input
stringlengths
33
5k
output
stringlengths
32
5k
import pathlib import pytest from mktestdocs import grab_code_blocks from mktestdocs.__main__ import _executors, check_raw_string from tests.index.elastic.fixture import start_storage_v8 # noqa: F401 file_to_skip = ['fastAPI', 'jina', 'index', 'first_steps.md'] def check_raw_file_full(raw, lang="python", keyword_ignore=[]): if lang not in _executors: raise LookupError( f"{lang} is not a supported language to check\n" "\tHint: you can add support for any language by using register_executor" ) executor = _executors[lang] all_code = "" add_code_block = True for b in grab_code_blocks(raw, lang=lang): add_code_block = True for keyword in keyword_ignore: if keyword in b: add_code_block = False break if add_code_block: all_code = f"{all_code}\n{b}" executor(all_code) def check_md_file(fpath, memory=False, lang="python", keyword_ignore=[]): """ NOTE: copy paste from mktestdocs.__main__ and add the keyword ignore Given a markdown file, parse the contents for python code blocks and check that each independent block does not cause an error. Arguments: fpath: path to markdown file memory: whether or not previous code-blocks should be remembered """ text = pathlib.Path(fpath).read_text() if not memory: check_raw_string(text, lang=lang) else: check_raw_file_full(text, lang=lang, keyword_ignore=keyword_ignore) files_to_check = [ *list(pathlib.Path('docs/user_guide').glob('**/*.md')), *list(pathlib.Path('docs/data_types').glob('**/*.md')), ] file_to_remove = [] for file in files_to_check: for fn in file_to_skip: if fn in str(file): file_to_remove.append(file) for file in file_to_remove: files_to_check.remove(file) @pytest.mark.parametrize('fpath', files_to_check, ids=str) def test_files_good(fpath): check_md_file(fpath=fpath, memory=True, keyword_ignore=['pickle', 'jac']) def test_readme(): check_md_file( fpath='README.md', memory=True, keyword_ignore=['tensorflow', 'fastapi', 'push', 'langchain', 'MovieDoc'], )
import pathlib import pytest from mktestdocs import grab_code_blocks from mktestdocs.__main__ import _executors, check_raw_string from tests.index.elastic.fixture import start_storage_v8 # noqa: F401 file_to_skip = ['fastAPI', 'jina', 'index', 'first_steps.md'] def check_raw_file_full(raw, lang="python", keyword_ignore=[]): if lang not in _executors: raise LookupError( f"{lang} is not a supported language to check\n" "\tHint: you can add support for any language by using register_executor" ) executor = _executors[lang] all_code = "" add_code_block = True for b in grab_code_blocks(raw, lang=lang): add_code_block = True for keyword in keyword_ignore: if keyword in b: add_code_block = False break if add_code_block: all_code = f"{all_code}\n{b}" executor(all_code) def check_md_file(fpath, memory=False, lang="python", keyword_ignore=[]): """ NOTE: copy paste from mktestdocs.__main__ and add the keyword ignore Given a markdown file, parse the contents for python code blocks and check that each independent block does not cause an error. Arguments: fpath: path to markdown file memory: whether or not previous code-blocks should be remembered """ text = pathlib.Path(fpath).read_text() if not memory: check_raw_string(text, lang=lang) else: check_raw_file_full(text, lang=lang, keyword_ignore=keyword_ignore) files_to_check = [ *list(pathlib.Path('docs/user_guide').glob('**/*.md')), *list(pathlib.Path('docs/data_types').glob('**/*.md')), ] file_to_remove = [] for file in files_to_check: for fn in file_to_skip: if fn in str(file): file_to_remove.append(file) for file in file_to_remove: files_to_check.remove(file) @pytest.mark.parametrize('fpath', files_to_check, ids=str) def test_files_good(fpath): check_md_file(fpath=fpath, memory=True, keyword_ignore=['pickle', 'jac']) def test_readme(): check_md_file( fpath='README.md', memory=True, keyword_ignore=['tensorflow', 'fastapi', 'push'] )
# Copyright (c) OpenMMLab. All rights reserved. import numpy as np from mmdet.core.mask import BitmapMasks, PolygonMasks def _check_fields(results, pipeline_results, keys): """Check data in fields from two results are same.""" for key in keys: if isinstance(results[key], (BitmapMasks, PolygonMasks)): assert np.equal(results[key].to_ndarray(), pipeline_results[key].to_ndarray()).all() else: assert np.equal(results[key], pipeline_results[key]).all() assert results[key].dtype == pipeline_results[key].dtype def check_result_same(results, pipeline_results): """Check whether the `pipeline_results` is the same with the predefined `results`. Args: results (dict): Predefined results which should be the standard output of the transform pipeline. pipeline_results (dict): Results processed by the transform pipeline. """ # check image _check_fields(results, pipeline_results, results.get('img_fields', ['img'])) # check bboxes _check_fields(results, pipeline_results, results.get('bbox_fields', [])) # check masks _check_fields(results, pipeline_results, results.get('mask_fields', [])) # check segmentations _check_fields(results, pipeline_results, results.get('seg_fields', [])) # check gt_labels if 'gt_labels' in results: assert np.equal(results['gt_labels'], pipeline_results['gt_labels']).all() def construct_toy_data(poly2mask=True): img = np.array([[1, 2, 3, 4], [5, 6, 7, 8]], dtype=np.uint8) img = np.stack([img, img, img], axis=-1) results = dict() # image results['img'] = img results['img_shape'] = img.shape results['img_fields'] = ['img'] # bboxes results['bbox_fields'] = ['gt_bboxes', 'gt_bboxes_ignore'] results['gt_bboxes'] = np.array([[0., 0., 2., 1.]], dtype=np.float32) results['gt_bboxes_ignore'] = np.array([[2., 0., 3., 1.]], dtype=np.float32) # labels results['gt_labels'] = np.array([1], dtype=np.int64) # masks results['mask_fields'] = ['gt_masks'] if poly2mask: gt_masks = np.array([[0, 1, 1, 0], [0, 1, 0, 0]], dtype=np.uint8)[None, :, :] results['gt_masks'] = BitmapMasks(gt_masks, 2, 4) else: raw_masks = [[np.array([0, 0, 2, 0, 2, 1, 0, 1], dtype=np.float)]] results['gt_masks'] = PolygonMasks(raw_masks, 2, 4) # segmentations results['seg_fields'] = ['gt_semantic_seg'] results['gt_semantic_seg'] = img[..., 0] return results def create_random_bboxes(num_bboxes, img_w, img_h): bboxes_left_top = np.random.uniform(0, 0.5, size=(num_bboxes, 2)) bboxes_right_bottom = np.random.uniform(0.5, 1, size=(num_bboxes, 2)) bboxes = np.concatenate((bboxes_left_top, bboxes_right_bottom), 1) bboxes = (bboxes * np.array([img_w, img_h, img_w, img_h])).astype( np.float32) return bboxes def create_full_masks(gt_bboxes, img_w, img_h): xmin, ymin = gt_bboxes[:, 0:1], gt_bboxes[:, 1:2] xmax, ymax = gt_bboxes[:, 2:3], gt_bboxes[:, 3:4] gt_masks = np.zeros((len(gt_bboxes), img_h, img_w), dtype=np.uint8) for i in range(len(gt_bboxes)): gt_masks[i, int(ymin[i]):int(ymax[i]), int(xmin[i]):int(xmax[i])] = 1 gt_masks = BitmapMasks(gt_masks, img_h, img_w) return gt_masks
# Copyright (c) OpenMMLab. All rights reserved. import numpy as np from mmdet.core.mask import BitmapMasks, PolygonMasks def _check_fields(results, pipeline_results, keys): """Check data in fields from two results are same.""" for key in keys: if isinstance(results[key], (BitmapMasks, PolygonMasks)): assert np.equal(results[key].to_ndarray(), pipeline_results[key].to_ndarray()).all() else: assert np.equal(results[key], pipeline_results[key]).all() assert results[key].dtype == pipeline_results[key].dtype def check_result_same(results, pipeline_results): """Check whether the `pipeline_results` is the same with the predefined `results`. Args: results (dict): Predefined results which should be the standard output of the transform pipeline. pipeline_results (dict): Results processed by the transform pipeline. """ # check image _check_fields(results, pipeline_results, results.get('img_fields', ['img'])) # check bboxes _check_fields(results, pipeline_results, results.get('bbox_fields', [])) # check masks _check_fields(results, pipeline_results, results.get('mask_fields', [])) # check segmentations _check_fields(results, pipeline_results, results.get('seg_fields', [])) # check gt_labels if 'gt_labels' in results: assert np.equal(results['gt_labels'], pipeline_results['gt_labels']).all() def construct_toy_data(poly2mask=True): img = np.array([[1, 2, 3, 4], [5, 6, 7, 8]], dtype=np.uint8) img = np.stack([img, img, img], axis=-1) results = dict() # image results['img'] = img results['img_shape'] = img.shape results['img_fields'] = ['img'] # bboxes results['bbox_fields'] = ['gt_bboxes', 'gt_bboxes_ignore'] results['gt_bboxes'] = np.array([[0., 0., 2., 1.]], dtype=np.float32) results['gt_bboxes_ignore'] = np.array([[2., 0., 3., 1.]], dtype=np.float32) # labels results['gt_labels'] = np.array([1], dtype=np.int64) # masks results['mask_fields'] = ['gt_masks'] if poly2mask: gt_masks = np.array([[0, 1, 1, 0], [0, 1, 0, 0]], dtype=np.uint8)[None, :, :] results['gt_masks'] = BitmapMasks(gt_masks, 2, 4) else: raw_masks = [[np.array([0, 0, 2, 0, 2, 1, 0, 1], dtype=np.float)]] results['gt_masks'] = PolygonMasks(raw_masks, 2, 4) # segmentations results['seg_fields'] = ['gt_semantic_seg'] results['gt_semantic_seg'] = img[..., 0] return results def create_random_bboxes(num_bboxes, img_w, img_h): bboxes_left_top = np.random.uniform(0, 0.5, size=(num_bboxes, 2)) bboxes_right_bottom = np.random.uniform(0.5, 1, size=(num_bboxes, 2)) bboxes = np.concatenate((bboxes_left_top, bboxes_right_bottom), 1) bboxes = (bboxes * np.array([img_w, img_h, img_w, img_h])).astype( np.float32) return bboxes
import math import sys import time import torch import torchvision.models.detection.mask_rcnn import utils from coco_eval import CocoEvaluator from coco_utils import get_coco_api_from_dataset def train_one_epoch(model, optimizer, data_loader, device, epoch, print_freq, scaler=None): model.train() metric_logger = utils.MetricLogger(delimiter=" ") metric_logger.add_meter("lr", utils.SmoothedValue(window_size=1, fmt="{value:.6f}")) header = f"Epoch: [{epoch}]" lr_scheduler = None if epoch == 0: warmup_factor = 1.0 / 1000 warmup_iters = min(1000, len(data_loader) - 1) lr_scheduler = torch.optim.lr_scheduler.LinearLR( optimizer, start_factor=warmup_factor, total_iters=warmup_iters ) for images, targets in metric_logger.log_every(data_loader, print_freq, header): images = list(image.to(device) for image in images) targets = [{k: v.to(device) if isinstance(v, torch.Tensor) else v for k, v in t.items()} for t in targets] with torch.cuda.amp.autocast(enabled=scaler is not None): loss_dict = model(images, targets) losses = sum(loss for loss in loss_dict.values()) # reduce losses over all GPUs for logging purposes loss_dict_reduced = utils.reduce_dict(loss_dict) losses_reduced = sum(loss for loss in loss_dict_reduced.values()) loss_value = losses_reduced.item() if not math.isfinite(loss_value): print(f"Loss is {loss_value}, stopping training") print(loss_dict_reduced) sys.exit(1) optimizer.zero_grad() if scaler is not None: scaler.scale(losses).backward() scaler.step(optimizer) scaler.update() else: losses.backward() optimizer.step() if lr_scheduler is not None: lr_scheduler.step() metric_logger.update(loss=losses_reduced, **loss_dict_reduced) metric_logger.update(lr=optimizer.param_groups[0]["lr"]) return metric_logger def _get_iou_types(model): model_without_ddp = model if isinstance(model, torch.nn.parallel.DistributedDataParallel): model_without_ddp = model.module iou_types = ["bbox"] if isinstance(model_without_ddp, torchvision.models.detection.MaskRCNN): iou_types.append("segm") if isinstance(model_without_ddp, torchvision.models.detection.KeypointRCNN): iou_types.append("keypoints") return iou_types @torch.inference_mode() def evaluate(model, data_loader, device): n_threads = torch.get_num_threads() # FIXME remove this and make paste_masks_in_image run on the GPU torch.set_num_threads(1) cpu_device = torch.device("cpu") model.eval() metric_logger = utils.MetricLogger(delimiter=" ") header = "Test:" coco = get_coco_api_from_dataset(data_loader.dataset) iou_types = _get_iou_types(model) coco_evaluator = CocoEvaluator(coco, iou_types) for images, targets in metric_logger.log_every(data_loader, 100, header): images = list(img.to(device) for img in images) if torch.cuda.is_available(): torch.cuda.synchronize() model_time = time.time() outputs = model(images) outputs = [{k: v.to(cpu_device) for k, v in t.items()} for t in outputs] model_time = time.time() - model_time res = {target["image_id"]: output for target, output in zip(targets, outputs)} evaluator_time = time.time() coco_evaluator.update(res) evaluator_time = time.time() - evaluator_time metric_logger.update(model_time=model_time, evaluator_time=evaluator_time) # gather the stats from all processes metric_logger.synchronize_between_processes() print("Averaged stats:", metric_logger) coco_evaluator.synchronize_between_processes() # accumulate predictions from all images coco_evaluator.accumulate() coco_evaluator.summarize() torch.set_num_threads(n_threads) return coco_evaluator
import math import sys import time import torch import torchvision.models.detection.mask_rcnn import utils from coco_eval import CocoEvaluator from coco_utils import get_coco_api_from_dataset def train_one_epoch(model, optimizer, data_loader, device, epoch, print_freq, scaler=None): model.train() metric_logger = utils.MetricLogger(delimiter=" ") metric_logger.add_meter("lr", utils.SmoothedValue(window_size=1, fmt="{value:.6f}")) header = f"Epoch: [{epoch}]" lr_scheduler = None if epoch == 0: warmup_factor = 1.0 / 1000 warmup_iters = min(1000, len(data_loader) - 1) lr_scheduler = torch.optim.lr_scheduler.LinearLR( optimizer, start_factor=warmup_factor, total_iters=warmup_iters ) for images, targets in metric_logger.log_every(data_loader, print_freq, header): images = list(image.to(device) for image in images) targets = [{k: v.to(device) for k, v in t.items()} for t in targets] with torch.cuda.amp.autocast(enabled=scaler is not None): loss_dict = model(images, targets) losses = sum(loss for loss in loss_dict.values()) # reduce losses over all GPUs for logging purposes loss_dict_reduced = utils.reduce_dict(loss_dict) losses_reduced = sum(loss for loss in loss_dict_reduced.values()) loss_value = losses_reduced.item() if not math.isfinite(loss_value): print(f"Loss is {loss_value}, stopping training") print(loss_dict_reduced) sys.exit(1) optimizer.zero_grad() if scaler is not None: scaler.scale(losses).backward() scaler.step(optimizer) scaler.update() else: losses.backward() optimizer.step() if lr_scheduler is not None: lr_scheduler.step() metric_logger.update(loss=losses_reduced, **loss_dict_reduced) metric_logger.update(lr=optimizer.param_groups[0]["lr"]) return metric_logger def _get_iou_types(model): model_without_ddp = model if isinstance(model, torch.nn.parallel.DistributedDataParallel): model_without_ddp = model.module iou_types = ["bbox"] if isinstance(model_without_ddp, torchvision.models.detection.MaskRCNN): iou_types.append("segm") if isinstance(model_without_ddp, torchvision.models.detection.KeypointRCNN): iou_types.append("keypoints") return iou_types @torch.inference_mode() def evaluate(model, data_loader, device): n_threads = torch.get_num_threads() # FIXME remove this and make paste_masks_in_image run on the GPU torch.set_num_threads(1) cpu_device = torch.device("cpu") model.eval() metric_logger = utils.MetricLogger(delimiter=" ") header = "Test:" coco = get_coco_api_from_dataset(data_loader.dataset) iou_types = _get_iou_types(model) coco_evaluator = CocoEvaluator(coco, iou_types) for images, targets in metric_logger.log_every(data_loader, 100, header): images = list(img.to(device) for img in images) if torch.cuda.is_available(): torch.cuda.synchronize() model_time = time.time() outputs = model(images) outputs = [{k: v.to(cpu_device) for k, v in t.items()} for t in outputs] model_time = time.time() - model_time res = {target["image_id"].item(): output for target, output in zip(targets, outputs)} evaluator_time = time.time() coco_evaluator.update(res) evaluator_time = time.time() - evaluator_time metric_logger.update(model_time=model_time, evaluator_time=evaluator_time) # gather the stats from all processes metric_logger.synchronize_between_processes() print("Averaged stats:", metric_logger) coco_evaluator.synchronize_between_processes() # accumulate predictions from all images coco_evaluator.accumulate() coco_evaluator.summarize() torch.set_num_threads(n_threads) return coco_evaluator
"""Correctness evaluation.""" import asyncio from typing import Any, Callable, Optional, Sequence, Tuple, Union from llama_index.core.evaluation.base import BaseEvaluator, EvaluationResult from llama_index.core.evaluation.eval_utils import default_parser from llama_index.core.llms.llm import LLM from llama_index.core.prompts import ( BasePromptTemplate, ChatMessage, ChatPromptTemplate, MessageRole, PromptTemplate, ) from llama_index.core.prompts.mixin import PromptDictType from llama_index.core.settings import Settings DEFAULT_SYSTEM_TEMPLATE = """ You are an expert evaluation system for a question answering chatbot. You are given the following information: - a user query, and - a generated answer You may also be given a reference answer to use for reference in your evaluation. Your job is to judge the relevance and correctness of the generated answer. Output a single score that represents a holistic evaluation. You must return your response in a line with only the score. Do not return answers in any other format. On a separate line provide your reasoning for the score as well. Follow these guidelines for scoring: - Your score has to be between 1 and 5, where 1 is the worst and 5 is the best. - If the generated answer is not relevant to the user query, \ you should give a score of 1. - If the generated answer is relevant but contains mistakes, \ you should give a score between 2 and 3. - If the generated answer is relevant and fully correct, \ you should give a score between 4 and 5. Example Response: 4.0 The generated answer has the exact same metrics as the reference answer, \ but it is not as concise. """ DEFAULT_USER_TEMPLATE = """ ## User Query {query} ## Reference Answer {reference_answer} ## Generated Answer {generated_answer} """ DEFAULT_EVAL_TEMPLATE = ChatPromptTemplate( message_templates=[ ChatMessage(role=MessageRole.SYSTEM, content=DEFAULT_SYSTEM_TEMPLATE), ChatMessage(role=MessageRole.USER, content=DEFAULT_USER_TEMPLATE), ] ) class CorrectnessEvaluator(BaseEvaluator): """ Correctness evaluator. Evaluates the correctness of a question answering system. This evaluator depends on `reference` answer to be provided, in addition to the query string and response string. It outputs a score between 1 and 5, where 1 is the worst and 5 is the best, along with a reasoning for the score. Passing is defined as a score greater than or equal to the given threshold. Args: eval_template (Optional[Union[BasePromptTemplate, str]]): Template for the evaluation prompt. score_threshold (float): Numerical threshold for passing the evaluation, defaults to 4.0. """ def __init__( self, llm: Optional[LLM] = None, eval_template: Optional[Union[BasePromptTemplate, str]] = None, score_threshold: float = 4.0, parser_function: Callable[ [str], Tuple[Optional[float], Optional[str]] ] = default_parser, ) -> None: self._llm = llm or Settings.llm self._eval_template: BasePromptTemplate if isinstance(eval_template, str): self._eval_template = PromptTemplate(eval_template) else: self._eval_template = eval_template or DEFAULT_EVAL_TEMPLATE self._score_threshold = score_threshold self.parser_function = parser_function def _get_prompts(self) -> PromptDictType: """Get prompts.""" return { "eval_template": self._eval_template, } def _update_prompts(self, prompts: PromptDictType) -> None: """Update prompts.""" if "eval_template" in prompts: self._eval_template = prompts["eval_template"] async def aevaluate( self, query: Optional[str] = None, response: Optional[str] = None, contexts: Optional[Sequence[str]] = None, reference: Optional[str] = None, sleep_time_in_seconds: int = 0, **kwargs: Any, ) -> EvaluationResult: del kwargs # Unused del contexts # Unused await asyncio.sleep(sleep_time_in_seconds) if query is None or response is None: raise ValueError("query, and response must be provided") eval_response = await self._llm.apredict( prompt=self._eval_template, query=query, generated_answer=response, reference_answer=reference or "(NO REFERENCE ANSWER SUPPLIED)", ) # Use the parser function score, reasoning = self.parser_function(eval_response) return EvaluationResult( query=query, response=response, passing=score >= self._score_threshold if score is not None else None, score=score, feedback=reasoning, )
