptr1 + (x4 + 1280 * x3), tmp45, xmask)
@triton.jit
def triton_poi_fused_relu_view_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 4800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (1216 * (x0 // 1200) + x0 % 1200), xmask)
tl.store(out_ptr0 + x0, tmp0, xmask)
@triton.jit
def triton_per_fused__log_softmax_3(in_ptr0, out_ptr2, xnumel, rnumel,
XBLOCK: tl.constexpr):
xnumel = 25
rnumel = 10
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
rmask = rindex < rnumel
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 10 * x0), rmask & xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(rmask & xmask, tmp1, float('-inf'))
tmp4 = triton_helpers.max2(tmp3, 1)[:, None]
tmp5 = tmp0 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.where(rmask & xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tmp11 = tl_math.log(tmp10)
tmp12 = tmp5 - tmp11
tl.store(out_ptr2 + (r1 + 10 * x0), tmp12, rmask & xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (3, 1, 3, 3), (9, 9, 3, 1))
assert_size_stride(primals_2, (3,), (1,))
assert_size_stride(primals_3, (4, 1, 64, 64), (4096, 4096, 64, 1))
assert_size_stride(primals_4, (10, 192), (192, 1))
assert_size_stride(primals_5, (10,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 3, 62, 62), (11532, 3844, 62, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(46128)](buf1, primals_2, 46128,
XBLOCK=512, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((4, 3, 20, 20), (1216, 400, 20, 1), torch
.float32)
buf3 = empty_strided_cuda((4, 3, 20, 20), (1280, 400, 20, 1), torch
.int8)
buf4 = buf2
del buf2
buf10 = empty_strided_cuda((4, 3, 20, 20), (1280, 400, 20, 1),
torch.bool)
triton_poi_fused_max_pool2d_with_indices_relu_threshold_backward_1[grid
(4800)](buf4, buf1, buf3, buf10, 4800, XBLOCK=128, num_warps=4,
num_stages=1)
buf5 = empty_strided_cuda((25, 192), (192, 1), torch.float32)
triton_poi_fused_relu_view_2[grid(4800)](buf4, buf5, 4800, XBLOCK=
256, num_warps=4, num_stages=1)
del buf4
buf6 = empty_strided_cuda((25, 10), (10, 1), torch.float32)
extern_kernels.addmm(primals_5, buf5, reinterpret_tensor(primals_4,
(192, 10), (1, 192), 0), alpha=1, beta=1, out=buf6)
del primals_5
buf9 = empty_strided_cuda((25, 10), (10, 1), torch.float32)
triton_per_fused__log_softmax_3[grid(25)](buf6, buf9, 25, 10,
XBLOCK=32, num_warps=4, num_stages=1)
del buf6
return buf9, primals_1, primals_3, buf1, buf3, buf5, buf9, primals_4, buf10
class ConvNetNew(nn.Module):
def __init__(self):
super(ConvNetNew, self).__init__()
self.conv1 = nn.Conv2d(1, 3, kernel_size=3)
self.fc = nn.Linear(192, 10)
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.fc.weight
primals_5 = self.fc.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
chao5645/T-1000
|
ConvNet
| false | 9,885 |
[
"MIT"
] | 0 |
99751bcfd79bd94df3667e7311e3b3af2b912505
|
https://github.com/chao5645/T-1000/tree/99751bcfd79bd94df3667e7311e3b3af2b912505
|
SpatialAttentionModule
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/uc/cucdaa5tqnxykdmw5yqh7ir5ac35phopjcobljrg4rrtlnfjtuwd.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# x => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%getitem, %mean], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 16) % 2
x0 = xindex % 16
x2 = (xindex // 32)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp9 = triton_helpers.maximum(tmp7, tmp8)
tmp10 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = triton_helpers.maximum(tmp9, tmp10)
tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype)
tmp13 = tl.where(tmp4, tmp11, tmp12)
tmp14 = tmp0 >= tmp3
tmp15 = tl.full([1], 2, tl.int64)
tmp16 = tmp0 < tmp15
tmp17 = tl.load(in_ptr0 + (x0 + (64*x2)), tmp14 & xmask, eviction_policy='evict_last', other=0.0)
tmp18 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), tmp14 & xmask, eviction_policy='evict_last', other=0.0)
tmp19 = tmp17 + tmp18
tmp20 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), tmp14 & xmask, eviction_policy='evict_last', other=0.0)
tmp21 = tmp19 + tmp20
tmp22 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), tmp14 & xmask, eviction_policy='evict_last', other=0.0)
tmp23 = tmp21 + tmp22
tmp24 = 4.0
tmp25 = tmp23 / tmp24
tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype)
tmp27 = tl.where(tmp14, tmp25, tmp26)
tmp28 = tl.where(tmp4, tmp13, tmp27)
tl.store(out_ptr0 + (x3), tmp28, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/go/cgofqcgduqrtcjakfd7uk3wkcrpwsqxispluihwsstry6ekodk2u.py
# Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.convolution, aten.sigmoid]
# Source node to ATen node mapping:
# x_1 => convolution
# x_2 => sigmoid
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%cat, %primals_2, %primals_3, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_sigmoid_1 = async_compile.triton('triton_poi_fused_convolution_sigmoid_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_sigmoid_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.sigmoid(tmp3)
tl.store(in_out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, 2, 3, 3), (18, 9, 3, 1))
assert_size_stride(primals_3, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_1, buf0, 128, grid=grid(128), stream=stream0)
del primals_1
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 1, 4, 4), (16, 16, 4, 1))
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.convolution, aten.sigmoid]
triton_poi_fused_convolution_sigmoid_1.run(buf2, primals_3, 64, grid=grid(64), stream=stream0)
del primals_3
return (buf2, primals_2, buf0, buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, 2, 3, 3), (18, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
def init_weight(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
nn.init.kaiming_normal_(m.weight, mode='fan_in', nonlinearity='relu')
if m.bias is not None:
m.bias.data.zero_()
elif classname.find('Batch') != -1:
m.weight.data.normal_(1, 0.02)
m.bias.data.zero_()
elif classname.find('Linear') != -1:
nn.init.orthogonal_(m.weight, gain=1)
if m.bias is not None:
m.bias.data.zero_()
elif classname.find('Embedding') != -1:
nn.init.orthogonal_(m.weight, gain=1)
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=True)
class SpatialAttentionModule(nn.Module):
def __init__(self):
