input
stringlengths
33
5k
output
stringlengths
32
5k
"""Integration test for Google Search API Wrapper.""" from langchain_community.utilities.google_search import GoogleSearchAPIWrapper def test_call() -> None: """Test that call gives the correct answer.""" search = GoogleSearchAPIWrapper() output = search.run("What was Obama's first name?") assert "Barack Hussein Obama II" in output def test_no_result_call() -> None: """Test that call gives no result.""" search = GoogleSearchAPIWrapper() output = search.run( "NORESULTCALL_NORESULTCALL_NORESULTCALL_NORESULTCALL_NORESULTCALL_NORESULTCALL" ) print(type(output)) # noqa: T201 assert "No good Google Search Result was found" == output def test_result_with_params_call() -> None: """Test that call gives the correct answer with extra params.""" search = GoogleSearchAPIWrapper() output = search.results( query="What was Obama's first name?", num_results=5, search_params={"cr": "us", "safe": "active"}, ) assert len(output)
"""Integration test for Google Search API Wrapper.""" from langchain_community.utilities.google_search import GoogleSearchAPIWrapper def test_call() -> None: """Test that call gives the correct answer.""" search = GoogleSearchAPIWrapper() # type: ignore[call-arg] output = search.run("What was Obama's first name?") assert "Barack Hussein Obama II" in output def test_no_result_call() -> None: """Test that call gives no result.""" search = GoogleSearchAPIWrapper() # type: ignore[call-arg] output = search.run( "NORESULTCALL_NORESULTCALL_NORESULTCALL_NORESULTCALL_NORESULTCALL_NORESULTCALL" ) print(type(output)) # noqa: T201 assert "No good Google Search Result was found" == output def test_result_with_params_call() -> None: """Test that call gives the correct answer with extra params.""" search = GoogleSearchAPIWrapper() # type: ignore[call-arg] output = search.results( query="What was Obama's first name?", num_results=5, search_params={"cr": "us", "safe": "active"}, ) assert len(output)
# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import pytest import torch from mmengine import Config from mmengine.structures import InstanceData from mmdet import * # noqa from mmdet.models.dense_heads import RPNHead class TestRPNHead(TestCase): def test_init(self): """Test init rpn head.""" rpn_head = RPNHead(num_classes=1, in_channels=1) self.assertTrue(rpn_head.rpn_conv) self.assertTrue(rpn_head.rpn_cls) self.assertTrue(rpn_head.rpn_reg) # rpn_head.num_convs > 1 rpn_head = RPNHead(num_classes=1, in_channels=1, num_convs=2) self.assertTrue(rpn_head.rpn_conv) self.assertTrue(rpn_head.rpn_cls) self.assertTrue(rpn_head.rpn_reg) def test_rpn_head_loss(self): """Tests rpn head loss when truth is empty and non-empty.""" s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'pad_shape': (s, s, 3), 'scale_factor': 1, }] cfg = Config( dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=0, pos_weight=-1, debug=False)) rpn_head = RPNHead(num_classes=1, in_channels=1, train_cfg=cfg) # Anchor head expects a multiple levels of features per image feats = ( torch.rand(1, 1, s // (2**(i + 2)), s // (2**(i + 2))) for i in range(len(rpn_head.prior_generator.strides))) cls_scores, bbox_preds = rpn_head.forward(feats) # Test that empty ground truth encourages the network to # predict background gt_instances = InstanceData() gt_instances.bboxes = torch.empty((0, 4)) gt_instances.labels = torch.LongTensor([]) empty_gt_losses = rpn_head.loss_by_feat(cls_scores, bbox_preds, [gt_instances], img_metas) # When there is no truth, the cls loss should be nonzero but # there should be no box loss. empty_cls_loss = sum(empty_gt_losses['loss_rpn_cls']) empty_box_loss = sum(empty_gt_losses['loss_rpn_bbox']) self.assertGreater(empty_cls_loss.item(), 0, 'rpn cls loss should be non-zero') self.assertEqual( empty_box_loss.item(), 0, 'there should be no box loss when there are no true boxes') # When truth is non-empty then both cls and box loss # should be nonzero for random inputs gt_instances = InstanceData() gt_instances.bboxes = torch.Tensor( [[23.6667, 23.8757, 238.6326, 151.8874]]) gt_instances.labels = torch.LongTensor([0]) one_gt_losses = rpn_head.loss_by_feat(cls_scores, bbox_preds, [gt_instances], img_metas) onegt_cls_loss = sum(one_gt_losses['loss_rpn_cls']) onegt_box_loss = sum(one_gt_losses['loss_rpn_bbox']) self.assertGreater(onegt_cls_loss.item(), 0, 'rpn cls loss should be non-zero') self.assertGreater(onegt_box_loss.item(), 0, 'rpn box loss should be non-zero') # When there is no valid anchor, the loss will be None, # and this will raise a ValueError. img_metas = [{ 'img_shape': (8, 8, 3), 'pad_shape': (8, 8, 3), 'scale_factor': 1, }] with pytest.raises(ValueError): rpn_head.loss_by_feat(cls_scores, bbox_preds, [gt_instances], img_metas) def test_bbox_post_process(self): """Test the length of detection instance results is 0.""" from mmengine.config import ConfigDict cfg = ConfigDict( nms_pre=1000, max_per_img=1000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0) rpn_head = RPNHead(num_classes=1, in_channels=1) results = InstanceData(metainfo=dict()) results.bboxes = torch.zeros((0, 4)) results.scores = torch.zeros(0) results = rpn_head._bbox_post_process(results, cfg, img_meta=dict()) self.assertEqual(len(results), 0) self.assertEqual(results.bboxes.size(), (0, 4)) self.assertEqual(results.scores.size(), (0, )) self.assertEqual(results.labels.size(), (0, ))
# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import pytest import torch from mmengine import Config from mmengine.data import InstanceData from mmdet import * # noqa from mmdet.models.dense_heads import RPNHead class TestRPNHead(TestCase): def test_init(self): """Test init rpn head.""" rpn_head = RPNHead(num_classes=1, in_channels=1) self.assertTrue(rpn_head.rpn_conv) self.assertTrue(rpn_head.rpn_cls) self.assertTrue(rpn_head.rpn_reg) # rpn_head.num_convs > 1 rpn_head = RPNHead(num_classes=1, in_channels=1, num_convs=2) self.assertTrue(rpn_head.rpn_conv) self.assertTrue(rpn_head.rpn_cls) self.assertTrue(rpn_head.rpn_reg) def test_rpn_head_loss(self): """Tests rpn head loss when truth is empty and non-empty.""" s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'pad_shape': (s, s, 3), 'scale_factor': 1, }] cfg = Config( dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=0, pos_weight=-1, debug=False)) rpn_head = RPNHead(num_classes=1, in_channels=1, train_cfg=cfg) # Anchor head expects a multiple levels of features per image feats = ( torch.rand(1, 1, s // (2**(i + 2)), s // (2**(i + 2))) for i in range(len(rpn_head.prior_generator.strides))) cls_scores, bbox_preds = rpn_head.forward(feats) # Test that empty ground truth encourages the network to # predict background gt_instances = InstanceData() gt_instances.bboxes = torch.empty((0, 4)) gt_instances.labels = torch.LongTensor([]) empty_gt_losses = rpn_head.loss_by_feat(cls_scores, bbox_preds, [gt_instances], img_metas) # When there is no truth, the cls loss should be nonzero but # there should be no box loss. empty_cls_loss = sum(empty_gt_losses['loss_rpn_cls']) empty_box_loss = sum(empty_gt_losses['loss_rpn_bbox']) self.assertGreater(empty_cls_loss.item(), 0, 'rpn cls loss should be non-zero') self.assertEqual( empty_box_loss.item(), 0, 'there should be no box loss when there are no true boxes') # When truth is non-empty then both cls and box loss # should be nonzero for random inputs gt_instances = InstanceData() gt_instances.bboxes = torch.Tensor( [[23.6667, 23.8757, 238.6326, 151.8874]]) gt_instances.labels = torch.LongTensor([0]) one_gt_losses = rpn_head.loss_by_feat(cls_scores, bbox_preds, [gt_instances], img_metas) onegt_cls_loss = sum(one_gt_losses['loss_rpn_cls']) onegt_box_loss = sum(one_gt_losses['loss_rpn_bbox']) self.assertGreater(onegt_cls_loss.item(), 0, 'rpn cls loss should be non-zero') self.assertGreater(onegt_box_loss.item(), 0, 'rpn box loss should be non-zero') # When there is no valid anchor, the loss will be None, # and this will raise a ValueError. img_metas = [{ 'img_shape': (8, 8, 3), 'pad_shape': (8, 8, 3), 'scale_factor': 1, }] with pytest.raises(ValueError): rpn_head.loss_by_feat(cls_scores, bbox_preds, [gt_instances], img_metas) def test_bbox_post_process(self): """Test the length of detection instance results is 0.""" from mmengine.config import ConfigDict cfg = ConfigDict( nms_pre=1000, max_per_img=1000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0) rpn_head = RPNHead(num_classes=1, in_channels=1) results = InstanceData(metainfo=dict()) results.bboxes = torch.zeros((0, 4)) results.scores = torch.zeros(0) results = rpn_head._bbox_post_process(results, cfg, img_meta=dict()) self.assertEqual(len(results), 0) self.assertEqual(results.bboxes.size(), (0, 4)) self.assertEqual(results.scores.size(), (0, )) self.assertEqual(results.labels.size(), (0, ))
_base_ = [ '../_base_/models/mask-rcnn_r50_fpn.py', '../_base_/datasets/lvis_v1_instance.py', '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py' ] model = dict( roi_head=dict( bbox_head=dict( num_classes=1203, cls_predictor_cfg=dict(type='NormedLinear', tempearture=20), loss_cls=dict( type='SeesawLoss', p=0.8, q=2.0, num_classes=1203, loss_weight=1.0)), mask_head=dict(num_classes=1203)), test_cfg=dict( rcnn=dict( score_thr=0.0001, # LVIS allows up to 300 max_per_img=300))) # dataset settings train_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomChoiceResize', scales=[(1333, 640), (1333, 672), (1333, 704), (1333, 736), (1333, 768), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(dataset=dict(pipeline=train_pipeline))) train_cfg = dict(val_interval=24)
_base_ = [ '../_base_/models/mask-rcnn_r50_fpn.py', '../_base_/datasets/lvis_v1_instance.py', '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py' ] model = dict( roi_head=dict( bbox_head=dict( num_classes=1203, cls_predictor_cfg=dict(type='NormedLinear', tempearture=20), loss_cls=dict( type='SeesawLoss', p=0.8, q=2.0, num_classes=1203, loss_weight=1.0)), mask_head=dict(num_classes=1203)), test_cfg=dict( rcnn=dict( score_thr=0.0001, # LVIS allows up to 300 max_per_img=300))) # dataset settings train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomChoiceResize', scales=[(1333, 640), (1333, 672), (1333, 704), (1333, 736), (1333, 768), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(dataset=dict(pipeline=train_pipeline))) train_cfg = dict(val_interval=24)
import csv import logging import os from typing import List import numpy as np from sklearn.metrics import average_precision_score from sentence_transformers import InputExample from sentence_transformers.evaluation import BinaryClassificationEvaluator logger = logging.getLogger(__name__) class CEBinaryClassificationEvaluator: """ This evaluator can be used with the CrossEncoder class. Given sentence pairs and binary labels (0 and 1), it compute the average precision and the best possible f1 score """ def __init__( self, sentence_pairs: List[List[str]], labels: List[int], name: str = "", show_progress_bar: bool = False, write_csv: bool = True, ): assert len(sentence_pairs) == len(labels) for label in labels: assert label == 0 or label == 1 self.sentence_pairs = sentence_pairs self.labels = np.asarray(labels) self.name = name if show_progress_bar is None: show_progress_bar = ( logger.getEffectiveLevel() == logging.INFO or logger.getEffectiveLevel() == logging.DEBUG ) self.show_progress_bar = show_progress_bar self.csv_file = "CEBinaryClassificationEvaluator" + ("_" + name if name else "") + "_results.csv" self.csv_headers = [ "epoch", "steps", "Accuracy", "Accuracy_Threshold", "F1", "F1_Threshold", "Precision", "Recall", "Average_Precision", ] self.write_csv = write_csv @classmethod def from_input_examples(cls, examples: List[InputExample], **kwargs): sentence_pairs = [] labels = [] for example in examples: sentence_pairs.append(example.texts) labels.append(example.label) return cls(sentence_pairs, labels, **kwargs) def __call__(self, model, output_path: str = None, epoch: int = -1, steps: int = -1) -> float: if epoch != -1: if steps == -1: out_txt = " after epoch {}:".format(epoch) else: out_txt = " in epoch {} after {} steps:".format(epoch, steps) else: out_txt = ":" logger.info("CEBinaryClassificationEvaluator: Evaluating the model on " + self.name + " dataset" + out_txt) pred_scores = model.predict( self.sentence_pairs, convert_to_numpy=True, show_progress_bar=self.show_progress_bar ) acc, acc_threshold = BinaryClassificationEvaluator.find_best_acc_and_threshold(pred_scores, self.labels, True) f1, precision, recall, f1_threshold = BinaryClassificationEvaluator.find_best_f1_and_threshold( pred_scores, self.labels, True ) ap = average_precision_score(self.labels, pred_scores) logger.info("Accuracy: {:.2f}\t(Threshold: {:.4f})".format(acc * 100, acc_threshold)) logger.info("F1: {:.2f}\t(Threshold: {:.4f})".format(f1 * 100, f1_threshold)) logger.info("Precision: {:.2f}".format(precision * 100)) logger.info("Recall: {:.2f}".format(recall * 100)) logger.info("Average Precision: {:.2f}\n".format(ap * 100)) if output_path is not None and self.write_csv: csv_path = os.path.join(output_path, self.csv_file) output_file_exists = os.path.isfile(csv_path) with open(csv_path, mode="a" if output_file_exists else "w", encoding="utf-8") as f: writer = csv.writer(f) if not output_file_exists: writer.writerow(self.csv_headers) writer.writerow([epoch, steps, acc, acc_threshold, f1, f1_threshold, precision, recall, ap]) return ap
import logging from sklearn.metrics import average_precision_score from typing import List import numpy as np import os import csv from ... import InputExample from ...evaluation import BinaryClassificationEvaluator logger = logging.getLogger(__name__) class CEBinaryClassificationEvaluator: """ This evaluator can be used with the CrossEncoder class. Given sentence pairs and binary labels (0 and 1), it compute the average precision and the best possible f1 score """ def __init__(self, sentence_pairs: List[List[str]], labels: List[int], name: str='', show_progress_bar: bool = False, write_csv: bool = True): assert len(sentence_pairs) == len(labels) for label in labels: assert (label == 0 or label == 1) self.sentence_pairs = sentence_pairs self.labels = np.asarray(labels) self.name = name if show_progress_bar is None: show_progress_bar = (logger.getEffectiveLevel() == logging.INFO or logger.getEffectiveLevel() == logging.DEBUG) self.show_progress_bar = show_progress_bar self.csv_file = "CEBinaryClassificationEvaluator" + ("_" + name if name else '') + "_results.csv" self.csv_headers = ["epoch", "steps", "Accuracy", "Accuracy_Threshold", "F1", "F1_Threshold", "Precision", "Recall", "Average_Precision"] self.write_csv = write_csv @classmethod def from_input_examples(cls, examples: List[InputExample], **kwargs): sentence_pairs = [] labels = [] for example in examples: sentence_pairs.append(example.texts) labels.append(example.label) return cls(sentence_pairs, labels, **kwargs) def __call__(self, model, output_path: str = None, epoch: int = -1, steps: int = -1) -> float: if epoch != -1: if steps == -1: out_txt = " after epoch {}:".format(epoch) else: out_txt = " in epoch {} after {} steps:".format(epoch, steps) else: out_txt = ":" logger.info("CEBinaryClassificationEvaluator: Evaluating the model on " + self.name + " dataset" + out_txt) pred_scores = model.predict(self.sentence_pairs, convert_to_numpy=True, show_progress_bar=self.show_progress_bar) acc, acc_threshold = BinaryClassificationEvaluator.find_best_acc_and_threshold(pred_scores, self.labels, True) f1, precision, recall, f1_threshold = BinaryClassificationEvaluator.find_best_f1_and_threshold(pred_scores, self.labels, True) ap = average_precision_score(self.labels, pred_scores) logger.info("Accuracy: {:.2f}\t(Threshold: {:.4f})".format(acc * 100, acc_threshold)) logger.info("F1: {:.2f}\t(Threshold: {:.4f})".format(f1 * 100, f1_threshold)) logger.info("Precision: {:.2f}".format(precision * 100)) logger.info("Recall: {:.2f}".format(recall * 100)) logger.info("Average Precision: {:.2f}\n".format(ap * 100)) if output_path is not None and self.write_csv: csv_path = os.path.join(output_path, self.csv_file) output_file_exists = os.path.isfile(csv_path) with open(csv_path, mode="a" if output_file_exists else 'w', encoding="utf-8") as f: writer = csv.writer(f) if not output_file_exists: writer.writerow(self.csv_headers) writer.writerow([epoch, steps, acc, acc_threshold, f1, f1_threshold, precision, recall, ap]) return ap
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors. from typing import Any, Optional, Union from huggingface_hub import HfFileSystem from . import config from .table import CastError from .utils.track import TrackedIterableFromGenerator, tracked_list, tracked_str class DatasetsError(Exception): """Base class for exceptions in this library.""" class DefunctDatasetError(DatasetsError): """The dataset has been defunct.""" class FileNotFoundDatasetsError(DatasetsError, FileNotFoundError): """FileNotFoundError raised by this library.""" class DataFilesNotFoundError(FileNotFoundDatasetsError): """No (supported) data files found.""" class DatasetNotFoundError(FileNotFoundDatasetsError): """Dataset not found. Raised when trying to access: - a missing dataset, or - a private/gated dataset and the user is not authenticated. """ class DatasetBuildError(DatasetsError): pass class ManualDownloadError(DatasetBuildError): pass class FileFormatError(DatasetBuildError): pass class DatasetGenerationError(DatasetBuildError): pass class DatasetGenerationCastError(DatasetGenerationError): @classmethod def from_cast_error( cls, cast_error: CastError, builder_name: str, gen_kwargs: dict[str, Any], token: Optional[Union[bool, str]], ) -> "DatasetGenerationCastError": explanation_message = ( f"\n\nAll the data files must have the same columns, but at some point {cast_error.details()}" ) formatted_tracked_gen_kwargs: list[str] = [] for gen_kwarg in gen_kwargs.values(): if not isinstance(gen_kwarg, (tracked_str, tracked_list, TrackedIterableFromGenerator)): continue while ( isinstance(gen_kwarg, (tracked_list, TrackedIterableFromGenerator)) and gen_kwarg.last_item is not None ): gen_kwarg = gen_kwarg.last_item if isinstance(gen_kwarg, tracked_str): gen_kwarg = gen_kwarg.get_origin() if isinstance(gen_kwarg, str) and gen_kwarg.startswith("hf://"): resolved_path = HfFileSystem(endpoint=config.HF_ENDPOINT, token=token).resolve_path(gen_kwarg) gen_kwarg = "hf://" + resolved_path.unresolve() if "@" + resolved_path.revision in gen_kwarg: gen_kwarg = ( gen_kwarg.replace("@" + resolved_path.revision, "", 1) + f" (at revision {resolved_path.revision})" ) formatted_tracked_gen_kwargs.append(str(gen_kwarg)) if formatted_tracked_gen_kwargs: explanation_message += f"\n\nThis happened while the {builder_name} dataset builder was generating data using\n\n{', '.join(formatted_tracked_gen_kwargs)}" help_message = "\n\nPlease either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)" return cls("An error occurred while generating the dataset" + explanation_message + help_message) class ChecksumVerificationError(DatasetsError): """Error raised during checksums verifications of downloaded files.""" class UnexpectedDownloadedFileError(ChecksumVerificationError): """Some downloaded files were not expected.""" class ExpectedMoreDownloadedFilesError(ChecksumVerificationError): """Some files were supposed to be downloaded but were not.""" class NonMatchingChecksumError(ChecksumVerificationError): """The downloaded file checksum don't match the expected checksum.""" class SplitsVerificationError(DatasetsError): """Error raised during splits verifications.""" class UnexpectedSplitsError(SplitsVerificationError): """The expected splits of the downloaded file is missing.""" class ExpectedMoreSplitsError(SplitsVerificationError): """Some recorded splits are missing.""" class NonMatchingSplitsSizesError(SplitsVerificationError): """The splits sizes don't match the expected splits sizes."""
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors. from typing import Any, Dict, List, Optional, Union from huggingface_hub import HfFileSystem from . import config from .table import CastError from .utils.track import TrackedIterableFromGenerator, tracked_list, tracked_str class DatasetsError(Exception): """Base class for exceptions in this library.""" class DefunctDatasetError(DatasetsError): """The dataset has been defunct.""" class FileNotFoundDatasetsError(DatasetsError, FileNotFoundError): """FileNotFoundError raised by this library.""" class DataFilesNotFoundError(FileNotFoundDatasetsError): """No (supported) data files found.""" class DatasetNotFoundError(FileNotFoundDatasetsError): """Dataset not found. Raised when trying to access: - a missing dataset, or - a private/gated dataset and the user is not authenticated. """ class DatasetBuildError(DatasetsError): pass class ManualDownloadError(DatasetBuildError): pass class FileFormatError(DatasetBuildError): pass class DatasetGenerationError(DatasetBuildError): pass class DatasetGenerationCastError(DatasetGenerationError): @classmethod def from_cast_error( cls, cast_error: CastError, builder_name: str, gen_kwargs: Dict[str, Any], token: Optional[Union[bool, str]], ) -> "DatasetGenerationCastError": explanation_message = ( f"\n\nAll the data files must have the same columns, but at some point {cast_error.details()}" ) formatted_tracked_gen_kwargs: List[str] = [] for gen_kwarg in gen_kwargs.values(): if not isinstance(gen_kwarg, (tracked_str, tracked_list, TrackedIterableFromGenerator)): continue while ( isinstance(gen_kwarg, (tracked_list, TrackedIterableFromGenerator)) and gen_kwarg.last_item is not None ): gen_kwarg = gen_kwarg.last_item if isinstance(gen_kwarg, tracked_str): gen_kwarg = gen_kwarg.get_origin() if isinstance(gen_kwarg, str) and gen_kwarg.startswith("hf://"): resolved_path = HfFileSystem(endpoint=config.HF_ENDPOINT, token=token).resolve_path(gen_kwarg) gen_kwarg = "hf://" + resolved_path.unresolve() if "@" + resolved_path.revision in gen_kwarg: gen_kwarg = ( gen_kwarg.replace("@" + resolved_path.revision, "", 1) + f" (at revision {resolved_path.revision})" ) formatted_tracked_gen_kwargs.append(str(gen_kwarg)) if formatted_tracked_gen_kwargs: explanation_message += f"\n\nThis happened while the {builder_name} dataset builder was generating data using\n\n{', '.join(formatted_tracked_gen_kwargs)}" help_message = "\n\nPlease either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)" return cls("An error occurred while generating the dataset" + explanation_message + help_message) class ChecksumVerificationError(DatasetsError): """Error raised during checksums verifications of downloaded files.""" class UnexpectedDownloadedFileError(ChecksumVerificationError): """Some downloaded files were not expected.""" class ExpectedMoreDownloadedFilesError(ChecksumVerificationError): """Some files were supposed to be downloaded but were not.""" class NonMatchingChecksumError(ChecksumVerificationError): """The downloaded file checksum don't match the expected checksum.""" class SplitsVerificationError(DatasetsError): """Error raised during splits verifications.""" class UnexpectedSplitsError(SplitsVerificationError): """The expected splits of the downloaded file is missing.""" class ExpectedMoreSplitsError(SplitsVerificationError): """Some recorded splits are missing.""" class NonMatchingSplitsSizesError(SplitsVerificationError): """The splits sizes don't match the expected splits sizes."""
import numpy as np import pandas as pd import pytest import xgboost as xgb from xgboost.testing.interaction_constraints import ( run_interaction_constraints, training_accuracy, ) class TestGPUInteractionConstraints: @pytest.mark.parametrize("tree_method", ["hist", "approx"]) def test_interaction_constraints(self, tree_method: str) -> None: run_interaction_constraints(tree_method=tree_method, device="cuda") @pytest.mark.parametrize("tree_method", ["hist", "approx"]) def test_training_accuracy(self, tree_method: str) -> None: dpath = "demo/data/" training_accuracy(tree_method=tree_method, dpath=dpath, device="cuda") # case where different number of features can occur in the evaluator def test_issue_8730(self): X = pd.DataFrame( zip(range(0, 100), range(200, 300), range(300, 400), range(400, 500)), columns=["A", "B", "C", "D"], ) y = np.array([*([0] * 50), *([1] * 50)]) dm = xgb.DMatrix(X, label=y) params = { "eta": 0.16095019509249486, "min_child_weight": 1, "subsample": 0.688567929338029, "colsample_bynode": 0.7, "gamma": 5.666579817418348e-06, "lambda": 0.14943712232059794, "grow_policy": "depthwise", "max_depth": 3, "tree_method": "hist", "device": "cuda", "interaction_constraints": [["A", "B"], ["B", "D", "C"], ["C", "D"]], "objective": "count:poisson", "eval_metric": "poisson-nloglik", "verbosity": 0, } xgb.train(params, dm, num_boost_round=100)
import sys import numpy as np import pandas as pd import xgboost as xgb sys.path.append("tests/python") # Don't import the test class, otherwise they will run twice. import test_interaction_constraints as test_ic # noqa rng = np.random.RandomState(1994) class TestGPUInteractionConstraints: cputest = test_ic.TestInteractionConstraints() def test_interaction_constraints(self): self.cputest.run_interaction_constraints(tree_method="gpu_hist") def test_training_accuracy(self): self.cputest.training_accuracy(tree_method="gpu_hist") # case where different number of features can occur in the evaluator def test_issue_8730(self): X = pd.DataFrame( zip(range(0, 100), range(200, 300), range(300, 400), range(400, 500)), columns=["A", "B", "C", "D"], ) y = np.array([*([0] * 50), *([1] * 50)]) dm = xgb.DMatrix(X, label=y) params = { "eta": 0.16095019509249486, "min_child_weight": 1, "subsample": 0.688567929338029, "colsample_bynode": 0.7, "gamma": 5.666579817418348e-06, "lambda": 0.14943712232059794, "grow_policy": "depthwise", "max_depth": 3, "tree_method": "gpu_hist", "interaction_constraints": [["A", "B"], ["B", "D", "C"], ["C", "D"]], "objective": "count:poisson", "eval_metric": "poisson-nloglik", "verbosity": 0, } xgb.train(params, dm, num_boost_round=100)
from __future__ import annotations from sentence_transformers.training_args import SentenceTransformerTrainingArguments class CrossEncoderTrainingArguments(SentenceTransformerTrainingArguments): r""" CrossEncoderTrainingArguments extends :class:`~transformers.TrainingArguments` with additional arguments specific to Sentence Transformers. See :class:`~transformers.TrainingArguments` for the complete list of available arguments. Args: output_dir (`str`): The output directory where the model checkpoints will be written. prompts (`Union[Dict[str, Dict[str, str]], Dict[str, str], str]`, *optional*): The prompts to use for each column in the training, evaluation and test datasets. Four formats are accepted: 1. `str`: A single prompt to use for all columns in the datasets, regardless of whether the training/evaluation/test datasets are :class:`datasets.Dataset` or a :class:`datasets.DatasetDict`. 2. `Dict[str, str]`: A dictionary mapping column names to prompts, regardless of whether the training/evaluation/test datasets are :class:`datasets.Dataset` or a :class:`datasets.DatasetDict`. 3. `Dict[str, str]`: A dictionary mapping dataset names to prompts. This should only be used if your training/evaluation/test datasets are a :class:`datasets.DatasetDict` or a dictionary of :class:`datasets.Dataset`. 4. `Dict[str, Dict[str, str]]`: A dictionary mapping dataset names to dictionaries mapping column names to prompts. This should only be used if your training/evaluation/test datasets are a :class:`datasets.DatasetDict` or a dictionary of :class:`datasets.Dataset`. batch_sampler (Union[:class:`~sentence_transformers.training_args.BatchSamplers`, `str`, :class:`~sentence_transformers.sampler.DefaultBatchSampler`, Callable[[...], :class:`~sentence_transformers.sampler.DefaultBatchSampler`]], *optional*): The batch sampler to use. See :class:`~sentence_transformers.training_args.BatchSamplers` for valid options. Defaults to ``BatchSamplers.BATCH_SAMPLER``. multi_dataset_batch_sampler (Union[:class:`~sentence_transformers.training_args.MultiDatasetBatchSamplers`, `str`, :class:`~sentence_transformers.sampler.MultiDatasetDefaultBatchSampler`, Callable[[...], :class:`~sentence_transformers.sampler.MultiDatasetDefaultBatchSampler`]], *optional*): The multi-dataset batch sampler to use. See :class:`~sentence_transformers.training_args.MultiDatasetBatchSamplers` for valid options. Defaults to ``MultiDatasetBatchSamplers.PROPORTIONAL``. learning_rate_mapping (`Optional[Dict[str, float]]`, *optional*): A mapping of parameter name regular expressions to learning rates. This allows you to set different learning rates for different parts of the model, e.g., `{'SparseStaticEmbedding\.*': 1e-3}` for the SparseStaticEmbedding module. This is useful when you want to fine-tune specific parts of the model with different learning rates. """
from __future__ import annotations from sentence_transformers.training_args import SentenceTransformerTrainingArguments class CrossEncoderTrainingArguments(SentenceTransformerTrainingArguments): """ CrossEncoderTrainingArguments extends :class:`~transformers.TrainingArguments` with additional arguments specific to Sentence Transformers. See :class:`~transformers.TrainingArguments` for the complete list of available arguments. Args: output_dir (`str`): The output directory where the model checkpoints will be written. prompts (`Union[Dict[str, Dict[str, str]], Dict[str, str], str]`, *optional*): The prompts to use for each column in the training, evaluation and test datasets. Four formats are accepted: 1. `str`: A single prompt to use for all columns in the datasets, regardless of whether the training/evaluation/test datasets are :class:`datasets.Dataset` or a :class:`datasets.DatasetDict`. 2. `Dict[str, str]`: A dictionary mapping column names to prompts, regardless of whether the training/evaluation/test datasets are :class:`datasets.Dataset` or a :class:`datasets.DatasetDict`. 3. `Dict[str, str]`: A dictionary mapping dataset names to prompts. This should only be used if your training/evaluation/test datasets are a :class:`datasets.DatasetDict` or a dictionary of :class:`datasets.Dataset`. 4. `Dict[str, Dict[str, str]]`: A dictionary mapping dataset names to dictionaries mapping column names to prompts. This should only be used if your training/evaluation/test datasets are a :class:`datasets.DatasetDict` or a dictionary of :class:`datasets.Dataset`. batch_sampler (Union[:class:`~sentence_transformers.training_args.BatchSamplers`, `str`, :class:`~sentence_transformers.sampler.DefaultBatchSampler`, Callable[[...], :class:`~sentence_transformers.sampler.DefaultBatchSampler`]], *optional*): The batch sampler to use. See :class:`~sentence_transformers.training_args.BatchSamplers` for valid options. Defaults to ``BatchSamplers.BATCH_SAMPLER``. multi_dataset_batch_sampler (Union[:class:`~sentence_transformers.training_args.MultiDatasetBatchSamplers`, `str`, :class:`~sentence_transformers.sampler.MultiDatasetDefaultBatchSampler`, Callable[[...], :class:`~sentence_transformers.sampler.MultiDatasetDefaultBatchSampler`]], *optional*): The multi-dataset batch sampler to use. See :class:`~sentence_transformers.training_args.MultiDatasetBatchSamplers` for valid options. Defaults to ``MultiDatasetBatchSamplers.PROPORTIONAL``. """
# Copyright (c) OpenMMLab. All rights reserved. from mmcv.cnn import ConvModule from mmdet.registry import MODELS from .fcn_mask_head import FCNMaskHead @MODELS.register_module() class HTCMaskHead(FCNMaskHead): def __init__(self, with_conv_res=True, *args, **kwargs): super(HTCMaskHead, self).__init__(*args, **kwargs) self.with_conv_res = with_conv_res if self.with_conv_res: self.conv_res = ConvModule( self.conv_out_channels, self.conv_out_channels, 1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg) def forward(self, x, res_feat=None, return_logits=True, return_feat=True): if res_feat is not None: assert self.with_conv_res res_feat = self.conv_res(res_feat) x = x + res_feat for conv in self.convs: x = conv(x) res_feat = x outs = [] if return_logits: x = self.upsample(x) if self.upsample_method == 'deconv': x = self.relu(x) mask_pred = self.conv_logits(x) outs.append(mask_pred) if return_feat: outs.append(res_feat) return outs if len(outs) > 1 else outs[0]
# Copyright (c) OpenMMLab. All rights reserved. from mmcv.cnn import ConvModule from mmdet.models.builder import HEADS from .fcn_mask_head import FCNMaskHead @HEADS.register_module() class HTCMaskHead(FCNMaskHead): def __init__(self, with_conv_res=True, *args, **kwargs): super(HTCMaskHead, self).__init__(*args, **kwargs) self.with_conv_res = with_conv_res if self.with_conv_res: self.conv_res = ConvModule( self.conv_out_channels, self.conv_out_channels, 1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg) def forward(self, x, res_feat=None, return_logits=True, return_feat=True): if res_feat is not None: assert self.with_conv_res res_feat = self.conv_res(res_feat) x = x + res_feat for conv in self.convs: x = conv(x) res_feat = x outs = [] if return_logits: x = self.upsample(x) if self.upsample_method == 'deconv': x = self.relu(x) mask_pred = self.conv_logits(x) outs.append(mask_pred) if return_feat: outs.append(res_feat) return outs if len(outs) > 1 else outs[0]
_base_ = './cascade-mask-rcnn_convnext-t-p4-w7_fpn_4conv1fc-giou_amp-ms-crop-3x_coco.py' # noqa # please install mmpretrain # import mmpretrain.models to trigger register_module in mmpretrain custom_imports = dict( imports=['mmpretrain.models'], allow_failed_imports=False) checkpoint_file = 'https://download.openmmlab.com/mmclassification/v0/convnext/downstream/convnext-small_3rdparty_32xb128-noema_in1k_20220301-303e75e3.pth' # noqa model = dict( backbone=dict( _delete_=True, type='mmpretrain.ConvNeXt', arch='small', out_indices=[0, 1, 2, 3], drop_path_rate=0.6, layer_scale_init_value=1.0, gap_before_final_norm=False, init_cfg=dict( type='Pretrained', checkpoint=checkpoint_file, prefix='backbone.'))) optim_wrapper = dict(paramwise_cfg={ 'decay_rate': 0.7, 'decay_type': 'layer_wise', 'num_layers': 12 })
_base_ = './cascade-mask-rcnn_convnext-t-p4-w7_fpn_4conv1fc-giou_amp-ms-crop-3x_coco.py' # noqa # TODO: delete custom_imports after mmcls supports auto import # please install mmcls>=1.0 # import mmcls.models to trigger register_module in mmcls custom_imports = dict(imports=['mmcls.models'], allow_failed_imports=False) checkpoint_file = 'https://download.openmmlab.com/mmclassification/v0/convnext/downstream/convnext-small_3rdparty_32xb128-noema_in1k_20220301-303e75e3.pth' # noqa model = dict( backbone=dict( _delete_=True, type='mmcls.ConvNeXt', arch='small', out_indices=[0, 1, 2, 3], drop_path_rate=0.6, layer_scale_init_value=1.0, gap_before_final_norm=False, init_cfg=dict( type='Pretrained', checkpoint=checkpoint_file, prefix='backbone.'))) optim_wrapper = dict(paramwise_cfg={ 'decay_rate': 0.7, 'decay_type': 'layer_wise', 'num_layers': 12 })
import json from typing import Optional, Type from langchain_core.callbacks import AsyncCallbackManagerForToolRun from pydantic import BaseModel, Field from langchain_community.tools.ainetwork.base import AINBaseTool class TransferSchema(BaseModel): """Schema for transfer operations.""" address: str = Field(..., description="Address to transfer AIN to") amount: int = Field(..., description="Amount of AIN to transfer") class AINTransfer(AINBaseTool): """Tool for transfer operations.""" name: str = "AINtransfer" description: str = "Transfers AIN to a specified address" args_schema: Type[TransferSchema] = TransferSchema async def _arun( self, address: str, amount: int, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: try: res = await self.interface.wallet.transfer(address, amount, nonce=-1) return json.dumps(res, ensure_ascii=False) except Exception as e: return f"{type(e).__name__}: {str(e)}"
import json from typing import Optional, Type from langchain_core.callbacks import AsyncCallbackManagerForToolRun from pydantic import BaseModel, Field from langchain_community.tools.ainetwork.base import AINBaseTool class TransferSchema(BaseModel): """Schema for transfer operations.""" address: str = Field(..., description="Address to transfer AIN to") amount: int = Field(..., description="Amount of AIN to transfer") class AINTransfer(AINBaseTool): # type: ignore[override, override] """Tool for transfer operations.""" name: str = "AINtransfer" description: str = "Transfers AIN to a specified address" args_schema: Type[TransferSchema] = TransferSchema async def _arun( self, address: str, amount: int, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: try: res = await self.interface.wallet.transfer(address, amount, nonce=-1) return json.dumps(res, ensure_ascii=False) except Exception as e: return f"{type(e).__name__}: {str(e)}"
_base_ = [ '../_base_/models/retinanet_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py' ] # model settings norm_cfg = dict(type='GN', num_groups=32, requires_grad=True) model = dict( backbone=dict( depth=101, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')), bbox_head=dict( _delete_=True, type='SABLRetinaHead', num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, approx_anchor_generator=dict( type='AnchorGenerator', octave_base_scale=4, scales_per_octave=3, ratios=[0.5, 1.0, 2.0], strides=[8, 16, 32, 64, 128]), square_anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], scales=[4], strides=[8, 16, 32, 64, 128]), norm_cfg=norm_cfg, bbox_coder=dict( type='BucketingBBoxCoder', num_buckets=14, scale_factor=3.0), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.5), loss_bbox_reg=dict( type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.5)), # training and testing settings train_cfg=dict( assigner=dict( type='ApproxMaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.4, min_pos_iou=0.0, ignore_iof_thr=-1), allowed_border=-1, pos_weight=-1, debug=False)) # dataset settings train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomResize', scale=[(1333, 480), (1333, 960)], resize_cfg=dict(type='Resize', keep_ratio=True)), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) # optimizer optim_wrapper = dict( optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001))
_base_ = [ '../_base_/models/retinanet_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py' ] # model settings norm_cfg = dict(type='GN', num_groups=32, requires_grad=True) model = dict( backbone=dict( depth=101, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')), bbox_head=dict( _delete_=True, type='SABLRetinaHead', num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, approx_anchor_generator=dict( type='AnchorGenerator', octave_base_scale=4, scales_per_octave=3, ratios=[0.5, 1.0, 2.0], strides=[8, 16, 32, 64, 128]), square_anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], scales=[4], strides=[8, 16, 32, 64, 128]), norm_cfg=norm_cfg, bbox_coder=dict( type='BucketingBBoxCoder', num_buckets=14, scale_factor=3.0), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.5), loss_bbox_reg=dict( type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.5)), # training and testing settings train_cfg=dict( assigner=dict( type='ApproxMaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.4, min_pos_iou=0.0, ignore_iof_thr=-1), allowed_border=-1, pos_weight=-1, debug=False)) img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='Resize', img_scale=[(1333, 480), (1333, 960)], multiscale_mode='range', keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] data = dict(train=dict(pipeline=train_pipeline)) # optimizer optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
# Copyright (c) OpenMMLab. All rights reserved. from .bbox_nms import fast_nms, multiclass_nms from .matrix_nms import mask_matrix_nms from .merge_augs import (merge_aug_bboxes, merge_aug_masks, merge_aug_proposals, merge_aug_scores) __all__ = [ 'multiclass_nms', 'merge_aug_proposals', 'merge_aug_bboxes', 'merge_aug_scores', 'merge_aug_masks', 'mask_matrix_nms', 'fast_nms' ]
# Copyright (c) OpenMMLab. All rights reserved. from .bbox_nms import fast_nms, multiclass_nms from .merge_augs import (merge_aug_bboxes, merge_aug_masks, merge_aug_proposals, merge_aug_scores) __all__ = [ 'multiclass_nms', 'merge_aug_proposals', 'merge_aug_bboxes', 'merge_aug_scores', 'merge_aug_masks', 'fast_nms' ]
import sys import pytest from llama_index.graph_rag.cognee import CogneeGraphRAG @pytest.mark.skipif( sys.version_info < (3, 10), reason="mock strategy requires python3.10 or higher" ) @pytest.mark.asyncio async def test_get_graph_url(monkeypatch): # Instantiate cognee GraphRAG cogneeRAG = CogneeGraphRAG( llm_api_key="", llm_provider="openai", llm_model="gpt-4o-mini", graph_db_provider="networkx", vector_db_provider="lancedb", relational_db_provider="sqlite", relational_db_name="cognee_db", ) # Mock logging to graphistry def mock_graphistry_return(username, password): return True import graphistry monkeypatch.setattr(graphistry, "login", mock_graphistry_return) # Mock render of graph async def mock_render_return(graph): return "link" from cognee.shared import utils monkeypatch.setattr(utils, "render_graph", mock_render_return) await cogneeRAG.get_graph_url("password", "username") from cognee.base_config import get_base_config assert get_base_config().graphistry_password == "password", ( "Password was not set properly" ) assert get_base_config().graphistry_username == "username", ( "Username was not set properly" )
import sys import pytest from llama_index.graph_rag.cognee import CogneeGraphRAG @pytest.mark.skipif( sys.version_info < (3, 10), reason="mock strategy requires python3.10 or higher" ) @pytest.mark.asyncio() async def test_get_graph_url(monkeypatch): # Instantiate cognee GraphRAG cogneeRAG = CogneeGraphRAG( llm_api_key="", llm_provider="openai", llm_model="gpt-4o-mini", graph_db_provider="networkx", vector_db_provider="lancedb", relational_db_provider="sqlite", relational_db_name="cognee_db", ) # Mock logging to graphistry def mock_graphistry_return(username, password): return True import graphistry monkeypatch.setattr(graphistry, "login", mock_graphistry_return) # Mock render of graph async def mock_render_return(graph): return "link" from cognee.shared import utils monkeypatch.setattr(utils, "render_graph", mock_render_return) await cogneeRAG.get_graph_url("password", "username") from cognee.base_config import get_base_config assert get_base_config().graphistry_password == "password", ( "Password was not set properly" ) assert get_base_config().graphistry_username == "username", ( "Username was not set properly" )
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.registry import MODELS from mmdet.utils import ConfigType, OptConfigType, OptMultiConfig from .single_stage import SingleStageDetector @MODELS.register_module() class FOVEA(SingleStageDetector): """Implementation of `FoveaBox <https://arxiv.org/abs/1904.03797>`_ Args: backbone (:obj:`ConfigDict` or dict): The backbone config. neck (:obj:`ConfigDict` or dict): The neck config. bbox_head (:obj:`ConfigDict` or dict): The bbox head config. train_cfg (:obj:`ConfigDict` or dict, optional): The training config of FOVEA. Defaults to None. test_cfg (:obj:`ConfigDict` or dict, optional): The testing config of FOVEA. Defaults to None. data_preprocessor (:obj:`ConfigDict` or dict, optional): Config of :class:`DetDataPreprocessor` to process the input data. Defaults to None. init_cfg (:obj:`ConfigDict` or list[:obj:`ConfigDict`] or dict or list[dict], optional): Initialization config dict. Defaults to None. """ def __init__(self, backbone: ConfigType, neck: ConfigType, bbox_head: ConfigType, train_cfg: OptConfigType = None, test_cfg: OptConfigType = None, data_preprocessor: OptConfigType = None, init_cfg: OptMultiConfig = None) -> None: super().__init__( backbone=backbone, neck=neck, bbox_head=bbox_head, train_cfg=train_cfg, test_cfg=test_cfg, data_preprocessor=data_preprocessor, init_cfg=init_cfg)
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.core import ConfigType, OptConfigType, OptMultiConfig from mmdet.registry import MODELS from .single_stage import SingleStageDetector @MODELS.register_module() class FOVEA(SingleStageDetector): """Implementation of `FoveaBox <https://arxiv.org/abs/1904.03797>`_ Args: backbone (:obj:`ConfigDict` or dict): The backbone config. neck (:obj:`ConfigDict` or dict): The neck config. bbox_head (:obj:`ConfigDict` or dict): The bbox head config. train_cfg (:obj:`ConfigDict` or dict, optional): The training config of FOVEA. Defaults to None. test_cfg (:obj:`ConfigDict` or dict, optional): The testing config of FOVEA. Defaults to None. data_preprocessor (:obj:`ConfigDict` or dict, optional): Config of :class:`DetDataPreprocessor` to process the input data. Defaults to None. init_cfg (:obj:`ConfigDict` or list[:obj:`ConfigDict`] or dict or list[dict], optional): Initialization config dict. Defaults to None. """ def __init__(self, backbone: ConfigType, neck: ConfigType, bbox_head: ConfigType, train_cfg: OptConfigType = None, test_cfg: OptConfigType = None, data_preprocessor: OptConfigType = None, init_cfg: OptMultiConfig = None) -> None: super().__init__( backbone=backbone, neck=neck, bbox_head=bbox_head, train_cfg=train_cfg, test_cfg=test_cfg, data_preprocessor=data_preprocessor, init_cfg=init_cfg)
