Datasets:

Modalities:
Image
Size:
< 1K
ArXiv:
Libraries:
Datasets
Dataset Viewer
Auto-converted to Parquet
Search is not available for this dataset
The dataset viewer is not available for this split.
The info cannot be fetched for the config 'default' of the dataset.
Error code:   InfoError
Exception:    ReadTimeout
Message:      (ReadTimeoutError("HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)"), '(Request ID: 527c890f-744e-41e3-a222-42c3756af0ae)')
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 208, in compute_first_rows_from_streaming_response
                  info = get_dataset_config_info(path=dataset, config_name=config, token=hf_token)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 278, in get_dataset_config_info
                  builder = load_dataset_builder(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1781, in load_dataset_builder
                  dataset_module = dataset_module_factory(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1663, in dataset_module_factory
                  raise e1 from None
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1620, in dataset_module_factory
                  return HubDatasetModuleFactoryWithoutScript(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1018, in get_module
                  data_files = DataFilesDict.from_patterns(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/data_files.py", line 690, in from_patterns
                  else DataFilesList.from_patterns(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/data_files.py", line 593, in from_patterns
                  origin_metadata = _get_origin_metadata(data_files, download_config=download_config)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/data_files.py", line 507, in _get_origin_metadata
                  return thread_map(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/tqdm/contrib/concurrent.py", line 69, in thread_map
                  return _executor_map(ThreadPoolExecutor, fn, *iterables, **tqdm_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/tqdm/contrib/concurrent.py", line 51, in _executor_map
                  return list(tqdm_class(ex.map(fn, *iterables, chunksize=chunksize), **kwargs))
                File "/src/services/worker/.venv/lib/python3.9/site-packages/tqdm/std.py", line 1169, in __iter__
                  for obj in iterable:
                File "/usr/local/lib/python3.9/concurrent/futures/_base.py", line 609, in result_iterator
                  yield fs.pop().result()
                File "/usr/local/lib/python3.9/concurrent/futures/_base.py", line 446, in result
                  return self.__get_result()
                File "/usr/local/lib/python3.9/concurrent/futures/_base.py", line 391, in __get_result
                  raise self._exception
                File "/usr/local/lib/python3.9/concurrent/futures/thread.py", line 58, in run
                  result = self.fn(*self.args, **self.kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/data_files.py", line 486, in _get_single_origin_metadata
                  resolved_path = fs.resolve_path(data_file)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/hf_file_system.py", line 198, in resolve_path
                  repo_and_revision_exist, err = self._repo_and_revision_exist(repo_type, repo_id, revision)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/hf_file_system.py", line 125, in _repo_and_revision_exist
                  self._api.repo_info(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn
                  return fn(*args, **kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/hf_api.py", line 2704, in repo_info
                  return method(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn
                  return fn(*args, **kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/hf_api.py", line 2561, in dataset_info
                  r = get_session().get(path, headers=headers, timeout=timeout, params=params)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/requests/sessions.py", line 602, in get
                  return self.request("GET", url, **kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/requests/sessions.py", line 589, in request
                  resp = self.send(prep, **send_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/requests/sessions.py", line 703, in send
                  r = adapter.send(request, **kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/utils/_http.py", line 93, in send
                  return super().send(request, *args, **kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/requests/adapters.py", line 635, in send
                  raise ReadTimeout(e, request=request)
              requests.exceptions.ReadTimeout: (ReadTimeoutError("HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)"), '(Request ID: 527c890f-744e-41e3-a222-42c3756af0ae)')

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/datasets-cards)

We divide our General-Bench into two settings: Open and Close.

This is the Open Set, where we release the full ground-truth annotations for all datasets, allowing to train and evaluate models for open research purpose.

If you wish to rank on our πŸ† leaderboard, please use the πŸ‘‰ Close Set.