super().__init__()
self.conv3x3 = conv3x3(2, 1).apply(init_weight)
def forward(self, inputs):
x1, _ = torch.max(inputs, dim=1, keepdim=True)
x2 = torch.mean(inputs, dim=1, keepdim=True)
x = torch.cat([x1, x2], dim=1)
x = self.conv3x3(x)
x = torch.sigmoid(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 16 % 2
x0 = xindex % 16
x2 = xindex // 32
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 64 * x2), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), tmp4 & xmask,
eviction_policy='evict_last', other=0.0)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), tmp4 & xmask,
eviction_policy='evict_last', other=0.0)
tmp9 = triton_helpers.maximum(tmp7, tmp8)
tmp10 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), tmp4 & xmask,
eviction_policy='evict_last', other=0.0)
tmp11 = triton_helpers.maximum(tmp9, tmp10)
tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype)
tmp13 = tl.where(tmp4, tmp11, tmp12)
tmp14 = tmp0 >= tmp3
tl.full([1], 2, tl.int64)
tmp17 = tl.load(in_ptr0 + (x0 + 64 * x2), tmp14 & xmask,
eviction_policy='evict_last', other=0.0)
tmp18 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), tmp14 & xmask,
eviction_policy='evict_last', other=0.0)
tmp19 = tmp17 + tmp18
tmp20 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), tmp14 & xmask,
eviction_policy='evict_last', other=0.0)
tmp21 = tmp19 + tmp20
tmp22 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), tmp14 & xmask,
eviction_policy='evict_last', other=0.0)
tmp23 = tmp21 + tmp22
tmp24 = 4.0
tmp25 = tmp23 / tmp24
tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype)
tmp27 = tl.where(tmp14, tmp25, tmp26)
tmp28 = tl.where(tmp4, tmp13, tmp27)
tl.store(out_ptr0 + x3, tmp28, xmask)
@triton.jit
def triton_poi_fused_convolution_sigmoid_1(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.sigmoid(tmp3)
tl.store(in_out_ptr0 + x0, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, 2, 3, 3), (18, 9, 3, 1))
assert_size_stride(primals_3, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(128)](primals_1, buf0, 128, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_1
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 1, 4, 4), (16, 16, 4, 1))
buf2 = buf1
del buf1
triton_poi_fused_convolution_sigmoid_1[grid(64)](buf2, primals_3,
64, XBLOCK=64, num_warps=1, num_stages=1)
del primals_3
return buf2, primals_2, buf0, buf2
def init_weight(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
nn.init.kaiming_normal_(m.weight, mode='fan_in', nonlinearity='relu')
if m.bias is not None:
m.bias.data.zero_()
elif classname.find('Batch') != -1:
m.weight.data.normal_(1, 0.02)
m.bias.data.zero_()
elif classname.find('Linear') != -1:
nn.init.orthogonal_(m.weight, gain=1)
if m.bias is not None:
m.bias.data.zero_()
elif classname.find('Embedding') != -1:
nn.init.orthogonal_(m.weight, gain=1)
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=True)
class SpatialAttentionModuleNew(nn.Module):
def __init__(self):
super().__init__()
self.conv3x3 = conv3x3(2, 1).apply(init_weight)
def forward(self, input_0):
primals_2 = self.conv3x3.weight
primals_3 = self.conv3x3.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
OrKatz7/kaggle-hubmap
|
SpatialAttentionModule
| false | 9,886 |
[
"MIT"
] | 0 |
5cf8c5aebe956c256fa7f3db432639e28f29c6a3
|
https://github.com/OrKatz7/kaggle-hubmap/tree/5cf8c5aebe956c256fa7f3db432639e28f29c6a3
|
ExtResNetBlock
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/nq/cnqfeo5iu3yeiof2x33r7xnbaj7fk2w7g5swc25ak43vd4xaupdu.py
# Topologically Sorted Source Nodes: [input_2, input_3], Original ATen: [aten.native_group_norm, aten.elu]
# Source node to ATen node mapping:
# input_2 => add, add_1, mul_1, rsqrt, var_mean
# input_3 => expm1, gt, mul_2, mul_4, where
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [2, 3]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %unsqueeze_6), kwargs = {})
# %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %unsqueeze_3), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_1, 0), kwargs = {})
# %mul_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_1, 1.0), kwargs = {})
# %expm1 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul_2,), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1, 1.0), kwargs = {})
# %where : [num_users=3] = call_function[target=torch.ops.aten.where.self](args = (%gt, %mul_2, %mul_4), kwargs = {})
triton_per_fused_elu_native_group_norm_0 = async_compile.triton('triton_per_fused_elu_native_group_norm_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_elu_native_group_norm_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_elu_native_group_norm_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
r3 = (rindex // 16)
tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0)
tmp24 = tl.load(in_ptr1 + (r3), None, eviction_policy='evict_last')
tmp26 = tl.load(in_ptr2 + (r3), None, eviction_policy='evict_last')
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = tl.full([XBLOCK, 1], 64, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.where(xmask, tmp13, 0)
tmp16 = tl.sum(tmp15, 1)[:, None]
tmp17 = tmp0 - tmp10
tmp18 = 64.0
tmp19 = tmp16 / tmp18
tmp20 = 1e-05
tmp21 = tmp19 + tmp20
tmp22 = libdevice.rsqrt(tmp21)
tmp23 = tmp17 * tmp22
tmp25 = tmp23 * tmp24
tmp27 = tmp25 + tmp26
tmp28 = 0.0
tmp29 = tmp27 > tmp28
tmp30 = 1.0
tmp31 = tmp27 * tmp30
tmp32 = libdevice.expm1(tmp31)
tmp33 = tmp32 * tmp30
tmp34 = tl.where(tmp29, tmp31, tmp33)
tl.store(in_out_ptr0 + (r1 + (64*x0)), tmp34, xmask)
tl.store(out_ptr2 + (x0), tmp22, xmask)
tl.store(out_ptr0 + (x0), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/u5/cu5cyt57jdnmvmp7ergqhphxhmiitnaocaheuhyvmg4limh7mwlo.py
# Topologically Sorted Source Nodes: [input_8, out, out_1], Original ATen: [aten.native_group_norm, aten.add, aten.elu]
# Source node to ATen node mapping:
# input_8 => add_4, add_5, mul_11, rsqrt_2, var_mean_2
# out => add_6
# out_1 => expm1_2, gt_2, mul_12, mul_14, where_2
# Graph fragment:
# %var_mean_2 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_4, [2, 3]), kwargs = {correction: 0, keepdim: True})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_4, 1e-05), kwargs = {})
# %rsqrt_2 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_4,), kwargs = {})
# %mul_11 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_5, %unsqueeze_22), kwargs = {})
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_11, %unsqueeze_19), kwargs = {})