# Copyright (c) OpenMMLab. All rights reserved. import torch import torch.nn as nn from mmcv.cnn import ConvModule, DepthwiseSeparableConvModule from mmcv.runner import BaseModule from mmdet.registry import MODELS @MODELS.register_module() class SSDNeck(BaseModule): """Extra layers of SSD backbone to generate multi-scale feature maps. Args: in_channels (Sequence[int]): Number of input channels per scale. out_channels (Sequence[int]): Number of output channels per scale. level_strides (Sequence[int]): Stride of 3x3 conv per level. level_paddings (Sequence[int]): Padding size of 3x3 conv per level. l2_norm_scale (float|None): L2 normalization layer init scale. If None, not use L2 normalization on the first input feature. last_kernel_size (int): Kernel size of the last conv layer. Default: 3. use_depthwise (bool): Whether to use DepthwiseSeparableConv. Default: False. conv_cfg (dict): Config dict for convolution layer. Default: None. norm_cfg (dict): Dictionary to construct and config norm layer. Default: None. act_cfg (dict): Config dict for activation layer. Default: dict(type='ReLU'). init_cfg (dict or list[dict], optional): Initialization config dict. """ def __init__(self, in_channels, out_channels, level_strides, level_paddings, l2_norm_scale=20., last_kernel_size=3, use_depthwise=False, conv_cfg=None, norm_cfg=None, act_cfg=dict(type='ReLU'), init_cfg=[ dict( type='Xavier', distribution='uniform', layer='Conv2d'), dict(type='Constant', val=1, layer='BatchNorm2d'), ]): super(SSDNeck, self).__init__(init_cfg) assert len(out_channels) > len(in_channels) assert len(out_channels) - len(in_channels) == len(level_strides) assert len(level_strides) == len(level_paddings) assert in_channels == out_channels[:len(in_channels)] if l2_norm_scale: self.l2_norm = L2Norm(in_channels[0], l2_norm_scale) self.init_cfg += [ dict( type='Constant', val=self.l2_norm.scale, override=dict(name='l2_norm')) ] self.extra_layers = nn.ModuleList() extra_layer_channels = out_channels[len(in_channels):] second_conv = DepthwiseSeparableConvModule if \ use_depthwise else ConvModule for i, (out_channel, stride, padding) in enumerate( zip(extra_layer_channels, level_strides, level_paddings)): kernel_size = last_kernel_size \ if i == len(extra_layer_channels) - 1 else 3 per_lvl_convs = nn.Sequential( ConvModule( out_channels[len(in_channels) - 1 + i], out_channel // 2, 1, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg), second_conv( out_channel // 2, out_channel, kernel_size, stride=stride, padding=padding, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg)) self.extra_layers.append(per_lvl_convs) def forward(self, inputs): """Forward function.""" outs = [feat for feat in inputs] if hasattr(self, 'l2_norm'): outs[0] = self.l2_norm(outs[0]) feat = outs[-1] for layer in self.extra_layers: feat = layer(feat) outs.append(feat) return tuple(outs) class L2Norm(nn.Module): def __init__(self, n_dims, scale=20., eps=1e-10): """L2 normalization layer. Args: n_dims (int): Number of dimensions to be normalized scale (float, optional): Defaults to 20.. eps (float, optional): Used to avoid division by zero. Defaults to 1e-10. """ super(L2Norm, self).__init__() self.n_dims = n_dims self.weight = nn.Parameter(torch.Tensor(self.n_dims)) self.eps = eps self.scale = scale def forward(self, x): """Forward function.""" # normalization layer convert to FP32 in FP16 training x_float = x.float() norm = x_float.pow(2).sum(1, keepdim=True).sqrt() + self.eps return (self.weight[None, :, None, None].float().expand_as(x_float) * x_float / norm).type_as(x)
# Copyright (c) OpenMMLab. All rights reserved. import torch import torch.nn as nn from mmcv.cnn import ConvModule, DepthwiseSeparableConvModule from mmcv.runner import BaseModule from ..builder import NECKS @NECKS.register_module() class SSDNeck(BaseModule): """Extra layers of SSD backbone to generate multi-scale feature maps. Args: in_channels (Sequence[int]): Number of input channels per scale. out_channels (Sequence[int]): Number of output channels per scale. level_strides (Sequence[int]): Stride of 3x3 conv per level. level_paddings (Sequence[int]): Padding size of 3x3 conv per level. l2_norm_scale (float|None): L2 normalization layer init scale. If None, not use L2 normalization on the first input feature. last_kernel_size (int): Kernel size of the last conv layer. Default: 3. use_depthwise (bool): Whether to use DepthwiseSeparableConv. Default: False. conv_cfg (dict): Config dict for convolution layer. Default: None. norm_cfg (dict): Dictionary to construct and config norm layer. Default: None. act_cfg (dict): Config dict for activation layer. Default: dict(type='ReLU'). init_cfg (dict or list[dict], optional): Initialization config dict. """ def __init__(self, in_channels, out_channels, level_strides, level_paddings, l2_norm_scale=20., last_kernel_size=3, use_depthwise=False, conv_cfg=None, norm_cfg=None, act_cfg=dict(type='ReLU'), init_cfg=[ dict( type='Xavier', distribution='uniform', layer='Conv2d'), dict(type='Constant', val=1, layer='BatchNorm2d'), ]): super(SSDNeck, self).__init__(init_cfg) assert len(out_channels) > len(in_channels) assert len(out_channels) - len(in_channels) == len(level_strides) assert len(level_strides) == len(level_paddings) assert in_channels == out_channels[:len(in_channels)] if l2_norm_scale: self.l2_norm = L2Norm(in_channels[0], l2_norm_scale) self.init_cfg += [ dict( type='Constant', val=self.l2_norm.scale, override=dict(name='l2_norm')) ] self.extra_layers = nn.ModuleList() extra_layer_channels = out_channels[len(in_channels):] second_conv = DepthwiseSeparableConvModule if \ use_depthwise else ConvModule for i, (out_channel, stride, padding) in enumerate( zip(extra_layer_channels, level_strides, level_paddings)): kernel_size = last_kernel_size \ if i == len(extra_layer_channels) - 1 else 3 per_lvl_convs = nn.Sequential( ConvModule( out_channels[len(in_channels) - 1 + i], out_channel // 2, 1, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg), second_conv( out_channel // 2, out_channel, kernel_size, stride=stride, padding=padding, conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg)) self.extra_layers.append(per_lvl_convs) def forward(self, inputs): """Forward function.""" outs = [feat for feat in inputs] if hasattr(self, 'l2_norm'): outs[0] = self.l2_norm(outs[0]) feat = outs[-1] for layer in self.extra_layers: feat = layer(feat) outs.append(feat) return tuple(outs) class L2Norm(nn.Module): def __init__(self, n_dims, scale=20., eps=1e-10): """L2 normalization layer. Args: n_dims (int): Number of dimensions to be normalized scale (float, optional): Defaults to 20.. eps (float, optional): Used to avoid division by zero. Defaults to 1e-10. """ super(L2Norm, self).__init__() self.n_dims = n_dims self.weight = nn.Parameter(torch.Tensor(self.n_dims)) self.eps = eps self.scale = scale def forward(self, x): """Forward function.""" # normalization layer convert to FP32 in FP16 training x_float = x.float() norm = x_float.pow(2).sum(1, keepdim=True).sqrt() + self.eps return (self.weight[None, :, None, None].float().expand_as(x_float) * x_float / norm).type_as(x)
import time from typing import Callable from pydantic import Field from docarray import BaseDoc from docarray.typing import NdArray N_DIM = 10 class SimpleSchema(BaseDoc): text: str = Field(index_name='text_index') number: int embedding: NdArray[10] = Field(dim=10, index_name="vector_index") class SimpleDoc(BaseDoc): embedding: NdArray[N_DIM] = Field(dim=N_DIM, index_name="vector_index_1") class NestedDoc(BaseDoc): d: SimpleDoc embedding: NdArray[N_DIM] = Field(dim=N_DIM, index_name="vector_index") class FlatSchema(BaseDoc): embedding1: NdArray = Field(dim=N_DIM, index_name="vector_index_1") embedding2: NdArray = Field(dim=N_DIM, index_name="vector_index_2") def assert_when_ready(callable: Callable, tries: int = 5, interval: float = 2): """ Retry callable to account for time taken to change data on the cluster """ while True: try: callable() except AssertionError as e: tries -= 1 if tries == 0: raise RuntimeError("Retries exhausted.") from e time.sleep(interval) else: return
import time from typing import Callable from pydantic import Field from docarray import BaseDoc from docarray.typing import NdArray N_DIM = 10 class SimpleSchema(BaseDoc): text: str = Field(index_name='text_index') number: int embedding: NdArray[10] = Field(dim=10, index_name="vector_index") class SimpleDoc(BaseDoc): embedding: NdArray[N_DIM] = Field(dim=N_DIM, index_name="vector_index_1") class NestedDoc(BaseDoc): d: SimpleDoc embedding: NdArray[N_DIM] = Field(dim=N_DIM, index_name="vector_index") class FlatSchema(BaseDoc): embedding1: NdArray = Field(dim=N_DIM, index_name="vector_index_1") # the dim and N_DIM are setted different on propouse. to check the correct handling of n_dim embedding2: NdArray[50] = Field(dim=N_DIM, index_name="vector_index_2") def assert_when_ready(callable: Callable, tries: int = 5, interval: float = 2): """ Retry callable to account for time taken to change data on the cluster """ while True: try: callable() except AssertionError: tries -= 1 if tries == 0: raise time.sleep(interval) else: return
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.chat_message_histories import AstraDBChatMessageHistory # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "AstraDBChatMessageHistory": "langchain_community.chat_message_histories", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "AstraDBChatMessageHistory", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.chat_message_histories import AstraDBChatMessageHistory # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "AstraDBChatMessageHistory": "langchain_community.chat_message_histories" } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "AstraDBChatMessageHistory", ]
from llama_index.llms.openai.base import AsyncOpenAI, OpenAI, SyncOpenAI, Tokenizer from llama_index.llms.openai.responses import OpenAIResponses __all__ = ["OpenAI", "OpenAIResponses", "Tokenizer", "SyncOpenAI", "AsyncOpenAI"]
from llama_index.llms.openai.base import AsyncOpenAI, OpenAI, SyncOpenAI, Tokenizer __all__ = ["OpenAI", "Tokenizer", "SyncOpenAI", "AsyncOpenAI"]
# coding=utf-8 # Copyright 2025 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Fast Image processor class for LeViT.""" from ...image_processing_utils_fast import BaseImageProcessorFast, SizeDict from ...image_transforms import ( ChannelDimension, get_resize_output_image_size, ) from ...image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling from ...utils import auto_docstring, is_torch_available, is_torchvision_available, is_torchvision_v2_available if is_torch_available(): import torch if is_torchvision_available(): if is_torchvision_v2_available(): from torchvision.transforms.v2 import functional as F else: from torchvision.transforms import functional as F @auto_docstring class LevitImageProcessorFast(BaseImageProcessorFast): resample = PILImageResampling.BICUBIC image_mean = IMAGENET_DEFAULT_MEAN image_std = IMAGENET_DEFAULT_STD size = {"shortest_edge": 224} default_to_square = False crop_size = {"height": 224, "width": 224} do_resize = True do_center_crop = True do_rescale = True do_normalize = True do_convert_rgb = None def resize( self, image: torch.Tensor, size: SizeDict, interpolation: "F.InterpolationMode" = None, **kwargs, ) -> torch.Tensor: """ Resize an image. If size is a dict with keys "width" and "height", the image will be resized to `(size["height"], size["width"])`. If size is a dict with key "shortest_edge", the shortest edge value `c` is rescaled to `int(c * (256/224))`. The smaller edge of the image will be matched to this value i.e, if height > width, then image will be rescaled to `(size["shortest_egde"] * height / width, size["shortest_egde"])`. Args: image (`torch.Tensor`): Image to resize. size (`SizeDict`): Size of the output image after resizing. If size is a dict with keys "width" and "height", the image will be resized to (height, width). If size is a dict with key "shortest_edge", the shortest edge value `c` is rescaled to int(`c` * (256/224)). The smaller edge of the image will be matched to this value i.e, if height > width, then image will be rescaled to (size * height / width, size). interpolation (`InterpolationMode`, *optional*, defaults to `InterpolationMode.BICUBIC`): Resampling filter to use when resiizing the image. """ interpolation = interpolation if interpolation is not None else F.InterpolationMode.BICUBIC if size.shortest_edge: shortest_edge = int((256 / 224) * size["shortest_edge"]) new_size = get_resize_output_image_size( image, size=shortest_edge, default_to_square=False, input_data_format=ChannelDimension.FIRST ) elif size.height and size.width: new_size = (size.height, size.width) else: raise ValueError( f"Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size.keys()} {size.keys()}." ) return F.resize( image, size=new_size, interpolation=interpolation, **kwargs, ) __all__ = ["LevitImageProcessorFast"]
# coding=utf-8 # Copyright 2025 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Fast Image processor class for LeViT.""" from ...image_processing_utils_fast import BASE_IMAGE_PROCESSOR_FAST_DOCSTRING, BaseImageProcessorFast, SizeDict from ...image_transforms import ( ChannelDimension, get_resize_output_image_size, ) from ...image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling from ...utils import add_start_docstrings, is_torch_available, is_torchvision_available, is_torchvision_v2_available if is_torch_available(): import torch if is_torchvision_available(): if is_torchvision_v2_available(): from torchvision.transforms.v2 import functional as F else: from torchvision.transforms import functional as F @add_start_docstrings( "Constructs a fast Levit image processor.", BASE_IMAGE_PROCESSOR_FAST_DOCSTRING, ) class LevitImageProcessorFast(BaseImageProcessorFast): resample = PILImageResampling.BICUBIC image_mean = IMAGENET_DEFAULT_MEAN image_std = IMAGENET_DEFAULT_STD size = {"shortest_edge": 224} default_to_square = False crop_size = {"height": 224, "width": 224} do_resize = True do_center_crop = True do_rescale = True do_normalize = True do_convert_rgb = None def resize( self, image: torch.Tensor, size: SizeDict, interpolation: "F.InterpolationMode" = None, **kwargs, ) -> torch.Tensor: """ Resize an image. If size is a dict with keys "width" and "height", the image will be resized to `(size["height"], size["width"])`. If size is a dict with key "shortest_edge", the shortest edge value `c` is rescaled to `int(c * (256/224))`. The smaller edge of the image will be matched to this value i.e, if height > width, then image will be rescaled to `(size["shortest_egde"] * height / width, size["shortest_egde"])`. Args: image (`torch.Tensor`): Image to resize. size (`SizeDict`): Size of the output image after resizing. If size is a dict with keys "width" and "height", the image will be resized to (height, width). If size is a dict with key "shortest_edge", the shortest edge value `c` is rescaled to int(`c` * (256/224)). The smaller edge of the image will be matched to this value i.e, if height > width, then image will be rescaled to (size * height / width, size). interpolation (`InterpolationMode`, *optional*, defaults to `InterpolationMode.BICUBIC`): Resampling filter to use when resiizing the image. """ interpolation = interpolation if interpolation is not None else F.InterpolationMode.BICUBIC if size.shortest_edge: shortest_edge = int((256 / 224) * size["shortest_edge"]) new_size = get_resize_output_image_size( image, size=shortest_edge, default_to_square=False, input_data_format=ChannelDimension.FIRST ) elif size.height and size.width: new_size = (size.height, size.width) else: raise ValueError( f"Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size.keys()} {size.keys()}." ) return F.resize( image, size=new_size, interpolation=interpolation, **kwargs, ) __all__ = ["LevitImageProcessorFast"]
_base_ = './mask-rcnn_r50_fpn_gn-ws-all_2x_coco.py' # learning policy max_epochs = 24 train_cfg = dict(max_epochs=max_epochs) # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[20, 23], gamma=0.1) ]
_base_ = './mask_rcnn_r50_fpn_gn_ws-all_2x_coco.py' # learning policy max_epochs = 24 train_cfg = dict(max_epochs=max_epochs) # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[20, 23], gamma=0.1) ]
import numpy as np import pytest import torch from pydantic import parse_obj_as from docarray import BaseDocument from docarray.documents import PointCloud3D from docarray.utils.misc import is_tf_available from tests import TOYDATA_DIR tf_available = is_tf_available() if tf_available: import tensorflow as tf import tensorflow._api.v2.experimental.numpy as tnp LOCAL_OBJ_FILE = str(TOYDATA_DIR / 'tetrahedron.obj') REMOTE_OBJ_FILE = 'https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj' @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize('file_url', [LOCAL_OBJ_FILE, REMOTE_OBJ_FILE]) def test_point_cloud(file_url): print(f"file_url = {file_url}") point_cloud = PointCloud3D(url=file_url) point_cloud.tensor = point_cloud.url.load(samples=100) assert isinstance(point_cloud.tensor, np.ndarray) def test_point_cloud_np(): pc = parse_obj_as(PointCloud3D, np.zeros((10, 10, 3))) assert (pc.tensor == np.zeros((10, 10, 3))).all() def test_point_cloud_torch(): pc = parse_obj_as(PointCloud3D, torch.zeros(10, 10, 3)) assert (pc.tensor == torch.zeros(10, 10, 3)).all() @pytest.mark.tensorflow def test_point_cloud_tensorflow(): pc = parse_obj_as(PointCloud3D, tf.zeros((10, 10, 3))) assert tnp.allclose(pc.tensor.tensor, tf.zeros((10, 10, 3))) def test_point_cloud_shortcut_doc(): class MyDoc(BaseDocument): pc: PointCloud3D pc2: PointCloud3D pc3: PointCloud3D doc = MyDoc( pc='http://myurl.ply', pc2=np.zeros((10, 10, 3)), pc3=torch.zeros(10, 10, 3), ) assert doc.pc.url == 'http://myurl.ply' assert (doc.pc2.tensor == np.zeros((10, 10, 3))).all() assert (doc.pc3.tensor == torch.zeros(10, 10, 3)).all() @pytest.mark.tensorflow def test_point_cloud_shortcut_doc_tf(): class MyDoc(BaseDocument): pc: PointCloud3D pc2: PointCloud3D doc = MyDoc( pc='http://myurl.ply', pc2=tf.zeros((10, 10, 3)), ) assert doc.pc.url == 'http://myurl.ply' assert tnp.allclose(doc.pc2.tensor.tensor, tf.zeros((10, 10, 3)))
import numpy as np import pytest import torch from pydantic import parse_obj_as from docarray import BaseDocument from docarray.documents import PointCloud3D from tests import TOYDATA_DIR LOCAL_OBJ_FILE = str(TOYDATA_DIR / 'tetrahedron.obj') REMOTE_OBJ_FILE = 'https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj' @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize('file_url', [LOCAL_OBJ_FILE, REMOTE_OBJ_FILE]) def test_point_cloud(file_url): print(f"file_url = {file_url}") point_cloud = PointCloud3D(url=file_url) point_cloud.tensor = point_cloud.url.load(samples=100) assert isinstance(point_cloud.tensor, np.ndarray) def test_point_cloud_np(): image = parse_obj_as(PointCloud3D, np.zeros((10, 10, 3))) assert (image.tensor == np.zeros((10, 10, 3))).all() def test_point_cloud_torch(): image = parse_obj_as(PointCloud3D, torch.zeros(10, 10, 3)) assert (image.tensor == torch.zeros(10, 10, 3)).all() def test_point_cloud_shortcut_doc(): class MyDoc(BaseDocument): image: PointCloud3D image2: PointCloud3D image3: PointCloud3D doc = MyDoc( image='http://myurl.ply', image2=np.zeros((10, 10, 3)), image3=torch.zeros(10, 10, 3), ) assert doc.image.url == 'http://myurl.ply' assert (doc.image2.tensor == np.zeros((10, 10, 3))).all() assert (doc.image3.tensor == torch.zeros(10, 10, 3)).all()
# Copyright (c) OpenMMLab. All rights reserved. from ..builder import DETECTORS from .sparse_rcnn import SparseRCNN @DETECTORS.register_module() class QueryInst(SparseRCNN): r"""Implementation of `Instances as Queries <http://arxiv.org/abs/2105.01928>`_""" def __init__(self, backbone, rpn_head, roi_head, train_cfg, test_cfg, neck=None, pretrained=None, init_cfg=None): super(QueryInst, self).__init__( backbone=backbone, neck=neck, rpn_head=rpn_head, roi_head=roi_head, train_cfg=train_cfg, test_cfg=test_cfg, pretrained=pretrained, init_cfg=init_cfg)
from ..builder import DETECTORS from .sparse_rcnn import SparseRCNN @DETECTORS.register_module() class QueryInst(SparseRCNN): r"""Implementation of `Instances as Queries <http://arxiv.org/abs/2105.01928>`_""" def __init__(self, backbone, rpn_head, roi_head, train_cfg, test_cfg, neck=None, pretrained=None, init_cfg=None): super(QueryInst, self).__init__( backbone=backbone, neck=neck, rpn_head=rpn_head, roi_head=roi_head, train_cfg=train_cfg, test_cfg=test_cfg, pretrained=pretrained, init_cfg=init_cfg)
import json from typing import Dict, List, Union from docarray.array.abstract_array import AnyDocumentArray from docarray.array.array.array import DocumentArray def filter_docs( docs: AnyDocumentArray, query: Union[str, Dict, List[Dict]], ) -> AnyDocumentArray: """ Filter the Documents in the index according to the given filter query. EXAMPLE USAGE .. code-block:: python from docarray import DocumentArray, BaseDocument from docarray.documents import Text, Image from docarray.util.filter import filter_docs class MyDocument(BaseDocument): caption: Text image: Image price: int docs = DocumentArray[MyDocument]( [ MyDocument( caption='A tiger in the jungle', image=Image(url='tigerphoto.png'), price=100, ), MyDocument( caption='A swimming turtle', image=Image(url='turtlepic.png'), price=50 ), MyDocument( caption='A couple birdwatching with binoculars', image=Image(url='binocularsphoto.png'), price=30, ), ] ) query = { '$and': { 'image__url': {'$regex': 'photo'}, 'price': {'$lte': 50}, } } results = filter_docs(docs, query) assert len(results) == 1 assert results[0].price == 30 assert results[0].caption == 'A couple birdwatching with binoculars' assert results[0].image.url == 'binocularsphoto.png' :param docs: the DocumentArray where to apply the filter :param query: the query to filter by :return: A DocumentArray containing the Documents in `docs` that fulfill the filter conditions in the `query` """ from docarray.utils.query_language.query_parser import QueryParser if query: query = query if not isinstance(query, str) else json.loads(query) parser = QueryParser(query) return DocumentArray.__class_getitem__(docs.document_type)( d for d in docs if parser.evaluate(d) ) else: return docs
import json from typing import Dict, List, Union from docarray.array.abstract_array import AnyDocumentArray from docarray.array.array.array import DocumentArray def filter( docs: AnyDocumentArray, query: Union[str, Dict, List[Dict]], ) -> AnyDocumentArray: """ Filter the Documents in the index according to the given filter query. EXAMPLE USAGE .. code-block:: python from docarray import DocumentArray, BaseDocument from docarray.documents import Text, Image from docarray.util.filter import filter class MyDocument(BaseDocument): caption: Text image: Image price: int docs = DocumentArray[MyDocument]( [ MyDocument( caption='A tiger in the jungle', image=Image(url='tigerphoto.png'), price=100, ), MyDocument( caption='A swimming turtle', image=Image(url='turtlepic.png'), price=50 ), MyDocument( caption='A couple birdwatching with binoculars', image=Image(url='binocularsphoto.png'), price=30, ), ] ) query = { '$and': { 'image__url': {'$regex': 'photo'}, 'price': {'$lte': 50}, } } results = filter(docs, query) assert len(results) == 1 assert results[0].price == 30 assert results[0].caption == 'A couple birdwatching with binoculars' assert results[0].image.url == 'binocularsphoto.png' :param docs: the DocumentArray where to apply the filter :param query: the query to filter by :return: A DocumentArray containing the Documents in `docs` that fulfill the filter conditions in the `query` """ from docarray.utils.query_language.query_parser import QueryParser if query: query = query if not isinstance(query, str) else json.loads(query) parser = QueryParser(query) return DocumentArray.__class_getitem__(docs.document_type)( d for d in docs if parser.evaluate(d) ) else: return docs
_base_ = 'faster-rcnn_r50_fpn_ms-3x_coco.py' model = dict( data_preprocessor=dict( type='DetDataPreprocessor', mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], bgr_to_rgb=False, pad_size_divisor=32), backbone=dict( norm_cfg=dict(requires_grad=False), norm_eval=True, style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')))
_base_ = 'faster-rcnn_r50_fpn_ms-3x_coco.py' model = dict( data_preprocessor=dict( type='DetDataPreprocessor', mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], bgr_to_rgb=False, pad_size_divisor=32), backbone=dict( norm_cfg=dict(requires_grad=False), norm_eval=True, style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe'))) # use caffe img_norm img_norm_cfg = dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='Resize', img_scale=[(1333, 640), (1333, 800)], multiscale_mode='range', keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( train=dict(dataset=dict(pipeline=train_pipeline)), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline))
_base_ = './reppoints-moment_r50_fpn_1x_coco.py' norm_cfg = dict(type='GN', num_groups=32, requires_grad=True) model = dict(neck=dict(norm_cfg=norm_cfg), bbox_head=dict(norm_cfg=norm_cfg))
_base_ = './reppoints_moment_r50_fpn_1x_coco.py' norm_cfg = dict(type='GN', num_groups=32, requires_grad=True) model = dict(neck=dict(norm_cfg=norm_cfg), bbox_head=dict(norm_cfg=norm_cfg))
from google.protobuf import __version__ as __pb__version__ if __pb__version__.startswith('4'): from docarray.proto.pb.docarray_pb2 import ( DictOfAnyProto, DocArrayProto, DocArrayStackedProto, DocumentProto, ListOfAnyProto, ListOfDocArrayProto, NdArrayProto, NodeProto, ) else: from docarray.proto.pb2.docarray_pb2 import ( DictOfAnyProto, DocArrayProto, DocArrayStackedProto, DocumentProto, ListOfAnyProto, ListOfDocArrayProto, NdArrayProto, NodeProto, ) __all__ = [ 'DocArrayProto', 'DocumentProto', 'NdArrayProto', 'NodeProto', 'DocArrayStackedProto', 'DocArrayProto', 'ListOfDocArrayProto', 'ListOfAnyProto', 'DictOfAnyProto', ]
from google.protobuf import __version__ as __pb__version__ if __pb__version__.startswith('4'): from docarray.proto.pb.docarray_pb2 import ( DictOfAnyProto, DocumentArrayProto, DocumentArrayStackedProto, DocumentProto, ListOfAnyProto, ListOfDocumentArrayProto, NdArrayProto, NodeProto, ) else: from docarray.proto.pb2.docarray_pb2 import ( DictOfAnyProto, DocumentArrayProto, DocumentArrayStackedProto, DocumentProto, ListOfAnyProto, ListOfDocumentArrayProto, NdArrayProto, NodeProto, ) __all__ = [ 'DocumentArrayProto', 'DocumentProto', 'NdArrayProto', 'NodeProto', 'DocumentArrayStackedProto', 'DocumentArrayProto', 'ListOfDocumentArrayProto', 'ListOfAnyProto', 'DictOfAnyProto', ]
# Copyright (c) OpenMMLab. All rights reserved. import torch from mmcv.runner.hooks import HOOKS, Hook @HOOKS.register_module() class CheckInvalidLossHook(Hook): """Check invalid loss hook. This hook will regularly check whether the loss is valid during training. Args: interval (int): Checking interval (every k iterations). Default: 50. """ def __init__(self, interval=50): self.interval = interval def after_train_iter(self, runner): if self.every_n_iters(runner, self.interval): assert torch.isfinite(runner.outputs['loss']), \ runner.logger.info('loss become infinite or NaN!')
import torch from mmcv.runner.hooks import HOOKS, Hook @HOOKS.register_module() class CheckInvalidLossHook(Hook): """Check invalid loss hook. This hook will regularly check whether the loss is valid during training. Args: interval (int): Checking interval (every k iterations). Default: 50. """ def __init__(self, interval=50): self.interval = interval def after_train_iter(self, runner): if self.every_n_iters(runner, self.interval): assert torch.isfinite(runner.outputs['loss']), \ runner.logger.info('loss become infinite or NaN!')
""" This example loads the pre-trained SentenceTransformer model 'nli-distilroberta-base-v2' from Hugging Face. It then fine-tunes this model for some epochs on the STS benchmark dataset. Note: In this example, you must specify a SentenceTransformer model. If you want to fine-tune a huggingface/transformers model like bert-base-uncased, see training_nli.py and training_stsbenchmark.py """ import logging import sys import traceback from datetime import datetime from datasets import load_dataset from sentence_transformers import SentenceTransformer, losses from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator from sentence_transformers.similarity_functions import SimilarityFunction from sentence_transformers.trainer import SentenceTransformerTrainer from sentence_transformers.training_args import SentenceTransformerTrainingArguments # Set the log level to INFO to get more information logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) # You can specify any Sentence Transformer model here, for example all-mpnet-base-v2, all-MiniLM-L6-v2, mixedbread-ai/mxbai-embed-large-v1 model_name = sys.argv[1] if len(sys.argv) > 1 else "sentence-transformers/all-mpnet-base-v2" train_batch_size = 16 num_epochs = 4 output_dir = ( "output/training_stsbenchmark_" + model_name.replace("/", "-") + "-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") ) # 1. Here we define our SentenceTransformer model. model = SentenceTransformer(model_name) # 2. Load the STSB dataset: https://huggingface.co/datasets/sentence-transformers/stsb train_dataset = load_dataset("sentence-transformers/stsb", split="train") eval_dataset = load_dataset("sentence-transformers/stsb", split="validation") test_dataset = load_dataset("sentence-transformers/stsb", split="test") logging.info(train_dataset) # 3. Define our training loss # CosineSimilarityLoss (https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) needs two text columns and one # similarity score column (between 0 and 1) train_loss = losses.CosineSimilarityLoss(model=model) # train_loss = losses.CoSENTLoss(model=model) # 4. Define an evaluator for use during training. This is useful to keep track of alongside the evaluation loss. dev_evaluator = EmbeddingSimilarityEvaluator( sentences1=eval_dataset["sentence1"], sentences2=eval_dataset["sentence2"], scores=eval_dataset["score"], main_similarity=SimilarityFunction.COSINE, name="sts-dev", ) # 5. Define the training arguments args = SentenceTransformerTrainingArguments( # Required parameter: output_dir=output_dir, # Optional training parameters: num_train_epochs=num_epochs, per_device_train_batch_size=train_batch_size, per_device_eval_batch_size=train_batch_size, warmup_ratio=0.1, fp16=True, # Set to False if you get an error that your GPU can't run on FP16 bf16=False, # Set to True if you have a GPU that supports BF16 # Optional tracking/debugging parameters: eval_strategy="steps", eval_steps=100, save_strategy="steps", save_steps=100, save_total_limit=2, logging_steps=100, run_name="sts", # Will be used in W&B if `wandb` is installed ) # 6. Create the trainer & start training trainer = SentenceTransformerTrainer( model=model, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=train_loss, evaluator=dev_evaluator, ) trainer.train() # 7. Evaluate the model performance on the STS Benchmark test dataset test_evaluator = EmbeddingSimilarityEvaluator( sentences1=test_dataset["sentence1"], sentences2=test_dataset["sentence2"], scores=test_dataset["score"], main_similarity=SimilarityFunction.COSINE, name="sts-test", ) test_evaluator(model) # 8. Save the trained & evaluated model locally final_output_dir = f"{output_dir}/final" model.save(final_output_dir) # 9. (Optional) save the model to the Hugging Face Hub! # It is recommended to run `huggingface-cli login` to log into your Hugging Face account first model_name = model_name if "/" not in model_name else model_name.split("/")[-1] try: model.push_to_hub(f"{model_name}-sts") except Exception: logging.error( f"Error uploading model to the Hugging Face Hub:\n{traceback.format_exc()}To upload it manually, you can run " f"`huggingface-cli login`, followed by loading the model using `model = SentenceTransformer({final_output_dir!r})` " f"and saving it using `model.push_to_hub('{model_name}-sts')`." )
""" This example loads the pre-trained SentenceTransformer model 'nli-distilroberta-base-v2' from Hugging Face. It then fine-tunes this model for some epochs on the STS benchmark dataset. Note: In this example, you must specify a SentenceTransformer model. If you want to fine-tune a huggingface/transformers model like bert-base-uncased, see training_nli.py and training_stsbenchmark.py """ import traceback from datasets import load_dataset from sentence_transformers import SentenceTransformer, losses from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator import logging from datetime import datetime import sys from sentence_transformers.similarity_functions import SimilarityFunction from sentence_transformers.trainer import SentenceTransformerTrainer from sentence_transformers.training_args import SentenceTransformerTrainingArguments # Set the log level to INFO to get more information logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) # You can specify any Sentence Transformer model here, for example all-mpnet-base-v2, all-MiniLM-L6-v2, mixedbread-ai/mxbai-embed-large-v1 model_name = sys.argv[1] if len(sys.argv) > 1 else "sentence-transformers/all-mpnet-base-v2" train_batch_size = 16 num_epochs = 4 output_dir = ( "output/training_stsbenchmark_" + model_name.replace("/", "-") + "-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") ) # 1. Here we define our SentenceTransformer model. model = SentenceTransformer(model_name) # 2. Load the STSB dataset: https://huggingface.co/datasets/sentence-transformers/stsb train_dataset = load_dataset("sentence-transformers/stsb", split="train") eval_dataset = load_dataset("sentence-transformers/stsb", split="validation") test_dataset = load_dataset("sentence-transformers/stsb", split="test") logging.info(train_dataset) # 3. Define our training loss # CosineSimilarityLoss (https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) needs two text columns and one # similarity score column (between 0 and 1) train_loss = losses.CosineSimilarityLoss(model=model) # train_loss = losses.CoSENTLoss(model=model) # 4. Define an evaluator for use during training. This is useful to keep track of alongside the evaluation loss. dev_evaluator = EmbeddingSimilarityEvaluator( sentences1=eval_dataset["sentence1"], sentences2=eval_dataset["sentence2"], scores=eval_dataset["score"], main_similarity=SimilarityFunction.COSINE, name="sts-dev", ) # 5. Define the training arguments args = SentenceTransformerTrainingArguments( # Required parameter: output_dir=output_dir, # Optional training parameters: num_train_epochs=num_epochs, per_device_train_batch_size=train_batch_size, per_device_eval_batch_size=train_batch_size, warmup_ratio=0.1, fp16=True, # Set to False if you get an error that your GPU can't run on FP16 bf16=False, # Set to True if you have a GPU that supports BF16 # Optional tracking/debugging parameters: eval_strategy="steps", eval_steps=100, save_strategy="steps", save_steps=100, save_total_limit=2, logging_steps=100, run_name="sts", # Will be used in W&B if `wandb` is installed ) # 6. Create the trainer & start training trainer = SentenceTransformerTrainer( model=model, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=train_loss, evaluator=dev_evaluator, ) trainer.train() # 7. Evaluate the model performance on the STS Benchmark test dataset test_evaluator = EmbeddingSimilarityEvaluator( sentences1=test_dataset["sentence1"], sentences2=test_dataset["sentence2"], scores=test_dataset["score"], main_similarity=SimilarityFunction.COSINE, name="sts-test", ) test_evaluator(model) # 8. Save the trained & evaluated model locally final_output_dir = f"{output_dir}/final" model.save(final_output_dir) # 9. (Optional) save the model to the Hugging Face Hub! # It is recommended to run `huggingface-cli login` to log into your Hugging Face account first model_name = model_name if "/" not in model_name else model_name.split("/")[-1] try: model.push_to_hub(f"{model_name}-sts") except Exception: logging.error( f"Error uploading model to the Hugging Face Hub:\n{traceback.format_exc()}To upload it manually, you can run " f"`huggingface-cli login`, followed by loading the model using `model = SentenceTransformer({final_output_dir!r})` " f"and saving it using `model.push_to_hub('{model_name}-sts')`." )
from __future__ import annotations import re import pytest from sentence_transformers import SentenceTransformer from sentence_transformers.evaluation import NanoBEIREvaluator from sentence_transformers.util import is_datasets_available from tests.utils import is_ci if not is_datasets_available(): pytest.skip( reason="Datasets are not installed. Please install `datasets` with `pip install datasets`", allow_module_level=True, ) if is_ci(): pytest.skip( reason="Skip test in CI to try and avoid 429 Client Error", allow_module_level=True, ) def test_nanobeir_evaluator(stsb_bert_tiny_model_reused: SentenceTransformer): """Tests that the NanoBERTEvaluator can be loaded and produces expected metrics""" datasets = ["QuoraRetrieval", "MSMARCO"] query_prompts = { "QuoraRetrieval": "Instruct: Given a question, retrieve questions that are semantically equivalent to the given question\\nQuery: ", "MSMARCO": "Instruct: Given a web search query, retrieve relevant passages that answer the query\\nQuery: ", } model = stsb_bert_tiny_model_reused evaluator = NanoBEIREvaluator( dataset_names=datasets, query_prompts=query_prompts, ) results = evaluator(model) assert len(results) > 0 assert all(isinstance(results[metric], float) for metric in results) def test_nanobeir_evaluator_with_invalid_dataset(): """Test that NanoBEIREvaluator raises an error for invalid dataset names.""" invalid_datasets = ["invalidDataset"] with pytest.raises( ValueError, match=re.escape( r"Dataset(s) ['invalidDataset'] not found in the NanoBEIR collection. " r"Valid dataset names are: ['climatefever', 'dbpedia', 'fever', 'fiqa2018', 'hotpotqa', 'msmarco', 'nfcorpus', 'nq', 'quoraretrieval', 'scidocs', 'arguana', 'scifact', 'touche2020']" ), ): NanoBEIREvaluator(dataset_names=invalid_datasets) def test_nanobeir_evaluator_empty_inputs(): """Test that NanoBEIREvaluator behaves correctly with empty datasets.""" with pytest.raises(ValueError, match="dataset_names cannot be empty. Use None to evaluate on all datasets."): NanoBEIREvaluator(dataset_names=[])
from __future__ import annotations import re import pytest from sentence_transformers import SentenceTransformer from sentence_transformers.evaluation import NanoBEIREvaluator from sentence_transformers.util import is_datasets_available if not is_datasets_available(): pytest.skip( reason="Datasets are not installed. Please install `datasets` with `pip install datasets`", allow_module_level=True, ) def test_nanobeir_evaluator(): """Tests that the NanoBERTEvaluator can be loaded and produces expected metrics""" datasets = ["QuoraRetrieval", "MSMARCO"] query_prompts = { "QuoraRetrieval": "Instruct: Given a question, retrieve questions that are semantically equivalent to the given question\\nQuery: ", "MSMARCO": "Instruct: Given a web search query, retrieve relevant passages that answer the query\\nQuery: ", } model = SentenceTransformer("sentence-transformers-testing/stsb-bert-tiny-safetensors") evaluator = NanoBEIREvaluator( dataset_names=datasets, query_prompts=query_prompts, ) results = evaluator(model) assert len(results) > 0 assert all(isinstance(results[metric], float) for metric in results) def test_nanobeir_evaluator_with_invalid_dataset(): """Test that NanoBEIREvaluator raises an error for invalid dataset names.""" invalid_datasets = ["invalidDataset"] with pytest.raises( ValueError, match=re.escape( r"Dataset(s) ['invalidDataset'] not found in the NanoBEIR collection. " r"Valid dataset names are: ['climatefever', 'dbpedia', 'fever', 'fiqa2018', 'hotpotqa', 'msmarco', 'nfcorpus', 'nq', 'quoraretrieval', 'scidocs', 'arguana', 'scifact', 'touche2020']" ), ): NanoBEIREvaluator(dataset_names=invalid_datasets) def test_nanobeir_evaluator_empty_inputs(): """Test that NanoBEIREvaluator behaves correctly with empty datasets.""" with pytest.raises(ValueError, match="dataset_names cannot be empty. Use None to evaluate on all datasets."): NanoBEIREvaluator(dataset_names=[])
from keras.src.api_export import keras_export from keras.src.callbacks.callback import Callback @keras_export("keras.callbacks.LambdaCallback") class LambdaCallback(Callback): """Callback for creating simple, custom callbacks on-the-fly. This callback is constructed with anonymous functions that will be called at the appropriate time (during `Model.{fit | evaluate | predict}`). Note that the callbacks expects positional arguments, as: - `on_epoch_begin` and `on_epoch_end` expect two positional arguments: `epoch`, `logs` - `on_train_begin` and `on_train_end` expect one positional argument: `logs` - `on_train_batch_begin` and `on_train_batch_end` expect a positional argument `batch` and a keyword argument `logs` - See `Callback` class definition for the full list of functions and their expected arguments. Args: on_epoch_begin: called at the beginning of every epoch. on_epoch_end: called at the end of every epoch. on_train_begin: called at the beginning of model training. on_train_end: called at the end of model training. on_train_batch_begin: called at the beginning of every train batch. on_train_batch_end: called at the end of every train batch. kwargs: Any function in `Callback` that you want to override by passing `function_name=function`. For example, `LambdaCallback(.., on_train_end=train_end_fn)`. The custom function needs to have same arguments as the ones defined in `Callback`. Example: ```python # Print the batch number at the beginning of every batch. batch_print_callback = LambdaCallback( on_train_batch_begin=lambda batch,logs: print(batch)) # Stream the epoch loss to a file in JSON format. The file content # is not well-formed JSON but rather has a JSON object per line. import json json_log = open('loss_log.json', mode='wt', buffering=1) json_logging_callback = LambdaCallback( on_epoch_end=lambda epoch, logs: json_log.write( json.dumps({'epoch': epoch, 'loss': logs['loss']}) + '\n'), on_train_end=lambda logs: json_log.close() ) # Terminate some processes after having finished model training. processes = ... cleanup_callback = LambdaCallback( on_train_end=lambda logs: [ p.terminate() for p in processes if p.is_alive()]) model.fit(..., callbacks=[batch_print_callback, json_logging_callback, cleanup_callback]) ``` """ def __init__( self, on_epoch_begin=None, on_epoch_end=None, on_train_begin=None, on_train_end=None, on_train_batch_begin=None, on_train_batch_end=None, **kwargs, ): super().__init__() self.__dict__.update(kwargs) if on_epoch_begin is not None: self.on_epoch_begin = on_epoch_begin if on_epoch_end is not None: self.on_epoch_end = on_epoch_end if on_train_begin is not None: self.on_train_begin = on_train_begin if on_train_end is not None: self.on_train_end = on_train_end if on_train_batch_begin is not None: self.on_train_batch_begin = on_train_batch_begin if on_train_batch_end is not None: self.on_train_batch_end = on_train_batch_end
from keras.src.api_export import keras_export from keras.src.callbacks.callback import Callback @keras_export("keras.callbacks.LambdaCallback") class LambdaCallback(Callback): """Callback for creating simple, custom callbacks on-the-fly. This callback is constructed with anonymous functions that will be called at the appropriate time (during `Model.{fit | evaluate | predict}`). Note that the callbacks expects positional arguments, as: - `on_epoch_begin` and `on_epoch_end` expect two positional arguments: `epoch`, `logs` - `on_train_begin` and `on_train_end` expect one positional argument: `logs` - `on_train_batch_begin` and `on_train_batch_end` expect two positional arguments: `batch`, `logs` - See `Callback` class definition for the full list of functions and their expected arguments. Args: on_epoch_begin: called at the beginning of every epoch. on_epoch_end: called at the end of every epoch. on_train_begin: called at the beginning of model training. on_train_end: called at the end of model training. on_train_batch_begin: called at the beginning of every train batch. on_train_batch_end: called at the end of every train batch. kwargs: Any function in `Callback` that you want to override by passing `function_name=function`. For example, `LambdaCallback(.., on_train_end=train_end_fn)`. The custom function needs to have same arguments as the ones defined in `Callback`. Example: ```python # Print the batch number at the beginning of every batch. batch_print_callback = LambdaCallback( on_train_batch_begin=lambda batch,logs: print(batch)) # Stream the epoch loss to a file in JSON format. The file content # is not well-formed JSON but rather has a JSON object per line. import json json_log = open('loss_log.json', mode='wt', buffering=1) json_logging_callback = LambdaCallback( on_epoch_end=lambda epoch, logs: json_log.write( json.dumps({'epoch': epoch, 'loss': logs['loss']}) + '\n'), on_train_end=lambda logs: json_log.close() ) # Terminate some processes after having finished model training. processes = ... cleanup_callback = LambdaCallback( on_train_end=lambda logs: [ p.terminate() for p in processes if p.is_alive()]) model.fit(..., callbacks=[batch_print_callback, json_logging_callback, cleanup_callback]) ``` """ def __init__( self, on_epoch_begin=None, on_epoch_end=None, on_train_begin=None, on_train_end=None, on_train_batch_begin=None, on_train_batch_end=None, **kwargs, ): super().__init__() self.__dict__.update(kwargs) if on_epoch_begin is not None: self.on_epoch_begin = on_epoch_begin if on_epoch_end is not None: self.on_epoch_end = on_epoch_end if on_train_begin is not None: self.on_train_begin = on_train_begin if on_train_end is not None: self.on_train_end = on_train_end if on_train_batch_begin is not None: self.on_train_batch_begin = on_train_batch_begin if on_train_batch_end is not None: self.on_train_batch_end = on_train_batch_end
import numpy as np import pytest from docarray import BaseDocument, DocumentArray from docarray.array.stacked.array_stacked import DocumentArrayStacked from docarray.documents import ImageDoc, TextDoc from docarray.typing import NdArray @pytest.mark.proto def test_simple_proto(): class CustomDoc(BaseDocument): text: str tensor: NdArray da = DocumentArray( [CustomDoc(text='hello', tensor=np.zeros((3, 224, 224))) for _ in range(10)] ) new_da = DocumentArray[CustomDoc].from_protobuf(da.to_protobuf()) for doc1, doc2 in zip(da, new_da): assert doc1.text == doc2.text assert (doc1.tensor == doc2.tensor).all() @pytest.mark.proto def test_nested_proto(): class CustomDocument(BaseDocument): text: TextDoc image: ImageDoc da = DocumentArray[CustomDocument]( [ CustomDocument( text=TextDoc(text='hello'), image=ImageDoc(tensor=np.zeros((3, 224, 224))), ) for _ in range(10) ] ) DocumentArray[CustomDocument].from_protobuf(da.to_protobuf()) @pytest.mark.proto def test_nested_proto_any_doc(): class CustomDocument(BaseDocument): text: TextDoc image: ImageDoc da = DocumentArray[CustomDocument]( [ CustomDocument( text=TextDoc(text='hello'), image=ImageDoc(tensor=np.zeros((3, 224, 224))), ) for _ in range(10) ] ) DocumentArray.from_protobuf(da.to_protobuf()) @pytest.mark.proto def test_stacked_proto(): class CustomDocument(BaseDocument): image: NdArray da = DocumentArray[CustomDocument]( [CustomDocument(image=np.zeros((3, 224, 224))) for _ in range(10)] ).stack() da2 = DocumentArrayStacked.from_protobuf(da.to_protobuf()) assert isinstance(da2, DocumentArrayStacked)