"""Correctness evaluation.""" import asyncio from typing import Any, Callable, Optional, Sequence, Tuple, Union from llama_index.core.evaluation.base import BaseEvaluator, EvaluationResult from llama_index.core.evaluation.eval_utils import default_parser from llama_index.core.llms.llm import LLM from llama_index.core.prompts import ( BasePromptTemplate, ChatMessage, ChatPromptTemplate, MessageRole, PromptTemplate, ) from llama_index.core.prompts.mixin import PromptDictType from llama_index.core.settings import Settings DEFAULT_SYSTEM_TEMPLATE = """ You are an expert evaluation system for a question answering chatbot. You are given the following information: - a user query, and - a generated answer You may also be given a reference answer to use for reference in your evaluation. Your job is to judge the relevance and correctness of the generated answer. Output a single score that represents a holistic evaluation. You must return your response in a line with only the score. Do not return answers in any other format. On a separate line provide your reasoning for the score as well. Follow these guidelines for scoring: - Your score has to be between 1 and 5, where 1 is the worst and 5 is the best. - If the generated answer is not relevant to the user query, \ you should give a score of 1. - If the generated answer is relevant but contains mistakes, \ you should give a score between 2 and 3. - If the generated answer is relevant and fully correct, \ you should give a score between 4 and 5. Example Response: 4.0 The generated answer has the exact same metrics as the reference answer, \ but it is not as concise. """ DEFAULT_USER_TEMPLATE = """ ## User Query {query} ## Reference Answer {reference_answer} ## Generated Answer {generated_answer} """ DEFAULT_EVAL_TEMPLATE = ChatPromptTemplate( message_templates=[ ChatMessage(role=MessageRole.SYSTEM, content=DEFAULT_SYSTEM_TEMPLATE), ChatMessage(role=MessageRole.USER, content=DEFAULT_USER_TEMPLATE), ] ) class CorrectnessEvaluator(BaseEvaluator): """Correctness evaluator. Evaluates the correctness of a question answering system. This evaluator depends on `reference` answer to be provided, in addition to the query string and response string. It outputs a score between 1 and 5, where 1 is the worst and 5 is the best, along with a reasoning for the score. Passing is defined as a score greater than or equal to the given threshold. Args: eval_template (Optional[Union[BasePromptTemplate, str]]): Template for the evaluation prompt. score_threshold (float): Numerical threshold for passing the evaluation, defaults to 4.0. """ def __init__( self, llm: Optional[LLM] = None, eval_template: Optional[Union[BasePromptTemplate, str]] = None, score_threshold: float = 4.0, parser_function: Callable[ [str], Tuple[Optional[float], Optional[str]] ] = default_parser, ) -> None: self._llm = llm or Settings.llm self._eval_template: BasePromptTemplate if isinstance(eval_template, str): self._eval_template = PromptTemplate(eval_template) else: self._eval_template = eval_template or DEFAULT_EVAL_TEMPLATE self._score_threshold = score_threshold self.parser_function = parser_function def _get_prompts(self) -> PromptDictType: """Get prompts.""" return { "eval_template": self._eval_template, } def _update_prompts(self, prompts: PromptDictType) -> None: """Update prompts.""" if "eval_template" in prompts: self._eval_template = prompts["eval_template"] async def aevaluate( self, query: Optional[str] = None, response: Optional[str] = None, contexts: Optional[Sequence[str]] = None, reference: Optional[str] = None, sleep_time_in_seconds: int = 0, **kwargs: Any, ) -> EvaluationResult: del kwargs # Unused del contexts # Unused await asyncio.sleep(sleep_time_in_seconds) if query is None or response is None: raise ValueError("query, and response must be provided") eval_response = await self._llm.apredict( prompt=self._eval_template, query=query, generated_answer=response, reference_answer=reference or "(NO REFERENCE ANSWER SUPPLIED)", ) # Use the parser function score, reasoning = self.parser_function(eval_response) return EvaluationResult( query=query, response=response, passing=score >= self._score_threshold if score is not None else None, score=score, feedback=reasoning, )
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.tools import ( InfoPowerBITool, ListPowerBITool, QueryPowerBITool, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "QueryPowerBITool": "langchain_community.tools", "InfoPowerBITool": "langchain_community.tools", "ListPowerBITool": "langchain_community.tools", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "InfoPowerBITool", "ListPowerBITool", "QueryPowerBITool", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.tools import ( InfoPowerBITool, ListPowerBITool, QueryPowerBITool, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "QueryPowerBITool": "langchain_community.tools", "InfoPowerBITool": "langchain_community.tools", "ListPowerBITool": "langchain_community.tools", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "QueryPowerBITool", "InfoPowerBITool", "ListPowerBITool", ]
import logging from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseTranslationEvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model, not mutilingual but hope to see some on the hub soon model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # Load a parallel sentences dataset dataset = load_dataset("sentence-transformers/parallel-sentences-news-commentary", "en-nl", split="train[:1000]") # Initialize the TranslationEvaluator using the same texts from two languages translation_evaluator = SparseTranslationEvaluator( source_sentences=dataset["english"], target_sentences=dataset["non_english"], name="news-commentary-en-nl", ) results = translation_evaluator(model) """ Evaluating translation matching Accuracy of the model on the news-commentary-en-nl dataset: Accuracy src2trg: 41.40 Accuracy trg2src: 47.70 Model Sparsity: Active Dimensions: 113.6, Sparsity Ratio: 0.9963 """ # Print the results print(f"Primary metric: {translation_evaluator.primary_metric}") # => Primary metric: news-commentary-en-nl_mean_accuracy print(f"Primary metric value: {results[translation_evaluator.primary_metric]:.4f}") # => Primary metric value: 0.4455
import logging from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseTranslationEvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model, not mutilingual but hope to see some on the hub soon model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # Load a parallel sentences dataset dataset = load_dataset("sentence-transformers/parallel-sentences-news-commentary", "en-nl", split="train[:1000]") # Initialize the TranslationEvaluator using the same texts from two languages translation_evaluator = SparseTranslationEvaluator( source_sentences=dataset["english"], target_sentences=dataset["non_english"], name="news-commentary-en-nl", ) results = translation_evaluator(model) """ Evaluating translation matching Accuracy of the model on the news-commentary-en-nl dataset: Accuracy src2trg: 41.40 Accuracy trg2src: 47.70 Model Sparsity Stats: Row Non-Zero Mean: 113.6150016784668, Row Sparsity Mean: 0.9962776005268097 """ # Print the results print(f"Primary metric: {translation_evaluator.primary_metric}") # => Primary metric: news-commentary-en-nl_mean_accuracy print(f"Primary metric value: {results[translation_evaluator.primary_metric]:.4f}") # => Primary metric value: 0.4455
import os from typing import Optional import pytest from docarray import BaseDoc, DocList, DocVec from docarray.documents import ImageDoc from docarray.utils._internal.pydantic import is_pydantic_v2 from tests import TOYDATA_DIR @pytest.fixture() def nested_doc_cls(): class MyDoc(BaseDoc): count: Optional[int] = None text: str class MyDocNested(MyDoc): image: ImageDoc image2: ImageDoc return MyDocNested def test_to_from_csv(tmpdir, nested_doc_cls): da = DocList[nested_doc_cls]( [ nested_doc_cls( count=0, text='hello', image=ImageDoc(url='aux.png'), image2=ImageDoc(url='aux.png'), ), nested_doc_cls(text='hello world', image=ImageDoc(), image2=ImageDoc()), ] ) tmp_file = str(tmpdir / 'tmp.csv') da.to_csv(tmp_file) assert os.path.isfile(tmp_file) da_from = DocList[nested_doc_cls].from_csv(tmp_file) assert isinstance(da_from, DocList) for doc1, doc2 in zip(da, da_from): assert doc1 == doc2 @pytest.mark.skipif(is_pydantic_v2, reason="Not working with pydantic v2 for now") def test_from_csv_nested(nested_doc_cls): da = DocList[nested_doc_cls].from_csv( file_path=str(TOYDATA_DIR / 'docs_nested.csv') ) assert isinstance(da, DocList) assert len(da) == 3 for i, doc in enumerate(da): assert doc.count.__class__ == int assert doc.count == int(f'{i}{i}{i}') assert doc.text.__class__ == str assert doc.text == f'hello {i}' assert doc.image.__class__ == ImageDoc assert doc.image.tensor is None assert doc.image.embedding is None assert doc.image.bytes_ is None assert doc.image2.__class__ == ImageDoc assert doc.image2.tensor is None assert doc.image2.embedding is None assert doc.image2.bytes_ is None assert da[0].image2.url == 'image_10.png' assert da[1].image2.url is None assert da[2].image2.url is None @pytest.fixture() def nested_doc(): class Inner(BaseDoc): img: Optional[ImageDoc] = None class Middle(BaseDoc): img: Optional[ImageDoc] = None inner: Optional[Inner] = None class Outer(BaseDoc): img: Optional[ImageDoc] = None middle: Optional[Middle] = None doc = Outer( img=ImageDoc(), middle=Middle(img=ImageDoc(), inner=Inner(img=ImageDoc())) ) return doc def test_from_csv_without_schema_raise_exception(): with pytest.raises(TypeError, match='no document schema defined'): DocList.from_csv(file_path=str(TOYDATA_DIR / 'docs_nested.csv')) def test_from_csv_with_wrong_schema_raise_exception(nested_doc): with pytest.raises(ValueError, match='Column names do not match the schema'): DocList[nested_doc.__class__].from_csv(file_path=str(TOYDATA_DIR / 'docs.csv')) def test_from_remote_csv_file(): remote_url = 'https://github.com/docarray/docarray/blob/main/tests/toydata/books.csv?raw=true' class Book(BaseDoc): title: str author: str year: int books = DocList[Book].from_csv(file_path=remote_url) assert isinstance(books, DocList) assert len(books) == 3 def test_doc_list_error(tmpdir): class Book(BaseDoc): title: str # not testing DocVec bc it already fails here (as it should!) docs = DocList([Book(title='hello'), Book(title='world')]) tmp_file = str(tmpdir / 'tmp.csv') with pytest.raises(TypeError): docs.to_csv(tmp_file) def test_union_type_error(tmp_path): from typing import Union from docarray.documents import TextDoc class CustomDoc(BaseDoc): ud: Union[TextDoc, ImageDoc] = TextDoc(text='union type') docs = DocList[CustomDoc]([CustomDoc(ud=TextDoc(text='union type'))]) with pytest.raises(ValueError): docs.to_csv(str(tmp_path) + ".csv") DocList[CustomDoc].from_csv(str(tmp_path) + ".csv") class BasisUnion(BaseDoc): ud: Union[int, str] docs_basic = DocList[BasisUnion]([BasisUnion(ud="hello")]) docs_basic.to_csv(str(tmp_path) + ".csv") docs_copy = DocList[BasisUnion].from_csv(str(tmp_path) + ".csv") assert docs_copy == docs_basic def test_to_from_csv_docvec_raises(): class Book(BaseDoc): title: str author: str year: int books = DocVec[Book]( [Book(title='It\'s me, hi', author='I\'m the problem it\'s me', year=2022)] ) with pytest.raises(NotImplementedError): books.to_csv('dummy/file/path') with pytest.raises(NotImplementedError): DocVec[Book].from_csv('dummy/file/path')
import os from typing import Optional import pytest from docarray import BaseDoc, DocList, DocVec from docarray.documents import ImageDoc from tests import TOYDATA_DIR @pytest.fixture() def nested_doc_cls(): class MyDoc(BaseDoc): count: Optional[int] text: str class MyDocNested(MyDoc): image: ImageDoc image2: ImageDoc return MyDocNested def test_to_from_csv(tmpdir, nested_doc_cls): da = DocList[nested_doc_cls]( [ nested_doc_cls( count=0, text='hello', image=ImageDoc(url='aux.png'), image2=ImageDoc(url='aux.png'), ), nested_doc_cls(text='hello world', image=ImageDoc(), image2=ImageDoc()), ] ) tmp_file = str(tmpdir / 'tmp.csv') da.to_csv(tmp_file) assert os.path.isfile(tmp_file) da_from = DocList[nested_doc_cls].from_csv(tmp_file) assert isinstance(da_from, DocList) for doc1, doc2 in zip(da, da_from): assert doc1 == doc2 def test_from_csv_nested(nested_doc_cls): da = DocList[nested_doc_cls].from_csv( file_path=str(TOYDATA_DIR / 'docs_nested.csv') ) assert isinstance(da, DocList) assert len(da) == 3 for i, doc in enumerate(da): assert doc.count.__class__ == int assert doc.count == int(f'{i}{i}{i}') assert doc.text.__class__ == str assert doc.text == f'hello {i}' assert doc.image.__class__ == ImageDoc assert doc.image.tensor is None assert doc.image.embedding is None assert doc.image.bytes_ is None assert doc.image2.__class__ == ImageDoc assert doc.image2.tensor is None assert doc.image2.embedding is None assert doc.image2.bytes_ is None assert da[0].image2.url == 'image_10.png' assert da[1].image2.url is None assert da[2].image2.url is None @pytest.fixture() def nested_doc(): class Inner(BaseDoc): img: Optional[ImageDoc] class Middle(BaseDoc): img: Optional[ImageDoc] inner: Optional[Inner] class Outer(BaseDoc): img: Optional[ImageDoc] middle: Optional[Middle] doc = Outer( img=ImageDoc(), middle=Middle(img=ImageDoc(), inner=Inner(img=ImageDoc())) ) return doc def test_from_csv_without_schema_raise_exception(): with pytest.raises(TypeError, match='no document schema defined'): DocList.from_csv(file_path=str(TOYDATA_DIR / 'docs_nested.csv')) def test_from_csv_with_wrong_schema_raise_exception(nested_doc): with pytest.raises(ValueError, match='Column names do not match the schema'): DocList[nested_doc.__class__].from_csv(file_path=str(TOYDATA_DIR / 'docs.csv')) def test_from_remote_csv_file(): remote_url = 'https://github.com/docarray/docarray/blob/main/tests/toydata/books.csv?raw=true' class Book(BaseDoc): title: str author: str year: int books = DocList[Book].from_csv(file_path=remote_url) assert isinstance(books, DocList) assert len(books) == 3 def test_doc_list_error(tmpdir): class Book(BaseDoc): title: str # not testing DocVec bc it already fails here (as it should!) docs = DocList([Book(title='hello'), Book(title='world')]) tmp_file = str(tmpdir / 'tmp.csv') with pytest.raises(TypeError): docs.to_csv(tmp_file) def test_union_type_error(tmp_path): from typing import Union from docarray.documents import TextDoc class CustomDoc(BaseDoc): ud: Union[TextDoc, ImageDoc] = TextDoc(text='union type') docs = DocList[CustomDoc]([CustomDoc(ud=TextDoc(text='union type'))]) with pytest.raises(ValueError): docs.to_csv(str(tmp_path) + ".csv") DocList[CustomDoc].from_csv(str(tmp_path) + ".csv") class BasisUnion(BaseDoc): ud: Union[int, str] docs_basic = DocList[BasisUnion]([BasisUnion(ud="hello")]) docs_basic.to_csv(str(tmp_path) + ".csv") docs_copy = DocList[BasisUnion].from_csv(str(tmp_path) + ".csv") assert docs_copy == docs_basic def test_to_from_csv_docvec_raises(): class Book(BaseDoc): title: str author: str year: int books = DocVec[Book]( [Book(title='It\'s me, hi', author='I\'m the problem it\'s me', year=2022)] ) with pytest.raises(NotImplementedError): books.to_csv('dummy/file/path') with pytest.raises(NotImplementedError): DocVec[Book].from_csv('dummy/file/path')
# Copyright (c) OpenMMLab. All rights reserved. from ..builder import DETECTORS from .sparse_rcnn import SparseRCNN @DETECTORS.register_module() class QueryInst(SparseRCNN): r"""Implementation of `Instances as Queries <http://arxiv.org/abs/2105.01928>`_""" def __init__(self, backbone, rpn_head, roi_head, train_cfg, test_cfg, neck=None, pretrained=None, init_cfg=None): super(QueryInst, self).__init__( backbone=backbone, neck=neck, rpn_head=rpn_head, roi_head=roi_head, train_cfg=train_cfg, test_cfg=test_cfg, pretrained=pretrained, init_cfg=init_cfg)
from ..builder import DETECTORS from .sparse_rcnn import SparseRCNN @DETECTORS.register_module() class QueryInst(SparseRCNN): r"""Implementation of `Instances as Queries <http://arxiv.org/abs/2105.01928>`_""" def __init__(self, backbone, rpn_head, roi_head, train_cfg, test_cfg, neck=None, pretrained=None, init_cfg=None): super(QueryInst, self).__init__( backbone=backbone, neck=neck, rpn_head=rpn_head, roi_head=roi_head, train_cfg=train_cfg, test_cfg=test_cfg, pretrained=pretrained, init_cfg=init_cfg)
from typing import List import numpy as np def _number_of_shards_in_gen_kwargs(gen_kwargs: dict) -> int: """Return the number of possible shards according to the input gen_kwargs""" # Having lists of different sizes makes sharding ambigious, raise an error in this case # until we decide how to define sharding without ambiguity for users lists_lengths = {key: len(value) for key, value in gen_kwargs.items() if isinstance(value, list)} if len(set(lists_lengths.values())) > 1: raise RuntimeError( ( "Sharding is ambiguous for this dataset: " + "we found several data sources lists of different lengths, and we don't know over which list we should parallelize:\n" + "\n".join(f"\t- key {key} has length {length}" for key, length in lists_lengths.items()) + "\nTo fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, " + "and use tuples otherwise. In the end there should only be one single list, or several lists with the same length." ) ) max_length = max(lists_lengths.values(), default=0) return max(1, max_length) def _distribute_shards(num_shards: int, max_num_jobs: int) -> List[range]: """ Get the range of shard indices per job. If num_shards<max_num_jobs, then num_shards jobs are given a range of one shard. The shards indices order is preserved: e.g. all the first shards are given the first job. Moreover all the jobs are given approximately the same number of shards. Example: ```python >>> _distribute_shards(2, max_num_jobs=4) [range(0, 1), range(1, 2)] >>> _distribute_shards(10, max_num_jobs=3) [range(0, 4), range(4, 7), range(7, 10)] ``` """ shards_indices_per_group = [] for group_idx in range(max_num_jobs): num_shards_to_add = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break start = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 shard_indices = range(start, start + num_shards_to_add) shards_indices_per_group.append(shard_indices) return shards_indices_per_group def _split_gen_kwargs(gen_kwargs: dict, max_num_jobs: int) -> List[dict]: """Split the gen_kwargs into `max_num_job` gen_kwargs""" # Having lists of different sizes makes sharding ambigious, raise an error in this case num_shards = _number_of_shards_in_gen_kwargs(gen_kwargs) if num_shards == 1: return [dict(gen_kwargs)] else: shard_indices_per_group = _distribute_shards(num_shards=num_shards, max_num_jobs=max_num_jobs) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(value, list) else value for key, value in gen_kwargs.items() } for group_idx in range(len(shard_indices_per_group)) ] def _merge_gen_kwargs(gen_kwargs_list: List[dict]) -> dict: return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key], list) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def _shuffle_gen_kwargs(rng: np.random.Generator, gen_kwargs: dict) -> dict: """Return a shuffled copy of the input gen_kwargs""" # We must shuffle all the lists, and lists of the same size must have the same shuffling. # This way entangled lists of (shard, shard_metadata) are still in the right order. # First, let's generate the shuffled indices per list size list_sizes = set(len(value) for value in gen_kwargs.values() if isinstance(value, list)) indices_per_size = {} for size in list_sizes: indices_per_size[size] = list(range(size)) rng.shuffle(indices_per_size[size]) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes shuffled_kwargs = dict(gen_kwargs) for key, value in shuffled_kwargs.items(): if isinstance(value, list): shuffled_kwargs[key] = [value[i] for i in indices_per_size[len(value)]] return shuffled_kwargs
from typing import List import numpy as np def _number_of_shards_in_gen_kwargs(gen_kwargs: dict) -> int: """Return the number of possible shards according to the input gen_kwargs""" # Having lists of different sizes makes sharding ambigious, raise an error in this case # until we decide how to define sharding without ambiguity for users lists_lengths = {key: len(value) for key, value in gen_kwargs.items() if isinstance(value, list)} if len(set(lists_lengths.values())) > 1: raise RuntimeError( ( "Sharding is ambiguous for this dataset: " + "we found several data sources lists of different lengths, and we don't know over which list we should parallelize:\n" + "\n".join(f"\t- key {key} has length {length}" for key, length in lists_lengths.items()) + "\nTo fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, " + "and use tuples otherwise. In the end there should only be one single list, or several lists with the same length." ) ) max_length = max(lists_lengths.values(), default=0) return max(1, max_length) def _distribute_shards(num_shards: int, max_num_jobs: int) -> List[range]: """ Get the range of shard indices per job. If num_shards<max_num_jobs, then num_shards jobs are given a range of one shard. The shards indices order is preserved: e.g. all the first shards are given the first job. Moreover all the jobs are given approximately the same number of shards. Example: ```python >>> _distribute_shards(2, max_num_jobs=4) [range(0, 1), range(1, 2)] >>> _distribute_shards(10, max_num_jobs=3) [range(0, 4), range(4, 7), range(7, 10)] ``` """ shards_indices_per_group = [] for group_idx in range(max_num_jobs): num_shards_to_add = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break start = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 shard_indices = range(start, start + num_shards_to_add) shards_indices_per_group.append(shard_indices) return shards_indices_per_group def _split_gen_kwargs(gen_kwargs: dict, max_num_jobs: int) -> List[dict]: """Split the gen_kwargs into `max_num_job` gen_kwargs""" # Having lists of different sizes makes sharding ambigious, raise an error in this case num_shards = _number_of_shards_in_gen_kwargs(gen_kwargs) if num_shards == 1: return [dict(gen_kwargs)] else: shard_indices_per_group = _distribute_shards(num_shards=num_shards, max_num_jobs=max_num_jobs) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(value, list) else value for key, value in gen_kwargs.items() } for group_idx in range(len(shard_indices_per_group)) ] def _shuffle_gen_kwargs(rng: np.random.Generator, gen_kwargs: dict) -> dict: """Return a shuffled copy of the input gen_kwargs""" # We must shuffle all the lists, and lists of the same size must have the same shuffling. # This way entangled lists of (shard, shard_metadata) are still in the right order. # First, let's generate the shuffled indices per list size list_sizes = set(len(value) for value in gen_kwargs.values() if isinstance(value, list)) indices_per_size = {} for size in list_sizes: indices_per_size[size] = list(range(size)) rng.shuffle(indices_per_size[size]) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes shuffled_kwargs = dict(gen_kwargs) for key, value in shuffled_kwargs.items(): if isinstance(value, list): shuffled_kwargs[key] = [value[i] for i in indices_per_size[len(value)]] return shuffled_kwargs