# %add_6 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_5, %where), kwargs = {})
# %gt_2 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_6, 0), kwargs = {})
# %mul_12 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_6, 1.0), kwargs = {})
# %expm1_2 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul_12,), kwargs = {})
# %mul_14 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1_2, 1.0), kwargs = {})
# %where_2 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %mul_12, %mul_14), kwargs = {})
triton_per_fused_add_elu_native_group_norm_1 = async_compile.triton('triton_per_fused_add_elu_native_group_norm_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 8), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_elu_native_group_norm_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_elu_native_group_norm_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
r3 = (rindex // 16)
tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0)
tmp24 = tl.load(in_ptr1 + (r3), None, eviction_policy='evict_last')
tmp26 = tl.load(in_ptr2 + (r3), None, eviction_policy='evict_last')
tmp28 = tl.load(in_ptr3 + (r1 + (64*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = tl.full([XBLOCK, 1], 64, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.where(xmask, tmp13, 0)
tmp16 = tl.sum(tmp15, 1)[:, None]
tmp17 = tmp0 - tmp10
tmp18 = 64.0
tmp19 = tmp16 / tmp18
tmp20 = 1e-05
tmp21 = tmp19 + tmp20
tmp22 = libdevice.rsqrt(tmp21)
tmp23 = tmp17 * tmp22
tmp25 = tmp23 * tmp24
tmp27 = tmp25 + tmp26
tmp29 = tmp27 + tmp28
tmp30 = 0.0
tmp31 = tmp29 > tmp30
tmp32 = 1.0
tmp33 = tmp29 * tmp32
tmp34 = libdevice.expm1(tmp33)
tmp35 = tmp34 * tmp32
tmp36 = tl.where(tmp31, tmp33, tmp35)
tl.store(in_out_ptr0 + (r1 + (64*x0)), tmp36, xmask)
tl.store(out_ptr2 + (x0), tmp22, xmask)
tl.store(out_ptr0 + (x0), tmp10, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 3, 3, 3), (108, 27, 9, 3, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (4, 4, 3, 3, 3), (108, 27, 9, 3, 1))
assert_size_stride(primals_6, (4, ), (1, ))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, 4, 3, 3, 3), (108, 27, 9, 3, 1))
assert_size_stride(primals_9, (4, ), (1, ))
assert_size_stride(primals_10, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [input_1], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(reinterpret_tensor(primals_2, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), primals_1, stride=(1, 1, 1), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None)
assert_size_stride(buf0, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1))
buf1 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf6 = buf4; del buf4 # reuse
buf5 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
# Topologically Sorted Source Nodes: [input_2, input_3], Original ATen: [aten.native_group_norm, aten.elu]
stream0 = get_raw_stream(0)
triton_per_fused_elu_native_group_norm_0.run(buf6, buf0, primals_3, primals_4, buf1, buf5, 4, 64, grid=grid(4), stream=stream0)
del primals_4
# Topologically Sorted Source Nodes: [input_4], Original ATen: [aten.convolution]
buf7 = extern_kernels.convolution(reinterpret_tensor(buf6, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), primals_5, stride=(1, 1, 1), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None)
assert_size_stride(buf7, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1))
buf8 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
buf11 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf13 = buf11; del buf11 # reuse
buf12 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
# Topologically Sorted Source Nodes: [input_5, input_6], Original ATen: [aten.native_group_norm, aten.elu]
triton_per_fused_elu_native_group_norm_0.run(buf13, buf7, primals_6, primals_7, buf8, buf12, 4, 64, grid=grid(4), stream=stream0)
del primals_7
# Topologically Sorted Source Nodes: [input_7], Original ATen: [aten.convolution]
buf14 = extern_kernels.convolution(reinterpret_tensor(buf13, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), primals_8, stride=(1, 1, 1), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None)
assert_size_stride(buf14, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1))
buf15 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
buf19 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf20 = buf19; del buf19 # reuse
buf18 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
# Topologically Sorted Source Nodes: [input_8, out, out_1], Original ATen: [aten.native_group_norm, aten.add, aten.elu]
triton_per_fused_add_elu_native_group_norm_1.run(buf20, buf14, primals_9, primals_10, buf6, buf15, buf18, 4, 64, grid=grid(4), stream=stream0)
del primals_10
return (buf20, primals_1, primals_3, primals_5, primals_6, primals_8, primals_9, reinterpret_tensor(primals_2, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), buf0, reinterpret_tensor(buf1, (4, 1), (1, 1), 0), reinterpret_tensor(buf5, (4, 1), (1, 1), 0), buf6, buf7, reinterpret_tensor(buf8, (4, 1), (1, 1), 0), reinterpret_tensor(buf12, (4, 1), (1, 1), 0), buf13, buf14, reinterpret_tensor(buf15, (4, 1), (1, 1), 0), reinterpret_tensor(buf18, (4, 1), (1, 1), 0), buf20, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 3, 3, 3), (108, 27, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4, 3, 3, 3), (108, 27, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 4, 3, 3, 3), (108, 27, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
def conv3d(in_channels, out_channels, kernel_size, bias, padding):
return nn.Conv3d(in_channels, out_channels, kernel_size, padding=
padding, bias=bias)
def create_conv(in_channels, out_channels, kernel_size, order, num_groups,
padding):
"""
Create a list of modules with together constitute a single conv layer with non-linearity
and optional batchnorm/groupnorm.
Args:
in_channels (int): number of input channels
out_channels (int): number of output channels
kernel_size(int or tuple): size of the convolving kernel
order (string): order of things, e.g.
