input
stringlengths
33
5k
output
stringlengths
32
5k
import os from parameterized import parameterized from torchaudio.datasets import LibriMix from torchaudio_unittest.common_utils import get_whitenoise, save_wav, TempDirMixin, TorchaudioTestCase _SAMPLE_RATE = 8000 _TASKS_TO_MIXTURE = { "sep_clean": "mix_clean", "enh_single": "mix_single", "enh_both": "mix_both", "sep_noisy": "mix_both", } def _save_wav(filepath: str, seed: int): wav = get_whitenoise( sample_rate=_SAMPLE_RATE, duration=0.01, n_channels=1, seed=seed, ) save_wav(filepath, wav, _SAMPLE_RATE) return wav def get_mock_dataset(root_dir: str, num_speaker: int): """ root_dir: directory to the mocked dataset """ mocked_data = [] seed = 0 base_dir = os.path.join(root_dir, f"Libri{num_speaker}Mix", "wav8k", "min", "train-360") os.makedirs(base_dir, exist_ok=True) for utterance_id in range(10): filename = f"{utterance_id}.wav" task_outputs = {} for task in _TASKS_TO_MIXTURE: # create mixture folder. The folder names depends on the task. mixture_folder = _TASKS_TO_MIXTURE[task] mixture_dir = os.path.join(base_dir, mixture_folder) os.makedirs(mixture_dir, exist_ok=True) mixture_path = os.path.join(mixture_dir, filename) mixture = _save_wav(mixture_path, seed) sources = [] if task == "enh_both": sources = [task_outputs["sep_clean"][1]] else: for speaker_id in range(num_speaker): source_dir = os.path.join(base_dir, f"s{speaker_id+1}") os.makedirs(source_dir, exist_ok=True) source_path = os.path.join(source_dir, filename) if os.path.exists(source_path): sources = task_outputs["sep_clean"][2] break else: source = _save_wav(source_path, seed) sources.append(source) seed += 1 task_outputs[task] = (_SAMPLE_RATE, mixture, sources) mocked_data.append(task_outputs) return mocked_data class TestLibriMix(TempDirMixin, TorchaudioTestCase): root_dir = None samples_2spk = [] samples_3spk = [] @classmethod def setUpClass(cls): cls.root_dir = cls.get_base_temp_dir() cls.samples_2spk = get_mock_dataset(cls.root_dir, 2) cls.samples_3spk = get_mock_dataset(cls.root_dir, 3) def _test_librimix(self, dataset, samples, task): num_samples = 0 for i, (sample_rate, mixture, sources) in enumerate(dataset): assert sample_rate == samples[i][task][0] self.assertEqual(mixture, samples[i][task][1]) assert len(sources) == len(samples[i][task][2]) for j in range(len(sources)): self.assertEqual(sources[j], samples[i][task][2][j]) num_samples += 1 assert num_samples == len(samples) @parameterized.expand([("sep_clean"), ("enh_single",), ("enh_both",), ("sep_noisy",)]) def test_librimix_2speaker(self, task): dataset = LibriMix(self.root_dir, num_speakers=2, sample_rate=_SAMPLE_RATE, task=task) self._test_librimix(dataset, self.samples_2spk, task) @parameterized.expand([("sep_clean"), ("enh_single",), ("enh_both",), ("sep_noisy",)]) def test_librimix_3speaker(self, task): dataset = LibriMix(self.root_dir, num_speakers=3, sample_rate=_SAMPLE_RATE, task=task) self._test_librimix(dataset, self.samples_3spk, task)
import os from parameterized import parameterized from torchaudio.datasets import LibriMix from torchaudio_unittest.common_utils import get_whitenoise, save_wav, TempDirMixin, TorchaudioTestCase _SAMPLE_RATE = 8000 _TASKS_TO_MIXTURE = { "sep_clean": "mix_clean", "enh_single": "mix_single", "enh_both": "mix_both", "sep_noisy": "mix_both", } def _save_wav(filepath: str, seed: int): wav = get_whitenoise( sample_rate=_SAMPLE_RATE, duration=0.01, n_channels=1, seed=seed, ) save_wav(filepath, wav, _SAMPLE_RATE) return wav def get_mock_dataset(root_dir: str, num_speaker: int): """ root_dir: directory to the mocked dataset """ mocked_data = [] seed = 0 base_dir = os.path.join(root_dir, f"Libri{num_speaker}Mix", "wav8k", "min", "train-360") os.makedirs(base_dir, exist_ok=True) for utterance_id in range(10): filename = f"{utterance_id}.wav" task_outputs = {} for task in _TASKS_TO_MIXTURE: # create mixture folder. The folder names depends on the task. mixture_folder = _TASKS_TO_MIXTURE[task] mixture_dir = os.path.join(base_dir, mixture_folder) os.makedirs(mixture_dir, exist_ok=True) mixture_path = os.path.join(mixture_dir, filename) mixture = _save_wav(mixture_path, seed) sources = [] if task == "enh_both": sources = [task_outputs["sep_clean"][1]] else: for speaker_id in range(num_speaker): source_dir = os.path.join(base_dir, f"s{speaker_id+1}") os.makedirs(source_dir, exist_ok=True) source_path = os.path.join(source_dir, filename) if os.path.exists(source_path): sources = task_outputs["sep_clean"][2] break else: source = _save_wav(source_path, seed) sources.append(source) seed += 1 task_outputs[task] = (_SAMPLE_RATE, mixture, sources) mocked_data.append(task_outputs) return mocked_data class TestLibriMix(TempDirMixin, TorchaudioTestCase): backend = "default" root_dir = None samples_2spk = [] samples_3spk = [] @classmethod def setUpClass(cls): cls.root_dir = cls.get_base_temp_dir() cls.samples_2spk = get_mock_dataset(cls.root_dir, 2) cls.samples_3spk = get_mock_dataset(cls.root_dir, 3) def _test_librimix(self, dataset, samples, task): num_samples = 0 for i, (sample_rate, mixture, sources) in enumerate(dataset): assert sample_rate == samples[i][task][0] self.assertEqual(mixture, samples[i][task][1]) assert len(sources) == len(samples[i][task][2]) for j in range(len(sources)): self.assertEqual(sources[j], samples[i][task][2][j]) num_samples += 1 assert num_samples == len(samples) @parameterized.expand([("sep_clean"), ("enh_single",), ("enh_both",), ("sep_noisy",)]) def test_librimix_2speaker(self, task): dataset = LibriMix(self.root_dir, num_speakers=2, sample_rate=_SAMPLE_RATE, task=task) self._test_librimix(dataset, self.samples_2spk, task) @parameterized.expand([("sep_clean"), ("enh_single",), ("enh_both",), ("sep_noisy",)]) def test_librimix_3speaker(self, task): dataset = LibriMix(self.root_dir, num_speakers=3, sample_rate=_SAMPLE_RATE, task=task) self._test_librimix(dataset, self.samples_3spk, task)
"""Init file of LlamaIndex.""" __version__ = "0.12.18" import logging from logging import NullHandler from typing import Callable, Optional try: # Force pants to install eval_type_backport on 3.9 import eval_type_backport # noqa # type: ignore except ImportError: pass # response from llama_index.core.base.response.schema import Response # import global eval handler from llama_index.core.callbacks.global_handlers import set_global_handler from llama_index.core.data_structs.struct_type import IndexStructType from llama_index.core.embeddings.mock_embed_model import MockEmbedding # indices # loading from llama_index.core.indices import ( ComposableGraph, DocumentSummaryIndex, GPTDocumentSummaryIndex, GPTKeywordTableIndex, GPTListIndex, GPTRAKEKeywordTableIndex, GPTSimpleKeywordTableIndex, GPTTreeIndex, GPTVectorStoreIndex, KeywordTableIndex, KnowledgeGraphIndex, ListIndex, PropertyGraphIndex, RAKEKeywordTableIndex, SimpleKeywordTableIndex, SummaryIndex, TreeIndex, VectorStoreIndex, load_graph_from_storage, load_index_from_storage, load_indices_from_storage, ) # structured from llama_index.core.indices.common.struct_store.base import ( SQLDocumentContextBuilder, ) # prompt helper from llama_index.core.indices.prompt_helper import PromptHelper # prompts from llama_index.core.prompts import ( BasePromptTemplate, ChatPromptTemplate, # backwards compatibility Prompt, PromptTemplate, SelectorPromptTemplate, ) from llama_index.core.readers import SimpleDirectoryReader, download_loader # Response Synthesizer from llama_index.core.response_synthesizers.factory import get_response_synthesizer from llama_index.core.schema import Document, QueryBundle from llama_index.core.service_context import ( ServiceContext, set_global_service_context, ) # global settings from llama_index.core.settings import Settings # storage from llama_index.core.storage.storage_context import StorageContext # sql wrapper from llama_index.core.utilities.sql_wrapper import SQLDatabase # global tokenizer from llama_index.core.utils import get_tokenizer, set_global_tokenizer # best practices for library logging: # https://docs.python.org/3/howto/logging.html#configuring-logging-for-a-library logging.getLogger(__name__).addHandler(NullHandler()) __all__ = [ "StorageContext", "ServiceContext", "ComposableGraph", # indices "SummaryIndex", "VectorStoreIndex", "SimpleKeywordTableIndex", "KeywordTableIndex", "RAKEKeywordTableIndex", "TreeIndex", "DocumentSummaryIndex", "KnowledgeGraphIndex", "PropertyGraphIndex", # indices - legacy names "GPTKeywordTableIndex", "GPTKnowledgeGraphIndex", "GPTSimpleKeywordTableIndex", "GPTRAKEKeywordTableIndex", "GPTListIndex", "ListIndex", "GPTTreeIndex", "GPTVectorStoreIndex", "GPTDocumentSummaryIndex", "Prompt", "PromptTemplate", "BasePromptTemplate", "ChatPromptTemplate", "SelectorPromptTemplate", "SummaryPrompt", "TreeInsertPrompt", "TreeSelectPrompt", "TreeSelectMultiplePrompt", "RefinePrompt", "QuestionAnswerPrompt", "KeywordExtractPrompt", "QueryKeywordExtractPrompt", "Response", "Document", "SimpleDirectoryReader", "VellumPredictor", "VellumPromptRegistry", "MockEmbedding", "SQLDatabase", "SQLDocumentContextBuilder", "SQLContextBuilder", "PromptHelper", "IndexStructType", "download_loader", "load_graph_from_storage", "load_index_from_storage", "load_indices_from_storage", "QueryBundle", "get_response_synthesizer", "set_global_service_context", "set_global_handler", "set_global_tokenizer", "get_tokenizer", "Settings", ] # eval global toggle from llama_index.core.callbacks.base_handler import BaseCallbackHandler global_handler: Optional[BaseCallbackHandler] = None # NOTE: keep for backwards compatibility SQLContextBuilder = SQLDocumentContextBuilder # global tokenizer global_tokenizer: Optional[Callable[[str], list]] = None
"""Init file of LlamaIndex.""" __version__ = "0.12.17" import logging from logging import NullHandler from typing import Callable, Optional try: # Force pants to install eval_type_backport on 3.9 import eval_type_backport # noqa # type: ignore except ImportError: pass # response from llama_index.core.base.response.schema import Response # import global eval handler from llama_index.core.callbacks.global_handlers import set_global_handler from llama_index.core.data_structs.struct_type import IndexStructType from llama_index.core.embeddings.mock_embed_model import MockEmbedding # indices # loading from llama_index.core.indices import ( ComposableGraph, DocumentSummaryIndex, GPTDocumentSummaryIndex, GPTKeywordTableIndex, GPTListIndex, GPTRAKEKeywordTableIndex, GPTSimpleKeywordTableIndex, GPTTreeIndex, GPTVectorStoreIndex, KeywordTableIndex, KnowledgeGraphIndex, ListIndex, PropertyGraphIndex, RAKEKeywordTableIndex, SimpleKeywordTableIndex, SummaryIndex, TreeIndex, VectorStoreIndex, load_graph_from_storage, load_index_from_storage, load_indices_from_storage, ) # structured from llama_index.core.indices.common.struct_store.base import ( SQLDocumentContextBuilder, ) # prompt helper from llama_index.core.indices.prompt_helper import PromptHelper # prompts from llama_index.core.prompts import ( BasePromptTemplate, ChatPromptTemplate, # backwards compatibility Prompt, PromptTemplate, SelectorPromptTemplate, ) from llama_index.core.readers import SimpleDirectoryReader, download_loader # Response Synthesizer from llama_index.core.response_synthesizers.factory import get_response_synthesizer from llama_index.core.schema import Document, QueryBundle from llama_index.core.service_context import ( ServiceContext, set_global_service_context, ) # global settings from llama_index.core.settings import Settings # storage from llama_index.core.storage.storage_context import StorageContext # sql wrapper from llama_index.core.utilities.sql_wrapper import SQLDatabase # global tokenizer from llama_index.core.utils import get_tokenizer, set_global_tokenizer # best practices for library logging: # https://docs.python.org/3/howto/logging.html#configuring-logging-for-a-library logging.getLogger(__name__).addHandler(NullHandler()) __all__ = [ "StorageContext", "ServiceContext", "ComposableGraph", # indices "SummaryIndex", "VectorStoreIndex", "SimpleKeywordTableIndex", "KeywordTableIndex", "RAKEKeywordTableIndex", "TreeIndex", "DocumentSummaryIndex", "KnowledgeGraphIndex", "PropertyGraphIndex", # indices - legacy names "GPTKeywordTableIndex", "GPTKnowledgeGraphIndex", "GPTSimpleKeywordTableIndex", "GPTRAKEKeywordTableIndex", "GPTListIndex", "ListIndex", "GPTTreeIndex", "GPTVectorStoreIndex", "GPTDocumentSummaryIndex", "Prompt", "PromptTemplate", "BasePromptTemplate", "ChatPromptTemplate", "SelectorPromptTemplate", "SummaryPrompt", "TreeInsertPrompt", "TreeSelectPrompt", "TreeSelectMultiplePrompt", "RefinePrompt", "QuestionAnswerPrompt", "KeywordExtractPrompt", "QueryKeywordExtractPrompt", "Response", "Document", "SimpleDirectoryReader", "VellumPredictor", "VellumPromptRegistry", "MockEmbedding", "SQLDatabase", "SQLDocumentContextBuilder", "SQLContextBuilder", "PromptHelper", "IndexStructType", "download_loader", "load_graph_from_storage", "load_index_from_storage", "load_indices_from_storage", "QueryBundle", "get_response_synthesizer", "set_global_service_context", "set_global_handler", "set_global_tokenizer", "get_tokenizer", "Settings", ] # eval global toggle from llama_index.core.callbacks.base_handler import BaseCallbackHandler global_handler: Optional[BaseCallbackHandler] = None # NOTE: keep for backwards compatibility SQLContextBuilder = SQLDocumentContextBuilder # global tokenizer global_tokenizer: Optional[Callable[[str], list]] = None
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.ops.linalg import cholesky as cholesky from keras.src.ops.linalg import det as det from keras.src.ops.linalg import eig as eig from keras.src.ops.linalg import eigh as eigh from keras.src.ops.linalg import inv as inv from keras.src.ops.linalg import lstsq as lstsq from keras.src.ops.linalg import lu_factor as lu_factor from keras.src.ops.linalg import norm as norm from keras.src.ops.linalg import qr as qr from keras.src.ops.linalg import solve as solve from keras.src.ops.linalg import solve_triangular as solve_triangular from keras.src.ops.linalg import svd as svd
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.ops.linalg import cholesky from keras.src.ops.linalg import det from keras.src.ops.linalg import eig from keras.src.ops.linalg import eigh from keras.src.ops.linalg import inv from keras.src.ops.linalg import lstsq from keras.src.ops.linalg import lu_factor from keras.src.ops.linalg import norm from keras.src.ops.linalg import qr from keras.src.ops.linalg import solve from keras.src.ops.linalg import solve_triangular from keras.src.ops.linalg import svd
# Copyright (c) OpenMMLab. All rights reserved. from .anchor_free_head import AnchorFreeHead from .anchor_head import AnchorHead from .atss_head import ATSSHead from .autoassign_head import AutoAssignHead from .cascade_rpn_head import CascadeRPNHead, StageCascadeRPNHead from .centernet_head import CenterNetHead from .centernet_update_head import CenterNetUpdateHead from .centripetal_head import CentripetalHead from .condinst_head import CondInstBboxHead, CondInstMaskHead from .corner_head import CornerHead from .ddod_head import DDODHead from .deformable_detr_head import DeformableDETRHead from .detr_head import DETRHead from .embedding_rpn_head import EmbeddingRPNHead from .fcos_head import FCOSHead from .fovea_head import FoveaHead from .free_anchor_retina_head import FreeAnchorRetinaHead from .fsaf_head import FSAFHead from .ga_retina_head import GARetinaHead from .ga_rpn_head import GARPNHead from .gfl_head import GFLHead from .guided_anchor_head import FeatureAdaption, GuidedAnchorHead from .lad_head import LADHead from .ld_head import LDHead from .mask2former_head import Mask2FormerHead from .maskformer_head import MaskFormerHead from .nasfcos_head import NASFCOSHead from .paa_head import PAAHead from .pisa_retinanet_head import PISARetinaHead from .pisa_ssd_head import PISASSDHead from .reppoints_head import RepPointsHead from .retina_head import RetinaHead from .retina_sepbn_head import RetinaSepBNHead from .rpn_head import RPNHead from .rtmdet_head import RTMDetHead, RTMDetSepBNHead from .rtmdet_ins_head import RTMDetInsHead, RTMDetInsSepBNHead from .sabl_retina_head import SABLRetinaHead from .solo_head import DecoupledSOLOHead, DecoupledSOLOLightHead, SOLOHead from .solov2_head import SOLOV2Head from .ssd_head import SSDHead from .tood_head import TOODHead from .vfnet_head import VFNetHead from .yolact_head import YOLACTHead, YOLACTProtonet from .yolo_head import YOLOV3Head from .yolof_head import YOLOFHead from .yolox_head import YOLOXHead __all__ = [ 'AnchorFreeHead', 'AnchorHead', 'GuidedAnchorHead', 'FeatureAdaption', 'RPNHead', 'GARPNHead', 'RetinaHead', 'RetinaSepBNHead', 'GARetinaHead', 'SSDHead', 'FCOSHead', 'RepPointsHead', 'FoveaHead', 'FreeAnchorRetinaHead', 'ATSSHead', 'FSAFHead', 'NASFCOSHead', 'PISARetinaHead', 'PISASSDHead', 'GFLHead', 'CornerHead', 'YOLACTHead', 'YOLACTProtonet', 'YOLOV3Head', 'PAAHead', 'SABLRetinaHead', 'CentripetalHead', 'VFNetHead', 'StageCascadeRPNHead', 'CascadeRPNHead', 'EmbeddingRPNHead', 'LDHead', 'AutoAssignHead', 'DETRHead', 'YOLOFHead', 'DeformableDETRHead', 'CenterNetHead', 'YOLOXHead', 'SOLOHead', 'DecoupledSOLOHead', 'DecoupledSOLOLightHead', 'SOLOV2Head', 'LADHead', 'TOODHead', 'MaskFormerHead', 'Mask2FormerHead', 'DDODHead', 'CenterNetUpdateHead', 'RTMDetHead', 'RTMDetSepBNHead', 'CondInstBboxHead', 'CondInstMaskHead', 'RTMDetInsHead', 'RTMDetInsSepBNHead' ]
# Copyright (c) OpenMMLab. All rights reserved. from .anchor_free_head import AnchorFreeHead from .anchor_head import AnchorHead from .atss_head import ATSSHead from .autoassign_head import AutoAssignHead from .cascade_rpn_head import CascadeRPNHead, StageCascadeRPNHead from .centernet_head import CenterNetHead from .centernet_update_head import CenterNetUpdateHead from .centripetal_head import CentripetalHead from .condinst_head import CondInstBboxHead, CondInstMaskHead from .corner_head import CornerHead from .ddod_head import DDODHead from .deformable_detr_head import DeformableDETRHead from .detr_head import DETRHead from .embedding_rpn_head import EmbeddingRPNHead from .fcos_head import FCOSHead from .fovea_head import FoveaHead from .free_anchor_retina_head import FreeAnchorRetinaHead from .fsaf_head import FSAFHead from .ga_retina_head import GARetinaHead from .ga_rpn_head import GARPNHead from .gfl_head import GFLHead from .guided_anchor_head import FeatureAdaption, GuidedAnchorHead from .lad_head import LADHead from .ld_head import LDHead from .mask2former_head import Mask2FormerHead from .maskformer_head import MaskFormerHead from .nasfcos_head import NASFCOSHead from .paa_head import PAAHead from .pisa_retinanet_head import PISARetinaHead from .pisa_ssd_head import PISASSDHead from .reppoints_head import RepPointsHead from .retina_head import RetinaHead from .retina_sepbn_head import RetinaSepBNHead from .rpn_head import RPNHead from .rtmdet_head import RTMDetHead, RTMDetSepBNHead from .sabl_retina_head import SABLRetinaHead from .solo_head import DecoupledSOLOHead, DecoupledSOLOLightHead, SOLOHead from .solov2_head import SOLOV2Head from .ssd_head import SSDHead from .tood_head import TOODHead from .vfnet_head import VFNetHead from .yolact_head import YOLACTHead, YOLACTProtonet from .yolo_head import YOLOV3Head from .yolof_head import YOLOFHead from .yolox_head import YOLOXHead __all__ = [ 'AnchorFreeHead', 'AnchorHead', 'GuidedAnchorHead', 'FeatureAdaption', 'RPNHead', 'GARPNHead', 'RetinaHead', 'RetinaSepBNHead', 'GARetinaHead', 'SSDHead', 'FCOSHead', 'RepPointsHead', 'FoveaHead', 'FreeAnchorRetinaHead', 'ATSSHead', 'FSAFHead', 'NASFCOSHead', 'PISARetinaHead', 'PISASSDHead', 'GFLHead', 'CornerHead', 'YOLACTHead', 'YOLACTProtonet', 'YOLOV3Head', 'PAAHead', 'SABLRetinaHead', 'CentripetalHead', 'VFNetHead', 'StageCascadeRPNHead', 'CascadeRPNHead', 'EmbeddingRPNHead', 'LDHead', 'AutoAssignHead', 'DETRHead', 'YOLOFHead', 'DeformableDETRHead', 'CenterNetHead', 'YOLOXHead', 'SOLOHead', 'DecoupledSOLOHead', 'DecoupledSOLOLightHead', 'SOLOV2Head', 'LADHead', 'TOODHead', 'MaskFormerHead', 'Mask2FormerHead', 'DDODHead', 'CenterNetUpdateHead', 'RTMDetHead', 'RTMDetSepBNHead', 'CondInstBboxHead', 'CondInstMaskHead' ]
# Copyright (c) OpenMMLab. All rights reserved. import datetime import logging import os.path as osp from typing import Optional from mmengine.fileio import dump from mmengine.logging import print_log from . import root from .default_scope import DefaultScope from .registry import Registry def traverse_registry_tree(registry: Registry, verbose: bool = True) -> list: """Traverse the whole registry tree from any given node, and collect information of all registered modules in this registry tree. Args: registry (Registry): a registry node in the registry tree. verbose (bool): Whether to print log. Defaults to True Returns: list: Statistic results of all modules in each node of the registry tree. """ root_registry = registry.root modules_info = [] def _dfs_registry(_registry): if isinstance(_registry, Registry): num_modules = len(_registry.module_dict) scope = _registry.scope registry_info = dict(num_modules=num_modules, scope=scope) for name, registered_class in _registry.module_dict.items(): folder = '/'.join(registered_class.__module__.split('.')[:-1]) if folder in registry_info: registry_info[folder].append(name) else: registry_info[folder] = [name] if verbose: print_log( f"Find {num_modules} modules in {scope}'s " f"'{_registry.name}' registry ", logger='current') modules_info.append(registry_info) else: return for _, child in _registry.children.items(): _dfs_registry(child) _dfs_registry(root_registry) return modules_info def count_registered_modules(save_path: Optional[str] = None, verbose: bool = True) -> dict: """Scan all modules in MMEngine's root and child registries and dump to json. Args: save_path (str, optional): Path to save the json file. verbose (bool): Whether to print log. Defaults to True. Returns: dict: Statistic results of all registered modules. """ # import modules to trigger registering import mmengine.dataset import mmengine.evaluator import mmengine.hooks import mmengine.model import mmengine.optim import mmengine.runner import mmengine.visualization # noqa: F401 registries_info = {} # traverse all registries in MMEngine for item in dir(root): if not item.startswith('__'): registry = getattr(root, item) if isinstance(registry, Registry): registries_info[item] = traverse_registry_tree( registry, verbose) scan_data = dict( scan_date=datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'), registries=registries_info) if verbose: print_log( f'Finish registry analysis, got: {scan_data}', logger='current') if save_path is not None: json_path = osp.join(save_path, 'modules_statistic_results.json') dump(scan_data, json_path, indent=2) print_log(f'Result has been saved to {json_path}', logger='current') return scan_data def init_default_scope(scope: str) -> None: """Initialize the given default scope. Args: scope (str): The name of the default scope. """ never_created = DefaultScope.get_current_instance( ) is None or not DefaultScope.check_instance_created(scope) if never_created: DefaultScope.get_instance(scope, scope_name=scope) return current_scope = DefaultScope.get_current_instance() # type: ignore if current_scope.scope_name != scope: # type: ignore print_log( 'The current default scope ' # type: ignore f'"{current_scope.scope_name}" is not "{scope}", ' '`init_default_scope` will force set the current' f'default scope to "{scope}".', logger='current', level=logging.WARNING) # avoid name conflict new_instance_name = f'{scope}-{datetime.datetime.now()}' DefaultScope.get_instance(new_instance_name, scope_name=scope)
# Copyright (c) OpenMMLab. All rights reserved. import datetime import os.path as osp import warnings from typing import Optional from mmengine.fileio import dump from mmengine.logging import print_log from . import root from .default_scope import DefaultScope from .registry import Registry def traverse_registry_tree(registry: Registry, verbose: bool = True) -> list: """Traverse the whole registry tree from any given node, and collect information of all registered modules in this registry tree. Args: registry (Registry): a registry node in the registry tree. verbose (bool): Whether to print log. Defaults to True Returns: list: Statistic results of all modules in each node of the registry tree. """ root_registry = registry.root modules_info = [] def _dfs_registry(_registry): if isinstance(_registry, Registry): num_modules = len(_registry.module_dict) scope = _registry.scope registry_info = dict(num_modules=num_modules, scope=scope) for name, registered_class in _registry.module_dict.items(): folder = '/'.join(registered_class.__module__.split('.')[:-1]) if folder in registry_info: registry_info[folder].append(name) else: registry_info[folder] = [name] if verbose: print_log( f"Find {num_modules} modules in {scope}'s " f"'{_registry.name}' registry ", logger='current') modules_info.append(registry_info) else: return for _, child in _registry.children.items(): _dfs_registry(child) _dfs_registry(root_registry) return modules_info def count_registered_modules(save_path: Optional[str] = None, verbose: bool = True) -> dict: """Scan all modules in MMEngine's root and child registries and dump to json. Args: save_path (str, optional): Path to save the json file. verbose (bool): Whether to print log. Defaults to True. Returns: dict: Statistic results of all registered modules. """ # import modules to trigger registering import mmengine.dataset import mmengine.evaluator import mmengine.hooks import mmengine.model import mmengine.optim import mmengine.runner import mmengine.visualization # noqa: F401 registries_info = {} # traverse all registries in MMEngine for item in dir(root): if not item.startswith('__'): registry = getattr(root, item) if isinstance(registry, Registry): registries_info[item] = traverse_registry_tree( registry, verbose) scan_data = dict( scan_date=datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'), registries=registries_info) if verbose: print_log( f'Finish registry analysis, got: {scan_data}', logger='current') if save_path is not None: json_path = osp.join(save_path, 'modules_statistic_results.json') dump(scan_data, json_path, indent=2) print_log(f'Result has been saved to {json_path}', logger='current') return scan_data def init_default_scope(scope: str) -> None: """Initialize the given default scope. Args: scope (str): The name of the default scope. """ never_created = DefaultScope.get_current_instance( ) is None or not DefaultScope.check_instance_created(scope) if never_created: DefaultScope.get_instance(scope, scope_name=scope) return current_scope = DefaultScope.get_current_instance() # type: ignore if current_scope.scope_name != scope: # type: ignore warnings.warn('The current default scope ' # type: ignore f'"{current_scope.scope_name}" is not "{scope}", ' '`init_default_scope` will force set the current' f'default scope to "{scope}".') # avoid name conflict new_instance_name = f'{scope}-{datetime.datetime.now()}' DefaultScope.get_instance(new_instance_name, scope_name=scope)
from exa_py.api import ( HighlightsContentsOptions, TextContentsOptions, ) from langchain_exa.retrievers import ExaSearchRetriever from langchain_exa.tools import ExaFindSimilarResults, ExaSearchResults __all__ = [ "ExaFindSimilarResults", "ExaSearchResults", "ExaSearchRetriever", "HighlightsContentsOptions", "TextContentsOptions", ]
from exa_py.api import ( # type: ignore # type: ignore[import-not-found, import-not-found] HighlightsContentsOptions, TextContentsOptions, ) from langchain_exa.retrievers import ExaSearchRetriever from langchain_exa.tools import ExaFindSimilarResults, ExaSearchResults __all__ = [ "ExaSearchResults", "ExaSearchRetriever", "HighlightsContentsOptions", "TextContentsOptions", "ExaFindSimilarResults", ]
import os from unittest.mock import patch import pytest from langchain_community.embeddings.openai import OpenAIEmbeddings os.environ["OPENAI_API_KEY"] = "foo" @pytest.mark.requires("openai") def test_openai_invalid_model_kwargs() -> None: with pytest.raises(ValueError): OpenAIEmbeddings(model_kwargs={"model": "foo"}) @pytest.mark.requires("openai") def test_openai_incorrect_field() -> None: with pytest.warns(match="not default parameter"): llm = OpenAIEmbeddings(foo="bar", openai_api_key="foo") # type: ignore[call-arg] assert llm.model_kwargs == {"foo": "bar"} @pytest.mark.requires("openai") def test_embed_documents_with_custom_chunk_size() -> None: embeddings = OpenAIEmbeddings(chunk_size=2) texts = ["text1", "text2", "text3", "text4"] custom_chunk_size = 3 with patch.object(embeddings.client, "create") as mock_create: mock_create.side_effect = [ {"data": [{"embedding": [0.1, 0.2]}, {"embedding": [0.3, 0.4]}]}, {"data": [{"embedding": [0.5, 0.6]}, {"embedding": [0.7, 0.8]}]}, ] embeddings.embed_documents(texts, chunk_size=custom_chunk_size) mock_create.assert_any_call(input=[[1342, 19]], **embeddings._invocation_params) mock_create.assert_any_call(input=[[1342, 19]], **embeddings._invocation_params)
import pytest from langchain_community.embeddings.openai import OpenAIEmbeddings @pytest.mark.requires("openai") def test_openai_invalid_model_kwargs() -> None: with pytest.raises(ValueError): OpenAIEmbeddings(model_kwargs={"model": "foo"}) @pytest.mark.requires("openai") def test_openai_incorrect_field() -> None: with pytest.warns(match="not default parameter"): llm = OpenAIEmbeddings(foo="bar", openai_api_key="foo") # type: ignore[call-arg] assert llm.model_kwargs == {"foo": "bar"}
import os from typing import Any, Dict, Generator, Literal, Optional import requests import sseclient from llama_index.core.llms import ( CompletionResponse, CompletionResponseGen, CustomLLM, LLMMetadata, ) from llama_index.core.llms.callbacks import llm_completion_callback from llama_index.core.bridge.pydantic import Field SMART_ENDPOINT = "https://chat-api.you.com/smart" RESEARCH_ENDPOINT = "https://chat-api.you.com/research" def _request(base_url: str, api_key: str, **kwargs) -> Dict[str, Any]: """ NOTE: This function can be replaced by a OpenAPI-generated Python SDK in the future, for better input/output typing support. """ headers = {"x-api-key": api_key} response = requests.post(base_url, headers=headers, json=kwargs) response.raise_for_status() return response.json() def _request_stream( base_url: str, api_key: str, **kwargs ) -> Generator[str, None, None]: headers = {"x-api-key": api_key} params = dict(**kwargs, stream=True) response = requests.post(base_url, headers=headers, stream=True, json=params) response.raise_for_status() client = sseclient.SSEClient(response) for event in client.events(): if event.event in ("search_results", "done"): pass elif event.event == "token": yield event.data elif event.event == "error": raise ValueError(f"Error in response: {event.data}") else: raise NotImplementedError(f"Unknown event type {event.event}") class You(CustomLLM): """ Wrapper around You.com's conversational Smart and Research APIs. Each API endpoint is designed to generate conversational responses to a variety of query types, including inline citations and web results when relevant. Smart Mode: - Quick, reliable answers for a variety of questions - Cites the entire web page URL Research Mode: - In-depth answers with extensive citations for a variety of questions - Cites the specific web page snippet relevant to the claim To connect to the You.com api requires an API key which you can get at https://api.you.com. For more information, check out the documentations at https://documentation.you.com/api-reference/. Args: mode: You.com conversational endpoints. Choose from "smart" or "research" ydc_api_key: You.com API key, if `YDC_API_KEY` is not set in the environment """ mode: Literal["smart", "research"] = Field( "smart", description='You.com conversational endpoints. Choose from "smart" or "research"', ) ydc_api_key: Optional[str] = Field( None, description="You.com API key, if `YDC_API_KEY` is not set in the envrioment", ) @property def metadata(self) -> LLMMetadata: return LLMMetadata( model_name=f"you.com-{self.mode}", is_chat_model=True, is_function_calling_model=False, ) @llm_completion_callback() def complete(self, prompt: str, **kwargs: Any) -> CompletionResponse: response = _request( self.endpoint, api_key=self._api_key, query=prompt, ) return CompletionResponse(text=response["answer"], raw=response) @llm_completion_callback() def stream_complete(self, prompt: str, **kwargs: Any) -> CompletionResponseGen: response = _request_stream( self.endpoint, api_key=self._api_key, query=prompt, ) completion = "" for token in response: completion += token yield CompletionResponse(text=completion, delta=token) @property def endpoint(self) -> str: if self.mode == "smart": return SMART_ENDPOINT return RESEARCH_ENDPOINT @property def _api_key(self) -> str: return self.ydc_api_key or os.environ["YDC_API_KEY"]
import os from typing import Any, Dict, Generator, Literal, Optional import requests import sseclient from llama_index.core.llms import ( CompletionResponse, CompletionResponseGen, CustomLLM, LLMMetadata, ) from llama_index.core.llms.callbacks import llm_completion_callback from llama_index.core.bridge.pydantic import Field SMART_ENDPOINT = "https://chat-api.you.com/smart" RESEARCH_ENDPOINT = "https://chat-api.you.com/research" def _request(base_url: str, api_key: str, **kwargs) -> Dict[str, Any]: """ NOTE: This function can be replaced by a OpenAPI-generated Python SDK in the future, for better input/output typing support. """ headers = {"x-api-key": api_key} response = requests.post(base_url, headers=headers, json=kwargs) response.raise_for_status() return response.json() def _request_stream( base_url: str, api_key: str, **kwargs ) -> Generator[str, None, None]: headers = {"x-api-key": api_key} params = dict(**kwargs, stream=True) response = requests.post(base_url, headers=headers, stream=True, json=params) response.raise_for_status() client = sseclient.SSEClient(response) for event in client.events(): if event.event in ("search_results", "done"): pass elif event.event == "token": yield event.data elif event.event == "error": raise ValueError(f"Error in response: {event.data}") else: raise NotImplementedError(f"Unknown event type {event.event}") class You(CustomLLM): """Wrapper around You.com's conversational Smart and Research APIs. Each API endpoint is designed to generate conversational responses to a variety of query types, including inline citations and web results when relevant. Smart Mode: - Quick, reliable answers for a variety of questions - Cites the entire web page URL Research Mode: - In-depth answers with extensive citations for a variety of questions - Cites the specific web page snippet relevant to the claim To connect to the You.com api requires an API key which you can get at https://api.you.com. For more information, check out the documentations at https://documentation.you.com/api-reference/. Args: mode: You.com conversational endpoints. Choose from "smart" or "research" ydc_api_key: You.com API key, if `YDC_API_KEY` is not set in the environment """ mode: Literal["smart", "research"] = Field( "smart", description='You.com conversational endpoints. Choose from "smart" or "research"', ) ydc_api_key: Optional[str] = Field( None, description="You.com API key, if `YDC_API_KEY` is not set in the envrioment", ) @property def metadata(self) -> LLMMetadata: return LLMMetadata( model_name=f"you.com-{self.mode}", is_chat_model=True, is_function_calling_model=False, ) @llm_completion_callback() def complete(self, prompt: str, **kwargs: Any) -> CompletionResponse: response = _request( self.endpoint, api_key=self._api_key, query=prompt, ) return CompletionResponse(text=response["answer"], raw=response) @llm_completion_callback() def stream_complete(self, prompt: str, **kwargs: Any) -> CompletionResponseGen: response = _request_stream( self.endpoint, api_key=self._api_key, query=prompt, ) completion = "" for token in response: completion += token yield CompletionResponse(text=completion, delta=token) @property def endpoint(self) -> str: if self.mode == "smart": return SMART_ENDPOINT return RESEARCH_ENDPOINT @property def _api_key(self) -> str: return self.ydc_api_key or os.environ["YDC_API_KEY"]
from abc import abstractmethod from typing import Iterator, Iterable, MutableSequence from docarray import Document class BaseSequenceLikeMixin(MutableSequence[Document]): """Implement sequence-like methods""" def insert(self, index: int, value: 'Document'): """Insert `doc` at `index`. :param index: Position of the insertion. :param value: The doc needs to be inserted. """ self._set_doc_by_id(value.id, value) self._offset2ids.insert(index, value.id) def append(self, value: 'Document'): """Append `doc` to the end of the array. :param value: The doc needs to be appended. """ self._set_doc_by_id(value.id, value) self._offset2ids.append(value.id) @abstractmethod def __eq__(self, other): ... def __len__(self): return len(self._offset2ids) def __iter__(self) -> Iterator['Document']: for _id in self._offset2ids: yield self._get_doc_by_id(_id) @abstractmethod def __contains__(self, other): ... def clear(self): """Clear the data of :class:`DocumentArray`""" self._del_all_docs() def __bool__(self): """To simulate ```l = []; if l: ...``` :return: returns true if the length of the array is larger than 0 """ return len(self) > 0 def extend(self, values: Iterable['Document'], **kwargs) -> None: for value in values: self.append(value)
from abc import abstractmethod from typing import Iterator, Iterable, MutableSequence from docarray import Document class BaseSequenceLikeMixin(MutableSequence[Document]): """Implement sequence-like methods""" def insert(self, index: int, value: 'Document'): """Insert `doc` at `index`. :param index: Position of the insertion. :param value: The doc needs to be inserted. """ self._set_doc_by_id(value.id, value) self._offset2ids.insert(index, value.id) def append(self, value: 'Document'): """Append `doc` to the end of the array. :param value: The doc needs to be appended. """ self._set_doc_by_id(value.id, value) self._offset2ids.append(value.id) @abstractmethod def __eq__(self, other): ... def __len__(self): return len(self._offset2ids) def __iter__(self) -> Iterator['Document']: for _id in self._offset2ids: yield self._get_doc_by_id(_id) @abstractmethod def __contains__(self, other): ... def clear(self): """Clear the data of :class:`DocumentArray`""" self._del_all_docs() def __bool__(self): """To simulate ```l = []; if l: ...``` :return: returns true if the length of the array is larger than 0 """ return len(self) > 0 def extend(self, values: Iterable['Document']) -> None: for value in values: self.append(value)
import pathlib from argparse import ArgumentParser from lightning import ConformerRNNTModule, get_data_module from pytorch_lightning import seed_everything, Trainer from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint from pytorch_lightning.plugins import DDPPlugin def run_train(args): seed_everything(1) checkpoint_dir = args.exp_dir / "checkpoints" checkpoint = ModelCheckpoint( checkpoint_dir, monitor="Losses/val_loss", mode="min", save_top_k=5, save_weights_only=False, verbose=True, ) train_checkpoint = ModelCheckpoint( checkpoint_dir, monitor="Losses/train_loss", mode="min", save_top_k=5, save_weights_only=False, verbose=True, ) lr_monitor = LearningRateMonitor(logging_interval="step") callbacks = [ checkpoint, train_checkpoint, lr_monitor, ] trainer = Trainer( default_root_dir=args.exp_dir, max_epochs=args.epochs, num_nodes=args.nodes, gpus=args.gpus, accelerator="gpu", strategy=DDPPlugin(find_unused_parameters=False), callbacks=callbacks, reload_dataloaders_every_n_epochs=1, ) model = ConformerRNNTModule(str(args.sp_model_path)) data_module = get_data_module(str(args.librispeech_path), str(args.global_stats_path), str(args.sp_model_path)) trainer.fit(model, data_module, ckpt_path=args.checkpoint_path) def cli_main(): parser = ArgumentParser() parser.add_argument( "--checkpoint-path", default=None, type=pathlib.Path, help="Path to checkpoint to use for evaluation.", ) parser.add_argument( "--exp-dir", default=pathlib.Path("./exp"), type=pathlib.Path, help="Directory to save checkpoints and logs to. (Default: './exp')", ) parser.add_argument( "--global-stats-path", default=pathlib.Path("global_stats.json"), type=pathlib.Path, help="Path to JSON file containing feature means and stddevs.", ) parser.add_argument( "--librispeech-path", type=pathlib.Path, help="Path to LibriSpeech datasets.", required=True, ) parser.add_argument( "--sp-model-path", type=pathlib.Path, help="Path to SentencePiece model.", required=True, ) parser.add_argument( "--nodes", default=4, type=int, help="Number of nodes to use for training. (Default: 4)", ) parser.add_argument( "--gpus", default=8, type=int, help="Number of GPUs per node to use for training. (Default: 8)", ) parser.add_argument( "--epochs", default=120, type=int, help="Number of epochs to train for. (Default: 120)", ) args = parser.parse_args() run_train(args) if __name__ == "__main__": cli_main()
import pathlib from argparse import ArgumentParser from lightning import ConformerRNNTModule, get_data_module from pytorch_lightning import Trainer, seed_everything from pytorch_lightning.callbacks import ModelCheckpoint, LearningRateMonitor from pytorch_lightning.plugins import DDPPlugin def run_train(args): seed_everything(1) checkpoint_dir = args.exp_dir / "checkpoints" checkpoint = ModelCheckpoint( checkpoint_dir, monitor="Losses/val_loss", mode="min", save_top_k=5, save_weights_only=False, verbose=True, ) train_checkpoint = ModelCheckpoint( checkpoint_dir, monitor="Losses/train_loss", mode="min", save_top_k=5, save_weights_only=False, verbose=True, ) lr_monitor = LearningRateMonitor(logging_interval="step") callbacks = [ checkpoint, train_checkpoint, lr_monitor, ] trainer = Trainer( default_root_dir=args.exp_dir, max_epochs=args.epochs, num_nodes=args.nodes, gpus=args.gpus, accelerator="gpu", strategy=DDPPlugin(find_unused_parameters=False), callbacks=callbacks, reload_dataloaders_every_n_epochs=1, ) model = ConformerRNNTModule(str(args.sp_model_path)) data_module = get_data_module(str(args.librispeech_path), str(args.global_stats_path), str(args.sp_model_path)) trainer.fit(model, data_module, ckpt_path=args.checkpoint_path) def cli_main(): parser = ArgumentParser() parser.add_argument( "--checkpoint-path", default=None, type=pathlib.Path, help="Path to checkpoint to use for evaluation.", ) parser.add_argument( "--exp-dir", default=pathlib.Path("./exp"), type=pathlib.Path, help="Directory to save checkpoints and logs to. (Default: './exp')", ) parser.add_argument( "--global-stats-path", default=pathlib.Path("global_stats.json"), type=pathlib.Path, help="Path to JSON file containing feature means and stddevs.", ) parser.add_argument( "--librispeech-path", type=pathlib.Path, help="Path to LibriSpeech datasets.", required=True, ) parser.add_argument( "--sp-model-path", type=pathlib.Path, help="Path to SentencePiece model.", required=True, ) parser.add_argument( "--nodes", default=4, type=int, help="Number of nodes to use for training. (Default: 4)", ) parser.add_argument( "--gpus", default=8, type=int, help="Number of GPUs per node to use for training. (Default: 8)", ) parser.add_argument( "--epochs", default=120, type=int, help="Number of epochs to train for. (Default: 120)", ) args = parser.parse_args() run_train(args) if __name__ == "__main__": cli_main()