import pytest from jina.jaml.parsers.executor.legacy import ExecutorLegacyParser class A00: def __init__(self, a00): self.a00 = a00 class A0(A00): def __init__(self, a0): self.a0 = a0 class A(A0): def __init__(self, a): self.a = a class B: def __init__(self, b): self.b = b class C: def __init__(self, c): self.c = c class E(A, B, C): pass class D(A, B, C): def __init__(self, d, *args, **kwargs): super.__init__(*args, **kwargs) self.d = d class A_dummy: pass D_arguments = {'a00', 'a0', 'a', 'b', 'c', 'd', 'self', 'args', 'kwargs'} E_arguments = {'a00', 'a0', 'a', 'b', 'c', 'self', 'args', 'kwargs'} A_dummy_arguments = {'self', 'args', 'kwargs'} @pytest.mark.parametrize( 'input_class, expected_arguments', [(E, E_arguments), (D, D_arguments), (A_dummy, A_dummy_arguments)], ) def test_get_all_arguments(input_class, expected_arguments): """ Tests ExecutorLegacyParser._get_all_arguments retriving all arguments from a class and any class it inherits from """ arguments_from_cls = ExecutorLegacyParser._get_all_arguments(class_=input_class) assert arguments_from_cls == expected_arguments
import pytest from jina.jaml.parsers.executor.legacy import LegacyParser class A00: def __init__(self, a00): self.a00 = a00 class A0(A00): def __init__(self, a0): self.a0 = a0 class A(A0): def __init__(self, a): self.a = a class B: def __init__(self, b): self.b = b class C: def __init__(self, c): self.c = c class E(A, B, C): pass class D(A, B, C): def __init__(self, d, *args, **kwargs): super.__init__(*args, **kwargs) self.d = d class A_dummy: pass D_arguments = {'a00', 'a0', 'a', 'b', 'c', 'd', 'self', 'args', 'kwargs'} E_arguments = {'a00', 'a0', 'a', 'b', 'c', 'self', 'args', 'kwargs'} A_dummy_arguments = {'self', 'args', 'kwargs'} @pytest.mark.parametrize( 'input_class, expected_arguments', [(E, E_arguments), (D, D_arguments), (A_dummy, A_dummy_arguments)], ) def test_get_all_arguments(input_class, expected_arguments): """ Tests LegacyParser._get_all_arguments retriving all arguments from a class and any class it inherits from """ arguments_from_cls = LegacyParser._get_all_arguments(class_=input_class) assert arguments_from_cls == expected_arguments
# Optional list of dependencies required by the package dependencies = ["torch"] from torchvision.models import get_model_weights, get_weight from torchvision.models.alexnet import alexnet from torchvision.models.convnext import convnext_base, convnext_large, convnext_small, convnext_tiny from torchvision.models.densenet import densenet121, densenet161, densenet169, densenet201 from torchvision.models.efficientnet import ( efficientnet_b0, efficientnet_b1, efficientnet_b2, efficientnet_b3, efficientnet_b4, efficientnet_b5, efficientnet_b6, efficientnet_b7, efficientnet_v2_l, efficientnet_v2_m, efficientnet_v2_s, ) from torchvision.models.googlenet import googlenet from torchvision.models.inception import inception_v3 from torchvision.models.maxvit import maxvit_t from torchvision.models.mnasnet import mnasnet0_5, mnasnet0_75, mnasnet1_0, mnasnet1_3 from torchvision.models.mobilenetv2 import mobilenet_v2 from torchvision.models.mobilenetv3 import mobilenet_v3_large, mobilenet_v3_small from torchvision.models.optical_flow import raft_large, raft_small from torchvision.models.regnet import ( regnet_x_16gf, regnet_x_1_6gf, regnet_x_32gf, regnet_x_3_2gf, regnet_x_400mf, regnet_x_800mf, regnet_x_8gf, regnet_y_128gf, regnet_y_16gf, regnet_y_1_6gf, regnet_y_32gf, regnet_y_3_2gf, regnet_y_400mf, regnet_y_800mf, regnet_y_8gf, ) from torchvision.models.resnet import ( resnet101, resnet152, resnet18, resnet34, resnet50, resnext101_32x8d, resnext101_64x4d, resnext50_32x4d, wide_resnet101_2, wide_resnet50_2, ) from torchvision.models.segmentation import ( deeplabv3_mobilenet_v3_large, deeplabv3_resnet101, deeplabv3_resnet50, fcn_resnet101, fcn_resnet50, lraspp_mobilenet_v3_large, ) from torchvision.models.shufflenetv2 import ( shufflenet_v2_x0_5, shufflenet_v2_x1_0, shufflenet_v2_x1_5, shufflenet_v2_x2_0, ) from torchvision.models.squeezenet import squeezenet1_0, squeezenet1_1 from torchvision.models.swin_transformer import swin_b, swin_s, swin_t, swin_v2_b, swin_v2_s, swin_v2_t from torchvision.models.vgg import vgg11, vgg11_bn, vgg13, vgg13_bn, vgg16, vgg16_bn, vgg19, vgg19_bn from torchvision.models.vision_transformer import vit_b_16, vit_b_32, vit_h_14, vit_l_16, vit_l_32
# Optional list of dependencies required by the package dependencies = ["torch"] from torchvision.models import get_model_weights, get_weight from torchvision.models.alexnet import alexnet from torchvision.models.convnext import convnext_base, convnext_large, convnext_small, convnext_tiny from torchvision.models.densenet import densenet121, densenet161, densenet169, densenet201 from torchvision.models.efficientnet import ( efficientnet_b0, efficientnet_b1, efficientnet_b2, efficientnet_b3, efficientnet_b4, efficientnet_b5, efficientnet_b6, efficientnet_b7, efficientnet_v2_l, efficientnet_v2_m, efficientnet_v2_s, ) from torchvision.models.googlenet import googlenet from torchvision.models.inception import inception_v3 from torchvision.models.mnasnet import mnasnet0_5, mnasnet0_75, mnasnet1_0, mnasnet1_3 from torchvision.models.mobilenetv2 import mobilenet_v2 from torchvision.models.mobilenetv3 import mobilenet_v3_large, mobilenet_v3_small from torchvision.models.optical_flow import raft_large, raft_small from torchvision.models.regnet import ( regnet_x_16gf, regnet_x_1_6gf, regnet_x_32gf, regnet_x_3_2gf, regnet_x_400mf, regnet_x_800mf, regnet_x_8gf, regnet_y_128gf, regnet_y_16gf, regnet_y_1_6gf, regnet_y_32gf, regnet_y_3_2gf, regnet_y_400mf, regnet_y_800mf, regnet_y_8gf, ) from torchvision.models.resnet import ( resnet101, resnet152, resnet18, resnet34, resnet50, resnext101_32x8d, resnext101_64x4d, resnext50_32x4d, wide_resnet101_2, wide_resnet50_2, ) from torchvision.models.segmentation import ( deeplabv3_mobilenet_v3_large, deeplabv3_resnet101, deeplabv3_resnet50, fcn_resnet101, fcn_resnet50, lraspp_mobilenet_v3_large, ) from torchvision.models.shufflenetv2 import ( shufflenet_v2_x0_5, shufflenet_v2_x1_0, shufflenet_v2_x1_5, shufflenet_v2_x2_0, ) from torchvision.models.squeezenet import squeezenet1_0, squeezenet1_1 from torchvision.models.swin_transformer import swin_b, swin_s, swin_t from torchvision.models.vgg import vgg11, vgg11_bn, vgg13, vgg13_bn, vgg16, vgg16_bn, vgg19, vgg19_bn from torchvision.models.vision_transformer import vit_b_16, vit_b_32, vit_h_14, vit_l_16, vit_l_32
from pathlib import Path from typing import List import pytest from jina import Document, DocumentArray, Executor from ...audioclip_text import AudioCLIPTextEncoder _EMBEDDING_DIM = 1024 @pytest.fixture(scope='module') def basic_encoder() -> AudioCLIPTextEncoder: return AudioCLIPTextEncoder() def test_config(): ex = Executor.load_config(str(Path(__file__).parents[2] / 'config.yml')) assert ex.default_batch_size == 32 def test_no_document(basic_encoder: AudioCLIPTextEncoder): basic_encoder.encode(None, {}) def test_empty_documents(basic_encoder: AudioCLIPTextEncoder): docs = DocumentArray([]) basic_encoder.encode(docs, {}) assert len(docs) == 0 def test_no_text_documents(basic_encoder: AudioCLIPTextEncoder): docs = DocumentArray([Document()]) basic_encoder.encode(docs, {}) assert len(docs) == 1 assert docs[0].embedding is None def test_encoding_cpu(): enc = AudioCLIPTextEncoder(device='cpu') input_data = DocumentArray([Document(text='hello world')]) enc.encode(docs=input_data, parameters={}) assert input_data[0].embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.gpu def test_encoding_gpu(): enc = AudioCLIPTextEncoder(device='cuda') input_data = DocumentArray([Document(text='hello world')]) enc.encode(docs=input_data, parameters={}) assert input_data[0].embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.parametrize( 'traversal_paths, counts', [ (['r'], [['r', 1], ['c', 0], ['cc', 0]]), (['c'], [['r', 0], ['c', 3], ['cc', 0]]), (['cc'], [['r', 0], ['c', 0], ['cc', 2]]), (['cc', 'r'], [['r', 1], ['c', 0], ['cc', 2]]), ], ) def test_traversal_path( traversal_paths: List[str], counts: List, basic_encoder: AudioCLIPTextEncoder ): text = 'blah' docs = DocumentArray([Document(id='root1', text=text)]) docs[0].chunks = [ Document(id='chunk11', text=text), Document(id='chunk12', text=text), Document(id='chunk13', text=text), ] docs[0].chunks[0].chunks = [ Document(id='chunk111', text=text), Document(id='chunk112', text=text), ] basic_encoder.encode(docs=docs, parameters={'traversal_paths': traversal_paths}) for path, count in counts: embeddings = docs.traverse_flat([path]).get_attributes('embedding') assert len(list(filter(lambda x: x is not None, embeddings))) == count @pytest.mark.parametrize('batch_size', [1, 2, 4, 8]) def test_batch_size(basic_encoder: AudioCLIPTextEncoder, batch_size: int): docs = DocumentArray([Document(text='hello there') for _ in range(32)]) basic_encoder.encode(docs, parameters={'batch_size': batch_size}) for doc in docs: assert doc.embedding.shape == (_EMBEDDING_DIM,) def test_quality_embeddings(basic_encoder: AudioCLIPTextEncoder): docs = DocumentArray( [ Document(id='A', text='a furry animal that with a long tail'), Document(id='B', text='a domesticated mammal with four legs'), Document(id='C', text='a type of aircraft that uses rotating wings'), Document(id='D', text='flying vehicle that has fixed wings and engines'), ] ) basic_encoder.encode(DocumentArray(docs), {}) # assert semantic meaning is captured in the encoding docs.match(docs) matches = ['B', 'A', 'D', 'C'] for i, doc in enumerate(docs): assert doc.matches[1].id == matches[i]
from pathlib import Path from typing import List import numpy as np import pytest from jina import Document, DocumentArray, Executor from ...audioclip_text import AudioCLIPTextEncoder _EMBEDDING_DIM = 1024 def test_config(): ex = Executor.load_config(str(Path(__file__).parents[2] / 'config.yml')) assert ex.default_batch_size == 32 def test_encoding_cpu(): enc = AudioCLIPTextEncoder(device='cpu') input_data = DocumentArray([Document(text='hello world')]) enc.encode(docs=input_data, parameters={}) assert input_data[0].embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.gpu def test_encoding_gpu(): enc = AudioCLIPTextEncoder(device='cuda') input_data = DocumentArray([Document(text='hello world')]) enc.encode(docs=input_data, parameters={}) assert input_data[0].embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.parametrize( ['docs', 'docs_per_path', 'traversal_path'], [ (pytest.lazy_fixture('docs_with_text'), [['r', 10], ['c', 0], ['cc', 0]], 'r'), ( pytest.lazy_fixture('docs_with_chunk_text'), [['r', 0], ['c', 10], ['cc', 0]], 'c', ), ( pytest.lazy_fixture('docs_with_chunk_chunk_text'), [['r', 0], ['c', 0], ['cc', 100]], 'cc', ), ], ) def test_traversal_path( docs: DocumentArray, docs_per_path: List[List[str]], traversal_path: str ): encoder = AudioCLIPTextEncoder(default_traversal_paths=[traversal_path]) encoder.encode(docs, {'traversal_paths': [traversal_path]}) for path, count in docs_per_path: embeddings = ( DocumentArray(docs).traverse_flat([path]).get_attributes('embedding') ) assert len(list(filter(lambda x: x is not None, embeddings))) == count def test_encodes_semantic_meaning(): sentences = dict() sentences["A"] = "Hello, my name is Michael." sentences["B"] = "Today we are going to Disney World." sentences["C"] = "There are animals on the road" sentences["D"] = "A dog is running down the road" encoder = AudioCLIPTextEncoder() embeddings = {} for id_, sentence in sentences.items(): docs = DocumentArray([Document(text=sentence)]) encoder.encode(docs, parameters={}) embeddings[id_] = docs[0].embedding def dist(a, b): a_embedding = embeddings[a] b_embedding = embeddings[b] return np.linalg.norm(a_embedding - b_embedding) small_distance = dist("C", "D") assert small_distance < dist("C", "B") assert small_distance < dist("C", "A") assert small_distance < dist("B", "A") def test_multiple_traversal_paths(): sentences = list() sentences.append('Hello, my name is Michael.') sentences.append('Today we are going to Disney World.') sentences.append('There are animals on the road') sentences.append('A dog is running down the road') docs = DocumentArray([Document(text=sentence) for sentence in sentences]) for index, sent in enumerate(sentences): docs[index].chunks.append(Document(text=sent)) docs[index].chunks[0].chunks.append(Document(text=sentences[3 - index])) encoder = AudioCLIPTextEncoder(default_traversal_paths=['r', 'c', 'cc']) encoder.encode(docs, {}) for doc in docs: assert doc.embedding.shape == (_EMBEDDING_DIM,) assert doc.chunks[0].embedding.shape == (_EMBEDDING_DIM,) assert doc.chunks[0].chunks[0].embedding.shape == (_EMBEDDING_DIM,) def test_no_docs(): encoder = AudioCLIPTextEncoder() encoder.encode(None, {}) encoder.encode(DocumentArray(), {})
import os from functools import lru_cache from typing import Optional, Union import ffmpeg import numpy as np import torch import torch.nn.functional as F from .utils import exact_div # hard-coded audio hyperparameters SAMPLE_RATE = 16000 N_FFT = 400 N_MELS = 80 HOP_LENGTH = 160 CHUNK_LENGTH = 30 N_SAMPLES = CHUNK_LENGTH * SAMPLE_RATE # 480000 samples in a 30-second chunk N_FRAMES = exact_div(N_SAMPLES, HOP_LENGTH) # 3000 frames in a mel spectrogram input N_SAMPLES_PER_TOKEN = HOP_LENGTH * 2 # the initial convolutions has stride 2 FRAMES_PER_SECOND = exact_div(SAMPLE_RATE, HOP_LENGTH) # 10ms per audio frame TOKENS_PER_SECOND = exact_div(SAMPLE_RATE, N_SAMPLES_PER_TOKEN) # 20ms per audio token def load_audio(file: str, sr: int = SAMPLE_RATE): """ Open an audio file and read as mono waveform, resampling as necessary Parameters ---------- file: str The audio file to open sr: int The sample rate to resample the audio if necessary Returns ------- A NumPy array containing the audio waveform, in float32 dtype. """ try: # This launches a subprocess to decode audio while down-mixing and resampling as necessary. # Requires the ffmpeg CLI and `ffmpeg-python` package to be installed. out, _ = ( ffmpeg.input(file, threads=0) .output("-", format="s16le", acodec="pcm_s16le", ac=1, ar=sr) .run(cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True) ) except ffmpeg.Error as e: raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0 def pad_or_trim(array, length: int = N_SAMPLES, *, axis: int = -1): """ Pad or trim the audio array to N_SAMPLES, as expected by the encoder. """ if torch.is_tensor(array): if array.shape[axis] > length: array = array.index_select( dim=axis, index=torch.arange(length, device=array.device) ) if array.shape[axis] < length: pad_widths = [(0, 0)] * array.ndim pad_widths[axis] = (0, length - array.shape[axis]) array = F.pad(array, [pad for sizes in pad_widths[::-1] for pad in sizes]) else: if array.shape[axis] > length: array = array.take(indices=range(length), axis=axis) if array.shape[axis] < length: pad_widths = [(0, 0)] * array.ndim pad_widths[axis] = (0, length - array.shape[axis]) array = np.pad(array, pad_widths) return array @lru_cache(maxsize=None) def mel_filters(device, n_mels: int = N_MELS) -> torch.Tensor: """ load the mel filterbank matrix for projecting STFT into a Mel spectrogram. Allows decoupling librosa dependency; saved using: np.savez_compressed( "mel_filters.npz", mel_80=librosa.filters.mel(sr=16000, n_fft=400, n_mels=80), ) """ assert n_mels == 80, f"Unsupported n_mels: {n_mels}" with np.load( os.path.join(os.path.dirname(__file__), "assets", "mel_filters.npz") ) as f: return torch.from_numpy(f[f"mel_{n_mels}"]).to(device) def log_mel_spectrogram( audio: Union[str, np.ndarray, torch.Tensor], n_mels: int = N_MELS, padding: int = 0, device: Optional[Union[str, torch.device]] = None, ): """ Compute the log-Mel spectrogram of Parameters ---------- audio: Union[str, np.ndarray, torch.Tensor], shape = (*) The path to audio or either a NumPy array or Tensor containing the audio waveform in 16 kHz n_mels: int The number of Mel-frequency filters, only 80 is supported padding: int Number of zero samples to pad to the right device: Optional[Union[str, torch.device]] If given, the audio tensor is moved to this device before STFT Returns ------- torch.Tensor, shape = (80, n_frames) A Tensor that contains the Mel spectrogram """ if not torch.is_tensor(audio): if isinstance(audio, str): audio = load_audio(audio) audio = torch.from_numpy(audio) if device is not None: audio = audio.to(device) if padding > 0: audio = F.pad(audio, (0, padding)) window = torch.hann_window(N_FFT).to(audio.device) stft = torch.stft(audio, N_FFT, HOP_LENGTH, window=window, return_complex=True) magnitudes = stft[..., :-1].abs() ** 2 filters = mel_filters(audio.device, n_mels) mel_spec = filters @ magnitudes log_spec = torch.clamp(mel_spec, min=1e-10).log10() log_spec = torch.maximum(log_spec, log_spec.max() - 8.0) log_spec = (log_spec + 4.0) / 4.0 return log_spec
import os from functools import lru_cache from typing import Union import ffmpeg import numpy as np import torch import torch.nn.functional as F from .utils import exact_div # hard-coded audio hyperparameters SAMPLE_RATE = 16000 N_FFT = 400 N_MELS = 80 HOP_LENGTH = 160 CHUNK_LENGTH = 30 N_SAMPLES = CHUNK_LENGTH * SAMPLE_RATE # 480000: number of samples in a chunk N_FRAMES = exact_div( N_SAMPLES, HOP_LENGTH ) # 3000: number of frames in a mel spectrogram input N_SAMPLES_PER_TOKEN = HOP_LENGTH * 2 # the initial convolutions has stride 2 FRAMES_PER_SECOND = exact_div(SAMPLE_RATE, HOP_LENGTH) # 10ms per audio frame TOKENS_PER_SECOND = exact_div(SAMPLE_RATE, N_SAMPLES_PER_TOKEN) # 20ms per audio token def load_audio(file: str, sr: int = SAMPLE_RATE): """ Open an audio file and read as mono waveform, resampling as necessary Parameters ---------- file: str The audio file to open sr: int The sample rate to resample the audio if necessary Returns ------- A NumPy array containing the audio waveform, in float32 dtype. """ try: # This launches a subprocess to decode audio while down-mixing and resampling as necessary. # Requires the ffmpeg CLI and `ffmpeg-python` package to be installed. out, _ = ( ffmpeg.input(file, threads=0) .output("-", format="s16le", acodec="pcm_s16le", ac=1, ar=sr) .run(cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True) ) except ffmpeg.Error as e: raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0 def pad_or_trim(array, length: int = N_SAMPLES, *, axis: int = -1): """ Pad or trim the audio array to N_SAMPLES, as expected by the encoder. """ if torch.is_tensor(array): if array.shape[axis] > length: array = array.index_select( dim=axis, index=torch.arange(length, device=array.device) ) if array.shape[axis] < length: pad_widths = [(0, 0)] * array.ndim pad_widths[axis] = (0, length - array.shape[axis]) array = F.pad(array, [pad for sizes in pad_widths[::-1] for pad in sizes]) else: if array.shape[axis] > length: array = array.take(indices=range(length), axis=axis) if array.shape[axis] < length: pad_widths = [(0, 0)] * array.ndim pad_widths[axis] = (0, length - array.shape[axis]) array = np.pad(array, pad_widths) return array @lru_cache(maxsize=None) def mel_filters(device, n_mels: int = N_MELS) -> torch.Tensor: """ load the mel filterbank matrix for projecting STFT into a Mel spectrogram. Allows decoupling librosa dependency; saved using: np.savez_compressed( "mel_filters.npz", mel_80=librosa.filters.mel(sr=16000, n_fft=400, n_mels=80), ) """ assert n_mels == 80, f"Unsupported n_mels: {n_mels}" with np.load( os.path.join(os.path.dirname(__file__), "assets", "mel_filters.npz") ) as f: return torch.from_numpy(f[f"mel_{n_mels}"]).to(device) def log_mel_spectrogram( audio: Union[str, np.ndarray, torch.Tensor], n_mels: int = N_MELS ): """ Compute the log-Mel spectrogram of Parameters ---------- audio: Union[str, np.ndarray, torch.Tensor], shape = (*) The path to audio or either a NumPy array or Tensor containing the audio waveform in 16 kHz n_mels: int The number of Mel-frequency filters, only 80 is supported Returns ------- torch.Tensor, shape = (80, n_frames) A Tensor that contains the Mel spectrogram """ if not torch.is_tensor(audio): if isinstance(audio, str): audio = load_audio(audio) audio = torch.from_numpy(audio) window = torch.hann_window(N_FFT).to(audio.device) stft = torch.stft(audio, N_FFT, HOP_LENGTH, window=window, return_complex=True) magnitudes = stft[..., :-1].abs() ** 2 filters = mel_filters(audio.device, n_mels) mel_spec = filters @ magnitudes log_spec = torch.clamp(mel_spec, min=1e-10).log10() log_spec = torch.maximum(log_spec, log_spec.max() - 8.0) log_spec = (log_spec + 4.0) / 4.0 return log_spec