'cr' -> conv + ReLU
'gcr' -> groupnorm + conv + ReLU
'cl' -> conv + LeakyReLU
'ce' -> conv + ELU
'bcr' -> batchnorm + conv + ReLU
num_groups (int): number of groups for the GroupNorm
padding (int or tuple): add zero-padding added to all three sides of the input
Return:
list of tuple (name, module)
"""
assert 'c' in order, 'Conv layer MUST be present'
assert order[0
] not in 'rle', 'Non-linearity cannot be the first operation in the layer'
modules = []
for i, char in enumerate(order):
if char == 'r':
modules.append(('ReLU', nn.ReLU(inplace=True)))
elif char == 'l':
modules.append(('LeakyReLU', nn.LeakyReLU(negative_slope=0.1,
inplace=True)))
elif char == 'e':
modules.append(('ELU', nn.ELU(inplace=True)))
elif char == 'c':
bias = not ('g' in order or 'b' in order)
modules.append(('conv', conv3d(in_channels, out_channels,
kernel_size, bias, padding=padding)))
elif char == 'g':
is_before_conv = i < order.index('c')
if is_before_conv:
num_channels = in_channels
else:
num_channels = out_channels
if num_channels < num_groups:
num_groups = 1
assert num_channels % num_groups == 0, f'Expected number of channels in input to be divisible by num_groups. num_channels={num_channels}, num_groups={num_groups}'
modules.append(('groupnorm', nn.GroupNorm(num_groups=num_groups,
num_channels=num_channels)))
elif char == 'b':
is_before_conv = i < order.index('c')
if is_before_conv:
modules.append(('batchnorm', nn.BatchNorm3d(in_channels)))
else:
modules.append(('batchnorm', nn.BatchNorm3d(out_channels)))
else:
raise ValueError(
f"Unsupported layer type '{char}'. MUST be one of ['b', 'g', 'r', 'l', 'e', 'c']"
)
return modules
class SingleConv(nn.Sequential):
"""
Basic convolutional module consisting of a Conv3d, non-linearity and optional batchnorm/groupnorm. The order
of operations can be specified via the `order` parameter
Args:
in_channels (int): number of input channels
out_channels (int): number of output channels
kernel_size (int or tuple): size of the convolving kernel
order (string): determines the order of layers, e.g.
'cr' -> conv + ReLU
'crg' -> conv + ReLU + groupnorm
'cl' -> conv + LeakyReLU
'ce' -> conv + ELU
num_groups (int): number of groups for the GroupNorm
padding (int or tuple):
"""
def __init__(self, in_channels, out_channels, kernel_size=3, order=
'gcr', num_groups=8, padding=1):
super(SingleConv, self).__init__()
for name, module in create_conv(in_channels, out_channels,
kernel_size, order, num_groups, padding=padding):
self.add_module(name, module)
class ExtResNetBlock(nn.Module):
"""
Basic UNet block consisting of a SingleConv followed by the residual block.
The SingleConv takes care of increasing/decreasing the number of channels and also ensures that the number
of output channels is compatible with the residual block that follows.
This block can be used instead of standard DoubleConv in the Encoder module.
Motivated by: https://arxiv.org/pdf/1706.00120.pdf
Notice we use ELU instead of ReLU (order='cge') and put non-linearity after the groupnorm.
"""
def __init__(self, in_channels, out_channels, kernel_size=3, order=
'cge', num_groups=8, **kwargs):
super(ExtResNetBlock, self).__init__()
self.conv1 = SingleConv(in_channels, out_channels, kernel_size=
kernel_size, order=order, num_groups=num_groups)
self.conv2 = SingleConv(out_channels, out_channels, kernel_size=
kernel_size, order=order, num_groups=num_groups)
n_order = order
for c in 'rel':
n_order = n_order.replace(c, '')
self.conv3 = SingleConv(out_channels, out_channels, kernel_size=
kernel_size, order=n_order, num_groups=num_groups)
if 'l' in order:
self.non_linearity = nn.LeakyReLU(negative_slope=0.1, inplace=True)
elif 'e' in order:
self.non_linearity = nn.ELU(inplace=True)
else:
self.non_linearity = nn.ReLU(inplace=True)
def forward(self, x):
out = self.conv1(x)
residual = out
out = self.conv2(out)
out = self.conv3(out)
out += residual
out = self.non_linearity(out)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_elu_native_group_norm_0(in_out_ptr0, in_ptr0, in_ptr1,
in_ptr2, out_ptr0, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
r3 = rindex // 16
tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0)
tmp24 = tl.load(in_ptr1 + r3, None, eviction_policy='evict_last')
tmp26 = tl.load(in_ptr2 + r3, None, eviction_policy='evict_last')
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tl.where(xmask, tmp1, 0)
tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = tl.full([XBLOCK, 1], 64, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.where(xmask, tmp13, 0)
tmp16 = tl.sum(tmp15, 1)[:, None]
tmp17 = tmp0 - tmp10
tmp18 = 64.0
tmp19 = tmp16 / tmp18
tmp20 = 1e-05
tmp21 = tmp19 + tmp20
tmp22 = libdevice.rsqrt(tmp21)
tmp23 = tmp17 * tmp22
tmp25 = tmp23 * tmp24
tmp27 = tmp25 + tmp26
tmp28 = 0.0
tmp29 = tmp27 > tmp28
tmp30 = 1.0
tmp31 = tmp27 * tmp30
tmp32 = libdevice.expm1(tmp31)
tmp33 = tmp32 * tmp30
tmp34 = tl.where(tmp29, tmp31, tmp33)
tl.store(in_out_ptr0 + (r1 + 64 * x0), tmp34, xmask)
tl.store(out_ptr2 + x0, tmp22, xmask)
tl.store(out_ptr0 + x0, tmp10, xmask)
@triton.jit
def triton_per_fused_add_elu_native_group_norm_1(in_out_ptr0, in_ptr0,
in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr2, xnumel, rnumel, XBLOCK:
tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
r3 = rindex // 16
tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0)
tmp24 = tl.load(in_ptr1 + r3, None, eviction_policy='evict_last')
tmp26 = tl.load(in_ptr2 + r3, None, eviction_policy='evict_last')
tmp28 = tl.load(in_ptr3 + (r1 + 64 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tl.where(xmask, tmp1, 0)
tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = tl.full([XBLOCK, 1], 64, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.where(xmask, tmp13, 0)
tmp16 = tl.sum(tmp15, 1)[:, None]
tmp17 = tmp0 - tmp10
tmp18 = 64.0
tmp19 = tmp16 / tmp18
tmp20 = 1e-05
tmp21 = tmp19 + tmp20