import numpy as np import pytest from docarray import BaseDocument, DocumentArray from docarray.array.stacked.array_stacked import DocumentArrayStacked from docarray.documents import Image, Text from docarray.typing import NdArray @pytest.mark.proto def test_simple_proto(): class CustomDoc(BaseDocument): text: str tensor: NdArray da = DocumentArray( [CustomDoc(text='hello', tensor=np.zeros((3, 224, 224))) for _ in range(10)] ) new_da = DocumentArray[CustomDoc].from_protobuf(da.to_protobuf()) for doc1, doc2 in zip(da, new_da): assert doc1.text == doc2.text assert (doc1.tensor == doc2.tensor).all() @pytest.mark.proto def test_nested_proto(): class CustomDocument(BaseDocument): text: Text image: Image da = DocumentArray[CustomDocument]( [ CustomDocument( text=Text(text='hello'), image=Image(tensor=np.zeros((3, 224, 224))) ) for _ in range(10) ] ) DocumentArray[CustomDocument].from_protobuf(da.to_protobuf()) @pytest.mark.proto def test_nested_proto_any_doc(): class CustomDocument(BaseDocument): text: Text image: Image da = DocumentArray[CustomDocument]( [ CustomDocument( text=Text(text='hello'), image=Image(tensor=np.zeros((3, 224, 224))) ) for _ in range(10) ] ) DocumentArray.from_protobuf(da.to_protobuf()) @pytest.mark.proto def test_stacked_proto(): class CustomDocument(BaseDocument): image: NdArray da = DocumentArray[CustomDocument]( [CustomDocument(image=np.zeros((3, 224, 224))) for _ in range(10)] ).stack() da2 = DocumentArrayStacked.from_protobuf(da.to_protobuf()) assert isinstance(da2, DocumentArrayStacked)
import json import os import pickle import numpy as np import xgboost as xgb kRows = 100 kCols = 10 def generate_data(): X = np.random.randn(kRows, kCols) y = np.random.randn(kRows) return X, y class TestPickling: def run_model_pickling(self, xgb_params) -> str: X, y = generate_data() dtrain = xgb.DMatrix(X, y) bst = xgb.train(xgb_params, dtrain) dump_0 = bst.get_dump(dump_format='json') assert dump_0 config_0 = bst.save_config() filename = 'model.pkl' with open(filename, 'wb') as fd: pickle.dump(bst, fd) with open(filename, 'rb') as fd: bst = pickle.load(fd) with open(filename, 'wb') as fd: pickle.dump(bst, fd) with open(filename, 'rb') as fd: bst = pickle.load(fd) assert bst.get_dump(dump_format='json') == dump_0 if os.path.exists(filename): os.remove(filename) config_1 = bst.save_config() assert config_0 == config_1 return json.loads(config_0) def test_model_pickling_json(self): def check(config): tree_param = config["learner"]["gradient_booster"]["tree_train_param"] subsample = tree_param["subsample"] assert float(subsample) == 0.5 params = {"nthread": 8, "tree_method": "hist", "subsample": 0.5} config = self.run_model_pickling(params) check(config) params = {"nthread": 8, "tree_method": "exact", "subsample": 0.5} config = self.run_model_pickling(params) check(config)
import json import os import pickle import tempfile import numpy as np import pytest import xgboost as xgb from xgboost import testing as tm kRows = 100 kCols = 10 def generate_data(): X = np.random.randn(kRows, kCols) y = np.random.randn(kRows) return X, y class TestPickling: def run_model_pickling(self, xgb_params) -> str: X, y = generate_data() dtrain = xgb.DMatrix(X, y) bst = xgb.train(xgb_params, dtrain) dump_0 = bst.get_dump(dump_format='json') assert dump_0 config_0 = bst.save_config() filename = 'model.pkl' with open(filename, 'wb') as fd: pickle.dump(bst, fd) with open(filename, 'rb') as fd: bst = pickle.load(fd) with open(filename, 'wb') as fd: pickle.dump(bst, fd) with open(filename, 'rb') as fd: bst = pickle.load(fd) assert bst.get_dump(dump_format='json') == dump_0 if os.path.exists(filename): os.remove(filename) config_1 = bst.save_config() assert config_0 == config_1 return json.loads(config_0) def test_model_pickling_json(self): def check(config): tree_param = config["learner"]["gradient_booster"]["tree_train_param"] subsample = tree_param["subsample"] assert float(subsample) == 0.5 params = {"nthread": 8, "tree_method": "hist", "subsample": 0.5} config = self.run_model_pickling(params) check(config) params = {"nthread": 8, "tree_method": "exact", "subsample": 0.5} config = self.run_model_pickling(params) check(config) @pytest.mark.skipif(**tm.no_sklearn()) def test_with_sklearn_obj_metric(self) -> None: from sklearn.metrics import mean_squared_error X, y = tm.datasets.make_regression() reg = xgb.XGBRegressor(objective=tm.ls_obj, eval_metric=mean_squared_error) reg.fit(X, y) pkl = pickle.dumps(reg) reg_1 = pickle.loads(pkl) assert callable(reg_1.objective) assert callable(reg_1.eval_metric) with tempfile.TemporaryDirectory() as tmpdir: path = os.path.join(tmpdir, "model.json") reg.save_model(path) reg_2 = xgb.XGBRegressor() reg_2.load_model(path) assert not callable(reg_2.objective) assert not callable(reg_2.eval_metric) assert reg_2.eval_metric is None
from keras.src import activations from keras.src import backend from keras.src.api_export import keras_export from keras.src.layers.layer import Layer def _large_negative_number(dtype): """Return a Large negative number based on dtype.""" if backend.standardize_dtype(dtype) == "float16": return -3e4 return -1e9 @keras_export("keras.layers.Softmax") class Softmax(Layer): """Softmax activation layer. Formula: ``` python exp_x = exp(x - max(x)) f(x) = exp_x / sum(exp_x) ``` Example: >>> softmax_layer = keras.layers.Softmax() >>> input = np.array([1.0, 2.0, 1.0]) >>> result = softmax_layer(input) >>> result [0.21194157, 0.5761169, 0.21194157] Args: axis: Integer, or list of Integers, axis along which the softmax normalization is applied. **kwargs: Base layer keyword arguments, such as `name` and `dtype`. Call arguments: inputs: The inputs (logits) to the softmax layer. mask: A boolean mask of the same shape as `inputs`. The mask specifies 1 to keep and 0 to mask. Defaults to `None`. Returns: Softmaxed output with the same shape as `inputs`. """ def __init__(self, axis=-1, **kwargs): super().__init__(**kwargs) self.axis = axis self.supports_masking = True self.built = True def call(self, inputs, mask=None): if mask is not None: adder = ( 1.0 - backend.cast(mask, inputs.dtype) ) * _large_negative_number(inputs.dtype) inputs += adder if isinstance(self.axis, (tuple, list)): if len(self.axis) > 1: return backend.numpy.exp( inputs - backend.math.logsumexp( inputs, axis=self.axis, keepdims=True ) ) else: return activations.softmax(inputs, axis=self.axis[0]) return activations.softmax(inputs, axis=self.axis) def get_config(self): config = super().get_config() config.update({"axis": self.axis}) return config def compute_output_shape(self, input_shape): return input_shape
from keras.src import activations from keras.src import backend from keras.src.api_export import keras_export from keras.src.layers.layer import Layer def _large_negative_number(dtype): """Return a Large negative number based on dtype.""" if backend.standardize_dtype(dtype) == "float16": return -3e4 return -1e9 @keras_export("keras.layers.Softmax") class Softmax(Layer): """Softmax activation layer. Formula: ``` python exp_x = exp(x - max(x)) f(x) = exp_x / sum(exp_x) ``` Example: >>> softmax_layer = keras.layers.activations.Softmax() >>> input = np.array([1.0, 2.0, 1.0]) >>> result = softmax_layer(input) >>> result [0.21194157, 0.5761169, 0.21194157] Args: axis: Integer, or list of Integers, axis along which the softmax normalization is applied. **kwargs: Base layer keyword arguments, such as `name` and `dtype`. Call arguments: inputs: The inputs (logits) to the softmax layer. mask: A boolean mask of the same shape as `inputs`. The mask specifies 1 to keep and 0 to mask. Defaults to `None`. Returns: Softmaxed output with the same shape as `inputs`. """ def __init__(self, axis=-1, **kwargs): super().__init__(**kwargs) self.axis = axis self.supports_masking = True self.built = True def call(self, inputs, mask=None): if mask is not None: adder = ( 1.0 - backend.cast(mask, inputs.dtype) ) * _large_negative_number(inputs.dtype) inputs += adder if isinstance(self.axis, (tuple, list)): if len(self.axis) > 1: return backend.numpy.exp( inputs - backend.math.logsumexp( inputs, axis=self.axis, keepdims=True ) ) else: return activations.softmax(inputs, axis=self.axis[0]) return activations.softmax(inputs, axis=self.axis) def get_config(self): config = super().get_config() config.update({"axis": self.axis}) return config def compute_output_shape(self, input_shape): return input_shape
"""Function calling agent.""" from typing import Any, List, Optional from llama_index.core.agent.runner.base import AgentRunner, AgentState from llama_index.core.agent.function_calling.step import ( FunctionCallingAgentWorker, DEFAULT_MAX_FUNCTION_CALLS, ) from llama_index.core.base.llms.types import ChatMessage from llama_index.core.callbacks import CallbackManager from llama_index.core.llms.function_calling import FunctionCallingLLM from llama_index.core.memory.types import BaseMemory from llama_index.core.objects.base import ObjectRetriever from llama_index.core.settings import Settings from llama_index.core.tools.types import BaseTool class FunctionCallingAgent(AgentRunner): """ Function calling agent. Light wrapper around AgentRunner. """ @classmethod def from_tools( cls, tools: Optional[List[BaseTool]] = None, tool_retriever: Optional[ObjectRetriever[BaseTool]] = None, llm: Optional[FunctionCallingLLM] = None, verbose: bool = False, max_function_calls: int = DEFAULT_MAX_FUNCTION_CALLS, callback_manager: Optional[CallbackManager] = None, system_prompt: Optional[str] = None, prefix_messages: Optional[List[ChatMessage]] = None, memory: Optional[BaseMemory] = None, chat_history: Optional[List[ChatMessage]] = None, state: Optional[AgentState] = None, allow_parallel_tool_calls: bool = True, **kwargs: Any, ) -> "FunctionCallingAgent": """Create a FunctionCallingAgent from a list of tools.""" tools = tools or [] llm = llm or Settings.llm # type: ignore assert isinstance(llm, FunctionCallingLLM), ( "llm must be an instance of FunctionCallingLLM" ) if callback_manager is not None: llm.callback_manager = callback_manager if system_prompt is not None: if prefix_messages is not None: raise ValueError( "Cannot specify both system_prompt and prefix_messages" ) prefix_messages = [ChatMessage(content=system_prompt, role="system")] prefix_messages = prefix_messages or [] agent_worker = FunctionCallingAgentWorker.from_tools( tools, tool_retriever=tool_retriever, llm=llm, verbose=verbose, max_function_calls=max_function_calls, callback_manager=callback_manager, prefix_messages=prefix_messages, allow_parallel_tool_calls=allow_parallel_tool_calls, ) return cls( agent_worker=agent_worker, memory=memory, chat_history=chat_history, state=state, llm=llm, callback_manager=callback_manager, verbose=verbose, **kwargs, )
"""Function calling agent.""" from typing import Any, List, Optional from llama_index.core.agent.runner.base import AgentRunner, AgentState from llama_index.core.agent.function_calling.step import ( FunctionCallingAgentWorker, DEFAULT_MAX_FUNCTION_CALLS, ) from llama_index.core.base.llms.types import ChatMessage from llama_index.core.callbacks import CallbackManager from llama_index.core.llms.function_calling import FunctionCallingLLM from llama_index.core.memory.types import BaseMemory from llama_index.core.objects.base import ObjectRetriever from llama_index.core.settings import Settings from llama_index.core.tools.types import BaseTool class FunctionCallingAgent(AgentRunner): """ Function calling agent. Light wrapper around AgentRunner. """ @classmethod def from_tools( cls, tools: Optional[List[BaseTool]] = None, tool_retriever: Optional[ObjectRetriever[BaseTool]] = None, llm: Optional[FunctionCallingLLM] = None, verbose: bool = False, max_function_calls: int = DEFAULT_MAX_FUNCTION_CALLS, callback_manager: Optional[CallbackManager] = None, system_prompt: Optional[str] = None, prefix_messages: Optional[List[ChatMessage]] = None, memory: Optional[BaseMemory] = None, chat_history: Optional[List[ChatMessage]] = None, state: Optional[AgentState] = None, allow_parallel_tool_calls: bool = True, **kwargs: Any, ) -> "FunctionCallingAgent": """Create a FunctionCallingAgent from a list of tools.""" tools = tools or [] llm = llm or Settings.llm # type: ignore assert isinstance( llm, FunctionCallingLLM ), "llm must be an instance of FunctionCallingLLM" if callback_manager is not None: llm.callback_manager = callback_manager if system_prompt is not None: if prefix_messages is not None: raise ValueError( "Cannot specify both system_prompt and prefix_messages" ) prefix_messages = [ChatMessage(content=system_prompt, role="system")] prefix_messages = prefix_messages or [] agent_worker = FunctionCallingAgentWorker.from_tools( tools, tool_retriever=tool_retriever, llm=llm, verbose=verbose, max_function_calls=max_function_calls, callback_manager=callback_manager, prefix_messages=prefix_messages, allow_parallel_tool_calls=allow_parallel_tool_calls, ) return cls( agent_worker=agent_worker, memory=memory, chat_history=chat_history, state=state, llm=llm, callback_manager=callback_manager, verbose=verbose, **kwargs, )
import copy import warnings import torch from keras.src import tree from keras.src.export.export_utils import convert_spec_to_tensor from keras.src.utils.module_utils import tensorflow as tf from keras.src.utils.module_utils import torch_xla class TorchExportArchive: def _track_layer(self, layer): raise NotImplementedError( "`track` is not supported for `Layer`s and `Model`s in the torch " "backend. Use `track_and_add_endpoint` instead." ) def add_endpoint(self, name, fn, input_signature, **kwargs): raise NotImplementedError( "`add_endpoint` is not supported for `Layer`s and `Model`s in the " "torch backend. Use `track_and_add_endpoint` instead." ) def track_and_add_endpoint(self, name, resource, input_signature, **kwargs): # Disable false alarms related to lifting parameters. warnings.filterwarnings("ignore", message=".*created when tracing.*") warnings.filterwarnings( "ignore", message=".*Unable to find the path of the module.*" ) if not isinstance(resource, torch.nn.Module): raise TypeError( "`resource` must be an instance of `torch.nn.Module`. " f"Received: resource={resource} (of type {type(resource)})" ) sample_inputs = tree.map_structure( lambda x: convert_spec_to_tensor(x, replace_none_number=1), input_signature, ) sample_inputs = tuple(sample_inputs) # Ref: torch_xla.tf_saved_model_integration # TODO: Utilize `dynamic_shapes` exported = torch.export.export( resource, sample_inputs, dynamic_shapes=None, strict=False ) options = torch_xla.stablehlo.StableHLOExportOptions( override_tracing_arguments=sample_inputs ) stablehlo_model = torch_xla.stablehlo.exported_program_to_stablehlo( exported, options ) state_dict_keys = list(stablehlo_model._bundle.state_dict.keys()) # Remove unused variables. for k in state_dict_keys: if "lifted" not in k: stablehlo_model._bundle.state_dict.pop(k) bundle = copy.deepcopy(stablehlo_model._bundle) bundle.state_dict = { k: tf.Variable(v, trainable=False, name=k) for k, v in bundle.state_dict.items() } bundle.additional_constants = [ tf.Variable(v, trainable=False) for v in bundle.additional_constants ] # Track variables in `bundle` for `write_out`. self._tf_trackable.variables += ( list(bundle.state_dict.values()) + bundle.additional_constants ) # Ref: torch_xla.tf_saved_model_integration.save_stablehlo_graph_as_tf def make_tf_function(func, bundle): from tensorflow.compiler.tf2xla.python import xla as tfxla def _get_shape_with_dynamic(signature): shape = copy.copy(signature.shape) for i in signature.dynamic_dims: shape[i] = None return shape def _extract_call_parameters(args, meta, bundle): call_args = [] if meta.input_pytree_spec is not None: args = tree.flatten(args) for loc in meta.input_locations: if loc.type_ == torch_xla.stablehlo.VariableType.PARAMETER: call_args.append(bundle.state_dict[loc.name]) elif loc.type_ == torch_xla.stablehlo.VariableType.CONSTANT: call_args.append( bundle.additional_constants[loc.position] ) else: call_args.append(args[loc.position]) return call_args def inner(*args): Touts = [sig.dtype for sig in func.meta.output_signature] Souts = [ _get_shape_with_dynamic(sig) for sig in func.meta.output_signature ] call_args = _extract_call_parameters(args, func.meta, bundle) results = tfxla.call_module( tuple(call_args), version=5, Tout=Touts, # dtype information Sout=Souts, # Shape information function_list=[], module=func.bytecode, ) if len(Souts) == 1: results = results[0] return results return inner decorated_fn = tf.function( make_tf_function( stablehlo_model._bundle.stablehlo_funcs[0], bundle ), input_signature=input_signature, ) return decorated_fn
import copy import warnings import torch from keras.src import tree from keras.src.export.export_utils import convert_spec_to_tensor from keras.src.utils.module_utils import tensorflow as tf from keras.src.utils.module_utils import torch_xla class TorchExportArchive: def track(self, resource): raise NotImplementedError( "`track` is not implemented in the torch backend. Use" "`track_and_add_endpoint` instead." ) def add_endpoint(self, name, fn, input_signature, **kwargs): raise NotImplementedError( "`add_endpoint` is not implemented in the torch backend. Use" "`track_and_add_endpoint` instead." ) def track_and_add_endpoint(self, name, resource, input_signature, **kwargs): # Disable false alarms related to lifting parameters. warnings.filterwarnings("ignore", message=".*created when tracing.*") warnings.filterwarnings( "ignore", message=".*Unable to find the path of the module.*" ) if not isinstance(resource, torch.nn.Module): raise TypeError( "`resource` must be an instance of `torch.nn.Module`. " f"Received: resource={resource} (of type {type(resource)})" ) sample_inputs = tree.map_structure( lambda x: convert_spec_to_tensor(x, replace_none_number=1), input_signature, ) sample_inputs = tuple(sample_inputs) # Ref: torch_xla.tf_saved_model_integration # TODO: Utilize `dynamic_shapes` exported = torch.export.export( resource, sample_inputs, dynamic_shapes=None, strict=False ) options = torch_xla.stablehlo.StableHLOExportOptions( override_tracing_arguments=sample_inputs ) stablehlo_model = torch_xla.stablehlo.exported_program_to_stablehlo( exported, options ) state_dict_keys = list(stablehlo_model._bundle.state_dict.keys()) # Remove unused variables. for k in state_dict_keys: if "lifted" not in k: stablehlo_model._bundle.state_dict.pop(k) bundle = copy.deepcopy(stablehlo_model._bundle) bundle.state_dict = { k: tf.Variable(v, trainable=False, name=k) for k, v in bundle.state_dict.items() } bundle.additional_constants = [ tf.Variable(v, trainable=False) for v in bundle.additional_constants ] # Track variables in `bundle` for `write_out`. self._tf_trackable.variables += ( list(bundle.state_dict.values()) + bundle.additional_constants ) # Ref: torch_xla.tf_saved_model_integration.save_stablehlo_graph_as_tf def make_tf_function(func, bundle): from tensorflow.compiler.tf2xla.python import xla as tfxla def _get_shape_with_dynamic(signature): shape = copy.copy(signature.shape) for i in signature.dynamic_dims: shape[i] = None return shape def _extract_call_parameters(args, meta, bundle): call_args = [] if meta.input_pytree_spec is not None: args = tree.flatten(args) for loc in meta.input_locations: if loc.type_ == torch_xla.stablehlo.VariableType.PARAMETER: call_args.append(bundle.state_dict[loc.name]) elif loc.type_ == torch_xla.stablehlo.VariableType.CONSTANT: call_args.append( bundle.additional_constants[loc.position] ) else: call_args.append(args[loc.position]) return call_args def inner(*args): Touts = [sig.dtype for sig in func.meta.output_signature] Souts = [ _get_shape_with_dynamic(sig) for sig in func.meta.output_signature ] call_args = _extract_call_parameters(args, func.meta, bundle) results = tfxla.call_module( tuple(call_args), version=5, Tout=Touts, # dtype information Sout=Souts, # Shape information function_list=[], module=func.bytecode, ) if len(Souts) == 1: results = results[0] return results return inner decorated_fn = tf.function( make_tf_function( stablehlo_model._bundle.stablehlo_funcs[0], bundle ), input_signature=input_signature, ) return decorated_fn
_base_ = [ '../_base_/models/retinanet_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/default_runtime.py' ] cudnn_benchmark = True # model settings norm_cfg = dict(type='BN', requires_grad=True) model = dict( type='RetinaNet', backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=norm_cfg, norm_eval=False, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), neck=dict(type='NASFPN', stack_times=7, norm_cfg=norm_cfg), bbox_head=dict(type='RetinaSepBNHead', num_ins=5, norm_cfg=norm_cfg), # training and testing settings train_cfg=dict(assigner=dict(neg_iou_thr=0.5))) # dataset settings img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='Resize', img_scale=(640, 640), ratio_range=(0.8, 1.2), keep_ratio=True), dict(type='RandomCrop', crop_size=(640, 640)), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=(640, 640)), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(640, 640), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=128), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=8, workers_per_gpu=4, train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) # optimizer optimizer = dict( type='SGD', lr=0.08, momentum=0.9, weight_decay=0.0001, paramwise_cfg=dict(norm_decay_mult=0, bypass_duplicate=True)) optimizer_config = dict(grad_clip=None) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=1000, warmup_ratio=0.1, step=[30, 40]) # runtime settings runner = dict(type='EpochBasedRunner', max_epochs=50) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (8 samples per GPU) auto_scale_lr = dict(base_batch_size=64)
_base_ = [ '../_base_/models/retinanet_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/default_runtime.py' ] cudnn_benchmark = True # model settings norm_cfg = dict(type='BN', requires_grad=True) model = dict( type='RetinaNet', backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=norm_cfg, norm_eval=False, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), neck=dict(type='NASFPN', stack_times=7, norm_cfg=norm_cfg), bbox_head=dict(type='RetinaSepBNHead', num_ins=5, norm_cfg=norm_cfg), # training and testing settings train_cfg=dict(assigner=dict(neg_iou_thr=0.5))) # dataset settings img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='Resize', img_scale=(640, 640), ratio_range=(0.8, 1.2), keep_ratio=True), dict(type='RandomCrop', crop_size=(640, 640)), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=(640, 640)), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(640, 640), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=128), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=8, workers_per_gpu=4, train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) # optimizer optimizer = dict( type='SGD', lr=0.08, momentum=0.9, weight_decay=0.0001, paramwise_cfg=dict(norm_decay_mult=0, bypass_duplicate=True)) optimizer_config = dict(grad_clip=None) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=1000, warmup_ratio=0.1, step=[30, 40]) # runtime settings runner = dict(type='EpochBasedRunner', max_epochs=50)
from typing import TYPE_CHECKING from ..utils import DIFFUSERS_SLOW_IMPORT, _LazyModule, deprecate from ..utils.import_utils import is_peft_available, is_torch_available, is_transformers_available def text_encoder_lora_state_dict(text_encoder): deprecate( "text_encoder_load_state_dict in `models`", "0.27.0", "`text_encoder_lora_state_dict` is deprecated and will be removed in 0.27.0. Make sure to retrieve the weights using `get_peft_model`. See https://huggingface.co/docs/peft/v0.6.2/en/quicktour#peftmodel for more information.", ) state_dict = {} for name, module in text_encoder_attn_modules(text_encoder): for k, v in module.q_proj.lora_linear_layer.state_dict().items(): state_dict[f"{name}.q_proj.lora_linear_layer.{k}"] = v for k, v in module.k_proj.lora_linear_layer.state_dict().items(): state_dict[f"{name}.k_proj.lora_linear_layer.{k}"] = v for k, v in module.v_proj.lora_linear_layer.state_dict().items(): state_dict[f"{name}.v_proj.lora_linear_layer.{k}"] = v for k, v in module.out_proj.lora_linear_layer.state_dict().items(): state_dict[f"{name}.out_proj.lora_linear_layer.{k}"] = v return state_dict if is_transformers_available(): def text_encoder_attn_modules(text_encoder): deprecate( "text_encoder_attn_modules in `models`", "0.27.0", "`text_encoder_lora_state_dict` is deprecated and will be removed in 0.27.0. Make sure to retrieve the weights using `get_peft_model`. See https://huggingface.co/docs/peft/v0.6.2/en/quicktour#peftmodel for more information.", ) from transformers import CLIPTextModel, CLIPTextModelWithProjection attn_modules = [] if isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection)): for i, layer in enumerate(text_encoder.text_model.encoder.layers): name = f"text_model.encoder.layers.{i}.self_attn" mod = layer.self_attn attn_modules.append((name, mod)) else: raise ValueError(f"do not know how to get attention modules for: {text_encoder.__class__.__name__}") return attn_modules _import_structure = {} if is_torch_available(): _import_structure["single_file_model"] = ["FromOriginalModelMixin"] _import_structure["unet"] = ["UNet2DConditionLoadersMixin"] _import_structure["utils"] = ["AttnProcsLayers"] if is_transformers_available(): _import_structure["single_file"] = ["FromSingleFileMixin"] _import_structure["lora_pipeline"] = [ "AmusedLoraLoaderMixin", "StableDiffusionLoraLoaderMixin", "SD3LoraLoaderMixin", "StableDiffusionXLLoraLoaderMixin", "LTXVideoLoraLoaderMixin", "LoraLoaderMixin", "FluxLoraLoaderMixin", "CogVideoXLoraLoaderMixin", "Mochi1LoraLoaderMixin", ] _import_structure["textual_inversion"] = ["TextualInversionLoaderMixin"] _import_structure["ip_adapter"] = ["IPAdapterMixin"] _import_structure["peft"] = ["PeftAdapterMixin"] if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: if is_torch_available(): from .single_file_model import FromOriginalModelMixin from .unet import UNet2DConditionLoadersMixin from .utils import AttnProcsLayers if is_transformers_available(): from .ip_adapter import IPAdapterMixin from .lora_pipeline import ( AmusedLoraLoaderMixin, CogVideoXLoraLoaderMixin, FluxLoraLoaderMixin, LoraLoaderMixin, LTXVideoLoraLoaderMixin, Mochi1LoraLoaderMixin, SD3LoraLoaderMixin, StableDiffusionLoraLoaderMixin, StableDiffusionXLLoraLoaderMixin, ) from .single_file import FromSingleFileMixin from .textual_inversion import TextualInversionLoaderMixin from .peft import PeftAdapterMixin else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
from typing import TYPE_CHECKING from ..utils import DIFFUSERS_SLOW_IMPORT, _LazyModule, deprecate from ..utils.import_utils import is_peft_available, is_torch_available, is_transformers_available def text_encoder_lora_state_dict(text_encoder): deprecate( "text_encoder_load_state_dict in `models`", "0.27.0", "`text_encoder_lora_state_dict` is deprecated and will be removed in 0.27.0. Make sure to retrieve the weights using `get_peft_model`. See https://huggingface.co/docs/peft/v0.6.2/en/quicktour#peftmodel for more information.", ) state_dict = {} for name, module in text_encoder_attn_modules(text_encoder): for k, v in module.q_proj.lora_linear_layer.state_dict().items(): state_dict[f"{name}.q_proj.lora_linear_layer.{k}"] = v for k, v in module.k_proj.lora_linear_layer.state_dict().items(): state_dict[f"{name}.k_proj.lora_linear_layer.{k}"] = v for k, v in module.v_proj.lora_linear_layer.state_dict().items(): state_dict[f"{name}.v_proj.lora_linear_layer.{k}"] = v for k, v in module.out_proj.lora_linear_layer.state_dict().items(): state_dict[f"{name}.out_proj.lora_linear_layer.{k}"] = v return state_dict if is_transformers_available(): def text_encoder_attn_modules(text_encoder): deprecate( "text_encoder_attn_modules in `models`", "0.27.0", "`text_encoder_lora_state_dict` is deprecated and will be removed in 0.27.0. Make sure to retrieve the weights using `get_peft_model`. See https://huggingface.co/docs/peft/v0.6.2/en/quicktour#peftmodel for more information.", ) from transformers import CLIPTextModel, CLIPTextModelWithProjection attn_modules = [] if isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection)): for i, layer in enumerate(text_encoder.text_model.encoder.layers): name = f"text_model.encoder.layers.{i}.self_attn" mod = layer.self_attn attn_modules.append((name, mod)) else: raise ValueError(f"do not know how to get attention modules for: {text_encoder.__class__.__name__}") return attn_modules _import_structure = {} if is_torch_available(): _import_structure["single_file_model"] = ["FromOriginalModelMixin"] _import_structure["unet"] = ["UNet2DConditionLoadersMixin"] _import_structure["utils"] = ["AttnProcsLayers"] if is_transformers_available(): _import_structure["single_file"] = ["FromSingleFileMixin"] _import_structure["lora_pipeline"] = [ "AmusedLoraLoaderMixin", "StableDiffusionLoraLoaderMixin", "SD3LoraLoaderMixin", "StableDiffusionXLLoraLoaderMixin", "LoraLoaderMixin", "FluxLoraLoaderMixin", "CogVideoXLoraLoaderMixin", "Mochi1LoraLoaderMixin", ] _import_structure["textual_inversion"] = ["TextualInversionLoaderMixin"] _import_structure["ip_adapter"] = ["IPAdapterMixin"] _import_structure["peft"] = ["PeftAdapterMixin"] if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: if is_torch_available(): from .single_file_model import FromOriginalModelMixin from .unet import UNet2DConditionLoadersMixin from .utils import AttnProcsLayers if is_transformers_available(): from .ip_adapter import IPAdapterMixin from .lora_pipeline import ( AmusedLoraLoaderMixin, CogVideoXLoraLoaderMixin, FluxLoraLoaderMixin, LoraLoaderMixin, Mochi1LoraLoaderMixin, SD3LoraLoaderMixin, StableDiffusionLoraLoaderMixin, StableDiffusionXLLoraLoaderMixin, ) from .single_file import FromSingleFileMixin from .textual_inversion import TextualInversionLoaderMixin from .peft import PeftAdapterMixin else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
""" This is a simple application for sparse encoder: Computing embeddings. we have multiple sentences and we want to compute their embeddings. The embeddings are sparse, meaning that most of the values are zero. The embeddings are stored in a sparse matrix format, which is more efficient for storage and computation. we can also visualize the top tokens for each text.""" from sentence_transformers import SparseEncoder # Initialize the SPLADE model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # Embed a list of sentences sentences = [ "This framework generates embeddings for each input sentence", "Sentences are passed as a list of string.", "The quick brown fox jumps over the lazy dog.", ] # Generate embeddings embeddings = model.encode(sentences) # Print embedding sim and sparsity print(f"Embedding dim: {model.get_sentence_embedding_dimension()}") print(f"Embedding sparsity: {model.get_sparsity_stats(embeddings)}") """ Embedding dim: 30522 Embedding sparsity: {'num_rows': 3, 'num_cols': 30522, 'row_non_zero_mean': 56.66666793823242, 'row_sparsity_mean': 0.9981433749198914} """ # Visualize top tokens for each text top_k = 10 token_weights = model.decode(embeddings, top_k=top_k) print(f"\nTop tokens {top_k} for each text:") # The result is a list of sentence embeddings as numpy arrays for i, sentence in enumerate(sentences): token_scores = ", ".join([f'("{token.strip()}", {value:.2f})' for token, value in token_weights[i]]) print(f"{i}: {sentence} -> Top tokens: {token_scores}") """ Top tokens 10 for each text: 0: This framework generates embeddings for each input sentence -> Top tokens: ("framework", 2.19), ("##bed", 2.12), ("input", 1.99), ("each", 1.60), ("em", 1.58), ("sentence", 1.49), ("generate", 1.42), ("##ding", 1.33), ("sentences", 1.10), ("create", 0.93) 1: Sentences are passed as a list of string. -> Top tokens: ("string", 2.72), ("pass", 2.24), ("sentences", 2.15), ("passed", 2.07), ("sentence", 1.90), ("strings", 1.86), ("list", 1.84), ("lists", 1.49), ("as", 1.18), ("passing", 0.73) 2: The quick brown fox jumps over the lazy dog. -> Top tokens: ("lazy", 2.18), ("fox", 1.67), ("brown", 1.56), ("over", 1.52), ("dog", 1.50), ("quick", 1.49), ("jump", 1.39), ("dogs", 1.25), ("foxes", 0.99), ("jumping", 0.84) """
""" This is a simple application for sparse encoder: Computing embeddings. we have multiple sentences and we want to compute their embeddings. The embeddings are sparse, meaning that most of the values are zero. The embeddings are stored in a sparse matrix format, which is more efficient for storage and computation. we can also visualize the top tokens for each text.""" from sentence_transformers import SparseEncoder # Initialize the SPLADE model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # Embed a list of sentences sentences = [ "This framework generates embeddings for each input sentence", "Sentences are passed as a list of string.", "The quick brown fox jumps over the lazy dog.", ] # Generate embeddings embeddings = model.encode(sentences) # Print embedding sim and sparsity print(f"Embedding dim: {model.get_sentence_embedding_dimension()}") print(f"Embedding sparsity: {model.get_sparsity_stats(embeddings)}") """ Embedding dim: 30522 Embedding sparsity: {'num_rows': 3, 'num_cols': 30522, 'row_non_zero_mean': 56.66666793823242, 'row_sparsity_mean': 0.9981433749198914} """ # Visualize top tokens for each text top_k = 10 token_weights = model.decode(embeddings, top_k=top_k)["decoded_1"] print(f"\nTop tokens {top_k} for each text:") # The result is a list of sentence embeddings as numpy arrays for i, sentence in enumerate(sentences): token_scores = ", ".join([f'("{token.strip()}", {value:.2f})' for token, value in token_weights[i]]) print(f"{i}: {sentence} -> Top tokens: {token_scores}") """ Top tokens 10 for each text: 0: This framework generates embeddings for each input sentence -> Top tokens: ("framework", 2.19), ("##bed", 2.12), ("input", 1.99), ("each", 1.60), ("em", 1.58), ("sentence", 1.49), ("generate", 1.42), ("##ding", 1.33), ("sentences", 1.10), ("create", 0.93) 1: Sentences are passed as a list of string. -> Top tokens: ("string", 2.72), ("pass", 2.24), ("sentences", 2.15), ("passed", 2.07), ("sentence", 1.90), ("strings", 1.86), ("list", 1.84), ("lists", 1.49), ("as", 1.18), ("passing", 0.73) 2: The quick brown fox jumps over the lazy dog. -> Top tokens: ("lazy", 2.18), ("fox", 1.67), ("brown", 1.56), ("over", 1.52), ("dog", 1.50), ("quick", 1.49), ("jump", 1.39), ("dogs", 1.25), ("foxes", 0.99), ("jumping", 0.84) """
from typing import Dict, Optional, Tuple import numpy as np import torch import torchvision.transforms as T from jina import DocumentArray, Executor, requests from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform class TimmImageEncoder(Executor): """ TimmImageEncoder encodes Document blobs of type `ndarray` (`float32`) and shape `H x W x 3` into `d`-dimensional embedding. The input image in Document should be in RGB format. If `use_default_preprocessing=False`, the expected input shape is `3 x H x W` with `float32` dtype. Internally, :class:`TimmImageEncoder` wraps the pre-trained models from [Timm library](https://rwightman.github.io/pytorch-image-models/). """ def __init__( self, model_name: str = 'resnet18', device: str = 'cpu', traversal_paths: Tuple[str] = ('r',), batch_size: Optional[int] = 32, use_default_preprocessing: bool = True, *args, **kwargs ): """ :param model_name: the name of the model. Models listed on: https://rwightman.github.io/pytorch-image-models/models/ :param device: Which device the model runs on. For example 'cpu' or 'cuda'. :param traversal_paths: Defines traversal path through the docs. It can be overridden via request params. :param batch_size: Defines the batch size for inference on the loaded Timm model. It can be overridden via request params. :param use_default_preprocessing: If the input should be preprocessed with default configuration. If `False`, inputs are expected to be pre-processed. :param args: Additional positional arguments. :param kwargs: Additional keyword arguments. """ super().__init__(*args, **kwargs) self.device = device self.batch_size = batch_size self.use_default_preprocessing = use_default_preprocessing self.traversal_paths = traversal_paths self._model = create_model(model_name, pretrained=True, num_classes=0) self._model = self._model.to(device).eval() config = resolve_data_config({}, model=self._model) self._preprocess = create_transform(**config) self._preprocess.transforms.insert(0, T.ToPILImage()) @requests def encode(self, docs: Optional[DocumentArray], parameters: Dict, **kwargs): """ Encode image data from the `blob` attribute of Documents into a ndarray of `D` as dimension, and fill the embedding of each Document. :param docs: DocumentArray containing images :param parameters: dictionary with additional request parameters. Possible values are `traversal_paths` and the `batch_size`. For example, `parameters={'traversal_paths': ['r'], 'batch_size': 10}`. :param kwargs: Additional keyword arguments. """ if docs is None: return traversal_paths = parameters.get('traversal_paths', self.traversal_paths) batch_size = parameters.get('batch_size', self.batch_size) docs_batch_generator = docs.batch( traversal_paths=traversal_paths, batch_size=batch_size, require_attr='blob', ) for document_batch in docs_batch_generator: blob_batch = [d.blob for d in document_batch] if self.use_default_preprocessing: images = np.stack([self._preprocess(img) for img in blob_batch]) else: images = np.stack(blob_batch) with torch.inference_mode(): tensor = torch.from_numpy(images).to(self.device) features = self._model(tensor) features = features.cpu().numpy() for doc, embed in zip(document_batch, features): doc.embedding = embed
from typing import Dict, Optional, Tuple import numpy as np import torch import torchvision.transforms as T from jina import DocumentArray, Executor, requests from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform class TimmImageEncoder(Executor): """ TimmImageEncoder encodes Document blobs of type `ndarray` (`float32`) and shape `H x W x 3` into `d`-dimensional embedding. The input image in Document should be in RGB format. If `use_default_preprocessing=False`, the expected input shape is `3 x H x W` with `float32` dtype. Internally, :class:`TimmImageEncoder` wraps the pre-trained models from [Timm library](https://rwightman.github.io/pytorch-image-models/). """ def __init__( self, model_name: str = 'resnet18', device: str = 'cpu', traversal_path: Tuple[str] = ('r',), batch_size: Optional[int] = 32, use_default_preprocessing: bool = True, *args, **kwargs ): """ :param model_name: the name of the model. Models listed on: https://rwightman.github.io/pytorch-image-models/models/ :param device: Which device the model runs on. For example 'cpu' or 'cuda'. :param traversal_paths: Defines traversal path through the docs. It can be overridden via request params. :param batch_size: Defines the batch size for inference on the loaded Timm model. It can be overridden via request params. :param use_default_preprocessing: If the input should be preprocessed with default configuration. If `False`, inputs are expected to be pre-processed. :param args: Additional positional arguments. :param kwargs: Additional keyword arguments. """ super().__init__(*args, **kwargs) self.device = device self.batch_size = batch_size self.use_default_preprocessing = use_default_preprocessing self.traversal_path = traversal_path self._model = create_model(model_name, pretrained=True, num_classes=0) self._model = self._model.to(device) self._model.eval() config = resolve_data_config({}, model=self._model) self._preprocess = create_transform(**config) self._preprocess.transforms.insert(0, T.ToPILImage()) @requests def encode(self, docs: Optional[DocumentArray], parameters: Dict, **kwargs): """ Encode image data from the `blob` attribute of Documents into a ndarray of `D` as dimension, and fill the embedding of each Document. :param docs: DocumentArray containing images :param parameters: dictionary with additional request parameters. Possible values are `traversal_paths` and the `batch_size`. For example, `parameters={'traversal_paths': ['r'], 'batch_size': 10}`. :param kwargs: Additional keyword arguments. """ if docs is None: return traversal_paths = parameters.get('traversal_paths', self.traversal_path) batch_size = parameters.get('batch_size', self.batch_size) docs_batch_generator = docs.batch( traversal_paths=traversal_paths, batch_size=batch_size, require_attr='blob', ) for document_batch in docs_batch_generator: blob_batch = [d.blob for d in document_batch] if self.use_default_preprocessing: images = np.stack([self._preprocess(img) for img in blob_batch]) else: images = np.stack(blob_batch) with torch.inference_mode(): tensor = torch.from_numpy(images).to(self.device) features = self._model(tensor) features = features.cpu().numpy() for doc, embed in zip(document_batch, features): doc.embedding = embed
from typing import Iterable, Type from docarray.document import AnyDocument, BaseDocument, BaseNode from docarray.document.abstract_document import AbstractDocument from .abstract_array import AbstractDocumentArray from .mixins import ProtoArrayMixin class DocumentArray( list, ProtoArrayMixin, AbstractDocumentArray, BaseNode, ): """ a _GenericDocumentArray is a list-like container of Document of the same schema :param docs: iterable of Document """ document_type: Type[BaseDocument] = AnyDocument def __init__(self, docs: Iterable[AbstractDocument]): super().__init__(doc_ for doc_ in docs) def __class_getitem__(cls, item: Type[BaseDocument]): if not issubclass(item, BaseDocument): raise ValueError( f'DocumentArray[item] item should be a Document not a {item} ' ) class _DocumenArrayTyped(DocumentArray): document_type = item _DocumenArrayTyped.__name__ = f'DocumentArray{item.__name__}' return _DocumenArrayTyped
from typing import Iterable, Type from docarray.document import AnyDocument, BaseDocument from docarray.document.abstract_document import AbstractDocument from docarray.typing import BaseNode from .abstract_array import AbstractDocumentArray from .mixins import ProtoArrayMixin class DocumentArray( list, ProtoArrayMixin, AbstractDocumentArray, BaseNode, ): """ a _GenericDocumentArray is a list-like container of Document of the same schema :param docs: iterable of Document """ document_type: Type[BaseDocument] = AnyDocument def __init__(self, docs: Iterable[AbstractDocument]): super().__init__(doc_ for doc_ in docs) def __class_getitem__(cls, item: Type[BaseDocument]): if not issubclass(item, BaseDocument): raise ValueError( f'DocumentArray[item] item should be a Document not a {item} ' ) class _DocumenArrayTyped(DocumentArray): document_type = item _DocumenArrayTyped.__name__ = f'DocumentArray{item.__name__}' return _DocumenArrayTyped
from typing import TYPE_CHECKING from ..utils import DIFFUSERS_SLOW_IMPORT, _LazyModule, deprecate from ..utils.import_utils import is_peft_available, is_torch_available, is_transformers_available def text_encoder_lora_state_dict(text_encoder): deprecate( "text_encoder_load_state_dict in `models`", "0.27.0", "`text_encoder_lora_state_dict` is deprecated and will be removed in 0.27.0. Make sure to retrieve the weights using `get_peft_model`. See https://huggingface.co/docs/peft/v0.6.2/en/quicktour#peftmodel for more information.", ) state_dict = {} for name, module in text_encoder_attn_modules(text_encoder): for k, v in module.q_proj.lora_linear_layer.state_dict().items(): state_dict[f"{name}.q_proj.lora_linear_layer.{k}"] = v for k, v in module.k_proj.lora_linear_layer.state_dict().items(): state_dict[f"{name}.k_proj.lora_linear_layer.{k}"] = v for k, v in module.v_proj.lora_linear_layer.state_dict().items(): state_dict[f"{name}.v_proj.lora_linear_layer.{k}"] = v for k, v in module.out_proj.lora_linear_layer.state_dict().items(): state_dict[f"{name}.out_proj.lora_linear_layer.{k}"] = v return state_dict if is_transformers_available(): def text_encoder_attn_modules(text_encoder): deprecate( "text_encoder_attn_modules in `models`", "0.27.0", "`text_encoder_lora_state_dict` is deprecated and will be removed in 0.27.0. Make sure to retrieve the weights using `get_peft_model`. See https://huggingface.co/docs/peft/v0.6.2/en/quicktour#peftmodel for more information.", ) from transformers import CLIPTextModel, CLIPTextModelWithProjection attn_modules = [] if isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection)): for i, layer in enumerate(text_encoder.text_model.encoder.layers): name = f"text_model.encoder.layers.{i}.self_attn" mod = layer.self_attn attn_modules.append((name, mod)) else: raise ValueError(f"do not know how to get attention modules for: {text_encoder.__class__.__name__}") return attn_modules _import_structure = {} if is_torch_available(): _import_structure["single_file_model"] = ["FromOriginalModelMixin"] _import_structure["unet"] = ["UNet2DConditionLoadersMixin"] _import_structure["utils"] = ["AttnProcsLayers"] if is_transformers_available(): _import_structure["single_file"] = ["FromSingleFileMixin"] _import_structure["lora_pipeline"] = [ "AmusedLoraLoaderMixin", "StableDiffusionLoraLoaderMixin", "SD3LoraLoaderMixin", "StableDiffusionXLLoraLoaderMixin", "LTXVideoLoraLoaderMixin", "LoraLoaderMixin", "FluxLoraLoaderMixin", "CogVideoXLoraLoaderMixin", "Mochi1LoraLoaderMixin", "SanaLoraLoaderMixin", ] _import_structure["textual_inversion"] = ["TextualInversionLoaderMixin"] _import_structure["ip_adapter"] = ["IPAdapterMixin"] _import_structure["peft"] = ["PeftAdapterMixin"] if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: if is_torch_available(): from .single_file_model import FromOriginalModelMixin from .unet import UNet2DConditionLoadersMixin from .utils import AttnProcsLayers if is_transformers_available(): from .ip_adapter import IPAdapterMixin from .lora_pipeline import ( AmusedLoraLoaderMixin, CogVideoXLoraLoaderMixin, FluxLoraLoaderMixin, LoraLoaderMixin, LTXVideoLoraLoaderMixin, Mochi1LoraLoaderMixin, SanaLoraLoaderMixin, SD3LoraLoaderMixin, StableDiffusionLoraLoaderMixin, StableDiffusionXLLoraLoaderMixin, ) from .single_file import FromSingleFileMixin from .textual_inversion import TextualInversionLoaderMixin from .peft import PeftAdapterMixin else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