import datetime import autogpt_libs.auth as autogpt_auth_lib import fastapi import fastapi.testclient import pytest import pytest_mock import backend.server.v2.library.model as library_model from backend.server.v2.library.routes import router as library_router app = fastapi.FastAPI() app.include_router(library_router) client = fastapi.testclient.TestClient(app) def override_auth_middleware(): """Override auth middleware for testing""" return {"sub": "test-user-id"} def override_get_user_id(): """Override get_user_id for testing""" return "test-user-id" app.dependency_overrides[autogpt_auth_lib.auth_middleware] = override_auth_middleware app.dependency_overrides[autogpt_auth_lib.depends.get_user_id] = override_get_user_id def test_get_library_agents_success(mocker: pytest_mock.MockFixture): mocked_value = [ library_model.LibraryAgent( id="test-agent-1", agent_id="test-agent-1", agent_version=1, preset_id="preset-1", updated_at=datetime.datetime(2023, 1, 1, 0, 0, 0), is_favorite=False, is_created_by_user=True, is_latest_version=True, name="Test Agent 1", description="Test Description 1", input_schema={"type": "object", "properties": {}}, output_schema={"type": "object", "properties": {}}, ), library_model.LibraryAgent( id="test-agent-2", agent_id="test-agent-2", agent_version=1, preset_id="preset-2", updated_at=datetime.datetime(2023, 1, 1, 0, 0, 0), is_favorite=False, is_created_by_user=False, is_latest_version=True, name="Test Agent 2", description="Test Description 2", input_schema={"type": "object", "properties": {}}, output_schema={"type": "object", "properties": {}}, ), ] mock_db_call = mocker.patch("backend.server.v2.library.db.get_library_agents") mock_db_call.return_value = mocked_value response = client.get("/agents") assert response.status_code == 200 data = [ library_model.LibraryAgent.model_validate(agent) for agent in response.json() ] assert len(data) == 2 assert data[0].agent_id == "test-agent-1" assert data[0].is_created_by_user is True assert data[1].agent_id == "test-agent-2" assert data[1].is_created_by_user is False mock_db_call.assert_called_once_with("test-user-id") def test_get_library_agents_error(mocker: pytest_mock.MockFixture): mock_db_call = mocker.patch("backend.server.v2.library.db.get_library_agents") mock_db_call.side_effect = Exception("Test error") response = client.get("/agents") assert response.status_code == 500 mock_db_call.assert_called_once_with("test-user-id") @pytest.mark.skip(reason="Mocker Not implemented") def test_add_agent_to_library_success(mocker: pytest_mock.MockFixture): mock_db_call = mocker.patch("backend.server.v2.library.db.add_agent_to_library") mock_db_call.return_value = None response = client.post("/agents/test-version-id") assert response.status_code == 201 mock_db_call.assert_called_once_with( store_listing_version_id="test-version-id", user_id="test-user-id" ) @pytest.mark.skip(reason="Mocker Not implemented") def test_add_agent_to_library_error(mocker: pytest_mock.MockFixture): mock_db_call = mocker.patch("backend.server.v2.library.db.add_agent_to_library") mock_db_call.side_effect = Exception("Test error") response = client.post("/agents/test-version-id") assert response.status_code == 500 assert response.json()["detail"] == "Failed to add agent to library" mock_db_call.assert_called_once_with( store_listing_version_id="test-version-id", user_id="test-user-id" )
import autogpt_libs.auth.depends import autogpt_libs.auth.middleware import fastapi import fastapi.testclient import pytest import pytest_mock import backend.server.v2.library.db import backend.server.v2.library.model import backend.server.v2.library.routes app = fastapi.FastAPI() app.include_router(backend.server.v2.library.routes.router) client = fastapi.testclient.TestClient(app) def override_auth_middleware(): """Override auth middleware for testing""" return {"sub": "test-user-id"} def override_get_user_id(): """Override get_user_id for testing""" return "test-user-id" app.dependency_overrides[autogpt_libs.auth.middleware.auth_middleware] = ( override_auth_middleware ) app.dependency_overrides[autogpt_libs.auth.depends.get_user_id] = override_get_user_id def test_get_library_agents_success(mocker: pytest_mock.MockFixture): mocked_value = [ backend.server.v2.library.model.LibraryAgent( id="test-agent-1", version=1, is_active=True, name="Test Agent 1", description="Test Description 1", isCreatedByUser=True, input_schema={"type": "object", "properties": {}}, output_schema={"type": "object", "properties": {}}, ), backend.server.v2.library.model.LibraryAgent( id="test-agent-2", version=1, is_active=True, name="Test Agent 2", description="Test Description 2", isCreatedByUser=False, input_schema={"type": "object", "properties": {}}, output_schema={"type": "object", "properties": {}}, ), ] mock_db_call = mocker.patch("backend.server.v2.library.db.get_library_agents") mock_db_call.return_value = mocked_value response = client.get("/agents") assert response.status_code == 200 data = [ backend.server.v2.library.model.LibraryAgent.model_validate(agent) for agent in response.json() ] assert len(data) == 2 assert data[0].id == "test-agent-1" assert data[0].isCreatedByUser is True assert data[1].id == "test-agent-2" assert data[1].isCreatedByUser is False mock_db_call.assert_called_once_with("test-user-id") def test_get_library_agents_error(mocker: pytest_mock.MockFixture): mock_db_call = mocker.patch("backend.server.v2.library.db.get_library_agents") mock_db_call.side_effect = Exception("Test error") response = client.get("/agents") assert response.status_code == 500 mock_db_call.assert_called_once_with("test-user-id") @pytest.mark.skip(reason="Mocker Not implemented") def test_add_agent_to_library_success(mocker: pytest_mock.MockFixture): mock_db_call = mocker.patch("backend.server.v2.library.db.add_agent_to_library") mock_db_call.return_value = None response = client.post("/agents/test-version-id") assert response.status_code == 201 mock_db_call.assert_called_once_with( store_listing_version_id="test-version-id", user_id="test-user-id" ) @pytest.mark.skip(reason="Mocker Not implemented") def test_add_agent_to_library_error(mocker: pytest_mock.MockFixture): mock_db_call = mocker.patch("backend.server.v2.library.db.add_agent_to_library") mock_db_call.side_effect = Exception("Test error") response = client.post("/agents/test-version-id") assert response.status_code == 500 assert response.json()["detail"] == "Failed to add agent to library" mock_db_call.assert_called_once_with( store_listing_version_id="test-version-id", user_id="test-user-id" )
from __future__ import annotations from collections.abc import Iterable from enum import Enum from typing import Any import torch.nn.functional as F from torch import Tensor, nn from sentence_transformers.SentenceTransformer import SentenceTransformer from sentence_transformers.util import pairwise_cos_sim, pairwise_euclidean_sim, pairwise_manhattan_sim class TripletDistanceMetric(Enum): """The metric for the triplet loss""" COSINE = lambda x, y: 1 - pairwise_cos_sim(x, y) EUCLIDEAN = lambda x, y: pairwise_euclidean_sim(x, y) MANHATTAN = lambda x, y: pairwise_manhattan_sim(x, y) class TripletLoss(nn.Module): def __init__( self, model: SentenceTransformer, distance_metric=TripletDistanceMetric.EUCLIDEAN, triplet_margin: float = 5 ) -> None: """ This class implements triplet loss. Given a triplet of (anchor, positive, negative), the loss minimizes the distance between anchor and positive while it maximizes the distance between anchor and negative. It compute the following loss function: ``loss = max(||anchor - positive|| - ||anchor - negative|| + margin, 0)``. Margin is an important hyperparameter and needs to be tuned respectively. Args: model: SentenceTransformerModel distance_metric: Function to compute distance between two embeddings. The class TripletDistanceMetric contains common distance metrices that can be used. triplet_margin: The negative should be at least this much further away from the anchor than the positive. References: - For further details, see: https://en.wikipedia.org/wiki/Triplet_loss Requirements: 1. (anchor, positive, negative) triplets Inputs: +---------------------------------------+--------+ | Texts | Labels | +=======================================+========+ | (anchor, positive, negative) triplets | none | +---------------------------------------+--------+ Example: :: from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer, losses from datasets import Dataset model = SentenceTransformer("microsoft/mpnet-base") train_dataset = Dataset.from_dict({ "anchor": ["It's nice weather outside today.", "He drove to work."], "positive": ["It's so sunny.", "He took the car to the office."], "negative": ["It's quite rainy, sadly.", "She walked to the store."], }) loss = losses.TripletLoss(model=model) trainer = SentenceTransformerTrainer( model=model, train_dataset=train_dataset, loss=loss, ) trainer.train() """ super().__init__() self.model = model self.distance_metric = distance_metric self.triplet_margin = triplet_margin def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor: embeddings = [self.model(sentence_feature)["sentence_embedding"] for sentence_feature in sentence_features] return self.compute_loss_from_embeddings(embeddings, labels) def compute_loss_from_embeddings(self, embeddings: list[Tensor], labels: Tensor) -> Tensor: """ Compute the CoSENT loss from embeddings. Args: embeddings: List of embeddings Returns: Loss value """ rep_anchor, rep_pos, rep_neg = embeddings distance_pos = self.distance_metric(rep_anchor, rep_pos) distance_neg = self.distance_metric(rep_anchor, rep_neg) losses = F.relu(distance_pos - distance_neg + self.triplet_margin) return losses.mean() def get_config_dict(self) -> dict[str, Any]: distance_metric_name = self.distance_metric.__name__ for name, value in vars(TripletDistanceMetric).items(): if value == self.distance_metric: distance_metric_name = f"TripletDistanceMetric.{name}" break return {"distance_metric": distance_metric_name, "triplet_margin": self.triplet_margin} @property def citation(self) -> str: return """ @misc{hermans2017defense, title={In Defense of the Triplet Loss for Person Re-Identification}, author={Alexander Hermans and Lucas Beyer and Bastian Leibe}, year={2017}, eprint={1703.07737}, archivePrefix={arXiv}, primaryClass={cs.CV} } """
from __future__ import annotations from collections.abc import Iterable from enum import Enum from typing import Any import torch.nn.functional as F from torch import Tensor, nn from sentence_transformers.SentenceTransformer import SentenceTransformer from sentence_transformers.util import pairwise_cos_sim, pairwise_euclidean_sim, pairwise_manhattan_sim class TripletDistanceMetric(Enum): """The metric for the triplet loss""" COSINE = lambda x, y: 1 - pairwise_cos_sim(x, y) EUCLIDEAN = lambda x, y: pairwise_euclidean_sim(x, y) MANHATTAN = lambda x, y: pairwise_manhattan_sim(x, y) class TripletLoss(nn.Module): def __init__( self, model: SentenceTransformer, distance_metric=TripletDistanceMetric.EUCLIDEAN, triplet_margin: float = 5 ) -> None: """ This class implements triplet loss. Given a triplet of (anchor, positive, negative), the loss minimizes the distance between anchor and positive while it maximizes the distance between anchor and negative. It compute the following loss function: ``loss = max(||anchor - positive|| - ||anchor - negative|| + margin, 0)``. Margin is an important hyperparameter and needs to be tuned respectively. Args: model: SentenceTransformerModel distance_metric: Function to compute distance between two embeddings. The class TripletDistanceMetric contains common distance metrices that can be used. triplet_margin: The negative should be at least this much further away from the anchor than the positive. References: - For further details, see: https://en.wikipedia.org/wiki/Triplet_loss Requirements: 1. (anchor, positive, negative) triplets Inputs: +---------------------------------------+--------+ | Texts | Labels | +=======================================+========+ | (anchor, positive, negative) triplets | none | +---------------------------------------+--------+ Example: :: from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer, losses from datasets import Dataset model = SentenceTransformer("microsoft/mpnet-base") train_dataset = Dataset.from_dict({ "anchor": ["It's nice weather outside today.", "He drove to work."], "positive": ["It's so sunny.", "He took the car to the office."], "negative": ["It's quite rainy, sadly.", "She walked to the store."], }) loss = losses.TripletLoss(model=model) trainer = SentenceTransformerTrainer( model=model, train_dataset=train_dataset, loss=loss, ) trainer.train() """ super().__init__() self.model = model self.distance_metric = distance_metric self.triplet_margin = triplet_margin def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor: reps = [self.model(sentence_feature)["sentence_embedding"] for sentence_feature in sentence_features] rep_anchor, rep_pos, rep_neg = reps distance_pos = self.distance_metric(rep_anchor, rep_pos) distance_neg = self.distance_metric(rep_anchor, rep_neg) losses = F.relu(distance_pos - distance_neg + self.triplet_margin) return losses.mean() def get_config_dict(self) -> dict[str, Any]: distance_metric_name = self.distance_metric.__name__ for name, value in vars(TripletDistanceMetric).items(): if value == self.distance_metric: distance_metric_name = f"TripletDistanceMetric.{name}" break return {"distance_metric": distance_metric_name, "triplet_margin": self.triplet_margin} @property def citation(self) -> str: return """ @misc{hermans2017defense, title={In Defense of the Triplet Loss for Person Re-Identification}, author={Alexander Hermans and Lucas Beyer and Bastian Leibe}, year={2017}, eprint={1703.07737}, archivePrefix={arXiv}, primaryClass={cs.CV} } """
"""Run smoke tests""" import torchaudio # noqa: F401 import torchaudio.compliance.kaldi # noqa: F401 import torchaudio.datasets # noqa: F401 import torchaudio.functional # noqa: F401 import torchaudio.models # noqa: F401 import torchaudio.pipelines # noqa: F401 import torchaudio.sox_effects # noqa: F401 import torchaudio.transforms # noqa: F401 import torchaudio.utils # noqa: F401 from torchaudio.prototype.io import Streamer # noqa: F401
"""Run smoke tests""" import torchaudio # noqa: F401 import torchaudio.compliance.kaldi # noqa: F401 import torchaudio.datasets # noqa: F401 import torchaudio.functional # noqa: F401 import torchaudio.models # noqa: F401 import torchaudio.pipelines # noqa: F401 import torchaudio.sox_effects # noqa: F401 import torchaudio.transforms # noqa: F401 import torchaudio.utils # noqa: F401
# Copyright (c) OpenMMLab. All rights reserved. from abc import ABCMeta, abstractmethod from typing import Tuple from mmengine.model import BaseModule from torch import Tensor from mmdet.registry import MODELS from mmdet.structures import SampleList from mmdet.utils import InstanceList, OptConfigType, OptMultiConfig class BaseRoIHead(BaseModule, metaclass=ABCMeta): """Base class for RoIHeads.""" def __init__(self, bbox_roi_extractor: OptMultiConfig = None, bbox_head: OptMultiConfig = None, mask_roi_extractor: OptMultiConfig = None, mask_head: OptMultiConfig = None, shared_head: OptConfigType = None, train_cfg: OptConfigType = None, test_cfg: OptConfigType = None, init_cfg: OptMultiConfig = None) -> None: super().__init__(init_cfg=init_cfg) self.train_cfg = train_cfg self.test_cfg = test_cfg if shared_head is not None: self.shared_head = MODELS.build(shared_head) if bbox_head is not None: self.init_bbox_head(bbox_roi_extractor, bbox_head) if mask_head is not None: self.init_mask_head(mask_roi_extractor, mask_head) self.init_assigner_sampler() @property def with_bbox(self) -> bool: """bool: whether the RoI head contains a `bbox_head`""" return hasattr(self, 'bbox_head') and self.bbox_head is not None @property def with_mask(self) -> bool: """bool: whether the RoI head contains a `mask_head`""" return hasattr(self, 'mask_head') and self.mask_head is not None @property def with_shared_head(self) -> bool: """bool: whether the RoI head contains a `shared_head`""" return hasattr(self, 'shared_head') and self.shared_head is not None @abstractmethod def init_bbox_head(self, *args, **kwargs): """Initialize ``bbox_head``""" pass @abstractmethod def init_mask_head(self, *args, **kwargs): """Initialize ``mask_head``""" pass @abstractmethod def init_assigner_sampler(self, *args, **kwargs): """Initialize assigner and sampler.""" pass @abstractmethod def loss(self, x: Tuple[Tensor], rpn_results_list: InstanceList, batch_data_samples: SampleList): """Perform forward propagation and loss calculation of the roi head on the features of the upstream network.""" def predict(self, x: Tuple[Tensor], rpn_results_list: InstanceList, batch_data_samples: SampleList, rescale: bool = False) -> InstanceList: """Perform forward propagation of the roi head and predict detection results on the features of the upstream network. Args: x (tuple[Tensor]): Features from upstream network. Each has shape (N, C, H, W). rpn_results_list (list[:obj:`InstanceData`]): list of region proposals. batch_data_samples (List[:obj:`DetDataSample`]): The Data Samples. It usually includes information such as `gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`. rescale (bool): Whether to rescale the results to the original image. Defaults to True. Returns: list[obj:`InstanceData`]: Detection results of each image. Each item usually contains following keys. - scores (Tensor): Classification scores, has a shape (num_instance, ) - labels (Tensor): Labels of bboxes, has a shape (num_instances, ). - bboxes (Tensor): Has a shape (num_instances, 4), the last dimension 4 arrange as (x1, y1, x2, y2). - masks (Tensor): Has a shape (num_instances, H, W). """ assert self.with_bbox, 'Bbox head must be implemented.' batch_img_metas = [ data_samples.metainfo for data_samples in batch_data_samples ] # TODO: nms_op in mmcv need be enhanced, the bbox result may get # difference when not rescale in bbox_head # If it has the mask branch, the bbox branch does not need # to be scaled to the original image scale, because the mask # branch will scale both bbox and mask at the same time. bbox_rescale = rescale if not self.with_mask else False results_list = self.predict_bbox( x, batch_img_metas, rpn_results_list, rcnn_test_cfg=self.test_cfg, rescale=bbox_rescale) if self.with_mask: results_list = self.predict_mask( x, batch_img_metas, results_list, rescale=rescale) return results_list
# Copyright (c) OpenMMLab. All rights reserved. from abc import ABCMeta, abstractmethod from typing import Tuple from mmengine.model import BaseModule from torch import Tensor from mmdet.data_elements import SampleList from mmdet.registry import MODELS from mmdet.utils import InstanceList, OptConfigType, OptMultiConfig class BaseRoIHead(BaseModule, metaclass=ABCMeta): """Base class for RoIHeads.""" def __init__(self, bbox_roi_extractor: OptMultiConfig = None, bbox_head: OptMultiConfig = None, mask_roi_extractor: OptMultiConfig = None, mask_head: OptMultiConfig = None, shared_head: OptConfigType = None, train_cfg: OptConfigType = None, test_cfg: OptConfigType = None, init_cfg: OptMultiConfig = None) -> None: super().__init__(init_cfg=init_cfg) self.train_cfg = train_cfg self.test_cfg = test_cfg if shared_head is not None: self.shared_head = MODELS.build(shared_head) if bbox_head is not None: self.init_bbox_head(bbox_roi_extractor, bbox_head) if mask_head is not None: self.init_mask_head(mask_roi_extractor, mask_head) self.init_assigner_sampler() @property def with_bbox(self) -> bool: """bool: whether the RoI head contains a `bbox_head`""" return hasattr(self, 'bbox_head') and self.bbox_head is not None @property def with_mask(self) -> bool: """bool: whether the RoI head contains a `mask_head`""" return hasattr(self, 'mask_head') and self.mask_head is not None @property def with_shared_head(self) -> bool: """bool: whether the RoI head contains a `shared_head`""" return hasattr(self, 'shared_head') and self.shared_head is not None @abstractmethod def init_bbox_head(self, *args, **kwargs): """Initialize ``bbox_head``""" pass @abstractmethod def init_mask_head(self, *args, **kwargs): """Initialize ``mask_head``""" pass @abstractmethod def init_assigner_sampler(self, *args, **kwargs): """Initialize assigner and sampler.""" pass @abstractmethod def loss(self, x: Tuple[Tensor], rpn_results_list: InstanceList, batch_data_samples: SampleList): """Perform forward propagation and loss calculation of the roi head on the features of the upstream network.""" def predict(self, x: Tuple[Tensor], rpn_results_list: InstanceList, batch_data_samples: SampleList, rescale: bool = False) -> InstanceList: """Perform forward propagation of the roi head and predict detection results on the features of the upstream network. Args: x (tuple[Tensor]): Features from upstream network. Each has shape (N, C, H, W). rpn_results_list (list[:obj:`InstanceData`]): list of region proposals. batch_data_samples (List[:obj:`DetDataSample`]): The Data Samples. It usually includes information such as `gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`. rescale (bool): Whether to rescale the results to the original image. Defaults to True. Returns: list[obj:`InstanceData`]: Detection results of each image. Each item usually contains following keys. - scores (Tensor): Classification scores, has a shape (num_instance, ) - labels (Tensor): Labels of bboxes, has a shape (num_instances, ). - bboxes (Tensor): Has a shape (num_instances, 4), the last dimension 4 arrange as (x1, y1, x2, y2). - masks (Tensor): Has a shape (num_instances, H, W). """ assert self.with_bbox, 'Bbox head must be implemented.' batch_img_metas = [ data_samples.metainfo for data_samples in batch_data_samples ] # TODO: nms_op in mmcv need be enhanced, the bbox result may get # difference when not rescale in bbox_head # If it has the mask branch, the bbox branch does not need # to be scaled to the original image scale, because the mask # branch will scale both bbox and mask at the same time. bbox_rescale = rescale if not self.with_mask else False results_list = self.predict_bbox( x, batch_img_metas, rpn_results_list, rcnn_test_cfg=self.test_cfg, rescale=bbox_rescale) if self.with_mask: results_list = self.predict_mask( x, batch_img_metas, results_list, rescale=rescale) return results_list
# coding=utf-8 # Copyright 2025 The rednote-hilab team and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ...modeling_outputs import CausalLMOutputWithPast from ...processing_utils import Unpack from ...utils import logging from ..deepseek_v3.modeling_deepseek_v3 import ( DeepseekV3DecoderLayer, DeepseekV3MLP, DeepseekV3MoE, DeepseekV3PreTrainedModel, DeepseekV3TopkRouter, ) from ..qwen3.modeling_qwen3 import ( Qwen3Attention, Qwen3ForCausalLM, Qwen3Model, Qwen3RMSNorm, Qwen3RotaryEmbedding, TransformersKwargs, ) from .configuration_dots1 import Dots1Config logger = logging.get_logger(__name__) class Dots1RMSNorm(Qwen3RMSNorm): pass class Dots1RotaryEmbedding(Qwen3RotaryEmbedding): pass class Dots1Attention(Qwen3Attention): pass class Dots1MLP(DeepseekV3MLP): pass class Dots1MoE(DeepseekV3MoE): pass class Dots1TopkRouter(DeepseekV3TopkRouter): pass class Dots1DecoderLayer(DeepseekV3DecoderLayer): def __init__(self, config: Dots1Config, layer_idx: int): super().__init__() self.attention_type = config.layer_types[layer_idx] class Dots1PreTrainedModel(DeepseekV3PreTrainedModel): pass class Dots1Model(Qwen3Model): pass class Dots1ForCausalLM(Qwen3ForCausalLM): def forward( self, **super_kwargs: Unpack[TransformersKwargs], ) -> CausalLMOutputWithPast: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Example: ```python >>> from transformers import AutoTokenizer, Dots1ForCausalLM >>> model = Dots1ForCausalLM.from_pretrained("rednote-hilab/dots1.llm1.inst") >>> tokenizer = AutoTokenizer.from_pretrained("rednote-hilab/dots1.llm1.inst") >>> prompt = "Hey, are you conscious? Can you talk to me?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." ```""" return super().forward(**super_kwargs) __all__ = [ "Dots1PreTrainedModel", "Dots1Model", "Dots1ForCausalLM", ]
# coding=utf-8 # Copyright 2025 The rednote-hilab team and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ...modeling_outputs import CausalLMOutputWithPast from ...processing_utils import Unpack from ...utils import logging from ..deepseek_v3.modeling_deepseek_v3 import ( DeepseekV3DecoderLayer, DeepseekV3MLP, DeepseekV3MoE, DeepseekV3PreTrainedModel, DeepseekV3TopkRouter, ) from ..qwen3.modeling_qwen3 import ( KwargsForCausalLM, Qwen3Attention, Qwen3ForCausalLM, Qwen3Model, Qwen3RMSNorm, Qwen3RotaryEmbedding, ) from .configuration_dots1 import Dots1Config logger = logging.get_logger(__name__) class Dots1RMSNorm(Qwen3RMSNorm): pass class Dots1RotaryEmbedding(Qwen3RotaryEmbedding): pass class Dots1Attention(Qwen3Attention): pass class Dots1MLP(DeepseekV3MLP): pass class Dots1MoE(DeepseekV3MoE): pass class Dots1TopkRouter(DeepseekV3TopkRouter): pass class Dots1DecoderLayer(DeepseekV3DecoderLayer): def __init__(self, config: Dots1Config, layer_idx: int): super().__init__() self.attention_type = config.layer_types[layer_idx] class Dots1PreTrainedModel(DeepseekV3PreTrainedModel): pass class Dots1Model(Qwen3Model): pass class Dots1ForCausalLM(Qwen3ForCausalLM): def forward( self, **super_kwargs: Unpack[KwargsForCausalLM], ) -> CausalLMOutputWithPast: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Example: ```python >>> from transformers import AutoTokenizer, Dots1ForCausalLM >>> model = Dots1ForCausalLM.from_pretrained("rednote-hilab/dots1.llm1.inst") >>> tokenizer = AutoTokenizer.from_pretrained("rednote-hilab/dots1.llm1.inst") >>> prompt = "Hey, are you conscious? Can you talk to me?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." ```""" return super().forward(**super_kwargs) __all__ = [ "Dots1PreTrainedModel", "Dots1Model", "Dots1ForCausalLM", ]
from __future__ import annotations import pytest from sentence_transformers.cross_encoder import CrossEncoder @pytest.mark.parametrize( "model_name, expected_score", [ ("cross-encoder/ms-marco-MiniLM-L6-v2", [8.12545108795166, -3.045016050338745, -3.1524128913879395]), ("cross-encoder/ms-marco-TinyBERT-L2-v2", [8.142767906188965, 1.2057735919952393, -2.7283530235290527]), ("cross-encoder/stsb-distilroberta-base", [0.4977430999279022, 0.255491703748703, 0.28261035680770874]), ("mixedbread-ai/mxbai-rerank-xsmall-v1", [0.9224735498428345, 0.04793589934706688, 0.03315146267414093]), ], ) def test_pretrained_model(model_name: str, expected_score: list[float]) -> None: # Ensure that pretrained models are not accidentally changed model = CrossEncoder(model_name) query = "is toprol xl the same as metoprolol?" answers = [ "Metoprolol succinate is also known by the brand name Toprol XL. It is the extended-release form of metoprolol. Metoprolol succinate is approved to treat high blood pressure, chronic chest pain, and congestive heart failure.", "Pill with imprint 1 is White, Round and has been identified as Metoprolol Tartrate 25 mg.", "Interactions between your drugs No interactions were found between Allergy Relief and metoprolol. This does not necessarily mean no interactions exist. Always consult your healthcare provider.", ] scores = model.predict([(query, answer) for answer in answers]) assert scores.tolist() == pytest.approx(expected_score, rel=1e-4)
from __future__ import annotations import pytest from sentence_transformers.cross_encoder import CrossEncoder @pytest.mark.parametrize( "model_name, expected_score", [ ("cross-encoder/ms-marco-MiniLM-L-6-v2", [8.12545108795166, -3.045016050338745, -3.1524128913879395]), ("cross-encoder/ms-marco-TinyBERT-L-2-v2", [8.142767906188965, 1.2057735919952393, -2.7283530235290527]), ("cross-encoder/stsb-distilroberta-base", [0.4977430999279022, 0.255491703748703, 0.28261035680770874]), ("mixedbread-ai/mxbai-rerank-xsmall-v1", [0.9224735498428345, 0.04793589934706688, 0.03315146267414093]), ], ) def test_pretrained_model(model_name: str, expected_score: list[float]) -> None: # Ensure that pretrained models are not accidentally changed model = CrossEncoder(model_name) query = "is toprol xl the same as metoprolol?" answers = [ "Metoprolol succinate is also known by the brand name Toprol XL. It is the extended-release form of metoprolol. Metoprolol succinate is approved to treat high blood pressure, chronic chest pain, and congestive heart failure.", "Pill with imprint 1 is White, Round and has been identified as Metoprolol Tartrate 25 mg.", "Interactions between your drugs No interactions were found between Allergy Relief and metoprolol. This does not necessarily mean no interactions exist. Always consult your healthcare provider.", ] scores = model.predict([(query, answer) for answer in answers]) assert scores.tolist() == pytest.approx(expected_score, rel=1e-4)
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.optimizers import legacy as legacy from keras.optimizers import schedules as schedules from keras.src.optimizers import deserialize as deserialize from keras.src.optimizers import get as get from keras.src.optimizers import serialize as serialize from keras.src.optimizers.adadelta import Adadelta as Adadelta from keras.src.optimizers.adafactor import Adafactor as Adafactor from keras.src.optimizers.adagrad import Adagrad as Adagrad from keras.src.optimizers.adam import Adam as Adam from keras.src.optimizers.adamax import Adamax as Adamax from keras.src.optimizers.adamw import AdamW as AdamW from keras.src.optimizers.ftrl import Ftrl as Ftrl from keras.src.optimizers.lamb import Lamb as Lamb from keras.src.optimizers.lion import Lion as Lion from keras.src.optimizers.loss_scale_optimizer import ( LossScaleOptimizer as LossScaleOptimizer, ) from keras.src.optimizers.muon import Muon as Muon from keras.src.optimizers.nadam import Nadam as Nadam from keras.src.optimizers.optimizer import Optimizer as Optimizer from keras.src.optimizers.rmsprop import RMSprop as RMSprop from keras.src.optimizers.sgd import SGD as SGD
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.api.optimizers import legacy from keras.api.optimizers import schedules from keras.src.optimizers import deserialize from keras.src.optimizers import get from keras.src.optimizers import serialize from keras.src.optimizers.adadelta import Adadelta from keras.src.optimizers.adafactor import Adafactor from keras.src.optimizers.adagrad import Adagrad from keras.src.optimizers.adam import Adam from keras.src.optimizers.adamax import Adamax from keras.src.optimizers.adamw import AdamW from keras.src.optimizers.ftrl import Ftrl from keras.src.optimizers.lamb import Lamb from keras.src.optimizers.lion import Lion from keras.src.optimizers.loss_scale_optimizer import LossScaleOptimizer from keras.src.optimizers.muon import Muon from keras.src.optimizers.nadam import Nadam from keras.src.optimizers.optimizer import Optimizer from keras.src.optimizers.rmsprop import RMSprop from keras.src.optimizers.sgd import SGD
""" This example starts multiple processes (1 per GPU), which encode sentences in parallel. This gives a near linear speed-up when encoding large text collections. It also demonstrates how to stream data which is helpful in case you don't want to wait for an extremely large dataset to download, or if you want to limit the amount of memory used. More info about dataset streaming: https://huggingface.co/docs/datasets/stream """ import logging from datasets import load_dataset from torch.utils.data import DataLoader from tqdm import tqdm from sentence_transformers import LoggingHandler, SentenceTransformer logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) # Important, you need to shield your code with if __name__. Otherwise, CUDA runs into issues when spawning new processes. if __name__ == "__main__": # Set params data_stream_size = 16384 # Size of the data that is loaded into memory at once chunk_size = 1024 # Size of the chunks that are sent to each process encode_batch_size = 128 # Batch size of the model # Load a large dataset in streaming mode. more info: https://huggingface.co/docs/datasets/stream dataset = load_dataset("yahoo_answers_topics", split="train", streaming=True) dataloader = DataLoader(dataset.with_format("torch"), batch_size=data_stream_size) # Define the model model = SentenceTransformer("all-MiniLM-L6-v2") # Start the multi-process pool on all available CUDA devices pool = model.start_multi_process_pool() for i, batch in enumerate(tqdm(dataloader)): # Compute the embeddings using the multi-process pool sentences = batch["best_answer"] batch_emb = model.encode(sentences, batch_size=encode_batch_size, pool=pool, chunk_size=chunk_size) print("Embeddings computed for 1 batch. Shape:", batch_emb.shape) # Optional: Stop the processes in the pool model.stop_multi_process_pool(pool)
""" This example starts multiple processes (1 per GPU), which encode sentences in parallel. This gives a near linear speed-up when encoding large text collections. It also demonstrates how to stream data which is helpful in case you don't want to wait for an extremely large dataset to download, or if you want to limit the amount of memory used. More info about dataset streaming: https://huggingface.co/docs/datasets/stream """ import logging from datasets import load_dataset from torch.utils.data import DataLoader from tqdm import tqdm from sentence_transformers import LoggingHandler, SentenceTransformer logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) # Important, you need to shield your code with if __name__. Otherwise, CUDA runs into issues when spawning new processes. if __name__ == "__main__": # Set params data_stream_size = 16384 # Size of the data that is loaded into memory at once chunk_size = 1024 # Size of the chunks that are sent to each process encode_batch_size = 128 # Batch size of the model # Load a large dataset in streaming mode. more info: https://huggingface.co/docs/datasets/stream dataset = load_dataset("yahoo_answers_topics", split="train", streaming=True) dataloader = DataLoader(dataset.with_format("torch"), batch_size=data_stream_size) # Define the model model = SentenceTransformer("all-MiniLM-L6-v2") # Start the multi-process pool on all available CUDA devices pool = model.start_multi_process_pool() for i, batch in enumerate(tqdm(dataloader)): # Compute the embeddings using the multi-process pool sentences = batch["best_answer"] batch_emb = model.encode_multi_process(sentences, pool, chunk_size=chunk_size, batch_size=encode_batch_size) print("Embeddings computed for 1 batch. Shape:", batch_emb.shape) # Optional: Stop the processes in the pool model.stop_multi_process_pool(pool)
import numpy as np import pytest import torch from pydantic import parse_obj_as from docarray import BaseDoc from docarray.documents import VideoDoc from docarray.typing import AudioNdArray, NdArray, VideoNdArray from docarray.utils.misc import is_tf_available from tests import TOYDATA_DIR tf_available = is_tf_available() if tf_available: import tensorflow as tf import tensorflow._api.v2.experimental.numpy as tnp LOCAL_VIDEO_FILE = str(TOYDATA_DIR / 'mov_bbb.mp4') REMOTE_VIDEO_FILE = 'https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/mov_bbb.mp4?raw=true' # noqa: E501 @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize('file_url', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE]) def test_video(file_url): vid = VideoDoc(url=file_url) vid.tensor, vid.audio.tensor, vid.key_frame_indices = vid.url.load() assert isinstance(vid.tensor, VideoNdArray) assert isinstance(vid.audio.tensor, AudioNdArray) assert isinstance(vid.key_frame_indices, NdArray) def test_video_np(): video = parse_obj_as(VideoDoc, np.zeros((10, 10, 3))) assert (video.tensor == np.zeros((10, 10, 3))).all() def test_video_torch(): video = parse_obj_as(VideoDoc, torch.zeros(10, 10, 3)) assert (video.tensor == torch.zeros(10, 10, 3)).all() @pytest.mark.tensorflow def test_video_tensorflow(): video = parse_obj_as(VideoDoc, tf.zeros((10, 10, 3))) assert tnp.allclose(video.tensor.tensor, tf.zeros((10, 10, 3))) def test_video_shortcut_doc(): class MyDoc(BaseDoc): video: VideoDoc video2: VideoDoc video3: VideoDoc doc = MyDoc( video='http://myurl.mp4', video2=np.zeros((10, 10, 3)), video3=torch.zeros(10, 10, 3), ) assert doc.video.url == 'http://myurl.mp4' assert (doc.video2.tensor == np.zeros((10, 10, 3))).all() assert (doc.video3.tensor == torch.zeros(10, 10, 3)).all()
import numpy as np import pytest import torch from pydantic import parse_obj_as from docarray import BaseDocument from docarray.documents import VideoDoc from docarray.typing import AudioNdArray, NdArray, VideoNdArray from docarray.utils.misc import is_tf_available from tests import TOYDATA_DIR tf_available = is_tf_available() if tf_available: import tensorflow as tf import tensorflow._api.v2.experimental.numpy as tnp LOCAL_VIDEO_FILE = str(TOYDATA_DIR / 'mov_bbb.mp4') REMOTE_VIDEO_FILE = 'https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/mov_bbb.mp4?raw=true' # noqa: E501 @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize('file_url', [LOCAL_VIDEO_FILE, REMOTE_VIDEO_FILE]) def test_video(file_url): vid = VideoDoc(url=file_url) vid.tensor, vid.audio.tensor, vid.key_frame_indices = vid.url.load() assert isinstance(vid.tensor, VideoNdArray) assert isinstance(vid.audio.tensor, AudioNdArray) assert isinstance(vid.key_frame_indices, NdArray) def test_video_np(): video = parse_obj_as(VideoDoc, np.zeros((10, 10, 3))) assert (video.tensor == np.zeros((10, 10, 3))).all() def test_video_torch(): video = parse_obj_as(VideoDoc, torch.zeros(10, 10, 3)) assert (video.tensor == torch.zeros(10, 10, 3)).all() @pytest.mark.tensorflow def test_video_tensorflow(): video = parse_obj_as(VideoDoc, tf.zeros((10, 10, 3))) assert tnp.allclose(video.tensor.tensor, tf.zeros((10, 10, 3))) def test_video_shortcut_doc(): class MyDoc(BaseDocument): video: VideoDoc video2: VideoDoc video3: VideoDoc doc = MyDoc( video='http://myurl.mp4', video2=np.zeros((10, 10, 3)), video3=torch.zeros(10, 10, 3), ) assert doc.video.url == 'http://myurl.mp4' assert (doc.video2.tensor == np.zeros((10, 10, 3))).all() assert (doc.video3.tensor == torch.zeros(10, 10, 3)).all()
from __future__ import annotations from .BinaryCrossEntropyLoss import BinaryCrossEntropyLoss from .CachedMultipleNegativesRankingLoss import CachedMultipleNegativesRankingLoss from .CrossEntropyLoss import CrossEntropyLoss from .LambdaLoss import ( LambdaLoss, LambdaRankScheme, NDCGLoss1Scheme, NDCGLoss2PPScheme, NDCGLoss2Scheme, NoWeightingScheme, ) from .ListNetLoss import ListNetLoss from .MarginMSELoss import MarginMSELoss from .MSELoss import MSELoss from .MultipleNegativesRankingLoss import MultipleNegativesRankingLoss __all__ = [ "BinaryCrossEntropyLoss", "CrossEntropyLoss", "MultipleNegativesRankingLoss", "CachedMultipleNegativesRankingLoss", "MarginMSELoss", "MSELoss", "ListNetLoss", "LambdaLoss", "NoWeightingScheme", "NDCGLoss1Scheme", "NDCGLoss2Scheme", "LambdaRankScheme", "NDCGLoss2PPScheme", ]
from __future__ import annotations from .BinaryCrossEntropyLoss import BinaryCrossEntropyLoss from .CachedMultipleNegativesRankingLoss import CachedMultipleNegativesRankingLoss from .CrossEntropyLoss import CrossEntropyLoss from .ListNetLoss import ListNetLoss from .MarginMSELoss import MarginMSELoss from .MSELoss import MSELoss from .MultipleNegativesRankingLoss import MultipleNegativesRankingLoss __all__ = [ "BinaryCrossEntropyLoss", "CrossEntropyLoss", "MultipleNegativesRankingLoss", "CachedMultipleNegativesRankingLoss", "MarginMSELoss", "MSELoss", "ListNetLoss", ]
import importlib from typing import Any from langchain.retrievers.document_compressors.base import DocumentCompressorPipeline from langchain.retrievers.document_compressors.chain_extract import ( LLMChainExtractor, ) from langchain.retrievers.document_compressors.chain_filter import ( LLMChainFilter, ) from langchain.retrievers.document_compressors.cohere_rerank import CohereRerank from langchain.retrievers.document_compressors.cross_encoder_rerank import ( CrossEncoderReranker, ) from langchain.retrievers.document_compressors.embeddings_filter import ( EmbeddingsFilter, ) from langchain.retrievers.document_compressors.listwise_rerank import ( LLMListwiseRerank, ) _module_lookup = { "FlashrankRerank": "langchain_community.document_compressors.flashrank_rerank", } def __getattr__(name: str) -> Any: if name in _module_lookup: module = importlib.import_module(_module_lookup[name]) return getattr(module, name) raise AttributeError(f"module {__name__} has no attribute {name}") __all__ = [ "DocumentCompressorPipeline", "EmbeddingsFilter", "FlashrankRerank", "LLMListwiseRerank", "LLMChainExtractor", "LLMChainFilter", "CohereRerank", "CrossEncoderReranker", ]
import importlib from typing import Any from langchain.retrievers.document_compressors.base import DocumentCompressorPipeline from langchain.retrievers.document_compressors.chain_extract import ( LLMChainExtractor, ) from langchain.retrievers.document_compressors.chain_filter import ( LLMChainFilter, ) from langchain.retrievers.document_compressors.cohere_rerank import CohereRerank from langchain.retrievers.document_compressors.cross_encoder_rerank import ( CrossEncoderReranker, ) from langchain.retrievers.document_compressors.embeddings_filter import ( EmbeddingsFilter, ) from langchain.retrievers.document_compressors.listwise_rerank import ( LLMListwiseRerank, ) _module_lookup = { "FlashrankRerank": "langchain_community.document_compressors.flashrank_rerank", } def __getattr__(name: str) -> Any: if name in _module_lookup: module = importlib.import_module(_module_lookup[name]) return getattr(module, name) raise AttributeError(f"module {__name__} has no attribute {name}") __all__ = [ "DocumentCompressorPipeline", "EmbeddingsFilter", "LLMListwiseRerank", "LLMChainExtractor", "LLMChainFilter", "CohereRerank", "CrossEncoderReranker", ] + list(_module_lookup.keys())