tmp22 = libdevice.rsqrt(tmp21)
tmp23 = tmp17 * tmp22
tmp25 = tmp23 * tmp24
tmp27 = tmp25 + tmp26
tmp29 = tmp27 + tmp28
tmp30 = 0.0
tmp31 = tmp29 > tmp30
tmp32 = 1.0
tmp33 = tmp29 * tmp32
tmp34 = libdevice.expm1(tmp33)
tmp35 = tmp34 * tmp32
tmp36 = tl.where(tmp31, tmp33, tmp35)
tl.store(in_out_ptr0 + (r1 + 64 * x0), tmp36, xmask)
tl.store(out_ptr2 + x0, tmp22, xmask)
tl.store(out_ptr0 + x0, tmp10, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 3, 3, 3), (108, 27, 9, 3, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4, 4, 3, 3, 3), (108, 27, 9, 3, 1))
assert_size_stride(primals_6, (4,), (1,))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4, 4, 3, 3, 3), (108, 27, 9, 3, 1))
assert_size_stride(primals_9, (4,), (1,))
assert_size_stride(primals_10, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(reinterpret_tensor(primals_2, (1,
4, 4, 4, 4), (256, 64, 16, 4, 1), 0), primals_1, stride=(1, 1,
1), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False,
output_padding=(0, 0, 0), groups=1, bias=None)
assert_size_stride(buf0, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1))
buf1 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf6 = buf4
del buf4
buf5 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
get_raw_stream(0)
triton_per_fused_elu_native_group_norm_0[grid(4)](buf6, buf0,
primals_3, primals_4, buf1, buf5, 4, 64, XBLOCK=1, num_warps=2,
num_stages=1)
del primals_4
buf7 = extern_kernels.convolution(reinterpret_tensor(buf6, (1, 4, 4,
4, 4), (256, 64, 16, 4, 1), 0), primals_5, stride=(1, 1, 1),
padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False,
output_padding=(0, 0, 0), groups=1, bias=None)
assert_size_stride(buf7, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1))
buf8 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
buf11 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf13 = buf11
del buf11
buf12 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
triton_per_fused_elu_native_group_norm_0[grid(4)](buf13, buf7,
primals_6, primals_7, buf8, buf12, 4, 64, XBLOCK=1, num_warps=2,
num_stages=1)
del primals_7
buf14 = extern_kernels.convolution(reinterpret_tensor(buf13, (1, 4,
4, 4, 4), (256, 64, 16, 4, 1), 0), primals_8, stride=(1, 1, 1),
padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False,
output_padding=(0, 0, 0), groups=1, bias=None)
assert_size_stride(buf14, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1))
buf15 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
buf19 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf20 = buf19
del buf19
buf18 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
triton_per_fused_add_elu_native_group_norm_1[grid(4)](buf20, buf14,
primals_9, primals_10, buf6, buf15, buf18, 4, 64, XBLOCK=1,
num_warps=2, num_stages=1)
del primals_10
return (buf20, primals_1, primals_3, primals_5, primals_6, primals_8,
primals_9, reinterpret_tensor(primals_2, (1, 4, 4, 4, 4), (256, 64,
16, 4, 1), 0), buf0, reinterpret_tensor(buf1, (4, 1), (1, 1), 0),
reinterpret_tensor(buf5, (4, 1), (1, 1), 0), buf6, buf7,
reinterpret_tensor(buf8, (4, 1), (1, 1), 0), reinterpret_tensor(
buf12, (4, 1), (1, 1), 0), buf13, buf14, reinterpret_tensor(buf15,
(4, 1), (1, 1), 0), reinterpret_tensor(buf18, (4, 1), (1, 1), 0), buf20
)
def conv3d(in_channels, out_channels, kernel_size, bias, padding):
return nn.Conv3d(in_channels, out_channels, kernel_size, padding=
padding, bias=bias)
def create_conv(in_channels, out_channels, kernel_size, order, num_groups,
padding):
"""
Create a list of modules with together constitute a single conv layer with non-linearity
and optional batchnorm/groupnorm.
Args:
in_channels (int): number of input channels
out_channels (int): number of output channels
kernel_size(int or tuple): size of the convolving kernel
order (string): order of things, e.g.
'cr' -> conv + ReLU
'gcr' -> groupnorm + conv + ReLU
'cl' -> conv + LeakyReLU
'ce' -> conv + ELU
'bcr' -> batchnorm + conv + ReLU
num_groups (int): number of groups for the GroupNorm
padding (int or tuple): add zero-padding added to all three sides of the input
Return:
list of tuple (name, module)
"""
assert 'c' in order, 'Conv layer MUST be present'
assert order[0
] not in 'rle', 'Non-linearity cannot be the first operation in the layer'
modules = []
for i, char in enumerate(order):
if char == 'r':
modules.append(('ReLU', nn.ReLU(inplace=True)))
elif char == 'l':
modules.append(('LeakyReLU', nn.LeakyReLU(negative_slope=0.1,
inplace=True)))
elif char == 'e':
modules.append(('ELU', nn.ELU(inplace=True)))
elif char == 'c':
bias = not ('g' in order or 'b' in order)
modules.append(('conv', conv3d(in_channels, out_channels,
kernel_size, bias, padding=padding)))
elif char == 'g':
is_before_conv = i < order.index('c')
if is_before_conv:
num_channels = in_channels
else:
num_channels = out_channels
if num_channels < num_groups:
num_groups = 1
assert num_channels % num_groups == 0, f'Expected number of channels in input to be divisible by num_groups. num_channels={num_channels}, num_groups={num_groups}'
modules.append(('groupnorm', nn.GroupNorm(num_groups=num_groups,
num_channels=num_channels)))
elif char == 'b':
is_before_conv = i < order.index('c')
if is_before_conv:
modules.append(('batchnorm', nn.BatchNorm3d(in_channels)))
else:
modules.append(('batchnorm', nn.BatchNorm3d(out_channels)))
else:
raise ValueError(
f"Unsupported layer type '{char}'. MUST be one of ['b', 'g', 'r', 'l', 'e', 'c']"
)
return modules
class SingleConv(nn.Sequential):
"""
Basic convolutional module consisting of a Conv3d, non-linearity and optional batchnorm/groupnorm. The order
of operations can be specified via the `order` parameter
Args:
in_channels (int): number of input channels
out_channels (int): number of output channels
kernel_size (int or tuple): size of the convolving kernel
order (string): determines the order of layers, e.g.