from typing import TYPE_CHECKING from ..utils import DIFFUSERS_SLOW_IMPORT, _LazyModule, deprecate from ..utils.import_utils import is_peft_available, is_torch_available, is_transformers_available def text_encoder_lora_state_dict(text_encoder): deprecate( "text_encoder_load_state_dict in `models`", "0.27.0", "`text_encoder_lora_state_dict` is deprecated and will be removed in 0.27.0. Make sure to retrieve the weights using `get_peft_model`. See https://huggingface.co/docs/peft/v0.6.2/en/quicktour#peftmodel for more information.", ) state_dict = {} for name, module in text_encoder_attn_modules(text_encoder): for k, v in module.q_proj.lora_linear_layer.state_dict().items(): state_dict[f"{name}.q_proj.lora_linear_layer.{k}"] = v for k, v in module.k_proj.lora_linear_layer.state_dict().items(): state_dict[f"{name}.k_proj.lora_linear_layer.{k}"] = v for k, v in module.v_proj.lora_linear_layer.state_dict().items(): state_dict[f"{name}.v_proj.lora_linear_layer.{k}"] = v for k, v in module.out_proj.lora_linear_layer.state_dict().items(): state_dict[f"{name}.out_proj.lora_linear_layer.{k}"] = v return state_dict if is_transformers_available(): def text_encoder_attn_modules(text_encoder): deprecate( "text_encoder_attn_modules in `models`", "0.27.0", "`text_encoder_lora_state_dict` is deprecated and will be removed in 0.27.0. Make sure to retrieve the weights using `get_peft_model`. See https://huggingface.co/docs/peft/v0.6.2/en/quicktour#peftmodel for more information.", ) from transformers import CLIPTextModel, CLIPTextModelWithProjection attn_modules = [] if isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection)): for i, layer in enumerate(text_encoder.text_model.encoder.layers): name = f"text_model.encoder.layers.{i}.self_attn" mod = layer.self_attn attn_modules.append((name, mod)) else: raise ValueError(f"do not know how to get attention modules for: {text_encoder.__class__.__name__}") return attn_modules _import_structure = {} if is_torch_available(): _import_structure["single_file_model"] = ["FromOriginalModelMixin"] _import_structure["unet"] = ["UNet2DConditionLoadersMixin"] _import_structure["utils"] = ["AttnProcsLayers"] if is_transformers_available(): _import_structure["single_file"] = ["FromSingleFileMixin"] _import_structure["lora_pipeline"] = [ "AmusedLoraLoaderMixin", "StableDiffusionLoraLoaderMixin", "SD3LoraLoaderMixin", "StableDiffusionXLLoraLoaderMixin", "LTXVideoLoraLoaderMixin", "LoraLoaderMixin", "FluxLoraLoaderMixin", "CogVideoXLoraLoaderMixin", "Mochi1LoraLoaderMixin", ] _import_structure["textual_inversion"] = ["TextualInversionLoaderMixin"] _import_structure["ip_adapter"] = ["IPAdapterMixin"] _import_structure["peft"] = ["PeftAdapterMixin"] if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: if is_torch_available(): from .single_file_model import FromOriginalModelMixin from .unet import UNet2DConditionLoadersMixin from .utils import AttnProcsLayers if is_transformers_available(): from .ip_adapter import IPAdapterMixin from .lora_pipeline import ( AmusedLoraLoaderMixin, CogVideoXLoraLoaderMixin, FluxLoraLoaderMixin, LoraLoaderMixin, LTXVideoLoraLoaderMixin, Mochi1LoraLoaderMixin, SD3LoraLoaderMixin, StableDiffusionLoraLoaderMixin, StableDiffusionXLLoraLoaderMixin, ) from .single_file import FromSingleFileMixin from .textual_inversion import TextualInversionLoaderMixin from .peft import PeftAdapterMixin else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
from torch import nn, Tensor __all__ = [ "Wav2Letter", ] class Wav2Letter(nn.Module): r"""Wav2Letter model architecture from *Wav2Letter: an End-to-End ConvNet-based Speech Recognition System* :cite:`collobert2016wav2letter`. See Also: * `Training example <https://github.com/pytorch/audio/tree/release/0.12/examples/pipeline_wav2letter>`__ Args: num_classes (int, optional): Number of classes to be classified. (Default: ``40``) input_type (str, optional): Wav2Letter can use as input: ``waveform``, ``power_spectrum`` or ``mfcc`` (Default: ``waveform``). num_features (int, optional): Number of input features that the network will receive (Default: ``1``). """ def __init__(self, num_classes: int = 40, input_type: str = "waveform", num_features: int = 1) -> None: super().__init__() acoustic_num_features = 250 if input_type == "waveform" else num_features acoustic_model = nn.Sequential( nn.Conv1d(in_channels=acoustic_num_features, out_channels=250, kernel_size=48, stride=2, padding=23), nn.ReLU(inplace=True), nn.Conv1d(in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=True), nn.Conv1d(in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=True), nn.Conv1d(in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=True), nn.Conv1d(in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=True), nn.Conv1d(in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=True), nn.Conv1d(in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=True), nn.Conv1d(in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=True), nn.Conv1d(in_channels=250, out_channels=2000, kernel_size=32, stride=1, padding=16), nn.ReLU(inplace=True), nn.Conv1d(in_channels=2000, out_channels=2000, kernel_size=1, stride=1, padding=0), nn.ReLU(inplace=True), nn.Conv1d(in_channels=2000, out_channels=num_classes, kernel_size=1, stride=1, padding=0), nn.ReLU(inplace=True), ) if input_type == "waveform": waveform_model = nn.Sequential( nn.Conv1d(in_channels=num_features, out_channels=250, kernel_size=250, stride=160, padding=45), nn.ReLU(inplace=True), ) self.acoustic_model = nn.Sequential(waveform_model, acoustic_model) if input_type in ["power_spectrum", "mfcc"]: self.acoustic_model = acoustic_model def forward(self, x: Tensor) -> Tensor: r""" Args: x (torch.Tensor): Tensor of dimension (batch_size, num_features, input_length). Returns: Tensor: Predictor tensor of dimension (batch_size, number_of_classes, input_length). """ x = self.acoustic_model(x) x = nn.functional.log_softmax(x, dim=1) return x
from torch import nn, Tensor __all__ = [ "Wav2Letter", ] class Wav2Letter(nn.Module): r"""Wav2Letter model architecture from *Wav2Letter: an End-to-End ConvNet-based Speech Recognition System* :cite:`collobert2016wav2letter`. :math:`\text{padding} = \frac{\text{ceil}(\text{kernel} - \text{stride})}{2}` Args: num_classes (int, optional): Number of classes to be classified. (Default: ``40``) input_type (str, optional): Wav2Letter can use as input: ``waveform``, ``power_spectrum`` or ``mfcc`` (Default: ``waveform``). num_features (int, optional): Number of input features that the network will receive (Default: ``1``). """ def __init__(self, num_classes: int = 40, input_type: str = "waveform", num_features: int = 1) -> None: super(Wav2Letter, self).__init__() acoustic_num_features = 250 if input_type == "waveform" else num_features acoustic_model = nn.Sequential( nn.Conv1d(in_channels=acoustic_num_features, out_channels=250, kernel_size=48, stride=2, padding=23), nn.ReLU(inplace=True), nn.Conv1d(in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=True), nn.Conv1d(in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=True), nn.Conv1d(in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=True), nn.Conv1d(in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=True), nn.Conv1d(in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=True), nn.Conv1d(in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=True), nn.Conv1d(in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3), nn.ReLU(inplace=True), nn.Conv1d(in_channels=250, out_channels=2000, kernel_size=32, stride=1, padding=16), nn.ReLU(inplace=True), nn.Conv1d(in_channels=2000, out_channels=2000, kernel_size=1, stride=1, padding=0), nn.ReLU(inplace=True), nn.Conv1d(in_channels=2000, out_channels=num_classes, kernel_size=1, stride=1, padding=0), nn.ReLU(inplace=True), ) if input_type == "waveform": waveform_model = nn.Sequential( nn.Conv1d(in_channels=num_features, out_channels=250, kernel_size=250, stride=160, padding=45), nn.ReLU(inplace=True), ) self.acoustic_model = nn.Sequential(waveform_model, acoustic_model) if input_type in ["power_spectrum", "mfcc"]: self.acoustic_model = acoustic_model def forward(self, x: Tensor) -> Tensor: r""" Args: x (torch.Tensor): Tensor of dimension (batch_size, num_features, input_length). Returns: Tensor: Predictor tensor of dimension (batch_size, number_of_classes, input_length). """ x = self.acoustic_model(x) x = nn.functional.log_softmax(x, dim=1) return x
from keras.src.backend.common.tensor_attributes import get_tensor_attr from keras.src.backend.common.tensor_attributes import set_tensor_attr def set_keras_mask(x, mask): """Sets the Keras mask attribute for the given tensor in-place. Args: x: Input tensor. mask: The mask tensor to be set. If `None`, the `_keras_mask` attribute will be cleared. """ set_tensor_attr(x, "_keras_mask", mask) def get_keras_mask(x): """Gets the Keras mask attribute from the given tensor. Args: x: Input tensor. Returns: The mask tensor associated with the input tensor, or `None` if no mask has been set. """ return get_tensor_attr(x, "_keras_mask")
from keras.src.backend.common.tensor_attributes import get_tensor_attr from keras.src.backend.common.tensor_attributes import set_tensor_attr def set_keras_mask(x, mask): return set_tensor_attr(x, "_keras_mask", mask) def get_keras_mask(x): return get_tensor_attr(x, "_keras_mask")
import logging import os import sys from torchaudio._internal.module_utils import fail_with_message, is_module_available, no_op from .utils import _check_cuda_version, _fail_since_no_ffmpeg, _init_dll_path, _init_ffmpeg, _init_sox, _load_lib _LG = logging.getLogger(__name__) # Note: # `_check_cuda_version` is not meant to be used by regular users. # Builder uses it for debugging purpose, so we export it. # https://github.com/pytorch/builder/blob/e2e4542b8eb0bdf491214451a1a4128bd606cce2/test/smoke_test/smoke_test.py#L80 __all__ = [ "fail_if_no_sox", "fail_if_no_ffmpeg", "_check_cuda_version", "_IS_TORCHAUDIO_EXT_AVAILABLE", "_IS_RIR_AVAILABLE", "_SOX_INITIALIZED", "_FFMPEG_EXT", ] if os.name == "nt" and (3, 8) <= sys.version_info < (3, 9): _init_dll_path() # When the extension module is built, we initialize it. # In case of an error, we do not catch the failure as it suggests there is something # wrong with the installation. _IS_TORCHAUDIO_EXT_AVAILABLE = is_module_available("torchaudio.lib._torchaudio") # RIR features are implemented in _torchaudio extension, but they can be individually # turned on/off at build time. Available means that _torchaudio is loaded properly, and # RIR features are found there. _IS_RIR_AVAILABLE = False _IS_ALIGN_AVAILABLE = False if _IS_TORCHAUDIO_EXT_AVAILABLE: _load_lib("libtorchaudio") import torchaudio.lib._torchaudio # noqa _check_cuda_version() _IS_RIR_AVAILABLE = torchaudio.lib._torchaudio.is_rir_available() _IS_ALIGN_AVAILABLE = torchaudio.lib._torchaudio.is_align_available() # Similar to libtorchaudio, sox-related features should be importable when present. # # Note: This will be change in the future when sox is dynamically linked. # At that point, this initialization should handle the case where # sox integration is built but libsox is not found. _SOX_INITIALIZED = False if is_module_available("torchaudio.lib._torchaudio_sox"): _init_sox() _SOX_INITIALIZED = True # Initialize FFmpeg-related features _FFMPEG_EXT = None if _IS_TORCHAUDIO_EXT_AVAILABLE: try: _FFMPEG_EXT = _init_ffmpeg() except Exception: # The initialization of FFmpeg extension will fail if supported FFmpeg # libraries are not found in the system. # Since the rest of the torchaudio works without it, we do not report the # error here. # The error will be raised when user code attempts to use these features. _LG.debug("Failed to initialize ffmpeg bindings", exc_info=True) fail_if_no_sox = ( no_op if _SOX_INITIALIZED else fail_with_message( "requires sox extension, but TorchAudio is not compiled with it. Please build TorchAudio with libsox support." ) ) fail_if_no_ffmpeg = _fail_since_no_ffmpeg if _FFMPEG_EXT is None else no_op fail_if_no_rir = ( no_op if _IS_RIR_AVAILABLE else fail_with_message( "requires RIR extension, but TorchAudio is not compiled with it. Please build TorchAudio with RIR support." ) ) fail_if_no_align = ( no_op if _IS_ALIGN_AVAILABLE else fail_with_message( "Requires alignment extension, but TorchAudio is not compiled with it. \ Please build TorchAudio with alignment support." ) )
import logging import os import sys from torchaudio._internal.module_utils import fail_with_message, is_module_available, no_op from .utils import _check_cuda_version, _fail_since_no_ffmpeg, _init_dll_path, _init_ffmpeg, _init_sox, _load_lib _LG = logging.getLogger(__name__) # Note: # `_check_cuda_version` is not meant to be used by regular users. # Builder uses it for debugging purpose, so we export it. # https://github.com/pytorch/builder/blob/e2e4542b8eb0bdf491214451a1a4128bd606cce2/test/smoke_test/smoke_test.py#L80 __all__ = [ "fail_if_no_sox", "fail_if_no_ffmpeg", "_check_cuda_version", "_IS_TORCHAUDIO_EXT_AVAILABLE", "_IS_RIR_AVAILABLE", "_SOX_INITIALIZED", "_FFMPEG_INITIALIZED", ] if os.name == "nt" and (3, 8) <= sys.version_info < (3, 9): _init_dll_path() # When the extension module is built, we initialize it. # In case of an error, we do not catch the failure as it suggests there is something # wrong with the installation. _IS_TORCHAUDIO_EXT_AVAILABLE = is_module_available("torchaudio.lib._torchaudio") # RIR features are implemented in _torchaudio extension, but they can be individually # turned on/off at build time. Available means that _torchaudio is loaded properly, and # RIR features are found there. _IS_RIR_AVAILABLE = False _IS_ALIGN_AVAILABLE = False if _IS_TORCHAUDIO_EXT_AVAILABLE: _load_lib("libtorchaudio") import torchaudio.lib._torchaudio # noqa _check_cuda_version() _IS_RIR_AVAILABLE = torchaudio.lib._torchaudio.is_rir_available() _IS_ALIGN_AVAILABLE = torchaudio.lib._torchaudio.is_align_available() # Similar to libtorchaudio, sox-related features should be importable when present. # # Note: This will be change in the future when sox is dynamically linked. # At that point, this initialization should handle the case where # sox integration is built but libsox is not found. _SOX_INITIALIZED = False if is_module_available("torchaudio.lib._torchaudio_sox"): _init_sox() _SOX_INITIALIZED = True # Initialize FFmpeg-related features _FFMPEG_INITIALIZED = False if is_module_available("torchaudio.lib._torchaudio_ffmpeg"): try: _init_ffmpeg() _FFMPEG_INITIALIZED = True except Exception: # The initialization of FFmpeg extension will fail if supported FFmpeg # libraries are not found in the system. # Since the rest of the torchaudio works without it, we do not report the # error here. # The error will be raised when user code attempts to use these features. _LG.debug("Failed to initialize ffmpeg bindings", exc_info=True) fail_if_no_sox = ( no_op if _SOX_INITIALIZED else fail_with_message( "requires sox extension, but TorchAudio is not compiled with it. Please build TorchAudio with libsox support." ) ) fail_if_no_ffmpeg = no_op if _FFMPEG_INITIALIZED else _fail_since_no_ffmpeg fail_if_no_rir = ( no_op if _IS_RIR_AVAILABLE else fail_with_message( "requires RIR extension, but TorchAudio is not compiled with it. Please build TorchAudio with RIR support." ) ) fail_if_no_align = ( no_op if _IS_ALIGN_AVAILABLE else fail_with_message( "Requires alignment extension, but TorchAudio is not compiled with it. \ Please build TorchAudio with alignment support." ) )
from typing import TypeVar from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.image.abstract_image_tensor import AbstractImageTensor from docarray.typing.tensor.torch_tensor import TorchTensor, metaTorchAndNode T = TypeVar('T', bound='ImageTorchTensor') @_register_proto(proto_type_name='image_torch_tensor') class ImageTorchTensor(AbstractImageTensor, TorchTensor, metaclass=metaTorchAndNode): """ Subclass of [`TorchTensor`][docarray.typing.TorchTensor], to represent an image tensor. Adds image-specific features to the tensor. For instance the ability convert the tensor back to image bytes which are optimized to send over the wire. --- ```python from typing import Optional from docarray import BaseDoc from docarray.typing import ImageBytes, ImageTorchTensor, ImageUrl class MyImageDoc(BaseDoc): title: str tensor: Optional[ImageTorchTensor] url: Optional[ImageUrl] bytes: Optional[ImageBytes] doc = MyImageDoc( title='my_second_image_doc', url="https://upload.wikimedia.org/wikipedia/commons/8/80/" "Dag_Sebastian_Ahlander_at_G%C3%B6teborg_Book_Fair_2012b.jpg", ) doc.tensor = doc.url.load() doc.bytes = doc.tensor.to_bytes() ``` --- """ ...
from typing import TypeVar from docarray.typing.proto_register import _register_proto from docarray.typing.tensor.image.abstract_image_tensor import AbstractImageTensor from docarray.typing.tensor.torch_tensor import TorchTensor, metaTorchAndNode T = TypeVar('T', bound='ImageTorchTensor') @_register_proto(proto_type_name='image_torch_tensor') class ImageTorchTensor(AbstractImageTensor, TorchTensor, metaclass=metaTorchAndNode): """ Subclass of TorchTensor, to represent an image tensor. Adds image-specific features to the tensor. For instance the ability convert the tensor back to image bytes which are optimized to send over the wire --- ```python from typing import Optional from docarray import BaseDoc from docarray.typing import ImageBytes, ImageTorchTensor, ImageUrl class MyImageDoc(BaseDoc): title: str tensor: Optional[ImageTorchTensor] url: Optional[ImageUrl] bytes: Optional[ImageBytes] doc = MyImageDoc( title='my_second_image_doc', url="https://upload.wikimedia.org/wikipedia/commons/8/80/" "Dag_Sebastian_Ahlander_at_G%C3%B6teborg_Book_Fair_2012b.jpg", ) doc.tensor = doc.url.load() doc.bytes = doc.tensor.to_bytes() ``` --- """ ...
import asyncio import time import pytest from jina import Client, Deployment, Executor, requests from jina._docarray import Document, DocumentArray from jina.excepts import BadServer from jina.helper import random_port class MyExecutor(Executor): @requests(on='/hello') async def task(self, doc: Document, **kwargs): for i in range(100): yield Document(text=f'{doc.text} {i}') @requests(on='/world') async def non_gen_task(self, docs: DocumentArray, **kwargs): return docs @pytest.mark.asyncio @pytest.mark.parametrize('protocol', ['http', 'grpc']) @pytest.mark.parametrize('include_gateway', [False, True]) @pytest.mark.parametrize('reuse_session', [False, True]) async def test_streaming_deployment(protocol, include_gateway, reuse_session): if reuse_session and protocol != 'http': return port = random_port() docs = [] with Deployment( uses=MyExecutor, timeout_ready=-1, protocol=protocol, port=port, include_gateway=include_gateway, ): client = Client(port=port, protocol=protocol, asyncio=True, reuse_session=reuse_session) i = 0 async for doc in client.stream_doc( on='/hello', inputs=Document(text='hello world'), return_type=Document, input_type=Document, ): docs.append(doc.text) i += 1 assert docs == [f'hello world {i}' for i in range(100)] assert len(docs) == 100 class WaitStreamExecutor(Executor): @requests(on='/hello') async def task(self, doc: Document, **kwargs): for i in range(5): yield Document(text=f'{doc.text} {i}') await asyncio.sleep(0.5) @pytest.mark.asyncio @pytest.mark.parametrize('protocol', ['http', 'grpc']) @pytest.mark.parametrize('include_gateway', [False, True]) @pytest.mark.parametrize('reuse_session', [False, True]) async def test_streaming_delay(protocol, include_gateway, reuse_session): if reuse_session and protocol != 'http': return from jina import Deployment port = random_port() with Deployment( uses=WaitStreamExecutor, timeout_ready=-1, protocol=protocol, port=port, include_gateway=include_gateway, ): client = Client(port=port, protocol=protocol, asyncio=True, reuse_session=reuse_session) i = 0 start_time = time.time() async for doc in client.stream_doc( on='/hello', inputs=Document(text='hello world') ): assert doc.text == f'hello world {i}' i += 1 # 0.5 seconds between each request + 0.5 seconds tolerance interval assert time.time() - start_time < (0.5 * i) + 0.5 @pytest.mark.asyncio @pytest.mark.parametrize('protocol', ['grpc']) async def test_streaming_client_non_gen_endpoint(protocol): from jina import Deployment port = random_port() with Deployment( uses=MyExecutor, timeout_ready=-1, protocol=protocol, port=port, include_gateway=False, ): client = Client(port=port, protocol=protocol, asyncio=True) i = 0 with pytest.raises(BadServer): async for _ in client.stream_doc( on='/world', inputs=Document(text='hello world') ): pass def test_invalid_executor(): with pytest.raises(RuntimeError) as exc_info: class InvalidExecutor3(Executor): @requests(on='/invalid') async def invalid(self, docs: DocumentArray, **kwargs): yield docs[0] assert type(exc_info.value.__cause__) is AssertionError with pytest.raises(RuntimeError) as exc_info: class InvalidExecutor4(Executor): @requests(on='/invalid') def invalid(self, docs: DocumentArray, **kwargs): yield docs[0] assert type(exc_info.value.__cause__) is AssertionError
import asyncio import time import pytest from jina import Client, Deployment, Executor, requests from jina._docarray import Document, DocumentArray from jina.excepts import BadServer from jina.helper import random_port class MyExecutor(Executor): @requests(on='/hello') async def task(self, doc: Document, **kwargs): for i in range(100): yield Document(text=f'{doc.text} {i}') @requests(on='/world') async def non_gen_task(self, docs: DocumentArray, **kwargs): return docs @pytest.mark.asyncio @pytest.mark.parametrize('protocol', ['http', 'grpc']) @pytest.mark.parametrize('include_gateway', [False, True]) async def test_streaming_deployment(protocol, include_gateway): port = random_port() docs = [] with Deployment( uses=MyExecutor, timeout_ready=-1, protocol=protocol, port=port, include_gateway=include_gateway, ): client = Client(port=port, protocol=protocol, asyncio=True) i = 0 async for doc in client.stream_doc( on='/hello', inputs=Document(text='hello world'), return_type=Document, input_type=Document, ): docs.append(doc.text) i += 1 assert docs == [f'hello world {i}' for i in range(100)] assert len(docs) == 100 class WaitStreamExecutor(Executor): @requests(on='/hello') async def task(self, doc: Document, **kwargs): for i in range(5): yield Document(text=f'{doc.text} {i}') await asyncio.sleep(0.5) @pytest.mark.asyncio @pytest.mark.parametrize('protocol', ['http', 'grpc']) @pytest.mark.parametrize('include_gateway', [False, True]) async def test_streaming_delay(protocol, include_gateway): from jina import Deployment port = random_port() with Deployment( uses=WaitStreamExecutor, timeout_ready=-1, protocol=protocol, port=port, include_gateway=include_gateway, ): client = Client(port=port, protocol=protocol, asyncio=True) i = 0 start_time = time.time() async for doc in client.stream_doc( on='/hello', inputs=Document(text='hello world') ): assert doc.text == f'hello world {i}' i += 1 # 0.5 seconds between each request + 0.5 seconds tolerance interval assert time.time() - start_time < (0.5 * i) + 0.5 @pytest.mark.asyncio @pytest.mark.parametrize('protocol', ['grpc']) async def test_streaming_client_non_gen_endpoint(protocol): from jina import Deployment port = random_port() with Deployment( uses=MyExecutor, timeout_ready=-1, protocol=protocol, port=port, include_gateway=False, ): client = Client(port=port, protocol=protocol, asyncio=True) i = 0 with pytest.raises(BadServer): async for _ in client.stream_doc( on='/world', inputs=Document(text='hello world') ): pass def test_invalid_executor(): with pytest.raises(RuntimeError) as exc_info: class InvalidExecutor3(Executor): @requests(on='/invalid') async def invalid(self, docs: DocumentArray, **kwargs): yield docs[0] assert type(exc_info.value.__cause__) is AssertionError with pytest.raises(RuntimeError) as exc_info: class InvalidExecutor4(Executor): @requests(on='/invalid') def invalid(self, docs: DocumentArray, **kwargs): yield docs[0] assert type(exc_info.value.__cause__) is AssertionError
import numpy as np import orjson import pytest from pydantic.tools import parse_obj_as, schema_json_of from docarray.base_document.io.json import orjson_dumps from docarray.typing import NdArray from docarray.typing.tensor import NdArrayEmbedding def test_proto_tensor(): tensor = parse_obj_as(NdArray, np.zeros((3, 224, 224))) tensor._to_node_protobuf() def test_from_list(): tensor = parse_obj_as(NdArray, [[0.0, 0.0], [0.0, 0.0]]) assert (tensor == np.zeros((2, 2))).all() def test_json_schema(): schema_json_of(NdArray) def test_dump_json(): tensor = parse_obj_as(NdArray, np.zeros((3, 224, 224))) orjson_dumps(tensor) def test_load_json(): tensor = parse_obj_as(NdArray, np.zeros((2, 2))) json = orjson_dumps(tensor) print(json) print(type(json)) new_tensor = orjson.loads(json) assert (new_tensor == tensor).all() def test_unwrap(): tensor = parse_obj_as(NdArray, np.zeros((3, 224, 224))) ndarray = tensor.unwrap() assert not isinstance(ndarray, NdArray) assert isinstance(ndarray, np.ndarray) assert isinstance(tensor, NdArray) assert (ndarray == np.zeros((3, 224, 224))).all() def test_parametrized(): # correct shape, single axis tensor = parse_obj_as(NdArray[128], np.zeros(128)) assert isinstance(tensor, NdArray) assert isinstance(tensor, np.ndarray) assert tensor.shape == (128,) # correct shape, multiple axis tensor = parse_obj_as(NdArray[3, 224, 224], np.zeros((3, 224, 224))) assert isinstance(tensor, NdArray) assert isinstance(tensor, np.ndarray) assert tensor.shape == (3, 224, 224) # wrong but reshapable shape tensor = parse_obj_as(NdArray[3, 224, 224], np.zeros((3, 224, 224))) assert isinstance(tensor, NdArray) assert isinstance(tensor, np.ndarray) assert tensor.shape == (3, 224, 224) # wrong and not reshapable shape with pytest.raises(ValueError): parse_obj_as(NdArray[3, 224, 224], np.zeros((224, 224))) def test_np_embedding(): # correct shape tensor = parse_obj_as(NdArrayEmbedding[128], np.zeros((128,))) assert isinstance(tensor, NdArrayEmbedding) assert isinstance(tensor, NdArray) assert isinstance(tensor, np.ndarray) assert tensor.shape == (128,) # wrong shape at data setting time with pytest.raises(ValueError): parse_obj_as(NdArrayEmbedding[128], np.zeros((256,))) # illegal shape at class creation time with pytest.raises(ValueError): parse_obj_as(NdArrayEmbedding[128, 128], np.zeros((128, 128)))
import numpy as np import orjson import pytest from pydantic.tools import parse_obj_as, schema_json_of from docarray.document.io.json import orjson_dumps from docarray.typing import NdArray from docarray.typing.tensor import NdArrayEmbedding def test_proto_tensor(): tensor = parse_obj_as(NdArray, np.zeros((3, 224, 224))) tensor._to_node_protobuf() def test_from_list(): tensor = parse_obj_as(NdArray, [[0.0, 0.0], [0.0, 0.0]]) assert (tensor == np.zeros((2, 2))).all() def test_json_schema(): schema_json_of(NdArray) def test_dump_json(): tensor = parse_obj_as(NdArray, np.zeros((3, 224, 224))) orjson_dumps(tensor) def test_load_json(): tensor = parse_obj_as(NdArray, np.zeros((2, 2))) json = orjson_dumps(tensor) print(json) print(type(json)) new_tensor = orjson.loads(json) assert (new_tensor == tensor).all() def test_unwrap(): tensor = parse_obj_as(NdArray, np.zeros((3, 224, 224))) ndarray = tensor.unwrap() assert not isinstance(ndarray, NdArray) assert isinstance(ndarray, np.ndarray) assert isinstance(tensor, NdArray) assert (ndarray == np.zeros((3, 224, 224))).all() def test_parametrized(): # correct shape, single axis tensor = parse_obj_as(NdArray[128], np.zeros(128)) assert isinstance(tensor, NdArray) assert isinstance(tensor, np.ndarray) assert tensor.shape == (128,) # correct shape, multiple axis tensor = parse_obj_as(NdArray[3, 224, 224], np.zeros((3, 224, 224))) assert isinstance(tensor, NdArray) assert isinstance(tensor, np.ndarray) assert tensor.shape == (3, 224, 224) # wrong but reshapable shape tensor = parse_obj_as(NdArray[3, 224, 224], np.zeros((3, 224, 224))) assert isinstance(tensor, NdArray) assert isinstance(tensor, np.ndarray) assert tensor.shape == (3, 224, 224) # wrong and not reshapable shape with pytest.raises(ValueError): parse_obj_as(NdArray[3, 224, 224], np.zeros((224, 224))) def test_np_embedding(): # correct shape tensor = parse_obj_as(NdArrayEmbedding[128], np.zeros((128,))) assert isinstance(tensor, NdArrayEmbedding) assert isinstance(tensor, NdArray) assert isinstance(tensor, np.ndarray) assert tensor.shape == (128,) # wrong shape at data setting time with pytest.raises(ValueError): parse_obj_as(NdArrayEmbedding[128], np.zeros((256,))) # illegal shape at class creation time with pytest.raises(ValueError): parse_obj_as(NdArrayEmbedding[128, 128], np.zeros((128, 128)))
# mypy: allow-untyped-defs # Owner(s): ["oncall: distributed"] import os import shutil import traceback from concurrent.futures import Future import torch import torch.distributed as dist import torch.distributed.checkpoint as dcp import torch.multiprocessing as mp import torch.nn as nn import torch.nn.functional as F from torch.distributed.checkpoint.state_dict import ( _patch_model_state_dict, _patch_optimizer_state_dict, ) from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.tensor.device_mesh import init_device_mesh DEVICE = "cuda" NUM_EPOCHS = 1000 SAVE_PERIOD = 10 FAULT_PERIOD = 25 CHECKPOINT_DIR = f"~/{os.environ.get('LOGNAME', '')}/checkpoint" class InjectedException(Exception): pass class Model(torch.nn.Module): def __init__(self) -> None: super().__init__() self.net1 = nn.Linear(8, 32) self.net2 = nn.Linear(32, 128) self.net3 = nn.Linear(128, 64) self.net4 = nn.Linear(64, 8) self.net5 = nn.Linear(8, 1) def forward(self, x): x = F.relu(self.net1(x)) x = F.relu(self.net2(x)) x = F.relu(self.net3(x)) x = F.relu(self.net4(x)) x = F.sigmoid(self.net5(x)) return x def _init_model(rank, world_size): device_mesh = init_device_mesh(DEVICE, (world_size,)) # Create a dummy model and wrap it in FSDP model = Model().cuda() device_mesh = init_device_mesh(DEVICE, (world_size,)) model = FSDP(model, device_mesh=device_mesh, use_orig_params=True) optim = torch.optim.Adam(model.parameters(), lr=0.0001) _patch_model_state_dict(model) _patch_optimizer_state_dict(model, optimizers=optim) return model, optim def _print(msg): if dist.get_rank() == 0: print(msg) def _input(): x = torch.rand(128, 8, device="cuda") y = torch.zeros(128, 1, device="cuda") y[torch.sum(x, dim=1) >= 4] = 1.0 return x, y def run(rank, world_size): # Set up world pg os.environ["MASTER_ADDR"] = "localhost" os.environ["MASTER_PORT"] = "12355" dist.init_process_group("cpu:gloo,cuda:nccl", rank=rank, world_size=world_size) torch.cuda.set_device(rank) model, optim = _init_model(rank, world_size) state_dict = {"model": model, "optim": optim} loss_calc = torch.nn.BCELoss() f = None for epoch in range(NUM_EPOCHS): try: torch.manual_seed(epoch) x, y = _input() loss = loss_calc(model(x), y) _print(f"{epoch=} {loss=}") loss.backward() optim.step() optim.zero_grad() if epoch % SAVE_PERIOD == 0: if f is not None: assert isinstance(f, Future) f.result() f = dcp.state_dict_saver.async_save( state_dict, checkpoint_id=CHECKPOINT_DIR ) if FAULT_PERIOD > 0 and epoch % FAULT_PERIOD == 0: raise InjectedException("Fault injection!") except InjectedException as e: dist.barrier() _print("Trainer encountered exception:") traceback.print_tb(e.__traceback__) _print("Reloading model from last checkpoint!") if f is not None: assert isinstance(f, Future) f.result() dcp.load(state_dict) if __name__ == "__main__": world_size = torch.cuda.device_count() print(f"Running an example of Async Checkpointing on {world_size} devices.") shutil.rmtree(CHECKPOINT_DIR, ignore_errors=True) mp.spawn( run, args=(world_size,), nprocs=world_size, join=True, )
# mypy: allow-untyped-defs # Owner(s): ["oncall: distributed"] import os import shutil import traceback import torch import torch.distributed as dist import torch.distributed.checkpoint as dcp import torch.multiprocessing as mp import torch.nn as nn import torch.nn.functional as F from torch.distributed.checkpoint.state_dict import ( _patch_model_state_dict, _patch_optimizer_state_dict, ) from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.tensor.device_mesh import init_device_mesh DEVICE = "cuda" NUM_EPOCHS = 1000 SAVE_PERIOD = 10 FAULT_PERIOD = 25 CHECKPOINT_DIR = f"~/{os.environ.get('LOGNAME', '')}/checkpoint" class InjectedException(Exception): pass class Model(torch.nn.Module): def __init__(self) -> None: super().__init__() self.net1 = nn.Linear(8, 32) self.net2 = nn.Linear(32, 128) self.net3 = nn.Linear(128, 64) self.net4 = nn.Linear(64, 8) self.net5 = nn.Linear(8, 1) def forward(self, x): x = F.relu(self.net1(x)) x = F.relu(self.net2(x)) x = F.relu(self.net3(x)) x = F.relu(self.net4(x)) x = F.sigmoid(self.net5(x)) return x def _init_model(rank, world_size): device_mesh = init_device_mesh(DEVICE, (world_size,)) # Create a dummy model and wrap it in FSDP model = Model().cuda() device_mesh = init_device_mesh(DEVICE, (world_size,)) model = FSDP(model, device_mesh=device_mesh, use_orig_params=True) optim = torch.optim.Adam(model.parameters(), lr=0.0001) _patch_model_state_dict(model) _patch_optimizer_state_dict(model, optimizers=optim) return model, optim def _print(msg): if dist.get_rank() == 0: print(msg) def _input(): x = torch.rand(128, 8, device="cuda") y = torch.zeros(128, 1, device="cuda") y[torch.sum(x, dim=1) >= 4] = 1.0 return x, y def run(rank, world_size): # Set up world pg os.environ["MASTER_ADDR"] = "localhost" os.environ["MASTER_PORT"] = "12355" dist.init_process_group("cpu:gloo,cuda:nccl", rank=rank, world_size=world_size) torch.cuda.set_device(rank) model, optim = _init_model(rank, world_size) state_dict = {"model": model, "optim": optim} loss_calc = torch.nn.BCELoss() f = None for epoch in range(NUM_EPOCHS): try: torch.manual_seed(epoch) x, y = _input() loss = loss_calc(model(x), y) _print(f"{epoch=} {loss=}") loss.backward() optim.step() optim.zero_grad() if epoch % SAVE_PERIOD == 0: if f is not None: f.result() f = dcp.state_dict_saver.async_save( state_dict, checkpoint_id=CHECKPOINT_DIR ) if FAULT_PERIOD > 0 and epoch % FAULT_PERIOD == 0: raise InjectedException("Fault injection!") except InjectedException as e: dist.barrier() _print("Trainer encountered exception:") traceback.print_tb(e.__traceback__) _print("Reloading model from last checkpoint!") if f is not None: f.result() dcp.load(state_dict) if __name__ == "__main__": world_size = torch.cuda.device_count() print(f"Running an example of Async Checkpointing on {world_size} devices.") shutil.rmtree(CHECKPOINT_DIR, ignore_errors=True) mp.spawn( run, args=(world_size,), nprocs=world_size, join=True, )
from typing import Callable, Dict, Generic, List, Optional, Type, TypeVar from torch.utils.data import Dataset from docarray import BaseDoc, DocArray, DocArrayStacked from docarray.typing import TorchTensor from docarray.utils._typing import change_cls_name T_doc = TypeVar('T_doc', bound=BaseDoc) class MultiModalDataset(Dataset, Generic[T_doc]): """ A dataset that can be used inside a PyTorch DataLoader. In other words, it implements the PyTorch Dataset interface. :param da: the DocArray to be used as the dataset :param preprocessing: a dictionary of field names and preprocessing functions The preprocessing dictionary passed to the constructor consists of keys that are field names and values that are functions that take a single argument and return a single argument. EXAMPLE USAGE .. code-block:: python from torch.utils.data import DataLoader from docarray import DocArray from docarray.data import MultiModalDataset from docarray.documents import Text def prepend_number(text: str): return f"Number {text}" da = DocArray[Text](Text(text=str(i)) for i in range(16)) ds = MultiModalDataset[Text](da, preprocessing={'text': prepend_number}) loader = DataLoader(ds, batch_size=4, collate_fn=MultiModalDataset[Text].collate_fn) for batch in loader: print(batch.text) Nested fields can be accessed by using dot notation. The document itself can be accessed using the empty string as the key. Transformations that operate on reference types (such as Documents) can optionally not return a value. The transformations will be applied according to their order in the dictionary. EXAMPLE USAGE .. code-block:: python import torch from torch.utils.data import DataLoader from docarray import DocArray, BaseDoc from docarray.data import MultiModalDataset from docarray.documents import Text class Thesis(BaseDoc): title: Text class Student(BaseDoc): thesis: Thesis def embed_title(title: Text): title.embedding = torch.ones(4) def normalize_embedding(thesis: Thesis): thesis.title.embedding = thesis.title.embedding / thesis.title.embedding.norm() def add_nonsense(student: Student): student.thesis.title.embedding = student.thesis.title.embedding + int( student.thesis.title.text ) da = DocArray[Student](Student(thesis=Thesis(title=str(i))) for i in range(16)) ds = MultiModalDataset[Student]( da, preprocessing={ "thesis.title": embed_title, "thesis": normalize_embedding, "": add_nonsense, }, ) loader = DataLoader(ds, batch_size=4, collate_fn=ds.collate_fn) for batch in loader: print(batch.thesis.title.embedding) """ document_type: Optional[Type[BaseDoc]] = None __typed_ds__: Dict[Type[BaseDoc], Type['MultiModalDataset']] = {} def __init__( self, da: 'DocArray[T_doc]', preprocessing: Dict[str, Callable] ) -> None: self.da = da self._preprocessing = preprocessing def __len__(self): return len(self.da) def __getitem__(self, item: int): doc = self.da[item].copy(deep=True) for field, preprocess in self._preprocessing.items(): if len(field) == 0: doc = preprocess(doc) or doc else: acc_path = field.split('.') _field_ref = doc for attr in acc_path[:-1]: _field_ref = getattr(_field_ref, attr) attr = acc_path[-1] value = getattr(_field_ref, attr) setattr(_field_ref, attr, preprocess(value) or value) return doc @classmethod def collate_fn(cls, batch: List[T_doc]): doc_type = cls.document_type if doc_type: batch_da = DocArrayStacked[doc_type]( # type: ignore batch, tensor_type=TorchTensor, ) else: batch_da = DocArrayStacked(batch, tensor_type=TorchTensor) return batch_da @classmethod def __class_getitem__(cls, item: Type[BaseDoc]) -> Type['MultiModalDataset']: if not issubclass(item, BaseDoc): raise ValueError( f'{cls.__name__}[item] item should be a Document not a {item} ' ) if item not in cls.__typed_ds__: global _TypedDataset class _TypedDataset(cls): # type: ignore document_type = item change_cls_name( _TypedDataset, f'{cls.__name__}[{item.__name__}]', globals() ) cls.__typed_ds__[item] = _TypedDataset return cls.__typed_ds__[item]
from typing import Callable, Dict, Generic, List, Optional, Type, TypeVar from torch.utils.data import Dataset from docarray import BaseDocument, DocumentArray, DocumentArrayStacked from docarray.typing import TorchTensor from docarray.utils._typing import change_cls_name T_doc = TypeVar('T_doc', bound=BaseDocument) class MultiModalDataset(Dataset, Generic[T_doc]): """ A dataset that can be used inside a PyTorch DataLoader. In other words, it implements the PyTorch Dataset interface. :param da: the DocumentArray to be used as the dataset :param preprocessing: a dictionary of field names and preprocessing functions The preprocessing dictionary passed to the constructor consists of keys that are field names and values that are functions that take a single argument and return a single argument. EXAMPLE USAGE .. code-block:: python from torch.utils.data import DataLoader from docarray import DocumentArray from docarray.data import MultiModalDataset from docarray.documents import Text def prepend_number(text: str): return f"Number {text}" da = DocumentArray[Text](Text(text=str(i)) for i in range(16)) ds = MultiModalDataset[Text](da, preprocessing={'text': prepend_number}) loader = DataLoader(ds, batch_size=4, collate_fn=MultiModalDataset[Text].collate_fn) for batch in loader: print(batch.text) Nested fields can be accessed by using dot notation. The document itself can be accessed using the empty string as the key. Transformations that operate on reference types (such as Documents) can optionally not return a value. The transformations will be applied according to their order in the dictionary. EXAMPLE USAGE .. code-block:: python import torch from torch.utils.data import DataLoader from docarray import DocumentArray, BaseDocument from docarray.data import MultiModalDataset from docarray.documents import Text class Thesis(BaseDocument): title: Text class Student(BaseDocument): thesis: Thesis def embed_title(title: Text): title.embedding = torch.ones(4) def normalize_embedding(thesis: Thesis): thesis.title.embedding = thesis.title.embedding / thesis.title.embedding.norm() def add_nonsense(student: Student): student.thesis.title.embedding = student.thesis.title.embedding + int( student.thesis.title.text ) da = DocumentArray[Student](Student(thesis=Thesis(title=str(i))) for i in range(16)) ds = MultiModalDataset[Student]( da, preprocessing={ "thesis.title": embed_title, "thesis": normalize_embedding, "": add_nonsense, }, ) loader = DataLoader(ds, batch_size=4, collate_fn=ds.collate_fn) for batch in loader: print(batch.thesis.title.embedding) """ document_type: Optional[Type[BaseDocument]] = None __typed_ds__: Dict[Type[BaseDocument], Type['MultiModalDataset']] = {} def __init__( self, da: 'DocumentArray[T_doc]', preprocessing: Dict[str, Callable] ) -> None: self.da = da self._preprocessing = preprocessing def __len__(self): return len(self.da) def __getitem__(self, item: int): doc = self.da[item].copy(deep=True) for field, preprocess in self._preprocessing.items(): if len(field) == 0: doc = preprocess(doc) or doc else: acc_path = field.split('.') _field_ref = doc for attr in acc_path[:-1]: _field_ref = getattr(_field_ref, attr) attr = acc_path[-1] value = getattr(_field_ref, attr) setattr(_field_ref, attr, preprocess(value) or value) return doc @classmethod def collate_fn(cls, batch: List[T_doc]): doc_type = cls.document_type if doc_type: batch_da = DocumentArrayStacked[doc_type]( # type: ignore batch, tensor_type=TorchTensor, ) else: batch_da = DocumentArrayStacked(batch, tensor_type=TorchTensor) return batch_da @classmethod def __class_getitem__(cls, item: Type[BaseDocument]) -> Type['MultiModalDataset']: if not issubclass(item, BaseDocument): raise ValueError( f'{cls.__name__}[item] item should be a Document not a {item} ' ) if item not in cls.__typed_ds__: global _TypedDataset class _TypedDataset(cls): # type: ignore document_type = item change_cls_name( _TypedDataset, f'{cls.__name__}[{item.__name__}]', globals() ) cls.__typed_ds__[item] = _TypedDataset return cls.__typed_ds__[item]
import logging import os import sys from torchaudio._internal.module_utils import fail_with_message, is_module_available, no_op try: from .fb import _init_ffmpeg except ImportError: from .utils import _init_ffmpeg from .utils import _check_cuda_version, _fail_since_no_ffmpeg, _init_dll_path, _init_sox, _load_lib _LG = logging.getLogger(__name__) # Note: # `_check_cuda_version` is not meant to be used by regular users. # Builder uses it for debugging purpose, so we export it. # https://github.com/pytorch/builder/blob/e2e4542b8eb0bdf491214451a1a4128bd606cce2/test/smoke_test/smoke_test.py#L80 __all__ = [ "fail_if_no_sox", "fail_if_no_ffmpeg", "_check_cuda_version", "_IS_TORCHAUDIO_EXT_AVAILABLE", "_IS_RIR_AVAILABLE", "_SOX_INITIALIZED", "_FFMPEG_EXT", ] if os.name == "nt" and (3, 8) <= sys.version_info < (3, 9): _init_dll_path() # When the extension module is built, we initialize it. # In case of an error, we do not catch the failure as it suggests there is something # wrong with the installation. _IS_TORCHAUDIO_EXT_AVAILABLE = is_module_available("torchaudio.lib._torchaudio") # RIR features are implemented in _torchaudio extension, but they can be individually # turned on/off at build time. Available means that _torchaudio is loaded properly, and # RIR features are found there. _IS_RIR_AVAILABLE = False _IS_ALIGN_AVAILABLE = False if _IS_TORCHAUDIO_EXT_AVAILABLE: _load_lib("libtorchaudio") import torchaudio.lib._torchaudio # noqa _check_cuda_version() _IS_RIR_AVAILABLE = torchaudio.lib._torchaudio.is_rir_available() _IS_ALIGN_AVAILABLE = torchaudio.lib._torchaudio.is_align_available() # Similar to libtorchaudio, sox-related features should be importable when present. # # Note: This will be change in the future when sox is dynamically linked. # At that point, this initialization should handle the case where # sox integration is built but libsox is not found. _SOX_INITIALIZED = False if is_module_available("torchaudio.lib._torchaudio_sox"): _init_sox() _SOX_INITIALIZED = True # Initialize FFmpeg-related features _FFMPEG_EXT = None if _IS_TORCHAUDIO_EXT_AVAILABLE: try: _FFMPEG_EXT = _init_ffmpeg() except Exception: # The initialization of FFmpeg extension will fail if supported FFmpeg # libraries are not found in the system. # Since the rest of the torchaudio works without it, we do not report the # error here. # The error will be raised when user code attempts to use these features. _LG.debug("Failed to initialize ffmpeg bindings", exc_info=True) fail_if_no_sox = ( no_op if _SOX_INITIALIZED else fail_with_message( "requires sox extension, but TorchAudio is not compiled with it. Please build TorchAudio with libsox support." ) ) fail_if_no_ffmpeg = _fail_since_no_ffmpeg if _FFMPEG_EXT is None else no_op fail_if_no_rir = ( no_op if _IS_RIR_AVAILABLE else fail_with_message( "requires RIR extension, but TorchAudio is not compiled with it. Please build TorchAudio with RIR support." ) ) fail_if_no_align = ( no_op if _IS_ALIGN_AVAILABLE else fail_with_message( "Requires alignment extension, but TorchAudio is not compiled with it. \ Please build TorchAudio with alignment support." ) )