πŸ“• Table of Contents


✨✨✨ File Origanization Structure

Here is the organization structure of the file system:

General-Bench
β”œβ”€β”€ Image
β”‚   β”œβ”€β”€ comprehension
β”‚   β”‚   β”œβ”€β”€ Bird-Detection
β”‚   β”‚   β”‚   β”œβ”€β”€ annotation.json
β”‚   β”‚   β”‚   └── images
β”‚   β”‚   β”‚       └── Acadian_Flycatcher_0070_29150.jpg
β”‚   β”‚   β”œβ”€β”€ Bottle-Anomaly-Detection
β”‚   β”‚   β”‚   β”œβ”€β”€ annotation.json
β”‚   β”‚   β”‚   └── images
β”‚   β”‚   └── ...
β”‚   └── generation
β”‚       └── Layout-to-Face-Image-Generation
β”‚           β”œβ”€β”€ annotation.json
β”‚           └── images
β”‚           └── ...
β”œβ”€β”€ Video
β”‚   β”œβ”€β”€ comprehension
β”‚   β”‚   └── Human-Object-Interaction-Video-Captioning
β”‚   β”‚       β”œβ”€β”€ annotation.json
β”‚   β”‚       └── videos
β”‚   β”‚       └── ...
β”‚   └── generation
β”‚       └── Scene-Image-to-Video-Generation
β”‚           β”œβ”€β”€ annotation.json
β”‚           └── videos
β”‚           └── ...
β”œβ”€β”€ 3d
β”‚   β”œβ”€β”€ comprehension
β”‚   β”‚   └── 3D-Furniture-Classification
β”‚   β”‚       β”œβ”€β”€ annotation.json
β”‚   β”‚       └── pointclouds
β”‚   β”‚       └── ...
β”‚   └── generation
β”‚       └── Text-to-3D-Living-and-Arts-Point-Cloud-Generation
β”‚           β”œβ”€β”€ annotation.json
β”‚           └── pointclouds
β”‚           └── ...
β”œβ”€β”€ Audio
β”‚   β”œβ”€β”€ comprehension
β”‚   β”‚   └── Accent-Classification
β”‚   β”‚       β”œβ”€β”€ annotation.json
β”‚   β”‚       └── audios
β”‚   β”‚       └── ...
β”‚   └── generation
β”‚       └── Video-To-Audio
β”‚           β”œβ”€β”€ annotation.json
β”‚           └── audios
β”‚           └── ...
β”œβ”€β”€ NLP
β”‚   β”œβ”€β”€ History-Question-Answering
β”‚   β”‚   └── annotation.json
β”‚   β”œβ”€β”€ Abstractive-Summarization
β”‚   β”‚   └── annotation.json
β”‚   └── ...

An illustrative example of file formats:

image/png

🍟🍟🍟 Usage

Please download all the files in this repository. We also provide overview.json, which is an example of the format of our dataset.

For more instructions, please go to the document page.


🌐🌐🌐 General-Bench

A companion massive multimodal benchmark dataset, encompasses a broader spectrum of skills, modalities, formats, and capabilities, including over 700 tasks and 325K instances.

Overview of General-Bench, which covers 145 skills for more than 700 tasks with over 325,800 samples under comprehension and generation categories in various modalities

πŸ•πŸ•πŸ• Capabilities and Domians Distribution

Distribution of various capabilities evaluated in General-Bench.

Distribution of various domains and disciplines covered by General-Bench.

πŸ–ΌοΈ Image Task Taxonomy

Taxonomy and hierarchy of data in terms of Image modality.

πŸ“½οΈ Video Task Taxonomy

Taxonomy and hierarchy of data in terms of Video modality.

πŸ“ž Audio Task Taxonomy

Taxonomy and hierarchy of data in terms of Audio modality.

πŸ’Ž 3D Task Taxonomy

Taxonomy and hierarchy of data in terms of 3D modality.

πŸ“š Language Task Taxonomy

Taxonomy and hierarchy of data in terms of Language modality.


🚩🚩🚩 Citation

If you find this project useful to your research, please kindly cite our paper:

@articles{fei2025pathmultimodalgeneralistgenerallevel,
  title={On Path to Multimodal Generalist: General-Level and General-Bench},
  author={Hao Fei and Yuan Zhou and Juncheng Li and Xiangtai Li and Qingshan Xu and Bobo Li and Shengqiong Wu and Yaoting Wang and Junbao Zhou and Jiahao Meng and Qingyu Shi and Zhiyuan Zhou and Liangtao Shi and Minghe Gao and Daoan Zhang and Zhiqi Ge and Weiming Wu and Siliang Tang and Kaihang Pan and Yaobo Ye and Haobo Yuan and Tao Zhang and Tianjie Ju and Zixiang Meng and Shilin Xu and Liyu Jia and Wentao Hu and Meng Luo and Jiebo Luo and Tat-Seng Chua and Shuicheng Yan and Hanwang Zhang},
  eprint={2505.04620},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
  url={https://arxiv.org/abs/2505.04620},
}
Downloads last month
25,913

Collection including General-Level/General-Bench-Openset