'cr' -> conv + ReLU
'crg' -> conv + ReLU + groupnorm
'cl' -> conv + LeakyReLU
'ce' -> conv + ELU
num_groups (int): number of groups for the GroupNorm
padding (int or tuple):
"""
def __init__(self, in_channels, out_channels, kernel_size=3, order=
'gcr', num_groups=8, padding=1):
super(SingleConv, self).__init__()
for name, module in create_conv(in_channels, out_channels,
kernel_size, order, num_groups, padding=padding):
self.add_module(name, module)
class ExtResNetBlockNew(nn.Module):
"""
Basic UNet block consisting of a SingleConv followed by the residual block.
The SingleConv takes care of increasing/decreasing the number of channels and also ensures that the number
of output channels is compatible with the residual block that follows.
This block can be used instead of standard DoubleConv in the Encoder module.
Motivated by: https://arxiv.org/pdf/1706.00120.pdf
Notice we use ELU instead of ReLU (order='cge') and put non-linearity after the groupnorm.
"""
def __init__(self, in_channels, out_channels, kernel_size=3, order=
'cge', num_groups=8, **kwargs):
super(ExtResNetBlockNew, self).__init__()
self.conv1 = SingleConv(in_channels, out_channels, kernel_size=
kernel_size, order=order, num_groups=num_groups)
self.conv2 = SingleConv(out_channels, out_channels, kernel_size=
kernel_size, order=order, num_groups=num_groups)
n_order = order
for c in 'rel':
n_order = n_order.replace(c, '')
self.conv3 = SingleConv(out_channels, out_channels, kernel_size=
kernel_size, order=n_order, num_groups=num_groups)
if 'l' in order:
self.non_linearity = nn.LeakyReLU(negative_slope=0.1, inplace=True)
elif 'e' in order:
self.non_linearity = nn.ELU(inplace=True)
else:
self.non_linearity = nn.ReLU(inplace=True)
def forward(self, input_0):
primals_1 = self.conv1.conv.weight
primals_3 = self.conv1.groupnorm.weight
primals_4 = self.conv1.groupnorm.bias
primals_5 = self.conv2.conv.weight
primals_6 = self.conv2.groupnorm.weight
primals_7 = self.conv2.groupnorm.bias
primals_8 = self.conv3.conv.weight
primals_9 = self.conv3.groupnorm.weight
primals_10 = self.conv3.groupnorm.bias
primals_2 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9, primals_10])
return output[0]
|
charmsoya/pytorch-3dunet
|
ExtResNetBlock
| false | 9,887 |
[
"MIT"
] | 0 |
07a8dabf988ac3df110a3c10db6ed5fb769498d9
|
https://github.com/charmsoya/pytorch-3dunet/tree/07a8dabf988ac3df110a3c10db6ed5fb769498d9
|
CharbonnierLoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/uq/cuqdrx5qbrl5ift2gyj5z3estge7urcv62qvcd5gcnlqkyva5zej.py
# Topologically Sorted Source Nodes: [sub, pow_1, add, loss, loss_1, mul], Original ATen: [aten.sub, aten.pow, aten.add, aten.sqrt, aten.mean, aten.mul]
# Source node to ATen node mapping:
# add => add
# loss => sqrt
# loss_1 => mean
# mul => mul
# pow_1 => pow_1
# sub => sub
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_1, 1e-12), kwargs = {})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sqrt,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 1.0), kwargs = {})
triton_per_fused_add_mean_mul_pow_sqrt_sub_0 = async_compile.triton('triton_per_fused_add_mean_mul_pow_sqrt_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mean_mul_pow_sqrt_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_mean_mul_pow_sqrt_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr1 + (r0), None)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp4 = 1e-12
tmp5 = tmp3 + tmp4
tmp6 = libdevice.sqrt(tmp5)
tmp7 = tl.broadcast_to(tmp6, [RBLOCK])
tmp9 = triton_helpers.promote_to_tensor(tl.sum(tmp7, 0))
tmp10 = 256.0
tmp11 = tmp9 / tmp10
tmp12 = 1.0
tmp13 = tmp11 * tmp12
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp13, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [sub, pow_1, add, loss, loss_1, mul], Original ATen: [aten.sub, aten.pow, aten.add, aten.sqrt, aten.mean, aten.mul]
stream0 = get_raw_stream(0)
triton_per_fused_add_mean_mul_pow_sqrt_sub_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import functools
import torch
import torch.nn as nn
from torch.nn import functional as F
def reduce_loss(loss, reduction):
"""Reduce loss as specified.
Args:
loss (Tensor): Elementwise loss tensor.
reduction (str): Options are "none", "mean" and "sum".
Returns:
Tensor: Reduced loss tensor.
"""
reduction_enum = F._Reduction.get_enum(reduction)
if reduction_enum == 0:
return loss
if reduction_enum == 1:
return loss.mean()
return loss.sum()
def mask_reduce_loss(loss, weight=None, reduction='mean', sample_wise=False):
"""Apply element-wise weight and reduce loss.
Args:
loss (Tensor): Element-wise loss.
weight (Tensor): Element-wise weights. Default: None.
reduction (str): Same as built-in losses of PyTorch. Options are
"none", "mean" and "sum". Default: 'mean'.
sample_wise (bool): Whether calculate the loss sample-wise. This
argument only takes effect when `reduction` is 'mean' and `weight`
(argument of `forward()`) is not None. It will first reduces loss
with 'mean' per-sample, and then it means over all the samples.
Default: False.
Returns:
Tensor: Processed loss values.