import numpy as np import torch from docarray import Document, Image, Text from docarray.typing import ( AnyUrl, Embedding, ImageUrl, NdArray, Tensor, TextUrl, TorchEmbedding, TorchTensor, ) from docarray.typing.tensor import NdArrayEmbedding def test_multi_modal_doc_proto(): class MyMultiModalDoc(Document): image: Image text: Text class MySUperDoc(Document): doc: MyMultiModalDoc description: str doc = MyMultiModalDoc( image=Image(tensor=np.zeros((3, 224, 224))), text=Text(text='hello') ) MyMultiModalDoc.from_protobuf(doc.to_protobuf()) def test_all_types(): class MyDoc(Document): img_url: ImageUrl txt_url: TextUrl any_url: AnyUrl torch_tensor: TorchTensor torch_tensor_param: TorchTensor[224, 224, 3] np_array: NdArray np_array_param: NdArray[224, 224, 3] generic_nd_array: Tensor generic_torch_tensor: Tensor embedding: Embedding torch_embedding: TorchEmbedding[128] np_embedding: NdArrayEmbedding[128] doc = MyDoc( img_url='test.png', txt_url='test.txt', any_url='www.jina.ai', torch_tensor=torch.zeros((3, 224, 224)), torch_tensor_param=torch.zeros((3, 224, 224)), np_array=np.zeros((3, 224, 224)), np_array_param=np.zeros((3, 224, 224)), generic_nd_array=np.zeros((3, 224, 224)), generic_torch_tensor=torch.zeros((3, 224, 224)), embedding=np.zeros((3, 224, 224)), torch_embedding=torch.zeros((128,)), np_embedding=np.zeros((128,)), ) doc = MyDoc.from_protobuf(doc.to_protobuf()) assert doc.img_url == 'test.png' assert doc.txt_url == 'test.txt' assert doc.any_url == 'www.jina.ai' assert (doc.torch_tensor == torch.zeros((3, 224, 224))).all() assert isinstance(doc.torch_tensor, torch.Tensor) assert (doc.torch_tensor_param == torch.zeros((224, 224, 3))).all() assert isinstance(doc.torch_tensor_param, torch.Tensor) assert (doc.np_array == np.zeros((3, 224, 224))).all() assert isinstance(doc.np_array, np.ndarray) assert doc.np_array.flags.writeable assert (doc.np_array_param == np.zeros((224, 224, 3))).all() assert isinstance(doc.np_array_param, np.ndarray) assert (doc.generic_nd_array == np.zeros((3, 224, 224))).all() assert isinstance(doc.generic_nd_array, np.ndarray) assert (doc.generic_torch_tensor == torch.zeros((3, 224, 224))).all() assert isinstance(doc.generic_torch_tensor, torch.Tensor) assert (doc.torch_embedding == torch.zeros((128,))).all() assert isinstance(doc.torch_embedding, torch.Tensor) assert (doc.np_embedding == np.zeros((128,))).all() assert isinstance(doc.np_embedding, np.ndarray) assert (doc.embedding == np.zeros((3, 224, 224))).all()
import numpy as np import torch from docarray import Document, Image, Text from docarray.typing import ( AnyUrl, Embedding, ImageUrl, NdArray, Tensor, TextUrl, TorchEmbedding, TorchTensor, ) from docarray.typing.tensor import NdArrayEmbedding def test_multi_modal_doc_proto(): class MyMultiModalDoc(Document): image: Image text: Text class MySUperDoc(Document): doc: MyMultiModalDoc description: str doc = MyMultiModalDoc( image=Image(tensor=np.zeros((3, 224, 224))), text=Text(text='hello') ) MyMultiModalDoc.from_protobuf(doc.to_protobuf()) def test_all_types(): class MyDoc(Document): img_url: ImageUrl txt_url: TextUrl any_url: AnyUrl torch_tensor: TorchTensor torch_tensor_param: TorchTensor[224, 224, 3] np_array: NdArray np_array_param: NdArray[224, 224, 3] generic_nd_array: Tensor generic_torch_tensor: Tensor embedding: Embedding torch_embedding: TorchEmbedding[128] np_embedding: NdArrayEmbedding[128] doc = MyDoc( img_url='test.png', txt_url='test.txt', any_url='www.jina.ai', torch_tensor=torch.zeros((3, 224, 224)), torch_tensor_param=torch.zeros((3, 224, 224)), np_array=np.zeros((3, 224, 224)), np_array_param=np.zeros((3, 224, 224)), generic_nd_array=np.zeros((3, 224, 224)), generic_torch_tensor=torch.zeros((3, 224, 224)), embedding=np.zeros((3, 224, 224)), torch_embedding=torch.zeros((128,)), np_embedding=np.zeros((128,)), ) doc = MyDoc.from_protobuf(doc.to_protobuf()) assert doc.img_url == 'test.png' assert doc.txt_url == 'test.txt' assert doc.any_url == 'www.jina.ai' assert (doc.torch_tensor == torch.zeros((3, 224, 224))).all() assert isinstance(doc.torch_tensor, torch.Tensor) assert (doc.torch_tensor_param == torch.zeros((224, 224, 3))).all() assert isinstance(doc.torch_tensor_param, torch.Tensor) assert (doc.np_array == np.zeros((3, 224, 224))).all() assert isinstance(doc.np_array, np.ndarray) assert (doc.np_array_param == np.zeros((224, 224, 3))).all() assert isinstance(doc.np_array_param, np.ndarray) assert (doc.generic_nd_array == np.zeros((3, 224, 224))).all() assert isinstance(doc.generic_nd_array, np.ndarray) assert (doc.generic_torch_tensor == torch.zeros((3, 224, 224))).all() assert isinstance(doc.generic_torch_tensor, torch.Tensor) assert (doc.torch_embedding == torch.zeros((128,))).all() assert isinstance(doc.torch_embedding, torch.Tensor) assert (doc.np_embedding == np.zeros((128,))).all() assert isinstance(doc.np_embedding, np.ndarray) assert (doc.embedding == np.zeros((3, 224, 224))).all()
_base_ = [ '../_base_/models/faster_rcnn_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] norm_cfg = dict(type='BN', requires_grad=True) model = dict( backbone=dict(norm_cfg=norm_cfg, norm_eval=False), neck=dict(norm_cfg=norm_cfg), roi_head=dict(bbox_head=dict(norm_cfg=norm_cfg))) dataset_type = 'CocoDataset' data_root = 'data/coco/' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='Resize', img_scale=(640, 640), ratio_range=(0.8, 1.2), keep_ratio=True), dict(type='RandomCrop', crop_size=(640, 640)), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=(640, 640)), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(640, 640), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=64), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=8, workers_per_gpu=4, train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) # learning policy optimizer = dict( type='SGD', lr=0.08, momentum=0.9, weight_decay=0.0001, paramwise_cfg=dict(norm_decay_mult=0, bypass_duplicate=True)) optimizer_config = dict(grad_clip=None) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=1000, warmup_ratio=0.1, step=[30, 40]) # runtime settings runner = dict(max_epochs=50) evaluation = dict(interval=2) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (8 samples per GPU) auto_scale_lr = dict(base_batch_size=64)
_base_ = [ '../_base_/models/faster_rcnn_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] norm_cfg = dict(type='BN', requires_grad=True) model = dict( backbone=dict(norm_cfg=norm_cfg, norm_eval=False), neck=dict(norm_cfg=norm_cfg), roi_head=dict(bbox_head=dict(norm_cfg=norm_cfg))) dataset_type = 'CocoDataset' data_root = 'data/coco/' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='Resize', img_scale=(640, 640), ratio_range=(0.8, 1.2), keep_ratio=True), dict(type='RandomCrop', crop_size=(640, 640)), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=(640, 640)), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(640, 640), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=64), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=8, workers_per_gpu=4, train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) # learning policy optimizer = dict( type='SGD', lr=0.08, momentum=0.9, weight_decay=0.0001, paramwise_cfg=dict(norm_decay_mult=0, bypass_duplicate=True)) optimizer_config = dict(grad_clip=None) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=1000, warmup_ratio=0.1, step=[30, 40]) # runtime settings runner = dict(max_epochs=50) evaluation = dict(interval=2)
import numpy as np import pytest from fastapi import FastAPI from httpx import AsyncClient from docarray import BaseDocument from docarray.documents import Image, Text from docarray.typing import NdArray @pytest.mark.asyncio async def test_fast_api(): class Mmdoc(BaseDocument): img: Image text: Text title: str input_doc = Mmdoc( img=Image(tensor=np.zeros((3, 224, 224))), text=Text(), title='hello' ) app = FastAPI() @app.post("/doc/") async def create_item(doc: Mmdoc): return doc async with AsyncClient(app=app, base_url="http://test") as ac: response = await ac.post("/doc/", data=input_doc.json()) resp_doc = await ac.get("/docs") resp_redoc = await ac.get("/redoc") assert response.status_code == 200 assert resp_doc.status_code == 200 assert resp_redoc.status_code == 200 @pytest.mark.asyncio async def test_image(): class InputDoc(BaseDocument): img: Image class OutputDoc(BaseDocument): embedding_clip: NdArray embedding_bert: NdArray input_doc = InputDoc(img=Image(tensor=np.zeros((3, 224, 224)))) app = FastAPI() @app.post("/doc/", response_model=OutputDoc) async def create_item(doc: InputDoc) -> OutputDoc: ## call my fancy model to generate the embeddings return OutputDoc( embedding_clip=np.zeros((100, 1)), embedding_bert=np.zeros((100, 1)) ) async with AsyncClient(app=app, base_url="http://test") as ac: response = await ac.post("/doc/", data=input_doc.json()) resp_doc = await ac.get("/docs") resp_redoc = await ac.get("/redoc") assert response.status_code == 200 assert resp_doc.status_code == 200 assert resp_redoc.status_code == 200 @pytest.mark.asyncio async def test_sentence_to_embeddings(): class InputDoc(BaseDocument): text: str class OutputDoc(BaseDocument): embedding_clip: NdArray embedding_bert: NdArray input_doc = InputDoc(text='hello') app = FastAPI() @app.post("/doc/", response_model=OutputDoc) async def create_item(doc: InputDoc) -> OutputDoc: ## call my fancy model to generate the embeddings return OutputDoc( embedding_clip=np.zeros((100, 1)), embedding_bert=np.zeros((100, 1)) ) async with AsyncClient(app=app, base_url="http://test") as ac: response = await ac.post("/doc/", data=input_doc.json()) resp_doc = await ac.get("/docs") resp_redoc = await ac.get("/redoc") assert response.status_code == 200 assert resp_doc.status_code == 200 assert resp_redoc.status_code == 200
import numpy as np import pytest from fastapi import FastAPI from httpx import AsyncClient from docarray import BaseDocument, Image, Text from docarray.typing import NdArray @pytest.mark.asyncio async def test_fast_api(): class Mmdoc(BaseDocument): img: Image text: Text title: str input_doc = Mmdoc( img=Image(tensor=np.zeros((3, 224, 224))), text=Text(), title='hello' ) app = FastAPI() @app.post("/doc/") async def create_item(doc: Mmdoc): return doc async with AsyncClient(app=app, base_url="http://test") as ac: response = await ac.post("/doc/", data=input_doc.json()) resp_doc = await ac.get("/docs") resp_redoc = await ac.get("/redoc") assert response.status_code == 200 assert resp_doc.status_code == 200 assert resp_redoc.status_code == 200 @pytest.mark.asyncio async def test_image(): class InputDoc(BaseDocument): img: Image class OutputDoc(BaseDocument): embedding_clip: NdArray embedding_bert: NdArray input_doc = InputDoc(img=Image(tensor=np.zeros((3, 224, 224)))) app = FastAPI() @app.post("/doc/", response_model=OutputDoc) async def create_item(doc: InputDoc) -> OutputDoc: ## call my fancy model to generate the embeddings return OutputDoc( embedding_clip=np.zeros((100, 1)), embedding_bert=np.zeros((100, 1)) ) async with AsyncClient(app=app, base_url="http://test") as ac: response = await ac.post("/doc/", data=input_doc.json()) resp_doc = await ac.get("/docs") resp_redoc = await ac.get("/redoc") assert response.status_code == 200 assert resp_doc.status_code == 200 assert resp_redoc.status_code == 200 @pytest.mark.asyncio async def test_sentence_to_embeddings(): class InputDoc(BaseDocument): text: str class OutputDoc(BaseDocument): embedding_clip: NdArray embedding_bert: NdArray input_doc = InputDoc(text='hello') app = FastAPI() @app.post("/doc/", response_model=OutputDoc) async def create_item(doc: InputDoc) -> OutputDoc: ## call my fancy model to generate the embeddings return OutputDoc( embedding_clip=np.zeros((100, 1)), embedding_bert=np.zeros((100, 1)) ) async with AsyncClient(app=app, base_url="http://test") as ac: response = await ac.post("/doc/", data=input_doc.json()) resp_doc = await ac.get("/docs") resp_redoc = await ac.get("/redoc") assert response.status_code == 200 assert resp_doc.status_code == 200 assert resp_redoc.status_code == 200
_base_ = './atss_r50_fpn_8xb8-amp-lsj-200e_coco.py' model = dict( backbone=dict( depth=101, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')))
_base_ = './atss_r50_fpn_lsj_200e_8x8_fp16_coco.py' model = dict( backbone=dict( depth=101, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')))
_base_ = '../_base_/default_runtime.py' # dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' # file_client_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) file_client_args = dict(backend='disk') # In mstrain 3x config, img_scale=[(1333, 640), (1333, 800)], # multiscale_mode='range' train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict( type='LoadAnnotations', with_bbox=True, with_mask=True, poly2mask=False), dict(type='RandomResize', img_scale=[(1333, 640), (1333, 800)]), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs'), ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), batch_sampler=dict(type='AspectRatioBatchSampler'), dataset=dict( type='RepeatDataset', times=3, dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_train2017.json', data_prefix=dict(img='train2017/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline))) val_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_val2017.json', data_prefix=dict(img='val2017/'), test_mode=True, pipeline=test_pipeline)) test_dataloader = val_dataloader val_evaluator = dict( type='CocoMetric', ann_file=data_root + 'annotations/instances_val2017.json', metric='bbox') test_evaluator = val_evaluator # training schedule for 3x with `RepeatDataset` train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=12, val_interval=1) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop') # learning rate # Experiments show that using milestones=[9, 11] has higher performance param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=12, by_epoch=True, milestones=[9, 11], gamma=0.1) ] # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001))
_base_ = '../_base_/default_runtime.py' # dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' # file_client_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) file_client_args = dict(backend='disk') # In mstrain 3x config, img_scale=[(1333, 640), (1333, 800)], # multiscale_mode='range' train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict( type='LoadAnnotations', with_bbox=True, with_mask=True, poly2mask=False), dict(type='RandomResize', img_scale=[(1333, 640), (1333, 800)]), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs'), ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), batch_sampler=dict(type='AspectRatioBatchSampler'), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_train2017.json', data_prefix=dict(img='train2017/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline)) val_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_val2017.json', data_prefix=dict(img='val2017/'), test_mode=True, pipeline=test_pipeline)) test_dataloader = val_dataloader val_evaluator = dict( type='CocoMetric', ann_file=data_root + 'annotations/instances_val2017.json', metric='bbox') test_evaluator = val_evaluator # TODO: use repeat dataset wrapper # training schedule for 3x train_cfg = dict(by_epoch=True, max_epochs=36) val_cfg = dict(interval=3) test_cfg = dict() # learning rate # Experiments show that using milestones=[27, 33] has higher performance param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=36, by_epoch=True, milestones=[27, 33], gamma=0.1) ] # optimizer optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
"""Document transformers.""" from __future__ import annotations from abc import ABC, abstractmethod from typing import TYPE_CHECKING, Any from langchain_core.runnables.config import run_in_executor if TYPE_CHECKING: from collections.abc import Sequence from langchain_core.documents import Document class BaseDocumentTransformer(ABC): """Abstract base class for document transformation. A document transformation takes a sequence of Documents and returns a sequence of transformed Documents. Example: .. code-block:: python class EmbeddingsRedundantFilter(BaseDocumentTransformer, BaseModel): embeddings: Embeddings similarity_fn: Callable = cosine_similarity similarity_threshold: float = 0.95 class Config: arbitrary_types_allowed = True def transform_documents( self, documents: Sequence[Document], **kwargs: Any ) -> Sequence[Document]: stateful_documents = get_stateful_documents(documents) embedded_documents = _get_embeddings_from_stateful_docs( self.embeddings, stateful_documents ) included_idxs = _filter_similar_embeddings( embedded_documents, self.similarity_fn, self.similarity_threshold ) return [stateful_documents[i] for i in sorted(included_idxs)] async def atransform_documents( self, documents: Sequence[Document], **kwargs: Any ) -> Sequence[Document]: raise NotImplementedError """ # noqa: E501 @abstractmethod def transform_documents( self, documents: Sequence[Document], **kwargs: Any ) -> Sequence[Document]: """Transform a list of documents. Args: documents: A sequence of Documents to be transformed. Returns: A sequence of transformed Documents. """ async def atransform_documents( self, documents: Sequence[Document], **kwargs: Any ) -> Sequence[Document]: """Asynchronously transform a list of documents. Args: documents: A sequence of Documents to be transformed. Returns: A sequence of transformed Documents. """ return await run_in_executor( None, self.transform_documents, documents, **kwargs )
from __future__ import annotations from abc import ABC, abstractmethod from typing import TYPE_CHECKING, Any from langchain_core.runnables.config import run_in_executor if TYPE_CHECKING: from collections.abc import Sequence from langchain_core.documents import Document class BaseDocumentTransformer(ABC): """Abstract base class for document transformation. A document transformation takes a sequence of Documents and returns a sequence of transformed Documents. Example: .. code-block:: python class EmbeddingsRedundantFilter(BaseDocumentTransformer, BaseModel): embeddings: Embeddings similarity_fn: Callable = cosine_similarity similarity_threshold: float = 0.95 class Config: arbitrary_types_allowed = True def transform_documents( self, documents: Sequence[Document], **kwargs: Any ) -> Sequence[Document]: stateful_documents = get_stateful_documents(documents) embedded_documents = _get_embeddings_from_stateful_docs( self.embeddings, stateful_documents ) included_idxs = _filter_similar_embeddings( embedded_documents, self.similarity_fn, self.similarity_threshold ) return [stateful_documents[i] for i in sorted(included_idxs)] async def atransform_documents( self, documents: Sequence[Document], **kwargs: Any ) -> Sequence[Document]: raise NotImplementedError """ # noqa: E501 @abstractmethod def transform_documents( self, documents: Sequence[Document], **kwargs: Any ) -> Sequence[Document]: """Transform a list of documents. Args: documents: A sequence of Documents to be transformed. Returns: A sequence of transformed Documents. """ async def atransform_documents( self, documents: Sequence[Document], **kwargs: Any ) -> Sequence[Document]: """Asynchronously transform a list of documents. Args: documents: A sequence of Documents to be transformed. Returns: A sequence of transformed Documents. """ return await run_in_executor( None, self.transform_documents, documents, **kwargs )
from keras.src.api_export import keras_export # Unique source of truth for the version number. __version__ = "3.8.0" @keras_export("keras.version") def version(): return __version__
from keras.src.api_export import keras_export # Unique source of truth for the version number. __version__ = "3.7.0" @keras_export("keras.version") def version(): return __version__
""" This examples demonstrates the setup for Question-Answer-Retrieval. You can input a query or a question. The script then uses semantic search to find relevant passages in Simple English Wikipedia (as it is smaller and fits better in RAM). As model, we use: nq-distilbert-base-v1 It was trained on the Natural Questions dataset, a dataset with real questions from Google Search together with annotated data from Wikipedia providing the answer. For the passages, we encode the Wikipedia article tile together with the individual text passages. Google Colab Example: https://colab.research.google.com/drive/11GunvCqJuebfeTlgbJWkIMT0xJH6PWF1?usp=sharing """ import gzip import json import os import time import torch from sentence_transformers import SentenceTransformer, util # We use the Bi-Encoder to encode all passages, so that we can use it with semantic search model_name = "nq-distilbert-base-v1" bi_encoder = SentenceTransformer(model_name) top_k = 5 # Number of passages we want to retrieve with the bi-encoder # As dataset, we use Simple English Wikipedia. Compared to the full English wikipedia, it has only # about 170k articles. We split these articles into paragraphs and encode them with the bi-encoder wikipedia_filepath = "data/simplewiki-2020-11-01.jsonl.gz" if not os.path.exists(wikipedia_filepath): util.http_get("http://sbert.net/datasets/simplewiki-2020-11-01.jsonl.gz", wikipedia_filepath) passages = [] with gzip.open(wikipedia_filepath, "rt", encoding="utf8") as fIn: for line in fIn: data = json.loads(line.strip()) for paragraph in data["paragraphs"]: # We encode the passages as [title, text] passages.append([data["title"], paragraph]) # If you like, you can also limit the number of passages you want to use print("Passages:", len(passages)) # To speed things up, pre-computed embeddings are downloaded. # The provided file encoded the passages with the model 'nq-distilbert-base-v1' if model_name == "nq-distilbert-base-v1": embeddings_filepath = "simplewiki-2020-11-01-nq-distilbert-base-v1.pt" if not os.path.exists(embeddings_filepath): util.http_get("http://sbert.net/datasets/simplewiki-2020-11-01-nq-distilbert-base-v1.pt", embeddings_filepath) corpus_embeddings = torch.load(embeddings_filepath) corpus_embeddings = corpus_embeddings.float() # Convert embedding file to float device = util.get_device_name() corpus_embeddings = corpus_embeddings.to(device) else: # Here, we compute the corpus_embeddings from scratch (which can take a while depending on the GPU) corpus_embeddings = bi_encoder.encode(passages, convert_to_tensor=True, show_progress_bar=True) while True: query = input("Please enter a question: ") # Encode the query using the bi-encoder and find potentially relevant passages start_time = time.time() question_embedding = bi_encoder.encode(query, convert_to_tensor=True) hits = util.semantic_search(question_embedding, corpus_embeddings, top_k=top_k) hits = hits[0] # Get the hits for the first query end_time = time.time() # Output of top-k hits print("Input question:", query) print("Results (after {:.3f} seconds):".format(end_time - start_time)) for hit in hits: print("\t{:.3f}\t{}".format(hit["score"], passages[hit["corpus_id"]])) print("\n\n========\n")
""" This examples demonstrates the setup for Question-Answer-Retrieval. You can input a query or a question. The script then uses semantic search to find relevant passages in Simple English Wikipedia (as it is smaller and fits better in RAM). As model, we use: nq-distilbert-base-v1 It was trained on the Natural Questions dataset, a dataset with real questions from Google Search together with annotated data from Wikipedia providing the answer. For the passages, we encode the Wikipedia article tile together with the individual text passages. Google Colab Example: https://colab.research.google.com/drive/11GunvCqJuebfeTlgbJWkIMT0xJH6PWF1?usp=sharing """ import json from sentence_transformers import SentenceTransformer, util import time import gzip import os import torch # We use the Bi-Encoder to encode all passages, so that we can use it with sematic search model_name = 'nq-distilbert-base-v1' bi_encoder = SentenceTransformer(model_name) top_k = 5 # Number of passages we want to retrieve with the bi-encoder # As dataset, we use Simple English Wikipedia. Compared to the full English wikipedia, it has only # about 170k articles. We split these articles into paragraphs and encode them with the bi-encoder wikipedia_filepath = 'data/simplewiki-2020-11-01.jsonl.gz' if not os.path.exists(wikipedia_filepath): util.http_get('http://sbert.net/datasets/simplewiki-2020-11-01.jsonl.gz', wikipedia_filepath) passages = [] with gzip.open(wikipedia_filepath, 'rt', encoding='utf8') as fIn: for line in fIn: data = json.loads(line.strip()) for paragraph in data['paragraphs']: # We encode the passages as [title, text] passages.append([data['title'], paragraph]) # If you like, you can also limit the number of passages you want to use print("Passages:", len(passages)) # To speed things up, pre-computed embeddings are downloaded. # The provided file encoded the passages with the model 'nq-distilbert-base-v1' if model_name == 'nq-distilbert-base-v1': embeddings_filepath = 'simplewiki-2020-11-01-nq-distilbert-base-v1.pt' if not os.path.exists(embeddings_filepath): util.http_get('http://sbert.net/datasets/simplewiki-2020-11-01-nq-distilbert-base-v1.pt', embeddings_filepath) corpus_embeddings = torch.load(embeddings_filepath) corpus_embeddings = corpus_embeddings.float() # Convert embedding file to float if torch.cuda.is_available(): corpus_embeddings = corpus_embeddings.to('cuda') else: # Here, we compute the corpus_embeddings from scratch (which can take a while depending on the GPU) corpus_embeddings = bi_encoder.encode(passages, convert_to_tensor=True, show_progress_bar=True) while True: query = input("Please enter a question: ") # Encode the query using the bi-encoder and find potentially relevant passages start_time = time.time() question_embedding = bi_encoder.encode(query, convert_to_tensor=True) hits = util.semantic_search(question_embedding, corpus_embeddings, top_k=top_k) hits = hits[0] # Get the hits for the first query end_time = time.time() # Output of top-k hits print("Input question:", query) print("Results (after {:.3f} seconds):".format(end_time - start_time)) for hit in hits: print("\t{:.3f}\t{}".format(hit['score'], passages[hit['corpus_id']])) print("\n\n========\n")
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.registry import MODELS from mmdet.utils import ConfigType, OptConfigType, OptMultiConfig from .single_stage import SingleStageDetector @MODELS.register_module() class ATSS(SingleStageDetector): """Implementation of `ATSS <https://arxiv.org/abs/1912.02424>`_ Args: backbone (:obj:`ConfigDict` or dict): The backbone module. neck (:obj:`ConfigDict` or dict): The neck module. bbox_head (:obj:`ConfigDict` or dict): The bbox head module. train_cfg (:obj:`ConfigDict` or dict, optional): The training config of ATSS. Defaults to None. test_cfg (:obj:`ConfigDict` or dict, optional): The testing config of ATSS. Defaults to None. data_preprocessor (:obj:`ConfigDict` or dict, optional): Config of :class:`DetDataPreprocessor` to process the input data. Defaults to None. init_cfg (:obj:`ConfigDict` or dict, optional): the config to control the initialization. Defaults to None. """ def __init__(self, backbone: ConfigType, neck: ConfigType, bbox_head: ConfigType, train_cfg: OptConfigType = None, test_cfg: OptConfigType = None, data_preprocessor: OptConfigType = None, init_cfg: OptMultiConfig = None) -> None: super().__init__( backbone=backbone, neck=neck, bbox_head=bbox_head, train_cfg=train_cfg, test_cfg=test_cfg, data_preprocessor=data_preprocessor, init_cfg=init_cfg)
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.core import ConfigType, OptConfigType, OptMultiConfig from mmdet.registry import MODELS from .single_stage import SingleStageDetector @MODELS.register_module() class ATSS(SingleStageDetector): """Implementation of `ATSS <https://arxiv.org/abs/1912.02424>`_ Args: backbone (:obj:`ConfigDict` or dict): The backbone module. neck (:obj:`ConfigDict` or dict): The neck module. bbox_head (:obj:`ConfigDict` or dict): The bbox head module. train_cfg (:obj:`ConfigDict` or dict, optional): The training config of ATSS. Defaults to None. test_cfg (:obj:`ConfigDict` or dict, optional): The testing config of ATSS. Defaults to None. data_preprocessor (:obj:`ConfigDict` or dict, optional): Config of :class:`DetDataPreprocessor` to process the input data. Defaults to None. init_cfg (:obj:`ConfigDict` or dict, optional): the config to control the initialization. Defaults to None. """ def __init__(self, backbone: ConfigType, neck: ConfigType, bbox_head: ConfigType, train_cfg: OptConfigType = None, test_cfg: OptConfigType = None, data_preprocessor: OptConfigType = None, init_cfg: OptMultiConfig = None) -> None: super().__init__( backbone=backbone, neck=neck, bbox_head=bbox_head, train_cfg=train_cfg, test_cfg=test_cfg, data_preprocessor=data_preprocessor, init_cfg=init_cfg)
"""Module to change the configuration of libsox, which is used by I/O functions like :py:mod:`~torchaudio.backend.sox_io_backend` and :py:mod:`~torchaudio.sox_effects`. """ from typing import Dict, List import torch import torchaudio @torchaudio._extension.fail_if_no_sox def set_seed(seed: int): """Set libsox's PRNG Args: seed (int): seed value. valid range is int32. See Also: http://sox.sourceforge.net/sox.html """ torch.ops.torchaudio.sox_utils_set_seed(seed) @torchaudio._extension.fail_if_no_sox def set_verbosity(verbosity: int): """Set libsox's verbosity Args: verbosity (int): Set verbosity level of libsox. * ``1`` failure messages * ``2`` warnings * ``3`` details of processing * ``4``-``6`` increasing levels of debug messages See Also: http://sox.sourceforge.net/sox.html """ torch.ops.torchaudio.sox_utils_set_verbosity(verbosity) @torchaudio._extension.fail_if_no_sox def set_buffer_size(buffer_size: int): """Set buffer size for sox effect chain Args: buffer_size (int): Set the size in bytes of the buffers used for processing audio. See Also: http://sox.sourceforge.net/sox.html """ torch.ops.torchaudio.sox_utils_set_buffer_size(buffer_size) @torchaudio._extension.fail_if_no_sox def set_use_threads(use_threads: bool): """Set multithread option for sox effect chain Args: use_threads (bool): When ``True``, enables ``libsox``'s parallel effects channels processing. To use mutlithread, the underlying ``libsox`` has to be compiled with OpenMP support. See Also: http://sox.sourceforge.net/sox.html """ torch.ops.torchaudio.sox_utils_set_use_threads(use_threads) @torchaudio._extension.fail_if_no_sox def list_effects() -> Dict[str, str]: """List the available sox effect names Returns: Dict[str, str]: Mapping from ``effect name`` to ``usage`` """ return dict(torch.ops.torchaudio.sox_utils_list_effects()) @torchaudio._extension.fail_if_no_sox def list_read_formats() -> List[str]: """List the supported audio formats for read Returns: List[str]: List of supported audio formats """ return torch.ops.torchaudio.sox_utils_list_read_formats() @torchaudio._extension.fail_if_no_sox def list_write_formats() -> List[str]: """List the supported audio formats for write Returns: List[str]: List of supported audio formats """ return torch.ops.torchaudio.sox_utils_list_write_formats() @torchaudio._extension.fail_if_no_sox def get_buffer_size() -> int: """Get buffer size for sox effect chain Returns: int: size in bytes of buffers used for processing audio. """ return torch.ops.torchaudio.sox_utils_get_buffer_size()
"""Module to change the configuration of libsox, which is used by I/O functions like :py:mod:`~torchaudio.backend.sox_io_backend` and :py:mod:`~torchaudio.sox_effects`. """ from typing import Dict, List import torch from torchaudio._internal import module_utils as _mod_utils @_mod_utils.requires_sox() def set_seed(seed: int): """Set libsox's PRNG Args: seed (int): seed value. valid range is int32. See Also: http://sox.sourceforge.net/sox.html """ torch.ops.torchaudio.sox_utils_set_seed(seed) @_mod_utils.requires_sox() def set_verbosity(verbosity: int): """Set libsox's verbosity Args: verbosity (int): Set verbosity level of libsox. * ``1`` failure messages * ``2`` warnings * ``3`` details of processing * ``4``-``6`` increasing levels of debug messages See Also: http://sox.sourceforge.net/sox.html """ torch.ops.torchaudio.sox_utils_set_verbosity(verbosity) @_mod_utils.requires_sox() def set_buffer_size(buffer_size: int): """Set buffer size for sox effect chain Args: buffer_size (int): Set the size in bytes of the buffers used for processing audio. See Also: http://sox.sourceforge.net/sox.html """ torch.ops.torchaudio.sox_utils_set_buffer_size(buffer_size) @_mod_utils.requires_sox() def set_use_threads(use_threads: bool): """Set multithread option for sox effect chain Args: use_threads (bool): When ``True``, enables ``libsox``'s parallel effects channels processing. To use mutlithread, the underlying ``libsox`` has to be compiled with OpenMP support. See Also: http://sox.sourceforge.net/sox.html """ torch.ops.torchaudio.sox_utils_set_use_threads(use_threads) @_mod_utils.requires_sox() def list_effects() -> Dict[str, str]: """List the available sox effect names Returns: Dict[str, str]: Mapping from ``effect name`` to ``usage`` """ return dict(torch.ops.torchaudio.sox_utils_list_effects()) @_mod_utils.requires_sox() def list_read_formats() -> List[str]: """List the supported audio formats for read Returns: List[str]: List of supported audio formats """ return torch.ops.torchaudio.sox_utils_list_read_formats() @_mod_utils.requires_sox() def list_write_formats() -> List[str]: """List the supported audio formats for write Returns: List[str]: List of supported audio formats """ return torch.ops.torchaudio.sox_utils_list_write_formats() @_mod_utils.requires_sox() def get_buffer_size() -> int: """Get buffer size for sox effect chain Returns: int: size in bytes of buffers used for processing audio. """ return torch.ops.torchaudio.sox_utils_get_buffer_size()
import torch __all__ = ["DeepSpeech"] class FullyConnected(torch.nn.Module): """ Args: n_feature: Number of input features n_hidden: Internal hidden unit size. """ def __init__(self, n_feature: int, n_hidden: int, dropout: float, relu_max_clip: int = 20) -> None: super(FullyConnected, self).__init__() self.fc = torch.nn.Linear(n_feature, n_hidden, bias=True) self.relu_max_clip = relu_max_clip self.dropout = dropout def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.fc(x) x = torch.nn.functional.relu(x) x = torch.nn.functional.hardtanh(x, 0, self.relu_max_clip) if self.dropout: x = torch.nn.functional.dropout(x, self.dropout, self.training) return x class DeepSpeech(torch.nn.Module): """ DeepSpeech model architecture from *Deep Speech: Scaling up end-to-end speech recognition* :cite:`hannun2014deep`. Args: n_feature: Number of input features n_hidden: Internal hidden unit size. n_class: Number of output classes """ def __init__( self, n_feature: int, n_hidden: int = 2048, n_class: int = 40, dropout: float = 0.0, ) -> None: super(DeepSpeech, self).__init__() self.n_hidden = n_hidden self.fc1 = FullyConnected(n_feature, n_hidden, dropout) self.fc2 = FullyConnected(n_hidden, n_hidden, dropout) self.fc3 = FullyConnected(n_hidden, n_hidden, dropout) self.bi_rnn = torch.nn.RNN(n_hidden, n_hidden, num_layers=1, nonlinearity="relu", bidirectional=True) self.fc4 = FullyConnected(n_hidden, n_hidden, dropout) self.out = torch.nn.Linear(n_hidden, n_class) def forward(self, x: torch.Tensor) -> torch.Tensor: """ Args: x (torch.Tensor): Tensor of dimension (batch, channel, time, feature). Returns: Tensor: Predictor tensor of dimension (batch, time, class). """ # N x C x T x F x = self.fc1(x) # N x C x T x H x = self.fc2(x) # N x C x T x H x = self.fc3(x) # N x C x T x H x = x.squeeze(1) # N x T x H x = x.transpose(0, 1) # T x N x H x, _ = self.bi_rnn(x) # The fifth (non-recurrent) layer takes both the forward and backward units as inputs x = x[:, :, : self.n_hidden] + x[:, :, self.n_hidden :] # T x N x H x = self.fc4(x) # T x N x H x = self.out(x) # T x N x n_class x = x.permute(1, 0, 2) # N x T x n_class x = torch.nn.functional.log_softmax(x, dim=2) # N x T x n_class return x
import torch __all__ = ["DeepSpeech"] class FullyConnected(torch.nn.Module): """ Args: n_feature: Number of input features n_hidden: Internal hidden unit size. """ def __init__(self, n_feature: int, n_hidden: int, dropout: float, relu_max_clip: int = 20) -> None: super(FullyConnected, self).__init__() self.fc = torch.nn.Linear(n_feature, n_hidden, bias=True) self.relu_max_clip = relu_max_clip self.dropout = dropout def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.fc(x) x = torch.nn.functional.relu(x) x = torch.nn.functional.hardtanh(x, 0, self.relu_max_clip) if self.dropout: x = torch.nn.functional.dropout(x, self.dropout, self.training) return x class DeepSpeech(torch.nn.Module): """ DeepSpeech model architecture from *Deep Speech: Scaling up end-to-end speech recognition* [:footcite:`hannun2014deep`]. Args: n_feature: Number of input features n_hidden: Internal hidden unit size. n_class: Number of output classes """ def __init__( self, n_feature: int, n_hidden: int = 2048, n_class: int = 40, dropout: float = 0.0, ) -> None: super(DeepSpeech, self).__init__() self.n_hidden = n_hidden self.fc1 = FullyConnected(n_feature, n_hidden, dropout) self.fc2 = FullyConnected(n_hidden, n_hidden, dropout) self.fc3 = FullyConnected(n_hidden, n_hidden, dropout) self.bi_rnn = torch.nn.RNN(n_hidden, n_hidden, num_layers=1, nonlinearity="relu", bidirectional=True) self.fc4 = FullyConnected(n_hidden, n_hidden, dropout) self.out = torch.nn.Linear(n_hidden, n_class) def forward(self, x: torch.Tensor) -> torch.Tensor: """ Args: x (torch.Tensor): Tensor of dimension (batch, channel, time, feature). Returns: Tensor: Predictor tensor of dimension (batch, time, class). """ # N x C x T x F x = self.fc1(x) # N x C x T x H x = self.fc2(x) # N x C x T x H x = self.fc3(x) # N x C x T x H x = x.squeeze(1) # N x T x H x = x.transpose(0, 1) # T x N x H x, _ = self.bi_rnn(x) # The fifth (non-recurrent) layer takes both the forward and backward units as inputs x = x[:, :, : self.n_hidden] + x[:, :, self.n_hidden :] # T x N x H x = self.fc4(x) # T x N x H x = self.out(x) # T x N x n_class x = x.permute(1, 0, 2) # N x T x n_class x = torch.nn.functional.log_softmax(x, dim=2) # N x T x n_class return x
from docarray.typing.tensor.embedding import Embedding, NdArrayEmbedding, TorchEmbedding from docarray.typing.tensor.ndarray import NdArray from docarray.typing.tensor.tensor import Tensor from docarray.typing.tensor.torch_tensor import TorchTensor __all__ = [ 'NdArray', 'TorchTensor', 'Tensor', 'Embedding', 'TorchEmbedding', 'NdArrayEmbedding', ]
from docarray.typing.tensor.ndarray import NdArray from docarray.typing.tensor.tensor import Tensor from docarray.typing.tensor.torch_tensor import TorchTensor __all__ = ['NdArray', 'TorchTensor', 'Tensor']
from .normalizer import ImageNormalizer
from .normalizer import ImageNormalizer
# Copyright 2025 Black Forest Labs, The HuggingFace Team and The InstantX Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List from ..utils import deprecate, logging from .controlnets.controlnet_flux import FluxControlNetModel, FluxControlNetOutput, FluxMultiControlNetModel logger = logging.get_logger(__name__) # pylint: disable=invalid-name class FluxControlNetOutput(FluxControlNetOutput): def __init__(self, *args, **kwargs): deprecation_message = "Importing `FluxControlNetOutput` from `diffusers.models.controlnet_flux` is deprecated and this will be removed in a future version. Please use `from diffusers.models.controlnets.controlnet_flux import FluxControlNetOutput`, instead." deprecate("diffusers.models.controlnet_flux.FluxControlNetOutput", "0.34", deprecation_message) super().__init__(*args, **kwargs) class FluxControlNetModel(FluxControlNetModel): def __init__( self, patch_size: int = 1, in_channels: int = 64, num_layers: int = 19, num_single_layers: int = 38, attention_head_dim: int = 128, num_attention_heads: int = 24, joint_attention_dim: int = 4096, pooled_projection_dim: int = 768, guidance_embeds: bool = False, axes_dims_rope: List[int] = [16, 56, 56], num_mode: int = None, conditioning_embedding_channels: int = None, ): deprecation_message = "Importing `FluxControlNetModel` from `diffusers.models.controlnet_flux` is deprecated and this will be removed in a future version. Please use `from diffusers.models.controlnets.controlnet_flux import FluxControlNetModel`, instead." deprecate("diffusers.models.controlnet_flux.FluxControlNetModel", "0.34", deprecation_message) super().__init__( patch_size=patch_size, in_channels=in_channels, num_layers=num_layers, num_single_layers=num_single_layers, attention_head_dim=attention_head_dim, num_attention_heads=num_attention_heads, joint_attention_dim=joint_attention_dim, pooled_projection_dim=pooled_projection_dim, guidance_embeds=guidance_embeds, axes_dims_rope=axes_dims_rope, num_mode=num_mode, conditioning_embedding_channels=conditioning_embedding_channels, ) class FluxMultiControlNetModel(FluxMultiControlNetModel): def __init__(self, *args, **kwargs): deprecation_message = "Importing `FluxMultiControlNetModel` from `diffusers.models.controlnet_flux` is deprecated and this will be removed in a future version. Please use `from diffusers.models.controlnets.controlnet_flux import FluxMultiControlNetModel`, instead." deprecate("diffusers.models.controlnet_flux.FluxMultiControlNetModel", "0.34", deprecation_message) super().__init__(*args, **kwargs)
# Copyright 2024 Black Forest Labs, The HuggingFace Team and The InstantX Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List from ..utils import deprecate, logging from .controlnets.controlnet_flux import FluxControlNetModel, FluxControlNetOutput, FluxMultiControlNetModel logger = logging.get_logger(__name__) # pylint: disable=invalid-name class FluxControlNetOutput(FluxControlNetOutput): def __init__(self, *args, **kwargs): deprecation_message = "Importing `FluxControlNetOutput` from `diffusers.models.controlnet_flux` is deprecated and this will be removed in a future version. Please use `from diffusers.models.controlnets.controlnet_flux import FluxControlNetOutput`, instead." deprecate("diffusers.models.controlnet_flux.FluxControlNetOutput", "0.34", deprecation_message) super().__init__(*args, **kwargs) class FluxControlNetModel(FluxControlNetModel): def __init__( self, patch_size: int = 1, in_channels: int = 64, num_layers: int = 19, num_single_layers: int = 38, attention_head_dim: int = 128, num_attention_heads: int = 24, joint_attention_dim: int = 4096, pooled_projection_dim: int = 768, guidance_embeds: bool = False, axes_dims_rope: List[int] = [16, 56, 56], num_mode: int = None, conditioning_embedding_channels: int = None, ): deprecation_message = "Importing `FluxControlNetModel` from `diffusers.models.controlnet_flux` is deprecated and this will be removed in a future version. Please use `from diffusers.models.controlnets.controlnet_flux import FluxControlNetModel`, instead." deprecate("diffusers.models.controlnet_flux.FluxControlNetModel", "0.34", deprecation_message) super().__init__( patch_size=patch_size, in_channels=in_channels, num_layers=num_layers, num_single_layers=num_single_layers, attention_head_dim=attention_head_dim, num_attention_heads=num_attention_heads, joint_attention_dim=joint_attention_dim, pooled_projection_dim=pooled_projection_dim, guidance_embeds=guidance_embeds, axes_dims_rope=axes_dims_rope, num_mode=num_mode, conditioning_embedding_channels=conditioning_embedding_channels, ) class FluxMultiControlNetModel(FluxMultiControlNetModel): def __init__(self, *args, **kwargs): deprecation_message = "Importing `FluxMultiControlNetModel` from `diffusers.models.controlnet_flux` is deprecated and this will be removed in a future version. Please use `from diffusers.models.controlnets.controlnet_flux import FluxMultiControlNetModel`, instead." deprecate("diffusers.models.controlnet_flux.FluxMultiControlNetModel", "0.34", deprecation_message) super().__init__(*args, **kwargs)
"""Simple Web scraper.""" from typing import List, Optional, Dict, Callable import requests from llama_index.core.bridge.pydantic import PrivateAttr from llama_index.core.readers.base import BasePydanticReader from llama_index.core.schema import Document class SimpleWebPageReader(BasePydanticReader): """ Simple web page reader. Reads pages from the web. Args: html_to_text (bool): Whether to convert HTML to text. Requires `html2text` package. metadata_fn (Optional[Callable[[str], Dict]]): A function that takes in a URL and returns a dictionary of metadata. Default is None. """ is_remote: bool = True html_to_text: bool _metadata_fn: Optional[Callable[[str], Dict]] = PrivateAttr() def __init__( self, html_to_text: bool = False, metadata_fn: Optional[Callable[[str], Dict]] = None, ) -> None: """Initialize with parameters.""" try: import html2text # noqa except ImportError: raise ImportError( "`html2text` package not found, please run `pip install html2text`" ) super().__init__(html_to_text=html_to_text) self._metadata_fn = metadata_fn @classmethod def class_name(cls) -> str: return "SimpleWebPageReader" def load_data(self, urls: List[str]) -> List[Document]: """ Load data from the input directory. Args: urls (List[str]): List of URLs to scrape. Returns: List[Document]: List of documents. """ if not isinstance(urls, list): raise ValueError("urls must be a list of strings.") documents = [] for url in urls: response = requests.get(url, headers=None).text if self.html_to_text: import html2text response = html2text.html2text(response) metadata: Optional[Dict] = None if self._metadata_fn is not None: metadata = self._metadata_fn(url) documents.append(Document(text=response, id_=url, metadata=metadata or {})) return documents