import logging import os import sys from torchaudio._internal.module_utils import fail_with_message, is_module_available, no_op from .utils import _check_cuda_version, _fail_since_no_ffmpeg, _init_dll_path, _init_ffmpeg, _init_sox, _load_lib _LG = logging.getLogger(__name__) # Note: # `_check_cuda_version` is not meant to be used by regular users. # Builder uses it for debugging purpose, so we export it. # https://github.com/pytorch/builder/blob/e2e4542b8eb0bdf491214451a1a4128bd606cce2/test/smoke_test/smoke_test.py#L80 __all__ = [ "fail_if_no_sox", "fail_if_no_ffmpeg", "_check_cuda_version", "_IS_TORCHAUDIO_EXT_AVAILABLE", "_IS_RIR_AVAILABLE", "_SOX_INITIALIZED", "_FFMPEG_EXT", ] if os.name == "nt" and (3, 8) <= sys.version_info < (3, 9): _init_dll_path() # When the extension module is built, we initialize it. # In case of an error, we do not catch the failure as it suggests there is something # wrong with the installation. _IS_TORCHAUDIO_EXT_AVAILABLE = is_module_available("torchaudio.lib._torchaudio") # RIR features are implemented in _torchaudio extension, but they can be individually # turned on/off at build time. Available means that _torchaudio is loaded properly, and # RIR features are found there. _IS_RIR_AVAILABLE = False _IS_ALIGN_AVAILABLE = False if _IS_TORCHAUDIO_EXT_AVAILABLE: _load_lib("libtorchaudio") import torchaudio.lib._torchaudio # noqa _check_cuda_version() _IS_RIR_AVAILABLE = torchaudio.lib._torchaudio.is_rir_available() _IS_ALIGN_AVAILABLE = torchaudio.lib._torchaudio.is_align_available() # Similar to libtorchaudio, sox-related features should be importable when present. # # Note: This will be change in the future when sox is dynamically linked. # At that point, this initialization should handle the case where # sox integration is built but libsox is not found. _SOX_INITIALIZED = False if is_module_available("torchaudio.lib._torchaudio_sox"): _init_sox() _SOX_INITIALIZED = True # Initialize FFmpeg-related features _FFMPEG_EXT = None if _IS_TORCHAUDIO_EXT_AVAILABLE: try: _FFMPEG_EXT = _init_ffmpeg() except Exception: # The initialization of FFmpeg extension will fail if supported FFmpeg # libraries are not found in the system. # Since the rest of the torchaudio works without it, we do not report the # error here. # The error will be raised when user code attempts to use these features. _LG.debug("Failed to initialize ffmpeg bindings", exc_info=True) fail_if_no_sox = ( no_op if _SOX_INITIALIZED else fail_with_message( "requires sox extension, but TorchAudio is not compiled with it. Please build TorchAudio with libsox support." ) ) fail_if_no_ffmpeg = _fail_since_no_ffmpeg if _FFMPEG_EXT is None else no_op fail_if_no_rir = ( no_op if _IS_RIR_AVAILABLE else fail_with_message( "requires RIR extension, but TorchAudio is not compiled with it. Please build TorchAudio with RIR support." ) ) fail_if_no_align = ( no_op if _IS_ALIGN_AVAILABLE else fail_with_message( "Requires alignment extension, but TorchAudio is not compiled with it. \ Please build TorchAudio with alignment support." ) )
import asyncio from typing import TYPE_CHECKING, Optional, Tuple import grpc from jina.clients.base.retry import wait_or_raise_err from jina.clients.helper import callback_exec from jina.excepts import InternalNetworkError from jina.proto import jina_pb2_grpc from jina.serve.stream import RequestStreamer if TYPE_CHECKING: from jina.types.request import Request class UnaryRpc: """Class that encapsulated the methods required to run unary rpc calls from the client. Instantiate a single class for each client request. """ def __init__( self, channel, continue_on_error, metadata, on_always, on_done, on_error, p_bar, req_iter, max_attempts, backoff_multiplier, initial_backoff, max_backoff, logger, show_progress, compression, client_args, prefetch, results_in_order, **kwargs ): self.results_in_order = results_in_order self.prefetch = prefetch self.client_args = client_args self.compression = compression self.show_progress = show_progress self.logger = logger self.max_backoff = max_backoff self.initial_backoff = initial_backoff self.backoff_multiplier = backoff_multiplier self.max_attempts = max_attempts self.req_iter = req_iter self.p_bar = p_bar self.on_error = on_error self.on_done = on_done self.on_always = on_always self.metadata = metadata self.continue_on_error = continue_on_error self.channel = channel self.kwargs = kwargs async def unary_rpc_with_retry(self): """Wraps the unary rpc call with retry loop based on the retry params. :yields: Responses received from the target. """ stub = jina_pb2_grpc.JinaSingleDataRequestRPCStub(self.channel) def _request_handler( request: 'Request', **kwargs ) -> 'Tuple[asyncio.Future, Optional[asyncio.Future]]': async def _with_retry(req: 'Request'): for attempt in range(1, self.max_attempts + 1): try: return await stub.process_single_data( req, compression=self.compression, metadata=self.metadata, credentials=self.kwargs.get('credentials', None), timeout=self.kwargs.get('timeout', None), ) except ( grpc.aio.AioRpcError, InternalNetworkError, ) as err: await wait_or_raise_err( attempt=attempt, err=err, max_attempts=self.max_attempts, backoff_multiplier=self.backoff_multiplier, initial_backoff=self.initial_backoff, max_backoff=self.max_backoff, ) return ( asyncio.ensure_future(_with_retry(request)), None, ) def _result_handler(resp): callback_exec( response=resp, logger=self.logger, on_error=self.on_error, on_done=self.on_done, on_always=self.on_always, continue_on_error=self.continue_on_error, ) return resp streamer_args = vars(self.client_args) if self.prefetch: streamer_args['prefetch'] = self.prefetch streamer = RequestStreamer( request_handler=_request_handler, result_handler=_result_handler, iterate_sync_in_thread=False, logger=self.logger, **streamer_args, ) async for response in streamer.stream( request_iterator=self.req_iter, results_in_order=self.results_in_order ): if self.show_progress: self.p_bar.update() yield response
import asyncio from typing import TYPE_CHECKING, Optional, Tuple import grpc from jina.clients.base.retry import wait_or_raise_err from jina.clients.helper import callback_exec from jina.excepts import InternalNetworkError from jina.proto import jina_pb2_grpc from jina.serve.stream import RequestStreamer if TYPE_CHECKING: from jina.types.request import Request class UnaryRpc: """Class that encapsulated the methods required to run unary rpc calls from the client. Instantiate a single class for each client request. """ def __init__( self, channel, continue_on_error, metadata, on_always, on_done, on_error, p_bar, req_iter, max_attempts, backoff_multiplier, initial_backoff, max_backoff, logger, show_progress, compression, client_args, prefetch, results_in_order, **kwargs ): self.results_in_order = results_in_order self.prefetch = prefetch self.client_args = client_args self.compression = compression self.show_progress = show_progress self.logger = logger self.max_backoff = max_backoff self.initial_backoff = initial_backoff self.backoff_multiplier = backoff_multiplier self.max_attempts = max_attempts self.req_iter = req_iter self.p_bar = p_bar self.on_error = on_error self.on_done = on_done self.on_always = on_always self.metadata = metadata self.continue_on_error = continue_on_error self.channel = channel self.kwargs = kwargs async def unary_rpc_with_retry(self): """Wraps the unary rpc call with retry loop based on the retry params. :yields: Responses received from the target. """ stub = jina_pb2_grpc.JinaSingleDataRequestRPCStub(self.channel) def _request_handler( request: 'Request', ) -> 'Tuple[asyncio.Future, Optional[asyncio.Future]]': async def _with_retry(req: 'Request'): for attempt in range(1, self.max_attempts + 1): try: return await stub.process_single_data( req, compression=self.compression, metadata=self.metadata, credentials=self.kwargs.get('credentials', None), timeout=self.kwargs.get('timeout', None), ) except ( grpc.aio.AioRpcError, InternalNetworkError, ) as err: await wait_or_raise_err( attempt=attempt, err=err, max_attempts=self.max_attempts, backoff_multiplier=self.backoff_multiplier, initial_backoff=self.initial_backoff, max_backoff=self.max_backoff, ) return ( asyncio.ensure_future(_with_retry(request)), None, ) def _result_handler(resp): callback_exec( response=resp, logger=self.logger, on_error=self.on_error, on_done=self.on_done, on_always=self.on_always, continue_on_error=self.continue_on_error, ) return resp streamer_args = vars(self.client_args) if self.prefetch: streamer_args['prefetch'] = self.prefetch streamer = RequestStreamer( request_handler=_request_handler, result_handler=_result_handler, iterate_sync_in_thread=False, logger=self.logger, **streamer_args, ) async for response in streamer.stream( request_iterator=self.req_iter, results_in_order=self.results_in_order ): if self.show_progress: self.p_bar.update() yield response
# Copyright 2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. git_repo_path = abspath(join(dirname(dirname(dirname(__file__))), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def pytest_addoption(parser): from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(parser) def pytest_terminal_summary(terminalreporter): from diffusers.utils.testing_utils import pytest_terminal_summary_main make_reports = terminalreporter.config.getoption("--make-reports") if make_reports: pytest_terminal_summary_main(terminalreporter, id=make_reports)
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. git_repo_path = abspath(join(dirname(dirname(dirname(__file__))), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def pytest_addoption(parser): from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(parser) def pytest_terminal_summary(terminalreporter): from diffusers.utils.testing_utils import pytest_terminal_summary_main make_reports = terminalreporter.config.getoption("--make-reports") if make_reports: pytest_terminal_summary_main(terminalreporter, id=make_reports)
from docarray.array.document import DocumentArray from docarray.array.storage.weaviate import StorageMixins, WeaviateConfig __all__ = ['DocumentArrayWeaviate', 'WeaviateConfig'] class DocumentArrayWeaviate(StorageMixins, DocumentArray): """ DocumentArray that stores Documents in a `Weaviate <https://weaviate.io/>`_ vector search engine. .. note:: This DocumentArray requires `weaviate-client`. You can install it via `pip install "docarray[weaviate]"`. To use Weaviate as storage backend, a Weaviate service needs to be running on your machine. With this implementation, :meth:`match` and :meth:`find` perform fast (approximate) vector search. Additionally, search with filters is supported. Example usage: .. code-block:: python from docarray import DocumentArray # connect to running Weaviate service with default configuration (address: http://localhost:8080) da = DocumentArray(storage='weaviate') # connect to a previously persisted DocumentArrayWeaviate by specifying name, host, and port da = DocumentArray( storage='weaviate', config={'name': 'Persisted', 'host': 'localhost', 'port': 1234} ) .. seealso:: For further details, see our :ref:`user guide <weaviate>`. """ def __new__(cls, *args, **kwargs): """``__new__`` method for :class:`DocumentArrayWeaviate` :param *args: list of args to instantiate the object :param **kwargs: dict of args to instantiate the object :return: the instantiated :class:`DocumentArrayWeaviate` object """ return super().__new__(cls)
from .document import DocumentArray from .storage.weaviate import StorageMixins, WeaviateConfig __all__ = ['DocumentArrayWeaviate', 'WeaviateConfig'] class DocumentArrayWeaviate(StorageMixins, DocumentArray): """ DocumentArray that stores Documents in a `Weaviate <https://weaviate.io/>`_ vector search engine. .. note:: This DocumentArray requires `weaviate-client`. You can install it via `pip install "docarray[weaviate]"`. To use Weaviate as storage backend, a Weaviate service needs to be running on your machine. With this implementation, :meth:`match` and :meth:`find` perform fast (approximate) vector search. Additionally, search with filters is supported. Example usage: .. code-block:: python from docarray import DocumentArray # connect to running Weaviate service with default configuration (address: http://localhost:8080) da = DocumentArray(storage='weaviate') # connect to a previously persisted DocumentArrayWeaviate by specifying name, host, and port da = DocumentArray( storage='weaviate', config={'name': 'Persisted', 'host': 'localhost', 'port': 1234} ) .. seealso:: For further details, see our :ref:`user guide <weaviate>`. """ def __new__(cls, *args, **kwargs): """``__new__`` method for :class:`DocumentArrayWeaviate` :param *args: list of args to instantiate the object :param **kwargs: dict of args to instantiate the object :return: the instantiated :class:`DocumentArrayWeaviate` object """ return super().__new__(cls)
# Licensed to the LF AI & Data foundation under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import pytest import torch from pydantic.tools import parse_obj_as, schema_json_of from docarray import BaseDoc from docarray.base_doc.io.json import orjson_dumps from docarray.typing import AnyEmbedding, NdArrayEmbedding, TorchEmbedding from docarray.utils._internal.misc import is_tf_available tf_available = is_tf_available() if tf_available: import tensorflow as tf from docarray.computation.tensorflow_backend import tnp from docarray.typing.tensor.embedding import TensorFlowEmbedding @pytest.mark.proto def test_proto_embedding(): embedding = parse_obj_as(AnyEmbedding, np.zeros((3, 224, 224))) embedding._to_node_protobuf() def test_json_schema(): schema_json_of(AnyEmbedding) def test_dump_json(): tensor = parse_obj_as(AnyEmbedding, np.zeros((3, 224, 224))) orjson_dumps(tensor) @pytest.mark.parametrize( 'tensor,cls_audio_tensor,cls_tensor', [ (torch.zeros(1000, 2), TorchEmbedding, torch.Tensor), (np.zeros((1000, 2)), NdArrayEmbedding, np.ndarray), ], ) def test_torch_ndarray_to_any_embedding(tensor, cls_audio_tensor, cls_tensor): class MyEmbeddingDoc(BaseDoc): tensor: AnyEmbedding doc = MyEmbeddingDoc(tensor=tensor) assert isinstance(doc.tensor, cls_audio_tensor) assert isinstance(doc.tensor, cls_tensor) assert (doc.tensor == tensor).all() @pytest.mark.tensorflow def test_tensorflow_to_any_embedding(): class MyEmbeddingDoc(BaseDoc): tensor: AnyEmbedding doc = MyEmbeddingDoc(tensor=tf.zeros((1000, 2))) assert isinstance(doc.tensor, TensorFlowEmbedding) assert isinstance(doc.tensor.tensor, tf.Tensor) assert tnp.allclose(doc.tensor.tensor, tf.zeros((1000, 2)))
import numpy as np import pytest import torch from pydantic.tools import parse_obj_as, schema_json_of from docarray import BaseDoc from docarray.base_doc.io.json import orjson_dumps from docarray.typing import AnyEmbedding, NdArrayEmbedding, TorchEmbedding from docarray.utils._internal.misc import is_tf_available tf_available = is_tf_available() if tf_available: import tensorflow as tf from docarray.computation.tensorflow_backend import tnp from docarray.typing.tensor.embedding import TensorFlowEmbedding @pytest.mark.proto def test_proto_embedding(): embedding = parse_obj_as(AnyEmbedding, np.zeros((3, 224, 224))) embedding._to_node_protobuf() def test_json_schema(): schema_json_of(AnyEmbedding) def test_dump_json(): tensor = parse_obj_as(AnyEmbedding, np.zeros((3, 224, 224))) orjson_dumps(tensor) @pytest.mark.parametrize( 'tensor,cls_audio_tensor,cls_tensor', [ (torch.zeros(1000, 2), TorchEmbedding, torch.Tensor), (np.zeros((1000, 2)), NdArrayEmbedding, np.ndarray), ], ) def test_torch_ndarray_to_any_embedding(tensor, cls_audio_tensor, cls_tensor): class MyEmbeddingDoc(BaseDoc): tensor: AnyEmbedding doc = MyEmbeddingDoc(tensor=tensor) assert isinstance(doc.tensor, cls_audio_tensor) assert isinstance(doc.tensor, cls_tensor) assert (doc.tensor == tensor).all() @pytest.mark.tensorflow def test_tensorflow_to_any_embedding(): class MyEmbeddingDoc(BaseDoc): tensor: AnyEmbedding doc = MyEmbeddingDoc(tensor=tf.zeros((1000, 2))) assert isinstance(doc.tensor, TensorFlowEmbedding) assert isinstance(doc.tensor.tensor, tf.Tensor) assert tnp.allclose(doc.tensor.tensor, tf.zeros((1000, 2)))
import torch from torchvision.prototype import datapoints def uniform_temporal_subsample_video(video: torch.Tensor, num_samples: int, temporal_dim: int = -4) -> torch.Tensor: # Reference: https://github.com/facebookresearch/pytorchvideo/blob/a0a131e/pytorchvideo/transforms/functional.py#L19 t_max = video.shape[temporal_dim] - 1 indices = torch.linspace(0, t_max, num_samples, device=video.device).long() return torch.index_select(video, temporal_dim, indices) def uniform_temporal_subsample( inpt: datapoints.VideoTypeJIT, num_samples: int, temporal_dim: int = -4 ) -> datapoints.VideoTypeJIT: if isinstance(inpt, torch.Tensor) and (torch.jit.is_scripting() or not isinstance(inpt, datapoints.Video)): return uniform_temporal_subsample_video(inpt, num_samples, temporal_dim=temporal_dim) elif isinstance(inpt, datapoints.Video): if temporal_dim != -4 and inpt.ndim - 4 != temporal_dim: raise ValueError("Video inputs must have temporal_dim equivalent to -4") output = uniform_temporal_subsample_video( inpt.as_subclass(torch.Tensor), num_samples, temporal_dim=temporal_dim ) return datapoints.Video.wrap_like(inpt, output) else: raise TypeError(f"Input can either be a plain tensor or a `Video` datapoint, but got {type(inpt)} instead.")
import torch from torchvision.prototype import features def uniform_temporal_subsample_video(video: torch.Tensor, num_samples: int, temporal_dim: int = -4) -> torch.Tensor: # Reference: https://github.com/facebookresearch/pytorchvideo/blob/a0a131e/pytorchvideo/transforms/functional.py#L19 t_max = video.shape[temporal_dim] - 1 indices = torch.linspace(0, t_max, num_samples, device=video.device).long() return torch.index_select(video, temporal_dim, indices) def uniform_temporal_subsample( inpt: features.VideoTypeJIT, num_samples: int, temporal_dim: int = -4 ) -> features.VideoTypeJIT: if isinstance(inpt, torch.Tensor) and (torch.jit.is_scripting() or not isinstance(inpt, features.Video)): return uniform_temporal_subsample_video(inpt, num_samples, temporal_dim=temporal_dim) elif isinstance(inpt, features.Video): if temporal_dim != -4 and inpt.ndim - 4 != temporal_dim: raise ValueError("Video inputs must have temporal_dim equivalent to -4") output = uniform_temporal_subsample_video( inpt.as_subclass(torch.Tensor), num_samples, temporal_dim=temporal_dim ) return features.Video.wrap_like(inpt, output) else: raise TypeError( f"Input can either be a plain tensor or a `Video` tensor subclass, but got {type(inpt)} instead." )
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.tools.tavily_search.tool import ( TavilyAnswer, TavilyInput, TavilySearchResults, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "TavilyInput": "langchain_community.tools.tavily_search.tool", "TavilySearchResults": "langchain_community.tools.tavily_search.tool", "TavilyAnswer": "langchain_community.tools.tavily_search.tool", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "TavilyAnswer", "TavilyInput", "TavilySearchResults", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.tools.tavily_search.tool import ( TavilyAnswer, TavilyInput, TavilySearchResults, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "TavilyInput": "langchain_community.tools.tavily_search.tool", "TavilySearchResults": "langchain_community.tools.tavily_search.tool", "TavilyAnswer": "langchain_community.tools.tavily_search.tool", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "TavilyInput", "TavilySearchResults", "TavilyAnswer", ]
# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import torch from mmengine.structures import InstanceData from mmdet.registry import MODELS from mmdet.structures import DetDataSample from mmdet.testing import get_detector_cfg from mmdet.utils import register_all_modules class TestDINO(TestCase): def setUp(self): register_all_modules() def test_dino_head_loss(self): """Tests transformer head loss when truth is empty and non-empty.""" s = 256 metainfo = { 'img_shape': (s, s), 'scale_factor': (1, 1), 'pad_shape': (s, s), 'batch_input_shape': (s, s) } data_sample = DetDataSample() data_sample.set_metainfo(metainfo) configs = [get_detector_cfg('dino/dino-4scale_r50_8xb2-12e_coco.py')] for config in configs: model = MODELS.build(config) model.init_weights() random_image = torch.rand(1, 3, s, s) # Test that empty ground truth encourages the network to # predict background gt_instances = InstanceData() gt_instances.bboxes = torch.empty((0, 4)) gt_instances.labels = torch.LongTensor([]) data_sample.gt_instances = gt_instances batch_data_samples_1 = [data_sample] empty_gt_losses = model.loss( random_image, batch_data_samples=batch_data_samples_1) # When there is no truth, the cls loss should be nonzero but there # should be no box loss. for key, loss in empty_gt_losses.items(): _loss = loss.item() if 'bbox' in key or 'iou' in key or 'dn' in key: self.assertEqual( _loss, 0, f'there should be no {key}({_loss}) ' f'when no ground true boxes') elif 'cls' in key: self.assertGreater(_loss, 0, f'{key}({_loss}) should be non-zero') # When truth is non-empty then both cls and box loss should # be nonzero for random inputs gt_instances = InstanceData() gt_instances.bboxes = torch.Tensor( [[23.6667, 23.8757, 238.6326, 151.8874]]) gt_instances.labels = torch.LongTensor([2]) data_sample.gt_instances = gt_instances batch_data_samples_2 = [data_sample] one_gt_losses = model.loss( random_image, batch_data_samples=batch_data_samples_2) for loss in one_gt_losses.values(): self.assertGreater( loss.item(), 0, 'cls loss, or box loss, or iou loss should be non-zero') model.eval() # test _forward model._forward( random_image, batch_data_samples=batch_data_samples_2) # test only predict model.predict( random_image, batch_data_samples=batch_data_samples_2, rescale=True)
# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import torch from mmengine.structures import InstanceData from mmdet.models import build_detector from mmdet.structures import DetDataSample from mmdet.testing import get_detector_cfg from mmdet.utils import register_all_modules class TestDINO(TestCase): def setUp(self): register_all_modules() def test_dino_head_loss(self): """Tests transformer head loss when truth is empty and non-empty.""" s = 256 metainfo = { 'img_shape': (s, s), 'scale_factor': (1, 1), 'pad_shape': (s, s), 'batch_input_shape': (s, s) } data_sample = DetDataSample() data_sample.set_metainfo(metainfo) configs = [get_detector_cfg('dino/dino-4scale_r50_8xb2-12e_coco.py')] for config in configs: model = build_detector(config) model.init_weights() random_image = torch.rand(1, 3, s, s) # Test that empty ground truth encourages the network to # predict background gt_instances = InstanceData() gt_instances.bboxes = torch.empty((0, 4)) gt_instances.labels = torch.LongTensor([]) data_sample.gt_instances = gt_instances batch_data_samples_1 = [data_sample] empty_gt_losses = model.loss( random_image, batch_data_samples=batch_data_samples_1) # When there is no truth, the cls loss should be nonzero but there # should be no box loss. for key, loss in empty_gt_losses.items(): _loss = loss.item() if 'bbox' in key or 'iou' in key or 'dn' in key: self.assertEqual( _loss, 0, f'there should be no {key}({_loss}) ' f'when no ground true boxes') elif 'cls' in key: self.assertGreater(_loss, 0, f'{key}({_loss}) should be non-zero') # When truth is non-empty then both cls and box loss should # be nonzero for random inputs gt_instances = InstanceData() gt_instances.bboxes = torch.Tensor( [[23.6667, 23.8757, 238.6326, 151.8874]]) gt_instances.labels = torch.LongTensor([2]) data_sample.gt_instances = gt_instances batch_data_samples_2 = [data_sample] one_gt_losses = model.loss( random_image, batch_data_samples=batch_data_samples_2) for loss in one_gt_losses.values(): self.assertGreater( loss.item(), 0, 'cls loss, or box loss, or iou loss should be non-zero') model.eval() # test _forward model._forward( random_image, batch_data_samples=batch_data_samples_2) # test only predict model.predict( random_image, batch_data_samples=batch_data_samples_2, rescale=True)
# Copyright (c) OpenMMLab. All rights reserved. __version__ = '2.20.0' short_version = __version__ def parse_version_info(version_str): version_info = [] for x in version_str.split('.'): if x.isdigit(): version_info.append(int(x)) elif x.find('rc') != -1: patch_version = x.split('rc') version_info.append(int(patch_version[0])) version_info.append(f'rc{patch_version[1]}') return tuple(version_info) version_info = parse_version_info(__version__)
# Copyright (c) OpenMMLab. All rights reserved. __version__ = '2.19.1' short_version = __version__ def parse_version_info(version_str): version_info = [] for x in version_str.split('.'): if x.isdigit(): version_info.append(int(x)) elif x.find('rc') != -1: patch_version = x.split('rc') version_info.append(int(patch_version[0])) version_info.append(f'rc{patch_version[1]}') return tuple(version_info) version_info = parse_version_info(__version__)
_base_ = '../common/lsj-200e_coco-detection.py' image_size = (1024, 1024) batch_augments = [dict(type='BatchFixedSizePad', size=image_size)] # model settings model = dict( type='FCOS', data_preprocessor=dict( type='DetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, pad_size_divisor=32, batch_augments=batch_augments), backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_output', # use P5 num_outs=5, relu_before_extra_convs=True), bbox_head=dict( type='FCOSHead', num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, strides=[8, 16, 32, 64, 128], norm_on_bbox=True, centerness_on_reg=True, dcn_on_last_conv=False, center_sampling=True, conv_bias=True, loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=1.0), loss_centerness=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)), # testing settings test_cfg=dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, nms=dict(type='nms', iou_threshold=0.6), max_per_img=100)) train_dataloader = dict(batch_size=8, num_workers=4) # Enable automatic-mixed-precision training with AmpOptimWrapper. optim_wrapper = dict( type='AmpOptimWrapper', optimizer=dict( type='SGD', lr=0.01 * 4, momentum=0.9, weight_decay=0.00004), paramwise_cfg=dict(bias_lr_mult=2., bias_decay_mult=0.), clip_grad=dict(max_norm=35, norm_type=2)) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (8 samples per GPU) auto_scale_lr = dict(base_batch_size=64)
_base_ = '../common/lsj_200e_coco_detection.py' image_size = (1024, 1024) batch_augments = [dict(type='BatchFixedSizePad', size=image_size)] # model settings model = dict( type='FCOS', data_preprocessor=dict( type='DetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, pad_size_divisor=32, batch_augments=batch_augments), backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_output', # use P5 num_outs=5, relu_before_extra_convs=True), bbox_head=dict( type='FCOSHead', num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, strides=[8, 16, 32, 64, 128], norm_on_bbox=True, centerness_on_reg=True, dcn_on_last_conv=False, center_sampling=True, conv_bias=True, loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=1.0), loss_centerness=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)), # testing settings test_cfg=dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, nms=dict(type='nms', iou_threshold=0.6), max_per_img=100)) train_dataloader = dict(batch_size=8, num_workers=4) # Enable automatic-mixed-precision training with AmpOptimWrapper. optim_wrapper = dict( type='AmpOptimWrapper', optimizer=dict( type='SGD', lr=0.01 * 4, momentum=0.9, weight_decay=0.00004), paramwise_cfg=dict(bias_lr_mult=2., bias_decay_mult=0.), clip_grad=dict(max_norm=35, norm_type=2)) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (8 samples per GPU) auto_scale_lr = dict(base_batch_size=64)
# Copyright (c) OpenMMLab. All rights reserved. from .ade20k import ADE20KDataset, ADE20KPanopticDataset from .base_det_dataset import BaseDetDataset from .base_semseg_dataset import BaseSegDataset from .base_video_dataset import BaseVideoDataset from .cityscapes import CityscapesDataset from .coco import CocoDataset from .coco_caption import COCOCaptionDataset from .coco_panoptic import CocoPanopticDataset from .crowdhuman import CrowdHumanDataset from .dataset_wrappers import MultiImageMixDataset from .deepfashion import DeepFashionDataset from .dsdl import DSDLDetDataset from .lvis import LVISDataset, LVISV1Dataset, LVISV05Dataset from .mot_challenge_dataset import MOTChallengeDataset from .objects365 import Objects365V1Dataset, Objects365V2Dataset from .openimages import OpenImagesChallengeDataset, OpenImagesDataset from .refcoco import RefCOCODataset from .reid_dataset import ReIDDataset from .samplers import (AspectRatioBatchSampler, ClassAwareSampler, GroupMultiSourceSampler, MultiSourceSampler, TrackAspectRatioBatchSampler, TrackImgSampler) from .utils import get_loading_pipeline from .voc import VOCDataset from .wider_face import WIDERFaceDataset from .xml_style import XMLDataset from .youtube_vis_dataset import YouTubeVISDataset __all__ = [ 'XMLDataset', 'CocoDataset', 'DeepFashionDataset', 'VOCDataset', 'CityscapesDataset', 'LVISDataset', 'LVISV05Dataset', 'LVISV1Dataset', 'WIDERFaceDataset', 'get_loading_pipeline', 'CocoPanopticDataset', 'MultiImageMixDataset', 'OpenImagesDataset', 'OpenImagesChallengeDataset', 'AspectRatioBatchSampler', 'ClassAwareSampler', 'MultiSourceSampler', 'GroupMultiSourceSampler', 'BaseDetDataset', 'CrowdHumanDataset', 'Objects365V1Dataset', 'Objects365V2Dataset', 'DSDLDetDataset', 'BaseVideoDataset', 'MOTChallengeDataset', 'TrackImgSampler', 'ReIDDataset', 'YouTubeVISDataset', 'TrackAspectRatioBatchSampler', 'ADE20KPanopticDataset', 'COCOCaptionDataset', 'RefCOCODataset', 'BaseSegDataset', 'ADE20KDataset' ]
# Copyright (c) OpenMMLab. All rights reserved. from .ade20k import ADE20KPanopticDataset from .base_det_dataset import BaseDetDataset from .base_video_dataset import BaseVideoDataset from .cityscapes import CityscapesDataset from .coco import CocoDataset from .coco_caption import COCOCaptionDataset from .coco_panoptic import CocoPanopticDataset from .crowdhuman import CrowdHumanDataset from .dataset_wrappers import MultiImageMixDataset from .deepfashion import DeepFashionDataset from .dsdl import DSDLDetDataset from .lvis import LVISDataset, LVISV1Dataset, LVISV05Dataset from .mot_challenge_dataset import MOTChallengeDataset from .objects365 import Objects365V1Dataset, Objects365V2Dataset from .openimages import OpenImagesChallengeDataset, OpenImagesDataset from .refcoco import RefCOCODataset from .reid_dataset import ReIDDataset from .samplers import (AspectRatioBatchSampler, ClassAwareSampler, GroupMultiSourceSampler, MultiSourceSampler, TrackAspectRatioBatchSampler, TrackImgSampler) from .utils import get_loading_pipeline from .voc import VOCDataset from .wider_face import WIDERFaceDataset from .xml_style import XMLDataset from .youtube_vis_dataset import YouTubeVISDataset __all__ = [ 'XMLDataset', 'CocoDataset', 'DeepFashionDataset', 'VOCDataset', 'CityscapesDataset', 'LVISDataset', 'LVISV05Dataset', 'LVISV1Dataset', 'WIDERFaceDataset', 'get_loading_pipeline', 'CocoPanopticDataset', 'MultiImageMixDataset', 'OpenImagesDataset', 'OpenImagesChallengeDataset', 'AspectRatioBatchSampler', 'ClassAwareSampler', 'MultiSourceSampler', 'GroupMultiSourceSampler', 'BaseDetDataset', 'CrowdHumanDataset', 'Objects365V1Dataset', 'Objects365V2Dataset', 'DSDLDetDataset', 'BaseVideoDataset', 'MOTChallengeDataset', 'TrackImgSampler', 'ReIDDataset', 'YouTubeVISDataset', 'TrackAspectRatioBatchSampler', 'ADE20KPanopticDataset', 'COCOCaptionDataset', 'RefCOCODataset' ]
from typing import Optional from docarray import Document, DocumentArray from pydantic import BaseModel from uvicorn import Config, Server from jina import Gateway, __default_host__ from jina.clients.request import request_generator class DummyResponseModel(BaseModel): arg1: Optional[str] arg2: Optional[str] arg3: Optional[str] class ProcessedResponseModel(BaseModel): text: str tags: Optional[dict] class DummyGateway(Gateway): def __init__( self, arg1: str = None, arg2: str = None, arg3: str = 'default-arg3', **kwargs ): super().__init__(**kwargs) self.port = self.runtime_args.port[0] self.host = self.runtime_args.host self.arg1 = arg1 self.arg2 = arg2 self.arg3 = arg3 async def setup_server(self): from fastapi import FastAPI app = FastAPI( title='Dummy Server', ) @app.get(path='/', response_model=DummyResponseModel) def _get_response(): return { 'arg1': self.arg1, 'arg2': self.arg2, 'arg3': self.arg3, } @app.get( path='/stream', response_model=ProcessedResponseModel, ) async def _process(text: str): doc = None async for req in self.streamer.stream( request_generator( exec_endpoint='/', data=DocumentArray([Document(text=text)]), ) ): doc = req.to_dict()['data'][0] return {'text': doc['text'], 'tags': doc['tags']} self.server = Server(Config(app, host=self.host, port=self.port)) async def run_server(self): await self.server.serve() async def shutdown(self): self.server.should_exit = True await self.server.shutdown()
from typing import Optional from docarray import Document, DocumentArray from pydantic import BaseModel from uvicorn import Config, Server from jina import Gateway, __default_host__ from jina.clients.request import request_generator class DummyResponseModel(BaseModel): arg1: Optional[str] arg2: Optional[str] arg3: Optional[str] class ProcessedResponseModel(BaseModel): text: str tags: Optional[dict] class DummyGateway(Gateway): def __init__( self, arg1: str = None, arg2: str = None, arg3: str = 'default-arg3', **kwargs ): super().__init__(**kwargs) self.port = self.runtime_args.port[0] self.arg1 = arg1 self.arg2 = arg2 self.arg3 = arg3 async def setup_server(self): from fastapi import FastAPI app = FastAPI( title='Dummy Server', ) @app.get(path='/', response_model=DummyResponseModel) def _get_response(): return { 'arg1': self.arg1, 'arg2': self.arg2, 'arg3': self.arg3, } @app.get( path='/stream', response_model=ProcessedResponseModel, ) async def _process(text: str): doc = None async for req in self.streamer.stream( request_generator( exec_endpoint='/', data=DocumentArray([Document(text=text)]), ) ): doc = req.to_dict()['data'][0] return {'text': doc['text'], 'tags': doc['tags']} self.server = Server(Config(app, host=__default_host__, port=self.port)) async def run_server(self): await self.server.serve() async def shutdown(self): self.server.should_exit = True await self.server.shutdown()
# Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torchvision_available, is_vision_available from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs if is_vision_available(): from transformers import MobileNetV2ImageProcessor if is_torchvision_available(): from transformers import MobileNetV2ImageProcessorFast class MobileNetV2ImageProcessingTester: def __init__( self, parent, batch_size=7, num_channels=3, image_size=18, min_resolution=30, max_resolution=400, do_resize=True, size=None, do_center_crop=True, crop_size=None, ): size = size if size is not None else {"shortest_edge": 20} crop_size = crop_size if crop_size is not None else {"height": 18, "width": 18} self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.image_size = image_size self.min_resolution = min_resolution self.max_resolution = max_resolution self.do_resize = do_resize self.size = size self.do_center_crop = do_center_crop self.crop_size = crop_size def prepare_image_processor_dict(self): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } def expected_output_image_shape(self, images): return self.num_channels, self.crop_size["height"], self.crop_size["width"] def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False): return prepare_image_inputs( batch_size=self.batch_size, num_channels=self.num_channels, min_resolution=self.min_resolution, max_resolution=self.max_resolution, equal_resolution=equal_resolution, numpify=numpify, torchify=torchify, ) @require_torch @require_vision class MobileNetV2ImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase): image_processing_class = MobileNetV2ImageProcessor if is_vision_available() else None fast_image_processing_class = MobileNetV2ImageProcessorFast if is_torchvision_available() else None def setUp(self): super().setUp() self.image_processor_tester = MobileNetV2ImageProcessingTester(self) @property def image_processor_dict(self): return self.image_processor_tester.prepare_image_processor_dict() def test_image_processor_properties(self): for image_processing_class in self.image_processor_list: image_processor = image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(image_processor, "do_resize")) self.assertTrue(hasattr(image_processor, "size")) self.assertTrue(hasattr(image_processor, "do_center_crop")) self.assertTrue(hasattr(image_processor, "crop_size")) def test_image_processor_from_dict_with_kwargs(self): for image_processing_class in self.image_processor_list: image_processor = image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size, {"shortest_edge": 20}) self.assertEqual(image_processor.crop_size, {"height": 18, "width": 18}) image_processor = image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84) self.assertEqual(image_processor.size, {"shortest_edge": 42}) self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84})
# Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_vision_available from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs if is_vision_available(): from transformers import MobileNetV2ImageProcessor class MobileNetV2ImageProcessingTester: def __init__( self, parent, batch_size=7, num_channels=3, image_size=18, min_resolution=30, max_resolution=400, do_resize=True, size=None, do_center_crop=True, crop_size=None, ): size = size if size is not None else {"shortest_edge": 20} crop_size = crop_size if crop_size is not None else {"height": 18, "width": 18} self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.image_size = image_size self.min_resolution = min_resolution self.max_resolution = max_resolution self.do_resize = do_resize self.size = size self.do_center_crop = do_center_crop self.crop_size = crop_size def prepare_image_processor_dict(self): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } def expected_output_image_shape(self, images): return self.num_channels, self.crop_size["height"], self.crop_size["width"] def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False): return prepare_image_inputs( batch_size=self.batch_size, num_channels=self.num_channels, min_resolution=self.min_resolution, max_resolution=self.max_resolution, equal_resolution=equal_resolution, numpify=numpify, torchify=torchify, ) @require_torch @require_vision class MobileNetV2ImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase): image_processing_class = MobileNetV2ImageProcessor if is_vision_available() else None def setUp(self): super().setUp() self.image_processor_tester = MobileNetV2ImageProcessingTester(self) @property def image_processor_dict(self): return self.image_processor_tester.prepare_image_processor_dict() def test_image_processor_properties(self): image_processor = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(image_processor, "do_resize")) self.assertTrue(hasattr(image_processor, "size")) self.assertTrue(hasattr(image_processor, "do_center_crop")) self.assertTrue(hasattr(image_processor, "crop_size")) def test_image_processor_from_dict_with_kwargs(self): image_processor = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size, {"shortest_edge": 20}) self.assertEqual(image_processor.crop_size, {"height": 18, "width": 18}) image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84) self.assertEqual(image_processor.size, {"shortest_edge": 42}) self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84})
import argparse import os from typing import List, Union def api_to_dict(show_all_args: bool = False): """Convert Jina API to a dict :param show_all_args: if set, then hidden args are also exported :return: dict """ if show_all_args: from jina.parsers import helper helper._SHOW_ALL_ARGS, old_val = True, helper._SHOW_ALL_ARGS from jina import __version__ from jina.parsers import get_main_parser all_d = { 'name': 'Jina', 'description': 'Build multimodal AI services via cloud native technologies', 'license': 'Apache 2.0', 'vendor': 'Jina AI Limited', 'source': 'https://github.com/jina-ai/jina/tree/' + os.environ.get('JINA_VCS_VERSION', 'master'), 'url': 'https://jina.ai', 'docs': 'https://docs.jina.ai', 'authors': '[email protected]', 'version': __version__, 'methods': [], 'revision': os.environ.get('JINA_VCS_VERSION'), } def get_p(p, parent_d): parsers = p()._actions[-1].choices if parsers: for p_name in parsers.keys(): d = {'name': p_name, 'options': [], 'help': parsers[p_name].description} for ddd in _export_parser_args( lambda *x: p()._actions[-1].choices[p_name], type_as_str=True ): d['options'].append(ddd) if not d['options']: d['methods'] = [] get_p(lambda *x: parsers[p_name], d) parent_d['methods'].append(d) get_p(get_main_parser, all_d) if show_all_args: helper._SHOW_ALL_ARGS = old_val return all_d def _export_parser_args(parser_fn, type_as_str: bool = False, **kwargs): from argparse import _StoreAction, _StoreTrueAction from jina.enums import BetterEnum from jina.parsers.helper import _SHOW_ALL_ARGS, CastToIntAction, KVAppendAction port_attr = ('help', 'choices', 'default', 'required', 'option_strings', 'dest') parser = parser_fn(**kwargs) parser2 = parser_fn(**kwargs) random_dest = set() for a, b in zip(parser._actions, parser2._actions): if a.default != b.default: random_dest.add(a.dest) for a in parser._actions: if isinstance( a, (_StoreAction, _StoreTrueAction, KVAppendAction, CastToIntAction) ): if not _SHOW_ALL_ARGS and a.help == argparse.SUPPRESS: continue ddd = {p: getattr(a, p) for p in port_attr} if isinstance(a, _StoreTrueAction): ddd['type'] = bool elif isinstance(a, KVAppendAction): ddd['type'] = dict elif isinstance(a, CastToIntAction): ddd['type'] = Union[int, List[int]] else: ddd['type'] = a.type if ddd['choices']: ddd['choices'] = [ str(k) if isinstance(k, BetterEnum) else k for k in ddd['choices'] ] ddd['type'] = str if isinstance(ddd['default'], BetterEnum): ddd['default'] = str(ddd['default']) ddd['type'] = str if ddd['type'] == str and (a.nargs == '*' or a.nargs == '+'): ddd['type'] = List[str] else: continue if a.dest in random_dest: ddd['default_random'] = True from jina.helper import random_identity, random_port if isinstance(a.default, str): ddd['default_factory'] = random_identity.__name__ elif isinstance(a.default, int): ddd['default_factory'] = random_port.__name__ else: ddd['default_random'] = False if type_as_str: ddd['type'] = getattr(ddd['type'], '__name__', str(ddd['type'])) ddd['name'] = ddd.pop('dest') yield ddd
import argparse import os from typing import List def api_to_dict(show_all_args: bool = False): """Convert Jina API to a dict :param show_all_args: if set, then hidden args are also exported :return: dict """ if show_all_args: from jina.parsers import helper helper._SHOW_ALL_ARGS, old_val = True, helper._SHOW_ALL_ARGS from jina import __version__ from jina.parsers import get_main_parser all_d = { 'name': 'Jina', 'description': 'Build multimodal AI services via cloud native technologies', 'license': 'Apache 2.0', 'vendor': 'Jina AI Limited', 'source': 'https://github.com/jina-ai/jina/tree/' + os.environ.get('JINA_VCS_VERSION', 'master'), 'url': 'https://jina.ai', 'docs': 'https://docs.jina.ai', 'authors': '[email protected]', 'version': __version__, 'methods': [], 'revision': os.environ.get('JINA_VCS_VERSION'), } def get_p(p, parent_d): parsers = p()._actions[-1].choices if parsers: for p_name in parsers.keys(): d = {'name': p_name, 'options': [], 'help': parsers[p_name].description} for ddd in _export_parser_args( lambda *x: p()._actions[-1].choices[p_name], type_as_str=True ): d['options'].append(ddd) if not d['options']: d['methods'] = [] get_p(lambda *x: parsers[p_name], d) parent_d['methods'].append(d) get_p(get_main_parser, all_d) if show_all_args: helper._SHOW_ALL_ARGS = old_val return all_d def _export_parser_args(parser_fn, type_as_str: bool = False, **kwargs): from argparse import _StoreAction, _StoreTrueAction from jina.enums import BetterEnum from jina.parsers.helper import _SHOW_ALL_ARGS, KVAppendAction port_attr = ('help', 'choices', 'default', 'required', 'option_strings', 'dest') parser = parser_fn(**kwargs) parser2 = parser_fn(**kwargs) random_dest = set() for a, b in zip(parser._actions, parser2._actions): if a.default != b.default: random_dest.add(a.dest) for a in parser._actions: if isinstance(a, (_StoreAction, _StoreTrueAction, KVAppendAction)): if not _SHOW_ALL_ARGS and a.help == argparse.SUPPRESS: continue ddd = {p: getattr(a, p) for p in port_attr} if isinstance(a, _StoreTrueAction): ddd['type'] = bool elif isinstance(a, KVAppendAction): ddd['type'] = dict else: ddd['type'] = a.type if ddd['choices']: ddd['choices'] = [ str(k) if isinstance(k, BetterEnum) else k for k in ddd['choices'] ] ddd['type'] = str if isinstance(ddd['default'], BetterEnum): ddd['default'] = str(ddd['default']) ddd['type'] = str if ddd['type'] == str and (a.nargs == '*' or a.nargs == '+'): ddd['type'] = List[str] else: continue if a.dest in random_dest: ddd['default_random'] = True from jina.helper import random_identity, random_port if isinstance(a.default, str): ddd['default_factory'] = random_identity.__name__ elif isinstance(a.default, int): ddd['default_factory'] = random_port.__name__ else: ddd['default_random'] = False if type_as_str: ddd['type'] = getattr(ddd['type'], '__name__', str(ddd['type'])) ddd['name'] = ddd.pop('dest') yield ddd
_base_ = './grid_rcnn_r50_fpn_gn-head_2x_coco.py' # training schedule max_epochs = 12 train_cfg = dict(max_epochs=max_epochs) # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.0001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[8, 11], gamma=0.1) ]
_base_ = ['grid_rcnn_r50_fpn_gn-head_2x_coco.py'] # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=0.001, step=[8, 11]) checkpoint_config = dict(interval=1) # runtime settings runner = dict(type='EpochBasedRunner', max_epochs=12)
"""Smart PDF Loader.""" from typing import Any, Dict, List, Optional from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document class SmartPDFLoader(BaseReader): """ SmartPDFLoader uses nested layout information such as sections, paragraphs, lists and tables to smartly chunk PDFs for optimal usage of LLM context window. Args: llmsherpa_api_url (str): Address of the service hosting llmsherpa PDF parser """ def __init__( self, *args: Any, llmsherpa_api_url: str = None, **kwargs: Any ) -> None: super().__init__(*args, **kwargs) from llmsherpa.readers import LayoutPDFReader self.pdf_reader = LayoutPDFReader(llmsherpa_api_url) def load_data( self, pdf_path_or_url: str, extra_info: Optional[Dict] = None ) -> List[Document]: """ Load data and extract table from PDF file. Args: pdf_path_or_url (str): A url or file path pointing to the PDF Returns: List[Document]: List of documents. """ results = [] doc = self.pdf_reader.read_pdf(str(pdf_path_or_url)) for chunk in doc.chunks(): document = Document( text=chunk.to_context_text(), extra_info={**extra_info, "chunk_type": chunk.tag} if extra_info else {"chunk_type": chunk.tag}, ) results.append(document) return results
"""Smart PDF Loader.""" from typing import Any, Dict, List, Optional from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document class SmartPDFLoader(BaseReader): """SmartPDFLoader uses nested layout information such as sections, paragraphs, lists and tables to smartly chunk PDFs for optimal usage of LLM context window. Args: llmsherpa_api_url (str): Address of the service hosting llmsherpa PDF parser """ def __init__( self, *args: Any, llmsherpa_api_url: str = None, **kwargs: Any ) -> None: super().__init__(*args, **kwargs) from llmsherpa.readers import LayoutPDFReader self.pdf_reader = LayoutPDFReader(llmsherpa_api_url) def load_data( self, pdf_path_or_url: str, extra_info: Optional[Dict] = None ) -> List[Document]: """Load data and extract table from PDF file. Args: pdf_path_or_url (str): A url or file path pointing to the PDF Returns: List[Document]: List of documents. """ results = [] doc = self.pdf_reader.read_pdf(str(pdf_path_or_url)) for chunk in doc.chunks(): document = Document( text=chunk.to_context_text(), extra_info={**extra_info, "chunk_type": chunk.tag} if extra_info else {"chunk_type": chunk.tag}, ) results.append(document) return results