"""
if weight is not None:
assert weight.dim() == loss.dim()
assert weight.size(1) == 1 or weight.size(1) == loss.size(1)
loss = loss * weight
if weight is None or reduction == 'sum':
loss = reduce_loss(loss, reduction)
elif reduction == 'mean':
if weight.size(1) == 1:
weight = weight.expand_as(loss)
eps = 1e-12
if sample_wise:
weight = weight.sum(dim=[1, 2, 3], keepdim=True)
loss = (loss / (weight + eps)).sum() / weight.size(0)
else:
loss = loss.sum() / (weight.sum() + eps)
return loss
def masked_loss(loss_func):
"""Create a masked version of a given loss function.
To use this decorator, the loss function must have the signature like
`loss_func(pred, target, **kwargs)`. The function only needs to compute
element-wise loss without any reduction. This decorator will add weight
and reduction arguments to the function. The decorated function will have
the signature like `loss_func(pred, target, weight=None, reduction='mean',
avg_factor=None, **kwargs)`.
:Example:
>>> import torch
>>> @masked_loss
>>> def l1_loss(pred, target):
>>> return (pred - target).abs()
>>> pred = torch.Tensor([0, 2, 3])
>>> target = torch.Tensor([1, 1, 1])
>>> weight = torch.Tensor([1, 0, 1])
>>> l1_loss(pred, target)
tensor(1.3333)
>>> l1_loss(pred, target, weight)
tensor(1.5000)
>>> l1_loss(pred, target, reduction='none')
tensor([1., 1., 2.])
>>> l1_loss(pred, target, weight, reduction='sum')
tensor(3.)
"""
@functools.wraps(loss_func)
def wrapper(pred, target, weight=None, reduction='mean', sample_wise=
False, **kwargs):
loss = loss_func(pred, target, **kwargs)
loss = mask_reduce_loss(loss, weight, reduction, sample_wise)
return loss
return wrapper
@masked_loss
def charbonnier_loss(pred, target, eps=1e-12):
"""Charbonnier loss.
Args:
pred (Tensor): Prediction Tensor with shape (n, c, h, w).
target ([type]): Target Tensor with shape (n, c, h, w).
Returns:
Tensor: Calculated Charbonnier loss.
"""
return torch.sqrt((pred - target) ** 2 + eps)
class CharbonnierLoss(nn.Module):
"""Charbonnier loss (one variant of Robust L1Loss, a differentiable
variant of L1Loss).
Described in "Deep Laplacian Pyramid Networks for Fast and Accurate
Super-Resolution".
Args:
loss_weight (float): Loss weight for L1 loss. Default: 1.0.
reduction (str): Specifies the reduction to apply to the output.
Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'.
sample_wise (bool): Whether calculate the loss sample-wise. This
argument only takes effect when `reduction` is 'mean' and `weight`
(argument of `forward()`) is not None. It will first reduces loss
with 'mean' per-sample, and then it means over all the samples.
Default: False.
eps (float): A value used to control the curvature near zero.
Default: 1e-12.
"""
def __init__(self, loss_weight=1.0, reduction='mean', sample_wise=False,
eps=1e-12):
super().__init__()
if reduction not in ['none', 'mean', 'sum']:
raise ValueError(
f'Unsupported reduction mode: {reduction}. Supported ones are: {_reduction_modes}'
)
self.loss_weight = loss_weight
self.reduction = reduction
self.sample_wise = sample_wise
self.eps = eps
def forward(self, pred, target, weight=None, **kwargs):
"""Forward Function.
Args:
pred (Tensor): of shape (N, C, H, W). Predicted tensor.
target (Tensor): of shape (N, C, H, W). Ground truth tensor.
weight (Tensor, optional): of shape (N, C, H, W). Element-wise
weights. Default: None.
"""
return self.loss_weight * charbonnier_loss(pred, target, weight,
eps=self.eps, reduction=self.reduction, sample_wise=self.
sample_wise)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import functools
import torch.nn as nn
from torch.nn import functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_mean_mul_pow_sqrt_sub_0(in_out_ptr0, in_ptr0,
in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp4 = 1e-12
tmp5 = tmp3 + tmp4
tmp6 = libdevice.sqrt(tmp5)
tmp7 = tl.broadcast_to(tmp6, [RBLOCK])
tmp9 = triton_helpers.promote_to_tensor(tl.sum(tmp7, 0))
tmp10 = 256.0
tmp11 = tmp9 / tmp10
tmp12 = 1.0
tmp13 = tmp11 * tmp12
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp13, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_add_mean_mul_pow_sqrt_sub_0[grid(1)](buf1, arg0_1,
arg1_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf1,
def reduce_loss(loss, reduction):
"""Reduce loss as specified.
Args:
loss (Tensor): Elementwise loss tensor.
reduction (str): Options are "none", "mean" and "sum".
Returns:
Tensor: Reduced loss tensor.
"""
reduction_enum = F._Reduction.get_enum(reduction)
if reduction_enum == 0:
return loss
if reduction_enum == 1:
return loss.mean()
return loss.sum()
def mask_reduce_loss(loss, weight=None, reduction='mean', sample_wise=False):
"""Apply element-wise weight and reduce loss.
Args:
loss (Tensor): Element-wise loss.
weight (Tensor): Element-wise weights. Default: None.
reduction (str): Same as built-in losses of PyTorch. Options are
"none", "mean" and "sum". Default: 'mean'.
sample_wise (bool): Whether calculate the loss sample-wise. This
argument only takes effect when `reduction` is 'mean' and `weight`
(argument of `forward()`) is not None. It will first reduces loss
with 'mean' per-sample, and then it means over all the samples.
Default: False.
Returns:
Tensor: Processed loss values.
"""
if weight is not None:
assert weight.dim() == loss.dim()
assert weight.size(1) == 1 or weight.size(1) == loss.size(1)
loss = loss * weight
if weight is None or reduction == 'sum':
loss = reduce_loss(loss, reduction)
elif reduction == 'mean':
if weight.size(1) == 1:
weight = weight.expand_as(loss)
eps = 1e-12
if sample_wise:
weight = weight.sum(dim=[1, 2, 3], keepdim=True)
loss = (loss / (weight + eps)).sum() / weight.size(0)
else:
loss = loss.sum() / (weight.sum() + eps)
return loss
def masked_loss(loss_func):
"""Create a masked version of a given loss function.