"""Simple Web scraper.""" from typing import List, Optional, Dict, Callable import requests from llama_index.core.bridge.pydantic import PrivateAttr from llama_index.core.readers.base import BasePydanticReader from llama_index.core.schema import Document class SimpleWebPageReader(BasePydanticReader): """Simple web page reader. Reads pages from the web. Args: html_to_text (bool): Whether to convert HTML to text. Requires `html2text` package. metadata_fn (Optional[Callable[[str], Dict]]): A function that takes in a URL and returns a dictionary of metadata. Default is None. """ is_remote: bool = True html_to_text: bool _metadata_fn: Optional[Callable[[str], Dict]] = PrivateAttr() def __init__( self, html_to_text: bool = False, metadata_fn: Optional[Callable[[str], Dict]] = None, ) -> None: """Initialize with parameters.""" try: import html2text # noqa except ImportError: raise ImportError( "`html2text` package not found, please run `pip install html2text`" ) super().__init__(html_to_text=html_to_text) self._metadata_fn = metadata_fn @classmethod def class_name(cls) -> str: return "SimpleWebPageReader" def load_data(self, urls: List[str]) -> List[Document]: """Load data from the input directory. Args: urls (List[str]): List of URLs to scrape. Returns: List[Document]: List of documents. """ if not isinstance(urls, list): raise ValueError("urls must be a list of strings.") documents = [] for url in urls: response = requests.get(url, headers=None).text if self.html_to_text: import html2text response = html2text.html2text(response) metadata: Optional[Dict] = None if self._metadata_fn is not None: metadata = self._metadata_fn(url) documents.append(Document(text=response, id_=url, metadata=metadata or {})) return documents
"""Sentence window retriever.""" from typing import Any, Dict, List from llama_index.core import Settings, VectorStoreIndex from llama_index.core.llama_pack.base import BaseLlamaPack from llama_index.core.node_parser import ( SentenceWindowNodeParser, ) from llama_index.core.postprocessor import MetadataReplacementPostProcessor from llama_index.core.schema import Document from llama_index.embeddings.huggingface import HuggingFaceEmbedding from llama_index.llms.openai import OpenAI class SentenceWindowRetrieverPack(BaseLlamaPack): """ Sentence Window Retriever pack. Build input nodes from a text file by inserting metadata, build a vector index over the input nodes, then after retrieval insert the text into the output nodes before synthesis. """ def __init__( self, docs: List[Document] = None, **kwargs: Any, ) -> None: """Init params.""" # create the sentence window node parser w/ default settings self.node_parser = SentenceWindowNodeParser.from_defaults( window_size=3, window_metadata_key="window", original_text_metadata_key="original_text", ) self.llm = OpenAI(model="gpt-3.5-turbo", temperature=0.1) self.embed_model = HuggingFaceEmbedding( model_name="sentence-transformers/all-mpnet-base-v2", max_length=512 ) Settings.llm = self.llm Settings.embed_model = self.embed_model # extract nodes nodes = self.node_parser.get_nodes_from_documents(docs) self.sentence_index = VectorStoreIndex(nodes) self.postprocessor = MetadataReplacementPostProcessor( target_metadata_key="window" ) self.query_engine = self.sentence_index.as_query_engine( similarity_top_k=2, # the target key defaults to `window` to match the node_parser's default node_postprocessors=[self.postprocessor], ) def get_modules(self) -> Dict[str, Any]: """Get modules.""" return { "sentence_index": self.sentence_index, "node_parser": self.node_parser, "postprocessor": self.postprocessor, "llm": self.llm, "embed_model": self.embed_model, "query_engine": self.query_engine, } def run(self, *args: Any, **kwargs: Any) -> Any: """Run the pipeline.""" return self.query_engine.query(*args, **kwargs)
"""Sentence window retriever.""" from typing import Any, Dict, List from llama_index.core import Settings, VectorStoreIndex from llama_index.core.llama_pack.base import BaseLlamaPack from llama_index.core.node_parser import ( SentenceWindowNodeParser, ) from llama_index.core.postprocessor import MetadataReplacementPostProcessor from llama_index.core.schema import Document from llama_index.embeddings.huggingface import HuggingFaceEmbedding from llama_index.llms.openai import OpenAI class SentenceWindowRetrieverPack(BaseLlamaPack): """Sentence Window Retriever pack. Build input nodes from a text file by inserting metadata, build a vector index over the input nodes, then after retrieval insert the text into the output nodes before synthesis. """ def __init__( self, docs: List[Document] = None, **kwargs: Any, ) -> None: """Init params.""" # create the sentence window node parser w/ default settings self.node_parser = SentenceWindowNodeParser.from_defaults( window_size=3, window_metadata_key="window", original_text_metadata_key="original_text", ) self.llm = OpenAI(model="gpt-3.5-turbo", temperature=0.1) self.embed_model = HuggingFaceEmbedding( model_name="sentence-transformers/all-mpnet-base-v2", max_length=512 ) Settings.llm = self.llm Settings.embed_model = self.embed_model # extract nodes nodes = self.node_parser.get_nodes_from_documents(docs) self.sentence_index = VectorStoreIndex(nodes) self.postprocessor = MetadataReplacementPostProcessor( target_metadata_key="window" ) self.query_engine = self.sentence_index.as_query_engine( similarity_top_k=2, # the target key defaults to `window` to match the node_parser's default node_postprocessors=[self.postprocessor], ) def get_modules(self) -> Dict[str, Any]: """Get modules.""" return { "sentence_index": self.sentence_index, "node_parser": self.node_parser, "postprocessor": self.postprocessor, "llm": self.llm, "embed_model": self.embed_model, "query_engine": self.query_engine, } def run(self, *args: Any, **kwargs: Any) -> Any: """Run the pipeline.""" return self.query_engine.query(*args, **kwargs)
# Copyright (c) OpenMMLab. All rights reserved. import torch from mmdet.data_elements.bbox import bbox2result from mmdet.registry import MODELS from .single_stage import SingleStageDetector @MODELS.register_module() class YOLACT(SingleStageDetector): """Implementation of `YOLACT <https://arxiv.org/abs/1904.02689>`_""" def __init__(self, backbone, neck, bbox_head, segm_head, mask_head, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None): super(YOLACT, self).__init__(backbone, neck, bbox_head, train_cfg, test_cfg, pretrained, init_cfg) self.segm_head = MODELS.build(segm_head) self.mask_head = MODELS.build(mask_head) def forward_dummy(self, img): """Used for computing network flops. See `mmdetection/tools/analysis_tools/get_flops.py` """ feat = self.extract_feat(img) bbox_outs = self.bbox_head(feat) prototypes = self.mask_head.forward_dummy(feat[0]) return (bbox_outs, prototypes) def forward_train(self, img, img_metas, gt_bboxes, gt_labels, gt_bboxes_ignore=None, gt_masks=None): """ Args: img (Tensor): of shape (N, C, H, W) encoding input images. Typically these should be mean centered and std scaled. img_metas (list[dict]): list of image info dict where each dict has: 'img_shape', 'scale_factor', 'flip', and may also contain 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. For details on the values of these keys see `mmdet/datasets/pipelines/formatting.py:Collect`. gt_bboxes (list[Tensor]): Ground truth bboxes for each image with shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. gt_labels (list[Tensor]): class indices corresponding to each box gt_bboxes_ignore (None | list[Tensor]): specify which bounding boxes can be ignored when computing the loss. gt_masks (None | Tensor) : true segmentation masks for each box used if the architecture supports a segmentation task. Returns: dict[str, Tensor]: a dictionary of loss components """ # convert Bitmap mask or Polygon Mask to Tensor here gt_masks = [ gt_mask.to_tensor(dtype=torch.uint8, device=img.device) for gt_mask in gt_masks ] x = self.extract_feat(img) cls_score, bbox_pred, coeff_pred = self.bbox_head(x) bbox_head_loss_inputs = (cls_score, bbox_pred) + (gt_bboxes, gt_labels, img_metas) losses, sampling_results = self.bbox_head.loss( *bbox_head_loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore) segm_head_outs = self.segm_head(x[0]) loss_segm = self.segm_head.loss(segm_head_outs, gt_masks, gt_labels) losses.update(loss_segm) mask_pred = self.mask_head(x[0], coeff_pred, gt_bboxes, img_metas, sampling_results) loss_mask = self.mask_head.loss(mask_pred, gt_masks, gt_bboxes, img_metas, sampling_results) losses.update(loss_mask) # check NaN and Inf for loss_name in losses.keys(): assert torch.isfinite(torch.stack(losses[loss_name]))\ .all().item(), '{} becomes infinite or NaN!'\ .format(loss_name) return losses def simple_test(self, img, img_metas, rescale=False): """Test function without test-time augmentation.""" feat = self.extract_feat(img) det_bboxes, det_labels, det_coeffs = self.bbox_head.simple_test( feat, img_metas, rescale=rescale) bbox_results = [ bbox2result(det_bbox, det_label, self.bbox_head.num_classes) for det_bbox, det_label in zip(det_bboxes, det_labels) ] segm_results = self.mask_head.simple_test( feat, det_bboxes, det_labels, det_coeffs, img_metas, rescale=rescale) return list(zip(bbox_results, segm_results)) def aug_test(self, imgs, img_metas, rescale=False): """Test with augmentations.""" raise NotImplementedError( 'YOLACT does not support test-time augmentation')
# Copyright (c) OpenMMLab. All rights reserved. import torch from mmdet.core import bbox2result from mmdet.registry import MODELS from .single_stage import SingleStageDetector @MODELS.register_module() class YOLACT(SingleStageDetector): """Implementation of `YOLACT <https://arxiv.org/abs/1904.02689>`_""" def __init__(self, backbone, neck, bbox_head, segm_head, mask_head, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None): super(YOLACT, self).__init__(backbone, neck, bbox_head, train_cfg, test_cfg, pretrained, init_cfg) self.segm_head = MODELS.build(segm_head) self.mask_head = MODELS.build(mask_head) def forward_dummy(self, img): """Used for computing network flops. See `mmdetection/tools/analysis_tools/get_flops.py` """ feat = self.extract_feat(img) bbox_outs = self.bbox_head(feat) prototypes = self.mask_head.forward_dummy(feat[0]) return (bbox_outs, prototypes) def forward_train(self, img, img_metas, gt_bboxes, gt_labels, gt_bboxes_ignore=None, gt_masks=None): """ Args: img (Tensor): of shape (N, C, H, W) encoding input images. Typically these should be mean centered and std scaled. img_metas (list[dict]): list of image info dict where each dict has: 'img_shape', 'scale_factor', 'flip', and may also contain 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. For details on the values of these keys see `mmdet/datasets/pipelines/formatting.py:Collect`. gt_bboxes (list[Tensor]): Ground truth bboxes for each image with shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. gt_labels (list[Tensor]): class indices corresponding to each box gt_bboxes_ignore (None | list[Tensor]): specify which bounding boxes can be ignored when computing the loss. gt_masks (None | Tensor) : true segmentation masks for each box used if the architecture supports a segmentation task. Returns: dict[str, Tensor]: a dictionary of loss components """ # convert Bitmap mask or Polygon Mask to Tensor here gt_masks = [ gt_mask.to_tensor(dtype=torch.uint8, device=img.device) for gt_mask in gt_masks ] x = self.extract_feat(img) cls_score, bbox_pred, coeff_pred = self.bbox_head(x) bbox_head_loss_inputs = (cls_score, bbox_pred) + (gt_bboxes, gt_labels, img_metas) losses, sampling_results = self.bbox_head.loss( *bbox_head_loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore) segm_head_outs = self.segm_head(x[0]) loss_segm = self.segm_head.loss(segm_head_outs, gt_masks, gt_labels) losses.update(loss_segm) mask_pred = self.mask_head(x[0], coeff_pred, gt_bboxes, img_metas, sampling_results) loss_mask = self.mask_head.loss(mask_pred, gt_masks, gt_bboxes, img_metas, sampling_results) losses.update(loss_mask) # check NaN and Inf for loss_name in losses.keys(): assert torch.isfinite(torch.stack(losses[loss_name]))\ .all().item(), '{} becomes infinite or NaN!'\ .format(loss_name) return losses def simple_test(self, img, img_metas, rescale=False): """Test function without test-time augmentation.""" feat = self.extract_feat(img) det_bboxes, det_labels, det_coeffs = self.bbox_head.simple_test( feat, img_metas, rescale=rescale) bbox_results = [ bbox2result(det_bbox, det_label, self.bbox_head.num_classes) for det_bbox, det_label in zip(det_bboxes, det_labels) ] segm_results = self.mask_head.simple_test( feat, det_bboxes, det_labels, det_coeffs, img_metas, rescale=rescale) return list(zip(bbox_results, segm_results)) def aug_test(self, imgs, img_metas, rescale=False): """Test with augmentations.""" raise NotImplementedError( 'YOLACT does not support test-time augmentation')
# Copyright (c) OpenMMLab. All rights reserved. from .gaussian_target import (gather_feat, gaussian_radius, gen_gaussian_target, get_local_maximum, get_topk_from_heatmap, transpose_and_gather_feat) from .image import imrenormalize from .make_divisible import make_divisible # Disable yapf because it conflicts with isort. # yapf: disable from .misc import (align_tensor, aligned_bilinear, center_of_mass, empty_instances, filter_gt_instances, filter_scores_and_topk, flip_tensor, generate_coordinate, images_to_levels, interpolate_as, levels_to_images, mask2ndarray, multi_apply, relative_coordinate_maps, rename_loss_dict, reweight_loss_dict, samplelist_boxtype2tensor, select_single_mlvl, sigmoid_geometric_mean, unfold_wo_center, unmap, unpack_gt_instances) from .panoptic_gt_processing import preprocess_panoptic_gt from .point_sample import (get_uncertain_point_coords_with_randomness, get_uncertainty) from .vlfuse_helper import BertEncoderLayer, VLFuse, permute_and_flatten from .wbf import weighted_boxes_fusion __all__ = [ 'gaussian_radius', 'gen_gaussian_target', 'make_divisible', 'get_local_maximum', 'get_topk_from_heatmap', 'transpose_and_gather_feat', 'interpolate_as', 'sigmoid_geometric_mean', 'gather_feat', 'preprocess_panoptic_gt', 'get_uncertain_point_coords_with_randomness', 'get_uncertainty', 'unpack_gt_instances', 'empty_instances', 'center_of_mass', 'filter_scores_and_topk', 'flip_tensor', 'generate_coordinate', 'levels_to_images', 'mask2ndarray', 'multi_apply', 'select_single_mlvl', 'unmap', 'images_to_levels', 'samplelist_boxtype2tensor', 'filter_gt_instances', 'rename_loss_dict', 'reweight_loss_dict', 'relative_coordinate_maps', 'aligned_bilinear', 'unfold_wo_center', 'imrenormalize', 'VLFuse', 'permute_and_flatten', 'BertEncoderLayer', 'align_tensor', 'weighted_boxes_fusion' ]
# Copyright (c) OpenMMLab. All rights reserved. from .gaussian_target import (gather_feat, gaussian_radius, gen_gaussian_target, get_local_maximum, get_topk_from_heatmap, transpose_and_gather_feat) from .image import imrenormalize from .make_divisible import make_divisible from .misc import (aligned_bilinear, center_of_mass, empty_instances, filter_gt_instances, filter_scores_and_topk, flip_tensor, generate_coordinate, images_to_levels, interpolate_as, levels_to_images, mask2ndarray, multi_apply, relative_coordinate_maps, rename_loss_dict, reweight_loss_dict, samplelist_boxtype2tensor, select_single_mlvl, sigmoid_geometric_mean, unfold_wo_center, unmap, unpack_gt_instances) from .panoptic_gt_processing import preprocess_panoptic_gt from .point_sample import (get_uncertain_point_coords_with_randomness, get_uncertainty) from .vlfuse_helper import BertEncoderLayer, VLFuse, permute_and_flatten __all__ = [ 'gaussian_radius', 'gen_gaussian_target', 'make_divisible', 'get_local_maximum', 'get_topk_from_heatmap', 'transpose_and_gather_feat', 'interpolate_as', 'sigmoid_geometric_mean', 'gather_feat', 'preprocess_panoptic_gt', 'get_uncertain_point_coords_with_randomness', 'get_uncertainty', 'unpack_gt_instances', 'empty_instances', 'center_of_mass', 'filter_scores_and_topk', 'flip_tensor', 'generate_coordinate', 'levels_to_images', 'mask2ndarray', 'multi_apply', 'select_single_mlvl', 'unmap', 'images_to_levels', 'samplelist_boxtype2tensor', 'filter_gt_instances', 'rename_loss_dict', 'reweight_loss_dict', 'relative_coordinate_maps', 'aligned_bilinear', 'unfold_wo_center', 'imrenormalize', 'VLFuse', 'permute_and_flatten', 'BertEncoderLayer' ]
import numpy as np import torch from docarray import BaseDocument from docarray.base_document import AnyDocument from docarray.typing import ( AnyEmbedding, AnyUrl, ImageUrl, Mesh3DUrl, NdArray, PointCloud3DUrl, TextUrl, TorchTensor, ) def test_proto_all_types(): class Mymmdoc(BaseDocument): tensor: NdArray torch_tensor: TorchTensor embedding: AnyEmbedding any_url: AnyUrl image_url: ImageUrl text_url: TextUrl mesh_url: Mesh3DUrl point_cloud_url: PointCloud3DUrl doc = Mymmdoc( tensor=np.zeros((3, 224, 224)), torch_tensor=torch.zeros((3, 224, 224)), embedding=np.zeros((100, 1)), any_url='http://jina.ai', image_url='http://jina.ai/bla.jpg', text_url='http://jina.ai', mesh_url='http://jina.ai/mesh.obj', point_cloud_url='http://jina.ai/mesh.obj', ) new_doc = AnyDocument.from_protobuf(doc.to_protobuf()) for field, value in new_doc: if field == 'embedding': # embedding is a Union type, not supported by isinstance assert isinstance(value, np.ndarray) or isinstance(value, torch.Tensor) else: assert isinstance(value, doc._get_field_type(field))
import numpy as np import torch from docarray import BaseDocument from docarray.document import AnyDocument from docarray.typing import ( AnyEmbedding, AnyUrl, ImageUrl, Mesh3DUrl, NdArray, PointCloud3DUrl, TextUrl, TorchTensor, ) def test_proto_all_types(): class Mymmdoc(BaseDocument): tensor: NdArray torch_tensor: TorchTensor embedding: AnyEmbedding any_url: AnyUrl image_url: ImageUrl text_url: TextUrl mesh_url: Mesh3DUrl point_cloud_url: PointCloud3DUrl doc = Mymmdoc( tensor=np.zeros((3, 224, 224)), torch_tensor=torch.zeros((3, 224, 224)), embedding=np.zeros((100, 1)), any_url='http://jina.ai', image_url='http://jina.ai/bla.jpg', text_url='http://jina.ai', mesh_url='http://jina.ai/mesh.obj', point_cloud_url='http://jina.ai/mesh.obj', ) new_doc = AnyDocument.from_protobuf(doc.to_protobuf()) for field, value in new_doc: if field == 'embedding': # embedding is a Union type, not supported by isinstance assert isinstance(value, np.ndarray) or isinstance(value, torch.Tensor) else: assert isinstance(value, doc._get_field_type(field))
import numpy as np import pytest from keras.src import backend from keras.src import layers from keras.src import testing class GaussianDropoutTest(testing.TestCase): @pytest.mark.requires_trainable_backend def test_gaussian_dropout_basics(self): self.run_layer_test( layers.GaussianDropout, init_kwargs={ "rate": 0.2, }, input_shape=(2, 3), call_kwargs={"training": True}, expected_output_shape=(2, 3), expected_num_trainable_weights=0, expected_num_non_trainable_weights=0, expected_num_seed_generators=1, expected_num_losses=0, supports_masking=True, assert_built_after_instantiation=True, ) def test_gaussian_dropout_correctness(self): inputs = np.ones((20, 500)) layer = layers.GaussianDropout(0.3, seed=1337) outputs = layer(inputs, training=True) self.assertAllClose( np.std(backend.convert_to_numpy(outputs)), np.sqrt(0.3 / (1 - 0.3)), atol=0.02, )
import numpy as np import pytest from keras.src import backend from keras.src import layers from keras.src import testing class GaussianDropoutTest(testing.TestCase): @pytest.mark.requires_trainable_backend def test_gaussian_dropout_basics(self): self.run_layer_test( layers.GaussianDropout, init_kwargs={ "rate": 0.2, }, input_shape=(2, 3), call_kwargs={"training": True}, expected_output_shape=(2, 3), expected_num_trainable_weights=0, expected_num_non_trainable_weights=0, expected_num_seed_generators=1, expected_num_losses=0, supports_masking=True, ) def test_gaussian_dropout_correctness(self): inputs = np.ones((20, 500)) layer = layers.GaussianDropout(0.3, seed=1337) outputs = layer(inputs, training=True) self.assertAllClose( np.std(backend.convert_to_numpy(outputs)), np.sqrt(0.3 / (1 - 0.3)), atol=0.02, )
import torch from keras.src.optimizers.base_optimizer import BaseOptimizer from keras.src.utils import torch_utils class TorchParallelOptimizer(BaseOptimizer): @torch_utils.no_grad def _backend_update_step(self, grads, trainable_variables, learning_rate): self._parallel_update_step( grads, trainable_variables, learning_rate, ) @torch_utils.no_grad def _backend_reset_gradient_accumulators(self): acc_list = [ v.value for v in self._accumulated_gradients if v is not None ] torch._foreach_mul_(acc_list, 0.0) @torch_utils.no_grad def _backend_increment_gradient_accumulators(self, grads, acc_grads): acc_list = [v.value for v in acc_grads] torch._foreach_add_(acc_list, grads, alpha=1.0)
import torch from keras.src.optimizers.base_optimizer import BaseOptimizer from keras.src.utils import torch_utils class TorchParallelOptimizer(BaseOptimizer): @torch_utils.no_grad def _backend_update_step(self, grads, trainable_variables, learning_rate): self._parallel_update_step( grads, trainable_variables, learning_rate, ) @torch_utils.no_grad def _backend_reset_gradient_accumulators(self): acc_list = [v.value for v in self._accumulated_gradients] torch._foreach_mul_(acc_list, 0.0) @torch_utils.no_grad def _backend_increment_gradient_accumulators(self, grads, acc_grads): acc_list = [v.value for v in acc_grads] torch._foreach_add_(acc_list, grads, alpha=1.0)
"""A class for JAX specific optimizer logic. Its purpose is to route around statelessness requirements in cond ops used for EMA handling and gradient accumulation handling. We do this by skipping conditionals entirely. """ import jax from jax import numpy as jnp from keras.src.optimizers import base_optimizer class JaxOptimizer(base_optimizer.BaseOptimizer): def _backend_apply_gradients(self, grads, trainable_variables): if self.gradient_accumulation_steps: is_update_step = ( self._iterations + 1 ) % self.gradient_accumulation_steps == 0 steps = self.gradient_accumulation_steps current_trainable_vars_value = [ v.value for v in trainable_variables ] current_optimizer_vars_value = [v.value for v in self.variables] # `trainable_variables` might have been filtered in previous # processing steps, so we need to ensure the correct mapping between # `self._accumulated_gradients` and `trainable_variables` acc_grads = [ self._accumulated_gradients[self._get_variable_index(v)] for v in trainable_variables ] new_g_accs = jax.lax.cond( is_update_step, lambda: [jnp.zeros(g.shape, dtype=g.dtype) for g in acc_grads], lambda: [g + acc_g for g, acc_g in zip(grads, acc_grads)], ) grads = jax.lax.cond( is_update_step, lambda: [ (g + acc_g) / steps for g, acc_g in zip(grads, acc_grads) ], lambda: list(grads), ) # Apply clipping and weight decay. grads = self._clip_gradients(grads) self._apply_weight_decay(trainable_variables) self._backend_update_step( grads, trainable_variables, self.learning_rate ) new_trainable_vars = jax.lax.cond( is_update_step, lambda: [v.value for v in trainable_variables], lambda: current_trainable_vars_value, ) new_opt_vars = jax.lax.cond( is_update_step, lambda: [v.value for v in self.variables], lambda: current_optimizer_vars_value, ) for value, v in zip(new_trainable_vars, trainable_variables): v.assign(value) for value, v in zip(new_opt_vars, self.variables): v.assign(value) for n_g_acc, g_acc in zip(new_g_accs, acc_grads): g_acc.assign(n_g_acc) else: # Apply clipping and weight decay. grads = self._clip_gradients(grads) self._apply_weight_decay(trainable_variables) self._backend_update_step( grads, trainable_variables, self.learning_rate ) if self.use_ema: self._update_model_variables_moving_average( self._trainable_variables ) if self.ema_overwrite_frequency is not None: should_overwrite_model_vars = ( self.iterations + 1 ) % self.ema_overwrite_frequency == 0 should_overwrite_model_vars_int = ( should_overwrite_model_vars.astype("int32") ) should_not_overwrite_model_vars_int = jnp.logical_not( should_overwrite_model_vars ).astype("int32") current_trainable_vars_value = [ v.value for v in self._trainable_variables ] for var, average_var in zip( self._trainable_variables, self._model_variables_moving_average, ): var.assign( average_var * should_overwrite_model_vars_int + var.value * should_not_overwrite_model_vars_int )
"""A class for JAX specific optimizer logic. Its purpose is to route around statelessness requirements in cond ops used for EMA handling and gradient accumulation handling. We do this by skipping conditionals entirely. """ import jax from jax import numpy as jnp from keras.src.optimizers import base_optimizer class JaxOptimizer(base_optimizer.BaseOptimizer): def _backend_apply_gradients(self, grads, trainable_variables): if self.gradient_accumulation_steps: is_update_step = ( self._iterations + 1 ) % self.gradient_accumulation_steps == 0 steps = self.gradient_accumulation_steps current_trainable_vars_value = [ v.value for v in trainable_variables ] current_optimizer_vars_value = [v.value for v in self.variables] # `trainable_variables` might have been filtered in previous # processing steps, so we need to ensure the correct mapping between # `self._accumulated_gradients` and `trainable_variables` acc_grads = [ self._accumulated_gradients[self._get_variable_index(v)] for v in trainable_variables ] new_g_accs = jax.lax.cond( is_update_step, lambda: [jnp.zeros(g.shape, dtype=g.dtype) for g in acc_grads], lambda: [g + acc_g for g, acc_g in zip(grads, acc_grads)], ) grads = jax.lax.cond( is_update_step, lambda: [ (g + acc_g) / steps for g, acc_g in zip(grads, acc_grads) ], lambda: list(grads), ) # Apply clipping and weight decay. grads = self._clip_gradients(grads) self._apply_weight_decay(trainable_variables) self._backend_update_step( grads, trainable_variables, self.learning_rate ) new_trainable_vars = jax.lax.cond( is_update_step, lambda: [v.value for v in trainable_variables], lambda: current_trainable_vars_value, ) new_opt_vars = jax.lax.cond( is_update_step, lambda: [v.value for v in self.variables], lambda: current_optimizer_vars_value, ) for value, v in zip(new_trainable_vars, trainable_variables): v.assign(value) for value, v in zip(new_opt_vars, self.variables): v.assign(value) for n_g_acc, g_acc in zip(new_g_accs, acc_grads): g_acc.assign(n_g_acc) else: # Apply clipping and weight decay. grads = self._clip_gradients(grads) self._apply_weight_decay(trainable_variables) self._backend_update_step( grads, trainable_variables, self.learning_rate ) if self.use_ema: self._update_model_variables_moving_average( self._trainable_variables ) if self.ema_overwrite_frequency is not None: should_overwrite_model_vars = ( self.iterations + 1 ) % self.ema_overwrite_frequency == 0 should_overwrite_model_vars_int = ( should_overwrite_model_vars.astype("int32") ) should_not_overwrite_model_vars_int = jnp.logical_not( should_overwrite_model_vars ).astype("int32") current_trainable_vars_value = [ v.value for v in self._trainable_variables ] for var, average_var in zip( self._trainable_variables, self._model_variables_moving_average, ): var.assign( average_var * should_overwrite_model_vars_int + var.value * should_not_overwrite_model_vars_int ) self._iterations.assign_add(1)
from __future__ import annotations from abc import abstractmethod from typing import Any import torch from tokenizers import Tokenizer from transformers.tokenization_utils_base import PreTrainedTokenizerBase from sentence_transformers.models.Module import Module class InputModule(Module): """ Subclass of :class:`sentence_transformers.models.Module`, base class for all input modules in the Sentence Transformers library, i.e. modules that are used to process inputs and optionally also perform processing in the forward pass. This class provides a common interface for all input modules, including methods for loading and saving the module's configuration and weights, as well as input processing. It also provides a method for performing the forward pass of the module. Three abstract methods are defined in this class, which must be implemented by subclasses: - :meth:`sentence_transformers.models.Module.forward`: The forward pass of the module. - :meth:`sentence_transformers.models.Module.save`: Save the module to disk. - :meth:`sentence_transformers.models.InputModule.tokenize`: Tokenize the input texts and return a dictionary of tokenized features. Optionally, you may also have to override: - :meth:`sentence_transformers.models.Module.load`: Load the module from disk. To assist with loading and saving the module, several utility methods are provided: - :meth:`sentence_transformers.models.Module.load_config`: Load the module's configuration from a JSON file. - :meth:`sentence_transformers.models.Module.load_file_path`: Load a file from the module's directory, regardless of whether the module is saved locally or on Hugging Face. - :meth:`sentence_transformers.models.Module.load_dir_path`: Load a directory from the module's directory, regardless of whether the module is saved locally or on Hugging Face. - :meth:`sentence_transformers.models.Module.load_torch_weights`: Load the PyTorch weights of the module, regardless of whether the module is saved locally or on Hugging Face. - :meth:`sentence_transformers.models.Module.save_config`: Save the module's configuration to a JSON file. - :meth:`sentence_transformers.models.Module.save_torch_weights`: Save the PyTorch weights of the module. - :meth:`sentence_transformers.models.InputModule.save_tokenizer`: Save the tokenizer used by the module. - :meth:`sentence_transformers.models.Module.get_config_dict`: Get the module's configuration as a dictionary. And several class variables are defined to assist with loading and saving the module: - :attr:`sentence_transformers.models.Module.config_file_name`: The name of the configuration file used to save the module's configuration. - :attr:`sentence_transformers.models.Module.config_keys`: A list of keys used to save the module's configuration. - :attr:`sentence_transformers.models.InputModule.save_in_root`: Whether to save the module's configuration in the root directory of the model or in a subdirectory named after the module. - :attr:`sentence_transformers.models.InputModule.tokenizer`: The tokenizer used by the module. """ save_in_root: bool = True tokenizer: PreTrainedTokenizerBase | Tokenizer """ The tokenizer used for tokenizing the input texts. It can be either a :class:`transformers.PreTrainedTokenizerBase` subclass or a Tokenizer from the ``tokenizers`` library. """ @abstractmethod def tokenize(self, texts: list[str], **kwargs) -> dict[str, torch.Tensor | Any]: """ Tokenizes the input texts and returns a dictionary of tokenized features. Args: texts (list[str]): List of input texts to tokenize. **kwargs: Additional keyword arguments for tokenization, e.g. ``task``. Returns: dict[str, torch.Tensor | Any]: Dictionary containing tokenized features, e.g. ``{"input_ids": ..., "attention_mask": ...}`` """ def save_tokenizer(self, output_path: str, **kwargs) -> None: """ Saves the tokenizer to the specified output path. Args: output_path (str): Path to save the tokenizer. **kwargs: Additional keyword arguments for saving the tokenizer. Returns: None """ if not hasattr(self, "tokenizer"): return if isinstance(self.tokenizer, PreTrainedTokenizerBase): self.tokenizer.save_pretrained(output_path, **kwargs) elif isinstance(self.tokenizer, Tokenizer): self.tokenizer.save(output_path, **kwargs) return
from __future__ import annotations from abc import abstractmethod from typing import Any import torch from tokenizers import Tokenizer from transformers.tokenization_utils_base import PreTrainedTokenizerBase from sentence_transformers.models.Module import Module class InputModule(Module): """ Subclass of :class:`sentence_transformers.models.Module`, base class for all input modules in the Sentence Transformers library, i.e. modules that are used to process inputs and optionally also perform processing in the forward pass. This class provides a common interface for all input modules, including methods for loading and saving the module's configuration and weights, as well as input processing. It also provides a method for performing the forward pass of the module. Three abstract methods are defined in this class, which must be implemented by subclasses: - :meth:`sentence_transformers.models.Module.forward`: The forward pass of the module. - :meth:`sentence_transformers.models.Module.save`: Save the module to disk. - :meth:`sentence_transformers.models.InputModule.tokenize`: Tokenize the input texts and return a dictionary of tokenized features. Optionally, you may also have to override: - :meth:`sentence_transformers.models.Module.load`: Load the module from disk. To assist with loading and saving the module, several utility methods are provided: - :meth:`sentence_transformers.models.Module.load_config`: Load the module's configuration from a JSON file. - :meth:`sentence_transformers.models.Module.load_file_path`: Load a file from the module's directory, regardless of whether the module is saved locally or on Hugging Face. - :meth:`sentence_transformers.models.Module.load_dir_path`: Load a directory from the module's directory, regardless of whether the module is saved locally or on Hugging Face. - :meth:`sentence_transformers.models.Module.load_torch_weights`: Load the PyTorch weights of the module, regardless of whether the module is saved locally or on Hugging Face. - :meth:`sentence_transformers.models.Module.save_config`: Save the module's configuration to a JSON file. - :meth:`sentence_transformers.models.Module.save_torch_weights`: Save the PyTorch weights of the module. - :meth:`sentence_transformers.models.InputModule.save_tokenizer`: Save the tokenizer used by the module. - :meth:`sentence_transformers.models.Module.get_config_dict`: Get the module's configuration as a dictionary. And several class variables are defined to assist with loading and saving the module: - :attr:`sentence_transformers.models.Module.config_file_name`: The name of the configuration file used to save the module's configuration. - :attr:`sentence_transformers.models.Module.config_keys`: A list of keys used to save the module's configuration. - :attr:`sentence_transformers.models.InputModule.save_in_root`: Whether to save the module's configuration in the root directory of the model or in a subdirectory named after the module. - :attr:`sentence_transformers.models.InputModule.tokenizer`: The tokenizer used by the module. """ save_in_root: bool = True tokenizer: PreTrainedTokenizerBase | Tokenizer """ The tokenizer used for tokenizing the input texts. It can be either a :class:`transformers.PreTrainedTokenizerBase` subclass or a Tokenizer from the ``tokenizers`` library. """ @abstractmethod def tokenize(self, texts: list[str], **kwargs) -> dict[str, torch.Tensor | Any]: """ Tokenizes the input texts and returns a dictionary of tokenized features. Args: texts (list[str]): List of input texts to tokenize. **kwargs: Additional keyword arguments for tokenization. Returns: dict[str, torch.Tensor | Any]: Dictionary containing tokenized features, e.g. ``{"input_ids": ..., "attention_mask": ...}`` """ def save_tokenizer(self, output_path: str, **kwargs) -> None: """ Saves the tokenizer to the specified output path. Args: output_path (str): Path to save the tokenizer. **kwargs: Additional keyword arguments for saving the tokenizer. Returns: None """ if not hasattr(self, "tokenizer"): return if isinstance(self.tokenizer, PreTrainedTokenizerBase): self.tokenizer.save_pretrained(output_path, **kwargs) elif isinstance(self.tokenizer, Tokenizer): self.tokenizer.save(output_path, **kwargs) return
from typing import Dict, List, Optional, Set import pytest from docarray import BaseDocument, DocumentArray from docarray.documents import Image class InnerDoc(BaseDocument): integer: int inner_list: List class MMDoc(BaseDocument): text: str = '' price: int = 0 categories: Optional[List[str]] = None image: Optional[Image] = None matches: Optional[DocumentArray] = None matches_with_same_id: Optional[DocumentArray] = None opt_int: Optional[int] = None test_set: Optional[Set] = None inner_doc: Optional[InnerDoc] = None test_dict: Optional[Dict] = None @pytest.fixture def doc1(): return MMDoc( text='hey here', categories=['a', 'b', 'c'], price=10, matches=DocumentArray[MMDoc]([MMDoc()]), matches_with_same_id=DocumentArray[MMDoc]( [MMDoc(id='a', matches=DocumentArray[MMDoc]([MMDoc()]))] ), test_set={'a', 'a'}, inner_doc=InnerDoc(integer=2, inner_list=['c', 'd']), test_dict={'a': 0, 'b': 2, 'd': 4, 'z': 3}, ) @pytest.fixture def doc2(doc1): return MMDoc( id=doc1.id, text='hey here 2', categories=['d', 'e', 'f'], price=5, opt_int=5, matches=DocumentArray[MMDoc]([MMDoc()]), matches_with_same_id=DocumentArray[MMDoc]( [MMDoc(id='a', matches=DocumentArray[MMDoc]([MMDoc()]))] ), test_set={'a', 'b'}, inner_doc=InnerDoc(integer=3, inner_list=['a', 'b']), test_dict={'a': 10, 'b': 10, 'c': 3, 'z': None}, ) def test_update_complex(doc1, doc2): doc1.update(doc2) # doc1 is changed in place (no extra memory) assert doc1.text == 'hey here 2' assert doc1.categories == ['a', 'b', 'c', 'd', 'e', 'f'] assert len(doc1.matches) == 2 assert doc1.opt_int == 5 assert doc1.price == 5 assert doc1.test_set == {'a', 'b'} assert len(doc1.matches_with_same_id) == 1 assert len(doc1.matches_with_same_id[0].matches) == 2 assert doc1.inner_doc.integer == 3 assert doc1.inner_doc.inner_list == ['c', 'd', 'a', 'b'] assert doc1.test_dict == {'a': 10, 'b': 10, 'c': 3, 'd': 4, 'z': None} def test_update_simple(): class MyDocument(BaseDocument): content: str title: Optional[str] = None tags_: List my_doc1 = MyDocument( content='Core content of the document', title='Title', tags_=['python', 'AI'] ) my_doc2 = MyDocument(content='Core content updated', tags_=['docarray']) my_doc1.update(my_doc2) assert my_doc1.content == 'Core content updated' assert my_doc1.title == 'Title' assert my_doc1.tags_ == ['python', 'AI', 'docarray'] def test_update_different_schema_fails(): class DocA(BaseDocument): content: str class DocB(BaseDocument): image: Optional[Image] = None docA = DocA(content='haha') docB = DocB() with pytest.raises(Exception): docA.update(docB)
import pytest from typing import Optional, List, Dict, Set from docarray import BaseDocument, DocumentArray from docarray.documents import Image class InnerDoc(BaseDocument): integer: int l: List class MMDoc(BaseDocument): text: str = '' price: int = 0 categories: Optional[List[str]] = None image: Optional[Image] = None matches: Optional[DocumentArray] = None matches_with_same_id: Optional[DocumentArray] = None opt_int: Optional[int] = None test_set: Optional[Set] = None inner_doc: Optional[InnerDoc] = None test_dict: Optional[Dict] = None @pytest.fixture def doc1(): return MMDoc( text='hey here', categories=['a', 'b', 'c'], price=10, matches=DocumentArray[MMDoc]([MMDoc()]), matches_with_same_id=DocumentArray[MMDoc]( [MMDoc(id='a', matches=DocumentArray[MMDoc]([MMDoc()]))] ), test_set={'a', 'a'}, inner_doc=InnerDoc(integer=2, l=['c', 'd']), test_dict={'a': 0, 'b': 2, 'd': 4, 'z': 3}, ) @pytest.fixture def doc2(doc1): return MMDoc( id=doc1.id, text='hey here 2', categories=['d', 'e', 'f'], price=5, opt_int=5, matches=DocumentArray[MMDoc]([MMDoc()]), matches_with_same_id=DocumentArray[MMDoc]( [MMDoc(id='a', matches=DocumentArray[MMDoc]([MMDoc()]))] ), test_set={'a', 'b'}, inner_doc=InnerDoc(integer=3, l=['a', 'b']), test_dict={'a': 10, 'b': 10, 'c': 3, 'z': None}, ) def test_update_complex(doc1, doc2): doc1.update(doc2) # doc1 is changed in place (no extra memory) assert doc1.text == 'hey here 2' assert doc1.categories == ['a', 'b', 'c', 'd', 'e', 'f'] assert len(doc1.matches) == 2 assert doc1.opt_int == 5 assert doc1.price == 5 assert doc1.test_set == {'a', 'b'} assert len(doc1.matches_with_same_id) == 1 assert len(doc1.matches_with_same_id[0].matches) == 2 assert doc1.inner_doc.integer == 3 assert doc1.inner_doc.l == ['c', 'd', 'a', 'b'] assert doc1.test_dict == {'a': 10, 'b': 10, 'c': 3, 'd': 4, 'z': None} def test_update_simple(): class MyDocument(BaseDocument): content: str title: Optional[str] = None tags_: List my_doc1 = MyDocument( content='Core content of the document', title='Title', tags_=['python', 'AI'] ) my_doc2 = MyDocument(content='Core content updated', tags_=['docarray']) my_doc1.update(my_doc2) assert my_doc1.content == 'Core content updated' assert my_doc1.title == 'Title' assert my_doc1.tags_ == ['python', 'AI', 'docarray'] def test_update_different_schema_fails(): class DocA(BaseDocument): content: str class DocB(BaseDocument): image: Optional[Image] = None docA = DocA(content='haha') docB = DocB() with pytest.raises(Exception): docA.update(docB)
import io import warnings from abc import ABC from docarray.typing.tensor.abstract_tensor import AbstractTensor from docarray.utils.misc import is_notebook class AbstractImageTensor(AbstractTensor, ABC): def to_bytes(self, format: str = 'PNG') -> bytes: """ Convert image tensor to bytes. :param format: the image format use to store the image, can be 'PNG' , 'JPG' ... :return: bytes """ from PIL import Image if format == 'jpg': format = 'jpeg' # unify it to ISO standard tensor = self.get_comp_backend().to_numpy(self) mode = 'RGB' if tensor.ndim == 3 else 'L' pil_image = Image.fromarray(tensor, mode=mode) with io.BytesIO() as buffer: pil_image.save(buffer, format=format) img_byte_arr = buffer.getvalue() return img_byte_arr def display(self) -> None: """ Display image data from tensor in notebook. """ if is_notebook(): from PIL import Image np_array = self.get_comp_backend().to_numpy(self) img = Image.fromarray(np_array) from IPython.display import display display(img) else: warnings.warn('Display of image is only possible in a notebook.')