""" This script contains an example how to perform semantic search with Elasticsearch. As dataset, we use the Quora Duplicate Questions dataset, which contains about 500k questions: https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs Questions are indexed to Elasticsearch together with their respective sentence embeddings. The script shows results from BM25 as well as from semantic search with cosine similarity. You need Elasticsearch up and running, for example using Docker (https://www.elastic.co/guide/en/elasticsearch/reference/current/docker.html). Further, you need the Python Elasticsearch Client installed: https://elasticsearch-py.readthedocs.io/ As embeddings model, we use the SBERT model 'quora-distilbert-multilingual', that it aligned for 100 languages. I.e., you can type in a question in various languages and it will return the closest questions in the corpus (questions in the corpus are mainly in English). """ import csv import os import time from ssl import create_default_context import tqdm.autonotebook from elasticsearch import Elasticsearch, helpers from sentence_transformers import SentenceTransformer, util es = Elasticsearch( hosts=["https://localhost:9200"], basic_auth=("elastic", os.environ["ELASTIC_PASSWORD"]), # displayed at ES server startup ssl_context=create_default_context(cafile="http_ca.crt"), # copied from inside ES container ) model = SentenceTransformer("quora-distilbert-multilingual") url = "http://qim.fs.quoracdn.net/quora_duplicate_questions.tsv" dataset_path = "quora_duplicate_questions.tsv" max_corpus_size = 100000 # Download dataset if needed if not os.path.exists(dataset_path): print("Download dataset") util.http_get(url, dataset_path) # Get all unique sentences from the file all_questions = {} with open(dataset_path, encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_MINIMAL) for row in reader: all_questions[row["qid1"]] = row["question1"] if len(all_questions) >= max_corpus_size: break all_questions[row["qid2"]] = row["question2"] if len(all_questions) >= max_corpus_size: break qids = list(all_questions.keys()) questions = [all_questions[qid] for qid in qids] # Index data, if the index does not exists if not es.indices.exists(index="quora"): try: es_index = { "mappings": { "properties": { "question": {"type": "text"}, "question_vector": {"type": "dense_vector", "dims": 768, "index": True, "similarity": "cosine"}, } } } es.indices.create(index="quora", body=es_index) chunk_size = 500 print("Index data (you can stop it by pressing Ctrl+C once):") with tqdm.tqdm(total=len(qids)) as pbar: for start_idx in range(0, len(qids), chunk_size): end_idx = start_idx + chunk_size embeddings = model.encode(questions[start_idx:end_idx], show_progress_bar=False) bulk_data = [] for qid, question, embedding in zip(qids[start_idx:end_idx], questions[start_idx:end_idx], embeddings): bulk_data.append( { "_index": "quora", "_id": qid, "_source": {"question": question, "question_vector": embedding}, } ) helpers.bulk(es, bulk_data) pbar.update(chunk_size) except Exception: print("During index an exception occurred. Continue\n\n") # Interactive search queries while True: inp_question = input("Please enter a question: ") encode_start_time = time.time() question_embedding = model.encode(inp_question) encode_end_time = time.time() # Lexical search bm25 = es.search(index="quora", body={"query": {"match": {"question": inp_question}}}) # Semantic search sem_search = es.search( index="quora", knn={"field": "question_vector", "query_vector": question_embedding, "k": 10, "num_candidates": 100}, ) print("Input question:", inp_question) print( "Computing the embedding took {:.3f} seconds, BM25 search took {:.3f} seconds, semantic search with ES took {:.3f} seconds".format( encode_end_time - encode_start_time, bm25["took"] / 1000, sem_search["took"] / 1000 ) ) print("BM25 results:") for hit in bm25["hits"]["hits"][0:5]: print("\t{}".format(hit["_source"]["question"])) print("\nSemantic Search results:") for hit in sem_search["hits"]["hits"][0:5]: print("\t{}".format(hit["_source"]["question"])) print("\n\n========\n")
""" This script contains an example how to perform semantic search with ElasticSearch. As dataset, we use the Quora Duplicate Questions dataset, which contains about 500k questions: https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs Questions are indexed to ElasticSearch together with their respective sentence embeddings. The script shows results from BM25 as well as from semantic search with cosine similarity. You need ElasticSearch (https://www.elastic.co/de/elasticsearch/) up and running. Further, you need the Python ElasticSearch Client installed: https://elasticsearch-py.readthedocs.io/en/master/ As embeddings model, we use the SBERT model 'quora-distilbert-multilingual', that it aligned for 100 languages. I.e., you can type in a question in various languages and it will return the closest questions in the corpus (questions in the corpus are mainly in English). """ from sentence_transformers import SentenceTransformer, util import os from elasticsearch import Elasticsearch, helpers import csv import time import tqdm.autonotebook es = Elasticsearch() model = SentenceTransformer('quora-distilbert-multilingual') url = "http://qim.fs.quoracdn.net/quora_duplicate_questions.tsv" dataset_path = "quora_duplicate_questions.tsv" max_corpus_size = 100000 #Download dataset if needed if not os.path.exists(dataset_path): print("Download dataset") util.http_get(url, dataset_path) #Get all unique sentences from the file all_questions = {} with open(dataset_path, encoding='utf8') as fIn: reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_MINIMAL) for row in reader: all_questions[row['qid1']] = row['question1'] if len(all_questions) >= max_corpus_size: break all_questions[row['qid2']] = row['question2'] if len(all_questions) >= max_corpus_size: break qids = list(all_questions.keys()) questions = [all_questions[qid] for qid in qids] #Index data, if the index does not exists if not es.indices.exists(index="quora"): try: es_index = { "mappings": { "properties": { "question": { "type": "text" }, "question_vector": { "type": "dense_vector", "dims": 768 } } } } es.indices.create(index='quora', body=es_index, ignore=[400]) chunk_size = 500 print("Index data (you can stop it by pressing Ctrl+C once):") with tqdm.tqdm(total=len(qids)) as pbar: for start_idx in range(0, len(qids), chunk_size): end_idx = start_idx+chunk_size embeddings = model.encode(questions[start_idx:end_idx], show_progress_bar=False) bulk_data = [] for qid, question, embedding in zip(qids[start_idx:end_idx], questions[start_idx:end_idx], embeddings): bulk_data.append({ "_index": 'quora', "_id": qid, "_source": { "question": question, "question_vector": embedding } }) helpers.bulk(es, bulk_data) pbar.update(chunk_size) except: print("During index an exception occured. Continue\n\n") #Interactive search queries while True: inp_question = input("Please enter a question: ") encode_start_time = time.time() question_embedding = model.encode(inp_question) encode_end_time = time.time() #Lexical search bm25 = es.search(index="quora", body={"query": {"match": {"question": inp_question }}}) #Sematic search sem_search = es.search(index="quora", body={ "query": { "script_score": { "query": { "match_all": {} }, "script": { "source": "cosineSimilarity(params.queryVector, doc['question_vector']) + 1.0", "params": { "queryVector": question_embedding } } } } }) print("Input question:", inp_question) print("Computing the embedding took {:.3f} seconds, BM25 search took {:.3f} seconds, semantic search with ES took {:.3f} seconds".format(encode_end_time-encode_start_time, bm25['took']/1000, sem_search['took']/1000)) print("BM25 results:") for hit in bm25['hits']['hits'][0:5]: print("\t{}".format(hit['_source']['question'])) print("\nSemantic Search results:") for hit in sem_search['hits']['hits'][0:5]: print("\t{}".format(hit['_source']['question'])) print("\n\n========\n")
import unittest import torch import torchaudio.prototype.functional as F from torchaudio_unittest.common_utils import nested_params, TestBaseMixin, torch_script class TorchScriptConsistencyTestImpl(TestBaseMixin): def _assert_consistency(self, func, inputs, shape_only=False): inputs_ = [] for i in inputs: if torch.is_tensor(i): i = i.to(device=self.device, dtype=self.dtype) inputs_.append(i) ts_func = torch_script(func) torch.random.manual_seed(40) output = func(*inputs_) torch.random.manual_seed(40) ts_output = ts_func(*inputs_) if shape_only: ts_output = ts_output.shape output = output.shape self.assertEqual(ts_output, output) @nested_params( [F.convolve, F.fftconvolve], ["full", "valid", "same"], ) def test_convolve(self, fn, mode): leading_dims = (2, 3, 2) L_x, L_y = 32, 55 x = torch.rand(*leading_dims, L_x, dtype=self.dtype, device=self.device) y = torch.rand(*leading_dims, L_y, dtype=self.dtype, device=self.device) self._assert_consistency(fn, (x, y, mode)) def test_add_noise(self): leading_dims = (2, 3) L = 31 waveform = torch.rand(*leading_dims, L, dtype=self.dtype, device=self.device, requires_grad=True) noise = torch.rand(*leading_dims, L, dtype=self.dtype, device=self.device, requires_grad=True) lengths = torch.rand(*leading_dims, dtype=self.dtype, device=self.device, requires_grad=True) snr = torch.rand(*leading_dims, dtype=self.dtype, device=self.device, requires_grad=True) * 10 self._assert_consistency(F.add_noise, (waveform, noise, lengths, snr)) def test_barkscale_fbanks(self): if self.device != torch.device("cpu"): raise unittest.SkipTest("No need to perform test on device other than CPU") n_stft = 100 f_min = 0.0 f_max = 20.0 n_barks = 10 sample_rate = 16000 self._assert_consistency(F.barkscale_fbanks, (n_stft, f_min, f_max, n_barks, sample_rate, "traunmuller")) def test_oscillator_bank(self): num_frames, num_pitches, sample_rate = 8000, 8, 8000 freq = torch.rand((num_frames, num_pitches), dtype=self.dtype, device=self.device) amps = torch.ones_like(freq) self._assert_consistency(F.oscillator_bank, (freq, amps, sample_rate, "sum"))
import unittest import torch import torchaudio.prototype.functional as F from torchaudio_unittest.common_utils import nested_params, TestBaseMixin, torch_script class TorchScriptConsistencyTestImpl(TestBaseMixin): def _assert_consistency(self, func, inputs, shape_only=False): inputs_ = [] for i in inputs: if torch.is_tensor(i): i = i.to(device=self.device, dtype=self.dtype) inputs_.append(i) ts_func = torch_script(func) torch.random.manual_seed(40) output = func(*inputs_) torch.random.manual_seed(40) ts_output = ts_func(*inputs_) if shape_only: ts_output = ts_output.shape output = output.shape self.assertEqual(ts_output, output) @nested_params( [F.convolve, F.fftconvolve], ["full", "valid", "same"], ) def test_convolve(self, fn, mode): leading_dims = (2, 3, 2) L_x, L_y = 32, 55 x = torch.rand(*leading_dims, L_x, dtype=self.dtype, device=self.device) y = torch.rand(*leading_dims, L_y, dtype=self.dtype, device=self.device) self._assert_consistency(fn, (x, y, mode)) def test_add_noise(self): leading_dims = (2, 3) L = 31 waveform = torch.rand(*leading_dims, L, dtype=self.dtype, device=self.device, requires_grad=True) noise = torch.rand(*leading_dims, L, dtype=self.dtype, device=self.device, requires_grad=True) lengths = torch.rand(*leading_dims, dtype=self.dtype, device=self.device, requires_grad=True) snr = torch.rand(*leading_dims, dtype=self.dtype, device=self.device, requires_grad=True) * 10 self._assert_consistency(F.add_noise, (waveform, noise, lengths, snr)) def test_barkscale_fbanks(self): if self.device != torch.device("cpu"): raise unittest.SkipTest("No need to perform test on device other than CPU") n_stft = 100 f_min = 0.0 f_max = 20.0 n_barks = 10 sample_rate = 16000 self._assert_consistency(F.barkscale_fbanks, (n_stft, f_min, f_max, n_barks, sample_rate, "traunmuller"))
import pytest from backend.data import db from backend.executor import ExecutionScheduler from backend.server.model import CreateGraph from backend.usecases.sample import create_test_graph, create_test_user from backend.util.service import get_service_client from backend.util.test import SpinTestServer @pytest.mark.asyncio(scope="session") async def test_agent_schedule(server: SpinTestServer): await db.connect() test_user = await create_test_user() test_graph = await server.agent_server.test_create_graph( create_graph=CreateGraph(graph=create_test_graph()), user_id=test_user.id, ) scheduler = get_service_client(ExecutionScheduler) schedules = scheduler.get_execution_schedules(test_graph.id, test_user.id) assert len(schedules) == 0 schedule = scheduler.add_execution_schedule( graph_id=test_graph.id, user_id=test_user.id, graph_version=1, cron="0 0 * * *", input_data={"input": "data"}, ) assert schedule schedules = scheduler.get_execution_schedules(test_graph.id, test_user.id) assert len(schedules) == 1 assert schedules[0].cron == "0 0 * * *" scheduler.delete_schedule(schedule.id, user_id=test_user.id) schedules = scheduler.get_execution_schedules(test_graph.id, user_id=test_user.id) assert len(schedules) == 0
import pytest from backend.data import db from backend.executor import ExecutionScheduler from backend.server.model import CreateGraph from backend.usecases.sample import create_test_graph, create_test_user from backend.util.service import get_service_client from backend.util.test import SpinTestServer @pytest.mark.asyncio(scope="session") async def test_agent_schedule(server: SpinTestServer): await db.connect() test_user = await create_test_user() test_graph = await server.agent_server.test_create_graph( create_graph=CreateGraph(graph=create_test_graph()), is_template=False, user_id=test_user.id, ) scheduler = get_service_client(ExecutionScheduler) schedules = scheduler.get_execution_schedules(test_graph.id, test_user.id) assert len(schedules) == 0 schedule = scheduler.add_execution_schedule( graph_id=test_graph.id, user_id=test_user.id, graph_version=1, cron="0 0 * * *", input_data={"input": "data"}, ) assert schedule schedules = scheduler.get_execution_schedules(test_graph.id, test_user.id) assert len(schedules) == 1 assert schedules[0].cron == "0 0 * * *" scheduler.delete_schedule(schedule.id, user_id=test_user.id) schedules = scheduler.get_execution_schedules(test_graph.id, user_id=test_user.id) assert len(schedules) == 0
from llama_index.core.instrumentation.events.base import BaseEvent from llama_index.core.base.response.schema import RESPONSE_TYPE from llama_index.core.schema import QueryType class QueryStartEvent(BaseEvent): """ QueryStartEvent. Args: query (QueryType): Query as a string or query bundle. """ query: QueryType @classmethod def class_name(cls) -> str: """Class name.""" return "QueryStartEvent" class QueryEndEvent(BaseEvent): """ QueryEndEvent. Args: query (QueryType): Query as a string or query bundle. response (RESPONSE_TYPE): Response. """ query: QueryType response: RESPONSE_TYPE @classmethod def class_name(cls) -> str: """Class name.""" return "QueryEndEvent"
from llama_index.core.instrumentation.events.base import BaseEvent from llama_index.core.base.response.schema import RESPONSE_TYPE from llama_index.core.schema import QueryType class QueryStartEvent(BaseEvent): """QueryStartEvent. Args: query (QueryType): Query as a string or query bundle. """ query: QueryType @classmethod def class_name(cls) -> str: """Class name.""" return "QueryStartEvent" class QueryEndEvent(BaseEvent): """QueryEndEvent. Args: query (QueryType): Query as a string or query bundle. response (RESPONSE_TYPE): Response. """ query: QueryType response: RESPONSE_TYPE @classmethod def class_name(cls) -> str: """Class name.""" return "QueryEndEvent"
# Copyright (c) OpenMMLab. All rights reserved. from .amp import autocast from .base_loop import BaseLoop from .checkpoint import (CheckpointLoader, find_latest_checkpoint, get_deprecated_model_names, get_external_models, get_mmcls_models, get_state_dict, get_torchvision_models, load_checkpoint, load_state_dict, save_checkpoint, weights_to_cpu) from .log_processor import LogProcessor from .loops import EpochBasedTrainLoop, IterBasedTrainLoop, TestLoop, ValLoop from .priority import Priority, get_priority from .runner import Runner __all__ = [ 'BaseLoop', 'load_state_dict', 'get_torchvision_models', 'get_external_models', 'get_mmcls_models', 'get_deprecated_model_names', 'CheckpointLoader', 'load_checkpoint', 'weights_to_cpu', 'get_state_dict', 'save_checkpoint', 'EpochBasedTrainLoop', 'IterBasedTrainLoop', 'ValLoop', 'TestLoop', 'Runner', 'get_priority', 'Priority', 'find_latest_checkpoint', 'autocast', 'LogProcessor' ]
# Copyright (c) OpenMMLab. All rights reserved. from .amp import autocast from .base_loop import BaseLoop from .checkpoint import (CheckpointLoader, find_latest_checkpoint, get_deprecated_model_names, get_external_models, get_mmcls_models, get_state_dict, get_torchvision_models, load_checkpoint, load_state_dict, save_checkpoint, weights_to_cpu) from .loops import EpochBasedTrainLoop, IterBasedTrainLoop, TestLoop, ValLoop from .priority import Priority, get_priority from .runner import Runner __all__ = [ 'BaseLoop', 'load_state_dict', 'get_torchvision_models', 'get_external_models', 'get_mmcls_models', 'get_deprecated_model_names', 'CheckpointLoader', 'load_checkpoint', 'weights_to_cpu', 'get_state_dict', 'save_checkpoint', 'EpochBasedTrainLoop', 'IterBasedTrainLoop', 'ValLoop', 'TestLoop', 'Runner', 'get_priority', 'Priority', 'find_latest_checkpoint', 'autocast' ]
from __future__ import annotations import json import os from typing import Any import torch from torch import nn class SpladePooling(nn.Module): """SPLADE pooling layer that aggregates MLM logits using max or sum pooling. This pooling layer takes MLM logits (shape: batch_size, seq_length, vocab_size) and applies SPLADE transformation (ReLU + log) followed by pooling across the sequence length dimension. Args: pooling_strategy: Either 'max' or 'sum' for SPLADE pooling """ SPLADE_POOLING_MODES = ("sum", "max") def __init__(self, pooling_strategy: str = "max", word_embedding_dimension: int = None) -> None: super().__init__() self.pooling_strategy = pooling_strategy if pooling_strategy not in self.SPLADE_POOLING_MODES: raise ValueError("pooling_strategy must be either 'max' or 'sum'") self.config_keys = ["pooling_strategy", "word_embedding_dimension"] self.word_embedding_dimension = word_embedding_dimension # This will be set in the forward method def forward(self, features: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]: """Forward pass of the model. Args: features: Dictionary containing input features with 'mlm_logits' key Returns: Dictionary containing SPLADE pooled embeddings """ # Get the MLM head logits (shape: batch_size, seq_length, vocab_size) mlm_logits = features["token_embeddings"] # Apply ReLU and log transformation for SPLADE splade_scores = torch.log1p(torch.relu(mlm_logits)) # Pool across sequence length dimension if self.pooling_strategy == "max": pooled_scores = torch.max(splade_scores, dim=1)[0] # shape: batch_size, vocab_size else: # sum pooled_scores = torch.sum(splade_scores, dim=1) # shape: batch_size, vocab_size # Set the word embedding dimension if self.word_embedding_dimension is None: self.word_embedding_dimension = pooled_scores.shape[1] features["sentence_embedding"] = pooled_scores return features def get_config_dict(self) -> dict[str, Any]: return {key: self.__dict__[key] for key in self.config_keys} def save(self, output_path) -> None: with open(os.path.join(output_path, "config.json"), "w") as fOut: json.dump(self.get_config_dict(), fOut, indent=2) @staticmethod def load(input_path) -> SpladePooling: with open(os.path.join(input_path, "config.json")) as fIn: config = json.load(fIn) return SpladePooling(**config) def __repr__(self) -> str: return f"SpladePooling({self.get_config_dict()})" def get_sentence_embedding_dimension(self) -> int: """Get the dimension of the sentence embedding. Returns: int: Dimension of the sentence embedding """ return self.word_embedding_dimension
from __future__ import annotations import json import os from typing import Any import torch from torch import nn class SpladePooling(nn.Module): """SPLADE pooling layer that aggregates MLM logits using max or sum pooling. This pooling layer takes MLM logits (shape: batch_size, seq_length, vocab_size) and applies SPLADE transformation (ReLU + log) followed by pooling across the sequence length dimension. Args: pooling_strategy: Either 'max' or 'sum' for SPLADE pooling """ SPLADE_POOLING_MODES = ("sum", "max") def __init__(self, pooling_strategy: str = "max") -> None: super().__init__() self.pooling_strategy = pooling_strategy if pooling_strategy not in self.SPLADE_POOLING_MODES: raise ValueError("pooling_strategy must be either 'max' or 'sum'") self.config_keys = ["pooling_strategy"] self.word_embedding_dimension = None # This will be set in the forward method def forward(self, features: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]: """Forward pass of the model. Args: features: Dictionary containing input features with 'mlm_logits' key Returns: Dictionary containing SPLADE pooled embeddings """ # Get the MLM head logits (shape: batch_size, seq_length, vocab_size) mlm_logits = features["token_embeddings"] # Apply ReLU and log transformation for SPLADE splade_scores = torch.log1p(torch.relu(mlm_logits)) # Pool across sequence length dimension if self.pooling_strategy == "max": pooled_scores = torch.max(splade_scores, dim=1)[0] # shape: batch_size, vocab_size else: # sum pooled_scores = torch.sum(splade_scores, dim=1) # shape: batch_size, vocab_size # Set the word embedding dimension if self.word_embedding_dimension is None: self.word_embedding_dimension = pooled_scores.shape[1] features["sentence_embedding"] = pooled_scores return features def get_config_dict(self) -> dict[str, Any]: return {key: self.__dict__[key] for key in self.config_keys} def save(self, output_path) -> None: with open(os.path.join(output_path, "config.json"), "w") as fOut: json.dump(self.get_config_dict(), fOut, indent=2) @staticmethod def load(input_path) -> SpladePooling: with open(os.path.join(input_path, "config.json")) as fIn: config = json.load(fIn) return SpladePooling(**config) def __repr__(self) -> str: return f"SpladePooling({self.get_config_dict()})" def get_sentence_embedding_dimension(self) -> int: """Get the dimension of the sentence embedding. Returns: int: Dimension of the sentence embedding """ return self.word_embedding_dimension
_base_ = '../faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py' model = dict( backbone=dict( dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False), stage_with_dcn=(False, True, True, True)))
_base_ = '../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py' model = dict( backbone=dict( dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False), stage_with_dcn=(False, True, True, True)))