"""Chat generation output classes.""" from __future__ import annotations from typing import Literal, Union from pydantic import model_validator from typing_extensions import Self from langchain_core.messages import BaseMessage, BaseMessageChunk from langchain_core.outputs.generation import Generation from langchain_core.utils._merge import merge_dicts class ChatGeneration(Generation): """A single chat generation output. A subclass of Generation that represents the response from a chat model that generates chat messages. The `message` attribute is a structured representation of the chat message. Most of the time, the message will be of type `AIMessage`. Users working with chat models will usually access information via either `AIMessage` (returned from runnable interfaces) or `LLMResult` (available via callbacks). """ text: str = "" """*SHOULD NOT BE SET DIRECTLY* The text contents of the output message.""" message: BaseMessage """The message output by the chat model.""" # Override type to be ChatGeneration, ignore mypy error as this is intentional type: Literal["ChatGeneration"] = "ChatGeneration" # type: ignore[assignment] """Type is used exclusively for serialization purposes.""" @model_validator(mode="after") def set_text(self) -> Self: """Set the text attribute to be the contents of the message. Args: values: The values of the object. Returns: The values of the object with the text attribute set. Raises: ValueError: If the message is not a string or a list. """ text = "" if isinstance(self.message.content, str): text = self.message.content # Assumes text in content blocks in OpenAI format. # Uses first text block. elif isinstance(self.message.content, list): for block in self.message.content: if isinstance(block, str): text = block break if isinstance(block, dict) and "text" in block: text = block["text"] break self.text = text return self class ChatGenerationChunk(ChatGeneration): """ChatGeneration chunk. ChatGeneration chunks can be concatenated with other ChatGeneration chunks. """ message: BaseMessageChunk """The message chunk output by the chat model.""" # Override type to be ChatGeneration, ignore mypy error as this is intentional type: Literal["ChatGenerationChunk"] = "ChatGenerationChunk" # type: ignore[assignment] """Type is used exclusively for serialization purposes.""" def __add__( self, other: Union[ChatGenerationChunk, list[ChatGenerationChunk]] ) -> ChatGenerationChunk: """Concatenate two ChatGenerationChunks. Args: other: The other ChatGenerationChunk or list of ChatGenerationChunks to concatenate. """ if isinstance(other, ChatGenerationChunk): generation_info = merge_dicts( self.generation_info or {}, other.generation_info or {}, ) return ChatGenerationChunk( message=self.message + other.message, generation_info=generation_info or None, ) if isinstance(other, list) and all( isinstance(x, ChatGenerationChunk) for x in other ): generation_info = merge_dicts( self.generation_info or {}, *[chunk.generation_info for chunk in other if chunk.generation_info], ) return ChatGenerationChunk( message=self.message + [chunk.message for chunk in other], generation_info=generation_info or None, ) msg = f"unsupported operand type(s) for +: '{type(self)}' and '{type(other)}'" raise TypeError(msg) def merge_chat_generation_chunks( chunks: list[ChatGenerationChunk], ) -> Union[ChatGenerationChunk, None]: """Merge a list of ChatGenerationChunks into a single ChatGenerationChunk.""" if not chunks: return None if len(chunks) == 1: return chunks[0] return chunks[0] + chunks[1:]
"""Chat generation output classes.""" from __future__ import annotations from typing import Literal, Union from pydantic import model_validator from typing_extensions import Self from langchain_core.messages import BaseMessage, BaseMessageChunk from langchain_core.outputs.generation import Generation from langchain_core.utils._merge import merge_dicts class ChatGeneration(Generation): """A single chat generation output. A subclass of Generation that represents the response from a chat model that generates chat messages. The `message` attribute is a structured representation of the chat message. Most of the time, the message will be of type `AIMessage`. Users working with chat models will usually access information via either `AIMessage` (returned from runnable interfaces) or `LLMResult` (available via callbacks). """ text: str = "" """*SHOULD NOT BE SET DIRECTLY* The text contents of the output message.""" message: BaseMessage """The message output by the chat model.""" # Override type to be ChatGeneration, ignore mypy error as this is intentional type: Literal["ChatGeneration"] = "ChatGeneration" # type: ignore[assignment] """Type is used exclusively for serialization purposes.""" @model_validator(mode="after") def set_text(self) -> Self: """Set the text attribute to be the contents of the message. Args: values: The values of the object. Returns: The values of the object with the text attribute set. Raises: ValueError: If the message is not a string or a list. """ text = "" if isinstance(self.message.content, str): text = self.message.content # Assumes text in content blocks in OpenAI format. # Uses first text block. elif isinstance(self.message.content, list): for block in self.message.content: if isinstance(block, str): text = block break if isinstance(block, dict) and "text" in block: text = block["text"] break else: pass self.text = text return self class ChatGenerationChunk(ChatGeneration): """ChatGeneration chunk. ChatGeneration chunks can be concatenated with other ChatGeneration chunks. """ message: BaseMessageChunk """The message chunk output by the chat model.""" # Override type to be ChatGeneration, ignore mypy error as this is intentional type: Literal["ChatGenerationChunk"] = "ChatGenerationChunk" # type: ignore[assignment] """Type is used exclusively for serialization purposes.""" def __add__( self, other: Union[ChatGenerationChunk, list[ChatGenerationChunk]] ) -> ChatGenerationChunk: """Concatenate two ChatGenerationChunks. Args: other: The other ChatGenerationChunk or list of ChatGenerationChunks to concatenate. """ if isinstance(other, ChatGenerationChunk): generation_info = merge_dicts( self.generation_info or {}, other.generation_info or {}, ) return ChatGenerationChunk( message=self.message + other.message, generation_info=generation_info or None, ) if isinstance(other, list) and all( isinstance(x, ChatGenerationChunk) for x in other ): generation_info = merge_dicts( self.generation_info or {}, *[chunk.generation_info for chunk in other if chunk.generation_info], ) return ChatGenerationChunk( message=self.message + [chunk.message for chunk in other], generation_info=generation_info or None, ) msg = f"unsupported operand type(s) for +: '{type(self)}' and '{type(other)}'" raise TypeError(msg) def merge_chat_generation_chunks( chunks: list[ChatGenerationChunk], ) -> Union[ChatGenerationChunk, None]: """Merge a list of ChatGenerationChunks into a single ChatGenerationChunk.""" if not chunks: return None if len(chunks) == 1: return chunks[0] return chunks[0] + chunks[1:]
import logging from datetime import datetime as dt from typing import Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun from pydantic import BaseModel, Field from langchain_community.tools.slack.base import SlackBaseTool from langchain_community.tools.slack.utils import UTC_FORMAT logger = logging.getLogger(__name__) class ScheduleMessageSchema(BaseModel): """Input for ScheduleMessageTool.""" message: str = Field( ..., description="The message to be sent.", ) channel: str = Field( ..., description="The channel, private group, or IM channel to send message to.", ) timestamp: str = Field( ..., description="The datetime for when the message should be sent in the " ' following format: YYYY-MM-DDTHH:MM:SS±hh:mm, where "T" separates the date ' " and time components, and the time zone offset is specified as ±hh:mm. " ' For example: "2023-06-09T10:30:00+03:00" represents June 9th, ' " 2023, at 10:30 AM in a time zone with a positive offset of 3 " " hours from Coordinated Universal Time (UTC).", ) class SlackScheduleMessage(SlackBaseTool): """Tool for scheduling a message in Slack.""" name: str = "schedule_message" description: str = ( "Use this tool to schedule a message to be sent on a specific date and time." ) args_schema: Type[ScheduleMessageSchema] = ScheduleMessageSchema def _run( self, message: str, channel: str, timestamp: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: try: unix_timestamp = dt.timestamp(dt.strptime(timestamp, UTC_FORMAT)) result = self.client.chat_scheduleMessage( channel=channel, text=message, post_at=unix_timestamp ) output = "Message scheduled: " + str(result) return output except Exception as e: return "Error scheduling message: {}".format(e)
import logging from datetime import datetime as dt from typing import Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun from pydantic import BaseModel, Field from langchain_community.tools.slack.base import SlackBaseTool from langchain_community.tools.slack.utils import UTC_FORMAT logger = logging.getLogger(__name__) class ScheduleMessageSchema(BaseModel): """Input for ScheduleMessageTool.""" message: str = Field( ..., description="The message to be sent.", ) channel: str = Field( ..., description="The channel, private group, or IM channel to send message to.", ) timestamp: str = Field( ..., description="The datetime for when the message should be sent in the " ' following format: YYYY-MM-DDTHH:MM:SS±hh:mm, where "T" separates the date ' " and time components, and the time zone offset is specified as ±hh:mm. " ' For example: "2023-06-09T10:30:00+03:00" represents June 9th, ' " 2023, at 10:30 AM in a time zone with a positive offset of 3 " " hours from Coordinated Universal Time (UTC).", ) class SlackScheduleMessage(SlackBaseTool): # type: ignore[override, override] """Tool for scheduling a message in Slack.""" name: str = "schedule_message" description: str = ( "Use this tool to schedule a message to be sent on a specific date and time." ) args_schema: Type[ScheduleMessageSchema] = ScheduleMessageSchema def _run( self, message: str, channel: str, timestamp: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: try: unix_timestamp = dt.timestamp(dt.strptime(timestamp, UTC_FORMAT)) result = self.client.chat_scheduleMessage( channel=channel, text=message, post_at=unix_timestamp ) output = "Message scheduled: " + str(result) return output except Exception as e: return "Error scheduling message: {}".format(e)
import json from pathlib import Path from typing import List, Optional from langchain_core.chat_history import ( BaseChatMessageHistory, ) from langchain_core.messages import BaseMessage, messages_from_dict, messages_to_dict class FileChatMessageHistory(BaseChatMessageHistory): """Chat message history that stores history in a local file.""" def __init__( self, file_path: str, *, encoding: Optional[str] = None, ensure_ascii: bool = True, ) -> None: """Initialize the file path for the chat history. Args: file_path: The path to the local file to store the chat history. encoding: The encoding to use for file operations. Defaults to None. ensure_ascii: If True, escape non-ASCII in JSON. Defaults to True. """ self.file_path = Path(file_path) self.encoding = encoding self.ensure_ascii = ensure_ascii if not self.file_path.exists(): self.file_path.touch() self.file_path.write_text( json.dumps([], ensure_ascii=self.ensure_ascii), encoding=self.encoding ) @property def messages(self) -> List[BaseMessage]: # type: ignore[override] """Retrieve the messages from the local file""" items = json.loads(self.file_path.read_text(encoding=self.encoding)) messages = messages_from_dict(items) return messages def add_message(self, message: BaseMessage) -> None: """Append the message to the record in the local file""" messages = messages_to_dict(self.messages) messages.append(messages_to_dict([message])[0]) self.file_path.write_text( json.dumps(messages, ensure_ascii=self.ensure_ascii), encoding=self.encoding ) def clear(self) -> None: """Clear session memory from the local file""" self.file_path.write_text( json.dumps([], ensure_ascii=self.ensure_ascii), encoding=self.encoding )
import json from pathlib import Path from typing import List, Optional from langchain_core.chat_history import ( BaseChatMessageHistory, ) from langchain_core.messages import BaseMessage, messages_from_dict, messages_to_dict class FileChatMessageHistory(BaseChatMessageHistory): """Chat message history that stores history in a local file.""" def __init__( self, file_path: str, *, encoding: Optional[str] = None, ensure_ascii: bool = True, ) -> None: """Initialize the file path for the chat history. Args: file_path: The path to the local file to store the chat history. encoding: The encoding to use for file operations. Defaults to None. ensure_ascii: If True, escape non-ASCII in JSON. Defaults to True. """ self.file_path = Path(file_path) self.encoding = encoding self.ensure_ascii = ensure_ascii if not self.file_path.exists(): self.file_path.touch() self.file_path.write_text( json.dumps([], ensure_ascii=self.ensure_ascii), encoding=self.encoding ) @property def messages(self) -> List[BaseMessage]: # type: ignore """Retrieve the messages from the local file""" items = json.loads(self.file_path.read_text(encoding=self.encoding)) messages = messages_from_dict(items) return messages def add_message(self, message: BaseMessage) -> None: """Append the message to the record in the local file""" messages = messages_to_dict(self.messages) messages.append(messages_to_dict([message])[0]) self.file_path.write_text( json.dumps(messages, ensure_ascii=self.ensure_ascii), encoding=self.encoding ) def clear(self) -> None: """Clear session memory from the local file""" self.file_path.write_text( json.dumps([], ensure_ascii=self.ensure_ascii), encoding=self.encoding )
__version__ = '0.30.0a3' from docarray.array.array.array import DocumentArray from docarray.base_document.document import BaseDocument __all__ = [ 'BaseDocument', 'DocumentArray', ]
__version__ = '0.30.a3' from docarray.array.array.array import DocumentArray from docarray.base_document.document import BaseDocument __all__ = [ 'BaseDocument', 'DocumentArray', ]
import numpy as np import pytest from pydantic import Field from docarray import BaseDoc, DocList from docarray.index.backends.in_memory import InMemoryExactNNIndex from docarray.typing import NdArray class SchemaDoc(BaseDoc): text: str price: int tensor: NdArray[10] @pytest.fixture def docs(): docs = DocList[SchemaDoc]( [ SchemaDoc(text=f'hello {i}', price=i, tensor=np.array([i] * 10)) for i in range(9) ] ) docs.append(SchemaDoc(text='good bye', price=100, tensor=np.array([100.0] * 10))) return docs def test_indexing(docs): doc_index = InMemoryExactNNIndex[SchemaDoc]() assert doc_index.num_docs() == 0 doc_index.index(docs) assert doc_index.num_docs() == 10 @pytest.fixture def doc_index(docs): doc_index = InMemoryExactNNIndex[SchemaDoc]() doc_index.index(docs) return doc_index def test_del_item(docs, doc_index): to_remove = [docs[0].id, docs[1].id] doc_index._del_items(to_remove) assert doc_index.num_docs() == 8 def test_del(docs, doc_index): del doc_index[docs[0].id] assert doc_index.num_docs() == 9 @pytest.mark.parametrize('space', ['cosine_sim', 'euclidean_dist', 'sqeuclidean_dist']) @pytest.mark.parametrize('is_query_doc', [True, False]) def test_find(doc_index, space, is_query_doc): class MyDoc(BaseDoc): text: str price: int tensor: NdArray[10] = Field(space=space) if is_query_doc: query = MyDoc(text='query', price=0, tensor=np.ones(10)) else: query = np.ones(10) docs, scores = doc_index.find(query, search_field='tensor', limit=5) assert len(docs) == 5 assert len(scores) == 5 assert doc_index.num_docs() == 10 empty_index = InMemoryExactNNIndex[MyDoc]() docs, scores = empty_index.find(query, search_field='tensor', limit=5) assert len(docs) == 0 assert len(scores) == 0 @pytest.mark.parametrize('space', ['cosine_sim', 'euclidean_dist', 'sqeuclidean_dist']) @pytest.mark.parametrize('is_query_doc', [True, False]) def test_find_batched(doc_index, space, is_query_doc): class MyDoc(BaseDoc): text: str price: int tensor: NdArray[10] = Field(space=space) if is_query_doc: query = DocList[MyDoc]( [ MyDoc(text='query 0', price=0, tensor=np.zeros(10)), MyDoc(text='query 1', price=1, tensor=np.ones(10)), ] ) else: query = np.ones((2, 10)) docs, scores = doc_index.find_batched(query, search_field='tensor', limit=5) assert len(docs) == 2 for result in docs: assert len(result) == 5 assert doc_index.num_docs() == 10 empty_index = InMemoryExactNNIndex[MyDoc]() docs, scores = empty_index.find_batched(query, search_field='tensor', limit=5) assert len(docs) == 0 assert len(scores) == 0 def test_concatenated_queries(doc_index): query = SchemaDoc(text='query', price=0, tensor=np.ones(10)) q = ( doc_index.build_query() .find(query=query, search_field='tensor', limit=5) .filter(filter_query={'price': {'$neq': 5}}) .build() ) docs, scores = doc_index.execute_query(q) assert len(docs) == 4 def test_save_and_load(doc_index, tmpdir): initial_num_docs = doc_index.num_docs() binary_file = str(tmpdir / 'docs.bin') doc_index.persist(binary_file) new_doc_index = InMemoryExactNNIndex[SchemaDoc](index_file_path=binary_file) docs, scores = new_doc_index.find(np.ones(10), search_field='tensor', limit=5) assert len(docs) == 5 assert len(scores) == 5 assert new_doc_index.num_docs() == initial_num_docs
import numpy as np import pytest from pydantic import Field from docarray import BaseDoc, DocList from docarray.index.backends.in_memory import InMemoryExactNNIndex from docarray.typing import NdArray class SchemaDoc(BaseDoc): text: str price: int tensor: NdArray[10] @pytest.fixture def docs(): docs = DocList[SchemaDoc]( [ SchemaDoc(text=f'hello {i}', price=i, tensor=np.array([i] * 10)) for i in range(9) ] ) docs.append(SchemaDoc(text='good bye', price=100, tensor=np.array([100.0] * 10))) return docs def test_indexing(docs): doc_index = InMemoryExactNNIndex[SchemaDoc]() assert doc_index.num_docs() == 0 doc_index.index(docs) assert doc_index.num_docs() == 10 @pytest.fixture def doc_index(docs): doc_index = InMemoryExactNNIndex[SchemaDoc]() doc_index.index(docs) return doc_index def test_del_item(docs, doc_index): to_remove = [docs[0].id, docs[1].id] doc_index._del_items(to_remove) assert doc_index.num_docs() == 8 def test_del(docs, doc_index): del doc_index[docs[0].id] assert doc_index.num_docs() == 9 @pytest.mark.parametrize('space', ['cosine_sim', 'euclidean_dist', 'sqeuclidean_dist']) @pytest.mark.parametrize('is_query_doc', [True, False]) def test_find(doc_index, space, is_query_doc): class MyDoc(BaseDoc): text: str price: int tensor: NdArray[10] = Field(space=space) if is_query_doc: query = MyDoc(text='query', price=0, tensor=np.ones(10)) else: query = np.ones(10) docs, scores = doc_index.find(query, search_field='tensor', limit=5) assert len(docs) == 5 assert len(scores) == 5 assert doc_index.num_docs() == 10 empty_index = InMemoryExactNNIndex[MyDoc]() docs, scores = empty_index.find(query, search_field='tensor', limit=5) assert len(docs) == 0 assert len(scores) == 0 @pytest.mark.parametrize('space', ['cosine_sim', 'euclidean_dist', 'sqeuclidean_dist']) @pytest.mark.parametrize('is_query_doc', [True, False]) def test_find_batched(doc_index, space, is_query_doc): class MyDoc(BaseDoc): text: str price: int tensor: NdArray[10] = Field(space=space) if is_query_doc: query = DocList[MyDoc]( [ MyDoc(text='query 0', price=0, tensor=np.zeros(10)), MyDoc(text='query 1', price=1, tensor=np.ones(10)), ] ) else: query = np.ones((2, 10)) docs, scores = doc_index.find_batched(query, search_field='tensor', limit=5) assert len(docs) == 2 for result in docs: assert len(result) == 5 assert doc_index.num_docs() == 10 empty_index = InMemoryExactNNIndex[MyDoc]() docs, scores = empty_index.find_batched(query, search_field='tensor', limit=5) assert len(docs) == 0 assert len(scores) == 0 def test_concatenated_queries(doc_index): query = SchemaDoc(text='query', price=0, tensor=np.ones(10)) q = ( doc_index.build_query() .find(query=query, search_field='tensor', limit=5) .filter(filter_query={'price': {'$neq': 5}}) .build() ) docs, scores = doc_index.execute_query(q) assert len(docs) == 4
_base_ = 'faster-rcnn_r50_fpn_ms-3x_coco.py' model = dict( backbone=dict( depth=101, norm_cfg=dict(requires_grad=False), norm_eval=True, style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet101_caffe')))
_base_ = 'faster-rcnn_r50_fpn_ms-3x_coco.py' model = dict( backbone=dict( depth=101, norm_cfg=dict(requires_grad=False), norm_eval=True, style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet101_caffe'))) # use caffe img_norm img_norm_cfg = dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='Resize', img_scale=[(1333, 640), (1333, 800)], multiscale_mode='range', keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( train=dict(dataset=dict(pipeline=train_pipeline)), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline))
_base_ = [ '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] lang_model_name = 'bert-base-uncased' model = dict( type='GroundingDINO', num_queries=900, with_box_refine=True, as_two_stage=True, data_preprocessor=dict( type='DetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, pad_mask=False, ), language_model=dict( type='BertModel', name=lang_model_name, pad_to_max=False, use_sub_sentence_represent=True, special_tokens_list=['[CLS]', '[SEP]', '.', '?'], add_pooling_layer=True, ), backbone=dict( type='SwinTransformer', embed_dims=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7, mlp_ratio=4, qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.2, patch_norm=True, out_indices=(1, 2, 3), with_cp=False, convert_weights=False), neck=dict( type='ChannelMapper', in_channels=[192, 384, 768], kernel_size=1, out_channels=256, act_cfg=None, bias=True, norm_cfg=dict(type='GN', num_groups=32), num_outs=4), encoder=dict( num_layers=6, # visual layer config layer_cfg=dict( self_attn_cfg=dict(embed_dims=256, num_levels=4, dropout=0.0), ffn_cfg=dict( embed_dims=256, feedforward_channels=2048, ffn_drop=0.0)), # text layer config text_layer_cfg=dict( self_attn_cfg=dict(num_heads=4, embed_dims=256, dropout=0.0), ffn_cfg=dict( embed_dims=256, feedforward_channels=1024, ffn_drop=0.0)), # fusion layer config fusion_layer_cfg=dict( v_dim=256, l_dim=256, embed_dim=1024, num_heads=4, init_values=1e-4), ), decoder=dict( num_layers=6, return_intermediate=True, layer_cfg=dict( # query self attention layer self_attn_cfg=dict(embed_dims=256, num_heads=8, dropout=0.0), # cross attention layer query to text cross_attn_text_cfg=dict(embed_dims=256, num_heads=8, dropout=0.0), # cross attention layer query to image cross_attn_cfg=dict(embed_dims=256, num_heads=8, dropout=0.0), ffn_cfg=dict( embed_dims=256, feedforward_channels=2048, ffn_drop=0.0)), post_norm_cfg=None), positional_encoding=dict( num_feats=128, normalize=True, offset=0.0, temperature=20), bbox_head=dict( type='GroundingDINOHead', num_classes=80, sync_cls_avg_factor=True, contrastive_cfg=dict(max_text_len=256), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), # 2.0 in DeformDETR loss_bbox=dict(type='L1Loss', loss_weight=5.0)), dn_cfg=dict( # TODO: Move to model.train_cfg ? label_noise_scale=0.5, box_noise_scale=1.0, # 0.4 for DN-DETR group_cfg=dict(dynamic=True, num_groups=None, num_dn_queries=100)), # TODO: half num_dn_queries # training and testing settings train_cfg=None, test_cfg=dict(max_per_img=300)) test_pipeline = [ dict( type='LoadImageFromFile', backend_args=None, imdecode_backend='pillow'), dict( type='FixScaleResize', scale=(800, 1333), keep_ratio=True, backend='pillow'), dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor', 'text', 'custom_entities')) ] val_dataloader = dict( dataset=dict(pipeline=test_pipeline, return_classes=True)) test_dataloader = val_dataloader
_base_ = [ '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] lang_model_name = 'bert-base-uncased' model = dict( type='GroundingDINO', num_queries=900, with_box_refine=True, as_two_stage=True, data_preprocessor=dict( type='DetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, pad_mask=False, ), language_model=dict( type='BertModel', name=lang_model_name, pad_to_max=False, use_sub_sentence_represent=True, special_tokens_list=['[CLS]', '[SEP]', '.', '?'], add_pooling_layer=True, ), backbone=dict( type='SwinTransformer', embed_dims=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7, mlp_ratio=4, qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.2, patch_norm=True, out_indices=(1, 2, 3), with_cp=False, convert_weights=False), neck=dict( type='ChannelMapper', in_channels=[192, 384, 768], kernel_size=1, out_channels=256, act_cfg=None, bias=True, norm_cfg=dict(type='GN', num_groups=32), num_outs=4), encoder=dict( num_layers=6, # visual layer config layer_cfg=dict( self_attn_cfg=dict(embed_dims=256, num_levels=4, dropout=0.0), ffn_cfg=dict( embed_dims=256, feedforward_channels=2048, ffn_drop=0.0)), # text layer config text_layer_cfg=dict( self_attn_cfg=dict(num_heads=4, embed_dims=256, dropout=0.0), ffn_cfg=dict( embed_dims=256, feedforward_channels=1024, ffn_drop=0.0)), # fusion layer config fusion_layer_cfg=dict( v_dim=256, l_dim=256, embed_dim=1024, num_heads=4, init_values=1e-4), ), decoder=dict( num_layers=6, return_intermediate=True, layer_cfg=dict( # query self attention layer self_attn_cfg=dict(embed_dims=256, num_heads=8, dropout=0.0), # cross attention layer query to text cross_attn_text_cfg=dict(embed_dims=256, num_heads=8, dropout=0.0), # cross attention layer query to image cross_attn_cfg=dict(embed_dims=256, num_heads=8, dropout=0.0), ffn_cfg=dict( embed_dims=256, feedforward_channels=2048, ffn_drop=0.0)), post_norm_cfg=None), positional_encoding=dict( num_feats=128, normalize=True, offset=0.0, temperature=20), bbox_head=dict( type='GroundingDINOHead', num_classes=80, sync_cls_avg_factor=True, max_text_len=256, loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), # 2.0 in DeformDETR loss_bbox=dict(type='L1Loss', loss_weight=5.0)), dn_cfg=dict( # TODO: Move to model.train_cfg ? label_noise_scale=0.5, box_noise_scale=1.0, # 0.4 for DN-DETR group_cfg=dict(dynamic=True, num_groups=None, num_dn_queries=100)), # TODO: half num_dn_queries # training and testing settings train_cfg=None, test_cfg=dict(max_per_img=300)) test_pipeline = [ dict( type='LoadImageFromFile', backend_args=None, imdecode_backend='pillow'), dict( type='FixScaleResize', scale=(800, 1333), keep_ratio=True, backend='pillow'), dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor', 'text', 'custom_entities')) ] val_dataloader = dict( dataset=dict(pipeline=test_pipeline, return_classes=True)) test_dataloader = val_dataloader
import os from pathlib import Path from typing import List, Optional, Tuple, Union import torch import torchaudio from torch.hub import download_url_to_file from torch.utils.data import Dataset from torchaudio.datasets.utils import extract_archive _URL = "https://zenodo.org/record/3338373/files/musdb18hq.zip" _CHECKSUM = "baac80d0483c61d74b2e5f3be75fa557eec52898339e6aa45c1fa48833c5d21d" _EXT = ".wav" _SAMPLE_RATE = 44100 _VALIDATION_SET = [ "Actions - One Minute Smile", "Clara Berry And Wooldog - Waltz For My Victims", "Johnny Lokke - Promises & Lies", "Patrick Talbot - A Reason To Leave", "Triviul - Angelsaint", "Alexander Ross - Goodbye Bolero", "Fergessen - Nos Palpitants", "Leaf - Summerghost", "Skelpolu - Human Mistakes", "Young Griffo - Pennies", "ANiMAL - Rockshow", "James May - On The Line", "Meaxic - Take A Step", "Traffic Experiment - Sirens", ] class MUSDB_HQ(Dataset): """Create *MUSDB_HQ* [:footcite:`MUSDB18HQ`] Dataset Args: root (str or Path): Root directory where the dataset's top level directory is found subset (str): Subset of the dataset to use. Options: [``"train"``, ``"test"``]. sources (List[str] or None, optional): Sources extract data from. List can contain the following options: [``"bass"``, ``"drums"``, ``"other"``, ``"mixture"``, ``"vocals"``]. If ``None``, dataset consists of tracks except mixture. (default: ``None``) split (str or None, optional): Whether to split training set into train and validation set. If ``None``, no splitting occurs. If ``train`` or ``validation``, returns respective set. (default: ``None``) download (bool, optional): Whether to download the dataset if it is not found at root path. (default: ``False``) """ def __init__( self, root: Union[str, Path], subset: str, sources: Optional[List[str]] = None, split: Optional[str] = None, download: bool = False, ) -> None: self.sources = ["bass", "drums", "other", "vocals"] if not sources else sources self.split = split basename = os.path.basename(_URL) archive = os.path.join(root, basename) basename = basename.rsplit(".", 2)[0] assert subset in ["test", "train"], "`subset` must be one of ['test', 'train']" assert self.split is None or self.split in [ "train", "validation", ], "`split` must be one of ['train', 'validation']" base_path = os.path.join(root, basename) self._path = os.path.join(base_path, subset) if not os.path.isdir(self._path): if not os.path.isfile(archive): if not download: raise RuntimeError("Dataset not found. Please use `download=True` to download") download_url_to_file(_URL, archive, hash_prefix=_CHECKSUM) os.makedirs(base_path, exist_ok=True) extract_archive(archive, base_path) self.names = self._collect_songs() def _get_track(self, name, source): return Path(self._path) / name / f"{source}{_EXT}" def _load_sample(self, n: int) -> Tuple[torch.Tensor, int, int, str]: name = self.names[n] wavs = [] num_frames = None for source in self.sources: track = self._get_track(name, source) wav, sr = torchaudio.load(str(track)) assert sr == _SAMPLE_RATE, f"expected sample rate {_SAMPLE_RATE}, but got {sr}" if num_frames is None: num_frames = wav.shape[-1] else: assert wav.shape[-1] == num_frames, "num_frames do not match across sources" wavs.append(wav) stacked = torch.stack(wavs) return stacked, _SAMPLE_RATE, num_frames, name def _collect_songs(self): if self.split == "validation": return _VALIDATION_SET path = Path(self._path) names = [] for root, folders, _ in os.walk(path, followlinks=True): root = Path(root) if root.name.startswith(".") or folders or root == path: continue name = str(root.relative_to(path)) if self.split and name in _VALIDATION_SET: continue names.append(name) return sorted(names) def __getitem__(self, n: int) -> Tuple[torch.Tensor, int, int, str]: """Load the n-th sample from the dataset. Args: n (int): The index of the sample to be loaded Returns: (Tensor, int, int, str): ``(waveforms, sample_rate, num_frames, track_name)`` """ return self._load_sample(n) def __len__(self) -> int: return len(self.names)
import os from pathlib import Path from typing import List, Optional, Tuple, Union import torch import torchaudio from torch.hub import download_url_to_file from torch.utils.data import Dataset from torchaudio.datasets.utils import extract_archive _URL = "https://zenodo.org/record/3338373/files/musdb18hq.zip" _CHECKSUM = "baac80d0483c61d74b2e5f3be75fa557eec52898339e6aa45c1fa48833c5d21d" _EXT = ".wav" _SAMPLE_RATE = 44100 _VALIDATION_SET = [ "Actions - One Minute Smile", "Clara Berry And Wooldog - Waltz For My Victims", "Johnny Lokke - Promises & Lies", "Patrick Talbot - A Reason To Leave", "Triviul - Angelsaint", "Alexander Ross - Goodbye Bolero", "Fergessen - Nos Palpitants", "Leaf - Summerghost", "Skelpolu - Human Mistakes", "Young Griffo - Pennies", "ANiMAL - Rockshow", "James May - On The Line", "Meaxic - Take A Step", "Traffic Experiment - Sirens", ] class MUSDB_HQ(Dataset): """Create *MUSDB_HQ* [:footcite:`MUSDB18HQ`] Dataset Args: root (str or Path): Root directory where the dataset's top level directory is found subset (str): Subset of the dataset to use. Options: [``"train"``, ``"test"``]. sources (List[str] or None, optional): Sources extract data from. List can contain the following options: [``"bass"``, ``"drums"``, ``"other"``, ``"mixture"``, ``"vocals"``]. If ``None``, dataset consists of tracks except mixture. (default: ``None``) split (str or None, optional): Whether to split training set into train and validation set. If ``None``, no splitting occurs. If ``train`` or ``validation``, returns respective set. (default: ``None``) download (bool, optional): Whether to download the dataset if it is not found at root path. (default: ``False``) """ def __init__( self, root: Union[str, Path], subset: str, sources: Optional[List[str]] = None, split: Optional[str] = None, download: bool = False, ) -> None: self.sources = ["bass", "drums", "other", "vocals"] if not sources else sources self.split = split basename = os.path.basename(_URL) archive = os.path.join(root, basename) basename = basename.rsplit(".", 2)[0] assert subset in ["test", "train"], "`subset` must be one of ['test', 'train']" assert self.split is None or self.split in [ "train", "validation", ], "`split` must be one of ['train', 'validation']" base_path = os.path.join(root, basename) self._path = os.path.join(base_path, subset) if not os.path.isdir(self._path): if not os.path.isfile(archive): if not download: raise RuntimeError("Dataset not found. Please use `download=True` to download") download_url_to_file(_URL, archive, hash_prefix=_CHECKSUM) os.makedirs(base_path, exist_ok=True) extract_archive(archive, base_path) self.names = self._collect_songs() def _get_track(self, name, source): return Path(self._path) / name / f"{source}{_EXT}" def _load_sample(self, n: int) -> Tuple[torch.Tensor, int, int, str]: name = self.names[n] wavs = [] num_frames = None for source in self.sources: track = self._get_track(name, source) wav, sr = torchaudio.load(str(track)) assert sr == _SAMPLE_RATE, f"expected sample rate {_SAMPLE_RATE}, but got {sr}" if num_frames is None: num_frames = wav.shape[-1] else: assert wav.shape[-1] == num_frames, "num_frames do not match across sources" wavs.append(wav) stacked = torch.stack(wavs) return stacked, _SAMPLE_RATE, num_frames, name def _collect_songs(self): if self.split == "validation": return _VALIDATION_SET path = Path(self._path) names = [] for root, folders, _ in os.walk(path, followlinks=True): root = Path(root) if root.name.startswith(".") or folders or root == path: continue name = str(root.relative_to(path)) if self.split and name in _VALIDATION_SET: continue names.append(name) return sorted(names) def __getitem__(self, n: int) -> Tuple[torch.Tensor, int, int, str]: """Load the n-th sample from the dataset. Args: n (int): The index of the sample to be loaded Returns: (Tensor, int, int, str): ``(waveforms, sample_rate, num_frames, track_name)`` """ return self._load_sample(n) def __len__(self) -> int: return len(self.names)
import numpy as np from sentence_transformers.sparse_encoder import SparseEncoder from sentence_transformers.sparse_encoder.models import MLMTransformer, SpladePooling def main(): # Initialize the SPLADE model model_name = "opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill" # "naver/efficient-splade-V-large-doc" # "prithivida/Splade_PP_en_v1" # "naver/splade-cocondenser-ensembledistil" model = SparseEncoder( modules=[ MLMTransformer(model_name), SpladePooling(pooling_strategy="max"), # You can also use 'sum' ], device="cuda:0", ) # Sample texts texts = [ "The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium.", ] # Generate embeddings embeddings = model.encode(texts, convert_to_sparse_tensor=True) print(type(embeddings)) # Print embedding shape and sparsity print(f"Embedding shape: {embeddings.shape}") print(f"Embedding sparsity: {model.get_sparsity_stats(embeddings)}%") # Compute similarity matrix similarity_matrix = model.similarity(embeddings, embeddings) # Print similarity matrix print("\nSimilarity Matrix:") for i, text in enumerate(texts): print(f"{i}: {text[:50]}...") print("\n" + " " * 10 + " ".join([f"{i:5d}" for i in range(len(texts))])) for i, row in enumerate(similarity_matrix): print(f"{i:5d} " + " ".join([f"{val:.3f}" for val in row])) vocab_size = embeddings.shape[1] print(f"Vocabulary size: {vocab_size}") # Visualize top tokens for each text top_k = 20 print(f"\nTop tokens {top_k} for each text:") for i, text in enumerate(texts): # Get top k indices in sparse tensor # Get top k indices in sparse tensor (sorted from highest to lowest) top_indices = np.argsort(-embeddings[i].to_dense().cpu().numpy())[:top_k] top_values = embeddings[i].to_dense().cpu().numpy()[top_indices] top_tokens = [model.tokenizer.decode([idx]) for idx in top_indices] print(f"{i}: {text}") print(f"Top tokens: {top_tokens}") print(f"Top values: {top_values}") print() if __name__ == "__main__": main()
import numpy as np from sentence_transformers.sparse_encoder import SparseEncoder from sentence_transformers.sparse_encoder.models import MLMTransformer, SpladePooling def main(): # Initialize the SPLADE model model_name = "naver/splade-cocondenser-ensembledistil" # "opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill" # "naver/efficient-splade-V-large-doc" # "prithivida/Splade_PP_en_v1" # "naver/splade-cocondenser-ensembledistil" model = SparseEncoder( modules=[ MLMTransformer(model_name), SpladePooling(pooling_strategy="max"), # You can also use 'sum' ], device="cuda:0", ) # Sample texts texts = [ "The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium.", ] # Generate embeddings embeddings = model.encode(texts, convert_to_sparse_tensor=True) print(type(embeddings)) # Print embedding shape and sparsity print(f"Embedding shape: {embeddings.shape}") print(f"Embedding sparsity: {model.get_sparsity_stats(embeddings)}%") # Compute similarity matrix similarity_matrix = model.similarity(embeddings, embeddings) # Print similarity matrix print("\nSimilarity Matrix:") for i, text in enumerate(texts): print(f"{i}: {text[:50]}...") print("\n" + " " * 10 + " ".join([f"{i:5d}" for i in range(len(texts))])) for i, row in enumerate(similarity_matrix): print(f"{i:5d} " + " ".join([f"{val:.3f}" for val in row])) vocab_size = embeddings.shape[1] print(f"Vocabulary size: {vocab_size}") # Visualize top tokens for each text top_k = 20 print(f"\nTop tokens {top_k} for each text:") for i, text in enumerate(texts): # Get top k indices in sparse tensor # Get top k indices in sparse tensor (sorted from highest to lowest) top_indices = np.argsort(-embeddings[i].to_dense().cpu().numpy())[:top_k] top_values = embeddings[i].to_dense().cpu().numpy()[top_indices] top_tokens = [model.tokenizer.decode([idx]) for idx in top_indices] print(f"{i}: {text}") print(f"Top tokens: {top_tokens}") print(f"Top values: {top_values}") print() if __name__ == "__main__": main()
""" Use scikit-learn regressor interface with GPU histogram tree method =================================================================== """ from dask import array as da from dask.distributed import Client # It's recommended to use dask_cuda for GPU assignment from dask_cuda import LocalCUDACluster from xgboost import dask as dxgb def main(client): # generate some random data for demonstration n = 100 m = 1000000 partition_size = 10000 X = da.random.random((m, n), partition_size) y = da.random.random(m, partition_size) regressor = dxgb.DaskXGBRegressor(verbosity=1) # set the device to CUDA regressor.set_params(tree_method="hist", device="cuda") # assigning client here is optional regressor.client = client regressor.fit(X, y, eval_set=[(X, y)]) prediction = regressor.predict(X) bst = regressor.get_booster() history = regressor.evals_result() print("Evaluation history:", history) # returned prediction is always a dask array. assert isinstance(prediction, da.Array) return bst # returning the trained model if __name__ == "__main__": # With dask cuda, one can scale up XGBoost to arbitrary GPU clusters. # `LocalCUDACluster` used here is only for demonstration purpose. with LocalCUDACluster() as cluster: with Client(cluster) as client: main(client)
""" Use scikit-learn regressor interface with GPU histogram tree method =================================================================== """ from dask import array as da from dask.distributed import Client # It's recommended to use dask_cuda for GPU assignment from dask_cuda import LocalCUDACluster import xgboost def main(client): # generate some random data for demonstration n = 100 m = 1000000 partition_size = 10000 X = da.random.random((m, n), partition_size) y = da.random.random(m, partition_size) regressor = xgboost.dask.DaskXGBRegressor(verbosity=1) # set the device to CUDA regressor.set_params(tree_method="hist", device="cuda") # assigning client here is optional regressor.client = client regressor.fit(X, y, eval_set=[(X, y)]) prediction = regressor.predict(X) bst = regressor.get_booster() history = regressor.evals_result() print("Evaluation history:", history) # returned prediction is always a dask array. assert isinstance(prediction, da.Array) return bst # returning the trained model if __name__ == "__main__": # With dask cuda, one can scale up XGBoost to arbitrary GPU clusters. # `LocalCUDACluster` used here is only for demonstration purpose. with LocalCUDACluster() as cluster: with Client(cluster) as client: main(client)
import functools import importlib import os import re from pathlib import Path from typing import TYPE_CHECKING, TypeVar if TYPE_CHECKING: from backend.data.block import Block T = TypeVar("T") @functools.cache def load_all_blocks() -> dict[str, type["Block"]]: from backend.data.block import Block # Dynamically load all modules under backend.blocks current_dir = Path(__file__).parent modules = [ str(f.relative_to(current_dir))[:-3].replace(os.path.sep, ".") for f in current_dir.rglob("*.py") if f.is_file() and f.name != "__init__.py" ] for module in modules: if not re.match("^[a-z0-9_.]+$", module): raise ValueError( f"Block module {module} error: module name must be lowercase, " "and contain only alphanumeric characters and underscores." ) importlib.import_module(f".{module}", package=__name__) # Load all Block instances from the available modules available_blocks: dict[str, type["Block"]] = {} for block_cls in all_subclasses(Block): class_name = block_cls.__name__ if class_name.endswith("Base"): continue if not class_name.endswith("Block"): raise ValueError( f"Block class {class_name} does not end with 'Block'. " "If you are creating an abstract class, " "please name the class with 'Base' at the end" ) block = block_cls.create() if not isinstance(block.id, str) or len(block.id) != 36: raise ValueError( f"Block ID {block.name} error: {block.id} is not a valid UUID" ) if block.id in available_blocks: raise ValueError( f"Block ID {block.name} error: {block.id} is already in use" ) input_schema = block.input_schema.model_fields output_schema = block.output_schema.model_fields # Make sure `error` field is a string in the output schema if "error" in output_schema and output_schema["error"].annotation is not str: raise ValueError( f"{block.name} `error` field in output_schema must be a string" ) # Ensure all fields in input_schema and output_schema are annotated SchemaFields for field_name, field in [*input_schema.items(), *output_schema.items()]: if field.annotation is None: raise ValueError( f"{block.name} has a field {field_name} that is not annotated" ) if field.json_schema_extra is None: raise ValueError( f"{block.name} has a field {field_name} not defined as SchemaField" ) for field in block.input_schema.model_fields.values(): if field.annotation is bool and field.default not in (True, False): raise ValueError( f"{block.name} has a boolean field with no default value" ) available_blocks[block.id] = block_cls return available_blocks __all__ = ["load_all_blocks"] def all_subclasses(cls: type[T]) -> list[type[T]]: subclasses = cls.__subclasses__() for subclass in subclasses: subclasses += all_subclasses(subclass) return subclasses
import importlib import os import re from pathlib import Path from typing import TYPE_CHECKING, TypeVar if TYPE_CHECKING: from backend.data.block import Block T = TypeVar("T") _AVAILABLE_BLOCKS: dict[str, type["Block"]] = {} def load_all_blocks() -> dict[str, type["Block"]]: from backend.data.block import Block if _AVAILABLE_BLOCKS: return _AVAILABLE_BLOCKS # Dynamically load all modules under backend.blocks AVAILABLE_MODULES = [] current_dir = Path(__file__).parent modules = [ str(f.relative_to(current_dir))[:-3].replace(os.path.sep, ".") for f in current_dir.rglob("*.py") if f.is_file() and f.name != "__init__.py" ] for module in modules: if not re.match("^[a-z0-9_.]+$", module): raise ValueError( f"Block module {module} error: module name must be lowercase, " "and contain only alphanumeric characters and underscores." ) importlib.import_module(f".{module}", package=__name__) AVAILABLE_MODULES.append(module) # Load all Block instances from the available modules for block_cls in all_subclasses(Block): class_name = block_cls.__name__ if class_name.endswith("Base"): continue if not class_name.endswith("Block"): raise ValueError( f"Block class {class_name} does not end with 'Block'. " "If you are creating an abstract class, " "please name the class with 'Base' at the end" ) block = block_cls.create() if not isinstance(block.id, str) or len(block.id) != 36: raise ValueError( f"Block ID {block.name} error: {block.id} is not a valid UUID" ) if block.id in _AVAILABLE_BLOCKS: raise ValueError( f"Block ID {block.name} error: {block.id} is already in use" ) input_schema = block.input_schema.model_fields output_schema = block.output_schema.model_fields # Make sure `error` field is a string in the output schema if "error" in output_schema and output_schema["error"].annotation is not str: raise ValueError( f"{block.name} `error` field in output_schema must be a string" ) # Ensure all fields in input_schema and output_schema are annotated SchemaFields for field_name, field in [*input_schema.items(), *output_schema.items()]: if field.annotation is None: raise ValueError( f"{block.name} has a field {field_name} that is not annotated" ) if field.json_schema_extra is None: raise ValueError( f"{block.name} has a field {field_name} not defined as SchemaField" ) for field in block.input_schema.model_fields.values(): if field.annotation is bool and field.default not in (True, False): raise ValueError( f"{block.name} has a boolean field with no default value" ) _AVAILABLE_BLOCKS[block.id] = block_cls return _AVAILABLE_BLOCKS __all__ = ["load_all_blocks"] def all_subclasses(cls: type[T]) -> list[type[T]]: subclasses = cls.__subclasses__() for subclass in subclasses: subclasses += all_subclasses(subclass) return subclasses