import io from abc import ABC from docarray.typing.tensor.abstract_tensor import AbstractTensor class AbstractImageTensor(AbstractTensor, ABC): def to_bytes(self, format: str = 'PNG') -> bytes: """ Convert image tensor to bytes. :param format: the image format use to store the image, can be 'PNG' , 'JPG' ... :return: bytes """ from PIL import Image if format == 'jpg': format = 'jpeg' # unify it to ISO standard tensor = self.get_comp_backend().to_numpy(self) mode = 'RGB' if tensor.ndim == 3 else 'L' pil_image = Image.fromarray(tensor, mode=mode) with io.BytesIO() as buffer: pil_image.save(buffer, format=format) img_byte_arr = buffer.getvalue() return img_byte_arr
# dataset settings dataset_type = 'CityscapesDataset' data_root = 'data/cityscapes/' # Example to use different file client # Method 1: simply set the data root and let the file I/O module # automatically infer from prefix (not support LMDB and Memcache yet) # data_root = 's3://openmmlab/datasets/segmentation/cityscapes/' # Method 2: Use backend_args, file_client_args in versions before 3.0.0rc6 # backend_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/segmentation/', # 'data/': 's3://openmmlab/datasets/segmentation/' # })) backend_args = None train_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomResize', scale=[(2048, 800), (2048, 1024)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='Resize', scale=(2048, 1024), keep_ratio=True), # If you don't have a gt annotation, delete the pipeline dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), batch_sampler=dict(type='AspectRatioBatchSampler'), dataset=dict( type='RepeatDataset', times=8, dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instancesonly_filtered_gtFine_train.json', data_prefix=dict(img='leftImg8bit/train/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline, backend_args=backend_args))) val_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instancesonly_filtered_gtFine_val.json', data_prefix=dict(img='leftImg8bit/val/'), test_mode=True, filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=test_pipeline, backend_args=backend_args)) test_dataloader = val_dataloader val_evaluator = [ dict( type='CocoMetric', ann_file=data_root + 'annotations/instancesonly_filtered_gtFine_val.json', metric=['bbox', 'segm'], backend_args=backend_args), dict( type='CityScapesMetric', seg_prefix=data_root + 'gtFine/val', outfile_prefix='./work_dirs/cityscapes_metric/instance', backend_args=backend_args) ] test_evaluator = val_evaluator # inference on test dataset and # format the output results for submission. # test_dataloader = dict( # batch_size=1, # num_workers=2, # persistent_workers=True, # drop_last=False, # sampler=dict(type='DefaultSampler', shuffle=False), # dataset=dict( # type=dataset_type, # data_root=data_root, # ann_file='annotations/instancesonly_filtered_gtFine_test.json', # data_prefix=dict(img='leftImg8bit/test/'), # test_mode=True, # filter_cfg=dict(filter_empty_gt=True, min_size=32), # pipeline=test_pipeline)) # test_evaluator = dict( # type='CityScapesMetric', # format_only=True, # outfile_prefix='./work_dirs/cityscapes_metric/test')
# dataset settings dataset_type = 'CityscapesDataset' data_root = 'data/cityscapes/' train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomResize', scale=[(2048, 800), (2048, 1024)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='Resize', scale=(2048, 1024), keep_ratio=True), # If you don't have a gt annotation, delete the pipeline dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), batch_sampler=dict(type='AspectRatioBatchSampler'), dataset=dict( type='RepeatDataset', times=8, dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instancesonly_filtered_gtFine_train.json', data_prefix=dict(img='leftImg8bit/train/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline))) val_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instancesonly_filtered_gtFine_val.json', data_prefix=dict(img='leftImg8bit/val/'), test_mode=True, filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=test_pipeline)) test_dataloader = val_dataloader val_evaluator = [ dict( type='CocoMetric', ann_file=data_root + 'annotations/instancesonly_filtered_gtFine_val.json', metric=['bbox', 'segm']), dict( type='CityScapesMetric', ann_file=data_root + 'annotations/instancesonly_filtered_gtFine_val.json', seg_prefix=data_root + '/gtFine/val', outfile_prefix='./work_dirs/cityscapes_metric/instance') ] test_evaluator = val_evaluator # inference on test dataset and # format the output results for submission. # test_dataloader = dict( # batch_size=1, # num_workers=2, # persistent_workers=True, # drop_last=False, # sampler=dict(type='DefaultSampler', shuffle=False), # dataset=dict( # type=dataset_type, # data_root=data_root, # ann_file='annotations/instancesonly_filtered_gtFine_test.json', # data_prefix=dict(img='leftImg8bit/test/'), # test_mode=True, # filter_cfg=dict(filter_empty_gt=True, min_size=32), # pipeline=test_pipeline)) # test_evaluator = dict( # type='CityScapesMetric', # format_only=True, # outfile_prefix='./work_dirs/cityscapes_metric/test')
# Copyright (c) OpenMMLab. All rights reserved. import ast import os.path as osp import re import warnings from typing import Tuple from mmengine.fileio import load from mmengine.utils import check_file_exist MODULE2PACKAGE = { 'mmcls': 'mmcls', 'mmdet': 'mmdet', 'mmdet3d': 'mmdet3d', 'mmseg': 'mmsegmentation', 'mmaction': 'mmaction2', 'mmtrack': 'mmtrack', 'mmpose': 'mmpose', 'mmedit': 'mmedit', 'mmocr': 'mmocr', 'mmgen': 'mmgen', 'mmfewshot': 'mmfewshot', 'mmrazor': 'mmrazor', 'mmflow': 'mmflow', 'mmhuman3d': 'mmhuman3d', 'mmrotate': 'mmrotate', 'mmselfsup': 'mmselfsup', 'mmyolo': 'mmyolo', } # PKG2PROJECT is not a proper name to represent the mapping between module name # (module import from) and package name (used by pip install). Therefore, # PKG2PROJECT will be deprecated and this alias will only be kept until # MMEngine v1.0.0 PKG2PROJECT = MODULE2PACKAGE def _get_cfg_metainfo(package_path: str, cfg_path: str) -> dict: """Get target meta information from all 'metafile.yml' defined in `mode- index.yml` of external package. Args: package_path (str): Path of external package. cfg_path (str): Name of experiment config. Returns: dict: Meta information of target experiment. """ meta_index_path = osp.join(package_path, '.mim', 'model-index.yml') meta_index = load(meta_index_path) cfg_dict = dict() for meta_path in meta_index['Import']: meta_path = osp.join(package_path, '.mim', meta_path) cfg_meta = load(meta_path) for model_cfg in cfg_meta['Models']: if 'Config' not in model_cfg: warnings.warn(f'There is not `Config` define in {model_cfg}') continue cfg_name = model_cfg['Config'].partition('/')[-1] # Some config could have multiple weights, we only pick the # first one. if cfg_name in cfg_dict: continue cfg_dict[cfg_name] = model_cfg if cfg_path not in cfg_dict: raise ValueError(f'Expected configs: {cfg_dict.keys()}, but got ' f'{cfg_path}') return cfg_dict[cfg_path] def _get_external_cfg_path(package_path: str, cfg_file: str) -> str: """Get config path of external package. Args: package_path (str): Path of external package. cfg_file (str): Name of experiment config. Returns: str: Absolute config path from external package. """ cfg_file = cfg_file.split('.')[0] model_cfg = _get_cfg_metainfo(package_path, cfg_file) cfg_path = osp.join(package_path, model_cfg['Config']) check_file_exist(cfg_path) return cfg_path def _get_external_cfg_base_path(package_path: str, cfg_name: str) -> str: """Get base config path of external package. Args: package_path (str): Path of external package. cfg_name (str): External relative config path with 'package::'. Returns: str: Absolute config path from external package. """ cfg_path = osp.join(package_path, '.mim', 'configs', cfg_name) check_file_exist(cfg_path) return cfg_path def _get_package_and_cfg_path(cfg_path: str) -> Tuple[str, str]: """Get package name and relative config path. Args: cfg_path (str): External relative config path with 'package::'. Returns: Tuple[str, str]: Package name and config path. """ if re.match(r'\w*::\w*/\w*', cfg_path) is None: raise ValueError( '`_get_package_and_cfg_path` is used for get external package, ' 'please specify the package name and relative config path, just ' 'like `mmdet::faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py`') package_cfg = cfg_path.split('::') if len(package_cfg) > 2: raise ValueError('`::` should only be used to separate package and ' 'config name, but found multiple `::` in ' f'{cfg_path}') package, cfg_path = package_cfg assert package in MODULE2PACKAGE, ( f'mmengine does not support to load {package} config.') package = MODULE2PACKAGE[package] return package, cfg_path class RemoveAssignFromAST(ast.NodeTransformer): """Remove Assign node if the target's name match the key. Args: key (str): The target name of the Assign node. """ def __init__(self, key): self.key = key def visit_Assign(self, node): if (isinstance(node.targets[0], ast.Name) and node.targets[0].id == self.key): return None else: return node
# Copyright (c) OpenMMLab. All rights reserved. import ast import os.path as osp import re import warnings from typing import Tuple from mmengine.fileio import load from mmengine.utils import check_file_exist PKG2PROJECT = { 'mmcls': 'mmcls', 'mmdet': 'mmdet', 'mmdet3d': 'mmdet3d', 'mmseg': 'mmsegmentation', 'mmaction2': 'mmaction2', 'mmtrack': 'mmtrack', 'mmpose': 'mmpose', 'mmedit': 'mmedit', 'mmocr': 'mmocr', 'mmgen': 'mmgen', 'mmfewshot': 'mmfewshot', 'mmrazor': 'mmrazor', 'mmflow': 'mmflow', 'mmhuman3d': 'mmhuman3d', 'mmrotate': 'mmrotate', 'mmselfsup': 'mmselfsup', 'mmyolo': 'mmyolo', } def _get_cfg_metainfo(package_path: str, cfg_path: str) -> dict: """Get target meta information from all 'metafile.yml' defined in `mode- index.yml` of external package. Args: package_path (str): Path of external package. cfg_path (str): Name of experiment config. Returns: dict: Meta information of target experiment. """ meta_index_path = osp.join(package_path, '.mim', 'model-index.yml') meta_index = load(meta_index_path) cfg_dict = dict() for meta_path in meta_index['Import']: meta_path = osp.join(package_path, '.mim', meta_path) cfg_meta = load(meta_path) for model_cfg in cfg_meta['Models']: if 'Config' not in model_cfg: warnings.warn(f'There is not `Config` define in {model_cfg}') continue cfg_name = model_cfg['Config'].partition('/')[-1] # Some config could have multiple weights, we only pick the # first one. if cfg_name in cfg_dict: continue cfg_dict[cfg_name] = model_cfg if cfg_path not in cfg_dict: raise ValueError(f'Expected configs: {cfg_dict.keys()}, but got ' f'{cfg_path}') return cfg_dict[cfg_path] def _get_external_cfg_path(package_path: str, cfg_file: str) -> str: """Get config path of external package. Args: package_path (str): Path of external package. cfg_file (str): Name of experiment config. Returns: str: Absolute config path from external package. """ cfg_file = cfg_file.split('.')[0] model_cfg = _get_cfg_metainfo(package_path, cfg_file) cfg_path = osp.join(package_path, model_cfg['Config']) check_file_exist(cfg_path) return cfg_path def _get_external_cfg_base_path(package_path: str, cfg_name: str) -> str: """Get base config path of external package. Args: package_path (str): Path of external package. cfg_name (str): External relative config path with 'package::'. Returns: str: Absolute config path from external package. """ cfg_path = osp.join(package_path, '.mim', 'configs', cfg_name) check_file_exist(cfg_path) return cfg_path def _get_package_and_cfg_path(cfg_path: str) -> Tuple[str, str]: """Get package name and relative config path. Args: cfg_path (str): External relative config path with 'package::'. Returns: Tuple[str, str]: Package name and config path. """ if re.match(r'\w*::\w*/\w*', cfg_path) is None: raise ValueError( '`_get_package_and_cfg_path` is used for get external package, ' 'please specify the package name and relative config path, just ' 'like `mmdet::faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py`') package_cfg = cfg_path.split('::') if len(package_cfg) > 2: raise ValueError('`::` should only be used to separate package and ' 'config name, but found multiple `::` in ' f'{cfg_path}') package, cfg_path = package_cfg assert package in PKG2PROJECT, 'mmengine does not support to load ' \ f'{package} config.' package = PKG2PROJECT[package] return package, cfg_path class RemoveAssignFromAST(ast.NodeTransformer): """Remove Assign node if the target's name match the key. Args: key (str): The target name of the Assign node. """ def __init__(self, key): self.key = key def visit_Assign(self, node): if (isinstance(node.targets[0], ast.Name) and node.targets[0].id == self.key): return None else: return node
# flake8: noqa # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __version__ = "2.5.2.dev0" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 6: raise ImportWarning( "To use `datasets`, the module `pyarrow>=6.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _arrow_dataset.concatenate_datasets = concatenate_datasets _utils.DownloadConfig = DownloadConfig _utils.DownloadManager = DownloadManager _utils.DownloadMode = DownloadMode _deprecated_download_manager.DownloadConfig = DownloadConfig _deprecated_download_manager.DownloadMode = DownloadMode _deprecated_download_manager.DownloadManager = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
# flake8: noqa # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __version__ = "2.5.2.dev0" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 6: raise ImportWarning( "To use `datasets`, the module `pyarrow>=6.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) SCRIPTS_VERSION = "main" if version.parse(__version__).is_devrelease else __version__ del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _arrow_dataset.concatenate_datasets = concatenate_datasets _utils.DownloadConfig = DownloadConfig _utils.DownloadManager = DownloadManager _utils.DownloadMode = DownloadMode _deprecated_download_manager.DownloadConfig = DownloadConfig _deprecated_download_manager.DownloadMode = DownloadMode _deprecated_download_manager.DownloadManager = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
# Copyright (c) OpenMMLab. All rights reserved. from mmcv.utils import Registry, build_from_cfg BBOX_ASSIGNERS = Registry('bbox_assigner') BBOX_SAMPLERS = Registry('bbox_sampler') BBOX_CODERS = Registry('bbox_coder') def build_assigner(cfg, **default_args): """Builder of box assigner.""" return build_from_cfg(cfg, BBOX_ASSIGNERS, default_args) def build_sampler(cfg, **default_args): """Builder of box sampler.""" return build_from_cfg(cfg, BBOX_SAMPLERS, default_args) def build_bbox_coder(cfg, **default_args): """Builder of box coder.""" return build_from_cfg(cfg, BBOX_CODERS, default_args)
from mmcv.utils import Registry, build_from_cfg BBOX_ASSIGNERS = Registry('bbox_assigner') BBOX_SAMPLERS = Registry('bbox_sampler') BBOX_CODERS = Registry('bbox_coder') def build_assigner(cfg, **default_args): """Builder of box assigner.""" return build_from_cfg(cfg, BBOX_ASSIGNERS, default_args) def build_sampler(cfg, **default_args): """Builder of box sampler.""" return build_from_cfg(cfg, BBOX_SAMPLERS, default_args) def build_bbox_coder(cfg, **default_args): """Builder of box coder.""" return build_from_cfg(cfg, BBOX_CODERS, default_args)
import numpy as np import pytest from keras.src import layers from keras.src import ops from keras.src import testing class AutoContrastTest(testing.TestCase): @pytest.mark.requires_trainable_backend def test_layer(self): self.run_layer_test( layers.AutoContrast, init_kwargs={ "value_range": (20, 200), }, input_shape=(8, 3, 4, 3), supports_masking=False, expected_output_shape=(8, 3, 4, 3), ) def test_constant_channels_dont_get_nanned(self): img = np.array([1, 1], dtype="float32") img = np.expand_dims(img, axis=-1) img = np.expand_dims(img, axis=-1) img = np.expand_dims(img, axis=0) layer = layers.AutoContrast(value_range=(0, 255)) ys = layer(img) self.assertTrue(np.any(ops.convert_to_numpy(ys[0]) == 1.0)) self.assertTrue(np.any(ops.convert_to_numpy(ys[0]) == 1.0)) def test_auto_contrast_expands_value_range(self): img = np.array([0, 128], dtype="float32") img = np.expand_dims(img, axis=-1) img = np.expand_dims(img, axis=-1) img = np.expand_dims(img, axis=0) layer = layers.AutoContrast(value_range=(0, 255)) ys = layer(img) self.assertTrue(np.any(ops.convert_to_numpy(ys[0]) == 0.0)) self.assertTrue(np.any(ops.convert_to_numpy(ys[0]) == 255.0)) def test_auto_contrast_different_values_per_channel(self): img = np.array( [[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]], dtype="float32", ) img = np.expand_dims(img, axis=0) layer = layers.AutoContrast(value_range=(0, 255)) ys = layer(img) self.assertTrue(np.any(ops.convert_to_numpy(ys[0, ..., 0]) == 0.0)) self.assertTrue(np.any(ops.convert_to_numpy(ys[0, ..., 1]) == 0.0)) self.assertTrue(np.any(ops.convert_to_numpy(ys[0, ..., 0]) == 255.0)) self.assertTrue(np.any(ops.convert_to_numpy(ys[0, ..., 1]) == 255.0)) self.assertAllClose( ys, [ [ [[0.0, 0.0, 0.0], [85.0, 85.0, 85.0]], [[170.0, 170.0, 170.0], [255.0, 255.0, 255.0]], ] ], ) def test_auto_contrast_expands_value_range_uint8(self): img = np.array([0, 128], dtype="uint8") img = np.expand_dims(img, axis=-1) img = np.expand_dims(img, axis=-1) img = np.expand_dims(img, axis=0) layer = layers.AutoContrast(value_range=(0, 255)) ys = layer(img) self.assertTrue(np.any(ops.convert_to_numpy(ys[0]) == 0.0)) self.assertTrue(np.any(ops.convert_to_numpy(ys[0]) == 255.0)) def test_auto_contrast_properly_converts_value_range(self): img = np.array([0, 0.5], dtype="float32") img = np.expand_dims(img, axis=-1) img = np.expand_dims(img, axis=-1) img = np.expand_dims(img, axis=0) layer = layers.AutoContrast(value_range=(0, 1)) ys = layer(img) self.assertAllClose( ops.convert_to_numpy(ys[0]), np.array([[[0.0]], [[1]]]) )
import numpy as np import pytest from absl.testing import parameterized from keras.src import layers from keras.src import ops from keras.src import testing class AutoContrastTest(testing.TestCase, parameterized.TestCase): @pytest.mark.requires_trainable_backend def test_layer(self): self.run_layer_test( layers.AutoContrast, init_kwargs={ "value_range": (20, 200), }, input_shape=(8, 3, 4, 3), supports_masking=False, expected_output_shape=(8, 3, 4, 3), ) def test_constant_channels_dont_get_nanned(self): img = np.array([1, 1], dtype="float32") img = np.expand_dims(img, axis=-1) img = np.expand_dims(img, axis=-1) img = np.expand_dims(img, axis=0) layer = layers.AutoContrast(value_range=(0, 255)) ys = layer(img) self.assertTrue(np.any(ops.convert_to_numpy(ys[0]) == 1.0)) self.assertTrue(np.any(ops.convert_to_numpy(ys[0]) == 1.0)) def test_auto_contrast_expands_value_range(self): img = np.array([0, 128], dtype="float32") img = np.expand_dims(img, axis=-1) img = np.expand_dims(img, axis=-1) img = np.expand_dims(img, axis=0) layer = layers.AutoContrast(value_range=(0, 255)) ys = layer(img) self.assertTrue(np.any(ops.convert_to_numpy(ys[0]) == 0.0)) self.assertTrue(np.any(ops.convert_to_numpy(ys[0]) == 255.0)) def test_auto_contrast_different_values_per_channel(self): img = np.array( [[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]], dtype="float32", ) img = np.expand_dims(img, axis=0) layer = layers.AutoContrast(value_range=(0, 255)) ys = layer(img) self.assertTrue(np.any(ops.convert_to_numpy(ys[0, ..., 0]) == 0.0)) self.assertTrue(np.any(ops.convert_to_numpy(ys[0, ..., 1]) == 0.0)) self.assertTrue(np.any(ops.convert_to_numpy(ys[0, ..., 0]) == 255.0)) self.assertTrue(np.any(ops.convert_to_numpy(ys[0, ..., 1]) == 255.0)) self.assertAllClose( ys, [ [ [[0.0, 0.0, 0.0], [85.0, 85.0, 85.0]], [[170.0, 170.0, 170.0], [255.0, 255.0, 255.0]], ] ], ) def test_auto_contrast_expands_value_range_uint8(self): img = np.array([0, 128], dtype="uint8") img = np.expand_dims(img, axis=-1) img = np.expand_dims(img, axis=-1) img = np.expand_dims(img, axis=0) layer = layers.AutoContrast(value_range=(0, 255)) ys = layer(img) self.assertTrue(np.any(ops.convert_to_numpy(ys[0]) == 0.0)) self.assertTrue(np.any(ops.convert_to_numpy(ys[0]) == 255.0)) def test_auto_contrast_properly_converts_value_range(self): img = np.array([0, 0.5], dtype="float32") img = np.expand_dims(img, axis=-1) img = np.expand_dims(img, axis=-1) img = np.expand_dims(img, axis=0) layer = layers.AutoContrast(value_range=(0, 1)) ys = layer(img) self.assertAllClose( ops.convert_to_numpy(ys[0]), np.array([[[0.0]], [[1]]]) )
from typing import Literal from pydantic import SecretStr from backend.data.model import APIKeyCredentials, CredentialsField, CredentialsMetaInput from backend.integrations.providers import ProviderName JinaCredentials = APIKeyCredentials JinaCredentialsInput = CredentialsMetaInput[ Literal[ProviderName.JINA], Literal["api_key"], ] def JinaCredentialsField() -> JinaCredentialsInput: """ Creates a Jina credentials input on a block. """ return CredentialsField( description="The Jina integration can be used with an API Key.", ) TEST_CREDENTIALS = APIKeyCredentials( id="01234567-89ab-cdef-0123-456789abcdef", provider="jina", api_key=SecretStr("mock-jina-api-key"), title="Mock Jina API key", expires_at=None, ) TEST_CREDENTIALS_INPUT = { "provider": TEST_CREDENTIALS.provider, "id": TEST_CREDENTIALS.id, "type": TEST_CREDENTIALS.type, "title": TEST_CREDENTIALS.type, }
from typing import Literal from pydantic import SecretStr from backend.data.model import APIKeyCredentials, CredentialsField, CredentialsMetaInput JinaCredentials = APIKeyCredentials JinaCredentialsInput = CredentialsMetaInput[ Literal["jina"], Literal["api_key"], ] TEST_CREDENTIALS = APIKeyCredentials( id="01234567-89ab-cdef-0123-456789abcdef", provider="jina", api_key=SecretStr("mock-jina-api-key"), title="Mock Jina API key", expires_at=None, ) TEST_CREDENTIALS_INPUT = { "provider": TEST_CREDENTIALS.provider, "id": TEST_CREDENTIALS.id, "type": TEST_CREDENTIALS.type, "title": TEST_CREDENTIALS.type, } def JinaCredentialsField() -> JinaCredentialsInput: """ Creates a Jina credentials input on a block. """ return CredentialsField( provider="jina", supported_credential_types={"api_key"}, description="The Jina integration can be used with an API Key.", ) TEST_CREDENTIALS = APIKeyCredentials( id="01234567-89ab-cdef-0123-456789abcdef", provider="jina", api_key=SecretStr("mock-jina-api-key"), title="Mock Jina API key", expires_at=None, ) TEST_CREDENTIALS_INPUT = { "provider": TEST_CREDENTIALS.provider, "id": TEST_CREDENTIALS.id, "type": TEST_CREDENTIALS.type, "title": TEST_CREDENTIALS.type, }
from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.audio.abstract_audio_tensor import AbstractAudioTensor from docarray.typing.tensor.ndarray import NdArray @_register_proto(proto_type_name='audio_ndarray') class AudioNdArray(AbstractAudioTensor, NdArray): """ Subclass of NdArray, to represent an audio tensor. Adds audio-specific features to the tensor. --- ```python from typing import Optional from docarray import BaseDoc from docarray.typing import AudioBytes, AudioNdArray, AudioUrl import numpy as np class MyAudioDoc(BaseDoc): title: str audio_tensor: Optional[AudioNdArray] url: Optional[AudioUrl] bytes_: Optional[AudioBytes] # from tensor doc_1 = MyAudioDoc( title='my_first_audio_doc', audio_tensor=np.random.rand(1000, 2), ) doc_1.audio_tensor.save(file_path='/tmp/file_1.wav') doc_1.bytes_ = doc_1.audio_tensor.to_bytes() # from url doc_2 = MyAudioDoc( title='my_second_audio_doc', url='https://www.kozco.com/tech/piano2.wav', ) doc_2.audio_tensor, _ = doc_2.url.load() doc_2.audio_tensor.save(file_path='/tmp/file_2.wav') doc_2.bytes_ = doc_1.audio_tensor.to_bytes() ``` --- """ ...
from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.audio.abstract_audio_tensor import AbstractAudioTensor from docarray.typing.tensor.ndarray import NdArray @_register_proto(proto_type_name='audio_ndarray') class AudioNdArray(AbstractAudioTensor, NdArray): """ Subclass of NdArray, to represent an audio tensor. Adds audio-specific features to the tensor. --- ```python from typing import Optional from docarray import BaseDoc from docarray.typing import AudioNdArray, AudioUrl import numpy as np class MyAudioDoc(BaseDoc): title: str audio_tensor: Optional[AudioNdArray] url: Optional[AudioUrl] bytes_: Optional[bytes] # from tensor doc_1 = MyAudioDoc( title='my_first_audio_doc', audio_tensor=np.random.rand(1000, 2), ) doc_1.audio_tensor.save(file_path='/tmp/file_1.wav') doc_1.bytes_ = doc_1.audio_tensor.to_bytes() # from url doc_2 = MyAudioDoc( title='my_second_audio_doc', url='https://www.kozco.com/tech/piano2.wav', ) doc_2.audio_tensor, _ = doc_2.url.load() doc_2.audio_tensor.save(file_path='/tmp/file_2.wav') doc_2.bytes_ = doc_1.audio_tensor.to_bytes() ``` --- """ ...
import os import urllib.parse from typing import Dict, Optional, Union from llama_index.core.base.llms.generic_utils import ( get_from_param_or_env, ) # Import SecretStr directly from pydantic # since there is not one in llama_index.core.bridge.pydantic try: from pydantic.v1 import SecretStr except ImportError: from pydantic import SecretStr def resolve_watsonx_credentials( *, url: Optional[str] = None, apikey: Optional[str] = None, token: Optional[str] = None, username: Optional[str] = None, password: Optional[str] = None, instance_id: Optional[str] = None, ) -> Dict[str, SecretStr]: """ Resolve watsonx.ai credentials. If the value of given param is None then tries to find corresponding environment variable. :raises ValueError: raises when value of required attribute is not found :return: Dictionary with resolved credentials items :rtype: Dict[str, SecretStr] """ creds = {} creds["url"] = convert_to_secret_str( get_from_param_or_env("url", url, "WATSONX_URL") ) parsed_url = urllib.parse.urlparse(creds["url"].get_secret_value()) if parsed_url.netloc.endswith("cloud.ibm.com"): if not (apikey or "WATSONX_APIKEY" in os.environ) and not ( token or "WATSONX_TOKEN" in os.environ ): raise ValueError( "Did not find 'apikey' or 'token'," " please add an environment variable" " `WATSONX_APIKEY` or 'WATSONX_TOKEN' " "which contains it," " or pass 'apikey' or 'token'" " as a named parameter." ) elif apikey or "WATSONX_APIKEY" in os.environ: creds["apikey"] = convert_to_secret_str( get_from_param_or_env("apikey", apikey, "WATSONX_APIKEY") ) else: creds["token"] = convert_to_secret_str( get_from_param_or_env("token", token, "WATSONX_TOKEN") ) else: if ( not token and "WATSONX_TOKEN" not in os.environ and not password and "WATSONX_PASSWORD" not in os.environ and not apikey and "WATSONX_APIKEY" not in os.environ ): raise ValueError( "Did not find 'token', 'password' or 'apikey'," " please add an environment variable" " `WATSONX_TOKEN`, 'WATSONX_PASSWORD' or 'WATSONX_APIKEY' " "which contains it," " or pass 'token', 'password' or 'apikey'" " as a named parameter." ) elif token or "WATSONX_TOKEN" in os.environ: creds["token"] = convert_to_secret_str( get_from_param_or_env("token", token, "WATSONX_TOKEN") ) elif password or "WATSONX_PASSWORD" in os.environ: creds["password"] = convert_to_secret_str( get_from_param_or_env("password", password, "WATSONX_PASSWORD") ) creds["username"] = convert_to_secret_str( get_from_param_or_env("username", username, "WATSONX_USERNAME") ) elif apikey or "WATSONX_APIKEY" in os.environ: creds["apikey"] = convert_to_secret_str( get_from_param_or_env("apikey", apikey, "WATSONX_APIKEY") ) creds["username"] = convert_to_secret_str( get_from_param_or_env("username", username, "WATSONX_USERNAME") ) if not instance_id or "WATSONX_INSTANCE_ID" not in os.environ: creds["instance_id"] = convert_to_secret_str( get_from_param_or_env("instance_id", instance_id, "WATSONX_INSTANCE_ID") ) return creds def convert_to_secret_str(value: Union[SecretStr, str]) -> SecretStr: """Convert a string to a SecretStr.""" if isinstance(value, SecretStr): return value return SecretStr(value)
import os import urllib.parse from typing import Dict, Optional, Union from llama_index.core.base.llms.generic_utils import ( get_from_param_or_env, ) # Import SecretStr directly from pydantic # since there is not one in llama_index.core.bridge.pydantic try: from pydantic.v1 import SecretStr except ImportError: from pydantic import SecretStr def resolve_watsonx_credentials( *, url: Optional[str] = None, apikey: Optional[str] = None, token: Optional[str] = None, username: Optional[str] = None, password: Optional[str] = None, instance_id: Optional[str] = None ) -> Dict[str, SecretStr]: """ Resolve watsonx.ai credentials. If the value of given param is None then tries to find corresponding environment variable. :raises ValueError: raises when value of required attribute is not found :return: Dictionary with resolved credentials items :rtype: Dict[str, SecretStr] """ creds = {} creds["url"] = convert_to_secret_str( get_from_param_or_env("url", url, "WATSONX_URL") ) parsed_url = urllib.parse.urlparse(creds["url"].get_secret_value()) if parsed_url.netloc.endswith("cloud.ibm.com"): if not (apikey or "WATSONX_APIKEY" in os.environ) and not ( token or "WATSONX_TOKEN" in os.environ ): raise ValueError( "Did not find 'apikey' or 'token'," " please add an environment variable" " `WATSONX_APIKEY` or 'WATSONX_TOKEN' " "which contains it," " or pass 'apikey' or 'token'" " as a named parameter." ) elif apikey or "WATSONX_APIKEY" in os.environ: creds["apikey"] = convert_to_secret_str( get_from_param_or_env("apikey", apikey, "WATSONX_APIKEY") ) else: creds["token"] = convert_to_secret_str( get_from_param_or_env("token", token, "WATSONX_TOKEN") ) else: if ( not token and "WATSONX_TOKEN" not in os.environ and not password and "WATSONX_PASSWORD" not in os.environ and not apikey and "WATSONX_APIKEY" not in os.environ ): raise ValueError( "Did not find 'token', 'password' or 'apikey'," " please add an environment variable" " `WATSONX_TOKEN`, 'WATSONX_PASSWORD' or 'WATSONX_APIKEY' " "which contains it," " or pass 'token', 'password' or 'apikey'" " as a named parameter." ) elif token or "WATSONX_TOKEN" in os.environ: creds["token"] = convert_to_secret_str( get_from_param_or_env("token", token, "WATSONX_TOKEN") ) elif password or "WATSONX_PASSWORD" in os.environ: creds["password"] = convert_to_secret_str( get_from_param_or_env("password", password, "WATSONX_PASSWORD") ) creds["username"] = convert_to_secret_str( get_from_param_or_env("username", username, "WATSONX_USERNAME") ) elif apikey or "WATSONX_APIKEY" in os.environ: creds["apikey"] = convert_to_secret_str( get_from_param_or_env("apikey", apikey, "WATSONX_APIKEY") ) creds["username"] = convert_to_secret_str( get_from_param_or_env("username", username, "WATSONX_USERNAME") ) if not instance_id or "WATSONX_INSTANCE_ID" not in os.environ: creds["instance_id"] = convert_to_secret_str( get_from_param_or_env("instance_id", instance_id, "WATSONX_INSTANCE_ID") ) return creds def convert_to_secret_str(value: Union[SecretStr, str]) -> SecretStr: """Convert a string to a SecretStr.""" if isinstance(value, SecretStr): return value return SecretStr(value)
import pytest from pydantic import parse_obj_as from docarray import BaseDoc from docarray.documents import TextDoc from docarray.utils._internal.pydantic import is_pydantic_v2 @pytest.mark.skipif(is_pydantic_v2, reason="Not working with pydantic v2 for now") def test_simple_init(): t = TextDoc(text='hello') assert t.text == 'hello' @pytest.mark.skipif(is_pydantic_v2, reason="Not working with pydantic v2 for now") def test_str_init(): t = parse_obj_as(TextDoc, 'hello') assert t.text == 'hello' @pytest.mark.skipif(is_pydantic_v2, reason="Not working with pydantic v2 for now") def test_doc(): class MyDoc(BaseDoc): text1: TextDoc text2: TextDoc doc = MyDoc(text1='hello', text2=TextDoc(text='world')) assert doc.text1.text == 'hello' assert doc.text2.text == 'world'
from pydantic import parse_obj_as from docarray import BaseDoc from docarray.documents import TextDoc def test_simple_init(): t = TextDoc(text='hello') assert t.text == 'hello' def test_str_init(): t = parse_obj_as(TextDoc, 'hello') assert t.text == 'hello' def test_doc(): class MyDoc(BaseDoc): text1: TextDoc text2: TextDoc doc = MyDoc(text1='hello', text2=TextDoc(text='world')) assert doc.text1.text == 'hello' assert doc.text2.text == 'world'
"""Generation output schema.""" from __future__ import annotations from typing import Any, Literal, Optional from langchain_core.load import Serializable from langchain_core.utils._merge import merge_dicts class Generation(Serializable): """A single text generation output. Generation represents the response from an "old-fashioned" LLM that generates regular text (not chat messages). This model is used internally by chat model and will eventually be mapped to a more general `LLMResult` object, and then projected into an `AIMessage` object. LangChain users working with chat models will usually access information via `AIMessage` (returned from runnable interfaces) or `LLMResult` (available via callbacks). Please refer the `AIMessage` and `LLMResult` schema documentation for more information. """ text: str """Generated text output.""" generation_info: Optional[dict[str, Any]] = None """Raw response from the provider. May include things like the reason for finishing or token log probabilities. """ type: Literal["Generation"] = "Generation" """Type is used exclusively for serialization purposes. Set to "Generation" for this class.""" @classmethod def is_lc_serializable(cls) -> bool: """Return whether this class is serializable.""" return True @classmethod def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object. Default namespace is ["langchain", "schema", "output"]. """ return ["langchain", "schema", "output"] class GenerationChunk(Generation): """Generation chunk, which can be concatenated with other Generation chunks.""" def __add__(self, other: GenerationChunk) -> GenerationChunk: """Concatenate two GenerationChunks.""" if isinstance(other, GenerationChunk): generation_info = merge_dicts( self.generation_info or {}, other.generation_info or {}, ) return GenerationChunk( text=self.text + other.text, generation_info=generation_info or None, ) msg = f"unsupported operand type(s) for +: '{type(self)}' and '{type(other)}'" raise TypeError(msg)
"""Generation output schema.""" from __future__ import annotations from typing import Any, Literal, Optional from pydantic import computed_field from langchain_core.load import Serializable from langchain_core.utils._merge import merge_dicts class Generation(Serializable): """A single text generation output. Generation represents the response from an "old-fashioned" LLM that generates regular text (not chat messages). This model is used internally by chat model and will eventually be mapped to a more general `LLMResult` object, and then projected into an `AIMessage` object. LangChain users working with chat models will usually access information via `AIMessage` (returned from runnable interfaces) or `LLMResult` (available via callbacks). Please refer the `AIMessage` and `LLMResult` schema documentation for more information. """ def __init__( self, text: str = "", generation_info: Optional[dict[str, Any]] = None, **kwargs: Any, ): """Initialize a Generation.""" super().__init__(generation_info=generation_info, **kwargs) self._text = text # workaround for ChatGeneration so that we can use a computed field to populate # the text field from the message content (parent class needs to have a property) @computed_field # type: ignore[prop-decorator] @property def text(self) -> str: """The text contents of the output.""" return self._text generation_info: Optional[dict[str, Any]] = None """Raw response from the provider. May include things like the reason for finishing or token log probabilities. """ type: Literal["Generation"] = "Generation" """Type is used exclusively for serialization purposes. Set to "Generation" for this class.""" @classmethod def is_lc_serializable(cls) -> bool: """Return whether this class is serializable.""" return True @classmethod def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object. Default namespace is ["langchain", "schema", "output"]. """ return ["langchain", "schema", "output"] class GenerationChunk(Generation): """Generation chunk, which can be concatenated with other Generation chunks.""" def __init__( self, text: str = "", generation_info: Optional[dict[str, Any]] = None, **kwargs: Any, ): """Initialize a GenerationChunk.""" super().__init__(text=text, generation_info=generation_info, **kwargs) self._text = text def __add__(self, other: GenerationChunk) -> GenerationChunk: """Concatenate two GenerationChunks.""" if isinstance(other, GenerationChunk): generation_info = merge_dicts( self.generation_info or {}, other.generation_info or {}, ) return GenerationChunk( text=self.text + other.text, generation_info=generation_info or None, ) msg = f"unsupported operand type(s) for +: '{type(self)}' and '{type(other)}'" raise TypeError(msg)
from workflows.retry_policy import RetryPolicy, ConstantDelayRetryPolicy # noqa
from typing import Protocol, Optional, runtime_checkable @runtime_checkable class RetryPolicy(Protocol): def next( self, elapsed_time: float, attempts: int, error: Exception ) -> Optional[float]: """ Decides if we should make another retry, returning the number of seconds to wait before the next run. Args: elapsed_time: Time in seconds that passed since the last attempt. attempts: The number of attempts done so far. error: The last error occurred. Returns: The amount of seconds to wait before the next attempt, or None if we stop retrying. """ class ConstantDelayRetryPolicy: """A simple policy that retries a step at regular intervals for a number of times.""" def __init__(self, maximum_attempts: int = 3, delay: float = 5) -> None: """ Creates a ConstantDelayRetryPolicy instance. Args: maximum_attempts: How many consecutive times the workflow should try to run the step in case of an error. delay: how much time in seconds must pass before another attempt. """ self.maximum_attempts = maximum_attempts self.delay = delay def next( self, elapsed_time: float, attempts: int, error: Exception ) -> Optional[float]: if attempts >= self.maximum_attempts: return None return self.delay
from typing import Any, Optional from llama_index.core.storage.docstore.keyval_docstore import KVDocumentStore from llama_index.storage.kvstore.couchbase import CouchbaseKVStore from llama_index.core.storage.docstore.types import DEFAULT_BATCH_SIZE class CouchbaseDocumentStore(KVDocumentStore): """ Couchbase Document (Node) store. A documents store for Document and Node objects using Couchbase. """ def __init__( self, couchbase_kvstore: CouchbaseKVStore, namespace: Optional[str] = None, batch_size: int = DEFAULT_BATCH_SIZE, node_collection_suffix: Optional[str] = None, ref_doc_collection_suffix: Optional[str] = None, metadata_collection_suffix: Optional[str] = None, ) -> None: """ Initialize a CouchbaseDocumentStore. Args: couchbase_kvstore (CouchbaseKVStore): Couchbase key-value store namespace (str): namespace for the docstore batch_size (int): batch size for fetching documents node_collection_suffix (str): suffix for the node collection ref_doc_collection_suffix (str): suffix for the Refdoc collection metadata_collection_suffix (str): suffix for the metadata collection """ super().__init__( couchbase_kvstore, namespace=namespace, batch_size=batch_size, node_collection_suffix=node_collection_suffix, ref_doc_collection_suffix=ref_doc_collection_suffix, metadata_collection_suffix=metadata_collection_suffix, ) @classmethod def from_couchbase_client( cls, client: Any, bucket_name: str, scope_name: str, namespace: Optional[str] = None, batch_size: int = DEFAULT_BATCH_SIZE, node_collection_suffix: Optional[str] = None, ref_doc_collection_suffix: Optional[str] = None, metadata_collection_suffix: Optional[str] = None, async_client: Optional[Any] = None, ) -> "CouchbaseDocumentStore": """Initialize a CouchbaseDocumentStore from a Couchbase client.""" couchbase_kvstore = CouchbaseKVStore.from_couchbase_client( client=client, bucket_name=bucket_name, scope_name=scope_name, async_client=async_client, ) return cls( couchbase_kvstore, namespace, batch_size, node_collection_suffix, ref_doc_collection_suffix, metadata_collection_suffix, )
from typing import Any, Optional from llama_index.core.storage.docstore.keyval_docstore import KVDocumentStore from llama_index.storage.kvstore.couchbase import CouchbaseKVStore from llama_index.core.storage.docstore.types import DEFAULT_BATCH_SIZE class CouchbaseDocumentStore(KVDocumentStore): """ Couchbase Document (Node) store. A documents store for Document and Node objects using Couchbase. """ def __init__( self, couchbase_kvstore: CouchbaseKVStore, namespace: Optional[str] = None, batch_size: int = DEFAULT_BATCH_SIZE, node_collection_suffix: Optional[str] = None, ref_doc_collection_suffix: Optional[str] = None, metadata_collection_suffix: Optional[str] = None, ) -> None: """ Initialize a CouchbaseDocumentStore. Args: couchbase_kvstore (CouchbaseKVStore): Couchbase key-value store namespace (str): namespace for the docstore batch_size (int): batch size for fetching documents node_collection_suffix (str): suffix for the node collection ref_doc_collection_suffix (str): suffix for the Refdoc collection metadata_collection_suffix (str): suffix for the metadata collection """ super().__init__( couchbase_kvstore, namespace=namespace, batch_size=batch_size, node_collection_suffix=node_collection_suffix, ref_doc_collection_suffix=ref_doc_collection_suffix, metadata_collection_suffix=metadata_collection_suffix, ) @classmethod def from_couchbase_client( cls, client: Any, bucket_name: str, scope_name: str, namespace: Optional[str] = None, batch_size: int = DEFAULT_BATCH_SIZE, node_collection_suffix: Optional[str] = None, ref_doc_collection_suffix: Optional[str] = None, metadata_collection_suffix: Optional[str] = None, async_client: Optional[Any] = None, ) -> "CouchbaseDocumentStore": """Initialize a CouchbaseDocumentStore from a Couchbase client.""" couchbase_kvstore = CouchbaseKVStore.from_couchbase_client( client=client, bucket_name=bucket_name, scope_name=scope_name, async_client=async_client, ) return cls( couchbase_kvstore, namespace, batch_size, node_collection_suffix, ref_doc_collection_suffix, metadata_collection_suffix, )
from base64 import b64encode from typing import Optional from urllib.parse import urlencode from backend.data.model import OAuth2Credentials from backend.integrations.providers import ProviderName from backend.util.request import Requests from .base import BaseOAuthHandler class NotionOAuthHandler(BaseOAuthHandler): """ Based on the documentation at https://developers.notion.com/docs/authorization Notes: - Notion uses non-expiring access tokens and therefore doesn't have a refresh flow - Notion doesn't use scopes """ PROVIDER_NAME = ProviderName.NOTION def __init__(self, client_id: str, client_secret: str, redirect_uri: str): self.client_id = client_id self.client_secret = client_secret self.redirect_uri = redirect_uri self.auth_base_url = "https://api.notion.com/v1/oauth/authorize" self.token_url = "https://api.notion.com/v1/oauth/token" def get_login_url( self, scopes: list[str], state: str, code_challenge: Optional[str] ) -> str: params = { "client_id": self.client_id, "redirect_uri": self.redirect_uri, "response_type": "code", "owner": "user", "state": state, } return f"{self.auth_base_url}?{urlencode(params)}" def exchange_code_for_tokens( self, code: str, scopes: list[str], code_verifier: Optional[str] ) -> OAuth2Credentials: request_body = { "grant_type": "authorization_code", "code": code, "redirect_uri": self.redirect_uri, } auth_str = b64encode(f"{self.client_id}:{self.client_secret}".encode()).decode() headers = { "Authorization": f"Basic {auth_str}", "Accept": "application/json", } response = Requests().post(self.token_url, json=request_body, headers=headers) token_data = response.json() # Email is only available for non-bot users email = ( token_data["owner"]["person"]["email"] if "person" in token_data["owner"] and "email" in token_data["owner"]["person"] else None ) return OAuth2Credentials( provider=self.PROVIDER_NAME, title=token_data.get("workspace_name"), username=email, access_token=token_data["access_token"], refresh_token=None, access_token_expires_at=None, # Notion tokens don't expire refresh_token_expires_at=None, scopes=[], metadata={ "owner": token_data["owner"], "bot_id": token_data["bot_id"], "workspace_id": token_data["workspace_id"], "workspace_name": token_data.get("workspace_name"), "workspace_icon": token_data.get("workspace_icon"), }, ) def revoke_tokens(self, credentials: OAuth2Credentials) -> bool: # Notion doesn't support token revocation return False def _refresh_tokens(self, credentials: OAuth2Credentials) -> OAuth2Credentials: # Notion doesn't support token refresh return credentials def needs_refresh(self, credentials: OAuth2Credentials) -> bool: # Notion access tokens don't expire return False
from base64 import b64encode from typing import Optional from urllib.parse import urlencode from backend.data.model import OAuth2Credentials from backend.integrations.providers import ProviderName from backend.util.request import requests from .base import BaseOAuthHandler class NotionOAuthHandler(BaseOAuthHandler): """ Based on the documentation at https://developers.notion.com/docs/authorization Notes: - Notion uses non-expiring access tokens and therefore doesn't have a refresh flow - Notion doesn't use scopes """ PROVIDER_NAME = ProviderName.NOTION def __init__(self, client_id: str, client_secret: str, redirect_uri: str): self.client_id = client_id self.client_secret = client_secret self.redirect_uri = redirect_uri self.auth_base_url = "https://api.notion.com/v1/oauth/authorize" self.token_url = "https://api.notion.com/v1/oauth/token" def get_login_url( self, scopes: list[str], state: str, code_challenge: Optional[str] ) -> str: params = { "client_id": self.client_id, "redirect_uri": self.redirect_uri, "response_type": "code", "owner": "user", "state": state, } return f"{self.auth_base_url}?{urlencode(params)}" def exchange_code_for_tokens( self, code: str, scopes: list[str], code_verifier: Optional[str] ) -> OAuth2Credentials: request_body = { "grant_type": "authorization_code", "code": code, "redirect_uri": self.redirect_uri, } auth_str = b64encode(f"{self.client_id}:{self.client_secret}".encode()).decode() headers = { "Authorization": f"Basic {auth_str}", "Accept": "application/json", } response = requests.post(self.token_url, json=request_body, headers=headers) token_data = response.json() # Email is only available for non-bot users email = ( token_data["owner"]["person"]["email"] if "person" in token_data["owner"] and "email" in token_data["owner"]["person"] else None ) return OAuth2Credentials( provider=self.PROVIDER_NAME, title=token_data.get("workspace_name"), username=email, access_token=token_data["access_token"], refresh_token=None, access_token_expires_at=None, # Notion tokens don't expire refresh_token_expires_at=None, scopes=[], metadata={ "owner": token_data["owner"], "bot_id": token_data["bot_id"], "workspace_id": token_data["workspace_id"], "workspace_name": token_data.get("workspace_name"), "workspace_icon": token_data.get("workspace_icon"), }, ) def revoke_tokens(self, credentials: OAuth2Credentials) -> bool: # Notion doesn't support token revocation return False def _refresh_tokens(self, credentials: OAuth2Credentials) -> OAuth2Credentials: # Notion doesn't support token refresh return credentials def needs_refresh(self, credentials: OAuth2Credentials) -> bool: # Notion access tokens don't expire return False
from typing import Optional from docarray import Document, DocumentArray from pydantic import BaseModel from uvicorn import Config, Server from jina import Gateway, __default_host__ from jina.clients.request import request_generator class DummyResponseModel(BaseModel): arg1: Optional[str] arg2: Optional[str] arg3: Optional[str] class ProcessedResponseModel(BaseModel): text: str tags: Optional[dict] class DummyGateway(Gateway): def __init__( self, arg1: str = None, arg2: str = None, arg3: str = 'default-arg3', **kwargs ): super().__init__(**kwargs) self.port = self.runtime_args.port[0] self.arg1 = arg1 self.arg2 = arg2 self.arg3 = arg3 async def setup_server(self): from fastapi import FastAPI app = FastAPI( title='Dummy Server', ) @app.get(path='/', response_model=DummyResponseModel) def _get_response(): return { 'arg1': self.arg1, 'arg2': self.arg2, 'arg3': self.arg3, } @app.get( path='/stream', response_model=ProcessedResponseModel, ) async def _process(text: str): doc = None async for req in self.streamer.stream( request_generator( exec_endpoint='/debug', data=DocumentArray([Document(text=text)]), ) ): doc = req.to_dict()['data'][0] return {'text': doc['text'], 'tags': doc['tags']} self.server = Server(Config(app, host=__default_host__, port=self.port)) async def run_server(self): await self.server.serve() async def teardown(self): await super().teardown() await self.server.shutdown() async def stop_server(self): self.server.should_exit = True @property def should_exit(self) -> bool: return self.server.should_exit
from typing import Optional from docarray import Document, DocumentArray from pydantic import BaseModel from uvicorn import Config, Server from jina import Gateway, __default_host__ from jina.clients.request import request_generator class DummyResponseModel(BaseModel): arg1: Optional[str] arg2: Optional[str] arg3: Optional[str] class ProcessedResponseModel(BaseModel): text: str tags: Optional[dict] class DummyGateway(Gateway): def __init__( self, port: int = None, arg1: str = None, arg2: str = None, arg3: str = 'default-arg3', **kwargs ): super().__init__(**kwargs) self.port = port self.arg1 = arg1 self.arg2 = arg2 self.arg3 = arg3 async def setup_server(self): from fastapi import FastAPI app = FastAPI( title='Dummy Server', ) @app.get(path='/', response_model=DummyResponseModel) def _get_response(): return { 'arg1': self.arg1, 'arg2': self.arg2, 'arg3': self.arg3, } @app.get( path='/stream', response_model=ProcessedResponseModel, ) async def _process(text: str): doc = None async for req in self.streamer.stream( request_generator( exec_endpoint='/debug', data=DocumentArray([Document(text=text)]), ) ): doc = req.to_dict()['data'][0] return {'text': doc['text'], 'tags': doc['tags']} self.server = Server(Config(app, host=__default_host__, port=self.port)) async def run_server(self): await self.server.serve() async def teardown(self): await super().teardown() await self.server.shutdown() async def stop_server(self): self.server.should_exit = True @property def should_exit(self) -> bool: return self.server.should_exit
import os import httpx import pytest from llama_index.core.base.embeddings.base import BaseEmbedding from llama_index.embeddings.cohere import CohereEmbedding def test_embedding_class(): emb = CohereEmbedding(api_key="token") assert isinstance(emb, BaseEmbedding) @pytest.mark.skipif( os.environ.get("CO_API_KEY") is None, reason="Cohere API key required" ) def test_sync_embedding(): emb = CohereEmbedding( api_key=os.environ["CO_API_KEY"], model_name="embed-english-v3.0", input_type="clustering", embedding_type="float", httpx_client=httpx.Client(), ) emb.get_query_embedding("I love Cohere!") @pytest.mark.skipif( os.environ.get("CO_API_KEY") is None, reason="Cohere API key required" ) @pytest.mark.asyncio() async def test_async_embedding(): emb = CohereEmbedding( api_key=os.environ["CO_API_KEY"], model_name="embed-english-v3.0", input_type="clustering", embedding_type="float", httpx_async_client=httpx.AsyncClient(), ) await emb.aget_query_embedding("I love Cohere!") def test_cohere_embeddings_custom_endpoint_multiprocessing(): """When used in multiprocessing, the CohereEmbedding instance will be serialized and deserialized. This test verifies, that custom base_url's are retained in the spawned processes. """ # Arrange: Create a CohereEmbeddings instance with a custom base_url custom_base_url = "test_endpoint" api_key = "test_api_key" embeddings = CohereEmbedding(api_key=api_key, base_url=custom_base_url) # Act: Simulate serialization and deserialization serialized_data = embeddings.__getstate__() deserialized_embeddings = CohereEmbedding.__new__(CohereEmbedding) deserialized_embeddings.__setstate__(serialized_data) # Assert: Verify that the deserialized instance retains the correct base_url assert deserialized_embeddings.base_url == custom_base_url
import os import httpx import pytest from llama_index.core.base.embeddings.base import BaseEmbedding from llama_index.embeddings.cohere import CohereEmbedding def test_embedding_class(): emb = CohereEmbedding(api_key="token") assert isinstance(emb, BaseEmbedding) @pytest.mark.skipif( os.environ.get("CO_API_KEY") is None, reason="Cohere API key required" ) def test_sync_embedding(): emb = CohereEmbedding( api_key=os.environ["CO_API_KEY"], model_name="embed-english-v3.0", input_type="clustering", embedding_type="float", httpx_client=httpx.Client(), ) emb.get_query_embedding("I love Cohere!") @pytest.mark.skipif( os.environ.get("CO_API_KEY") is None, reason="Cohere API key required" ) @pytest.mark.asyncio() async def test_async_embedding(): emb = CohereEmbedding( api_key=os.environ["CO_API_KEY"], model_name="embed-english-v3.0", input_type="clustering", embedding_type="float", httpx_async_client=httpx.AsyncClient(), ) await emb.aget_query_embedding("I love Cohere!")