# Copyright (c) OpenMMLab. All rights reserved. import torch from mmdet.registry import TASK_UTILS from mmdet.structures.bbox import bbox2roi from .base_sampler import BaseSampler @TASK_UTILS.register_module() class OHEMSampler(BaseSampler): r"""Online Hard Example Mining Sampler described in `Training Region-based Object Detectors with Online Hard Example Mining <https://arxiv.org/abs/1604.03540>`_. """ def __init__(self, num, pos_fraction, context, neg_pos_ub=-1, add_gt_as_proposals=True, loss_key='loss_cls', **kwargs): super(OHEMSampler, self).__init__(num, pos_fraction, neg_pos_ub, add_gt_as_proposals) self.context = context if not hasattr(self.context, 'num_stages'): self.bbox_head = self.context.bbox_head else: self.bbox_head = self.context.bbox_head[self.context.current_stage] self.loss_key = loss_key def hard_mining(self, inds, num_expected, bboxes, labels, feats): with torch.no_grad(): rois = bbox2roi([bboxes]) if not hasattr(self.context, 'num_stages'): bbox_results = self.context._bbox_forward(feats, rois) else: bbox_results = self.context._bbox_forward( self.context.current_stage, feats, rois) cls_score = bbox_results['cls_score'] loss = self.bbox_head.loss( cls_score=cls_score, bbox_pred=None, rois=rois, labels=labels, label_weights=cls_score.new_ones(cls_score.size(0)), bbox_targets=None, bbox_weights=None, reduction_override='none')[self.loss_key] _, topk_loss_inds = loss.topk(num_expected) return inds[topk_loss_inds] def _sample_pos(self, assign_result, num_expected, bboxes=None, feats=None, **kwargs): """Sample positive boxes. Args: assign_result (:obj:`AssignResult`): Assigned results num_expected (int): Number of expected positive samples bboxes (torch.Tensor, optional): Boxes. Defaults to None. feats (list[torch.Tensor], optional): Multi-level features. Defaults to None. Returns: torch.Tensor: Indices of positive samples """ # Sample some hard positive samples pos_inds = torch.nonzero(assign_result.gt_inds > 0, as_tuple=False) if pos_inds.numel() != 0: pos_inds = pos_inds.squeeze(1) if pos_inds.numel() <= num_expected: return pos_inds else: return self.hard_mining(pos_inds, num_expected, bboxes[pos_inds], assign_result.labels[pos_inds], feats) def _sample_neg(self, assign_result, num_expected, bboxes=None, feats=None, **kwargs): """Sample negative boxes. Args: assign_result (:obj:`AssignResult`): Assigned results num_expected (int): Number of expected negative samples bboxes (torch.Tensor, optional): Boxes. Defaults to None. feats (list[torch.Tensor], optional): Multi-level features. Defaults to None. Returns: torch.Tensor: Indices of negative samples """ # Sample some hard negative samples neg_inds = torch.nonzero(assign_result.gt_inds == 0, as_tuple=False) if neg_inds.numel() != 0: neg_inds = neg_inds.squeeze(1) if len(neg_inds) <= num_expected: return neg_inds else: neg_labels = assign_result.labels.new_empty( neg_inds.size(0)).fill_(self.bbox_head.num_classes) return self.hard_mining(neg_inds, num_expected, bboxes[neg_inds], neg_labels, feats)
# Copyright (c) OpenMMLab. All rights reserved. import torch from mmdet.data_elements.bbox import bbox2roi from mmdet.registry import TASK_UTILS from .base_sampler import BaseSampler @TASK_UTILS.register_module() class OHEMSampler(BaseSampler): r"""Online Hard Example Mining Sampler described in `Training Region-based Object Detectors with Online Hard Example Mining <https://arxiv.org/abs/1604.03540>`_. """ def __init__(self, num, pos_fraction, context, neg_pos_ub=-1, add_gt_as_proposals=True, loss_key='loss_cls', **kwargs): super(OHEMSampler, self).__init__(num, pos_fraction, neg_pos_ub, add_gt_as_proposals) self.context = context if not hasattr(self.context, 'num_stages'): self.bbox_head = self.context.bbox_head else: self.bbox_head = self.context.bbox_head[self.context.current_stage] self.loss_key = loss_key def hard_mining(self, inds, num_expected, bboxes, labels, feats): with torch.no_grad(): rois = bbox2roi([bboxes]) if not hasattr(self.context, 'num_stages'): bbox_results = self.context._bbox_forward(feats, rois) else: bbox_results = self.context._bbox_forward( self.context.current_stage, feats, rois) cls_score = bbox_results['cls_score'] loss = self.bbox_head.loss( cls_score=cls_score, bbox_pred=None, rois=rois, labels=labels, label_weights=cls_score.new_ones(cls_score.size(0)), bbox_targets=None, bbox_weights=None, reduction_override='none')[self.loss_key] _, topk_loss_inds = loss.topk(num_expected) return inds[topk_loss_inds] def _sample_pos(self, assign_result, num_expected, bboxes=None, feats=None, **kwargs): """Sample positive boxes. Args: assign_result (:obj:`AssignResult`): Assigned results num_expected (int): Number of expected positive samples bboxes (torch.Tensor, optional): Boxes. Defaults to None. feats (list[torch.Tensor], optional): Multi-level features. Defaults to None. Returns: torch.Tensor: Indices of positive samples """ # Sample some hard positive samples pos_inds = torch.nonzero(assign_result.gt_inds > 0, as_tuple=False) if pos_inds.numel() != 0: pos_inds = pos_inds.squeeze(1) if pos_inds.numel() <= num_expected: return pos_inds else: return self.hard_mining(pos_inds, num_expected, bboxes[pos_inds], assign_result.labels[pos_inds], feats) def _sample_neg(self, assign_result, num_expected, bboxes=None, feats=None, **kwargs): """Sample negative boxes. Args: assign_result (:obj:`AssignResult`): Assigned results num_expected (int): Number of expected negative samples bboxes (torch.Tensor, optional): Boxes. Defaults to None. feats (list[torch.Tensor], optional): Multi-level features. Defaults to None. Returns: torch.Tensor: Indices of negative samples """ # Sample some hard negative samples neg_inds = torch.nonzero(assign_result.gt_inds == 0, as_tuple=False) if neg_inds.numel() != 0: neg_inds = neg_inds.squeeze(1) if len(neg_inds) <= num_expected: return neg_inds else: neg_labels = assign_result.labels.new_empty( neg_inds.size(0)).fill_(self.bbox_head.num_classes) return self.hard_mining(neg_inds, num_expected, bboxes[neg_inds], neg_labels, feats)
"""Function calling agent.""" import deprecated from typing import Any, List, Optional from llama_index.core.agent.runner.base import AgentRunner, AgentState from llama_index.core.agent.function_calling.step import ( FunctionCallingAgentWorker, DEFAULT_MAX_FUNCTION_CALLS, ) from llama_index.core.base.llms.types import ChatMessage from llama_index.core.callbacks import CallbackManager from llama_index.core.llms.function_calling import FunctionCallingLLM from llama_index.core.memory.types import BaseMemory from llama_index.core.objects.base import ObjectRetriever from llama_index.core.settings import Settings from llama_index.core.tools.types import BaseTool @deprecated.deprecated( reason=( "FunctionCallingAgent has been rewritten and replaced by newer agents based on llama_index.core.agent.workflow.FunctionAgent.\n\n" "This implementation will be removed in a v0.13.0.\n\n" "See the docs for more information on updated usage: https://docs.llamaindex.ai/en/stable/understanding/agent/" ), action="once", ) class FunctionCallingAgent(AgentRunner): """ DEPRECATED: FunctionCallingAgent has been deprecated and is not maintained. This implementation will be removed in a v0.13.0. See the docs for more information on updated agent usage: https://docs.llamaindex.ai/en/stable/understanding/agent/ Function calling agent. Light wrapper around AgentRunner. """ @classmethod def from_tools( cls, tools: Optional[List[BaseTool]] = None, tool_retriever: Optional[ObjectRetriever[BaseTool]] = None, llm: Optional[FunctionCallingLLM] = None, verbose: bool = False, max_function_calls: int = DEFAULT_MAX_FUNCTION_CALLS, callback_manager: Optional[CallbackManager] = None, system_prompt: Optional[str] = None, prefix_messages: Optional[List[ChatMessage]] = None, memory: Optional[BaseMemory] = None, chat_history: Optional[List[ChatMessage]] = None, state: Optional[AgentState] = None, allow_parallel_tool_calls: bool = True, **kwargs: Any, ) -> "FunctionCallingAgent": """Create a FunctionCallingAgent from a list of tools.""" tools = tools or [] llm = llm or Settings.llm # type: ignore assert isinstance(llm, FunctionCallingLLM), ( "llm must be an instance of FunctionCallingLLM" ) if callback_manager is not None: llm.callback_manager = callback_manager if system_prompt is not None: if prefix_messages is not None: raise ValueError( "Cannot specify both system_prompt and prefix_messages" ) prefix_messages = [ChatMessage(content=system_prompt, role="system")] prefix_messages = prefix_messages or [] agent_worker = FunctionCallingAgentWorker.from_tools( tools, tool_retriever=tool_retriever, llm=llm, verbose=verbose, max_function_calls=max_function_calls, callback_manager=callback_manager, prefix_messages=prefix_messages, allow_parallel_tool_calls=allow_parallel_tool_calls, ) return cls( agent_worker=agent_worker, memory=memory, chat_history=chat_history, state=state, llm=llm, callback_manager=callback_manager, verbose=verbose, **kwargs, )
"""Function calling agent.""" from typing import Any, List, Optional from llama_index.core.agent.runner.base import AgentRunner, AgentState from llama_index.core.agent.function_calling.step import ( FunctionCallingAgentWorker, DEFAULT_MAX_FUNCTION_CALLS, ) from llama_index.core.base.llms.types import ChatMessage from llama_index.core.callbacks import CallbackManager from llama_index.core.llms.function_calling import FunctionCallingLLM from llama_index.core.memory.types import BaseMemory from llama_index.core.objects.base import ObjectRetriever from llama_index.core.settings import Settings from llama_index.core.tools.types import BaseTool class FunctionCallingAgent(AgentRunner): """ Function calling agent. Light wrapper around AgentRunner. """ @classmethod def from_tools( cls, tools: Optional[List[BaseTool]] = None, tool_retriever: Optional[ObjectRetriever[BaseTool]] = None, llm: Optional[FunctionCallingLLM] = None, verbose: bool = False, max_function_calls: int = DEFAULT_MAX_FUNCTION_CALLS, callback_manager: Optional[CallbackManager] = None, system_prompt: Optional[str] = None, prefix_messages: Optional[List[ChatMessage]] = None, memory: Optional[BaseMemory] = None, chat_history: Optional[List[ChatMessage]] = None, state: Optional[AgentState] = None, allow_parallel_tool_calls: bool = True, **kwargs: Any, ) -> "FunctionCallingAgent": """Create a FunctionCallingAgent from a list of tools.""" tools = tools or [] llm = llm or Settings.llm # type: ignore assert isinstance(llm, FunctionCallingLLM), ( "llm must be an instance of FunctionCallingLLM" ) if callback_manager is not None: llm.callback_manager = callback_manager if system_prompt is not None: if prefix_messages is not None: raise ValueError( "Cannot specify both system_prompt and prefix_messages" ) prefix_messages = [ChatMessage(content=system_prompt, role="system")] prefix_messages = prefix_messages or [] agent_worker = FunctionCallingAgentWorker.from_tools( tools, tool_retriever=tool_retriever, llm=llm, verbose=verbose, max_function_calls=max_function_calls, callback_manager=callback_manager, prefix_messages=prefix_messages, allow_parallel_tool_calls=allow_parallel_tool_calls, ) return cls( agent_worker=agent_worker, memory=memory, chat_history=chat_history, state=state, llm=llm, callback_manager=callback_manager, verbose=verbose, **kwargs, )
import math from typing import List, Optional from llama_index.core.agent.react.types import ( BaseReasoningStep, ResponseReasoningStep, ) from llama_index.core.bridge.pydantic import Field, BaseModel from llama_index.core.prompts import PromptTemplate # taken from the paper DEFAULT_REFLECTION_PROMPT_STR = """\ Given a query and a conversation trajectory, evaluate two things regarding whether the conversation answers the question: - **correctness**: Whether the thoughts and actions so far are correctly answering the query, even if the answer is not found yet. Rate from 1-10, where 1 is incorrect and 10 is correct. - **completeness**: Whether the answer is found yet. Provide your reasoning and analysis in detail. Focus on the latest thought, action, and observation. Incomplete trajectories can be correct if the thoughts and actions so far are correct, \ even if the answer is not found yet. Do not generate additional thoughts or actions. Query: {query} Conversation History: {conversation_history} """ DEFAULT_REFLECTION_PROMPT = PromptTemplate(DEFAULT_REFLECTION_PROMPT_STR) DEFAULT_CANDIDATES_PROMPT_STR = """\ Given a query and a conversation trajectory, provide a list of candidates {num_candidates} for the next reasoning step. Focus on the latest thought, action, and observation. Do not generate additional thoughts or actions. Query: {query} Conversation History: {conversation_history} """ DEFAULT_CANDIDATES_PROMPT = PromptTemplate(DEFAULT_CANDIDATES_PROMPT_STR) class Candidates(BaseModel): """Candidates for the next reasoning step.""" candidates: List[str] class Evaluation(BaseModel): """Evaluation of a given node.""" score: int = Field( description="Score of the reflection indicating **correctness**. Integer from 1-10", le=10, ge=0, ) is_done: bool = Field( False, description="Whether the answer is found yet (**completeness**)." ) reasoning: str = Field( default="", description="Reasoning and justification for the evaluation." ) class SearchNode(BaseModel): """ Search node. Named differently from `Node` which is a core module in LlamaIndex. """ current_reasoning: List[BaseReasoningStep] = Field( ..., description="Current reasoning." ) parent: Optional["SearchNode"] = Field(default=None, description="Parent node.") children: List["SearchNode"] = Field( default_factory=list, description="Children nodes." ) evaluation: Evaluation = Field(..., description="Evaluation of the node.") visits: int = Field(default=0, description="Number of visits to the node.") @property def answer(self) -> Optional[str]: """Answer.""" if not self.current_reasoning: return None if isinstance(self.current_reasoning[-1], ResponseReasoningStep): return self.current_reasoning[-1].response else: return self.current_reasoning[-1].get_content() @property def is_done(self) -> bool: """Is the node done.""" return self.evaluation.is_done @property def score(self) -> float: """Score of the node.""" return self.evaluation.score @property def upper_confidence_bound(self) -> float: """Upper confidence bound.""" return self.score + 1.0 * math.sqrt(math.log(self.parent.visits) / self.visits) def backpropagate(self, reward: float) -> None: """Backpropagate the reward.""" cur_node = self while cur_node is not None: cur_node.visits += 1 cur_node.evaluation.score = ( reward + (cur_node.visits - 1) * cur_node.score ) / cur_node.visits cur_node = cur_node.parent def get_best_leaf(self) -> "SearchNode": """ Get best leaf node. Get best leaf node across any children nodes. """ # only get children that aren't done yet free_children = [c for c in self.children if not c.is_done] if not free_children: return self best_child = max(free_children, key=lambda x: x.upper_confidence_bound) return best_child.get_best_leaf()
import math from typing import List, Optional from llama_index.core.agent.react.types import ( BaseReasoningStep, ResponseReasoningStep, ) from llama_index.core.bridge.pydantic import Field, BaseModel from llama_index.core.prompts import PromptTemplate # taken from the paper DEFAULT_REFLECTION_PROMPT_STR = """\ Given a query and a conversation trajectory, evaluate two things regarding whether the conversation answers the question: - **correctness**: Whether the thoughts and actions so far are correctly answering the query, even if the answer is not found yet. Rate from 1-10, where 1 is incorrect and 10 is correct. - **completeness**: Whether the answer is found yet. Provide your reasoning and analysis in detail. Focus on the latest thought, action, and observation. Incomplete trajectories can be correct if the thoughts and actions so far are correct, \ even if the answer is not found yet. Do not generate additional thoughts or actions. Query: {query} Conversation History: {conversation_history} """ DEFAULT_REFLECTION_PROMPT = PromptTemplate(DEFAULT_REFLECTION_PROMPT_STR) DEFAULT_CANDIDATES_PROMPT_STR = """\ Given a query and a conversation trajectory, provide a list of candidates {num_candidates} for the next reasoning step. Focus on the latest thought, action, and observation. Do not generate additional thoughts or actions. Query: {query} Conversation History: {conversation_history} """ DEFAULT_CANDIDATES_PROMPT = PromptTemplate(DEFAULT_CANDIDATES_PROMPT_STR) class Candidates(BaseModel): """Candidates for the next reasoning step.""" candidates: List[str] class Evaluation(BaseModel): """Evaluation of a given node.""" score: int = Field( description="Score of the reflection indicating **correctness**. Integer from 1-10", le=10, ge=0, ) is_done: bool = Field( False, description="Whether the answer is found yet (**completeness**)." ) reasoning: str = Field( default="", description="Reasoning and justification for the evaluation." ) class SearchNode(BaseModel): """Search node. Named differently from `Node` which is a core module in LlamaIndex. """ current_reasoning: List[BaseReasoningStep] = Field( ..., description="Current reasoning." ) parent: Optional["SearchNode"] = Field(default=None, description="Parent node.") children: List["SearchNode"] = Field( default_factory=list, description="Children nodes." ) evaluation: Evaluation = Field(..., description="Evaluation of the node.") visits: int = Field(default=0, description="Number of visits to the node.") @property def answer(self) -> Optional[str]: """Answer.""" if not self.current_reasoning: return None if isinstance(self.current_reasoning[-1], ResponseReasoningStep): return self.current_reasoning[-1].response else: return self.current_reasoning[-1].get_content() @property def is_done(self) -> bool: """Is the node done.""" return self.evaluation.is_done @property def score(self) -> float: """Score of the node.""" return self.evaluation.score @property def upper_confidence_bound(self) -> float: """Upper confidence bound.""" return self.score + 1.0 * math.sqrt(math.log(self.parent.visits) / self.visits) def backpropagate(self, reward: float) -> None: """Backpropagate the reward.""" cur_node = self while cur_node is not None: cur_node.visits += 1 cur_node.evaluation.score = ( reward + (cur_node.visits - 1) * cur_node.score ) / cur_node.visits cur_node = cur_node.parent def get_best_leaf(self) -> "SearchNode": """Get best leaf node. Get best leaf node across any children nodes. """ # only get children that aren't done yet free_children = [c for c in self.children if not c.is_done] if not free_children: return self best_child = max(free_children, key=lambda x: x.upper_confidence_bound) return best_child.get_best_leaf()