To use this decorator, the loss function must have the signature like
`loss_func(pred, target, **kwargs)`. The function only needs to compute
element-wise loss without any reduction. This decorator will add weight
and reduction arguments to the function. The decorated function will have
the signature like `loss_func(pred, target, weight=None, reduction='mean',
avg_factor=None, **kwargs)`.
:Example:
>>> import torch
>>> @masked_loss
>>> def l1_loss(pred, target):
>>> return (pred - target).abs()
>>> pred = torch.Tensor([0, 2, 3])
>>> target = torch.Tensor([1, 1, 1])
>>> weight = torch.Tensor([1, 0, 1])
>>> l1_loss(pred, target)
tensor(1.3333)
>>> l1_loss(pred, target, weight)
tensor(1.5000)
>>> l1_loss(pred, target, reduction='none')
tensor([1., 1., 2.])
>>> l1_loss(pred, target, weight, reduction='sum')
tensor(3.)
"""
@functools.wraps(loss_func)
def wrapper(pred, target, weight=None, reduction='mean', sample_wise=
False, **kwargs):
loss = loss_func(pred, target, **kwargs)
loss = mask_reduce_loss(loss, weight, reduction, sample_wise)
return loss
return wrapper
@masked_loss
def charbonnier_loss(pred, target, eps=1e-12):
"""Charbonnier loss.
Args:
pred (Tensor): Prediction Tensor with shape (n, c, h, w).
target ([type]): Target Tensor with shape (n, c, h, w).
Returns:
Tensor: Calculated Charbonnier loss.
"""
return torch.sqrt((pred - target) ** 2 + eps)
class CharbonnierLossNew(nn.Module):
"""Charbonnier loss (one variant of Robust L1Loss, a differentiable
variant of L1Loss).
Described in "Deep Laplacian Pyramid Networks for Fast and Accurate
Super-Resolution".
Args:
loss_weight (float): Loss weight for L1 loss. Default: 1.0.
reduction (str): Specifies the reduction to apply to the output.
Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'.
sample_wise (bool): Whether calculate the loss sample-wise. This
argument only takes effect when `reduction` is 'mean' and `weight`
(argument of `forward()`) is not None. It will first reduces loss
with 'mean' per-sample, and then it means over all the samples.
Default: False.
eps (float): A value used to control the curvature near zero.
Default: 1e-12.
"""
def __init__(self, loss_weight=1.0, reduction='mean', sample_wise=False,
eps=1e-12):
super().__init__()
if reduction not in ['none', 'mean', 'sum']:
raise ValueError(
f'Unsupported reduction mode: {reduction}. Supported ones are: {_reduction_modes}'
)
self.loss_weight = loss_weight
self.reduction = reduction
self.sample_wise = sample_wise
self.eps = eps
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
Sardhendu/mmediting
|
CharbonnierLoss
| false | 9,888 |
[
"Apache-2.0"
] | 0 |
623b59ac758d856abc9fab7e845beeab61074d8f
|
https://github.com/Sardhendu/mmediting/tree/623b59ac758d856abc9fab7e845beeab61074d8f
|
L2Norm
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/ql/cqlak5tz3s7deubsy52az4l7hpzcb4ekrbzbw4nqi6gbd7v3ukso.py
# Topologically Sorted Source Nodes: [pow_1, sum_1, sqrt, norm, truediv, x], Original ATen: [aten.pow, aten.sum, aten.sqrt, aten.add, aten.div, aten.mul]
# Source node to ATen node mapping:
# norm => add
# pow_1 => pow_1
# sqrt => sqrt
# sum_1 => sum_1
# truediv => div
# x => mul
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_1, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1], True), kwargs = {})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%sum_1,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sqrt, 1e-10), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_1, %add), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %view), kwargs = {})
triton_poi_fused_add_div_mul_pow_sqrt_sum_0 = async_compile.triton('triton_poi_fused_add_div_mul_pow_sqrt_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mul_pow_sqrt_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_mul_pow_sqrt_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-10
tmp14 = tmp12 + tmp13
tmp15 = tmp0 / tmp14
tmp17 = tmp15 * tmp16
tl.store(out_ptr0 + (x3), tmp17, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [pow_1, sum_1, sqrt, norm, truediv, x], Original ATen: [aten.pow, aten.sum, aten.sqrt, aten.add, aten.div, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_add_div_mul_pow_sqrt_sum_0.run(primals_1, primals_2, buf0, 256, grid=grid(256), stream=stream0)
del primals_2
return (buf0, primals_1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class L2Norm(nn.Module):
def __init__(self, n_channels, scale=1.0):
super(L2Norm, self).__init__()
self.n_channels = n_channels
self.scale = scale
self.eps = 1e-10
self.weight = nn.Parameter(torch.Tensor(self.n_channels))
self.weight.data *= 0.0
self.weight.data += self.scale
def forward(self, x):
norm = x.pow(2).sum(dim=1, keepdim=True).sqrt() + self.eps
x = x / norm * self.weight.view(1, -1, 1, 1)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'n_channels': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_div_mul_pow_sqrt_sum_0(in_ptr0, in_ptr1, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
x1 = xindex // 16 % 4
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp9 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp16 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-10
tmp14 = tmp12 + tmp13
tmp15 = tmp0 / tmp14
tmp17 = tmp15 * tmp16
tl.store(out_ptr0 + x3, tmp17, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_div_mul_pow_sqrt_sum_0[grid(256)](primals_1,
primals_2, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
return buf0, primals_1
class L2NormNew(nn.Module):
def __init__(self, n_channels, scale=1.0):
super(L2NormNew, self).__init__()
self.n_channels = n_channels
self.scale = scale
self.eps = 1e-10
self.weight = nn.Parameter(torch.Tensor(self.n_channels))
self.weight.data *= 0.0
self.weight.data += self.scale
def forward(self, input_0):
primals_2 = self.weight
primals_1 = input_0
output = call([primals_1, primals_2])
return output[0]
|
bluan2019/face-alignment
|
L2Norm
| false | 9,889 |
[
"BSD-3-Clause"
] | 0 |
9e256b18a02c7bd924a88c1203fb875853263336
|
https://github.com/bluan2019/face-alignment/tree/9e256b18a02c7bd924a88c1203fb875853263336
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.