from llama_index_instrumentation.base import BaseInstrumentationHandler # noqa
from abc import ABC, abstractmethod class BaseInstrumentationHandler(ABC): @classmethod @abstractmethod def init(cls) -> None: """Initialize the instrumentation handler."""
from .tensor import flush_ndarray, read_ndarray
from collections import defaultdict from typing import TYPE_CHECKING, Optional from google.protobuf.json_format import MessageToDict from google.protobuf.struct_pb2 import Struct from docarray.proto.io.ndarray import flush_ndarray, read_ndarray from docarray.proto.docarray_pb2 import NdArrayProto, DocumentProto if TYPE_CHECKING: # pragma: no cover from docarray import Document def parse_proto(pb_msg: 'DocumentProto') -> 'Document': from docarray import Document from docarray.score import NamedScore fields = {} for (field, value) in pb_msg.ListFields(): f_name = field.name if f_name == 'chunks' or f_name == 'matches': fields[f_name] = [Document.from_protobuf(d) for d in value] elif isinstance(value, NdArrayProto): fields[f_name] = read_ndarray(value) elif isinstance(value, Struct): fields[f_name] = MessageToDict(value, preserving_proto_field_name=True) elif f_name == 'location': fields[f_name] = list(value) elif f_name == 'scores' or f_name == 'evaluations': fields[f_name] = defaultdict(NamedScore) for k, v in value.items(): fields[f_name][k] = NamedScore( {ff.name: vv for (ff, vv) in v.ListFields()} ) else: fields[f_name] = value return Document(**fields) def flush_proto(doc: 'Document', ndarray_type: Optional[str] = None) -> 'DocumentProto': pb_msg = DocumentProto() for key in doc.non_empty_fields: try: value = getattr(doc, key) if key in ('tensor', 'embedding'): flush_ndarray(getattr(pb_msg, key), value, ndarray_type=ndarray_type) elif key in ('chunks', 'matches'): for d in value: d: Document docs = getattr(pb_msg, key) docs.append(d.to_protobuf()) elif key == 'tags': pb_msg.tags.update(value) elif key == '_metadata': pb_msg._metadata.update(value) elif key in ('scores', 'evaluations'): for kk, vv in value.items(): for ff in vv.non_empty_fields: setattr(getattr(pb_msg, key)[kk], ff, getattr(vv, ff)) elif key == 'location': pb_msg.location.extend(value) elif key == 'content': pass # intentionally ignore `content` field as it is just a proxy else: # other simple fields setattr(pb_msg, key, value) except RecursionError as ex: if len(ex.args) >= 1: ex.args = ( f'Field `{key}` contains cyclic reference in memory. ' f'Could it be your Document is referring to itself?', ) raise except Exception as ex: if len(ex.args) >= 1: ex.args = (f'Field `{key}` is problematic',) + ex.args raise return pb_msg
# THIS FILE HAS BEEN AUTOGENERATED. To update: # 1. modify the `_deps` dict in setup.py # 2. run `make deps_table_update`` deps = { "Pillow": "Pillow>=10.0.1,<=15.0", "accelerate": "accelerate>=0.26.0", "av": "av", "beautifulsoup4": "beautifulsoup4", "blobfile": "blobfile", "codecarbon": "codecarbon>=2.8.1", "cookiecutter": "cookiecutter==1.7.3", "dataclasses": "dataclasses", "datasets": "datasets!=2.5.0", "deepspeed": "deepspeed>=0.9.3", "diffusers": "diffusers", "dill": "dill<0.3.5", "evaluate": "evaluate>=0.2.0", "faiss-cpu": "faiss-cpu", "fastapi": "fastapi", "filelock": "filelock", "flax": "flax>=0.4.1,<=0.7.0", "ftfy": "ftfy", "fugashi": "fugashi>=1.0", "GitPython": "GitPython<3.1.19", "hf-doc-builder": "hf-doc-builder>=0.3.0", "hf_xet": "hf_xet", "huggingface-hub": "huggingface-hub>=0.30.0,<1.0", "importlib_metadata": "importlib_metadata", "ipadic": "ipadic>=1.0.0,<2.0", "isort": "isort>=5.5.4", "jax": "jax>=0.4.1,<=0.4.13", "jaxlib": "jaxlib>=0.4.1,<=0.4.13", "jieba": "jieba", "jinja2": "jinja2>=3.1.0", "kenlm": "kenlm", "keras": "keras>2.9,<2.16", "keras-nlp": "keras-nlp>=0.3.1,<0.14.0", "kernels": "kernels>=0.4.4,<0.5", "librosa": "librosa", "natten": "natten>=0.14.6,<0.15.0", "nltk": "nltk<=3.8.1", "num2words": "num2words", "numpy": "numpy>=1.17", "onnxconverter-common": "onnxconverter-common", "onnxruntime-tools": "onnxruntime-tools>=1.4.2", "onnxruntime": "onnxruntime>=1.4.0", "opencv-python": "opencv-python", "optimum-benchmark": "optimum-benchmark>=0.3.0", "optuna": "optuna", "optax": "optax>=0.0.8,<=0.1.4", "packaging": "packaging>=20.0", "parameterized": "parameterized", "phonemizer": "phonemizer", "protobuf": "protobuf", "psutil": "psutil", "pyyaml": "pyyaml>=5.1", "pydantic": "pydantic", "pytest": "pytest>=7.2.0", "pytest-asyncio": "pytest-asyncio", "pytest-rerunfailures": "pytest-rerunfailures", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "pytest-order": "pytest-order", "python": "python>=3.9.0", "ray[tune]": "ray[tune]>=2.7.0", "regex": "regex!=2019.12.17", "requests": "requests", "rhoknp": "rhoknp>=1.1.0,<1.3.1", "rjieba": "rjieba", "rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1", "ruff": "ruff==0.11.2", "sacrebleu": "sacrebleu>=1.4.12,<2.0.0", "sacremoses": "sacremoses", "safetensors": "safetensors>=0.4.3", "sagemaker": "sagemaker>=2.31.0", "schedulefree": "schedulefree>=1.2.6", "scikit-learn": "scikit-learn", "scipy": "scipy<1.13.0", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "sigopt": "sigopt", "starlette": "starlette", "sudachipy": "sudachipy>=0.6.6", "sudachidict_core": "sudachidict_core>=20220729", "tensorboard": "tensorboard", "tensorflow-cpu": "tensorflow-cpu>2.9,<2.16", "tensorflow": "tensorflow>2.9,<2.16", "tensorflow-text": "tensorflow-text<2.16", "tensorflow-probability": "tensorflow-probability<0.24", "tf2onnx": "tf2onnx", "timeout-decorator": "timeout-decorator", "tiktoken": "tiktoken", "timm": "timm<=1.0.11", "tokenizers": "tokenizers>=0.21,<0.22", "torch": "torch>=2.1,<2.7", "torchaudio": "torchaudio", "torchvision": "torchvision", "pyctcdecode": "pyctcdecode>=0.4.0", "tqdm": "tqdm>=4.27", "unidic": "unidic>=1.0.2", "unidic_lite": "unidic_lite>=1.0.7", "urllib3": "urllib3<2.0.0", "uvicorn": "uvicorn", "pytest-rich": "pytest-rich", "libcst": "libcst", "rich": "rich", }
# THIS FILE HAS BEEN AUTOGENERATED. To update: # 1. modify the `_deps` dict in setup.py # 2. run `make deps_table_update`` deps = { "Pillow": "Pillow>=10.0.1,<=15.0", "accelerate": "accelerate>=0.26.0", "av": "av", "beautifulsoup4": "beautifulsoup4", "blobfile": "blobfile", "codecarbon": "codecarbon>=2.8.1", "cookiecutter": "cookiecutter==1.7.3", "dataclasses": "dataclasses", "datasets": "datasets!=2.5.0", "deepspeed": "deepspeed>=0.9.3", "diffusers": "diffusers", "dill": "dill<0.3.5", "evaluate": "evaluate>=0.2.0", "faiss-cpu": "faiss-cpu", "fastapi": "fastapi", "filelock": "filelock", "flax": "flax>=0.4.1,<=0.7.0", "ftfy": "ftfy", "fugashi": "fugashi>=1.0", "GitPython": "GitPython<3.1.19", "hf-doc-builder": "hf-doc-builder>=0.3.0", "hf_xet": "hf_xet", "huggingface-hub": "huggingface-hub>=0.30.0,<1.0", "importlib_metadata": "importlib_metadata", "ipadic": "ipadic>=1.0.0,<2.0", "isort": "isort>=5.5.4", "jax": "jax>=0.4.1,<=0.4.13", "jaxlib": "jaxlib>=0.4.1,<=0.4.13", "jieba": "jieba", "jinja2": "jinja2>=3.1.0", "kenlm@git+https://github.com/ydshieh/kenlm@78f664fb3dafe1468d868d71faf19534530698d5": "kenlm@git+https://github.com/ydshieh/kenlm@78f664fb3dafe1468d868d71faf19534530698d5", "keras": "keras>2.9,<2.16", "keras-nlp": "keras-nlp>=0.3.1,<0.14.0", "kernels": "kernels>=0.4.4,<0.5", "librosa": "librosa", "natten": "natten>=0.14.6,<0.15.0", "nltk": "nltk<=3.8.1", "num2words": "num2words", "numpy": "numpy>=1.17", "onnxconverter-common": "onnxconverter-common", "onnxruntime-tools": "onnxruntime-tools>=1.4.2", "onnxruntime": "onnxruntime>=1.4.0", "opencv-python": "opencv-python", "optimum-benchmark": "optimum-benchmark>=0.3.0", "optuna": "optuna", "optax": "optax>=0.0.8,<=0.1.4", "packaging": "packaging>=20.0", "parameterized": "parameterized", "phonemizer": "phonemizer", "protobuf": "protobuf", "psutil": "psutil", "pyyaml": "pyyaml>=5.1", "pydantic": "pydantic", "pytest": "pytest>=7.2.0", "pytest-asyncio": "pytest-asyncio", "pytest-rerunfailures": "pytest-rerunfailures", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "pytest-order": "pytest-order", "python": "python>=3.9.0", "ray[tune]": "ray[tune]>=2.7.0", "regex": "regex!=2019.12.17", "requests": "requests", "rhoknp": "rhoknp>=1.1.0,<1.3.1", "rjieba": "rjieba", "rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1", "ruff": "ruff==0.11.2", "sacrebleu": "sacrebleu>=1.4.12,<2.0.0", "sacremoses": "sacremoses", "safetensors": "safetensors>=0.4.3", "sagemaker": "sagemaker>=2.31.0", "schedulefree": "schedulefree>=1.2.6", "scikit-learn": "scikit-learn", "scipy": "scipy<1.13.0", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "sigopt": "sigopt", "starlette": "starlette", "sudachipy": "sudachipy>=0.6.6", "sudachidict_core": "sudachidict_core>=20220729", "tensorboard": "tensorboard", "tensorflow-cpu": "tensorflow-cpu>2.9,<2.16", "tensorflow": "tensorflow>2.9,<2.16", "tensorflow-text": "tensorflow-text<2.16", "tensorflow-probability": "tensorflow-probability<0.24", "tf2onnx": "tf2onnx", "timeout-decorator": "timeout-decorator", "tiktoken": "tiktoken", "timm": "timm<=1.0.11", "tokenizers": "tokenizers>=0.21,<0.22", "torch": "torch>=2.1,<2.7", "torchaudio": "torchaudio", "torchvision": "torchvision", "pyctcdecode": "pyctcdecode>=0.4.0", "tqdm": "tqdm>=4.27", "unidic": "unidic>=1.0.2", "unidic_lite": "unidic_lite>=1.0.7", "urllib3": "urllib3<2.0.0", "uvicorn": "uvicorn", "pytest-rich": "pytest-rich", "libcst": "libcst", "rich": "rich", }
from __future__ import annotations from sentence_transformers import util from sentence_transformers.sparse_encoder.losses.SparseCoSENTLoss import SparseCoSENTLoss from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class SparseAnglELoss(SparseCoSENTLoss): def __init__(self, model: SparseEncoder, scale: float = 20.0) -> None: """ This class implements AnglE (Angle Optimized). This is a modification of :class:`SparseCoSENTLoss`, designed to address the following issue: The cosine function's gradient approaches 0 as the wave approaches the top or bottom of its form. This can hinder the optimization process, so AnglE proposes to instead optimize the angle difference in complex space in order to mitigate this effect. It expects that each of the InputExamples consists of a pair of texts and a float valued label, representing the expected similarity score between the pair. It computes the following loss function: ``loss = logsum(1+exp(s(k,l)-s(i,j))+exp...)``, where ``(i,j)`` and ``(k,l)`` are any of the input pairs in the batch such that the expected similarity of ``(i,j)`` is greater than ``(k,l)``. The summation is over all possible pairs of input pairs in the batch that match this condition. This is the same as CoSENTLoss, with a different similarity function. Args: model: SparseEncoder scale: Output of similarity function is multiplied by scale value. Represents the inverse temperature. References: - For further details, see: https://arxiv.org/abs/2309.12871v1 Requirements: - Sentence pairs with corresponding similarity scores in range of the similarity function. Default is [-1,1]. Inputs: +--------------------------------+------------------------+ | Texts | Labels | +================================+========================+ | (sentence_A, sentence_B) pairs | float similarity score | +--------------------------------+------------------------+ Relations: - :class:`SparseCoSENTLoss` is AnglELoss with ``pairwise_cos_sim`` as the metric, rather than ``pairwise_angle_sim``. - :class:`SparseCosineSimilarityLoss` seems to produce a weaker training signal than ``SparseCoSENTLoss`` or ``SparseAnglELoss``. Example: :: from datasets import Dataset from sentence_transformers.sparse_encoder import SparseEncoder, SparseEncoderTrainer, losses model = SparseEncoder("naver/splade-cocondenser-ensembledistil") train_dataset = Dataset.from_dict( { "sentence1": ["It's nice weather outside today.", "He drove to work."], "sentence2": ["It's so sunny.", "She walked to the store."], "score": [1.0, 0.3], } ) loss = losses.SparseAnglELoss(model) trainer = SparseEncoderTrainer(model=model, train_dataset=train_dataset, loss=loss) trainer.train() """ return super().__init__(model, scale, similarity_fct=util.pairwise_angle_sim)
from __future__ import annotations from sentence_transformers import util from sentence_transformers.sparse_encoder.losses.SparseCoSENTLoss import SparseCoSENTLoss from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class SparseAnglELoss(SparseCoSENTLoss): def __init__(self, model: SparseEncoder, scale: float = 20.0) -> None: return super().__init__(model, scale, similarity_fct=util.pairwise_angle_sim)
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.agent_toolkits.multion.toolkit import MultionToolkit # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "MultionToolkit": "langchain_community.agent_toolkits.multion.toolkit", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "MultionToolkit", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.agent_toolkits.multion.toolkit import MultionToolkit # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "MultionToolkit": "langchain_community.agent_toolkits.multion.toolkit" } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "MultionToolkit", ]
# coding=utf-8 # Copyright 2025 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Video processor class for LLaVa-Onevision.""" from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ) from ...processing_utils import Unpack, VideosKwargs from ...utils import is_vision_available from ...utils.import_utils import requires from ...video_processing_utils import ( BaseVideoProcessor, ) if is_vision_available(): from ...image_utils import PILImageResampling class LlavaOnevisionFastVideoProcessorInitKwargs(VideosKwargs): ... @requires(backends=("torchvision",)) class LlavaOnevisionVideoProcessor(BaseVideoProcessor): resample = PILImageResampling.BICUBIC image_mean = OPENAI_CLIP_MEAN image_std = OPENAI_CLIP_STD size = {"height": 384, "width": 384} rescale_factor = 1 / 255 default_to_square = False crop_size = None do_resize = True do_center_crop = None do_rescale = True do_normalize = True do_convert_rgb = True do_sample_frames = False # Set to False for BC, recommended to set `True` in new models valid_kwargs = LlavaOnevisionFastVideoProcessorInitKwargs model_input_names = ["pixel_values_videos"] def __init__(self, **kwargs: Unpack[LlavaOnevisionFastVideoProcessorInitKwargs]): super().__init__(**kwargs) __all__ = ["LlavaOnevisionVideoProcessor"]
# coding=utf-8 # Copyright 2025 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Video processor class for LLaVa-Onevision.""" from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ) from ...processing_utils import Unpack, VideosKwargs from ...utils import is_vision_available from ...utils.import_utils import requires from ...video_processing_utils import ( BaseVideoProcessor, ) if is_vision_available(): from ...image_utils import PILImageResampling class LlavaOnevisionFastVideoProcessorInitKwargs(VideosKwargs): ... @requires(backends=("torchvision",)) class LlavaOnevisionVideoProcessor(BaseVideoProcessor): resample = PILImageResampling.BICUBIC image_mean = OPENAI_CLIP_MEAN image_std = OPENAI_CLIP_STD size = {"height": 384, "width": 384} rescale_factor = 1 / 255 default_to_square = False crop_size = None do_resize = True do_center_crop = None do_rescale = True do_normalize = True do_convert_rgb = True valid_kwargs = LlavaOnevisionFastVideoProcessorInitKwargs model_input_names = ["pixel_values_videos"] def __init__(self, **kwargs: Unpack[LlavaOnevisionFastVideoProcessorInitKwargs]): super().__init__(**kwargs) __all__ = ["LlavaOnevisionVideoProcessor"]
_base_ = [ '../_base_/models/mask-rcnn_r50_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] pretrained = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth' # noqa model = dict( type='MaskRCNN', backbone=dict( _delete_=True, type='SwinTransformer', embed_dims=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7, mlp_ratio=4, qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.2, patch_norm=True, out_indices=(0, 1, 2, 3), with_cp=False, convert_weights=True, init_cfg=dict(type='Pretrained', checkpoint=pretrained)), neck=dict(in_channels=[96, 192, 384, 768])) max_epochs = 12 train_cfg = dict(max_epochs=max_epochs) # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=1000), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[8, 11], gamma=0.1) ] # optimizer optim_wrapper = dict( type='OptimWrapper', paramwise_cfg=dict( custom_keys={ 'absolute_pos_embed': dict(decay_mult=0.), 'relative_position_bias_table': dict(decay_mult=0.), 'norm': dict(decay_mult=0.) }), optimizer=dict( _delete_=True, type='AdamW', lr=0.0001, betas=(0.9, 0.999), weight_decay=0.05))
_base_ = [ '../_base_/models/mask_rcnn_r50_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] pretrained = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth' # noqa model = dict( type='MaskRCNN', backbone=dict( _delete_=True, type='SwinTransformer', embed_dims=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7, mlp_ratio=4, qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.2, patch_norm=True, out_indices=(0, 1, 2, 3), with_cp=False, convert_weights=True, init_cfg=dict(type='Pretrained', checkpoint=pretrained)), neck=dict(in_channels=[96, 192, 384, 768])) max_epochs = 12 train_cfg = dict(max_epochs=max_epochs) # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=1000), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[8, 11], gamma=0.1) ] # optimizer optim_wrapper = dict( type='OptimWrapper', paramwise_cfg=dict( custom_keys={ 'absolute_pos_embed': dict(decay_mult=0.), 'relative_position_bias_table': dict(decay_mult=0.), 'norm': dict(decay_mult=0.) }), optimizer=dict( _delete_=True, type='AdamW', lr=0.0001, betas=(0.9, 0.999), weight_decay=0.05))
import numpy as np import pytest from docarray import BaseDoc, DocArray from docarray.documents import ImageDoc, TextDoc from docarray.typing import NdArray @pytest.mark.proto def test_simple_proto(): class CustomDoc(BaseDoc): text: str tensor: NdArray da = DocArray( [CustomDoc(text='hello', tensor=np.zeros((3, 224, 224))) for _ in range(10)] ) new_da = DocArray[CustomDoc].from_protobuf(da.to_protobuf()) for doc1, doc2 in zip(da, new_da): assert doc1.text == doc2.text assert (doc1.tensor == doc2.tensor).all() @pytest.mark.proto def test_nested_proto(): class CustomDocument(BaseDoc): text: TextDoc image: ImageDoc da = DocArray[CustomDocument]( [ CustomDocument( text=TextDoc(text='hello'), image=ImageDoc(tensor=np.zeros((3, 224, 224))), ) for _ in range(10) ] ) DocArray[CustomDocument].from_protobuf(da.to_protobuf()) @pytest.mark.proto def test_nested_proto_any_doc(): class CustomDocument(BaseDoc): text: TextDoc image: ImageDoc da = DocArray[CustomDocument]( [ CustomDocument( text=TextDoc(text='hello'), image=ImageDoc(tensor=np.zeros((3, 224, 224))), ) for _ in range(10) ] ) DocArray.from_protobuf(da.to_protobuf())
import numpy as np import pytest from docarray import BaseDocument, DocumentArray from docarray.documents import ImageDoc, TextDoc from docarray.typing import NdArray @pytest.mark.proto def test_simple_proto(): class CustomDoc(BaseDocument): text: str tensor: NdArray da = DocumentArray( [CustomDoc(text='hello', tensor=np.zeros((3, 224, 224))) for _ in range(10)] ) new_da = DocumentArray[CustomDoc].from_protobuf(da.to_protobuf()) for doc1, doc2 in zip(da, new_da): assert doc1.text == doc2.text assert (doc1.tensor == doc2.tensor).all() @pytest.mark.proto def test_nested_proto(): class CustomDocument(BaseDocument): text: TextDoc image: ImageDoc da = DocumentArray[CustomDocument]( [ CustomDocument( text=TextDoc(text='hello'), image=ImageDoc(tensor=np.zeros((3, 224, 224))), ) for _ in range(10) ] ) DocumentArray[CustomDocument].from_protobuf(da.to_protobuf()) @pytest.mark.proto def test_nested_proto_any_doc(): class CustomDocument(BaseDocument): text: TextDoc image: ImageDoc da = DocumentArray[CustomDocument]( [ CustomDocument( text=TextDoc(text='hello'), image=ImageDoc(tensor=np.zeros((3, 224, 224))), ) for _ in range(10) ] ) DocumentArray.from_protobuf(da.to_protobuf())
# Copyright (c) OpenMMLab. All rights reserved. from .lr_scheduler import (ConstantLR, CosineAnnealingLR, ExponentialLR, LinearLR, MultiStepLR, PolyLR, StepLR) from .momentum_scheduler import (ConstantMomentum, CosineAnnealingMomentum, ExponentialMomentum, LinearMomentum, MultiStepMomentum, PolyMomentum, StepMomentum) from .param_scheduler import (ConstantParamScheduler, CosineAnnealingParamScheduler, ExponentialParamScheduler, LinearParamScheduler, MultiStepParamScheduler, PolyParamScheduler, StepParamScheduler, _ParamScheduler) __all__ = [ 'ConstantLR', 'CosineAnnealingLR', 'ExponentialLR', 'LinearLR', 'MultiStepLR', 'StepLR', 'ConstantMomentum', 'CosineAnnealingMomentum', 'ExponentialMomentum', 'LinearMomentum', 'MultiStepMomentum', 'StepMomentum', 'ConstantParamScheduler', 'CosineAnnealingParamScheduler', 'ExponentialParamScheduler', 'LinearParamScheduler', 'MultiStepParamScheduler', 'StepParamScheduler', '_ParamScheduler', 'PolyParamScheduler', 'PolyLR', 'PolyMomentum' ]
# Copyright (c) OpenMMLab. All rights reserved. from .lr_scheduler import (ConstantLR, CosineAnnealingLR, ExponentialLR, LinearLR, MultiStepLR, StepLR) from .momentum_scheduler import (ConstantMomentum, CosineAnnealingMomentum, ExponentialMomentum, LinearMomentum, MultiStepMomentum, StepMomentum) from .param_scheduler import (ConstantParamScheduler, CosineAnnealingParamScheduler, ExponentialParamScheduler, LinearParamScheduler, MultiStepParamScheduler, StepParamScheduler, _ParamScheduler) __all__ = [ 'ConstantLR', 'CosineAnnealingLR', 'ExponentialLR', 'LinearLR', 'MultiStepLR', 'StepLR', 'ConstantMomentum', 'CosineAnnealingMomentum', 'ExponentialMomentum', 'LinearMomentum', 'MultiStepMomentum', 'StepMomentum', 'ConstantParamScheduler', 'CosineAnnealingParamScheduler', 'ExponentialParamScheduler', 'LinearParamScheduler', 'MultiStepParamScheduler', 'StepParamScheduler', '_ParamScheduler' ]
_base_ = './cascade-mask-rcnn_r50_fpn_ms-3x_coco.py' model = dict( # ResNeXt-101-32x8d model trained with Caffe2 at FB, # so the mean and std need to be changed. data_preprocessor=dict( type='DetDataPreprocessor', mean=[103.530, 116.280, 123.675], std=[57.375, 57.120, 58.395], to_rgb=False, pad_size_divisor=32), backbone=dict( type='ResNeXt', depth=101, groups=32, base_width=8, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=False), style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnext101_32x8d')))
_base_ = './cascade_mask_rcnn_r50_fpn_mstrain_3x_coco.py' model = dict( # ResNeXt-101-32x8d model trained with Caffe2 at FB, # so the mean and std need to be changed. data_preprocessor=dict( type='DetDataPreprocessor', mean=[103.530, 116.280, 123.675], std=[57.375, 57.120, 58.395], to_rgb=False, pad_size_divisor=32), backbone=dict( type='ResNeXt', depth=101, groups=32, base_width=8, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=False), style='pytorch', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnext101_32x8d')))
_base_ = 'ssd300_coco.py' input_size = 512 model = dict( neck=dict( out_channels=(512, 1024, 512, 256, 256, 256, 256), level_strides=(2, 2, 2, 2, 1), level_paddings=(1, 1, 1, 1, 1), last_kernel_size=4), bbox_head=dict( in_channels=(512, 1024, 512, 256, 256, 256, 256), anchor_generator=dict( type='SSDAnchorGenerator', scale_major=False, input_size=input_size, basesize_ratio_range=(0.1, 0.9), strides=[8, 16, 32, 64, 128, 256, 512], ratios=[[2], [2, 3], [2, 3], [2, 3], [2, 3], [2], [2]]))) # dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' img_norm_cfg = dict(mean=[123.675, 116.28, 103.53], std=[1, 1, 1], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='Expand', mean=img_norm_cfg['mean'], to_rgb=img_norm_cfg['to_rgb'], ratio_range=(1, 4)), dict( type='MinIoURandomCrop', min_ious=(0.1, 0.3, 0.5, 0.7, 0.9), min_crop_size=0.3), dict(type='Resize', img_scale=(512, 512), keep_ratio=False), dict(type='RandomFlip', flip_ratio=0.5), dict( type='PhotoMetricDistortion', brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18), dict(type='Normalize', **img_norm_cfg), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(512, 512), flip=False, transforms=[ dict(type='Resize', keep_ratio=False), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=8, workers_per_gpu=3, train=dict( _delete_=True, type='RepeatDataset', times=5, dataset=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_train2017.json', img_prefix=data_root + 'train2017/', pipeline=train_pipeline)), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) # optimizer optimizer = dict(type='SGD', lr=2e-3, momentum=0.9, weight_decay=5e-4) optimizer_config = dict(_delete_=True) custom_hooks = [ dict(type='NumClassCheckHook'), dict(type='CheckInvalidLossHook', interval=50, priority='VERY_LOW') ] # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (8 samples per GPU) auto_scale_lr = dict(base_batch_size=64)
_base_ = 'ssd300_coco.py' input_size = 512 model = dict( neck=dict( out_channels=(512, 1024, 512, 256, 256, 256, 256), level_strides=(2, 2, 2, 2, 1), level_paddings=(1, 1, 1, 1, 1), last_kernel_size=4), bbox_head=dict( in_channels=(512, 1024, 512, 256, 256, 256, 256), anchor_generator=dict( type='SSDAnchorGenerator', scale_major=False, input_size=input_size, basesize_ratio_range=(0.1, 0.9), strides=[8, 16, 32, 64, 128, 256, 512], ratios=[[2], [2, 3], [2, 3], [2, 3], [2, 3], [2], [2]]))) # dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' img_norm_cfg = dict(mean=[123.675, 116.28, 103.53], std=[1, 1, 1], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='Expand', mean=img_norm_cfg['mean'], to_rgb=img_norm_cfg['to_rgb'], ratio_range=(1, 4)), dict( type='MinIoURandomCrop', min_ious=(0.1, 0.3, 0.5, 0.7, 0.9), min_crop_size=0.3), dict(type='Resize', img_scale=(512, 512), keep_ratio=False), dict(type='RandomFlip', flip_ratio=0.5), dict( type='PhotoMetricDistortion', brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18), dict(type='Normalize', **img_norm_cfg), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(512, 512), flip=False, transforms=[ dict(type='Resize', keep_ratio=False), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=8, workers_per_gpu=3, train=dict( _delete_=True, type='RepeatDataset', times=5, dataset=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_train2017.json', img_prefix=data_root + 'train2017/', pipeline=train_pipeline)), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) # optimizer optimizer = dict(type='SGD', lr=2e-3, momentum=0.9, weight_decay=5e-4) optimizer_config = dict(_delete_=True) custom_hooks = [ dict(type='NumClassCheckHook'), dict(type='CheckInvalidLossHook', interval=50, priority='VERY_LOW') ]
_base_ = './cascade-rcnn_r50-caffe_fpn_1x_coco.py' model = dict( backbone=dict( depth=101, init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet101_caffe')))
_base_ = './cascade_rcnn_r50_caffe_fpn_1x_coco.py' model = dict( backbone=dict( depth=101, init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet101_caffe')))
"""Lit configuration to drive test in this repo.""" # Copyright 2020 The OpenXLA Authors. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # -*- Python -*- # pylint: disable=undefined-variable import os import sys import lit.formats from lit.llvm import llvm_config from lit.llvm.subst import ToolSubst import lit.util # Configuration file for the 'lit' test runner. # name: The name of this test suite. config.name = 'MLIR_HLO_OPT' config.test_format = lit.formats.ShTest(not llvm_config.use_lit_shell) # suffixes: A list of file extensions to treat as test files. config.suffixes = ['.mlir'] # test_source_root: The root path where tests are located. config.test_source_root = os.path.dirname(__file__) config.substitutions.append(('%PATH%', config.environment['PATH'])) config.substitutions.append(('%shlibext', config.llvm_shlib_ext)) llvm_config.with_system_environment(['HOME', 'INCLUDE', 'LIB', 'TMP', 'TEMP']) # Adjusted the PATH to correctly detect the tools on Windows if sys.platform == 'win32': llvm_config.config.llvm_tools_dir = r'..\llvm-project\llvm' llvm_config.config.mlir_binary_dir = r'..\llvm-project\mlir' llvm_config.use_default_substitutions() # Tweak the PATH to include the tools dir. llvm_config.with_environment('PATH', config.llvm_tools_dir, append_path=True) tool_dirs = [ config.mlir_binary_dir, config.mlir_hlo_tools_dir, ] tools = [ 'mlir-hlo-opt', 'mlir-runner', ToolSubst('%mlir_lib_dir', config.mlir_lib_dir, unresolved='ignore'), ] llvm_config.add_tool_substitutions(tools, tool_dirs)
"""Lit configuration to drive test in this repo.""" # Copyright 2020 The OpenXLA Authors. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # -*- Python -*- # pylint: disable=undefined-variable import os import sys import lit.formats from lit.llvm import llvm_config from lit.llvm.subst import ToolSubst import lit.util # Configuration file for the 'lit' test runner. # name: The name of this test suite. config.name = 'MLIR_HLO_OPT' config.test_format = lit.formats.ShTest(not llvm_config.use_lit_shell) # suffixes: A list of file extensions to treat as test files. config.suffixes = ['.mlir'] # test_source_root: The root path where tests are located. config.test_source_root = os.path.dirname(__file__) config.substitutions.append(('%PATH%', config.environment['PATH'])) config.substitutions.append(('%shlibext', config.llvm_shlib_ext)) llvm_config.with_system_environment(['HOME', 'INCLUDE', 'LIB', 'TMP', 'TEMP']) # Adjusted the PATH to correctly detect the tools on Windows if sys.platform == 'win32': llvm_config.config.llvm_tools_dir = r'..\llvm-project\llvm' llvm_config.config.mlir_binary_dir = r'..\llvm-project\mlir' llvm_config.use_default_substitutions() # Tweak the PATH to include the tools dir. llvm_config.with_environment('PATH', config.llvm_tools_dir, append_path=True) tool_dirs = [ config.mlir_binary_dir, config.mlir_hlo_tools_dir, ] tools = [ 'mlir-hlo-opt', 'mlir-cpu-runner', ToolSubst('%mlir_lib_dir', config.mlir_lib_dir, unresolved='ignore'), ] llvm_config.add_tool_substitutions(tools, tool_dirs)
from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.image.abstract_image_tensor import AbstractImageTensor from docarray.typing.tensor.ndarray import NdArray MAX_INT_16 = 2**15 @_register_proto(proto_type_name='image_ndarray') class ImageNdArray(AbstractImageTensor, NdArray): """ Subclass of NdArray, to represent an image tensor. Adds image-specific features to the tensor. For instance the ability convert the tensor back to image bytes which are optimized to send over the wire EXAMPLE USAGE .. code-block:: python from typing import Optional from docarray import BaseDocument from docarray.typing import ImageNdArray, ImageUrl class MyImageDoc(BaseDocument): title: str tensor: Optional[ImageNdArray] url: Optional[ImageUrl] bytes: Optional[bytes] # from url doc = MyImageDoc( title='my_second_audio_doc', url="https://upload.wikimedia.org/wikipedia/commons/8/80/" "Dag_Sebastian_Ahlander_at_G%C3%B6teborg_Book_Fair_2012b.jpg", ) doc.tensor = doc.url.load() doc.bytes = doc.tensor.to_bytes() """ ...
from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.image.abstract_image_tensor import AbstractImageTensor from docarray.typing.tensor.ndarray import NdArray MAX_INT_16 = 2**15 @_register_proto(proto_type_name='image_ndarray') class ImageNdArray(AbstractImageTensor, NdArray): """ Subclass of NdArray, to represent an image tensor. Adds image-specific features to the tensor. For instance the ability convert the tensor back to image bytes which are optimized to send over the wire EXAMPLE USAGE .. code-block:: python from typing import Optional from pydantic import parse_obj_as from docarray import Document from docarray.typing import ImageNdArray, ImageUrl import numpy as np class MyImageDoc(Document): title: str tensor: Optional[ImageNdArray] url: Optional[ImageUrl] bytes: Optional[bytes] # from url doc = MyImageDoc( title='my_second_audio_doc', url='https://an.image.png', ) doc.tensor = doc.url.load() doc.bytes = doc.tensor.to_bytes() """ ...