# Licensed to the LF AI & Data foundation under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __version__ = '0.40.1' import logging from docarray.array import DocList, DocVec from docarray.base_doc.doc import BaseDoc from docarray.utils._internal.misc import _get_path_from_docarray_root_level __all__ = ['BaseDoc', 'DocList', 'DocVec'] logger = logging.getLogger('docarray') handler = logging.StreamHandler() formatter = logging.Formatter("%(levelname)s - %(name)s - %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) def __getattr__(name: str): if name in ['Document', 'DocumentArray']: raise ImportError( f'Cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'.\n' f'The object named \'{name}\' does not exist anymore in this version of docarray.\n' f'If you still want to use \'{name}\' please downgrade to version <=0.21.0 ' f'with: `pip install -U docarray==0.21.0`.' ) else: raise ImportError( f'cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'' )
__version__ = '0.40.1' import logging from docarray.array import DocList, DocVec from docarray.base_doc.doc import BaseDoc from docarray.utils._internal.misc import _get_path_from_docarray_root_level __all__ = ['BaseDoc', 'DocList', 'DocVec'] logger = logging.getLogger('docarray') handler = logging.StreamHandler() formatter = logging.Formatter("%(levelname)s - %(name)s - %(message)s") handler.setFormatter(formatter) logger.addHandler(handler) def __getattr__(name: str): if name in ['Document', 'DocumentArray']: raise ImportError( f'Cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'.\n' f'The object named \'{name}\' does not exist anymore in this version of docarray.\n' f'If you still want to use \'{name}\' please downgrade to version <=0.21.0 ' f'with: `pip install -U docarray==0.21.0`.' ) else: raise ImportError( f'cannot import name \'{name}\' from \'{_get_path_from_docarray_root_level(__file__)}\'' )
# model settings norm_cfg = dict(type='BN', requires_grad=False) model = dict( type='FasterRCNN', backbone=dict( type='ResNet', depth=50, num_stages=3, strides=(1, 2, 2), dilations=(1, 1, 1), out_indices=(2, ), frozen_stages=1, norm_cfg=norm_cfg, norm_eval=True, style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')), rpn_head=dict( type='RPNHead', in_channels=1024, feat_channels=1024, anchor_generator=dict( type='AnchorGenerator', scales=[2, 4, 8, 16, 32], ratios=[0.5, 1.0, 2.0], strides=[16]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0)), roi_head=dict( type='StandardRoIHead', shared_head=dict( type='ResLayer', depth=50, stage=3, stride=2, dilation=1, style='caffe', norm_cfg=norm_cfg, norm_eval=True, init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')), bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0), out_channels=1024, featmap_strides=[16]), bbox_head=dict( type='BBoxHead', with_avg_pool=True, roi_feat_size=7, in_channels=2048, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=False, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0))), # model training and testing settings train_cfg=dict( rpn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, match_low_quality=True, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=-1, pos_weight=-1, debug=False), rpn_proposal=dict( nms_pre=12000, max_per_img=2000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, match_low_quality=False, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), pos_weight=-1, debug=False)), test_cfg=dict( rpn=dict( nms_pre=6000, max_per_img=1000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( score_thr=0.05, nms=dict(type='nms', iou_threshold=0.5), max_per_img=100)))
# model settings norm_cfg = dict(type='BN', requires_grad=False) model = dict( type='FasterRCNN', backbone=dict( type='ResNet', depth=50, num_stages=3, strides=(1, 2, 2), dilations=(1, 1, 1), out_indices=(2, ), frozen_stages=1, norm_cfg=norm_cfg, norm_eval=True, style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')), rpn_head=dict( type='RPNHead', in_channels=1024, feat_channels=1024, anchor_generator=dict( type='AnchorGenerator', scales=[2, 4, 8, 16, 32], ratios=[0.5, 1.0, 2.0], strides=[16]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0)), roi_head=dict( type='StandardRoIHead', shared_head=dict( type='ResLayer', depth=50, stage=3, stride=2, dilation=1, style='caffe', norm_cfg=norm_cfg, norm_eval=True), bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0), out_channels=1024, featmap_strides=[16]), bbox_head=dict( type='BBoxHead', with_avg_pool=True, roi_feat_size=7, in_channels=2048, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=False, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0))), # model training and testing settings train_cfg=dict( rpn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, match_low_quality=True, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=0, pos_weight=-1, debug=False), rpn_proposal=dict( nms_pre=12000, max_per_img=2000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, match_low_quality=False, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), pos_weight=-1, debug=False)), test_cfg=dict( rpn=dict( nms_pre=6000, max_per_img=1000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( score_thr=0.05, nms=dict(type='nms', iou_threshold=0.5), max_per_img=100)))
# Copyright (c) OpenMMLab. All rights reserved. from .atss import ATSS from .autoassign import AutoAssign from .base import BaseDetector from .cascade_rcnn import CascadeRCNN from .centernet import CenterNet from .cornernet import CornerNet from .crowddet import CrowdDet from .d2_wrapper import Detectron2Wrapper from .ddod import DDOD from .deformable_detr import DeformableDETR from .detr import DETR from .fast_rcnn import FastRCNN from .faster_rcnn import FasterRCNN from .fcos import FCOS from .fovea import FOVEA from .fsaf import FSAF from .gfl import GFL from .grid_rcnn import GridRCNN from .htc import HybridTaskCascade from .kd_one_stage import KnowledgeDistillationSingleStageDetector from .lad import LAD from .mask2former import Mask2Former from .mask_rcnn import MaskRCNN from .mask_scoring_rcnn import MaskScoringRCNN from .maskformer import MaskFormer from .nasfcos import NASFCOS from .paa import PAA from .panoptic_fpn import PanopticFPN from .panoptic_two_stage_segmentor import TwoStagePanopticSegmentor from .point_rend import PointRend from .queryinst import QueryInst from .reppoints_detector import RepPointsDetector from .retinanet import RetinaNet from .rpn import RPN from .rtmdet import RTMDet from .scnet import SCNet from .semi_base import SemiBaseDetector from .single_stage import SingleStageDetector from .soft_teacher import SoftTeacher from .solo import SOLO from .solov2 import SOLOv2 from .sparse_rcnn import SparseRCNN from .tood import TOOD from .trident_faster_rcnn import TridentFasterRCNN from .two_stage import TwoStageDetector from .vfnet import VFNet from .yolact import YOLACT from .yolo import YOLOV3 from .yolof import YOLOF from .yolox import YOLOX __all__ = [ 'ATSS', 'BaseDetector', 'SingleStageDetector', 'TwoStageDetector', 'RPN', 'KnowledgeDistillationSingleStageDetector', 'FastRCNN', 'FasterRCNN', 'MaskRCNN', 'CascadeRCNN', 'HybridTaskCascade', 'RetinaNet', 'FCOS', 'GridRCNN', 'MaskScoringRCNN', 'RepPointsDetector', 'FOVEA', 'FSAF', 'NASFCOS', 'PointRend', 'GFL', 'CornerNet', 'PAA', 'YOLOV3', 'YOLACT', 'VFNet', 'DETR', 'TridentFasterRCNN', 'SparseRCNN', 'SCNet', 'SOLO', 'SOLOv2', 'DeformableDETR', 'AutoAssign', 'YOLOF', 'CenterNet', 'YOLOX', 'TwoStagePanopticSegmentor', 'PanopticFPN', 'QueryInst', 'LAD', 'TOOD', 'MaskFormer', 'DDOD', 'Mask2Former', 'SemiBaseDetector', 'SoftTeacher', 'RTMDet', 'Detectron2Wrapper', 'RTMDet', 'CrowdDet' ]
# Copyright (c) OpenMMLab. All rights reserved. from .atss import ATSS from .autoassign import AutoAssign from .base import BaseDetector from .cascade_rcnn import CascadeRCNN from .centernet import CenterNet from .cornernet import CornerNet from .d2_wrapper import Detectron2Wrapper from .ddod import DDOD from .deformable_detr import DeformableDETR from .detr import DETR from .fast_rcnn import FastRCNN from .faster_rcnn import FasterRCNN from .fcos import FCOS from .fovea import FOVEA from .fsaf import FSAF from .gfl import GFL from .grid_rcnn import GridRCNN from .htc import HybridTaskCascade from .kd_one_stage import KnowledgeDistillationSingleStageDetector from .lad import LAD from .mask2former import Mask2Former from .mask_rcnn import MaskRCNN from .mask_scoring_rcnn import MaskScoringRCNN from .maskformer import MaskFormer from .nasfcos import NASFCOS from .paa import PAA from .panoptic_fpn import PanopticFPN from .panoptic_two_stage_segmentor import TwoStagePanopticSegmentor from .point_rend import PointRend from .queryinst import QueryInst from .reppoints_detector import RepPointsDetector from .retinanet import RetinaNet from .rpn import RPN from .rtmdet import RTMDet from .scnet import SCNet from .semi_base import SemiBaseDetector from .single_stage import SingleStageDetector from .soft_teacher import SoftTeacher from .solo import SOLO from .solov2 import SOLOv2 from .sparse_rcnn import SparseRCNN from .tood import TOOD from .trident_faster_rcnn import TridentFasterRCNN from .two_stage import TwoStageDetector from .vfnet import VFNet from .yolact import YOLACT from .yolo import YOLOV3 from .yolof import YOLOF from .yolox import YOLOX __all__ = [ 'ATSS', 'BaseDetector', 'SingleStageDetector', 'TwoStageDetector', 'RPN', 'KnowledgeDistillationSingleStageDetector', 'FastRCNN', 'FasterRCNN', 'MaskRCNN', 'CascadeRCNN', 'HybridTaskCascade', 'RetinaNet', 'FCOS', 'GridRCNN', 'MaskScoringRCNN', 'RepPointsDetector', 'FOVEA', 'FSAF', 'NASFCOS', 'PointRend', 'GFL', 'CornerNet', 'PAA', 'YOLOV3', 'YOLACT', 'VFNet', 'DETR', 'TridentFasterRCNN', 'SparseRCNN', 'SCNet', 'SOLO', 'SOLOv2', 'DeformableDETR', 'AutoAssign', 'YOLOF', 'CenterNet', 'YOLOX', 'TwoStagePanopticSegmentor', 'PanopticFPN', 'QueryInst', 'LAD', 'TOOD', 'MaskFormer', 'DDOD', 'Mask2Former', 'SemiBaseDetector', 'SoftTeacher', 'RTMDet', 'Detectron2Wrapper' ]
import pytest from keras.src import backend from keras.src import testing class DeviceTest(testing.TestCase): @pytest.mark.skipif(backend.backend() != "tensorflow", reason="tf only") def test_tf_device_scope(self): import tensorflow as tf if not tf.config.list_physical_devices("GPU"): self.skipTest("Need at least one GPU for testing") with backend.device("cpu:0"): t = backend.numpy.ones((2, 1)) self.assertIn("CPU:0", t.device) with backend.device("CPU:0"): t = backend.numpy.ones((2, 1)) self.assertIn("CPU:0", t.device) # When leaving the scope, the device should be back with gpu:0 t = backend.numpy.ones((2, 1)) self.assertIn("GPU:0", t.device) # Also verify the explicit gpu device with backend.device("gpu:0"): t = backend.numpy.ones((2, 1)) self.assertIn("GPU:0", t.device) @pytest.mark.skipif(backend.backend() != "jax", reason="jax only") def test_jax_device_scope(self): import jax from jax.lib import xla_bridge def get_device(t): # After updating to Jax 0.4.33, Directly access via t.device attr. return list(t.devices())[0] platform = xla_bridge.get_backend().platform if platform != "gpu": self.skipTest("Need at least one GPU for testing") with backend.device("cpu:0"): t = backend.numpy.ones((2, 1)) self.assertEqual(get_device(t), jax.devices("cpu")[0]) with backend.device("CPU:0"): t = backend.numpy.ones((2, 1)) self.assertEqual(get_device(t), jax.devices("cpu")[0]) # When leaving the scope, the device should be back with gpu:0 t = backend.numpy.ones((2, 1)) self.assertEqual(get_device(t), jax.devices("gpu")[0]) # Also verify the explicit gpu device with backend.device("gpu:0"): t = backend.numpy.ones((2, 1)) self.assertEqual(get_device(t), jax.devices("gpu")[0]) @pytest.mark.skipif(backend.backend() != "jax", reason="jax only") def test_invalid_jax_device(self): with self.assertRaisesRegex(ValueError, "Received: device_name='123'"): backend.device(123).__enter__() @pytest.mark.skipif(backend.backend() != "torch", reason="torch only") def test_torch_device_scope(self): import torch if not torch.cuda.device_count(): self.skipTest("Need at least one GPU for testing") with backend.device("cpu:0"): t = backend.numpy.ones((2, 1)) self.assertEqual(t.device, torch.device("cpu")) with backend.device("CPU:0"): t = backend.numpy.ones((2, 1)) self.assertEqual(t.device, torch.device("cpu")) # When leaving the scope, the device should be back with gpu:0 t = backend.numpy.ones((2, 1)) self.assertEqual(t.device, torch.device("cuda", 0)) # Also verify the explicit gpu -> cuda conversion with backend.device("gpu:0"): t = backend.numpy.ones((2, 1)) self.assertEqual(t.device, torch.device("cuda", 0)) @pytest.mark.skipif(backend.backend() != "torch", reason="torch only") def test_invalid_torch_device(self): with self.assertRaisesRegex(ValueError, "Received: device_name='123'"): backend.device(123).__enter__()
import pytest from keras.src import backend from keras.src import testing class DeviceTest(testing.TestCase): @pytest.mark.skipif(backend.backend() != "tensorflow", reason="tf only") def test_tf_device_scope(self): import tensorflow as tf if not tf.config.list_physical_devices("GPU"): self.skipTest("Need at least one GPU for testing") with backend.device_scope("cpu:0"): t = backend.numpy.ones((2, 1)) self.assertIn("CPU:0", t.device) with backend.device_scope("CPU:0"): t = backend.numpy.ones((2, 1)) self.assertIn("CPU:0", t.device) # When leaving the scope, the device should be back with gpu:0 t = backend.numpy.ones((2, 1)) self.assertIn("GPU:0", t.device) # Also verify the explicit gpu device with backend.device_scope("gpu:0"): t = backend.numpy.ones((2, 1)) self.assertIn("GPU:0", t.device) @pytest.mark.skipif(backend.backend() != "jax", reason="jax only") def test_jax_device_scope(self): import jax from jax.lib import xla_bridge def get_device(t): # After updating to Jax 0.4.33, Directly access via t.device attr. return list(t.devices())[0] platform = xla_bridge.get_backend().platform if platform != "gpu": self.skipTest("Need at least one GPU for testing") with backend.device_scope("cpu:0"): t = backend.numpy.ones((2, 1)) self.assertEqual(get_device(t), jax.devices("cpu")[0]) with backend.device_scope("CPU:0"): t = backend.numpy.ones((2, 1)) self.assertEqual(get_device(t), jax.devices("cpu")[0]) # When leaving the scope, the device should be back with gpu:0 t = backend.numpy.ones((2, 1)) self.assertEqual(get_device(t), jax.devices("gpu")[0]) # Also verify the explicit gpu device with backend.device_scope("gpu:0"): t = backend.numpy.ones((2, 1)) self.assertEqual(get_device(t), jax.devices("gpu")[0]) @pytest.mark.skipif(backend.backend() != "jax", reason="jax only") def test_invalid_jax_device(self): with self.assertRaisesRegex(ValueError, "Received: device_name='123'"): backend.device_scope(123).__enter__() @pytest.mark.skipif(backend.backend() != "torch", reason="torch only") def test_torch_device_scope(self): import torch if not torch.cuda.device_count(): self.skipTest("Need at least one GPU for testing") with backend.device_scope("cpu:0"): t = backend.numpy.ones((2, 1)) self.assertEqual(t.device, torch.device("cpu")) with backend.device_scope("CPU:0"): t = backend.numpy.ones((2, 1)) self.assertEqual(t.device, torch.device("cpu")) # When leaving the scope, the device should be back with gpu:0 t = backend.numpy.ones((2, 1)) self.assertEqual(t.device, torch.device("cuda", 0)) # Also verify the explicit gpu -> cuda conversion with backend.device_scope("gpu:0"): t = backend.numpy.ones((2, 1)) self.assertEqual(t.device, torch.device("cuda", 0)) @pytest.mark.skipif(backend.backend() != "torch", reason="torch only") def test_invalid_torch_device(self): with self.assertRaisesRegex(ValueError, "Received: device_name='123'"): backend.device_scope(123).__enter__()
"""Chat generation output classes.""" from __future__ import annotations from typing import Literal, Union from pydantic import model_validator from typing_extensions import Self from langchain_core.messages import BaseMessage, BaseMessageChunk from langchain_core.outputs.generation import Generation from langchain_core.utils._merge import merge_dicts class ChatGeneration(Generation): """A single chat generation output. A subclass of Generation that represents the response from a chat model that generates chat messages. The `message` attribute is a structured representation of the chat message. Most of the time, the message will be of type `AIMessage`. Users working with chat models will usually access information via either `AIMessage` (returned from runnable interfaces) or `LLMResult` (available via callbacks). """ text: str = "" """*SHOULD NOT BE SET DIRECTLY* The text contents of the output message.""" message: BaseMessage """The message output by the chat model.""" # Override type to be ChatGeneration, ignore mypy error as this is intentional type: Literal["ChatGeneration"] = "ChatGeneration" # type: ignore[assignment] """Type is used exclusively for serialization purposes.""" @model_validator(mode="after") def set_text(self) -> Self: """Set the text attribute to be the contents of the message. Args: values: The values of the object. Returns: The values of the object with the text attribute set. Raises: ValueError: If the message is not a string or a list. """ text = "" if isinstance(self.message.content, str): text = self.message.content # Assumes text in content blocks in OpenAI format. # Uses first text block. elif isinstance(self.message.content, list): for block in self.message.content: if isinstance(block, str): text = block break if isinstance(block, dict) and "text" in block: text = block["text"] break else: pass self.text = text return self class ChatGenerationChunk(ChatGeneration): """ChatGeneration chunk. ChatGeneration chunks can be concatenated with other ChatGeneration chunks. """ message: BaseMessageChunk """The message chunk output by the chat model.""" # Override type to be ChatGeneration, ignore mypy error as this is intentional type: Literal["ChatGenerationChunk"] = "ChatGenerationChunk" # type: ignore[assignment] """Type is used exclusively for serialization purposes.""" def __add__( self, other: Union[ChatGenerationChunk, list[ChatGenerationChunk]] ) -> ChatGenerationChunk: """Concatenate two ChatGenerationChunks. Args: other: The other ChatGenerationChunk or list of ChatGenerationChunks to concatenate. """ if isinstance(other, ChatGenerationChunk): generation_info = merge_dicts( self.generation_info or {}, other.generation_info or {}, ) return ChatGenerationChunk( message=self.message + other.message, generation_info=generation_info or None, ) if isinstance(other, list) and all( isinstance(x, ChatGenerationChunk) for x in other ): generation_info = merge_dicts( self.generation_info or {}, *[chunk.generation_info for chunk in other if chunk.generation_info], ) return ChatGenerationChunk( message=self.message + [chunk.message for chunk in other], generation_info=generation_info or None, ) msg = f"unsupported operand type(s) for +: '{type(self)}' and '{type(other)}'" raise TypeError(msg) def merge_chat_generation_chunks( chunks: list[ChatGenerationChunk], ) -> Union[ChatGenerationChunk, None]: """Merge a list of ChatGenerationChunks into a single ChatGenerationChunk.""" if not chunks: return None if len(chunks) == 1: return chunks[0] return chunks[0] + chunks[1:]
"""Chat generation output classes.""" from __future__ import annotations from typing import Literal, Union from pydantic import computed_field from langchain_core.messages import BaseMessage, BaseMessageChunk from langchain_core.outputs.generation import Generation from langchain_core.utils._merge import merge_dicts class ChatGeneration(Generation): """A single chat generation output. A subclass of Generation that represents the response from a chat model that generates chat messages. The `message` attribute is a structured representation of the chat message. Most of the time, the message will be of type `AIMessage`. Users working with chat models will usually access information via either `AIMessage` (returned from runnable interfaces) or `LLMResult` (available via callbacks). """ message: BaseMessage """The message output by the chat model.""" type: Literal["ChatGeneration"] = "ChatGeneration" # type: ignore[assignment] """Type is used exclusively for serialization purposes.""" @computed_field # type: ignore[prop-decorator] @property def text(self) -> str: """Set the text attribute to be the contents of the message.""" text_ = "" if isinstance(self.message.content, str): text_ = self.message.content # Assumes text in content blocks in OpenAI format. # Uses first text block. elif isinstance(self.message.content, list): for block in self.message.content: if isinstance(block, str): text_ = block break if isinstance(block, dict) and "text" in block: text_ = block["text"] break return text_ class ChatGenerationChunk(ChatGeneration): """ChatGeneration chunk. ChatGeneration chunks can be concatenated with other ChatGeneration chunks. """ message: BaseMessageChunk """The message chunk output by the chat model.""" type: Literal["ChatGenerationChunk"] = "ChatGenerationChunk" # type: ignore[assignment] """Type is used exclusively for serialization purposes.""" def __add__( self, other: Union[ChatGenerationChunk, list[ChatGenerationChunk]] ) -> ChatGenerationChunk: """Concatenate two ChatGenerationChunks. Args: other: The other ChatGenerationChunk or list of ChatGenerationChunks to concatenate. """ if isinstance(other, ChatGenerationChunk): generation_info = merge_dicts( self.generation_info or {}, other.generation_info or {}, ) return ChatGenerationChunk( message=self.message + other.message, generation_info=generation_info or None, ) if isinstance(other, list) and all( isinstance(x, ChatGenerationChunk) for x in other ): generation_info = merge_dicts( self.generation_info or {}, *[chunk.generation_info for chunk in other if chunk.generation_info], ) return ChatGenerationChunk( message=self.message + [chunk.message for chunk in other], generation_info=generation_info or None, ) msg = f"unsupported operand type(s) for +: '{type(self)}' and '{type(other)}'" raise TypeError(msg) def merge_chat_generation_chunks( chunks: list[ChatGenerationChunk], ) -> Union[ChatGenerationChunk, None]: """Merge a list of ChatGenerationChunks into a single ChatGenerationChunk.""" if not chunks: return None if len(chunks) == 1: return chunks[0] return chunks[0] + chunks[1:]
from pathlib import Path from typing import Tuple import librosa import pytest from executor.vggish import vggish_input from executor.vggish_audio_encoder import VggishAudioEncoder from jina import Document, DocumentArray, Executor from tensorflow.python.framework import ops @pytest.fixture(scope="module") def encoder() -> VggishAudioEncoder: ops.reset_default_graph() return VggishAudioEncoder() @pytest.fixture(scope="module") def gpu_encoder() -> VggishAudioEncoder: return VggishAudioEncoder(device='/GPU:0') @pytest.fixture(scope='function') def audio_sample_rate(): x_audio, sample_rate = librosa.load( Path(__file__).parents[1] / 'test_data/sample.wav' ) return x_audio, sample_rate @pytest.fixture(scope="function") def nested_docs(audio_sample_rate) -> DocumentArray: audio, sample_rate = audio_sample_rate blob = vggish_input.waveform_to_examples(audio, sample_rate) docs = DocumentArray([Document(id="root1", blob=blob)]) docs[0].chunks = [ Document(id="chunk11", blob=blob), Document(id="chunk12", blob=blob), Document(id="chunk13", blob=blob), ] docs[0].chunks[0].chunks = [ Document(id="chunk111", blob=blob), Document(id="chunk112", blob=blob), ] return docs def test_config(): ex = Executor.load_config(str(Path(__file__).parents[2] / 'config.yml')) assert str(ex.vgg_model_path).endswith('vggish_model.ckpt') assert str(ex.pca_model_path).endswith('vggish_pca_params.ckpt') def test_no_documents(encoder: VggishAudioEncoder): ops.reset_default_graph() docs = DocumentArray() encoder.encode(docs=docs, parameters={}) assert len(docs) == 0 # SUCCESS def test_none_docs(encoder: VggishAudioEncoder): ops.reset_default_graph() encoder.encode(docs=None, parameters={}) def test_docs_no_blobs(encoder: VggishAudioEncoder): ops.reset_default_graph() docs = DocumentArray([Document()]) encoder.encode(docs=DocumentArray(), parameters={}) assert len(docs) == 1 assert docs[0].embedding is None def test_encode_single_document(audio_sample_rate): ops.reset_default_graph() x_audio, sample_rate = audio_sample_rate log_mel_examples = vggish_input.waveform_to_examples(x_audio, sample_rate) doc = DocumentArray([Document(blob=log_mel_examples)]) model = VggishAudioEncoder() model.encode(doc, parameters={}) assert doc[0].embedding.shape == (128,) def test_encode_multiple_documents(encoder: VggishAudioEncoder, audio_sample_rate): ops.reset_default_graph() x_audio, sample_rate = audio_sample_rate log_mel_examples = vggish_input.waveform_to_examples(x_audio, sample_rate) docs = DocumentArray( [Document(blob=log_mel_examples), Document(blob=log_mel_examples)] ) encoder.encode(docs, parameters={}) assert docs[0].embedding.shape == (128,) assert docs[1].embedding.shape == (128,) @pytest.mark.gpu def test_encode_gpu(audio_sample_rate): x_audio, sample_rate = audio_sample_rate log_mel_examples = vggish_input.waveform_to_examples(x_audio, sample_rate) doc = DocumentArray([Document(blob=log_mel_examples)]) model = VggishAudioEncoder(device='/GPU:0') model.encode(doc, parameters={}) assert doc[0].embedding.shape == (128,) @pytest.mark.parametrize( "traversal_paths, counts", [ [('c',), (('r', 0), ('c', 3), ('cc', 0))], [('cc',), (("r", 0), ('c', 0), ('cc', 2))], [('r',), (('r', 1), ('c', 0), ('cc', 0))], [('cc', 'r'), (('r', 1), ('c', 0), ('cc', 2))], ], ) def test_traversal_path( traversal_paths: Tuple[str], counts: Tuple[str, int], nested_docs: DocumentArray, encoder: VggishAudioEncoder, ): ops.reset_default_graph() encoder.encode(nested_docs, parameters={"traversal_paths": traversal_paths}) for path, count in counts: embeddings = nested_docs.traverse_flat([path]).get_attributes('embedding') assert len([em for em in embeddings if em is not None]) == count