__version__ = '0.21.1' import os from docarray.document import Document from docarray.array import DocumentArray from docarray.dataclasses import dataclass, field from docarray.helper import login, logout if 'DA_RICH_HANDLER' in os.environ: from rich.traceback import install install()
__version__ = '0.21.0' import os from docarray.document import Document from docarray.array import DocumentArray from docarray.dataclasses import dataclass, field from docarray.helper import login, logout if 'DA_RICH_HANDLER' in os.environ: from rich.traceback import install install()
# Copyright (c) OpenMMLab. All rights reserved. import mmcv import mmengine from mmengine.utils import digit_version from .version import __version__, version_info mmcv_minimum_version = '2.0.0rc4' mmcv_maximum_version = '2.2.0' mmcv_version = digit_version(mmcv.__version__) mmengine_minimum_version = '0.7.1' mmengine_maximum_version = '1.0.0' mmengine_version = digit_version(mmengine.__version__) assert (mmcv_version >= digit_version(mmcv_minimum_version) and mmcv_version < digit_version(mmcv_maximum_version)), \ f'MMCV=={mmcv.__version__} is used but incompatible. ' \ f'Please install mmcv>={mmcv_minimum_version}, <{mmcv_maximum_version}.' assert (mmengine_version >= digit_version(mmengine_minimum_version) and mmengine_version < digit_version(mmengine_maximum_version)), \ f'MMEngine=={mmengine.__version__} is used but incompatible. ' \ f'Please install mmengine>={mmengine_minimum_version}, ' \ f'<{mmengine_maximum_version}.' __all__ = ['__version__', 'version_info', 'digit_version']
# Copyright (c) OpenMMLab. All rights reserved. import mmcv import mmengine from mmengine.utils import digit_version from .version import __version__, version_info mmcv_minimum_version = '2.0.0rc4' mmcv_maximum_version = '3.0.0' mmcv_version = digit_version(mmcv.__version__) mmengine_minimum_version = '0.7.1' mmengine_maximum_version = '1.0.0' mmengine_version = digit_version(mmengine.__version__) assert (mmcv_version >= digit_version(mmcv_minimum_version) and mmcv_version < digit_version(mmcv_maximum_version)), \ f'MMCV=={mmcv.__version__} is used but incompatible. ' \ f'Please install mmcv>={mmcv_minimum_version}, <{mmcv_maximum_version}.' assert (mmengine_version >= digit_version(mmengine_minimum_version) and mmengine_version < digit_version(mmengine_maximum_version)), \ f'MMEngine=={mmengine.__version__} is used but incompatible. ' \ f'Please install mmengine>={mmengine_minimum_version}, ' \ f'<{mmengine_maximum_version}.' __all__ = ['__version__', 'version_info', 'digit_version']
__version__ = '0.13.12' import os from .document import Document from .array import DocumentArray from .dataclasses import dataclass, field if 'DA_NO_RICH_HANDLER' not in os.environ: from rich.traceback import install install()
__version__ = '0.13.11' import os from .document import Document from .array import DocumentArray from .dataclasses import dataclass, field if 'DA_NO_RICH_HANDLER' not in os.environ: from rich.traceback import install install()
import sys from os import path from setuptools import find_packages from setuptools import setup if sys.version_info < (3, 7, 0): raise OSError(f'DocArray requires Python >=3.7, but yours is {sys.version}') try: pkg_name = 'docarray' libinfo_py = path.join(pkg_name, '__init__.py') libinfo_content = open(libinfo_py, 'r', encoding='utf8').readlines() version_line = [l.strip() for l in libinfo_content if l.startswith('__version__')][ 0 ] exec(version_line) # gives __version__ except FileNotFoundError: __version__ = '0.0.0' try: with open('README.md', encoding='utf8') as fp: _long_description = fp.read() except FileNotFoundError: _long_description = '' setup( name=pkg_name, packages=find_packages(), version=__version__, include_package_data=True, description='The data structure for unstructured data', author='Jina AI', author_email='[email protected]', license='Apache 2.0', url='https://github.com/jina-ai/docarray', download_url='https://github.com/jina-ai/docarray/tags', long_description=_long_description, long_description_content_type='text/markdown', zip_safe=False, setup_requires=['setuptools>=18.0', 'wheel'], install_requires=['numpy', 'rich>=12.0.0'], extras_require={ # req usage, please see https://docarray.jina.ai/#install 'common': [ 'protobuf>=3.13.0', 'lz4', 'requests', 'matplotlib', 'Pillow', 'fastapi', 'uvicorn', ], 'full': [ 'protobuf>=3.13.0', 'lz4', 'requests', 'matplotlib', 'Pillow', 'trimesh', 'scipy', 'av', 'fastapi', 'uvicorn', 'weaviate-client~=3.3.0', 'annlite>=0.3.0', 'qdrant-client~=0.7.1', 'strawberry-graphql', 'elasticsearch>=8.0.1', ], 'qdrant': [ 'qdrant-client~=0.7.0', ], 'test': [ 'pytest', 'pytest-timeout', 'pytest-mock', 'pytest-cov', 'pytest-repeat', 'pytest-reraise', 'mock', 'pytest-custom_exit_code', 'black==22.3.0', 'tensorflow==2.7.0', 'paddlepaddle==2.2.0', 'torch==1.9.0', 'torchvision==0.10.0', 'datasets', 'onnx', 'onnxruntime', 'jupyterlab', 'transformers>=4.16.2', 'weaviate-client~=3.3.0', 'annlite>=0.3.0', 'jina', ], }, classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Intended Audience :: Education', 'Intended Audience :: Science/Research', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3.10', 'Programming Language :: Unix Shell', 'Environment :: Console', 'License :: OSI Approved :: Apache Software License', 'Operating System :: OS Independent', 'Topic :: Database :: Database Engines/Servers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'Topic :: Internet :: WWW/HTTP :: Indexing/Search', 'Topic :: Scientific/Engineering :: Image Recognition', 'Topic :: Multimedia :: Video', 'Topic :: Scientific/Engineering', 'Topic :: Scientific/Engineering :: Mathematics', 'Topic :: Software Development', 'Topic :: Software Development :: Libraries', 'Topic :: Software Development :: Libraries :: Python Modules', ], project_urls={ 'Documentation': 'https://docarray.jina.ai', 'Source': 'https://github.com/jina-ai/docarray/', 'Tracker': 'https://github.com/jina-ai/docarray/issues', }, keywords='docarray deep-learning data-structures cross-modal multi-modal unstructured-data nested-data neural-search', )
import sys from os import path from setuptools import find_packages from setuptools import setup if sys.version_info < (3, 7, 0): raise OSError(f'DocArray requires Python >=3.7, but yours is {sys.version}') try: pkg_name = 'docarray' libinfo_py = path.join(pkg_name, '__init__.py') libinfo_content = open(libinfo_py, 'r', encoding='utf8').readlines() version_line = [l.strip() for l in libinfo_content if l.startswith('__version__')][ 0 ] exec(version_line) # gives __version__ except FileNotFoundError: __version__ = '0.0.0' try: with open('README.md', encoding='utf8') as fp: _long_description = fp.read() except FileNotFoundError: _long_description = '' setup( name=pkg_name, packages=find_packages(), version=__version__, include_package_data=True, description='The data structure for unstructured data', author='Jina AI', author_email='[email protected]', license='Apache 2.0', url='https://github.com/jina-ai/docarray', download_url='https://github.com/jina-ai/docarray/tags', long_description=_long_description, long_description_content_type='text/markdown', zip_safe=False, setup_requires=['setuptools>=18.0', 'wheel'], install_requires=['numpy', 'rich>=12.0.0'], extras_require={ # req usage, please see https://docarray.jina.ai/#install 'common': [ 'protobuf>=3.13.0', 'lz4', 'requests', 'matplotlib', 'Pillow', 'fastapi', 'uvicorn', ], 'full': [ 'protobuf>=3.13.0', 'lz4', 'requests', 'matplotlib', 'Pillow', 'trimesh', 'scipy', 'av', 'fastapi', 'uvicorn', 'weaviate-client~=3.3.0', 'annlite>=0.3.0', 'qdrant-client~=0.7.0', 'strawberry-graphql', 'elasticsearch>=8.0.1', ], 'qdrant': [ 'qdrant-client~=0.7.0', ], 'test': [ 'pytest', 'pytest-timeout', 'pytest-mock', 'pytest-cov', 'pytest-repeat', 'pytest-reraise', 'mock', 'pytest-custom_exit_code', 'black==22.3.0', 'tensorflow==2.7.0', 'paddlepaddle==2.2.0', 'torch==1.9.0', 'torchvision==0.10.0', 'datasets', 'onnx', 'onnxruntime', 'jupyterlab', 'transformers>=4.16.2', 'weaviate-client~=3.3.0', 'annlite>=0.3.0', 'jina', ], }, classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Intended Audience :: Education', 'Intended Audience :: Science/Research', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3.10', 'Programming Language :: Unix Shell', 'Environment :: Console', 'License :: OSI Approved :: Apache Software License', 'Operating System :: OS Independent', 'Topic :: Database :: Database Engines/Servers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'Topic :: Internet :: WWW/HTTP :: Indexing/Search', 'Topic :: Scientific/Engineering :: Image Recognition', 'Topic :: Multimedia :: Video', 'Topic :: Scientific/Engineering', 'Topic :: Scientific/Engineering :: Mathematics', 'Topic :: Software Development', 'Topic :: Software Development :: Libraries', 'Topic :: Software Development :: Libraries :: Python Modules', ], project_urls={ 'Documentation': 'https://docarray.jina.ai', 'Source': 'https://github.com/jina-ai/docarray/', 'Tracker': 'https://github.com/jina-ai/docarray/issues', }, keywords='docarray deep-learning data-structures cross-modal multi-modal unstructured-data nested-data neural-search', )
"""This file only exists to be lazy-imported and avoid V2-related import warnings when just using V1.""" import torch from torchvision import datapoints from torchvision.transforms import v2 class PadIfSmaller(v2.Transform): def __init__(self, size, fill=0): super().__init__() self.size = size self.fill = v2._utils._setup_fill_arg(fill) def _get_params(self, sample): _, height, width = v2.utils.query_chw(sample) padding = [0, 0, max(self.size - width, 0), max(self.size - height, 0)] needs_padding = any(padding) return dict(padding=padding, needs_padding=needs_padding) def _transform(self, inpt, params): if not params["needs_padding"]: return inpt fill = v2._utils._get_fill(self.fill, type(inpt)) fill = v2._utils._convert_fill_arg(fill) return v2.functional.pad(inpt, padding=params["padding"], fill=fill) class CocoDetectionToVOCSegmentation(v2.Transform): """Turn samples from datasets.CocoDetection into the same format as VOCSegmentation. This is achieved in two steps: 1. COCO differentiates between 91 categories while VOC only supports 21, including background for both. Fortunately, the COCO categories are a superset of the VOC ones and thus can be mapped. Instances of the 70 categories not present in VOC are dropped and replaced by background. 2. COCO only offers detection masks, i.e. a (N, H, W) bool-ish tensor, where the truthy values in each individual mask denote the instance. However, a segmentation mask is a (H, W) integer tensor (typically torch.uint8), where the value of each pixel denotes the category it belongs to. The detection masks are merged into one segmentation mask while pixels that belong to multiple detection masks are marked as invalid. """ COCO_TO_VOC_LABEL_MAP = dict( zip( [0, 5, 2, 16, 9, 44, 6, 3, 17, 62, 21, 67, 18, 19, 4, 1, 64, 20, 63, 7, 72], range(21), ) ) INVALID_VALUE = 255 def _coco_detection_masks_to_voc_segmentation_mask(self, target): if "masks" not in target: return None instance_masks, instance_labels_coco = target["masks"], target["labels"] valid_labels_voc = [ (idx, label_voc) for idx, label_coco in enumerate(instance_labels_coco.tolist()) if (label_voc := self.COCO_TO_VOC_LABEL_MAP.get(label_coco)) is not None ] if not valid_labels_voc: return None valid_voc_category_idcs, instance_labels_voc = zip(*valid_labels_voc) instance_masks = instance_masks[list(valid_voc_category_idcs)].to(torch.uint8) instance_labels_voc = torch.tensor(instance_labels_voc, dtype=torch.uint8) # Calling `.max()` on the stacked detection masks works fine to separate background from foreground as long as # there is at most a single instance per pixel. Overlapping instances will be filtered out in the next step. segmentation_mask, _ = (instance_masks * instance_labels_voc.reshape(-1, 1, 1)).max(dim=0) segmentation_mask[instance_masks.sum(dim=0) > 1] = self.INVALID_VALUE return segmentation_mask def forward(self, image, target): segmentation_mask = self._coco_detection_masks_to_voc_segmentation_mask(target) if segmentation_mask is None: segmentation_mask = torch.zeros(v2.functional.get_spatial_size(image), dtype=torch.uint8) return image, datapoints.Mask(segmentation_mask)
"""This file only exists to be lazy-imported and avoid V2-related import warnings when just using V1.""" import torch from torchvision import datapoints from torchvision.transforms import v2 class PadIfSmaller(v2.Transform): def __init__(self, size, fill=0): super().__init__() self.size = size self.fill = v2._geometry._setup_fill_arg(fill) def _get_params(self, sample): _, height, width = v2.utils.query_chw(sample) padding = [0, 0, max(self.size - width, 0), max(self.size - height, 0)] needs_padding = any(padding) return dict(padding=padding, needs_padding=needs_padding) def _transform(self, inpt, params): if not params["needs_padding"]: return inpt fill = self.fill[type(inpt)] fill = v2._utils._convert_fill_arg(fill) return v2.functional.pad(inpt, padding=params["padding"], fill=fill) class CocoDetectionToVOCSegmentation(v2.Transform): """Turn samples from datasets.CocoDetection into the same format as VOCSegmentation. This is achieved in two steps: 1. COCO differentiates between 91 categories while VOC only supports 21, including background for both. Fortunately, the COCO categories are a superset of the VOC ones and thus can be mapped. Instances of the 70 categories not present in VOC are dropped and replaced by background. 2. COCO only offers detection masks, i.e. a (N, H, W) bool-ish tensor, where the truthy values in each individual mask denote the instance. However, a segmentation mask is a (H, W) integer tensor (typically torch.uint8), where the value of each pixel denotes the category it belongs to. The detection masks are merged into one segmentation mask while pixels that belong to multiple detection masks are marked as invalid. """ COCO_TO_VOC_LABEL_MAP = dict( zip( [0, 5, 2, 16, 9, 44, 6, 3, 17, 62, 21, 67, 18, 19, 4, 1, 64, 20, 63, 7, 72], range(21), ) ) INVALID_VALUE = 255 def _coco_detection_masks_to_voc_segmentation_mask(self, target): if "masks" not in target: return None instance_masks, instance_labels_coco = target["masks"], target["labels"] valid_labels_voc = [ (idx, label_voc) for idx, label_coco in enumerate(instance_labels_coco.tolist()) if (label_voc := self.COCO_TO_VOC_LABEL_MAP.get(label_coco)) is not None ] if not valid_labels_voc: return None valid_voc_category_idcs, instance_labels_voc = zip(*valid_labels_voc) instance_masks = instance_masks[list(valid_voc_category_idcs)].to(torch.uint8) instance_labels_voc = torch.tensor(instance_labels_voc, dtype=torch.uint8) # Calling `.max()` on the stacked detection masks works fine to separate background from foreground as long as # there is at most a single instance per pixel. Overlapping instances will be filtered out in the next step. segmentation_mask, _ = (instance_masks * instance_labels_voc.reshape(-1, 1, 1)).max(dim=0) segmentation_mask[instance_masks.sum(dim=0) > 1] = self.INVALID_VALUE return segmentation_mask def forward(self, image, target): segmentation_mask = self._coco_detection_masks_to_voc_segmentation_mask(target) if segmentation_mask is None: segmentation_mask = torch.zeros(v2.functional.get_spatial_size(image), dtype=torch.uint8) return image, datapoints.Mask(segmentation_mask)
import torch from torchvision.prototype import datapoints from torchvision.utils import _log_api_usage_once def uniform_temporal_subsample_video(video: torch.Tensor, num_samples: int, temporal_dim: int = -4) -> torch.Tensor: # Reference: https://github.com/facebookresearch/pytorchvideo/blob/a0a131e/pytorchvideo/transforms/functional.py#L19 t_max = video.shape[temporal_dim] - 1 indices = torch.linspace(0, t_max, num_samples, device=video.device).long() return torch.index_select(video, temporal_dim, indices) def uniform_temporal_subsample( inpt: datapoints.VideoTypeJIT, num_samples: int, temporal_dim: int = -4 ) -> datapoints.VideoTypeJIT: if not torch.jit.is_scripting(): _log_api_usage_once(uniform_temporal_subsample) if isinstance(inpt, torch.Tensor) and (torch.jit.is_scripting() or not isinstance(inpt, datapoints.Video)): return uniform_temporal_subsample_video(inpt, num_samples, temporal_dim=temporal_dim) elif isinstance(inpt, datapoints.Video): if temporal_dim != -4 and inpt.ndim - 4 != temporal_dim: raise ValueError("Video inputs must have temporal_dim equivalent to -4") output = uniform_temporal_subsample_video( inpt.as_subclass(torch.Tensor), num_samples, temporal_dim=temporal_dim ) return datapoints.Video.wrap_like(inpt, output) else: raise TypeError(f"Input can either be a plain tensor or a `Video` datapoint, but got {type(inpt)} instead.")
import torch from torchvision.prototype import datapoints def uniform_temporal_subsample_video(video: torch.Tensor, num_samples: int, temporal_dim: int = -4) -> torch.Tensor: # Reference: https://github.com/facebookresearch/pytorchvideo/blob/a0a131e/pytorchvideo/transforms/functional.py#L19 t_max = video.shape[temporal_dim] - 1 indices = torch.linspace(0, t_max, num_samples, device=video.device).long() return torch.index_select(video, temporal_dim, indices) def uniform_temporal_subsample( inpt: datapoints.VideoTypeJIT, num_samples: int, temporal_dim: int = -4 ) -> datapoints.VideoTypeJIT: if isinstance(inpt, torch.Tensor) and (torch.jit.is_scripting() or not isinstance(inpt, datapoints.Video)): return uniform_temporal_subsample_video(inpt, num_samples, temporal_dim=temporal_dim) elif isinstance(inpt, datapoints.Video): if temporal_dim != -4 and inpt.ndim - 4 != temporal_dim: raise ValueError("Video inputs must have temporal_dim equivalent to -4") output = uniform_temporal_subsample_video( inpt.as_subclass(torch.Tensor), num_samples, temporal_dim=temporal_dim ) return datapoints.Video.wrap_like(inpt, output) else: raise TypeError(f"Input can either be a plain tensor or a `Video` datapoint, but got {type(inpt)} instead.")
from typing import Union from torch import nn import transformers import torch from PIL import Image class CLIPModel(nn.Module): def __init__(self, model_name: str = "openai/clip-vit-base-patch32", processor_name=None): super(CLIPModel, self).__init__() if processor_name is None: processor_name = model_name self.model = transformers.CLIPModel.from_pretrained(model_name) self.processor = transformers.CLIPProcessor.from_pretrained(processor_name) def __repr__(self): return "CLIPModel()" def forward(self, features): image_embeds = [] text_embeds = [] if "pixel_values" in features: vision_outputs = self.model.vision_model(pixel_values=features["pixel_values"]) image_embeds = self.model.visual_projection(vision_outputs[1]) if "input_ids" in features: text_outputs = self.model.text_model( input_ids=features.get("input_ids"), attention_mask=features.get("attention_mask", None), position_ids=features.get("position_ids", None), output_attentions=features.get("output_attentions", None), output_hidden_states=features.get("output_hidden_states", None), ) text_embeds = self.model.text_projection(text_outputs[1]) sentence_embedding = [] image_features = iter(image_embeds) text_features = iter(text_embeds) for idx, input_type in enumerate(features["image_text_info"]): if input_type == 0: sentence_embedding.append(next(image_features)) else: sentence_embedding.append(next(text_features)) features["sentence_embedding"] = torch.stack(sentence_embedding).float() return features def tokenize(self, texts, padding: Union[str, bool] = True): images = [] texts_values = [] image_text_info = [] for idx, data in enumerate(texts): if isinstance(data, Image.Image): # An Image images.append(data) image_text_info.append(0) else: # A text texts_values.append(data) image_text_info.append(1) encoding = {} if len(texts_values): encoding = self.processor.tokenizer(texts_values, return_tensors="pt", padding=padding) if len(images): image_features = self.processor.image_processor(images, return_tensors="pt") encoding["pixel_values"] = image_features.pixel_values encoding["image_text_info"] = image_text_info return encoding def save(self, output_path: str): self.model.save_pretrained(output_path) self.processor.save_pretrained(output_path) @staticmethod def load(input_path: str): return CLIPModel(model_name=input_path)
from typing import Union from torch import nn import transformers import torch from PIL import Image class CLIPModel(nn.Module): def __init__(self, model_name: str = "openai/clip-vit-base-patch32", processor_name=None): super(CLIPModel, self).__init__() if processor_name is None: processor_name = model_name self.model = transformers.CLIPModel.from_pretrained(model_name) self.processor = transformers.CLIPProcessor.from_pretrained(processor_name) def __repr__(self): return "CLIPModel()" def forward(self, features): image_embeds = [] text_embeds = [] if "pixel_values" in features: vision_outputs = self.model.vision_model(pixel_values=features["pixel_values"]) image_embeds = self.model.visual_projection(vision_outputs[1]) if "input_ids" in features: text_outputs = self.model.text_model( input_ids=features.get("input_ids"), attention_mask=features.get("attention_mask", None), position_ids=features.get("position_ids", None), output_attentions=features.get("output_attentions", None), output_hidden_states=features.get("output_hidden_states", None), ) text_embeds = self.model.text_projection(text_outputs[1]) sentence_embedding = [] image_features = iter(image_embeds) text_features = iter(text_embeds) for idx, input_type in enumerate(features["image_text_info"]): if input_type == 0: sentence_embedding.append(next(image_features)) else: sentence_embedding.append(next(text_features)) features["sentence_embedding"] = torch.stack(sentence_embedding).float() return features def tokenize(self, texts, padding: Union[str, bool] = True): images = [] texts_values = [] image_text_info = [] for idx, data in enumerate(texts): if isinstance(data, Image.Image): # An Image images.append(data) image_text_info.append(0) else: # A text texts_values.append(data) image_text_info.append(1) if len(texts_values) == 0: texts_values = None if len(images) == 0: images = None inputs = self.processor(text=texts_values, images=images, return_tensors="pt", padding=padding) inputs["image_text_info"] = image_text_info return inputs def save(self, output_path: str): self.model.save_pretrained(output_path) self.processor.save_pretrained(output_path) @staticmethod def load(input_path: str): return CLIPModel(model_name=input_path)
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) def _ignore_google_warnings(): import warnings warnings.filterwarnings( 'ignore', category=DeprecationWarning, message='Deprecated call to `pkg_resources.declare_namespace(\'google\')`.', append=True, ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning, append=True) _ignore_google_warnings() # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method try: _set_start_method('fork') _warnings.warn(f'multiprocessing start method is set to `fork`') except Exception as e: _warnings.warn(f'failed to set multiprocessing start_method to `fork`: {e!r}') # do not change this line manually this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.27.21' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.27' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) def _ignore_google_warnings(): import warnings warnings.filterwarnings( 'ignore', category=DeprecationWarning, message='Deprecated call to `pkg_resources.declare_namespace(\'google\')`.', append=True, ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning, append=True) _ignore_google_warnings() # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method try: _set_start_method('fork') _warnings.warn(f'multiprocessing start method is set to `fork`') except Exception as e: _warnings.warn(f'failed to set multiprocessing start_method to `fork`: {e!r}') # do not change this line manually this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.27.20' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.27' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
from typing import Any, Dict, List, Optional, Sequence, Type, Union import PIL.Image import torch from torchvision import tv_tensors from torchvision.prototype.tv_tensors import Label, OneHotLabel from torchvision.transforms.v2 import functional as F, Transform from torchvision.transforms.v2._utils import ( _FillType, _get_fill, _setup_fill_arg, _setup_size, get_bounding_boxes, has_any, is_pure_tensor, query_size, ) class FixedSizeCrop(Transform): def __init__( self, size: Union[int, Sequence[int]], fill: Union[_FillType, Dict[Union[Type, str], _FillType]] = 0, padding_mode: str = "constant", ) -> None: super().__init__() size = tuple(_setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")) self.crop_height = size[0] self.crop_width = size[1] self.fill = fill self._fill = _setup_fill_arg(fill) self.padding_mode = padding_mode def check_inputs(self, flat_inputs: List[Any]) -> None: if not has_any( flat_inputs, PIL.Image.Image, tv_tensors.Image, is_pure_tensor, tv_tensors.Video, ): raise TypeError( f"{type(self).__name__}() requires input sample to contain an tensor or PIL image or a Video." ) if has_any(flat_inputs, tv_tensors.BoundingBoxes) and not has_any(flat_inputs, Label, OneHotLabel): raise TypeError( f"If a BoundingBoxes is contained in the input sample, " f"{type(self).__name__}() also requires it to contain a Label or OneHotLabel." ) def make_params(self, flat_inputs: List[Any]) -> Dict[str, Any]: height, width = query_size(flat_inputs) new_height = min(height, self.crop_height) new_width = min(width, self.crop_width) needs_crop = new_height != height or new_width != width offset_height = max(height - self.crop_height, 0) offset_width = max(width - self.crop_width, 0) r = torch.rand(1) top = int(offset_height * r) left = int(offset_width * r) bounding_boxes: Optional[torch.Tensor] try: bounding_boxes = get_bounding_boxes(flat_inputs) except ValueError: bounding_boxes = None if needs_crop and bounding_boxes is not None: format = bounding_boxes.format bounding_boxes, canvas_size = F.crop_bounding_boxes( bounding_boxes.as_subclass(torch.Tensor), format=format, top=top, left=left, height=new_height, width=new_width, ) bounding_boxes = F.clamp_bounding_boxes(bounding_boxes, format=format, canvas_size=canvas_size) height_and_width = F.convert_bounding_box_format( bounding_boxes, old_format=format, new_format=tv_tensors.BoundingBoxFormat.XYWH )[..., 2:] is_valid = torch.all(height_and_width > 0, dim=-1) else: is_valid = None pad_bottom = max(self.crop_height - new_height, 0) pad_right = max(self.crop_width - new_width, 0) needs_pad = pad_bottom != 0 or pad_right != 0 return dict( needs_crop=needs_crop, top=top, left=left, height=new_height, width=new_width, is_valid=is_valid, padding=[0, 0, pad_right, pad_bottom], needs_pad=needs_pad, ) def transform(self, inpt: Any, params: Dict[str, Any]) -> Any: if params["needs_crop"]: inpt = self._call_kernel( F.crop, inpt, top=params["top"], left=params["left"], height=params["height"], width=params["width"], ) if params["is_valid"] is not None: if isinstance(inpt, (Label, OneHotLabel, tv_tensors.Mask)): inpt = tv_tensors.wrap(inpt[params["is_valid"]], like=inpt) elif isinstance(inpt, tv_tensors.BoundingBoxes): inpt = tv_tensors.wrap( F.clamp_bounding_boxes(inpt[params["is_valid"]], format=inpt.format, canvas_size=inpt.canvas_size), like=inpt, ) if params["needs_pad"]: fill = _get_fill(self._fill, type(inpt)) inpt = self._call_kernel(F.pad, inpt, params["padding"], fill=fill, padding_mode=self.padding_mode) return inpt
from typing import Any, Dict, List, Optional, Sequence, Type, Union import PIL.Image import torch from torchvision import tv_tensors from torchvision.prototype.tv_tensors import Label, OneHotLabel from torchvision.transforms.v2 import functional as F, Transform from torchvision.transforms.v2._utils import ( _FillType, _get_fill, _setup_fill_arg, _setup_size, get_bounding_boxes, has_any, is_pure_tensor, query_size, ) class FixedSizeCrop(Transform): def __init__( self, size: Union[int, Sequence[int]], fill: Union[_FillType, Dict[Union[Type, str], _FillType]] = 0, padding_mode: str = "constant", ) -> None: super().__init__() size = tuple(_setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")) self.crop_height = size[0] self.crop_width = size[1] self.fill = fill self._fill = _setup_fill_arg(fill) self.padding_mode = padding_mode def _check_inputs(self, flat_inputs: List[Any]) -> None: if not has_any( flat_inputs, PIL.Image.Image, tv_tensors.Image, is_pure_tensor, tv_tensors.Video, ): raise TypeError( f"{type(self).__name__}() requires input sample to contain an tensor or PIL image or a Video." ) if has_any(flat_inputs, tv_tensors.BoundingBoxes) and not has_any(flat_inputs, Label, OneHotLabel): raise TypeError( f"If a BoundingBoxes is contained in the input sample, " f"{type(self).__name__}() also requires it to contain a Label or OneHotLabel." ) def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]: height, width = query_size(flat_inputs) new_height = min(height, self.crop_height) new_width = min(width, self.crop_width) needs_crop = new_height != height or new_width != width offset_height = max(height - self.crop_height, 0) offset_width = max(width - self.crop_width, 0) r = torch.rand(1) top = int(offset_height * r) left = int(offset_width * r) bounding_boxes: Optional[torch.Tensor] try: bounding_boxes = get_bounding_boxes(flat_inputs) except ValueError: bounding_boxes = None if needs_crop and bounding_boxes is not None: format = bounding_boxes.format bounding_boxes, canvas_size = F.crop_bounding_boxes( bounding_boxes.as_subclass(torch.Tensor), format=format, top=top, left=left, height=new_height, width=new_width, ) bounding_boxes = F.clamp_bounding_boxes(bounding_boxes, format=format, canvas_size=canvas_size) height_and_width = F.convert_bounding_box_format( bounding_boxes, old_format=format, new_format=tv_tensors.BoundingBoxFormat.XYWH )[..., 2:] is_valid = torch.all(height_and_width > 0, dim=-1) else: is_valid = None pad_bottom = max(self.crop_height - new_height, 0) pad_right = max(self.crop_width - new_width, 0) needs_pad = pad_bottom != 0 or pad_right != 0 return dict( needs_crop=needs_crop, top=top, left=left, height=new_height, width=new_width, is_valid=is_valid, padding=[0, 0, pad_right, pad_bottom], needs_pad=needs_pad, ) def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any: if params["needs_crop"]: inpt = self._call_kernel( F.crop, inpt, top=params["top"], left=params["left"], height=params["height"], width=params["width"], ) if params["is_valid"] is not None: if isinstance(inpt, (Label, OneHotLabel, tv_tensors.Mask)): inpt = tv_tensors.wrap(inpt[params["is_valid"]], like=inpt) elif isinstance(inpt, tv_tensors.BoundingBoxes): inpt = tv_tensors.wrap( F.clamp_bounding_boxes(inpt[params["is_valid"]], format=inpt.format, canvas_size=inpt.canvas_size), like=inpt, ) if params["needs_pad"]: fill = _get_fill(self._fill, type(inpt)) inpt = self._call_kernel(F.pad, inpt, params["padding"], fill=fill, padding_mode=self.padding_mode) return inpt
#!/usr/bin/env python from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.convert_to_parquet import ConvertToParquetCommand from datasets.commands.delete_from_hub import DeleteFromHubCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def parse_unknown_args(unknown_args): return {key.lstrip("-"): value for key, value in zip(unknown_args[::2], unknown_args[1::2])} def main(): parser = ArgumentParser( "HuggingFace Datasets CLI tool", usage="datasets-cli <command> [<args>]", allow_abbrev=False ) commands_parser = parser.add_subparsers(help="datasets-cli command helpers") set_verbosity_info() # Register commands ConvertCommand.register_subcommand(commands_parser) EnvironmentCommand.register_subcommand(commands_parser) TestCommand.register_subcommand(commands_parser) RunBeamCommand.register_subcommand(commands_parser) DummyDataCommand.register_subcommand(commands_parser) ConvertToParquetCommand.register_subcommand(commands_parser) DeleteFromHubCommand.register_subcommand(commands_parser) # Parse args args, unknown_args = parser.parse_known_args() if not hasattr(args, "func"): parser.print_help() exit(1) kwargs = parse_unknown_args(unknown_args) # Run service = args.func(args, **kwargs) service.run() if __name__ == "__main__": main()
#!/usr/bin/env python from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.convert_to_parquet import ConvertToParquetCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def parse_unknown_args(unknown_args): return {key.lstrip("-"): value for key, value in zip(unknown_args[::2], unknown_args[1::2])} def main(): parser = ArgumentParser( "HuggingFace Datasets CLI tool", usage="datasets-cli <command> [<args>]", allow_abbrev=False ) commands_parser = parser.add_subparsers(help="datasets-cli command helpers") set_verbosity_info() # Register commands ConvertCommand.register_subcommand(commands_parser) EnvironmentCommand.register_subcommand(commands_parser) TestCommand.register_subcommand(commands_parser) RunBeamCommand.register_subcommand(commands_parser) DummyDataCommand.register_subcommand(commands_parser) ConvertToParquetCommand.register_subcommand(commands_parser) # Parse args args, unknown_args = parser.parse_known_args() if not hasattr(args, "func"): parser.print_help() exit(1) kwargs = parse_unknown_args(unknown_args) # Run service = args.func(args, **kwargs) service.run() if __name__ == "__main__": main()
_base_ = '../cascade_rcnn/cascade-mask-rcnn_r50_fpn_1x_coco.py' norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( # use ResNeSt img_norm data_preprocessor=dict( mean=[123.68, 116.779, 103.939], std=[58.393, 57.12, 57.375], bgr_to_rgb=True), backbone=dict( type='ResNeSt', stem_channels=64, depth=50, radix=2, reduction_factor=4, avg_down_stride=True, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=norm_cfg, norm_eval=False, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='open-mmlab://resnest50')), roi_head=dict( bbox_head=[ dict( type='Shared4Conv1FCBBoxHead', in_channels=256, conv_out_channels=256, fc_out_channels=1024, norm_cfg=norm_cfg, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='Shared4Conv1FCBBoxHead', in_channels=256, conv_out_channels=256, fc_out_channels=1024, norm_cfg=norm_cfg, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.05, 0.05, 0.1, 0.1]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='Shared4Conv1FCBBoxHead', in_channels=256, conv_out_channels=256, fc_out_channels=1024, norm_cfg=norm_cfg, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.033, 0.033, 0.067, 0.067]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)) ], mask_head=dict(norm_cfg=norm_cfg))) train_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict( type='LoadAnnotations', with_bbox=True, with_mask=True, poly2mask=False), dict( type='RandomChoiceResize', scales=[(1333, 640), (1333, 672), (1333, 704), (1333, 736), (1333, 768), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
_base_ = '../cascade_rcnn/cascade-mask-rcnn_r50_fpn_1x_coco.py' norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( # use ResNeSt img_norm data_preprocessor=dict( mean=[123.68, 116.779, 103.939], std=[58.393, 57.12, 57.375], bgr_to_rgb=True), backbone=dict( type='ResNeSt', stem_channels=64, depth=50, radix=2, reduction_factor=4, avg_down_stride=True, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=norm_cfg, norm_eval=False, style='pytorch', init_cfg=dict(type='Pretrained', checkpoint='open-mmlab://resnest50')), roi_head=dict( bbox_head=[ dict( type='Shared4Conv1FCBBoxHead', in_channels=256, conv_out_channels=256, fc_out_channels=1024, norm_cfg=norm_cfg, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='Shared4Conv1FCBBoxHead', in_channels=256, conv_out_channels=256, fc_out_channels=1024, norm_cfg=norm_cfg, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.05, 0.05, 0.1, 0.1]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='Shared4Conv1FCBBoxHead', in_channels=256, conv_out_channels=256, fc_out_channels=1024, norm_cfg=norm_cfg, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.033, 0.033, 0.067, 0.067]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)) ], mask_head=dict(norm_cfg=norm_cfg))) train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict( type='LoadAnnotations', with_bbox=True, with_mask=True, poly2mask=False), dict( type='RandomChoiceResize', scales=[(1333, 640), (1333, 672), (1333, 704), (1333, 736), (1333, 768), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
from pathlib import Path from typing import Callable, Optional from .folder import ImageFolder from .utils import download_and_extract_archive, verify_str_arg class Country211(ImageFolder): """`The Country211 Data Set <https://github.com/openai/CLIP/blob/main/data/country211.md>`_ from OpenAI. This dataset was built by filtering the images from the YFCC100m dataset that have GPS coordinate corresponding to a ISO-3166 country code. The dataset is balanced by sampling 150 train images, 50 validation images, and 100 test images for each country. Args: root (string): Root directory of the dataset. split (string, optional): The dataset split, supports ``"train"`` (default), ``"valid"`` and ``"test"``. transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.RandomCrop``. target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If True, downloads the dataset from the internet and puts it into ``root/country211/``. If dataset is already downloaded, it is not downloaded again. """ _URL = "https://openaipublic.azureedge.net/clip/data/country211.tgz" _MD5 = "84988d7644798601126c29e9877aab6a" def __init__( self, root: str, split: str = "train", transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, ) -> None: self._split = verify_str_arg(split, "split", ("train", "valid", "test")) root = Path(root).expanduser() self.root = str(root) self._base_folder = root / "country211" if download: self._download() if not self._check_exists(): raise RuntimeError("Dataset not found. You can use download=True to download it") super().__init__(str(self._base_folder / self._split), transform=transform, target_transform=target_transform) self.root = str(root) def _check_exists(self) -> bool: return self._base_folder.exists() and self._base_folder.is_dir() def _download(self) -> None: if self._check_exists(): return download_and_extract_archive(self._URL, download_root=self.root, md5=self._MD5)
from pathlib import Path from typing import Callable, Optional from .folder import ImageFolder from .utils import download_and_extract_archive, verify_str_arg class Country211(ImageFolder): """`The Country211 Data Set <https://github.com/openai/CLIP/blob/main/data/country211.md>`_ from OpenAI. This dataset was built by filtering the images from the YFCC100m dataset that have GPS coordinate corresponding to a ISO-3166 country code. The dataset is balanced by sampling 150 train images, 50 validation images, and 100 test images images for each country. Args: root (string): Root directory of the dataset. split (string, optional): The dataset split, supports ``"train"`` (default), ``"valid"`` and ``"test"``. transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.RandomCrop``. target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If True, downloads the dataset from the internet and puts it into ``root/country211/``. If dataset is already downloaded, it is not downloaded again. """ _URL = "https://openaipublic.azureedge.net/clip/data/country211.tgz" _MD5 = "84988d7644798601126c29e9877aab6a" def __init__( self, root: str, split: str = "train", transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, ) -> None: self._split = verify_str_arg(split, "split", ("train", "valid", "test")) root = Path(root).expanduser() self.root = str(root) self._base_folder = root / "country211" if download: self._download() if not self._check_exists(): raise RuntimeError("Dataset not found. You can use download=True to download it") super().__init__(str(self._base_folder / self._split), transform=transform, target_transform=target_transform) self.root = str(root) def _check_exists(self) -> bool: return self._base_folder.exists() and self._base_folder.is_dir() def _download(self) -> None: if self._check_exists(): return download_and_extract_archive(self._URL, download_root=self.root, md5=self._MD5)
# Copyright (c) OpenMMLab. All rights reserved. import torch from mmdet.core import bbox2result, bbox_mapping_back from mmdet.registry import MODELS from .single_stage import SingleStageDetector @MODELS.register_module() class CornerNet(SingleStageDetector): """CornerNet. This detector is the implementation of the paper `CornerNet: Detecting Objects as Paired Keypoints <https://arxiv.org/abs/1808.01244>`_ . """ def __init__(self, backbone, neck, bbox_head, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None): super(CornerNet, self).__init__(backbone, neck, bbox_head, train_cfg, test_cfg, pretrained, init_cfg) def merge_aug_results(self, aug_results, img_metas): """Merge augmented detection bboxes and score. Args: aug_results (list[list[Tensor]]): Det_bboxes and det_labels of each image. img_metas (list[list[dict]]): Meta information of each image, e.g., image size, scaling factor, etc. Returns: tuple: (bboxes, labels) """ recovered_bboxes, aug_labels = [], [] for bboxes_labels, img_info in zip(aug_results, img_metas): img_shape = img_info[0]['img_shape'] # using shape before padding scale_factor = img_info[0]['scale_factor'] flip = img_info[0]['flip'] bboxes, labels = bboxes_labels bboxes, scores = bboxes[:, :4], bboxes[:, -1:] bboxes = bbox_mapping_back(bboxes, img_shape, scale_factor, flip) recovered_bboxes.append(torch.cat([bboxes, scores], dim=-1)) aug_labels.append(labels) bboxes = torch.cat(recovered_bboxes, dim=0) labels = torch.cat(aug_labels) if bboxes.shape[0] > 0: out_bboxes, out_labels = self.bbox_head._bboxes_nms( bboxes, labels, self.bbox_head.test_cfg) else: out_bboxes, out_labels = bboxes, labels return out_bboxes, out_labels def aug_test(self, imgs, img_metas, rescale=False): """Augment testing of CornerNet. Args: imgs (list[Tensor]): Augmented images. img_metas (list[list[dict]]): Meta information of each image, e.g., image size, scaling factor, etc. rescale (bool): If True, return boxes in original image space. Default: False. Note: ``imgs`` must including flipped image pairs. Returns: list[list[np.ndarray]]: BBox results of each image and classes. The outer list corresponds to each image. The inner list corresponds to each class. """ img_inds = list(range(len(imgs))) assert img_metas[0][0]['flip'] + img_metas[1][0]['flip'], ( 'aug test must have flipped image pair') aug_results = [] for ind, flip_ind in zip(img_inds[0::2], img_inds[1::2]): img_pair = torch.cat([imgs[ind], imgs[flip_ind]]) x = self.extract_feat(img_pair) outs = self.bbox_head(x) bbox_list = self.bbox_head.get_bboxes( *outs, [img_metas[ind], img_metas[flip_ind]], False, False) aug_results.append(bbox_list[0]) aug_results.append(bbox_list[1]) bboxes, labels = self.merge_aug_results(aug_results, img_metas) bbox_results = bbox2result(bboxes, labels, self.bbox_head.num_classes) return [bbox_results]
# Copyright (c) OpenMMLab. All rights reserved. import torch from mmdet.core import bbox2result, bbox_mapping_back from ..builder import DETECTORS from .single_stage import SingleStageDetector @DETECTORS.register_module() class CornerNet(SingleStageDetector): """CornerNet. This detector is the implementation of the paper `CornerNet: Detecting Objects as Paired Keypoints <https://arxiv.org/abs/1808.01244>`_ . """ def __init__(self, backbone, neck, bbox_head, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None): super(CornerNet, self).__init__(backbone, neck, bbox_head, train_cfg, test_cfg, pretrained, init_cfg) def merge_aug_results(self, aug_results, img_metas): """Merge augmented detection bboxes and score. Args: aug_results (list[list[Tensor]]): Det_bboxes and det_labels of each image. img_metas (list[list[dict]]): Meta information of each image, e.g., image size, scaling factor, etc. Returns: tuple: (bboxes, labels) """ recovered_bboxes, aug_labels = [], [] for bboxes_labels, img_info in zip(aug_results, img_metas): img_shape = img_info[0]['img_shape'] # using shape before padding scale_factor = img_info[0]['scale_factor'] flip = img_info[0]['flip'] bboxes, labels = bboxes_labels bboxes, scores = bboxes[:, :4], bboxes[:, -1:] bboxes = bbox_mapping_back(bboxes, img_shape, scale_factor, flip) recovered_bboxes.append(torch.cat([bboxes, scores], dim=-1)) aug_labels.append(labels) bboxes = torch.cat(recovered_bboxes, dim=0) labels = torch.cat(aug_labels) if bboxes.shape[0] > 0: out_bboxes, out_labels = self.bbox_head._bboxes_nms( bboxes, labels, self.bbox_head.test_cfg) else: out_bboxes, out_labels = bboxes, labels return out_bboxes, out_labels def aug_test(self, imgs, img_metas, rescale=False): """Augment testing of CornerNet. Args: imgs (list[Tensor]): Augmented images. img_metas (list[list[dict]]): Meta information of each image, e.g., image size, scaling factor, etc. rescale (bool): If True, return boxes in original image space. Default: False. Note: ``imgs`` must including flipped image pairs. Returns: list[list[np.ndarray]]: BBox results of each image and classes. The outer list corresponds to each image. The inner list corresponds to each class. """ img_inds = list(range(len(imgs))) assert img_metas[0][0]['flip'] + img_metas[1][0]['flip'], ( 'aug test must have flipped image pair') aug_results = [] for ind, flip_ind in zip(img_inds[0::2], img_inds[1::2]): img_pair = torch.cat([imgs[ind], imgs[flip_ind]]) x = self.extract_feat(img_pair) outs = self.bbox_head(x) bbox_list = self.bbox_head.get_bboxes( *outs, [img_metas[ind], img_metas[flip_ind]], False, False) aug_results.append(bbox_list[0]) aug_results.append(bbox_list[1]) bboxes, labels = self.merge_aug_results(aug_results, img_metas) bbox_results = bbox2result(bboxes, labels, self.bbox_head.num_classes) return [bbox_results]
"""Chain that runs an arbitrary python function.""" import functools import logging from collections.abc import Awaitable from typing import Any, Callable, Optional from langchain_core.callbacks import ( AsyncCallbackManagerForChainRun, CallbackManagerForChainRun, ) from pydantic import Field from langchain.chains.base import Chain logger = logging.getLogger(__name__) class TransformChain(Chain): """Chain that transforms the chain output. Example: .. code-block:: python from langchain.chains import TransformChain transform_chain = TransformChain(input_variables=["text"], output_variables["entities"], transform=func()) """ input_variables: list[str] """The keys expected by the transform's input dictionary.""" output_variables: list[str] """The keys returned by the transform's output dictionary.""" transform_cb: Callable[[dict[str, str]], dict[str, str]] = Field(alias="transform") """The transform function.""" atransform_cb: Optional[Callable[[dict[str, Any]], Awaitable[dict[str, Any]]]] = ( Field(None, alias="atransform") ) """The async coroutine transform function.""" @staticmethod @functools.lru_cache def _log_once(msg: str) -> None: """Log a message once. :meta private: """ logger.warning(msg) @property def input_keys(self) -> list[str]: """Expect input keys. :meta private: """ return self.input_variables @property def output_keys(self) -> list[str]: """Return output keys. :meta private: """ return self.output_variables def _call( self, inputs: dict[str, str], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> dict[str, str]: return self.transform_cb(inputs) async def _acall( self, inputs: dict[str, Any], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> dict[str, Any]: if self.atransform_cb is not None: return await self.atransform_cb(inputs) self._log_once( "TransformChain's atransform is not provided, falling" " back to synchronous transform", ) return self.transform_cb(inputs)