from keras.src import backend from keras.src.api_export import keras_export from keras.src.backend.common import KerasVariable if backend.backend() == "tensorflow": BackendVariable = backend.tensorflow.core.Variable backend_name_scope = backend.tensorflow.core.name_scope elif backend.backend() == "jax": BackendVariable = backend.jax.core.Variable backend_name_scope = backend.common.name_scope.name_scope elif backend.backend() == "torch": BackendVariable = backend.torch.core.Variable backend_name_scope = backend.common.name_scope.name_scope elif backend.backend() == "numpy": from keras.src.backend.numpy.core import Variable as NumpyVariable BackendVariable = NumpyVariable backend_name_scope = backend.common.name_scope.name_scope else: raise RuntimeError(f"Invalid backend: {backend.backend()}") @keras_export("keras.Variable") class Variable(BackendVariable, KerasVariable): pass @keras_export("keras.name_scope") class name_scope(backend_name_scope): pass @keras_export("keras.device") def device(device_name): return backend.device_scope(device_name)
from keras.src import backend from keras.src.api_export import keras_export if backend.backend() == "tensorflow": BackendVariable = backend.tensorflow.core.Variable backend_name_scope = backend.tensorflow.core.name_scope elif backend.backend() == "jax": BackendVariable = backend.jax.core.Variable backend_name_scope = backend.common.name_scope.name_scope elif backend.backend() == "torch": BackendVariable = backend.torch.core.Variable backend_name_scope = backend.common.name_scope.name_scope elif backend.backend() == "numpy": from keras.src.backend.numpy.core import Variable as NumpyVariable BackendVariable = NumpyVariable backend_name_scope = backend.common.name_scope.name_scope else: raise RuntimeError(f"Invalid backend: {backend.backend()}") @keras_export("keras.Variable") class Variable(BackendVariable): pass @keras_export("keras.name_scope") class name_scope(backend_name_scope): pass @keras_export("keras.device") def device(device_name): return backend.device_scope(device_name)
# training schedule for 2x train_cfg = dict(by_epoch=True, max_epochs=24) val_cfg = dict(interval=1) test_cfg = dict() # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=24, by_epoch=True, milestones=[16, 22], gamma=0.1) ] # optimizer optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
# training schedule for 1x train_cfg = dict(by_epoch=True, max_epochs=24) val_cfg = dict(interval=1) test_cfg = dict() # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=24, by_epoch=True, milestones=[16, 22], gamma=0.1) ] # optimizer optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
import pytest from docarray import DocumentArray, Document from docarray.array.weaviate import DocumentArrayWeaviate import numpy as np @pytest.fixture() def docs(): return DocumentArray([Document(id=f'{i}') for i in range(1, 10)]) @pytest.mark.parametrize( 'to_delete', [ 0, 1, 4, -1, list(range(1, 4)), [2, 4, 7, 1, 1], slice(0, 2), slice(2, 4), slice(4, -1), [True, True, False], ..., ], ) def test_del_all(docs, to_delete): doc_to_delete = docs[to_delete] del docs[to_delete] assert doc_to_delete not in docs @pytest.mark.parametrize( 'to_delete, missing_id', [ ([True, False], ['1']), ([True, True, False], ['1', '2']), ([False, True], ['2']), ([False, False, True, True], ['3', '4']), ], ) def test_del_boolean_mask(docs, to_delete, missing_id): # assert each missing_id is present before deleting for m_id in missing_id: assert m_id in docs[:, 'id'] del docs[to_delete] # assert each missing_id is NOT present AFTER deleting for m_id in missing_id: assert m_id not in docs[:, 'id'] @pytest.mark.parametrize( ['deleted_ids', 'expected_ids'], [ (['1', '2', '3', '4'], ['5', '6', '7', '8', '9']), (['2', '4', '7', '1'], ['3', '5', '6', '8', '9']), ], ) def test_del_by_multiple_idx(docs, deleted_ids, expected_ids): del docs[deleted_ids] assert docs[:, 'id'] == expected_ids @pytest.mark.parametrize( 'da_cls,config,persist', [ (DocumentArrayWeaviate, {'n_dim': 10}, False), (DocumentArrayWeaviate, {'name': 'Storage', 'n_dim': 10}, True), ], ) def test_del_da_persist(da_cls, config, persist, docs, start_storage): da = da_cls(docs, config=config) del da da2 = da_cls(config=config) if persist: assert len(da2) == len(docs) else: assert len(da2) == 0 def test_del_da_attribute(): da = DocumentArray( [ Document(embedding=np.array([1, 2, 3]), text='d1'), Document(embedding=np.array([1, 2, 3]), text='d2'), ] ) q = DocumentArray( [ Document(embedding=np.array([4, 5, 6]), text='q1'), Document(embedding=np.array([2, 3, 4]), text='q1'), ] ) da.match(q) del da[...][:, 'embedding'] for d in da: assert d.embedding is None @pytest.mark.parametrize( 'storage, config', [ ('memory', None), ('weaviate', {'n_dim': 3, 'distance': 'l2-squared'}), ('annlite', {'n_dim': 3, 'metric': 'Euclidean'}), ('qdrant', {'n_dim': 3, 'distance': 'euclidean'}), ('elasticsearch', {'n_dim': 3, 'distance': 'l2_norm'}), ('sqlite', dict()), ('redis', {'n_dim': 3, 'distance': 'L2', 'flush': True}), ], ) def test_del_subindex(storage, config): n_dim = 3 subindex_configs = ( {'@c': dict()} if storage in ['sqlite', 'memory'] else {'@c': {'n_dim': 2}} ) da = DocumentArray( storage=storage, config=config, subindex_configs=subindex_configs, ) with da: da.extend( [ Document( id=str(i), embedding=i * np.ones(n_dim), chunks=[ Document(id=str(i) + '_0', embedding=np.array([i, i])), Document(id=str(i) + '_1', embedding=np.array([i, i])), ], ) for i in range(10) ] ) del da['0'] assert len(da) == 9 assert len(da._subindices['@c']) == 18 del da[-2:] assert len(da) == 7 assert len(da._subindices['@c']) == 14 def test_del_subindex_annlite_multimodal(): from docarray import dataclass from docarray.typing import Text @dataclass class MMDoc: my_text: Text my_other_text: Text n_dim = 3 da = DocumentArray( storage='annlite', config={'n_dim': n_dim, 'metric': 'Euclidean'}, subindex_configs={'@.[my_text, my_other_text]': {'n_dim': 2}}, ) num_docs = 10 docs_to_add = DocumentArray( [ Document(MMDoc(my_text='hello', my_other_text='world')) for _ in range(num_docs) ] ) for i, d in enumerate(docs_to_add): d.id = str(i) d.embedding = i * np.ones(n_dim) d.my_text.id = str(i) + '_0' d.my_text.embedding = [i, i] d.my_other_text.id = str(i) + '_1' d.my_other_text.embedding = [i, i] with da: da.extend(docs_to_add) del da['0'] assert len(da) == 9 assert len(da._subindices['@.[my_text, my_other_text]']) == 18
import pytest from docarray import DocumentArray, Document from docarray.array.weaviate import DocumentArrayWeaviate import numpy as np @pytest.fixture() def docs(): return DocumentArray([Document(id=f'{i}') for i in range(1, 10)]) @pytest.mark.parametrize( 'to_delete', [ 0, 1, 4, -1, list(range(1, 4)), [2, 4, 7, 1, 1], slice(0, 2), slice(2, 4), slice(4, -1), [True, True, False], ..., ], ) def test_del_all(docs, to_delete): doc_to_delete = docs[to_delete] del docs[to_delete] assert doc_to_delete not in docs @pytest.mark.parametrize( 'to_delete, missing_id', [ ([True, False], ['1']), ([True, True, False], ['1', '2']), ([False, True], ['2']), ([False, False, True, True], ['3', '4']), ], ) def test_del_boolean_mask(docs, to_delete, missing_id): # assert each missing_id is present before deleting for m_id in missing_id: assert m_id in docs[:, 'id'] del docs[to_delete] # assert each missing_id is NOT present AFTER deleting for m_id in missing_id: assert m_id not in docs[:, 'id'] @pytest.mark.parametrize( ['deleted_ids', 'expected_ids'], [ (['1', '2', '3', '4'], ['5', '6', '7', '8', '9']), (['2', '4', '7', '1'], ['3', '5', '6', '8', '9']), ], ) def test_del_by_multiple_idx(docs, deleted_ids, expected_ids): del docs[deleted_ids] assert docs[:, 'id'] == expected_ids @pytest.mark.parametrize( 'da_cls,config,persist', [ (DocumentArrayWeaviate, {'n_dim': 10}, False), (DocumentArrayWeaviate, {'name': 'Storage', 'n_dim': 10}, True), ], ) def test_del_da_persist(da_cls, config, persist, docs, start_storage): da = da_cls(docs, config=config) del da da2 = da_cls(config=config) if persist: assert len(da2) == len(docs) else: assert len(da2) == 0 def test_del_da_attribute(): da = DocumentArray( [ Document(embedding=np.array([1, 2, 3]), text='d1'), Document(embedding=np.array([1, 2, 3]), text='d2'), ] ) q = DocumentArray( [ Document(embedding=np.array([4, 5, 6]), text='q1'), Document(embedding=np.array([2, 3, 4]), text='q1'), ] ) da.match(q) del da[...][:, 'embedding'] for d in da: assert d.embedding is None @pytest.mark.parametrize( 'storage, config', [ ('memory', None), ('weaviate', {'n_dim': 3, 'distance': 'l2-squared'}), ('annlite', {'n_dim': 3, 'metric': 'Euclidean'}), ('qdrant', {'n_dim': 3, 'distance': 'euclidean'}), ('elasticsearch', {'n_dim': 3, 'distance': 'l2_norm'}), ('sqlite', dict()), ], ) def test_del_subindex(storage, config): n_dim = 3 subindex_configs = ( {'@c': dict()} if storage in ['sqlite', 'memory'] else {'@c': {'n_dim': 2}} ) da = DocumentArray( storage=storage, config=config, subindex_configs=subindex_configs, ) with da: da.extend( [ Document( id=str(i), embedding=i * np.ones(n_dim), chunks=[ Document(id=str(i) + '_0', embedding=np.array([i, i])), Document(id=str(i) + '_1', embedding=np.array([i, i])), ], ) for i in range(10) ] ) del da['0'] assert len(da) == 9 assert len(da._subindices['@c']) == 18 del da[-2:] assert len(da) == 7 assert len(da._subindices['@c']) == 14 def test_del_subindex_annlite_multimodal(): from docarray import dataclass from docarray.typing import Text @dataclass class MMDoc: my_text: Text my_other_text: Text n_dim = 3 da = DocumentArray( storage='annlite', config={'n_dim': n_dim, 'metric': 'Euclidean'}, subindex_configs={'@.[my_text, my_other_text]': {'n_dim': 2}}, ) num_docs = 10 docs_to_add = DocumentArray( [ Document(MMDoc(my_text='hello', my_other_text='world')) for _ in range(num_docs) ] ) for i, d in enumerate(docs_to_add): d.id = str(i) d.embedding = i * np.ones(n_dim) d.my_text.id = str(i) + '_0' d.my_text.embedding = [i, i] d.my_other_text.id = str(i) + '_1' d.my_other_text.embedding = [i, i] with da: da.extend(docs_to_add) del da['0'] assert len(da) == 9 assert len(da._subindices['@.[my_text, my_other_text]']) == 18
# Copyright (c) Meta Platforms, Inc. and affiliates. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement. import os from logging import getLogger from typing import List from sentencepiece import SentencePieceProcessor logger = getLogger() class Tokenizer: """tokenizing and encoding/decoding text using SentencePiece.""" def __init__(self, model_path: str): """ Initializes the Tokenizer with a SentencePiece model. Args: model_path (str): The path to the SentencePiece model file. """ # reload tokenizer assert os.path.isfile(model_path), model_path self.sp_model = SentencePieceProcessor(model_file=model_path) logger.info(f"Reloaded SentencePiece model from {model_path}") # BOS / EOS token IDs self.n_words: int = self.sp_model.vocab_size() self.bos_id: int = self.sp_model.bos_id() self.eos_id: int = self.sp_model.eos_id() self.pad_id: int = self.sp_model.pad_id() logger.info( f"#words: {self.n_words} - BOS ID: {self.bos_id} - EOS ID: {self.eos_id}" ) assert self.sp_model.vocab_size() == self.sp_model.get_piece_size() def encode(self, s: str, bos: bool, eos: bool) -> List[int]: """ Encodes a string into a list of token IDs. Args: s (str): The input string to be encoded. bos (bool): Whether to prepend the beginning-of-sequence token. eos (bool): Whether to append the end-of-sequence token. Returns: List[int]: A list of token IDs. """ assert type(s) is str t = self.sp_model.encode(s) if bos: t = [self.bos_id] + t if eos: t = t + [self.eos_id] return t def decode(self, t: List[int]) -> str: """ Decodes a list of token IDs into a string. Args: t (List[int]): The list of token IDs to be decoded. Returns: str: The decoded string. """ return self.sp_model.decode(t)
# Copyright (c) Meta Platforms, Inc. and affiliates. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement. import os from logging import getLogger from typing import List from sentencepiece import SentencePieceProcessor logger = getLogger() class Tokenizer: def __init__(self, model_path: str): # reload tokenizer assert os.path.isfile(model_path), model_path self.sp_model = SentencePieceProcessor(model_file=model_path) logger.info(f"Reloaded SentencePiece model from {model_path}") # BOS / EOS token IDs self.n_words: int = self.sp_model.vocab_size() self.bos_id: int = self.sp_model.bos_id() self.eos_id: int = self.sp_model.eos_id() self.pad_id: int = self.sp_model.pad_id() logger.info( f"#words: {self.n_words} - BOS ID: {self.bos_id} - EOS ID: {self.eos_id}" ) assert self.sp_model.vocab_size() == self.sp_model.get_piece_size() def encode(self, s: str, bos: bool, eos: bool) -> List[int]: assert type(s) is str t = self.sp_model.encode(s) if bos: t = [self.bos_id] + t if eos: t = t + [self.eos_id] return t def decode(self, t: List[int]) -> str: return self.sp_model.decode(t)
__version__ = "2.6.0.dev0" __MODEL_HUB_ORGANIZATION__ = "sentence-transformers" from .datasets import SentencesDataset, ParallelSentencesDataset from .LoggingHandler import LoggingHandler from .SentenceTransformer import SentenceTransformer from .readers import InputExample from .cross_encoder.CrossEncoder import CrossEncoder from .quantization import quantize_embeddings __all__ = [ "LoggingHandler", "SentencesDataset", "ParallelSentencesDataset", "SentenceTransformer", "InputExample", "CrossEncoder", "quantize_embeddings", ]
__version__ = "2.6.0.dev0" __MODEL_HUB_ORGANIZATION__ = "sentence-transformers" from .datasets import SentencesDataset, ParallelSentencesDataset from .LoggingHandler import LoggingHandler from .SentenceTransformer import SentenceTransformer from .readers import InputExample from .cross_encoder.CrossEncoder import CrossEncoder __all__ = [ "LoggingHandler", "SentencesDataset", "ParallelSentencesDataset", "SentenceTransformer", "InputExample", "CrossEncoder", ]
# Copyright (c) OpenMMLab. All rights reserved. import argparse import cv2 import mmcv from mmdet.apis import inference_detector, init_detector def parse_args(): parser = argparse.ArgumentParser(description='MMDetection video demo') parser.add_argument('video', help='Video file') parser.add_argument('config', help='Config file') parser.add_argument('checkpoint', help='Checkpoint file') parser.add_argument( '--device', default='cuda:0', help='Device used for inference') parser.add_argument( '--score-thr', type=float, default=0.3, help='Bbox score threshold') parser.add_argument('--out', type=str, help='Output video file') parser.add_argument('--show', action='store_true', help='Show video') parser.add_argument( '--wait-time', type=float, default=1, help='The interval of show (s), 0 is block') args = parser.parse_args() return args def main(): args = parse_args() assert args.out or args.show, \ ('Please specify at least one operation (save/show the ' 'video) with the argument "--out" or "--show"') model = init_detector(args.config, args.checkpoint, device=args.device) video_reader = mmcv.VideoReader(args.video) video_writer = None if args.out: fourcc = cv2.VideoWriter_fourcc(*'mp4v') video_writer = cv2.VideoWriter( args.out, fourcc, video_reader.fps, (video_reader.width, video_reader.height)) for frame in mmcv.track_iter_progress(video_reader): result = inference_detector(model, frame) frame = model.show_result(frame, result, score_thr=args.score_thr) if args.show: cv2.namedWindow('video', 0) mmcv.imshow(frame, 'video', args.wait_time) if args.out: video_writer.write(frame) if video_writer: video_writer.release() cv2.destroyAllWindows() if __name__ == '__main__': main()
import argparse import cv2 import mmcv from mmdet.apis import inference_detector, init_detector def parse_args(): parser = argparse.ArgumentParser(description='MMDetection video demo') parser.add_argument('video', help='Video file') parser.add_argument('config', help='Config file') parser.add_argument('checkpoint', help='Checkpoint file') parser.add_argument( '--device', default='cuda:0', help='Device used for inference') parser.add_argument( '--score-thr', type=float, default=0.3, help='Bbox score threshold') parser.add_argument('--out', type=str, help='Output video file') parser.add_argument('--show', action='store_true', help='Show video') parser.add_argument( '--wait-time', type=float, default=1, help='The interval of show (s), 0 is block') args = parser.parse_args() return args def main(): args = parse_args() assert args.out or args.show, \ ('Please specify at least one operation (save/show the ' 'video) with the argument "--out" or "--show"') model = init_detector(args.config, args.checkpoint, device=args.device) video_reader = mmcv.VideoReader(args.video) video_writer = None if args.out: fourcc = cv2.VideoWriter_fourcc(*'mp4v') video_writer = cv2.VideoWriter( args.out, fourcc, video_reader.fps, (video_reader.width, video_reader.height)) for frame in mmcv.track_iter_progress(video_reader): result = inference_detector(model, frame) frame = model.show_result(frame, result, score_thr=args.score_thr) if args.show: cv2.namedWindow('video', 0) mmcv.imshow(frame, 'video', args.wait_time) if args.out: video_writer.write(frame) if video_writer: video_writer.release() cv2.destroyAllWindows() if __name__ == '__main__': main()
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) def _ignore_google_warnings(): import warnings warnings.filterwarnings( 'ignore', category=DeprecationWarning, message='Deprecated call to `pkg_resources.declare_namespace(\'google\')`.', append=True, ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning, append=True) _ignore_google_warnings() # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method try: _set_start_method('fork') _warnings.warn(f'multiprocessing start method is set to `fork`') except Exception as e: _warnings.warn(f'failed to set multiprocessing start_method to `fork`: {e!r}') # do not change this line manually this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.27.7' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.27' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) def _ignore_google_warnings(): import warnings warnings.filterwarnings( 'ignore', category=DeprecationWarning, message='Deprecated call to `pkg_resources.declare_namespace(\'google\')`.', append=True, ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning, append=True) _ignore_google_warnings() # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method try: _set_start_method('fork') _warnings.warn(f'multiprocessing start method is set to `fork`') except Exception as e: _warnings.warn(f'failed to set multiprocessing start_method to `fork`: {e!r}') # do not change this line manually this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.27.6' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.27' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
import argparse import pathlib import re import shutil def main(args): if args.scala_version == "2.12": scala_ver = "2.12" scala_patchver = "2.12.18" elif args.scala_version == "2.13": scala_ver = "2.13" scala_patchver = "2.13.11" else: raise ValueError(f"Unsupported Scala version: {args.scala_version}") # Clean artifacts if args.purge_artifacts: for target in pathlib.Path("jvm-packages/").glob("**/target"): if target.is_dir(): print(f"Removing {target}...") shutil.rmtree(target) # Update pom.xml for pom in pathlib.Path("jvm-packages/").glob("**/pom.xml"): print(f"Updating {pom}...") with open(pom, "r", encoding="utf-8") as f: lines = f.readlines() with open(pom, "w", encoding="utf-8") as f: replaced_scalaver = False replaced_scala_binver = False for line in lines: for artifact in [ "xgboost-jvm", "xgboost4j", "xgboost4j-spark", "xgboost4j-spark-gpu", "xgboost4j-flink", "xgboost4j-example", ]: line = re.sub( f"<artifactId>{artifact}_[0-9\\.]*", f"<artifactId>{artifact}_{scala_ver}", line, ) # Only replace the first occurrence of scala.version if not replaced_scalaver: line, nsubs = re.subn( r"<scala.version>[0-9\.]*", f"<scala.version>{scala_patchver}", line, ) if nsubs > 0: replaced_scalaver = True # Only replace the first occurrence of scala.binary.version if not replaced_scala_binver: line, nsubs = re.subn( r"<scala.binary.version>[0-9\.]*", f"<scala.binary.version>{scala_ver}", line, ) if nsubs > 0: replaced_scala_binver = True f.write(line) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--purge-artifacts", action="store_true") parser.add_argument( "--scala-version", type=str, required=True, help="Version of Scala to use in the JVM packages", choices=["2.12", "2.13"], ) parsed_args = parser.parse_args() main(parsed_args)
import argparse import pathlib import re import shutil def main(args): if args.scala_version == "2.12": scala_ver = "2.12" scala_patchver = "2.12.18" elif args.scala_version == "2.13": scala_ver = "2.13" scala_patchver = "2.13.11" else: raise ValueError(f"Unsupported Scala version: {args.scala_version}") # Clean artifacts if args.purge_artifacts: for target in pathlib.Path("jvm-packages/").glob("**/target"): if target.is_dir(): print(f"Removing {target}...") shutil.rmtree(target) # Update pom.xml for pom in pathlib.Path("jvm-packages/").glob("**/pom.xml"): print(f"Updating {pom}...") with open(pom, "r", encoding="utf-8") as f: lines = f.readlines() with open(pom, "w", encoding="utf-8") as f: replaced_scalaver = False replaced_scala_binver = False for line in lines: for artifact in [ "xgboost-jvm", "xgboost4j", "xgboost4j-gpu", "xgboost4j-spark", "xgboost4j-spark-gpu", "xgboost4j-flink", "xgboost4j-example", ]: line = re.sub( f"<artifactId>{artifact}_[0-9\\.]*", f"<artifactId>{artifact}_{scala_ver}", line, ) # Only replace the first occurrence of scala.version if not replaced_scalaver: line, nsubs = re.subn( r"<scala.version>[0-9\.]*", f"<scala.version>{scala_patchver}", line, ) if nsubs > 0: replaced_scalaver = True # Only replace the first occurrence of scala.binary.version if not replaced_scala_binver: line, nsubs = re.subn( r"<scala.binary.version>[0-9\.]*", f"<scala.binary.version>{scala_ver}", line, ) if nsubs > 0: replaced_scala_binver = True f.write(line) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--purge-artifacts", action="store_true") parser.add_argument( "--scala-version", type=str, required=True, help="Version of Scala to use in the JVM packages", choices=["2.12", "2.13"], ) parsed_args = parser.parse_args() main(parsed_args)
import asyncio from typing import Any, AsyncGenerator, Optional from llama_index.core.workflow.context import Context from llama_index.core.workflow.errors import WorkflowDone from llama_index.core.workflow.events import Event, StopEvent from .types import RunResultT from .utils import BUSY_WAIT_DELAY class WorkflowHandler(asyncio.Future[RunResultT]): def __init__( self, *args: Any, ctx: Optional[Context] = None, run_id: Optional[str] = None, **kwargs: Any, ) -> None: super().__init__(*args, **kwargs) self.run_id = run_id self.ctx = ctx def __str__(self) -> str: return str(self.result()) def is_done(self) -> bool: return self.done() async def stream_events(self) -> AsyncGenerator[Event, None]: if not self.ctx: raise ValueError("Context is not set!") while True: ev = await self.ctx.streaming_queue.get() yield ev if type(ev) is StopEvent: break async def run_step(self) -> Optional[Event]: """Runs the next workflow step and returns the output Event. If return is None, then the workflow is considered done. Examples: ```python handler = workflow.run(stepwise=True) while not handler.is_done(): ev = await handler.run_step() handler.ctx.send_event(ev) result = handler.result() print(result) ``` """ # since event is sent before calling this method, we need to unblock the event loop await asyncio.sleep(0) if self.ctx and not self.ctx.stepwise: raise ValueError("Stepwise context is required to run stepwise.") if self.ctx: try: # Unblock all pending steps for flag in self.ctx._step_flags.values(): flag.set() # Yield back control to the event loop to give an unblocked step # the chance to run (we won't actually sleep here). await asyncio.sleep(0) # check if we're done, or if a step raised error we_done = False exception_raised = None retval = None for t in self.ctx._tasks: # Check if we're done if not t.done(): continue we_done = True e = t.exception() if type(e) is not WorkflowDone: exception_raised = e if we_done: # Remove any reference to the tasks for t in self.ctx._tasks: t.cancel() await asyncio.sleep(0) # the context is no longer running self.ctx.is_running = False if exception_raised: raise exception_raised if not self.done(): self.set_result(self.ctx.get_result()) else: # Continue with running next step. Make sure we wait for the # step function to return before proceeding. in_progress = len(await self.ctx.running_steps()) while in_progress: await asyncio.sleep(BUSY_WAIT_DELAY) in_progress = len(await self.ctx.running_steps()) # notify unblocked task that we're ready to accept next event async with self.ctx._step_condition: self.ctx._step_condition.notify() # Wait to be notified that the new_ev has been written async with self.ctx._step_event_written: await self.ctx._step_event_written.wait() retval = self.ctx._step_event_holding except Exception as e: if not self.is_done(): # Avoid InvalidStateError edge case self.set_exception(e) raise else: raise ValueError("Context is not set!") return retval async def cancel_run(self) -> None: """Method to cancel a Workflow execution.""" if self.ctx: self.ctx._cancel_flag.set() await asyncio.sleep(0)
import asyncio from typing import Any, AsyncGenerator, Optional from llama_index.core.workflow.context import Context from llama_index.core.workflow.errors import WorkflowDone from llama_index.core.workflow.events import Event, StopEvent from .utils import BUSY_WAIT_DELAY class WorkflowHandler(asyncio.Future): def __init__( self, *args: Any, ctx: Optional[Context] = None, run_id: Optional[str] = None, **kwargs: Any, ) -> None: super().__init__(*args, **kwargs) self.run_id = run_id self.ctx = ctx def __str__(self) -> str: return str(self.result()) def is_done(self) -> bool: return self.done() async def stream_events(self) -> AsyncGenerator[Event, None]: if not self.ctx: raise ValueError("Context is not set!") while True: ev = await self.ctx.streaming_queue.get() yield ev if type(ev) is StopEvent: break async def run_step(self) -> Optional[Event]: """Runs the next workflow step and returns the output Event. If return is None, then the workflow is considered done. Examples: ```python handler = workflow.run(stepwise=True) while not handler.is_done(): ev = await handler.run_step() handler.ctx.send_event(ev) result = handler.result() print(result) ``` """ # since event is sent before calling this method, we need to unblock the event loop await asyncio.sleep(0) if self.ctx and not self.ctx.stepwise: raise ValueError("Stepwise context is required to run stepwise.") if self.ctx: try: # Unblock all pending steps for flag in self.ctx._step_flags.values(): flag.set() # Yield back control to the event loop to give an unblocked step # the chance to run (we won't actually sleep here). await asyncio.sleep(0) # check if we're done, or if a step raised error we_done = False exception_raised = None retval = None for t in self.ctx._tasks: # Check if we're done if not t.done(): continue we_done = True e = t.exception() if type(e) is not WorkflowDone: exception_raised = e if we_done: # Remove any reference to the tasks for t in self.ctx._tasks: t.cancel() await asyncio.sleep(0) # the context is no longer running self.ctx.is_running = False if exception_raised: raise exception_raised if not self.done(): self.set_result(self.ctx.get_result()) else: # Continue with running next step. Make sure we wait for the # step function to return before proceeding. in_progress = len(await self.ctx.running_steps()) while in_progress: await asyncio.sleep(BUSY_WAIT_DELAY) in_progress = len(await self.ctx.running_steps()) # notify unblocked task that we're ready to accept next event async with self.ctx._step_condition: self.ctx._step_condition.notify() # Wait to be notified that the new_ev has been written async with self.ctx._step_event_written: await self.ctx._step_event_written.wait() retval = self.ctx._step_event_holding except Exception as e: if not self.is_done(): # Avoid InvalidStateError edge case self.set_exception(e) raise else: raise ValueError("Context is not set!") return retval async def cancel_run(self) -> None: """Method to cancel a Workflow execution.""" if self.ctx: self.ctx._cancel_flag.set() await asyncio.sleep(0)
import itertools import os.path import pytest import requests as req from docarray import Document, DocumentArray from jina import Client, Executor, Flow, requests from jina.helper import random_port PROTOCOLS = ['grpc', 'http', 'websocket'] cur_dir = os.path.dirname(__file__) class MyExecutor(Executor): @requests def foo(self, docs: DocumentArray, **kwargs): for doc in docs: doc.text = 'processed' @pytest.mark.parametrize( 'ports,protocols', [ *[ ([random_port(), random_port(), random_port()], list(protocols)) for protocols in itertools.combinations(PROTOCOLS, r=3) ], *[ ([random_port(), random_port()], list(protocols)) for protocols in itertools.combinations(PROTOCOLS, r=2) ], *[ ([random_port()], list(protocols)) for protocols in itertools.combinations(PROTOCOLS, r=1) ], ], ) def test_flow_multiprotocol(ports, protocols): flow = Flow().config_gateway(port=ports, protocol=protocols).add(uses=MyExecutor) with flow: for port, protocol in zip(ports, protocols): client = Client(port=port, protocol=protocol) docs = client.post('/', inputs=[Document()]) for doc in docs: assert doc.text == 'processed' @pytest.mark.parametrize( 'protocols', [ list(protocols) for protocols in itertools.chain( itertools.combinations(PROTOCOLS, r=3), itertools.combinations(PROTOCOLS, r=2), ) ], ) def test_flow_multiprotocol_default_random_ports(protocols): flow = Flow().config_gateway(protocol=protocols).add(uses=MyExecutor) with flow: for port, protocol in zip(flow.port, protocols): client = Client(port=port, protocol=protocol) docs = client.post('/', inputs=[Document()]) for doc in docs: assert doc.text == 'processed' @pytest.mark.parametrize( 'protocols', [ ['grpc'], ['http'], ['websocket'], ], ) def test_flow_single_protocol_default_random_port(protocols): flow = Flow().config_gateway(protocol=protocols).add(uses=MyExecutor) with flow: for protocol in protocols: client = Client(port=flow.port, protocol=protocol) docs = client.post('/', inputs=[Document()]) for doc in docs: assert doc.text == 'processed' def test_flow_multiprotocol_aliases(): ports = [random_port(), random_port(), random_port()] protocols = PROTOCOLS flow = Flow().config_gateway(ports=ports, protocols=protocols).add(uses=MyExecutor) with flow: for port, protocol in zip(ports, protocols): client = Client(port=port, protocol=protocol) docs = client.post('/', inputs=[Document()]) for doc in docs: assert doc.text == 'processed' def test_flow_multiprotocol_yaml(): flow = Flow.load_config(os.path.join(cur_dir, 'yaml/multi-protocol.yml')) with flow: for port, protocol in zip([12345, 12344, 12343], ['grpc', 'http', 'websocket']): client = Client(port=port, protocol=protocol) client.post('/', inputs=[Document()]) def test_flow_multiprotocol_ports_protocols_mismatch(): flow = Flow().config_gateway(port=[random_port()], protocol=['grpc', 'http']) with pytest.raises(ValueError) as err_info: with flow: pass assert ( 'You need to specify as much protocols as ports if you want to use a jina built-in gateway' in err_info.value.args[0] ) def test_flow_multiprotocol_with_monitoring(): port_monitoring = random_port() ports = [random_port(), random_port(), random_port()] protocols = PROTOCOLS flow = Flow().config_gateway( port=ports, protocol=protocols, monitoring=True, port_monitoring=port_monitoring ) with flow: for port, protocol in zip(ports, protocols): client = Client(port=port, protocol=protocol) client.post('/', inputs=[Document()]) resp = req.get(f'http://localhost:{port_monitoring}/') assert resp.status_code == 200 assert ( 'jina_successful_requests_total{runtime_name="gateway/rep-0"} 3.0' in str(resp.content) ) def test_flow_multiprotocol_with_tracing(): ports = [random_port(), random_port(), random_port()] protocols = PROTOCOLS flow = Flow().config_gateway(port=ports, protocol=protocols, tracing=True) with flow: for port, protocol in zip(ports, protocols): client = Client(port=port, protocol=protocol) client.post('/', inputs=[Document()])
import itertools import os.path import pytest from docarray import Document, DocumentArray from jina import Client, Executor, Flow, requests from jina.helper import random_port PROTOCOLS = ['grpc', 'http', 'websocket'] cur_dir = os.path.dirname(__file__) class MyExecutor(Executor): @requests def foo(self, docs: DocumentArray, **kwargs): for doc in docs: doc.text = 'processed' @pytest.mark.parametrize( 'ports,protocols', [ *[ ([random_port(), random_port(), random_port()], list(protocols)) for protocols in itertools.combinations(PROTOCOLS, r=3) ], *[ ([random_port(), random_port()], list(protocols)) for protocols in itertools.combinations(PROTOCOLS, r=2) ], *[ ([random_port()], list(protocols)) for protocols in itertools.combinations(PROTOCOLS, r=1) ], ], ) def test_flow_multiprotocol(ports, protocols): flow = Flow().config_gateway(port=ports, protocol=protocols).add(uses=MyExecutor) with flow: for port, protocol in zip(ports, protocols): client = Client(port=port, protocol=protocol) docs = client.post('/', inputs=[Document()]) for doc in docs: assert doc.text == 'processed' @pytest.mark.parametrize( 'protocols', [ list(protocols) for protocols in itertools.chain( itertools.combinations(PROTOCOLS, r=3), itertools.combinations(PROTOCOLS, r=2), ) ], ) def test_flow_multiprotocol_default_random_ports(protocols): flow = Flow().config_gateway(protocol=protocols).add(uses=MyExecutor) with flow: for port, protocol in zip(flow.port, protocols): client = Client(port=port, protocol=protocol) docs = client.post('/', inputs=[Document()]) for doc in docs: assert doc.text == 'processed' @pytest.mark.parametrize( 'protocols', [ ['grpc'], ['http'], ['websocket'], ], ) def test_flow_single_protocol_default_random_port(protocols): flow = Flow().config_gateway(protocol=protocols).add(uses=MyExecutor) with flow: for protocol in protocols: client = Client(port=flow.port, protocol=protocol) docs = client.post('/', inputs=[Document()]) for doc in docs: assert doc.text == 'processed' def test_flow_multiprotocol_aliases(): ports = [random_port(), random_port(), random_port()] protocols = PROTOCOLS flow = Flow().config_gateway(ports=ports, protocols=protocols).add(uses=MyExecutor) with flow: for port, protocol in zip(ports, protocols): client = Client(port=port, protocol=protocol) docs = client.post('/', inputs=[Document()]) for doc in docs: assert doc.text == 'processed' def test_flow_multiprotocol_yaml(): flow = Flow.load_config(os.path.join(cur_dir, 'yaml/multi-protocol.yml')) with flow: for port, protocol in zip([12345, 12344, 12343], ['grpc', 'http', 'websocket']): client = Client(port=port, protocol=protocol) client.post('/', inputs=[Document()]) def test_flow_multiprotocol_ports_protocols_mismatch(): flow = Flow().config_gateway(port=[random_port()], protocol=['grpc', 'http']) with pytest.raises(ValueError) as err_info: with flow: pass assert ( 'You need to specify as much protocols as ports if you want to use a jina built-in gateway' in err_info.value.args[0] ) def test_flow_multiprotocol_with_monitoring(): ports = [random_port(), random_port(), random_port()] protocols = PROTOCOLS flow = Flow().config_gateway(port=ports, protocol=protocols, monitoring=True) with flow: for port, protocol in zip(ports, protocols): client = Client(port=port, protocol=protocol) client.post('/', inputs=[Document()])
from typing import Optional from typing_extensions import Protocol, runtime_checkable from torch.distributed._state_dict_utils import _copy_state_dict, _create_cpu_state_dict from torch.distributed.checkpoint.metadata import STATE_DICT_TYPE __all__ = ["AsyncStager", "BlockingAsyncStager"] @runtime_checkable class AsyncStager(Protocol): """ This protocol is meant to provide customization and extensibility for dcp.async_save, allowing users to customize how data is staged previous to executing the usual dcp.save path in parallel. The expected order of operations (concretely defined in `torch.distributed.state_dict_saver.async_save`) is the following: 1. AsyncStager.stage_data(state_dict): This call gives the AsyncStager the opportunity to 'stage' the state_dict. The expectation and purpose of staging in this context is to create a "training-safe" representation of the state dict, meaning that any updates to module data after staging is complete should not be reflected in the state dict returned from this method. For example, in the default case a copy of the entire state dict is created on CPU RAM and returned here, allowing users to continue training without risking changes to data which is being serialized. 2. dcp.save is called on the state_dict returned from stage in parallel. This call is responsible for serializing the state_dict and writing it to storage. 3. If AsyncStager.should_synchronize_after_execute is True, this method will be called immediately after the serialization thread starts and before returning from dcp.async_save. If this is set to False, the assumption is the user has defined a custom synchronization point for the the purpose of further optimizing save latency in the training loop (for example, by overlapping staging with the forward/backward pass), and it is the respondsibility of the user to call `AsyncStager.synchronize_staging` at the appropriate time. """ # default to True since the common case is to stage synchronously _synchronize_after_execute: bool = True @property def should_synchronize_after_execute(self) -> bool: """ Whether to synchronize after executing the stage. """ return self._synchronize_after_execute def stage(self, state_dict: STATE_DICT_TYPE) -> STATE_DICT_TYPE: """ Returns a "staged" copy of `state_dict`. The expectation of the staged copy is that it is inoculated from any updates incurred after the stage call is complete. """ raise NotImplementedError( f"{self.__class__.__name__} must implement stage method" ) def synchronize_staging(self) -> None: """ In the case `stage` is async in some way, this method should be called to ensure staging is complete and it is safe to begin modifying the original `state_dict` """ class BlockingAsyncStager(AsyncStager): """ An implementation of AsyncStager which stages the state_dict on CPU RAM and blocks until the copy is complete. This implementation also provides an option to optimize stage latency using pinned memory. N.B. synchronize_staging is a no-op in this case. """ # default to True since the common case is to stage synchronously _synchronize_after_execute: bool = False def __init__( self, cache_staged_state_dict: bool = False, type_check: bool = False, ): """ Initializes the BlockingAsyncStager. Args: cache_staged_state_dict: Whether to cache the staged state_dict. This option decreases staging latency at the cost of increases memory usage. Additionally, if this parameter is set to True, it's the expectation that the stager is maintained and reused for multiple dcp.async_save calls. Default to False. type_check: Whether to perform a type check during cpu_offload. Defaults to False. """ self.cache_staged_state_dict = cache_staged_state_dict self.type_check = type_check self.state_dict_cache: Optional[STATE_DICT_TYPE] = None def stage(self, state_dict: STATE_DICT_TYPE) -> STATE_DICT_TYPE: """ Returns a copy of `state_dict` on the CPU. """ if not self.cache_staged_state_dict: staged_state_dict = _create_cpu_state_dict(state_dict) _copy_state_dict(state_dict, staged_state_dict, type_check=self.type_check) return staged_state_dict if self.state_dict_cache is None: self.state_dict_cache = _create_cpu_state_dict(state_dict, pin_memory=True) return _copy_state_dict(state_dict, self.state_dict_cache) def synchronize_staging(self) -> None: """ No-op function, since staging is blocking. """
from typing import Optional from typing_extensions import Protocol, runtime_checkable from torch.distributed._state_dict_utils import _copy_state_dict, _create_cpu_state_dict from torch.distributed.checkpoint.metadata import STATE_DICT_TYPE __all__ = ["AsyncStager", "BlockingAsyncStager"] @runtime_checkable class AsyncStager(Protocol): """ This protocol is meant to provide customization and extensibility for dcp.async_save, allowing users to customize how data is staged previous to executing the usual dcp.save path in parallel. The expected order of operations (concretely defined in `torch.distributed.state_dict_saver.async_save`) is the following: 1. AsyncStager.stage_data(state_dict): This call gives the AsyncStager the opportunity to 'stage' the state_dict. The expectation and purpose of staging in this context is to create a "training-safe" representation of the state dict, meaning that any updates to module data after staging is complete should not be reflected in the state dict returned from this method. For example, in the default case a copy of the entire state dict is created on CPU RAM and returned here, allowing users to continue training without risking changes to data which is being serialized. 2. dcp.save is called on the state_dict returned from stage in parallel. This call is responsible for serializing the state_dict and writing it to storage. 3. If AsyncStager.should_synchronize_after_execute is True, this method will be called immediately after the serialization thread starts and before returning from dcp.async_save. If this is set to False, the assumption is the user has defined a custom synchronization point for the the purpose of further optimizing save latency in the training loop (for example, by overlapping staging with the forward/backward pass), and it is the respondsibility of the user to call `AsyncStager.synchronize_staging` at the appropriate time. """ # default to True since the common case is to stage synchronously _synchronize_after_execute: bool = True @property def should_synchronize_after_execute(self) -> bool: """ Whether to synchronize after executing the stage. """ return self._synchronize_after_execute def stage(self, state_dict: STATE_DICT_TYPE) -> STATE_DICT_TYPE: """ Returns a "staged" copy of `state_dict`. The expectation of the staged copy is that it is innoculated from any updates incurred after the stage call is complete. """ raise NotImplementedError( f"{self.__class__.__name__} must implement stage method" ) def synchronize_staging(self) -> None: """ In the case `stage` is async in some way, this method should be called to ensure staging is complete and it is safe to begin modifying the original `state_dict` """ class BlockingAsyncStager(AsyncStager): """ An implementation of AsyncStager which stages the state_dict on CPU RAM and blocks until the copy is complete. This implementation also provides an option to optimize stage latency using pinned memory. N.B. synchronize_staging is a no-op in this case. """ # default to True since the common case is to stage synchronously _synchronize_after_execute: bool = False def __init__( self, cache_staged_state_dict: bool = False, type_check: bool = False, ): """ Initializes the BlockingAsyncStager. Args: cache_staged_state_dict: Whether to cache the staged state_dict. This option decreases staging latency at the cost of increases memory usage. Additionally, if this parameter is set to True, it's the expectation that the stager is maintained and re-used for multiple dcp.async_save calls. Default to False. type_check: Whether to perform a type check during cpu_offload. Defaults to False. """ self.cache_staged_state_dict = cache_staged_state_dict self.type_check = type_check self.state_dict_cache: Optional[STATE_DICT_TYPE] = None def stage(self, state_dict: STATE_DICT_TYPE) -> STATE_DICT_TYPE: """ Returns a copy of `state_dict` on the CPU. """ if not self.cache_staged_state_dict: staged_state_dict = _create_cpu_state_dict(state_dict) _copy_state_dict(state_dict, staged_state_dict, type_check=self.type_check) return staged_state_dict if self.state_dict_cache is None: self.state_dict_cache = _create_cpu_state_dict(state_dict, pin_memory=True) return _copy_state_dict(state_dict, self.state_dict_cache) def synchronize_staging(self) -> None: """ No-op function, since staging is blocking. """