from pathlib import Path import librosa import pytest from executor.vggish import vggish_input from executor.vggish_audio_encoder import VggishAudioEncoder from jina import Document, DocumentArray, Executor from tensorflow.python.framework import ops def test_config(): ex = Executor.load_config(str(Path(__file__).parents[2] / 'config.yml')) assert str(ex.vgg_model_path).endswith('vggish_model.ckpt') assert str(ex.pca_model_path).endswith('vggish_pca_params.ckpt') def test_embedding_dimension(): x_audio, sample_rate = librosa.load( Path(__file__).parents[1] / 'test_data/sample.wav' ) log_mel_examples = vggish_input.waveform_to_examples(x_audio, sample_rate) doc = DocumentArray([Document(blob=log_mel_examples)]) ops.reset_default_graph() model = VggishAudioEncoder() model.encode(doc, parameters={}) assert doc[0].embedding.shape == (128,) @pytest.mark.gpu def test_embedding_dimension_gpu(): x_audio, sample_rate = librosa.load( Path(__file__).parents[1] / 'test_data/sample.wav' ) log_mel_examples = vggish_input.waveform_to_examples(x_audio, sample_rate) doc = DocumentArray([Document(blob=log_mel_examples)]) ops.reset_default_graph() model = VggishAudioEncoder(device='/GPU:0') model.encode(doc, parameters={}) assert doc[0].embedding.shape == (128,)
# Copyright (c) OpenMMLab. All rights reserved. from typing import Any, Optional, Sequence, Tuple from mmengine.data import BaseDataSample from mmengine.registry import HOOKS from .hook import Hook DATA_BATCH = Optional[Sequence[Tuple[Any, BaseDataSample]]] @HOOKS.register_module() class ParamSchedulerHook(Hook): """A hook to update some hyper-parameters in optimizer, e.g., learning rate and momentum.""" priority = 'LOW' def after_train_iter(self, runner, batch_idx: int, data_batch: DATA_BATCH = None, outputs: Optional[dict] = None) -> None: """Call step function for each scheduler after each iteration. Args: runner (Runner): The runner of the training process. batch_idx (int): The index of the current batch in the train loop. data_batch (Sequence[Tuple[Any, BaseDataSample]], optional): Data from dataloader. In order to keep this interface consistent with other hooks, we keep ``data_batch`` here. Defaults to None. outputs (dict, optional): Outputs from model. In order to keep this interface consistent with other hooks, we keep ``data_batch`` here. Defaults to None. """ for scheduler in runner.param_schedulers: # type: ignore if not scheduler.by_epoch: scheduler.step() def after_train_epoch(self, runner) -> None: """Call step function for each scheduler after each epoch. Args: runner (Runner): The runner of the training process. """ for scheduler in runner.param_schedulers: # type: ignore if scheduler.by_epoch: scheduler.step()
# Copyright (c) OpenMMLab. All rights reserved. from typing import Any, Optional, Sequence, Tuple from mmengine.data import BaseDataSample from mmengine.registry import HOOKS from .hook import Hook DATA_BATCH = Optional[Sequence[Tuple[Any, BaseDataSample]]] @HOOKS.register_module() class ParamSchedulerHook(Hook): """A hook to update some hyper-parameters in optimizer, e.g learning rate and momentum.""" priority = 'LOW' def after_train_iter(self, runner, data_batch: DATA_BATCH = None, outputs: Optional[dict] = None) -> None: """Call step function for each scheduler after each iteration. Args: runner (Runner): The runner of the training process. data_batch (Sequence[Tuple[Any, BaseDataSample]], optional): Data from dataloader. In order to keep this interface consistent with other hooks, we keep ``data_batch`` here. Defaults to None. outputs (dict, optional): Outputs from model. In order to keep this interface consistent with other hooks, we keep ``data_batch`` here. Defaults to None. """ for scheduler in runner.param_schedulers: # type: ignore if not scheduler.by_epoch: scheduler.step() def after_train_epoch(self, runner) -> None: """Call step function for each scheduler after each epoch. Args: runner (Runner): The runner of the training process. """ for scheduler in runner.param_schedulers: # type: ignore if scheduler.by_epoch: scheduler.step()
# Copyright (c) OpenMMLab. All rights reserved. from mmengine.config import read_base from mmengine.dataset import DefaultSampler from mmengine.hooks import EMAHook from mmengine.model import MomentumAnnealingEMA from mmengine.runner import FlexibleRunner from mmengine.testing.runner_test_case import ToyDataset, ToyMetric with read_base(): from ._base_.base_model import * from ._base_.default_runtime import * from ._base_.scheduler import * param_scheduler.milestones = [2, 4] train_dataloader = dict( dataset=dict(type=ToyDataset), sampler=dict(type=DefaultSampler, shuffle=True), batch_size=3, num_workers=0) val_dataloader = dict( dataset=dict(type=ToyDataset), sampler=dict(type=DefaultSampler, shuffle=False), batch_size=3, num_workers=0) val_evaluator = [dict(type=ToyMetric)] test_dataloader = dict( dataset=dict(type=ToyDataset), sampler=dict(type=DefaultSampler, shuffle=False), batch_size=3, num_workers=0) test_evaluator = [dict(type=ToyMetric)] custom_hooks = [ dict( type=EMAHook, ema_type=MomentumAnnealingEMA, momentum=0.0002, update_buffers=True, strict_load=False, priority=49) ] runner_type = FlexibleRunner
# Copyright (c) OpenMMLab. All rights reserved. from mmengine.config import read_base from mmengine.dataset import DefaultSampler from mmengine.hooks import EMAHook from mmengine.model import MomentumAnnealingEMA from mmengine.testing.runner_test_case import ToyDataset, ToyMetric with read_base(): from ._base_.base_model import * from ._base_.default_runtime import * from ._base_.scheduler import * param_scheduler.milestones = [2, 4] train_dataloader = dict( dataset=dict(type=ToyDataset), sampler=dict(type=DefaultSampler, shuffle=True), batch_size=3, num_workers=0) val_dataloader = dict( dataset=dict(type=ToyDataset), sampler=dict(type=DefaultSampler, shuffle=False), batch_size=3, num_workers=0) val_evaluator = [dict(type=ToyMetric)] test_dataloader = dict( dataset=dict(type=ToyDataset), sampler=dict(type=DefaultSampler, shuffle=False), batch_size=3, num_workers=0) test_evaluator = [dict(type=ToyMetric)] custom_hooks = [ dict( type=EMAHook, ema_type=MomentumAnnealingEMA, momentum=0.0002, update_buffers=True, strict_load=False, priority=49) ]
import os from typing import Type, Optional, TypeVar import orjson from pydantic import BaseModel, Field, parse_obj_as from rich.console import Console import pickle import base64 from docarray.base_document.base_node import BaseNode from docarray.base_document.io.json import orjson_dumps, orjson_dumps_and_decode from docarray.utils.compress import _compress_bytes, _decompress_bytes from docarray.base_document.mixins import ProtoMixin, UpdateMixin from docarray.typing import ID _console: Console = Console() T = TypeVar('T', bound='BaseDocument') class BaseDocument(BaseModel, ProtoMixin, UpdateMixin, BaseNode): """ The base class for Document """ id: ID = Field(default_factory=lambda: parse_obj_as(ID, os.urandom(16).hex())) class Config: json_loads = orjson.loads json_dumps = orjson_dumps_and_decode json_encoders = {dict: orjson_dumps} validate_assignment = True @classmethod def _get_field_type(cls, field: str) -> Type['BaseDocument']: """ Accessing the nested python Class define in the schema. Could be useful for reconstruction of Document in serialization/deserilization :param field: name of the field :return: """ return cls.__fields__[field].outer_type_ def __str__(self): with _console.capture() as capture: _console.print(self) return capture.get().strip() def summary(self) -> None: """Print non-empty fields and nested structure of this Document object.""" from docarray.display.document_summary import DocumentSummary DocumentSummary(doc=self).summary() @classmethod def schema_summary(cls) -> None: """Print a summary of the Documents schema.""" from docarray.display.document_summary import DocumentSummary DocumentSummary.schema_summary(cls) def __bytes__(self) -> bytes: return self.to_bytes() def to_bytes( self, protocol: str = 'protobuf', compress: Optional[str] = None ) -> bytes: """Serialize itself into bytes. For more Pythonic code, please use ``bytes(...)``. :param protocol: protocol to use. It can be 'pickle' or 'protobuf' :param compress: compress algorithm to use :return: the binary serialization in bytes """ import pickle if protocol == 'pickle': bstr = pickle.dumps(self) elif protocol == 'protobuf': bstr = self.to_protobuf().SerializePartialToString() else: raise ValueError( f'protocol={protocol} is not supported. Can be only `protobuf` or pickle protocols 0-5.' ) return _compress_bytes(bstr, algorithm=compress) @classmethod def from_bytes( cls: Type[T], data: bytes, protocol: str = 'protobuf', compress: Optional[str] = None, ) -> T: """Build Document object from binary bytes :param data: binary bytes :param protocol: protocol to use. It can be 'pickle' or 'protobuf' :param compress: compress method to use :return: a Document object """ bstr = _decompress_bytes(data, algorithm=compress) if protocol == 'pickle': return pickle.loads(bstr) elif protocol == 'protobuf': from docarray.proto import DocumentProto pb_msg = DocumentProto() pb_msg.ParseFromString(bstr) return cls.from_protobuf(pb_msg) else: raise ValueError( f'protocol={protocol} is not supported. Can be only `protobuf` or pickle protocols 0-5.' ) def to_base64( self, protocol: str = 'protobuf', compress: Optional[str] = None ) -> str: """Serialize a Document object into as base64 string :param protocol: protocol to use. It can be 'pickle' or 'protobuf' :param compress: compress method to use :return: a base64 encoded string """ return base64.b64encode(self.to_bytes(protocol, compress)).decode('utf-8') @classmethod def from_base64( cls: Type[T], data: str, protocol: str = 'pickle', compress: Optional[str] = None, ) -> T: """Build Document object from binary bytes :param data: a base64 encoded string :param protocol: protocol to use. It can be 'pickle' or 'protobuf' :param compress: compress method to use :return: a Document object """ return cls.from_bytes(base64.b64decode(data), protocol, compress) def _ipython_display_(self): """Displays the object in IPython as a summary""" self.summary()
import os from typing import Type import orjson from pydantic import BaseModel, Field, parse_obj_as from rich.console import Console from docarray.base_document.base_node import BaseNode from docarray.base_document.io.json import orjson_dumps, orjson_dumps_and_decode from docarray.base_document.mixins import ProtoMixin, UpdateMixin from docarray.typing import ID _console: Console = Console() class BaseDocument(BaseModel, ProtoMixin, UpdateMixin, BaseNode): """ The base class for Document """ id: ID = Field(default_factory=lambda: parse_obj_as(ID, os.urandom(16).hex())) class Config: json_loads = orjson.loads json_dumps = orjson_dumps_and_decode json_encoders = {dict: orjson_dumps} validate_assignment = True @classmethod def _get_field_type(cls, field: str) -> Type['BaseDocument']: """ Accessing the nested python Class define in the schema. Could be useful for reconstruction of Document in serialization/deserilization :param field: name of the field :return: """ return cls.__fields__[field].outer_type_ def __str__(self): with _console.capture() as capture: _console.print(self) return capture.get().strip() def summary(self) -> None: """Print non-empty fields and nested structure of this Document object.""" from docarray.display.document_summary import DocumentSummary DocumentSummary(doc=self).summary() @classmethod def schema_summary(cls) -> None: """Print a summary of the Documents schema.""" from docarray.display.document_summary import DocumentSummary DocumentSummary.schema_summary(cls) def _ipython_display_(self): """Displays the object in IPython as a summary""" self.summary()
# Copyright (c) OpenMMLab. All rights reserved. import argparse import cv2 import mmcv from mmcv.transforms import Compose from mmengine.utils import track_iter_progress from mmdet.apis import inference_detector, init_detector from mmdet.registry import VISUALIZERS from mmdet.utils import register_all_modules def parse_args(): parser = argparse.ArgumentParser(description='MMDetection video demo') parser.add_argument('video', help='Video file') parser.add_argument('config', help='Config file') parser.add_argument('checkpoint', help='Checkpoint file') parser.add_argument( '--device', default='cuda:0', help='Device used for inference') parser.add_argument( '--score-thr', type=float, default=0.3, help='Bbox score threshold') parser.add_argument('--out', type=str, help='Output video file') parser.add_argument('--show', action='store_true', help='Show video') parser.add_argument( '--wait-time', type=float, default=1, help='The interval of show (s), 0 is block') args = parser.parse_args() return args def main(): args = parse_args() assert args.out or args.show, \ ('Please specify at least one operation (save/show the ' 'video) with the argument "--out" or "--show"') # register all modules in mmdet into the registries register_all_modules() # build the model from a config file and a checkpoint file model = init_detector(args.config, args.checkpoint, device=args.device) # build test pipeline model.cfg.test_dataloader.dataset.pipeline[0].type = 'LoadImageFromNDArray' test_pipeline = Compose(model.cfg.test_dataloader.dataset.pipeline) # init visualizer visualizer = VISUALIZERS.build(model.cfg.visualizer) # the dataset_meta is loaded from the checkpoint and # then pass to the model in init_detector visualizer.dataset_meta = model.dataset_meta video_reader = mmcv.VideoReader(args.video) video_writer = None if args.out: fourcc = cv2.VideoWriter_fourcc(*'mp4v') video_writer = cv2.VideoWriter( args.out, fourcc, video_reader.fps, (video_reader.width, video_reader.height)) for frame in track_iter_progress(video_reader): result = inference_detector(model, frame, test_pipeline=test_pipeline) visualizer.add_datasample( name='video', image=frame, data_sample=result, draw_gt=False, show=False, pred_score_thr=args.score_thr) frame = visualizer.get_image() if args.show: cv2.namedWindow('video', 0) mmcv.imshow(frame, 'video', args.wait_time) if args.out: video_writer.write(frame) if video_writer: video_writer.release() cv2.destroyAllWindows() if __name__ == '__main__': main()
# Copyright (c) OpenMMLab. All rights reserved. import argparse import cv2 import mmcv from mmcv.transforms import Compose from mmengine.utils import track_iter_progress from mmdet.apis import inference_detector, init_detector from mmdet.registry import VISUALIZERS from mmdet.utils import register_all_modules def parse_args(): parser = argparse.ArgumentParser(description='MMDetection video demo') parser.add_argument('video', help='Video file') parser.add_argument('config', help='Config file') parser.add_argument('checkpoint', help='Checkpoint file') parser.add_argument( '--device', default='cuda:0', help='Device used for inference') parser.add_argument( '--score-thr', type=float, default=0.3, help='Bbox score threshold') parser.add_argument('--out', type=str, help='Output video file') parser.add_argument('--show', action='store_true', help='Show video') parser.add_argument( '--wait-time', type=float, default=1, help='The interval of show (s), 0 is block') args = parser.parse_args() return args def main(): args = parse_args() assert args.out or args.show, \ ('Please specify at least one operation (save/show the ' 'video) with the argument "--out" or "--show"') # register all modules in mmdet into the registries register_all_modules() # build the model from a config file and a checkpoint file model = init_detector(args.config, args.checkpoint, device=args.device) # build test pipeline model.cfg.test_dataloader.dataset.pipeline[0].type = 'LoadImageFromNDArray' test_pipeline = Compose(model.cfg.test_dataloader.dataset.pipeline) # init visualizer visualizer = VISUALIZERS.build(model.cfg.visualizer) # the dataset_meta is loaded from the checkpoint and # then pass to the model in init_detector visualizer.dataset_meta = model.dataset_meta video_reader = mmcv.VideoReader(args.video) video_writer = None if args.out: fourcc = cv2.VideoWriter_fourcc(*'mp4v') video_writer = cv2.VideoWriter( args.out, fourcc, video_reader.fps, (video_reader.width, video_reader.height)) for frame in track_iter_progress(video_reader): result = inference_detector(model, frame, test_pipeline=test_pipeline) visualizer.add_datasample( name='video', image=frame, pred_sample=result, show=False, pred_score_thr=args.score_thr) frame = visualizer.get_image() if args.show: cv2.namedWindow('video', 0) mmcv.imshow(frame, 'video', args.wait_time) if args.out: video_writer.write(frame) if video_writer: video_writer.release() cv2.destroyAllWindows() if __name__ == '__main__': main()
from __future__ import annotations from sentence_transformers.sparse_encoder.losses.CSRLoss import CSRLoss from sentence_transformers.sparse_encoder.losses.CSRReconstructionLoss import ( CSRReconstructionLoss, ) from sentence_transformers.sparse_encoder.losses.SparseMultipleNegativesRankingLoss import ( SparseMultipleNegativesRankingLoss, ) __all__ = [ "CSRLoss", "CSRReconstructionLoss", "SparseMultipleNegativesRankingLoss", ]
from __future__ import annotations from sentence_transformers.sparse_encoder.losses.CSRLoss import CSRLoss from sentence_transformers.sparse_encoder.losses.ReconstructionLoss import ( ReconstructionLoss, ) from sentence_transformers.sparse_encoder.losses.SparseMultipleNegativesRankingLoss import ( SparseMultipleNegativesRankingLoss, ) __all__ = [ "CSRLoss", "ReconstructionLoss", "SparseMultipleNegativesRankingLoss", ]
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import subprocess import pytest from executor.audioclip_text import AudioCLIPTextEncoder from jina import Document, DocumentArray, Flow _EMBEDDING_DIM = 1024 @pytest.mark.parametrize('request_size', [1, 10, 50, 100]) def test_integration(request_size: int): docs = DocumentArray( [Document(text='just some random text here') for _ in range(50)] ) with Flow(return_results=True).add(uses=AudioCLIPTextEncoder) as flow: resp = flow.post( on='/index', inputs=docs, request_size=request_size, return_results=True, ) assert sum(len(resp_batch.docs) for resp_batch in resp) == 50 for r in resp: for doc in r.docs: assert doc.embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.docker def test_docker_runtime(build_docker_image: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'executor', f'--uses=docker://{build_docker_image}', ], timeout=30, check=True, ) @pytest.mark.gpu @pytest.mark.docker def test_docker_runtime_gpu(build_docker_image_gpu: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'pea', f'--uses=docker://{build_docker_image_gpu}', '--gpus', 'all', '--uses-with', 'device:"cuda"', ], timeout=30, check=True, )
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import subprocess import pytest from executor.audioclip_text import AudioCLIPTextEncoder from jina import Document, DocumentArray, Flow _EMBEDDING_DIM = 1024 @pytest.mark.parametrize('request_size', [1, 10, 50, 100]) def test_integration(request_size: int): docs = DocumentArray( [Document(text='just some random text here') for _ in range(50)] ) with Flow(return_results=True).add(uses=AudioCLIPTextEncoder) as flow: resp = flow.post( on='/index', inputs=docs, request_size=request_size, return_results=True, ) assert sum(len(resp_batch.docs) for resp_batch in resp) == 50 for r in resp: for doc in r.docs: assert doc.embedding.shape == (_EMBEDDING_DIM,) @pytest.mark.docker def test_docker_runtime(build_docker_image: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'executor', f'--uses=docker://{build_docker_image}', '--volumes=.cache:/workspace/.cache', ], timeout=30, check=True, ) @pytest.mark.gpu @pytest.mark.docker def test_docker_runtime_gpu(build_docker_image_gpu: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'pea', f'--uses=docker://{build_docker_image_gpu}', '--gpus', 'all', '--uses-with', 'device:"cuda"', ], timeout=30, check=True, )