"""Chain that runs an arbitrary python function.""" import functools import logging from collections.abc import Awaitable from typing import Any, Callable, Optional from langchain_core.callbacks import ( AsyncCallbackManagerForChainRun, CallbackManagerForChainRun, ) from pydantic import Field from langchain.chains.base import Chain logger = logging.getLogger(__name__) class TransformChain(Chain): """Chain that transforms the chain output. Example: .. code-block:: python from langchain.chains import TransformChain transform_chain = TransformChain(input_variables=["text"], output_variables["entities"], transform=func()) """ input_variables: list[str] """The keys expected by the transform's input dictionary.""" output_variables: list[str] """The keys returned by the transform's output dictionary.""" transform_cb: Callable[[dict[str, str]], dict[str, str]] = Field(alias="transform") """The transform function.""" atransform_cb: Optional[Callable[[dict[str, Any]], Awaitable[dict[str, Any]]]] = ( Field(None, alias="atransform") ) """The async coroutine transform function.""" @staticmethod @functools.lru_cache def _log_once(msg: str) -> None: """Log a message once. :meta private: """ logger.warning(msg) @property def input_keys(self) -> list[str]: """Expect input keys. :meta private: """ return self.input_variables @property def output_keys(self) -> list[str]: """Return output keys. :meta private: """ return self.output_variables def _call( self, inputs: dict[str, str], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> dict[str, str]: return self.transform_cb(inputs) async def _acall( self, inputs: dict[str, Any], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> dict[str, Any]: if self.atransform_cb is not None: return await self.atransform_cb(inputs) self._log_once( "TransformChain's atransform is not provided, falling" " back to synchronous transform" ) return self.transform_cb(inputs)
from langchain_core.language_models import BaseLanguageModel from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts.few_shot import FewShotPromptTemplate from langchain_core.prompts.prompt import PromptTemplate TEST_GEN_TEMPLATE_SUFFIX = "Add another example." def generate_example( examples: list[dict], llm: BaseLanguageModel, prompt_template: PromptTemplate, ) -> str: """Return another example given a list of examples for a prompt.""" prompt = FewShotPromptTemplate( examples=examples, suffix=TEST_GEN_TEMPLATE_SUFFIX, input_variables=[], example_prompt=prompt_template, ) chain = prompt | llm | StrOutputParser() return chain.invoke({})
from langchain_core.language_models import BaseLanguageModel from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts.few_shot import FewShotPromptTemplate from langchain_core.prompts.prompt import PromptTemplate TEST_GEN_TEMPLATE_SUFFIX = "Add another example." def generate_example( examples: list[dict], llm: BaseLanguageModel, prompt_template: PromptTemplate ) -> str: """Return another example given a list of examples for a prompt.""" prompt = FewShotPromptTemplate( examples=examples, suffix=TEST_GEN_TEMPLATE_SUFFIX, input_variables=[], example_prompt=prompt_template, ) chain = prompt | llm | StrOutputParser() return chain.invoke({})
"""Test SparkLLM.""" from langchain_core.outputs import LLMResult from langchain_community.llms.sparkllm import SparkLLM def test_call() -> None: """Test valid call to sparkllm.""" llm = SparkLLM() output = llm.invoke("Say foo:") assert isinstance(output, str) def test_generate() -> None: """Test valid call to sparkllm.""" llm = SparkLLM() output = llm.generate(["Say foo:"]) assert isinstance(output, LLMResult) assert isinstance(output.generations, list) def test_spark_llm_with_param_alias() -> None: """Test SparkLLM with parameters alias.""" llm = SparkLLM( app_id="your-app-id", api_key="your-api-key", api_secret="your-api-secret", model="Spark4.0 Ultra", api_url="your-api-url", timeout=20, ) assert llm.spark_app_id == "your-app-id" assert llm.spark_api_key == "your-api-key" assert llm.spark_api_secret == "your-api-secret" assert llm.spark_llm_domain == "Spark4.0 Ultra" assert llm.spark_api_url == "your-api-url" assert llm.request_timeout == 20 def test_spark_llm_with_stream() -> None: """Test SparkLLM with stream.""" llm = SparkLLM() for chunk in llm.stream("你好呀"): assert isinstance(chunk, str)
"""Test SparkLLM.""" from langchain_core.outputs import LLMResult from langchain_community.llms.sparkllm import SparkLLM def test_call() -> None: """Test valid call to sparkllm.""" llm = SparkLLM() output = llm.invoke("Say foo:") assert isinstance(output, str) def test_generate() -> None: """Test valid call to sparkllm.""" llm = SparkLLM() output = llm.generate(["Say foo:"]) assert isinstance(output, LLMResult) assert isinstance(output.generations, list) def test_spark_llm_with_param_alias() -> None: """Test SparkLLM with parameters alias.""" llm = SparkLLM( # type: ignore[call-arg] app_id="your-app-id", api_key="your-api-key", api_secret="your-api-secret", model="Spark4.0 Ultra", api_url="your-api-url", timeout=20, ) assert llm.spark_app_id == "your-app-id" assert llm.spark_api_key == "your-api-key" assert llm.spark_api_secret == "your-api-secret" assert llm.spark_llm_domain == "Spark4.0 Ultra" assert llm.spark_api_url == "your-api-url" assert llm.request_timeout == 20 def test_spark_llm_with_stream() -> None: """Test SparkLLM with stream.""" llm = SparkLLM() # type: ignore[call-arg] for chunk in llm.stream("你好呀"): assert isinstance(chunk, str)
import logging from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseNanoBEIREvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") datasets = ["QuoraRetrieval", "MSMARCO"] evaluator = SparseNanoBEIREvaluator( dataset_names=datasets, show_progress_bar=True, batch_size=32, ) # Run evaluation results = evaluator(model) """ Evaluating NanoQuoraRetrieval Information Retrieval Evaluation of the model on the NanoQuoraRetrieval dataset: Queries: 50 Corpus: 5046 Score-Function: dot Accuracy@1: 92.00% Accuracy@3: 96.00% Accuracy@5: 98.00% Accuracy@10: 100.00% Precision@1: 92.00% Precision@3: 40.00% Precision@5: 24.80% Precision@10: 13.20% Recall@1: 79.73% Recall@3: 92.53% Recall@5: 94.93% Recall@10: 98.27% MRR@10: 0.9439 NDCG@10: 0.9339 MAP@100: 0.9070 Model Query Sparsity: Active Dimensions: 59.4, Sparsity Ratio: 0.9981 Model Corpus Sparsity: Active Dimensions: 61.9, Sparsity Ratio: 0.9980 Information Retrieval Evaluation of the model on the NanoMSMARCO dataset: Queries: 50 Corpus: 5043 Score-Function: dot Accuracy@1: 48.00% Accuracy@3: 74.00% Accuracy@5: 76.00% Accuracy@10: 86.00% Precision@1: 48.00% Precision@3: 24.67% Precision@5: 15.20% Precision@10: 8.60% Recall@1: 48.00% Recall@3: 74.00% Recall@5: 76.00% Recall@10: 86.00% MRR@10: 0.6191 NDCG@10: 0.6780 MAP@100: 0.6277 Model Query Sparsity: Active Dimensions: 45.4, Sparsity Ratio: 0.9985 Model Corpus Sparsity: Active Dimensions: 122.6, Sparsity Ratio: 0.9960 Average Queries: 50.0 Average Corpus: 5044.5 Aggregated for Score Function: dot Accuracy@1: 70.00% Accuracy@3: 85.00% Accuracy@5: 87.00% Accuracy@10: 93.00% Precision@1: 70.00% Recall@1: 63.87% Precision@3: 32.33% Recall@3: 83.27% Precision@5: 20.00% Recall@5: 85.47% Precision@10: 10.90% Recall@10: 92.13% MRR@10: 0.7815 NDCG@10: 0.8060 Model Query Sparsity: Active Dimensions: 52.4, Sparsity Ratio: 0.9983 Model Corpus Sparsity: Active Dimensions: 92.2, Sparsity Ratio: 0.9970 """ # Print the results print(f"Primary metric: {evaluator.primary_metric}") # => Primary metric: NanoBEIR_mean_dot_ndcg@10 print(f"Primary metric value: {results[evaluator.primary_metric]:.4f}") # => Primary metric value: 0.8060
import logging from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseNanoBEIREvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") datasets = ["QuoraRetrieval", "MSMARCO"] evaluator = SparseNanoBEIREvaluator( dataset_names=datasets, show_progress_bar=True, batch_size=32, ) # Run evaluation results = evaluator(model) """ Evaluating NanoQuoraRetrieval Information Retrieval Evaluation of the model on the NanoQuoraRetrieval dataset: Queries: 50 Corpus: 5046 Score-Function: dot Accuracy@1: 92.00% Accuracy@3: 96.00% Accuracy@5: 98.00% Accuracy@10: 100.00% Precision@1: 92.00% Precision@3: 40.00% Precision@5: 24.80% Precision@10: 13.20% Recall@1: 79.73% Recall@3: 92.53% Recall@5: 94.93% Recall@10: 98.27% MRR@10: 0.9439 NDCG@10: 0.9339 MAP@100: 0.9072 Model Query Sparsity: Active Dimensions: 63.0, Sparsity Ratio: 0.9979 Model Corpus Sparsity: Active Dimensions: 63.4, Sparsity Ratio: 0.9979 Information Retrieval Evaluation of the model on the NanoMSMARCO dataset: Queries: 50 Corpus: 5043 Score-Function: dot Accuracy@1: 48.00% Accuracy@3: 74.00% Accuracy@5: 76.00% Accuracy@10: 88.00% Precision@1: 48.00% Precision@3: 24.67% Precision@5: 15.20% Precision@10: 8.80% Recall@1: 48.00% Recall@3: 74.00% Recall@5: 76.00% Recall@10: 88.00% MRR@10: 0.6211 NDCG@10: 0.6838 MAP@100: 0.6277 Model Query Sparsity: Active Dimensions: 48.1, Sparsity Ratio: 0.9984 Model Corpus Sparsity: Active Dimensions: 125.4, Sparsity Ratio: 0.9959 Average Queries: 50.0 Average Corpus: 5044.5 Aggregated for Score Function: dot Accuracy@1: 70.00% Accuracy@3: 85.00% Accuracy@5: 87.00% Accuracy@10: 94.00% Precision@1: 70.00% Recall@1: 63.87% Precision@3: 32.33% Recall@3: 83.27% Precision@5: 20.00% Recall@5: 85.47% Precision@10: 11.00% Recall@10: 93.13% MRR@10: 0.7825 NDCG@10: 0.8089 Model Query Sparsity: Active Dimensions: 55.5, Sparsity Ratio: 0.9982 Model Corpus Sparsity: Active Dimensions: 94.4, Sparsity Ratio: 0.9969 """ # Print the results print(f"Primary metric: {evaluator.primary_metric}") # => Primary metric: NanoBEIR_mean_dot_ndcg@10 print(f"Primary metric value: {results[evaluator.primary_metric]:.4f}") # => Primary metric value: 0.8089
""" This is a simple application for sparse encoder: Computing embeddings. we have multiple sentences and we want to compute their embeddings. The embeddings are sparse, meaning that most of the values are zero. The embeddings are stored in a sparse matrix format, which is more efficient for storage and computation. we can also visualize the top tokens for each text.""" from sentence_transformers import SparseEncoder # Initialize the SPLADE model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # Embed a list of sentences sentences = [ "This framework generates embeddings for each input sentence", "Sentences are passed as a list of string.", "The quick brown fox jumps over the lazy dog.", ] # Generate embeddings embeddings = model.encode(sentences) # Print embedding sim and sparsity print(f"Embedding dim: {model.get_sentence_embedding_dimension()}") stats = model.sparsity(embeddings) print(f"Embedding sparsity: {stats}") print(f"Average non-zero dimensions: {stats['active_dims']:.2f}") print(f"Sparsity percentage: {stats['sparsity_ratio']:.2%}") """ Embedding dim: 30522 Embedding sparsity: {'active_dims': 56.66666793823242, 'sparsity_ratio': 0.9981433749198914} Average non-zero dimensions: 56.67 Sparsity percentage: 99.81% """ # Visualize top tokens for each text top_k = 10 token_weights = model.decode(embeddings, top_k=top_k) print(f"\nTop tokens {top_k} for each text:") # The result is a list of sentence embeddings as numpy arrays for i, sentence in enumerate(sentences): token_scores = ", ".join([f'("{token.strip()}", {value:.2f})' for token, value in token_weights[i]]) print(f"{i}: {sentence} -> Top tokens: {token_scores}") """ Top tokens 10 for each text: 0: This framework generates embeddings for each input sentence -> Top tokens: ("framework", 2.19), ("##bed", 2.12), ("input", 1.99), ("each", 1.60), ("em", 1.58), ("sentence", 1.49), ("generate", 1.42), ("##ding", 1.33), ("sentences", 1.10), ("create", 0.93) 1: Sentences are passed as a list of string. -> Top tokens: ("string", 2.72), ("pass", 2.24), ("sentences", 2.15), ("passed", 2.07), ("sentence", 1.90), ("strings", 1.86), ("list", 1.84), ("lists", 1.49), ("as", 1.18), ("passing", 0.73) 2: The quick brown fox jumps over the lazy dog. -> Top tokens: ("lazy", 2.18), ("fox", 1.67), ("brown", 1.56), ("over", 1.52), ("dog", 1.50), ("quick", 1.49), ("jump", 1.39), ("dogs", 1.25), ("foxes", 0.99), ("jumping", 0.84) """ # Example of using max_active_dims during encoding print("\n--- Using max_active_dims during encoding ---") # Generate embeddings with limited active dimensions embeddings_limited = model.encode(sentences, max_active_dims=32) stats_limited = model.sparsity(embeddings_limited) print(f"Limited embedding sparsity: {stats_limited}") print(f"Average non-zero dimensions: {stats_limited['active_dims']:.2f}") print(f"Sparsity percentage: {stats_limited['sparsity_ratio']:.2%}") """ --- Using max_active_dims during encoding --- Limited embedding sparsity: {'active_dims': 32.0, 'sparsity_ratio': 0.9989516139030457} Average non-zero dimensions: 32.00 Sparsity percentage: 99.90% """ # Comparing memory usage print("\n--- Comparing memory usage ---") def get_memory_size(tensor): if tensor.is_sparse: # For sparse tensors, only count non-zero elements return ( tensor._values().element_size() * tensor._values().nelement() + tensor._indices().element_size() * tensor._indices().nelement() ) else: return tensor.element_size() * tensor.nelement() print(f"Original embeddings memory: {get_memory_size(embeddings) / 1024:.2f} KB") print(f"Embeddings with max_active_dims=32 memory: {get_memory_size(embeddings_limited) / 1024:.2f} KB") """ --- Comparing memory usage --- Original embeddings memory: 3.32 KB Embeddings with max_active_dims=32 memory: 1.88 KB """
""" This is a simple application for sparse encoder: Computing embeddings. we have multiple sentences and we want to compute their embeddings. The embeddings are sparse, meaning that most of the values are zero. The embeddings are stored in a sparse matrix format, which is more efficient for storage and computation. we can also visualize the top tokens for each text.""" from sentence_transformers import SparseEncoder # Initialize the SPLADE model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # Embed a list of sentences sentences = [ "This framework generates embeddings for each input sentence", "Sentences are passed as a list of string.", "The quick brown fox jumps over the lazy dog.", ] # Generate embeddings embeddings = model.encode(sentences) # Print embedding sim and sparsity print(f"Embedding dim: {model.get_sentence_embedding_dimension()}") stats = model.get_sparsity_stats(embeddings) print(f"Embedding sparsity: {stats}") print(f"Average non-zero dimensions: {stats['row_non_zero_mean']:.2f}") print(f"Sparsity percentage: {stats['row_sparsity_mean']:.2%}") """ Embedding dim: 30522 Embedding sparsity: {'num_rows': 3, 'num_cols': 30522, 'row_non_zero_mean': 56.66666793823242, 'row_sparsity_mean': 0.9981433749198914} Average non-zero dimensions: 56.67 Sparsity percentage: 99.81% """ # Visualize top tokens for each text top_k = 10 token_weights = model.decode(embeddings, top_k=top_k) print(f"\nTop tokens {top_k} for each text:") # The result is a list of sentence embeddings as numpy arrays for i, sentence in enumerate(sentences): token_scores = ", ".join([f'("{token.strip()}", {value:.2f})' for token, value in token_weights[i]]) print(f"{i}: {sentence} -> Top tokens: {token_scores}") """ Top tokens 10 for each text: 0: This framework generates embeddings for each input sentence -> Top tokens: ("framework", 2.19), ("##bed", 2.12), ("input", 1.99), ("each", 1.60), ("em", 1.58), ("sentence", 1.49), ("generate", 1.42), ("##ding", 1.33), ("sentences", 1.10), ("create", 0.93) 1: Sentences are passed as a list of string. -> Top tokens: ("string", 2.72), ("pass", 2.24), ("sentences", 2.15), ("passed", 2.07), ("sentence", 1.90), ("strings", 1.86), ("list", 1.84), ("lists", 1.49), ("as", 1.18), ("passing", 0.73) 2: The quick brown fox jumps over the lazy dog. -> Top tokens: ("lazy", 2.18), ("fox", 1.67), ("brown", 1.56), ("over", 1.52), ("dog", 1.50), ("quick", 1.49), ("jump", 1.39), ("dogs", 1.25), ("foxes", 0.99), ("jumping", 0.84) """ # Example of using max_active_dims during encoding print("\n--- Using max_active_dims during encoding ---") # Generate embeddings with limited active dimensions embeddings_limited = model.encode(sentences, max_active_dims=32) stats_limited = model.get_sparsity_stats(embeddings_limited) print(f"Limited embedding sparsity: {stats_limited}") print(f"Average non-zero dimensions: {stats_limited['row_non_zero_mean']:.2f}") print(f"Sparsity percentage: {stats_limited['row_sparsity_mean']:.2%}") """ --- Using max_active_dims during encoding --- Limited embedding sparsity: {'num_rows': 3, 'num_cols': 30522, 'row_non_zero_mean': 32.0, 'row_sparsity_mean': 0.9989516139030457} Average non-zero dimensions: 32.00 Sparsity percentage: 99.90% """ # Comparing memory usage print("\n--- Comparing memory usage ---") def get_memory_size(tensor): if tensor.is_sparse: # For sparse tensors, only count non-zero elements return ( tensor._values().element_size() * tensor._values().nelement() + tensor._indices().element_size() * tensor._indices().nelement() ) else: return tensor.element_size() * tensor.nelement() print(f"Original embeddings memory: {get_memory_size(embeddings) / 1024:.2f} KB") print(f"Embeddings with max_active_dims=32 memory: {get_memory_size(embeddings_limited) / 1024:.2f} KB") """ --- Comparing memory usage --- Original embeddings memory: 3.32 KB Embeddings with max_active_dims=32 memory: 1.88 KB """
from keras.src import backend from keras.src.api_export import keras_export from keras.src.layers.preprocessing.image_preprocessing.base_image_preprocessing_layer import ( # noqa: E501 BaseImagePreprocessingLayer, ) @keras_export("keras.layers.RandomGrayscale") class RandomGrayscale(BaseImagePreprocessingLayer): """Preprocessing layer for random conversion of RGB images to grayscale. This layer randomly converts input images to grayscale with a specified factor. When applied, it maintains the original number of channels but sets all channels to the same grayscale value. This can be useful for data augmentation and training models to be robust to color variations. The conversion preserves the perceived luminance of the original color image using standard RGB to grayscale conversion coefficients. Images that are not selected for conversion remain unchanged. **Note:** This layer is safe to use inside a `tf.data` pipeline (independently of which backend you're using). Args: factor: Float between 0 and 1, specifying the factor of converting each image to grayscale. Defaults to 0.5. A value of 1.0 means all images will be converted, while 0.0 means no images will be converted. data_format: String, one of `"channels_last"` (default) or `"channels_first"`. The ordering of the dimensions in the inputs. `"channels_last"` corresponds to inputs with shape `(batch, height, width, channels)` while `"channels_first"` corresponds to inputs with shape `(batch, channels, height, width)`. Input shape: 3D (unbatched) or 4D (batched) tensor with shape: `(..., height, width, channels)`, in `"channels_last"` format, or `(..., channels, height, width)`, in `"channels_first"` format. Output shape: Same as input shape. The output maintains the same number of channels as the input, even for grayscale-converted images where all channels will have the same value. """ def __init__(self, factor=0.5, data_format=None, **kwargs): super().__init__(**kwargs) if factor < 0 or factor > 1: raise ValueError( "`factor` should be between 0 and 1. " f"Received: factor={factor}" ) self.factor = factor self.data_format = backend.standardize_data_format(data_format) self.random_generator = self.backend.random.SeedGenerator() def get_random_transformation(self, images, training=True, seed=None): if seed is None: seed = self._get_seed_generator(self.backend._backend) random_values = self.backend.random.uniform( shape=(self.backend.core.shape(images)[0],), minval=0, maxval=1, seed=seed, ) should_apply = self.backend.numpy.expand_dims( random_values < self.factor, axis=[1, 2, 3] ) return should_apply def transform_images(self, images, transformations=None, **kwargs): should_apply = ( transformations if transformations is not None else self.get_random_transformation(images) ) grayscale_images = self.backend.image.rgb_to_grayscale( images, data_format=self.data_format ) return self.backend.numpy.where(should_apply, grayscale_images, images) def compute_output_shape(self, input_shape): return input_shape def compute_output_spec(self, inputs, **kwargs): return inputs def transform_bounding_boxes(self, bounding_boxes, **kwargs): return bounding_boxes def transform_labels(self, labels, transformations=None, **kwargs): return labels def transform_segmentation_masks( self, segmentation_masks, transformations=None, **kwargs ): return segmentation_masks def get_config(self): config = super().get_config() config.update({"factor": self.factor}) return config
from keras.src import backend from keras.src.api_export import keras_export from keras.src.layers.preprocessing.image_preprocessing.base_image_preprocessing_layer import ( # noqa: E501 BaseImagePreprocessingLayer, ) @keras_export("keras.layers.RandomGrayscale") class RandomGrayscale(BaseImagePreprocessingLayer): """Preprocessing layer for random conversion of RGB images to grayscale. This layer randomly converts input images to grayscale with a specified factor. When applied, it maintains the original number of channels but sets all channels to the same grayscale value. This can be useful for data augmentation and training models to be robust to color variations. The conversion preserves the perceived luminance of the original color image using standard RGB to grayscale conversion coefficients. Images that are not selected for conversion remain unchanged. **Note:** This layer is safe to use inside a `tf.data` pipeline (independently of which backend you're using). Args: factor: Float between 0 and 1, specifying the factor of converting each image to grayscale. Defaults to 0.5. A value of 1.0 means all images will be converted, while 0.0 means no images will be converted. data_format: String, one of `"channels_last"` (default) or `"channels_first"`. The ordering of the dimensions in the inputs. `"channels_last"` corresponds to inputs with shape `(batch, height, width, channels)` while `"channels_first"` corresponds to inputs with shape `(batch, channels, height, width)`. Input shape: 3D (unbatched) or 4D (batched) tensor with shape: `(..., height, width, channels)`, in `"channels_last"` format, or `(..., channels, height, width)`, in `"channels_first"` format. Output shape: Same as input shape. The output maintains the same number of channels as the input, even for grayscale-converted images where all channels will have the same value. """ def __init__(self, factor=0.5, data_format=None, **kwargs): super().__init__(**kwargs) if factor < 0 or factor > 1: raise ValueError( "`factor` should be between 0 and 1. " f"Received: factor={factor}" ) self.factor = factor self.data_format = backend.standardize_data_format(data_format) self.random_generator = self.backend.random.SeedGenerator() def get_random_transformation(self, images, training=True, seed=None): random_values = self.backend.random.uniform( shape=(self.backend.core.shape(images)[0],), minval=0, maxval=1, seed=self.random_generator, ) should_apply = self.backend.numpy.expand_dims( random_values < self.factor, axis=[1, 2, 3] ) return should_apply def transform_images(self, images, transformations=None, **kwargs): should_apply = ( transformations if transformations is not None else self.get_random_transformation(images) ) grayscale_images = self.backend.image.rgb_to_grayscale( images, data_format=self.data_format ) return self.backend.numpy.where(should_apply, grayscale_images, images) def compute_output_shape(self, input_shape): return input_shape def compute_output_spec(self, inputs, **kwargs): return inputs def transform_bounding_boxes(self, bounding_boxes, **kwargs): return bounding_boxes def transform_labels(self, labels, transformations=None, **kwargs): return labels def transform_segmentation_masks( self, segmentation_masks, transformations=None, **kwargs ): return segmentation_masks def get_config(self): config = super().get_config() config.update({"factor": self.factor}) return config
import os.path as osp import tempfile import unittest from mmengine.fileio import dump from mmdet.datasets.api_wrappers import COCOPanoptic class TestCOCOPanoptic(unittest.TestCase): def setUp(self): self.tmp_dir = tempfile.TemporaryDirectory() def tearDown(self): self.tmp_dir.cleanup() def test_create_index(self): ann_json = {'test': ['test', 'createIndex']} annotation_file = osp.join(self.tmp_dir.name, 'createIndex.json') dump(ann_json, annotation_file) COCOPanoptic(annotation_file) def test_load_anns(self): categories = [{ 'id': 0, 'name': 'person', 'supercategory': 'person', 'isthing': 1 }] images = [{ 'id': 0, 'width': 80, 'height': 60, 'file_name': 'fake_name1.jpg', }] annotations = [{ 'segments_info': [ { 'id': 1, 'category_id': 0, 'area': 400, 'bbox': [10, 10, 10, 40], 'iscrowd': 0 }, ], 'file_name': 'fake_name1.png', 'image_id': 0 }] ann_json = { 'images': images, 'annotations': annotations, 'categories': categories, } annotation_file = osp.join(self.tmp_dir.name, 'load_anns.json') dump(ann_json, annotation_file) api = COCOPanoptic(annotation_file) api.load_anns(1) self.assertIsNone(api.load_anns(0.1))
import os.path as osp import tempfile import unittest import mmcv from mmdet.datasets.api_wrappers import COCOPanoptic class TestCOCOPanoptic(unittest.TestCase): def setUp(self): self.tmp_dir = tempfile.TemporaryDirectory() def tearDown(self): self.tmp_dir.cleanup() def test_create_index(self): ann_json = {'test': ['test', 'createIndex']} annotation_file = osp.join(self.tmp_dir.name, 'createIndex.json') mmcv.dump(ann_json, annotation_file) COCOPanoptic(annotation_file) def test_load_anns(self): categories = [{ 'id': 0, 'name': 'person', 'supercategory': 'person', 'isthing': 1 }] images = [{ 'id': 0, 'width': 80, 'height': 60, 'file_name': 'fake_name1.jpg', }] annotations = [{ 'segments_info': [ { 'id': 1, 'category_id': 0, 'area': 400, 'bbox': [10, 10, 10, 40], 'iscrowd': 0 }, ], 'file_name': 'fake_name1.png', 'image_id': 0 }] ann_json = { 'images': images, 'annotations': annotations, 'categories': categories, } annotation_file = osp.join(self.tmp_dir.name, 'load_anns.json') mmcv.dump(ann_json, annotation_file) api = COCOPanoptic(annotation_file) api.load_anns(1) self.assertIsNone(api.load_anns(0.1))
""" This examples trains a CrossEncoder for the STSbenchmark task. A CrossEncoder takes a sentence pair as input and outputs a label. Here, it output a continuous labels 0...1 to indicate the similarity between the input pair. It does NOT produce a sentence embedding and does NOT work for individual sentences. Usage: python training_stsbenchmark.py """ import logging import traceback from datetime import datetime from datasets import load_dataset from sentence_transformers.cross_encoder import CrossEncoder from sentence_transformers.cross_encoder.evaluation import CrossEncoderCorrelationEvaluator from sentence_transformers.cross_encoder.losses.BinaryCrossEntropyLoss import BinaryCrossEntropyLoss from sentence_transformers.cross_encoder.trainer import CrossEncoderTrainer from sentence_transformers.cross_encoder.training_args import CrossEncoderTrainingArguments # Set the log level to INFO to get more information logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) train_batch_size = 64 num_epochs = 4 output_dir = "output/training_ce_stsbenchmark-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") # 1. Define our CrossEncoder model. We use distilroberta-base as the base model and set it up to predict 1 label # You can also use other base models, like bert-base-uncased, microsoft/mpnet-base, or rerankers like Alibaba-NLP/gte-reranker-modernbert-base model_name = "distilroberta-base" model = CrossEncoder(model_name, num_labels=1) # 2. Load the STSB dataset: https://huggingface.co/datasets/sentence-transformers/stsb train_dataset = load_dataset("sentence-transformers/stsb", split="train") eval_dataset = load_dataset("sentence-transformers/stsb", split="validation") test_dataset = load_dataset("sentence-transformers/stsb", split="test") logging.info(train_dataset) # 3. Define our training loss, we use one that accepts pairs with a binary label loss = BinaryCrossEntropyLoss(model) # 4. Before and during training, we use CrossEncoderClassificationEvaluator to measure the performance on the dev set eval_evaluator = CrossEncoderCorrelationEvaluator( sentence_pairs=list(zip(eval_dataset["sentence1"], eval_dataset["sentence2"])), scores=eval_dataset["score"], name="stsb-validation", ) eval_evaluator(model) # 5. Define the training arguments short_model_name = model_name if "/" not in model_name else model_name.split("/")[-1] run_name = f"reranker-{short_model_name}-stsb" args = CrossEncoderTrainingArguments( # Required parameter: output_dir=output_dir, # Optional training parameters: num_train_epochs=num_epochs, per_device_train_batch_size=train_batch_size, per_device_eval_batch_size=train_batch_size, warmup_ratio=0.1, fp16=False, # Set to False if you get an error that your GPU can't run on FP16 bf16=True, # Set to True if you have a GPU that supports BF16 # Optional tracking/debugging parameters: eval_strategy="steps", eval_steps=80, save_strategy="steps", save_steps=80, save_total_limit=2, logging_steps=20, run_name=run_name, # Will be used in W&B if `wandb` is installed ) # 6. Create the trainer & start training trainer = CrossEncoderTrainer( model=model, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=loss, evaluator=eval_evaluator, ) trainer.train() # 7. Evaluate the final model on test dataset test_evaluator = CrossEncoderCorrelationEvaluator( sentence_pairs=list(zip(test_dataset["sentence1"], test_dataset["sentence2"])), scores=test_dataset["score"], name="stsb-test", ) test_evaluator(model) # 8. Save the final model final_output_dir = f"{output_dir}/final" model.save_pretrained(final_output_dir) # 9. (Optional) save the model to the Hugging Face Hub! # It is recommended to run `huggingface-cli login` to log into your Hugging Face account first try: model.push_to_hub(run_name) except Exception: logging.error( f"Error uploading model to the Hugging Face Hub:\n{traceback.format_exc()}To upload it manually, you can run " f"`huggingface-cli login`, followed by loading the model using `model = CrossEncoder({final_output_dir!r})` " f"and saving it using `model.push_to_hub('{run_name}')`." )
""" This examples trains a CrossEncoder for the STSbenchmark task. A CrossEncoder takes a sentence pair as input and outputs a label. Here, it output a continuous labels 0...1 to indicate the similarity between the input pair. It does NOT produce a sentence embedding and does NOT work for individual sentences. Usage: python training_stsbenchmark.py """ import csv import gzip import logging import math import os from datetime import datetime from torch.utils.data import DataLoader from sentence_transformers import InputExample, LoggingHandler, util from sentence_transformers.cross_encoder import CrossEncoder from sentence_transformers.cross_encoder.evaluation import CrossEncoderCorrelationEvaluator #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) logger = logging.getLogger(__name__) #### /print debug information to stdout # Check if dataset exists. If not, download and extract it sts_dataset_path = "datasets/stsbenchmark.tsv.gz" if not os.path.exists(sts_dataset_path): util.http_get("https://sbert.net/datasets/stsbenchmark.tsv.gz", sts_dataset_path) # Define our Cross-Encoder train_batch_size = 16 num_epochs = 4 model_save_path = "output/training_stsbenchmark-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") # We use distilroberta-base as base model and set num_labels=1, which predicts a continuous score between 0 and 1 model = CrossEncoder("distilroberta-base", num_labels=1) # Read STSb dataset logger.info("Read STSbenchmark train dataset") train_samples = [] dev_samples = [] test_samples = [] with gzip.open(sts_dataset_path, "rt", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: score = float(row["score"]) / 5.0 # Normalize score to range 0 ... 1 if row["split"] == "dev": dev_samples.append(InputExample(texts=[row["sentence1"], row["sentence2"]], label=score)) elif row["split"] == "test": test_samples.append(InputExample(texts=[row["sentence1"], row["sentence2"]], label=score)) else: # As we want to get symmetric scores, i.e. CrossEncoder(A,B) = CrossEncoder(B,A), we pass both combinations to the train set train_samples.append(InputExample(texts=[row["sentence1"], row["sentence2"]], label=score)) train_samples.append(InputExample(texts=[row["sentence2"], row["sentence1"]], label=score)) # We wrap train_samples (which is a List[InputExample]) into a pytorch DataLoader train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=train_batch_size) # We add an evaluator, which evaluates the performance during training evaluator = CrossEncoderCorrelationEvaluator.from_input_examples(dev_samples, name="sts-dev") # Configure the training warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) # 10% of train data for warm-up logger.info(f"Warmup-steps: {warmup_steps}") # Train the model model.fit( train_dataloader=train_dataloader, evaluator=evaluator, epochs=num_epochs, warmup_steps=warmup_steps, output_path=model_save_path, ) ##### Load model and eval on test set model = CrossEncoder(model_save_path) evaluator = CrossEncoderCorrelationEvaluator.from_input_examples(test_samples, name="sts-test") evaluator(model)
"""Run smoke tests""" import os from pathlib import Path import torch import torchvision from torchvision.io import read_image from torchvision.models import resnet50, ResNet50_Weights SCRIPT_DIR = Path(__file__).parent def smoke_test_torchvision() -> None: print( "Is torchvision usable?", all(x is not None for x in [torch.ops.image.decode_png, torch.ops.torchvision.roi_align]), ) def smoke_test_torchvision_read_decode() -> None: img_jpg = read_image(str(SCRIPT_DIR / "assets" / "encode_jpeg" / "grace_hopper_517x606.jpg")) if img_jpg.ndim != 3 or img_jpg.numel() < 100: raise RuntimeError(f"Unexpected shape of img_jpg: {img_jpg.shape}") img_png = read_image(str(SCRIPT_DIR / "assets" / "interlaced_png" / "wizard_low.png")) if img_png.ndim != 3 or img_png.numel() < 100: raise RuntimeError(f"Unexpected shape of img_png: {img_png.shape}") def smoke_test_torchvision_resnet50_classify(device: str = "cpu") -> None: img = read_image(str(SCRIPT_DIR / ".." / "gallery" / "assets" / "dog2.jpg")).to(device) # Step 1: Initialize model with the best available weights weights = ResNet50_Weights.DEFAULT model = resnet50(weights=weights).to(device) model.eval() # Step 2: Initialize the inference transforms preprocess = weights.transforms() # Step 3: Apply inference preprocessing transforms batch = preprocess(img).unsqueeze(0) # Step 4: Use the model and print the predicted category prediction = model(batch).squeeze(0).softmax(0) class_id = prediction.argmax().item() score = prediction[class_id].item() category_name = weights.meta["categories"][class_id] expected_category = "German shepherd" print(f"{category_name} ({device}): {100 * score:.1f}%") if category_name != expected_category: raise RuntimeError(f"Failed ResNet50 classify {category_name} Expected: {expected_category}") def main() -> None: print(f"torchvision: {torchvision.__version__}") smoke_test_torchvision() smoke_test_torchvision_read_decode() smoke_test_torchvision_resnet50_classify() if torch.cuda.is_available(): smoke_test_torchvision_resnet50_classify("cuda") if torch.backends.mps.is_available(): smoke_test_torchvision_resnet50_classify("mps") if __name__ == "__main__": main()
"""Run smoke tests""" import os from pathlib import Path import torch import torchvision from torchvision.io import read_image from torchvision.models import resnet50, ResNet50_Weights SCRIPT_DIR = Path(__file__).parent def smoke_test_torchvision() -> None: print( "Is torchvision usable?", all(x is not None for x in [torch.ops.image.decode_png, torch.ops.torchvision.roi_align]), ) def smoke_test_torchvision_read_decode() -> None: img_jpg = read_image(str(SCRIPT_DIR / "assets" / "encode_jpeg" / "grace_hopper_517x606.jpg")) if img_jpg.ndim != 3 or img_jpg.numel() < 100: raise RuntimeError(f"Unexpected shape of img_jpg: {img_jpg.shape}") img_png = read_image(str(SCRIPT_DIR / "assets" / "interlaced_png" / "wizard_low.png")) if img_png.ndim != 3 or img_png.numel() < 100: raise RuntimeError(f"Unexpected shape of img_png: {img_png.shape}") def smoke_test_torchvision_resnet50_classify(device: str = "cpu") -> None: img = read_image(str(SCRIPT_DIR / ".." / "gallery" / "assets" / "dog2.jpg")).to(device) # Step 1: Initialize model with the best available weights weights = ResNet50_Weights.DEFAULT model = resnet50(weights=weights).to(device) model.eval() # Step 2: Initialize the inference transforms preprocess = weights.transforms() # Step 3: Apply inference preprocessing transforms batch = preprocess(img).unsqueeze(0) # Step 4: Use the model and print the predicted category prediction = model(batch).squeeze(0).softmax(0) class_id = prediction.argmax().item() score = prediction[class_id].item() category_name = weights.meta["categories"][class_id] expected_category = "German shepherd" print(f"{category_name} ({device}): {100 * score:.1f}%") if category_name != expected_category: raise RuntimeError(f"Failed ResNet50 classify {category_name} Expected: {expected_category}") def main() -> None: print(f"torchvision: {torchvision.__version__}") smoke_test_torchvision() smoke_test_torchvision_read_decode() smoke_test_torchvision_resnet50_classify() if torch.cuda.is_available(): smoke_test_torchvision_resnet50_classify("cuda") if __name__ == "__main__": main()
from typing import Optional import pandas as pd import pytest from docarray import BaseDocument, DocumentArray from docarray.documents import ImageDoc @pytest.fixture() def nested_doc_cls(): class MyDoc(BaseDocument): count: Optional[int] text: str class MyDocNested(MyDoc): image: ImageDoc return MyDocNested def test_to_from_pandas_df(nested_doc_cls): da = DocumentArray[nested_doc_cls]( [ nested_doc_cls( count=0, text='hello', image=ImageDoc(url='aux.png'), ), nested_doc_cls(text='hello world', image=ImageDoc()), ] ) df = da.to_pandas() assert isinstance(df, pd.DataFrame) assert len(df) == 2 assert ( df.columns == [ 'id', 'count', 'text', 'image__id', 'image__url', 'image__tensor', 'image__embedding', 'image__bytes', ] ).all() da_from_df = DocumentArray[nested_doc_cls].from_pandas(df) for doc1, doc2 in zip(da, da_from_df): assert doc1 == doc2 @pytest.fixture() def nested_doc(): class Inner(BaseDocument): img: Optional[ImageDoc] class Middle(BaseDocument): img: Optional[ImageDoc] inner: Optional[Inner] class Outer(BaseDocument): img: Optional[ImageDoc] middle: Optional[Middle] doc = Outer( img=ImageDoc(), middle=Middle(img=ImageDoc(), inner=Inner(img=ImageDoc())) ) return doc def test_from_pandas_without_schema_raise_exception(): with pytest.raises(TypeError, match='no document schema defined'): df = pd.DataFrame( columns=['title', 'count'], data=[['title 0', 0], ['title 1', 1]] ) DocumentArray.from_pandas(df=df) def test_from_pandas_with_wrong_schema_raise_exception(nested_doc): with pytest.raises(ValueError, match='Column names do not match the schema'): df = pd.DataFrame( columns=['title', 'count'], data=[['title 0', 0], ['title 1', 1]] ) DocumentArray[nested_doc.__class__].from_pandas(df=df)
from typing import Optional import pandas as pd import pytest from docarray import BaseDocument, DocumentArray from docarray.documents import Image @pytest.fixture() def nested_doc_cls(): class MyDoc(BaseDocument): count: Optional[int] text: str class MyDocNested(MyDoc): image: Image return MyDocNested def test_to_from_pandas_df(nested_doc_cls): da = DocumentArray[nested_doc_cls]( [ nested_doc_cls( count=0, text='hello', image=Image(url='aux.png'), ), nested_doc_cls(text='hello world', image=Image()), ] ) df = da.to_pandas() assert isinstance(df, pd.DataFrame) assert len(df) == 2 assert ( df.columns == [ 'id', 'count', 'text', 'image__id', 'image__url', 'image__tensor', 'image__embedding', 'image__bytes', ] ).all() da_from_df = DocumentArray[nested_doc_cls].from_pandas(df) for doc1, doc2 in zip(da, da_from_df): assert doc1 == doc2 @pytest.fixture() def nested_doc(): class Inner(BaseDocument): img: Optional[Image] class Middle(BaseDocument): img: Optional[Image] inner: Optional[Inner] class Outer(BaseDocument): img: Optional[Image] middle: Optional[Middle] doc = Outer(img=Image(), middle=Middle(img=Image(), inner=Inner(img=Image()))) return doc def test_from_pandas_without_schema_raise_exception(): with pytest.raises(TypeError, match='no document schema defined'): df = pd.DataFrame( columns=['title', 'count'], data=[['title 0', 0], ['title 1', 1]] ) DocumentArray.from_pandas(df=df) def test_from_pandas_with_wrong_schema_raise_exception(nested_doc): with pytest.raises(ValueError, match='Column names do not match the schema'): df = pd.DataFrame( columns=['title', 'count'], data=[['title 0', 0], ['title 1', 1]] ) DocumentArray[nested_doc.__class__].from_pandas(df=df)
import os # When using jax.experimental.enable_x64 in unit test, we want to keep the # default dtype with 32 bits, aligning it with Keras's default. os.environ["JAX_DEFAULT_DTYPE_BITS"] = "32" try: # When using torch and tensorflow, torch needs to be imported first, # otherwise it will segfault upon import. This should force the torch # import to happen first for all tests. import torch # noqa: F401 except ImportError: torch = None import pytest # noqa: E402 from keras.src.backend import backend # noqa: E402 def pytest_configure(config): config.addinivalue_line( "markers", "requires_trainable_backend: mark test for trainable backend only", ) def pytest_collection_modifyitems(config, items): openvino_skipped_tests = [] if backend() == "openvino": with open( "keras/src/backend/openvino/excluded_concrete_tests.txt", "r" ) as file: openvino_skipped_tests = file.readlines() # it is necessary to check if stripped line is not empty # and exclude such lines openvino_skipped_tests = [ line.strip() for line in openvino_skipped_tests if line.strip() ] requires_trainable_backend = pytest.mark.skipif( backend() in ["numpy", "openvino"], reason="Trainer not implemented for NumPy and OpenVINO backend.", ) for item in items: if "requires_trainable_backend" in item.keywords: item.add_marker(requires_trainable_backend) # also, skip concrete tests for openvino, listed in the special file # this is more granular mechanism to exclude tests rather # than using --ignore option for skipped_test in openvino_skipped_tests: if skipped_test in item.nodeid: item.add_marker( skip_if_backend( "openvino", "Not supported operation by openvino backend", ) ) def skip_if_backend(given_backend, reason): return pytest.mark.skipif(backend() == given_backend, reason=reason)
import os # When using jax.experimental.enable_x64 in unit test, we want to keep the # default dtype with 32 bits, aligning it with Keras's default. os.environ["JAX_DEFAULT_DTYPE_BITS"] = "32" try: # When using torch and tensorflow, torch needs to be imported first, # otherwise it will segfault upon import. This should force the torch # import to happen first for all tests. import torch # noqa: F401 except ImportError: pass import pytest # noqa: E402 from keras.src.backend import backend # noqa: E402 def pytest_configure(config): config.addinivalue_line( "markers", "requires_trainable_backend: mark test for trainable backend only", ) def pytest_collection_modifyitems(config, items): openvino_skipped_tests = [] if backend() == "openvino": with open( "keras/src/backend/openvino/excluded_concrete_tests.txt", "r" ) as file: openvino_skipped_tests = file.readlines() # it is necessary to check if stripped line is not empty # and exclude such lines openvino_skipped_tests = [ line.strip() for line in openvino_skipped_tests if line.strip() ] requires_trainable_backend = pytest.mark.skipif( backend() in ["numpy", "openvino"], reason="Trainer not implemented for NumPy and OpenVINO backend.", ) for item in items: if "requires_trainable_backend" in item.keywords: item.add_marker(requires_trainable_backend) # also, skip concrete tests for openvino, listed in the special file # this is more granular mechanism to exclude tests rather # than using --ignore option for skipped_test in openvino_skipped_tests: if skipped_test in item.nodeid: item.add_marker( skip_if_backend( "openvino", "Not supported operation by openvino backend", ) ) def skip_if_backend(given_backend, reason): return pytest.mark.skipif(backend() == given_backend, reason=reason)