# dataset settings dataset_type = 'CityscapesDataset' # TODO remove it after cityscape metric # data_root = '/mnt/lustre/luochunhua.vendor/openmmlab2.0/data/cityscapes/' data_root = 'data/cityscapes/' train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='RandomResize', scale=[(2048, 800), (2048, 1024)]), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='Resize', scale=(2048, 1024), keep_ratio=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), batch_sampler=dict(type='AspectRatioBatchSampler'), dataset=dict( type='RepeatDataset', times=8, dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instancesonly_filtered_gtFine_train.json', data_prefix=dict(img='leftImg8bit/train/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline))) val_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instancesonly_filtered_gtFine_val.json', data_prefix=dict(img='leftImg8bit/val/'), test_mode=True, filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=test_pipeline)) test_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instancesonly_filtered_gtFine_val.json', data_prefix=dict(img='leftImg8bit/val/'), test_mode=True, filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=test_pipeline)) val_evaluator = dict( type='CocoMetric', ann_file=data_root + 'annotations/instancesonly_filtered_gtFine_val.json', metric=['bbox', 'segm']) test_evaluator = dict( type='CocoMetric', ann_file=data_root + 'annotations/instancesonly_filtered_gtFine_val.json', metric=['bbox', 'segm']) # TODO add setting on test dataset after cityscape metric # inference on test dataset and # format the output results for submission. # test_dataloader = None # test_evaluator = None
# dataset settings dataset_type = 'CityscapesDataset' data_root = 'data/cityscapes/' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='Resize', img_scale=[(2048, 800), (2048, 1024)], keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(2048, 1024), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=1, workers_per_gpu=2, train=dict( type='RepeatDataset', times=8, dataset=dict( type=dataset_type, ann_file=data_root + 'annotations/instancesonly_filtered_gtFine_train.json', img_prefix=data_root + 'leftImg8bit/train/', pipeline=train_pipeline)), val=dict( type=dataset_type, ann_file=data_root + 'annotations/instancesonly_filtered_gtFine_val.json', img_prefix=data_root + 'leftImg8bit/val/', pipeline=test_pipeline), test=dict( type=dataset_type, ann_file=data_root + 'annotations/instancesonly_filtered_gtFine_test.json', img_prefix=data_root + 'leftImg8bit/test/', pipeline=test_pipeline)) evaluation = dict(metric=['bbox', 'segm'])
from torchvision.transforms import InterpolationMode # usort: skip from ._utils import is_pure_tensor, register_kernel # usort: skip from ._meta import ( clamp_bounding_boxes, convert_bounding_box_format, get_dimensions_image, _get_dimensions_image_pil, get_dimensions_video, get_dimensions, get_num_frames_video, get_num_frames, get_image_num_channels, get_num_channels_image, _get_num_channels_image_pil, get_num_channels_video, get_num_channels, get_size_bounding_boxes, get_size_image, _get_size_image_pil, get_size_mask, get_size_video, get_size, ) # usort: skip from ._augment import _erase_image_pil, erase, erase_image, erase_video from ._color import ( _adjust_brightness_image_pil, _adjust_contrast_image_pil, _adjust_gamma_image_pil, _adjust_hue_image_pil, _adjust_saturation_image_pil, _adjust_sharpness_image_pil, _autocontrast_image_pil, _equalize_image_pil, _invert_image_pil, _permute_channels_image_pil, _posterize_image_pil, _rgb_to_grayscale_image_pil, _solarize_image_pil, adjust_brightness, adjust_brightness_image, adjust_brightness_video, adjust_contrast, adjust_contrast_image, adjust_contrast_video, adjust_gamma, adjust_gamma_image, adjust_gamma_video, adjust_hue, adjust_hue_image, adjust_hue_video, adjust_saturation, adjust_saturation_image, adjust_saturation_video, adjust_sharpness, adjust_sharpness_image, adjust_sharpness_video, autocontrast, autocontrast_image, autocontrast_video, equalize, equalize_image, equalize_video, grayscale_to_rgb, grayscale_to_rgb_image, invert, invert_image, invert_video, permute_channels, permute_channels_image, permute_channels_video, posterize, posterize_image, posterize_video, rgb_to_grayscale, rgb_to_grayscale_image, solarize, solarize_image, solarize_video, to_grayscale, ) from ._geometry import ( _affine_image_pil, _center_crop_image_pil, _crop_image_pil, _elastic_image_pil, _five_crop_image_pil, _horizontal_flip_image_pil, _pad_image_pil, _perspective_image_pil, _resize_image_pil, _resized_crop_image_pil, _rotate_image_pil, _ten_crop_image_pil, _vertical_flip_image_pil, affine, affine_bounding_boxes, affine_image, affine_mask, affine_video, center_crop, center_crop_bounding_boxes, center_crop_image, center_crop_mask, center_crop_video, crop, crop_bounding_boxes, crop_image, crop_mask, crop_video, elastic, elastic_bounding_boxes, elastic_image, elastic_mask, elastic_transform, elastic_video, five_crop, five_crop_image, five_crop_video, hflip, # TODO: Consider moving all pure alias definitions at the bottom of the file horizontal_flip, horizontal_flip_bounding_boxes, horizontal_flip_image, horizontal_flip_mask, horizontal_flip_video, pad, pad_bounding_boxes, pad_image, pad_mask, pad_video, perspective, perspective_bounding_boxes, perspective_image, perspective_mask, perspective_video, resize, resize_bounding_boxes, resize_image, resize_mask, resize_video, resized_crop, resized_crop_bounding_boxes, resized_crop_image, resized_crop_mask, resized_crop_video, rotate, rotate_bounding_boxes, rotate_image, rotate_mask, rotate_video, ten_crop, ten_crop_image, ten_crop_video, vertical_flip, vertical_flip_bounding_boxes, vertical_flip_image, vertical_flip_mask, vertical_flip_video, vflip, ) from ._misc import ( _gaussian_blur_image_pil, convert_image_dtype, gaussian_blur, gaussian_blur_image, gaussian_blur_video, normalize, normalize_image, normalize_video, sanitize_bounding_boxes, to_dtype, to_dtype_image, to_dtype_video, ) from ._temporal import uniform_temporal_subsample, uniform_temporal_subsample_video from ._type_conversion import pil_to_tensor, to_image, to_pil_image from ._deprecated import get_image_size, to_tensor # usort: skip
from torchvision.transforms import InterpolationMode # usort: skip from ._utils import is_pure_tensor, register_kernel # usort: skip from ._meta import ( clamp_bounding_boxes, convert_bounding_box_format, get_dimensions_image, _get_dimensions_image_pil, get_dimensions_video, get_dimensions, get_num_frames_video, get_num_frames, get_image_num_channels, get_num_channels_image, _get_num_channels_image_pil, get_num_channels_video, get_num_channels, get_size_bounding_boxes, get_size_image, _get_size_image_pil, get_size_mask, get_size_video, get_size, ) # usort: skip from ._augment import _erase_image_pil, erase, erase_image, erase_video from ._color import ( _adjust_brightness_image_pil, _adjust_contrast_image_pil, _adjust_gamma_image_pil, _adjust_hue_image_pil, _adjust_saturation_image_pil, _adjust_sharpness_image_pil, _autocontrast_image_pil, _equalize_image_pil, _invert_image_pil, _permute_channels_image_pil, _posterize_image_pil, _rgb_to_grayscale_image_pil, _solarize_image_pil, adjust_brightness, adjust_brightness_image, adjust_brightness_video, adjust_contrast, adjust_contrast_image, adjust_contrast_video, adjust_gamma, adjust_gamma_image, adjust_gamma_video, adjust_hue, adjust_hue_image, adjust_hue_video, adjust_saturation, adjust_saturation_image, adjust_saturation_video, adjust_sharpness, adjust_sharpness_image, adjust_sharpness_video, autocontrast, autocontrast_image, autocontrast_video, equalize, equalize_image, equalize_video, invert, invert_image, invert_video, permute_channels, permute_channels_image, permute_channels_video, posterize, posterize_image, posterize_video, rgb_to_grayscale, rgb_to_grayscale_image, solarize, solarize_image, solarize_video, to_grayscale, ) from ._geometry import ( _affine_image_pil, _center_crop_image_pil, _crop_image_pil, _elastic_image_pil, _five_crop_image_pil, _horizontal_flip_image_pil, _pad_image_pil, _perspective_image_pil, _resize_image_pil, _resized_crop_image_pil, _rotate_image_pil, _ten_crop_image_pil, _vertical_flip_image_pil, affine, affine_bounding_boxes, affine_image, affine_mask, affine_video, center_crop, center_crop_bounding_boxes, center_crop_image, center_crop_mask, center_crop_video, crop, crop_bounding_boxes, crop_image, crop_mask, crop_video, elastic, elastic_bounding_boxes, elastic_image, elastic_mask, elastic_transform, elastic_video, five_crop, five_crop_image, five_crop_video, hflip, # TODO: Consider moving all pure alias definitions at the bottom of the file horizontal_flip, horizontal_flip_bounding_boxes, horizontal_flip_image, horizontal_flip_mask, horizontal_flip_video, pad, pad_bounding_boxes, pad_image, pad_mask, pad_video, perspective, perspective_bounding_boxes, perspective_image, perspective_mask, perspective_video, resize, resize_bounding_boxes, resize_image, resize_mask, resize_video, resized_crop, resized_crop_bounding_boxes, resized_crop_image, resized_crop_mask, resized_crop_video, rotate, rotate_bounding_boxes, rotate_image, rotate_mask, rotate_video, ten_crop, ten_crop_image, ten_crop_video, vertical_flip, vertical_flip_bounding_boxes, vertical_flip_image, vertical_flip_mask, vertical_flip_video, vflip, ) from ._misc import ( _gaussian_blur_image_pil, convert_image_dtype, gaussian_blur, gaussian_blur_image, gaussian_blur_video, normalize, normalize_image, normalize_video, sanitize_bounding_boxes, to_dtype, to_dtype_image, to_dtype_video, ) from ._temporal import uniform_temporal_subsample, uniform_temporal_subsample_video from ._type_conversion import pil_to_tensor, to_image, to_pil_image from ._deprecated import get_image_size, to_tensor # usort: skip
"""Implementations of key-value stores and storage helpers. Module provides implementations of various key-value stores that conform to a simple key-value interface. The primary goal of these storages is to support implementation of caching. """ from typing import TYPE_CHECKING, Any from langchain_core.stores import ( InMemoryByteStore, InMemoryStore, InvalidKeyException, ) from langchain._api import create_importer from langchain.storage._lc_store import create_kv_docstore, create_lc_store from langchain.storage.encoder_backed import EncoderBackedStore from langchain.storage.file_system import LocalFileStore if TYPE_CHECKING: from langchain_community.storage import ( RedisStore, UpstashRedisByteStore, UpstashRedisStore, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "RedisStore": "langchain_community.storage", "UpstashRedisByteStore": "langchain_community.storage", "UpstashRedisStore": "langchain_community.storage", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "EncoderBackedStore", "InMemoryByteStore", "InMemoryStore", "InvalidKeyException", "LocalFileStore", "RedisStore", "UpstashRedisByteStore", "UpstashRedisStore", "create_kv_docstore", "create_lc_store", ]
"""Implementations of key-value stores and storage helpers. Module provides implementations of various key-value stores that conform to a simple key-value interface. The primary goal of these storages is to support implementation of caching. """ from typing import TYPE_CHECKING, Any from langchain_core.stores import ( InMemoryByteStore, InMemoryStore, InvalidKeyException, ) from langchain._api import create_importer from langchain.storage._lc_store import create_kv_docstore, create_lc_store from langchain.storage.encoder_backed import EncoderBackedStore from langchain.storage.file_system import LocalFileStore if TYPE_CHECKING: from langchain_community.storage import ( RedisStore, UpstashRedisByteStore, UpstashRedisStore, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "RedisStore": "langchain_community.storage", "UpstashRedisByteStore": "langchain_community.storage", "UpstashRedisStore": "langchain_community.storage", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "create_kv_docstore", "create_lc_store", "EncoderBackedStore", "InMemoryByteStore", "InMemoryStore", "InvalidKeyException", "LocalFileStore", "RedisStore", "UpstashRedisByteStore", "UpstashRedisStore", ]
# Copyright (c) OpenMMLab. All rights reserved. import argparse import os from mmengine import MMLogger from mmengine.config import Config, DictAction from mmengine.dist import init_dist from mmengine.utils import mkdir_or_exist from mmdet.utils import register_all_modules from mmdet.utils.benchmark import (DataLoaderBenchmark, DatasetBenchmark, InferenceBenchmark) def parse_args(): parser = argparse.ArgumentParser(description='MMDet benchmark') parser.add_argument('config', help='test config file path') parser.add_argument('--checkpoint', help='checkpoint file') parser.add_argument( '--task', choices=['inference', 'dataloader', 'dataset'], default='dataloader', help='Which task do you want to go to benchmark') parser.add_argument( '--repeat-num', type=int, default=1, help='number of repeat times of measurement for averaging the results') parser.add_argument( '--max-iter', type=int, default=2000, help='num of max iter') parser.add_argument( '--log-interval', type=int, default=50, help='interval of logging') parser.add_argument( '--num-warmup', type=int, default=5, help='Number of warmup') parser.add_argument( '--fuse-conv-bn', action='store_true', help='Whether to fuse conv and bn, this will slightly increase' 'the inference speed') parser.add_argument( '--dataset-type', choices=['train', 'val', 'test'], default='test', help='Benchmark dataset type. only supports train, val and test') parser.add_argument( '--work-dir', help='the directory to save the file containing ' 'benchmark metrics') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') parser.add_argument( '--launcher', choices=['none', 'pytorch', 'slurm', 'mpi'], default='none', help='job launcher') parser.add_argument('--local_rank', type=int, default=0) args = parser.parse_args() if 'LOCAL_RANK' not in os.environ: os.environ['LOCAL_RANK'] = str(args.local_rank) return args def inference_benchmark(args, cfg, distributed, logger): benchmark = InferenceBenchmark( cfg, args.checkpoint, distributed, args.fuse_conv_bn, args.max_iter, args.log_interval, args.num_warmup, logger=logger) return benchmark def dataloader_benchmark(args, cfg, distributed, logger): benchmark = DataLoaderBenchmark( cfg, distributed, args.dataset_type, args.max_iter, args.log_interval, args.num_warmup, logger=logger) return benchmark def dataset_benchmark(args, cfg, distributed, logger): benchmark = DatasetBenchmark( cfg, args.dataset_type, args.max_iter, args.log_interval, args.num_warmup, logger=logger) return benchmark def main(): register_all_modules() args = parse_args() cfg = Config.fromfile(args.config) if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) distributed = False if args.launcher != 'none': init_dist(args.launcher, **cfg.get('env_cfg', {}).get('dist_cfg', {})) distributed = True log_file = None if args.work_dir: log_file = os.path.join(args.work_dir, 'benchmark.log') mkdir_or_exist(args.work_dir) logger = MMLogger.get_instance( 'mmdet', log_file=log_file, log_level='INFO') benchmark = eval(f'{args.task}_benchmark')(args, cfg, distributed, logger) benchmark.run(args.repeat_num) if __name__ == '__main__': main()
# Copyright (c) OpenMMLab. All rights reserved. import argparse import os import mmcv from mmcv import Config, DictAction from mmengine import MMLogger from mmengine.dist import init_dist from mmdet.utils import register_all_modules from mmdet.utils.benchmark import (DataLoaderBenchmark, DatasetBenchmark, InferenceBenchmark) def parse_args(): parser = argparse.ArgumentParser(description='MMDet benchmark') parser.add_argument('config', help='test config file path') parser.add_argument('--checkpoint', help='checkpoint file') parser.add_argument( '--task', choices=['inference', 'dataloader', 'dataset'], default='dataloader', help='Which task do you want to go to benchmark') parser.add_argument( '--repeat-num', type=int, default=1, help='number of repeat times of measurement for averaging the results') parser.add_argument( '--max-iter', type=int, default=2000, help='num of max iter') parser.add_argument( '--log-interval', type=int, default=50, help='interval of logging') parser.add_argument( '--num-warmup', type=int, default=5, help='Number of warmup') parser.add_argument( '--fuse-conv-bn', action='store_true', help='Whether to fuse conv and bn, this will slightly increase' 'the inference speed') parser.add_argument( '--dataset-type', choices=['train', 'val', 'test'], default='test', help='Benchmark dataset type. only supports train, val and test') parser.add_argument( '--work-dir', help='the directory to save the file containing ' 'benchmark metrics') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') parser.add_argument( '--launcher', choices=['none', 'pytorch', 'slurm', 'mpi'], default='none', help='job launcher') parser.add_argument('--local_rank', type=int, default=0) args = parser.parse_args() if 'LOCAL_RANK' not in os.environ: os.environ['LOCAL_RANK'] = str(args.local_rank) return args def inference_benchmark(args, cfg, distributed, logger): benchmark = InferenceBenchmark( cfg, args.checkpoint, distributed, args.fuse_conv_bn, args.max_iter, args.log_interval, args.num_warmup, logger=logger) return benchmark def dataloader_benchmark(args, cfg, distributed, logger): benchmark = DataLoaderBenchmark( cfg, distributed, args.dataset_type, args.max_iter, args.log_interval, args.num_warmup, logger=logger) return benchmark def dataset_benchmark(args, cfg, distributed, logger): benchmark = DatasetBenchmark( cfg, args.dataset_type, args.max_iter, args.log_interval, args.num_warmup, logger=logger) return benchmark def main(): register_all_modules() args = parse_args() cfg = Config.fromfile(args.config) if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) distributed = False if args.launcher != 'none': init_dist(args.launcher, **cfg.get('env_cfg', {}).get('dist_cfg', {})) distributed = True log_file = None if args.work_dir: log_file = os.path.join(args.work_dir, 'benchmark.log') mmcv.mkdir_or_exist(args.work_dir) logger = MMLogger.get_instance( 'mmdet', log_file=log_file, log_level='INFO') benchmark = eval(f'{args.task}_benchmark')(args, cfg, distributed, logger) benchmark.run(args.repeat_num) if __name__ == '__main__': main()
# Copyright (c) OpenMMLab. All rights reserved. from .csp_darknet import CSPDarknet from .cspnext import CSPNeXt from .darknet import Darknet from .detectors_resnet import DetectoRS_ResNet from .detectors_resnext import DetectoRS_ResNeXt from .efficientnet import EfficientNet from .hourglass import HourglassNet from .hrnet import HRNet from .mobilenet_v2 import MobileNetV2 from .pvt import PyramidVisionTransformer, PyramidVisionTransformerV2 from .regnet import RegNet from .res2net import Res2Net from .resnest import ResNeSt from .resnet import ResNet, ResNetV1d from .resnext import ResNeXt from .ssd_vgg import SSDVGG from .swin import SwinTransformer from .trident_resnet import TridentResNet __all__ = [ 'RegNet', 'ResNet', 'ResNetV1d', 'ResNeXt', 'SSDVGG', 'HRNet', 'MobileNetV2', 'Res2Net', 'HourglassNet', 'DetectoRS_ResNet', 'DetectoRS_ResNeXt', 'Darknet', 'ResNeSt', 'TridentResNet', 'CSPDarknet', 'SwinTransformer', 'PyramidVisionTransformer', 'PyramidVisionTransformerV2', 'EfficientNet', 'CSPNeXt' ]
# Copyright (c) OpenMMLab. All rights reserved. from .csp_darknet import CSPDarknet from .darknet import Darknet from .detectors_resnet import DetectoRS_ResNet from .detectors_resnext import DetectoRS_ResNeXt from .efficientnet import EfficientNet from .hourglass import HourglassNet from .hrnet import HRNet from .mobilenet_v2 import MobileNetV2 from .pvt import PyramidVisionTransformer, PyramidVisionTransformerV2 from .regnet import RegNet from .res2net import Res2Net from .resnest import ResNeSt from .resnet import ResNet, ResNetV1d from .resnext import ResNeXt from .ssd_vgg import SSDVGG from .swin import SwinTransformer from .trident_resnet import TridentResNet __all__ = [ 'RegNet', 'ResNet', 'ResNetV1d', 'ResNeXt', 'SSDVGG', 'HRNet', 'MobileNetV2', 'Res2Net', 'HourglassNet', 'DetectoRS_ResNet', 'DetectoRS_ResNeXt', 'Darknet', 'ResNeSt', 'TridentResNet', 'CSPDarknet', 'SwinTransformer', 'PyramidVisionTransformer', 'PyramidVisionTransformerV2', 'EfficientNet' ]
_base_ = [ '../_base_/models/faster-rcnn_r50-caffe-c4.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ]
_base_ = [ '../_base_/models/faster-rcnn_r50-caffe-c4.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] # use caffe img_norm img_norm_cfg = dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) # optimizer optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
import os from typing import Optional, Type import orjson from pydantic import BaseModel, Field from rich.console import Console from docarray.base_document.base_node import BaseNode from docarray.base_document.io.json import orjson_dumps, orjson_dumps_and_decode from docarray.base_document.mixins import IOMixin, UpdateMixin from docarray.typing import ID _console: Console = Console() class BaseDocument(BaseModel, IOMixin, UpdateMixin, BaseNode): """ The base class for Documents """ id: Optional[ID] = Field(default_factory=lambda: ID(os.urandom(16).hex())) class Config: json_loads = orjson.loads json_dumps = orjson_dumps_and_decode json_encoders = {dict: orjson_dumps} validate_assignment = True @classmethod def _get_field_type(cls, field: str) -> Type: """ Accessing the nested python Class define in the schema. Could be useful for reconstruction of Document in serialization/deserilization :param field: name of the field :return: """ return cls.__fields__[field].outer_type_ def __str__(self): with _console.capture() as capture: _console.print(self) return capture.get().strip() def summary(self) -> None: """Print non-empty fields and nested structure of this Document object.""" from docarray.display.document_summary import DocumentSummary DocumentSummary(doc=self).summary() @classmethod def schema_summary(cls) -> None: """Print a summary of the Documents schema.""" from docarray.display.document_summary import DocumentSummary DocumentSummary.schema_summary(cls) def _ipython_display_(self): """Displays the object in IPython as a summary""" self.summary()
import os from typing import Type import orjson from pydantic import BaseModel, Field, parse_obj_as from rich.console import Console from docarray.base_document.base_node import BaseNode from docarray.base_document.io.json import orjson_dumps, orjson_dumps_and_decode from docarray.base_document.mixins import IOMixin, UpdateMixin from docarray.typing import ID _console: Console = Console() class BaseDocument(BaseModel, IOMixin, UpdateMixin, BaseNode): """ The base class for Documents """ id: ID = Field(default_factory=lambda: parse_obj_as(ID, os.urandom(16).hex())) class Config: json_loads = orjson.loads json_dumps = orjson_dumps_and_decode json_encoders = {dict: orjson_dumps} validate_assignment = True @classmethod def _get_field_type(cls, field: str) -> Type: """ Accessing the nested python Class define in the schema. Could be useful for reconstruction of Document in serialization/deserilization :param field: name of the field :return: """ return cls.__fields__[field].outer_type_ def __str__(self): with _console.capture() as capture: _console.print(self) return capture.get().strip() def summary(self) -> None: """Print non-empty fields and nested structure of this Document object.""" from docarray.display.document_summary import DocumentSummary DocumentSummary(doc=self).summary() @classmethod def schema_summary(cls) -> None: """Print a summary of the Documents schema.""" from docarray.display.document_summary import DocumentSummary DocumentSummary.schema_summary(cls) def _ipython_display_(self): """Displays the object in IPython as a summary""" self.summary()
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.api import _tf_keras from keras.api import activations from keras.api import applications from keras.api import backend from keras.api import callbacks from keras.api import config from keras.api import constraints from keras.api import datasets from keras.api import distribution from keras.api import dtype_policies from keras.api import export from keras.api import initializers from keras.api import layers from keras.api import legacy from keras.api import losses from keras.api import metrics from keras.api import mixed_precision from keras.api import models from keras.api import ops from keras.api import optimizers from keras.api import preprocessing from keras.api import quantizers from keras.api import random from keras.api import regularizers from keras.api import saving from keras.api import tree from keras.api import utils from keras.src.backend.common.keras_tensor import KerasTensor from keras.src.backend.common.stateless_scope import StatelessScope from keras.src.backend.common.symbolic_scope import SymbolicScope from keras.src.backend.exports import Variable from keras.src.backend.exports import device from keras.src.backend.exports import name_scope from keras.src.dtype_policies.dtype_policy import DTypePolicy from keras.src.dtype_policies.dtype_policy import FloatDTypePolicy from keras.src.initializers.initializer import Initializer from keras.src.layers.core.input_layer import Input from keras.src.layers.input_spec import InputSpec from keras.src.layers.layer import Layer from keras.src.losses.loss import Loss from keras.src.metrics.metric import Metric from keras.src.models.model import Model from keras.src.models.sequential import Sequential from keras.src.ops.function import Function from keras.src.ops.operation import Operation from keras.src.optimizers.optimizer import Optimizer from keras.src.quantizers.quantizers import Quantizer from keras.src.regularizers.regularizers import Regularizer from keras.src.version import __version__ from keras.src.version import version
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.api import _tf_keras from keras.api import activations from keras.api import applications from keras.api import backend from keras.api import callbacks from keras.api import config from keras.api import constraints from keras.api import datasets from keras.api import distribution from keras.api import dtype_policies from keras.api import export from keras.api import initializers from keras.api import layers from keras.api import legacy from keras.api import losses from keras.api import metrics from keras.api import mixed_precision from keras.api import models from keras.api import ops from keras.api import optimizers from keras.api import preprocessing from keras.api import quantizers from keras.api import random from keras.api import regularizers from keras.api import saving from keras.api import tree from keras.api import utils from keras.src.backend.common.keras_tensor import KerasTensor from keras.src.backend.common.stateless_scope import StatelessScope from keras.src.backend.exports import Variable from keras.src.backend.exports import device from keras.src.backend.exports import name_scope from keras.src.dtype_policies.dtype_policy import DTypePolicy from keras.src.dtype_policies.dtype_policy import FloatDTypePolicy from keras.src.initializers.initializer import Initializer from keras.src.layers.core.input_layer import Input from keras.src.layers.input_spec import InputSpec from keras.src.layers.layer import Layer from keras.src.losses.loss import Loss from keras.src.metrics.metric import Metric from keras.src.models.model import Model from keras.src.models.sequential import Sequential from keras.src.ops.function import Function from keras.src.ops.operation import Operation from keras.src.optimizers.optimizer import Optimizer from keras.src.quantizers.quantizers import Quantizer from keras.src.regularizers.regularizers import Regularizer from keras.src.version import __version__ from keras.src.version import version
from .rnnt_pipeline import EMFORMER_RNNT_BASE_MUSTC, EMFORMER_RNNT_BASE_TEDLIUM3 from .source_separation_pipeline import CONVTASNET_BASE_LIBRI2MIX, SourceSeparationBundle __all__ = [ "CONVTASNET_BASE_LIBRI2MIX", "EMFORMER_RNNT_BASE_MUSTC", "EMFORMER_RNNT_BASE_TEDLIUM3", "SourceSeparationBundle", ]
from .rnnt_pipeline import EMFORMER_RNNT_BASE_MUSTC, EMFORMER_RNNT_BASE_TEDLIUM3 from .source_separation_pipeline import CONVTASNET_BASE_LIBRI2MIX __all__ = [ "CONVTASNET_BASE_LIBRI2MIX", "EMFORMER_RNNT_BASE_MUSTC", "EMFORMER_RNNT_BASE_TEDLIUM3", ]
from typing import Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun from langchain_core.tools import BaseTool from pydantic import BaseModel, Field from langchain_community.utilities.financial_datasets import FinancialDatasetsAPIWrapper class CashFlowStatementsSchema(BaseModel): """Input for CashFlowStatements.""" ticker: str = Field( description="The ticker symbol to fetch cash flow statements for.", ) period: str = Field( description="The period of the cash flow statement. " "Possible values are: " "annual, quarterly, ttm. " "Default is 'annual'.", ) limit: int = Field( description="The number of cash flow statements to return. Default is 10.", ) class CashFlowStatements(BaseTool): """ Tool that gets cash flow statements for a given ticker over a given period. """ mode: str = "get_cash_flow_statements" name: str = "cash_flow_statements" description: str = ( "A wrapper around financial datasets's Cash Flow Statements API. " "This tool is useful for fetching cash flow statements for a given ticker." "The tool fetches cash flow statements for a given ticker over a given period." "The period can be annual, quarterly, or trailing twelve months (ttm)." "The number of cash flow statements to return can also be " "specified using the limit parameter." ) args_schema: Type[CashFlowStatementsSchema] = CashFlowStatementsSchema api_wrapper: FinancialDatasetsAPIWrapper = Field(..., exclude=True) def __init__(self, api_wrapper: FinancialDatasetsAPIWrapper): super().__init__(api_wrapper=api_wrapper) def _run( self, ticker: str, period: str, limit: Optional[int], run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the Cash Flow Statements API tool.""" return self.api_wrapper.run( mode=self.mode, ticker=ticker, period=period, limit=limit, )
from typing import Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun from langchain_core.tools import BaseTool from pydantic import BaseModel, Field from langchain_community.utilities.financial_datasets import FinancialDatasetsAPIWrapper class CashFlowStatementsSchema(BaseModel): """Input for CashFlowStatements.""" ticker: str = Field( description="The ticker symbol to fetch cash flow statements for.", ) period: str = Field( description="The period of the cash flow statement. " "Possible values are: " "annual, quarterly, ttm. " "Default is 'annual'.", ) limit: int = Field( description="The number of cash flow statements to return. Default is 10.", ) class CashFlowStatements(BaseTool): # type: ignore[override, override] """ Tool that gets cash flow statements for a given ticker over a given period. """ mode: str = "get_cash_flow_statements" name: str = "cash_flow_statements" description: str = ( "A wrapper around financial datasets's Cash Flow Statements API. " "This tool is useful for fetching cash flow statements for a given ticker." "The tool fetches cash flow statements for a given ticker over a given period." "The period can be annual, quarterly, or trailing twelve months (ttm)." "The number of cash flow statements to return can also be " "specified using the limit parameter." ) args_schema: Type[CashFlowStatementsSchema] = CashFlowStatementsSchema api_wrapper: FinancialDatasetsAPIWrapper = Field(..., exclude=True) def __init__(self, api_wrapper: FinancialDatasetsAPIWrapper): super().__init__(api_wrapper=api_wrapper) def _run( self, ticker: str, period: str, limit: Optional[int], run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the Cash Flow Statements API tool.""" return self.api_wrapper.run( mode=self.mode, ticker=ticker, period=period, limit=limit, )
_base_ = [ '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] lang_model_name = 'bert-base-uncased' model = dict( type='GroundingDINO', num_queries=900, with_box_refine=True, as_two_stage=True, data_preprocessor=dict( type='DetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, pad_mask=False, ), language_model=dict( type='BertModel', name=lang_model_name, pad_to_max=False, use_sub_sentence_represent=True, special_tokens_list=['[CLS]', '[SEP]', '.', '?'], add_pooling_layer=True, ), backbone=dict( type='SwinTransformer', embed_dims=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7, mlp_ratio=4, qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.2, patch_norm=True, out_indices=(1, 2, 3), with_cp=False, convert_weights=False), neck=dict( type='ChannelMapper', in_channels=[192, 384, 768], kernel_size=1, out_channels=256, act_cfg=None, bias=True, norm_cfg=dict(type='GN', num_groups=32), num_outs=4), encoder=dict( num_layers=6, # visual layer config layer_cfg=dict( self_attn_cfg=dict(embed_dims=256, num_levels=4, dropout=0.0), ffn_cfg=dict( embed_dims=256, feedforward_channels=2048, ffn_drop=0.0)), # text layer config text_layer_cfg=dict( self_attn_cfg=dict(num_heads=4, embed_dims=256, dropout=0.0), ffn_cfg=dict( embed_dims=256, feedforward_channels=1024, ffn_drop=0.0)), # fusion layer config fusion_layer_cfg=dict( v_dim=256, l_dim=256, embed_dim=1024, num_heads=4, init_values=1e-4), ), decoder=dict( num_layers=6, return_intermediate=True, layer_cfg=dict( # query self attention layer self_attn_cfg=dict(embed_dims=256, num_heads=8, dropout=0.0), # cross attention layer query to text cross_attn_text_cfg=dict(embed_dims=256, num_heads=8, dropout=0.0), # cross attention layer query to image cross_attn_cfg=dict(embed_dims=256, num_heads=8, dropout=0.0), ffn_cfg=dict( embed_dims=256, feedforward_channels=2048, ffn_drop=0.0)), post_norm_cfg=None), positional_encoding=dict( num_feats=128, normalize=True, offset=0.0, temperature=20), bbox_head=dict( type='GroundingDINOHead', num_classes=80, sync_cls_avg_factor=True, contrastive_cfg=dict(max_text_len=256), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), # 2.0 in DeformDETR loss_bbox=dict(type='L1Loss', loss_weight=5.0)), dn_cfg=dict( # TODO: Move to model.train_cfg ? label_noise_scale=0.5, box_noise_scale=1.0, # 0.4 for DN-DETR group_cfg=dict(dynamic=True, num_groups=None, num_dn_queries=100)), # TODO: half num_dn_queries # training and testing settings train_cfg=None, test_cfg=dict(max_per_img=300)) test_pipeline = [ dict( type='LoadImageFromFile', backend_args=None, imdecode_backend='pillow'), dict( type='FixScaleResize', scale=(800, 1333), keep_ratio=True, backend='pillow'), dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor', 'text', 'custom_entities', 'tokens_positive')) ] val_dataloader = dict( dataset=dict(pipeline=test_pipeline, return_classes=True)) test_dataloader = val_dataloader
_base_ = [ '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] lang_model_name = 'bert-base-uncased' model = dict( type='GroundingDINO', num_queries=900, with_box_refine=True, as_two_stage=True, data_preprocessor=dict( type='DetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, pad_mask=False, ), language_model=dict( type='BertModel', name=lang_model_name, pad_to_max=False, use_sub_sentence_represent=True, special_tokens_list=['[CLS]', '[SEP]', '.', '?'], add_pooling_layer=True, ), backbone=dict( type='SwinTransformer', embed_dims=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7, mlp_ratio=4, qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.2, patch_norm=True, out_indices=(1, 2, 3), with_cp=False, convert_weights=False), neck=dict( type='ChannelMapper', in_channels=[192, 384, 768], kernel_size=1, out_channels=256, act_cfg=None, bias=True, norm_cfg=dict(type='GN', num_groups=32), num_outs=4), encoder=dict( num_layers=6, # visual layer config layer_cfg=dict( self_attn_cfg=dict(embed_dims=256, num_levels=4, dropout=0.0), ffn_cfg=dict( embed_dims=256, feedforward_channels=2048, ffn_drop=0.0)), # text layer config text_layer_cfg=dict( self_attn_cfg=dict(num_heads=4, embed_dims=256, dropout=0.0), ffn_cfg=dict( embed_dims=256, feedforward_channels=1024, ffn_drop=0.0)), # fusion layer config fusion_layer_cfg=dict( v_dim=256, l_dim=256, embed_dim=1024, num_heads=4, init_values=1e-4), ), decoder=dict( num_layers=6, return_intermediate=True, layer_cfg=dict( # query self attention layer self_attn_cfg=dict(embed_dims=256, num_heads=8, dropout=0.0), # cross attention layer query to text cross_attn_text_cfg=dict(embed_dims=256, num_heads=8, dropout=0.0), # cross attention layer query to image cross_attn_cfg=dict(embed_dims=256, num_heads=8, dropout=0.0), ffn_cfg=dict( embed_dims=256, feedforward_channels=2048, ffn_drop=0.0)), post_norm_cfg=None), positional_encoding=dict( num_feats=128, normalize=True, offset=0.0, temperature=20), bbox_head=dict( type='GroundingDINOHead', num_classes=80, sync_cls_avg_factor=True, contrastive_cfg=dict(max_text_len=256), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), # 2.0 in DeformDETR loss_bbox=dict(type='L1Loss', loss_weight=5.0)), dn_cfg=dict( # TODO: Move to model.train_cfg ? label_noise_scale=0.5, box_noise_scale=1.0, # 0.4 for DN-DETR group_cfg=dict(dynamic=True, num_groups=None, num_dn_queries=100)), # TODO: half num_dn_queries # training and testing settings train_cfg=None, test_cfg=dict(max_per_img=300)) test_pipeline = [ dict( type='LoadImageFromFile', backend_args=None, imdecode_backend='pillow'), dict( type='FixScaleResize', scale=(800, 1333), keep_ratio=True, backend='pillow'), dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor', 'text', 'custom_entities')) ] val_dataloader = dict( dataset=dict(pipeline=test_pipeline, return_classes=True)) test_dataloader = val_dataloader
from torchvision.transforms import AutoAugmentPolicy, InterpolationMode # usort: skip from . import functional # usort: skip from ._transform import Transform # usort: skip from ._augment import CutMix, JPEG, MixUp, RandomErasing from ._auto_augment import AugMix, AutoAugment, RandAugment, TrivialAugmentWide from ._color import ( ColorJitter, Grayscale, RandomAdjustSharpness, RandomAutocontrast, RandomChannelPermutation, RandomEqualize, RandomGrayscale, RandomInvert, RandomPhotometricDistort, RandomPosterize, RandomSolarize, RGB, ) from ._container import Compose, RandomApply, RandomChoice, RandomOrder from ._geometry import ( CenterCrop, ElasticTransform, FiveCrop, Pad, RandomAffine, RandomCrop, RandomHorizontalFlip, RandomIoUCrop, RandomPerspective, RandomResize, RandomResizedCrop, RandomRotation, RandomShortestSize, RandomVerticalFlip, RandomZoomOut, Resize, ScaleJitter, TenCrop, ) from ._meta import ClampBoundingBoxes, ConvertBoundingBoxFormat from ._misc import ( ConvertImageDtype, GaussianBlur, Identity, Lambda, LinearTransformation, Normalize, SanitizeBoundingBoxes, ToDtype, ) from ._temporal import UniformTemporalSubsample from ._type_conversion import PILToTensor, ToImage, ToPILImage, ToPureTensor from ._deprecated import ToTensor # usort: skip
from torchvision.transforms import AutoAugmentPolicy, InterpolationMode # usort: skip from . import functional # usort: skip from ._transform import Transform # usort: skip from ._augment import CutMix, MixUp, RandomErasing from ._auto_augment import AugMix, AutoAugment, RandAugment, TrivialAugmentWide from ._color import ( ColorJitter, Grayscale, RandomAdjustSharpness, RandomAutocontrast, RandomChannelPermutation, RandomEqualize, RandomGrayscale, RandomInvert, RandomPhotometricDistort, RandomPosterize, RandomSolarize, RGB, ) from ._container import Compose, RandomApply, RandomChoice, RandomOrder from ._geometry import ( CenterCrop, ElasticTransform, FiveCrop, Pad, RandomAffine, RandomCrop, RandomHorizontalFlip, RandomIoUCrop, RandomPerspective, RandomResize, RandomResizedCrop, RandomRotation, RandomShortestSize, RandomVerticalFlip, RandomZoomOut, Resize, ScaleJitter, TenCrop, ) from ._meta import ClampBoundingBoxes, ConvertBoundingBoxFormat from ._misc import ( ConvertImageDtype, GaussianBlur, Identity, Lambda, LinearTransformation, Normalize, SanitizeBoundingBoxes, ToDtype, ) from ._temporal import UniformTemporalSubsample from ._type_conversion import PILToTensor, ToImage, ToPILImage, ToPureTensor from ._deprecated import ToTensor # usort: skip
"""Evaluator.""" from abc import abstractmethod from typing import Any, Optional, Sequence from llama_index.core.async_utils import asyncio_run from llama_index.core.base.response.schema import Response from llama_index.core.bridge.pydantic import BaseModel, Field from llama_index.core.prompts.mixin import PromptMixin, PromptMixinType class EvaluationResult(BaseModel): """ Evaluation result. Output of an BaseEvaluator. """ query: Optional[str] = Field(default=None, description="Query string") contexts: Optional[Sequence[str]] = Field( default=None, description="Context strings" ) response: Optional[str] = Field(default=None, description="Response string") passing: Optional[bool] = Field( default=None, description="Binary evaluation result (passing or not)" ) feedback: Optional[str] = Field( default=None, description="Feedback or reasoning for the response" ) score: Optional[float] = Field(default=None, description="Score for the response") pairwise_source: Optional[str] = Field( default=None, description=( "Used only for pairwise and specifies whether it is from original order of" " presented answers or flipped order" ), ) invalid_result: bool = Field( default=False, description="Whether the evaluation result is an invalid one." ) invalid_reason: Optional[str] = Field( default=None, description="Reason for invalid evaluation." ) class BaseEvaluator(PromptMixin): """Base Evaluator class.""" def _get_prompt_modules(self) -> PromptMixinType: """Get prompt modules.""" return {} def evaluate( self, query: Optional[str] = None, response: Optional[str] = None, contexts: Optional[Sequence[str]] = None, **kwargs: Any, ) -> EvaluationResult: """ Run evaluation with query string, retrieved contexts, and generated response string. Subclasses can override this method to provide custom evaluation logic and take in additional arguments. """ return asyncio_run( self.aevaluate( query=query, response=response, contexts=contexts, **kwargs, ) ) @abstractmethod async def aevaluate( self, query: Optional[str] = None, response: Optional[str] = None, contexts: Optional[Sequence[str]] = None, **kwargs: Any, ) -> EvaluationResult: """ Run evaluation with query string, retrieved contexts, and generated response string. Subclasses can override this method to provide custom evaluation logic and take in additional arguments. """ raise NotImplementedError def evaluate_response( self, query: Optional[str] = None, response: Optional[Response] = None, **kwargs: Any, ) -> EvaluationResult: """ Run evaluation with query string and generated Response object. Subclasses can override this method to provide custom evaluation logic and take in additional arguments. """ response_str: Optional[str] = None contexts: Optional[Sequence[str]] = None if response is not None: response_str = response.response contexts = [node.get_content() for node in response.source_nodes] return self.evaluate( query=query, response=response_str, contexts=contexts, **kwargs ) async def aevaluate_response( self, query: Optional[str] = None, response: Optional[Response] = None, **kwargs: Any, ) -> EvaluationResult: """ Run evaluation with query string and generated Response object. Subclasses can override this method to provide custom evaluation logic and take in additional arguments. """ response_str: Optional[str] = None contexts: Optional[Sequence[str]] = None if response is not None: response_str = response.response contexts = [node.get_content() for node in response.source_nodes] return await self.aevaluate( query=query, response=response_str, contexts=contexts, **kwargs ) # legacy: backward compatibility Evaluation = EvaluationResult
"""Evaluator.""" from abc import abstractmethod from typing import Any, Optional, Sequence from llama_index.core.async_utils import asyncio_run from llama_index.core.base.response.schema import Response from llama_index.core.bridge.pydantic import BaseModel, Field from llama_index.core.prompts.mixin import PromptMixin, PromptMixinType class EvaluationResult(BaseModel): """ Evaluation result. Output of an BaseEvaluator. """ query: Optional[str] = Field(default=None, description="Query string") contexts: Optional[Sequence[str]] = Field( default=None, description="Context strings" ) response: Optional[str] = Field(default=None, description="Response string") passing: Optional[bool] = Field( default=None, description="Binary evaluation result (passing or not)" ) feedback: Optional[str] = Field( default=None, description="Feedback or reasoning for the response" ) score: Optional[float] = Field(default=None, description="Score for the response") pairwise_source: Optional[str] = Field( default=None, description=( "Used only for pairwise and specifies whether it is from original order of" " presented answers or flipped order" ), ) invalid_result: bool = Field( default=False, description="Whether the evaluation result is an invalid one." ) invalid_reason: Optional[str] = Field( default=None, description="Reason for invalid evaluation." ) class BaseEvaluator(PromptMixin): """Base Evaluator class.""" def _get_prompt_modules(self) -> PromptMixinType: """Get prompt modules.""" return {} def evaluate( self, query: Optional[str] = None, response: Optional[str] = None, contexts: Optional[Sequence[str]] = None, **kwargs: Any, ) -> EvaluationResult: """ Run evaluation with query string, retrieved contexts, and generated response string. Subclasses can override this method to provide custom evaluation logic and take in additional arguments. """ return asyncio_run( self.aevaluate( query=query, response=response, contexts=contexts, **kwargs, ) ) @abstractmethod async def aevaluate( self, query: Optional[str] = None, response: Optional[str] = None, contexts: Optional[Sequence[str]] = None, **kwargs: Any, ) -> EvaluationResult: """ Run evaluation with query string, retrieved contexts, and generated response string. Subclasses can override this method to provide custom evaluation logic and take in additional arguments. """ raise NotImplementedError def evaluate_response( self, query: Optional[str] = None, response: Optional[Response] = None, **kwargs: Any, ) -> EvaluationResult: """ Run evaluation with query string and generated Response object. Subclasses can override this method to provide custom evaluation logic and take in additional arguments. """ response_str: Optional[str] = None contexts: Optional[Sequence[str]] = None if response is not None: response_str = response.response contexts = [node.get_content() for node in response.source_nodes] return self.evaluate( query=query, response=response_str, contexts=contexts, **kwargs ) async def aevaluate_response( self, query: Optional[str] = None, response: Optional[Response] = None, **kwargs: Any, ) -> EvaluationResult: """ Run evaluation with query string and generated Response object. Subclasses can override this method to provide custom evaluation logic and take in additional arguments. """ response_str: Optional[str] = None contexts: Optional[Sequence[str]] = None if response is not None: response_str = response.response contexts = [node.get_content() for node in response.source_nodes] return await self.aevaluate( query=query, response=response_str, contexts=contexts, **kwargs ) # legacy: backward compatibility Evaluation = EvaluationResult
_base_ = '../mask_rcnn/mask-rcnn_r50_fpn_1x_coco.py' model = dict( data_preprocessor=dict(pad_size_divisor=64), neck=dict( type='FPN_CARAFE', in_channels=[256, 512, 1024, 2048], out_channels=256, num_outs=5, start_level=0, end_level=-1, norm_cfg=None, act_cfg=None, order=('conv', 'norm', 'act'), upsample_cfg=dict( type='carafe', up_kernel=5, up_group=1, encoder_kernel=3, encoder_dilation=1, compressed_channels=64)), roi_head=dict( mask_head=dict( upsample_cfg=dict( type='carafe', scale_factor=2, up_kernel=5, up_group=1, encoder_kernel=3, encoder_dilation=1, compressed_channels=64))))
_base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py' model = dict( data_preprocessor=dict(pad_size_divisor=64), neck=dict( type='FPN_CARAFE', in_channels=[256, 512, 1024, 2048], out_channels=256, num_outs=5, start_level=0, end_level=-1, norm_cfg=None, act_cfg=None, order=('conv', 'norm', 'act'), upsample_cfg=dict( type='carafe', up_kernel=5, up_group=1, encoder_kernel=3, encoder_dilation=1, compressed_channels=64)), roi_head=dict( mask_head=dict( upsample_cfg=dict( type='carafe', scale_factor=2, up_kernel=5, up_group=1, encoder_kernel=3, encoder_dilation=1, compressed_channels=64))))