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Test configs for hardswish.""" import functools import numpy as np import tensorflow as tf from tensorflow.lite.python import lite from tensorflow.lite.testing.zip_test_utils import create_tensor_data from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests from tensorflow.lite.testing.zip_test_utils import register_make_test_function def _tflite_convert_verify_num_ops(tflite_convert_function, *args, **kwargs): """Verifies that the result of the conversion is a single op.""" num_ops = kwargs.pop("num_ops", 2) result = tflite_convert_function(*args, **kwargs) tflite_model_binary = result[0] if not result[0]: tf.compat.v1.logging.error(result[1]) # stderr from running tflite_convert. raise RuntimeError("Failed to build model: \n\n" + result[1]) interpreter = lite.Interpreter(model_content=tflite_model_binary) interpreter.allocate_tensors() if len(interpreter.get_tensor_details()) != num_ops: raise RuntimeError( "Expected to generate two node graph got %s " % "\n".join(str(x) for x in interpreter.get_tensor_details())) return result @register_make_test_function() def make_hardswish_tests(options): """Make a set of tests to do hardswish.""" # Chose a set of parameters if options.run_with_flex: # Only Flex is able to execute on the data bigger than four dimension. test_parameters = [{ "input_shape": [[], [1], [2, 3], [1, 1, 1, 1], [1, 3, 4, 3], [3, 15, 14, 3], [3, 1, 2, 4, 6], [2, 2, 3, 4, 5, 6]], }] else: test_parameters = [{ "input_shape": [[], [1], [2, 3], [1, 1, 1, 1], [1, 3, 4, 3], [3, 15, 14, 3]], }] def build_graph(parameters): inp = tf.compat.v1.placeholder( dtype=tf.float32, name="input", shape=parameters["input_shape"]) out = inp * tf.nn.relu6(inp + np.float32(3)) * np.float32(1. / 6.) return [inp], [out] def build_inputs(parameters, sess, inputs, outputs): input_values = create_tensor_data( np.float32, parameters["input_shape"], min_value=-10, max_value=10) return [input_values], sess.run( outputs, feed_dict=dict(zip(inputs, [input_values]))) # Add additional validation if we are using converter. # Flex doesn't yet support this. if not options.run_with_flex: options.tflite_convert_function = functools.partial( _tflite_convert_verify_num_ops, options.tflite_convert_function, num_ops=2) make_zip_of_tests(options, test_parameters, build_graph, build_inputs)
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Test configs for hardswish.""" import functools import numpy as np import tensorflow as tf from tensorflow.lite.testing.zip_test_utils import create_tensor_data from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests from tensorflow.lite.testing.zip_test_utils import register_make_test_function def _tflite_convert_verify_num_ops(tflite_convert_function, *args, **kwargs): """Verifies that the result of the conversion is a single op.""" num_ops = kwargs.pop("num_ops", 2) result = tflite_convert_function(*args, **kwargs) tflite_model_binary = result[0] if not result[0]: tf.compat.v1.logging.error(result[1]) # stderr from running tflite_convert. raise RuntimeError("Failed to build model: \n\n" + result[1]) interpreter = tf.lite.Interpreter(model_content=tflite_model_binary) interpreter.allocate_tensors() if len(interpreter.get_tensor_details()) != num_ops: raise RuntimeError( "Expected to generate two node graph got %s " % "\n".join(str(x) for x in interpreter.get_tensor_details())) return result @register_make_test_function() def make_hardswish_tests(options): """Make a set of tests to do hardswish.""" # Chose a set of parameters if options.run_with_flex: # Only Flex is able to execute on the data bigger than four dimension. test_parameters = [{ "input_shape": [[], [1], [2, 3], [1, 1, 1, 1], [1, 3, 4, 3], [3, 15, 14, 3], [3, 1, 2, 4, 6], [2, 2, 3, 4, 5, 6]], }] else: test_parameters = [{ "input_shape": [[], [1], [2, 3], [1, 1, 1, 1], [1, 3, 4, 3], [3, 15, 14, 3]], }] def build_graph(parameters): inp = tf.compat.v1.placeholder( dtype=tf.float32, name="input", shape=parameters["input_shape"]) out = inp * tf.nn.relu6(inp + np.float32(3)) * np.float32(1. / 6.) return [inp], [out] def build_inputs(parameters, sess, inputs, outputs): input_values = create_tensor_data( np.float32, parameters["input_shape"], min_value=-10, max_value=10) return [input_values], sess.run( outputs, feed_dict=dict(zip(inputs, [input_values]))) # Add additional validation if we are using converter. # Flex doesn't yet support this. if not options.run_with_flex: options.tflite_convert_function = functools.partial( _tflite_convert_verify_num_ops, options.tflite_convert_function, num_ops=2) make_zip_of_tests(options, test_parameters, build_graph, build_inputs)
""" This script showcases a recommended approach to perform semantic search using quantized embeddings with FAISS and usearch. In particular, it uses binary search with int8 rescoring. The binary search is highly efficient, and its index can be kept in memory even for massive datasets: it takes (num_dimensions * num_documents / 8) bytes, i.e. 1.19GB for 10 million embeddings. """ import json import os import time import numpy as np from sentence_transformers import SentenceTransformer from sentence_transformers.quantization import quantize_embeddings from datasets import load_dataset import faiss from usearch.index import Index # We use usearch as it can efficiently load int8 vectors from disk. # Load the model # NOTE: Because we are only comparing questions here, we will use the "query" prompt for everything. # Normally you don't use this prompt for documents, but only for the queries model = SentenceTransformer( "mixedbread-ai/mxbai-embed-large-v1", prompts={"query": "Represent this sentence for searching relevant passages: "}, default_prompt_name="query", ) # Load a corpus with texts dataset = load_dataset("quora", split="train").map( lambda batch: {"text": [text for sample in batch["questions"] for text in sample["text"]]}, batched=True, remove_columns=["questions", "is_duplicate"], ) max_corpus_size = 100_000 corpus = dataset["text"][:max_corpus_size] # Apply some default query query = "How do I become a good programmer?" # Try to load the precomputed binary and int8 indices if os.path.exists("quora_faiss_ubinary.index"): binary_index: faiss.IndexBinaryFlat = faiss.read_index_binary("quora_faiss_ubinary.index") int8_view = Index.restore("quora_usearch_int8.index", view=True) else: # Encode the corpus using the full precision full_corpus_embeddings = model.encode(corpus, normalize_embeddings=True, show_progress_bar=True) # Convert the embeddings to "ubinary" for efficient FAISS search ubinary_embeddings = quantize_embeddings(full_corpus_embeddings, "ubinary") binary_index = faiss.IndexBinaryFlat(1024) binary_index.add(ubinary_embeddings) faiss.write_index_binary(binary_index, "quora_faiss_ubinary.index") # Convert the embeddings to "int8" for efficiently loading int8 indices with usearch int8_embeddings = quantize_embeddings(full_corpus_embeddings, "int8") index = Index(ndim=1024, metric="ip", dtype="i8") index.add(np.arange(len(int8_embeddings)), int8_embeddings) index.save("quora_usearch_int8.index") del index # Load the int8 index as a view, which does not cost any memory int8_view = Index.restore("quora_usearch_int8.index", view=True) def search(query, top_k: int = 10, rescore_multiplier: int = 4): # 1. Embed the query as float32 start_time = time.time() query_embedding = model.encode(query) embed_time = time.time() - start_time # 2. Quantize the query to ubinary start_time = time.time() query_embedding_ubinary = quantize_embeddings(query_embedding.reshape(1, -1), "ubinary") quantize_time = time.time() - start_time # 3. Search the binary index start_time = time.time() _scores, binary_ids = binary_index.search(query_embedding_ubinary, top_k * rescore_multiplier) binary_ids = binary_ids[0] search_time = time.time() - start_time # 4. Load the corresponding int8 embeddings start_time = time.time() int8_embeddings = int8_view[binary_ids].astype(int) load_time = time.time() - start_time # 5. Rescore the top_k * rescore_multiplier using the float32 query embedding and the int8 document embeddings start_time = time.time() scores = query_embedding @ int8_embeddings.T rescore_time = time.time() - start_time # 6. Sort the scores and return the top_k start_time = time.time() indices = scores.argsort()[:top_k] top_k_indices = binary_ids[indices] top_k_scores = scores[indices] sort_time = time.time() - start_time return ( top_k_scores.tolist(), top_k_indices.tolist(), { "Embed Time": f"{embed_time:.4f} s", "Quantize Time": f"{quantize_time:.4f} s", "Search Time": f"{search_time:.4f} s", "Load Time": f"{load_time:.4f} s", "Rescore Time": f"{rescore_time:.4f} s", "Sort Time": f"{sort_time:.4f} s", "Total Retrieval Time": f"{quantize_time + search_time + load_time + rescore_time + sort_time:.4f} s", }, ) while True: scores, indices, timings = search(query) # Output the results print(f"Timings:\n{json.dumps(timings, indent=2)}") print(f"Query: {query}") for score, index in zip(scores, indices): print(f"(Score: {score:.4f}) {corpus[index]}") print("") # 10. Prompt for more queries query = input("Please enter a question: ")
""" This script showcases a recommended approach to perform semantic search using quantized embeddings with FAISS and usearch. In particular, it uses binary search with int8 rescoring. The binary search is highly efficient, and its index can be kept in memory even for massive datasets: it takes (num_dimensions * num_documents / 8) bytes, i.e. 1.19GB for 10 million embeddings. """ import json import os import time import numpy as np from sentence_transformers import SentenceTransformer from sentence_transformers.quantization import quantize_embeddings from datasets import load_dataset import faiss from usearch.index import Index # We use usearch as it can efficiently load int8 vectors from disk. # Load the model # NOTE: Because we are only comparing questions here, we will use the "query" prompt for everything. # Normally you don't use this prompt for documents, but only for the queries model = SentenceTransformer( "mixedbread-ai/mxbai-embed-large-v1", prompts={"query": "Represent this sentence for searching relevant passages: "}, default_prompt_name="query", ) # Load a corpus with texts dataset = load_dataset("quora", split="train").map( lambda batch: {"text": [text for sample in batch["questions"] for text in sample["text"]]}, batched=True, remove_columns=["questions", "is_duplicate"], ) max_corpus_size = 100_000 corpus = dataset["text"][:max_corpus_size] # Apply some default query query = "How do I become a good programmer?" # Try to load the precomputed binary and int8 indices if os.path.exists("quora_faiss_ubinary.index"): binary_index: faiss.IndexBinaryFlat = faiss.read_index_binary("quora_faiss_ubinary.index") int8_view = Index.restore("quora_usearch_int8.index", view=True) else: # Encode the corpus using the full precision full_corpus_embeddings = model.encode(corpus, normalize_embeddings=True, show_progress_bar=True) # Convert the embeddings to "ubinary" for efficient FAISS search ubinary_embeddings = quantize_embeddings(full_corpus_embeddings, "ubinary") binary_index = faiss.IndexBinaryFlat(1024) binary_index.add(ubinary_embeddings) faiss.write_index_binary(binary_index, "quora_faiss_ubinary.index") # Convert the embeddings to "int8" for efficiently loading int8 indices with usearch int8_embeddings = quantize_embeddings(full_corpus_embeddings, "int8") index = Index(ndim=1024, metric="ip", dtype="i8") index.add(np.arange(len(int8_embeddings)), int8_embeddings) index.save("quora_usearch_int8.index") del index # Load the int8 index as a view, which does not cost any memory int8_view = Index.restore("quora_usearch_int8.index", view=True) def search(query, top_k: int = 10, rescore_multiplier: int = 4): # 1. Embed the query as float32 start_time = time.time() query_embedding = model.encode(query) embed_time = time.time() - start_time # 2. Quantize the query to ubinary start_time = time.time() query_embedding_ubinary = quantize_embeddings(query_embedding.reshape(1, -1), "ubinary") quantize_time = time.time() - start_time # 3. Search the binary index start_time = time.time() _scores, binary_ids = binary_index.search(query_embedding_ubinary, top_k * rescore_multiplier) # return _scores[0], binary_ids[0], {} binary_ids = binary_ids[0] search_time = time.time() - start_time # 4. Load the corresponding int8 embeddings start_time = time.time() int8_embeddings = int8_view[binary_ids].astype(int) load_time = time.time() - start_time # 5. Rescore the top_k * rescore_multiplier using the float32 query embedding and the int8 document embeddings start_time = time.time() scores = query_embedding @ int8_embeddings.T rescore_time = time.time() - start_time # 6. Sort the scores and return the top_k start_time = time.time() indices = scores.argsort()[:top_k] top_k_indices = binary_ids[indices] top_k_scores = scores[indices] sort_time = time.time() - start_time return ( top_k_scores.tolist(), top_k_indices.tolist(), { "Embed Time": f"{embed_time:.4f} s", "Quantize Time": f"{quantize_time:.4f} s", "Search Time": f"{search_time:.4f} s", "Load Time": f"{load_time:.4f} s", "Rescore Time": f"{rescore_time:.4f} s", "Sort Time": f"{sort_time:.4f} s", "Total Retrieval Time": f"{quantize_time + search_time + load_time + rescore_time + sort_time:.4f} s", }, ) while True: scores, indices, timings = search(query) # Output the results print(f"Timings:\n{json.dumps(timings, indent=2)}") print(f"Query: {query}") for score, index in zip(scores, indices): print(f"(Score: {score:.4f}) {corpus[index]}") print("") # 10. Prompt for more queries query = input("Please enter a question: ")
_base_ = [ '../_base_/models/mask-rcnn_r50_fpn.py', '../_base_/datasets/youtube_vis.py', '../_base_/default_runtime.py' ] detector = _base_.model detector.pop('data_preprocessor') detector.roi_head.bbox_head.update(dict(num_classes=40)) detector.roi_head.mask_head.update(dict(num_classes=40)) detector.train_cfg.rpn.sampler.update(dict(num=64)) detector.train_cfg.rpn_proposal.update(dict(nms_pre=200, max_per_img=200)) detector.train_cfg.rcnn.sampler.update(dict(num=128)) detector.test_cfg.rpn.update(dict(nms_pre=200, max_per_img=200)) detector.test_cfg.rcnn.update(dict(score_thr=0.01)) detector['init_cfg'] = dict( type='Pretrained', checkpoint= # noqa: E251 'https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_fpn_1x_coco/mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth' # noqa: E501 ) del _base_.model model = dict( type='MaskTrackRCNN', data_preprocessor=dict( type='TrackDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, pad_mask=True, pad_size_divisor=32), detector=detector, track_head=dict( type='RoITrackHead', roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32]), embed_head=dict( type='RoIEmbedHead', num_fcs=2, roi_feat_size=7, in_channels=256, fc_out_channels=1024), train_cfg=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, match_low_quality=True, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=128, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), pos_weight=-1, debug=False)), tracker=dict( type='MaskTrackRCNNTracker', match_weights=dict(det_score=1.0, iou=2.0, det_label=10.0), num_frames_retain=20)) dataset_type = 'YouTubeVISDataset' data_root = 'data/youtube_vis_2019/' dataset_version = data_root[-5:-1] # 2019 or 2021 # train_dataloader train_dataloader = dict( _delete_=True, batch_size=1, num_workers=2, persistent_workers=True, sampler=dict(type='TrackImgSampler'), # image-based sampling batch_sampler=dict(type='TrackAspectRatioBatchSampler'), dataset=dict( type=dataset_type, data_root=data_root, dataset_version=dataset_version, ann_file='annotations/youtube_vis_2019_train.json', data_prefix=dict(img_path='train/JPEGImages'), pipeline=_base_.train_pipeline)) # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.00125, momentum=0.9, weight_decay=0.0001), clip_grad=dict(max_norm=35, norm_type=2)) # learning policy param_scheduler = [ dict( type='LinearLR', start_factor=1.0 / 3.0, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=12, by_epoch=True, milestones=[8, 11], gamma=0.1) ] # visualizer default_hooks = dict( visualization=dict(type='TrackVisualizationHook', draw=False)) vis_backends = [dict(type='LocalVisBackend')] visualizer = dict( type='TrackLocalVisualizer', vis_backends=vis_backends, name='visualizer') # runtime settings train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=12, val_begin=13) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop') # evaluator val_evaluator = dict( type='YouTubeVISMetric', metric='youtube_vis_ap', outfile_prefix='./youtube_vis_results', format_only=True) test_evaluator = val_evaluator del detector
_base_ = [ '../_base_/models/mask-rcnn_r50_fpn.py', '../_base_/datasets/youtube_vis.py', '../_base_/default_runtime.py' ] detector = _base_.model detector.pop('data_preprocessor') detector.roi_head.bbox_head.update(dict(num_classes=40)) detector.roi_head.mask_head.update(dict(num_classes=40)) detector.train_cfg.rpn.sampler.update(dict(num=64)) detector.train_cfg.rpn_proposal.update(dict(nms_pre=200, max_per_img=200)) detector.train_cfg.rcnn.sampler.update(dict(num=128)) detector.test_cfg.rpn.update(dict(nms_pre=200, max_per_img=200)) detector.test_cfg.rcnn.update(dict(score_thr=0.01)) detector['init_cfg'] = dict( type='Pretrained', checkpoint= # noqa: E251 'https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_fpn_1x_coco/mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth' # noqa: E501 ) del _base_.model model = dict( type='MaskTrackRCNN', data_preprocessor=dict( type='TrackDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, pad_mask=True, pad_size_divisor=32), detector=detector, track_head=dict( type='RoITrackHead', roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32]), embed_head=dict( type='RoIEmbedHead', num_fcs=2, roi_feat_size=7, in_channels=256, fc_out_channels=1024), train_cfg=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, match_low_quality=True, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=128, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), pos_weight=-1, debug=False)), tracker=dict( type='MaskTrackRCNNTracker', match_weights=dict(det_score=1.0, iou=2.0, det_label=10.0), num_frames_retain=20)) dataset_type = 'YouTubeVISDataset' data_root = 'data/youtube_vis_2019/' dataset_version = data_root[-5:-1] # 2019 or 2021 # train_dataloader train_dataloader = dict( _delete_=True, batch_size=4, num_workers=2, persistent_workers=True, sampler=dict(type='TrackImgSampler'), # image-based sampling batch_sampler=dict(type='TrackAspectRatioBatchSampler'), dataset=dict( type=dataset_type, data_root=data_root, dataset_version=dataset_version, ann_file='annotations/youtube_vis_2019_train.json', data_prefix=dict(img_path='train/JPEGImages'), pipeline=_base_.train_pipeline)) # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.005, momentum=0.9, weight_decay=0.0001), clip_grad=dict(max_norm=35, norm_type=2)) # learning policy param_scheduler = [ dict( type='LinearLR', start_factor=1.0 / 3.0, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=12, by_epoch=True, milestones=[8, 11], gamma=0.1) ] # visualizer default_hooks = dict( visualization=dict(type='TrackVisualizationHook', draw=False)) vis_backends = [dict(type='LocalVisBackend')] visualizer = dict( type='TrackLocalVisualizer', vis_backends=vis_backends, name='visualizer') # runtime settings train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=12, val_begin=13) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop') # evaluator val_evaluator = dict( type='YouTubeVISMetric', metric='youtube_vis_ap', outfile_prefix='./youtube_vis_results', format_only=True) test_evaluator = val_evaluator del detector
# Copyright (c) OpenMMLab. All rights reserved. import argparse import cv2 import mmcv from mmcv.transforms import Compose from mmengine.utils import track_iter_progress from mmdet.apis import inference_detector, init_detector from mmdet.registry import VISUALIZERS from mmdet.utils import register_all_modules def parse_args(): parser = argparse.ArgumentParser(description='MMDetection video demo') parser.add_argument('video', help='Video file') parser.add_argument('config', help='Config file') parser.add_argument('checkpoint', help='Checkpoint file') parser.add_argument( '--device', default='cuda:0', help='Device used for inference') parser.add_argument( '--score-thr', type=float, default=0.3, help='Bbox score threshold') parser.add_argument('--out', type=str, help='Output video file') parser.add_argument('--show', action='store_true', help='Show video') parser.add_argument( '--wait-time', type=float, default=1, help='The interval of show (s), 0 is block') args = parser.parse_args() return args def main(): args = parse_args() assert args.out or args.show, \ ('Please specify at least one operation (save/show the ' 'video) with the argument "--out" or "--show"') # register all modules in mmdet into the registries register_all_modules() # build the model from a config file and a checkpoint file model = init_detector(args.config, args.checkpoint, device=args.device) # build test pipeline model.cfg.test_dataloader.dataset.pipeline[0].type = 'LoadImageFromNDArray' test_pipeline = Compose(model.cfg.test_dataloader.dataset.pipeline) # init visualizer visualizer = VISUALIZERS.build(model.cfg.visualizer) # the dataset_meta is loaded from the checkpoint and # then pass to the model in init_detector visualizer.dataset_meta = model.dataset_meta video_reader = mmcv.VideoReader(args.video) video_writer = None if args.out: fourcc = cv2.VideoWriter_fourcc(*'mp4v') video_writer = cv2.VideoWriter( args.out, fourcc, video_reader.fps, (video_reader.width, video_reader.height)) for frame in track_iter_progress(video_reader): result = inference_detector(model, frame, test_pipeline=test_pipeline) visualizer.add_datasample( name='video', image=frame, pred_sample=result, show=False, pred_score_thr=args.score_thr) frame = visualizer.get_image() if args.show: cv2.namedWindow('video', 0) mmcv.imshow(frame, 'video', args.wait_time) if args.out: video_writer.write(frame) if video_writer: video_writer.release() cv2.destroyAllWindows() if __name__ == '__main__': main()
# Copyright (c) OpenMMLab. All rights reserved. import argparse import cv2 import mmcv from mmcv.transforms import Compose from mmdet.apis import inference_detector, init_detector from mmdet.registry import VISUALIZERS from mmdet.utils import register_all_modules def parse_args(): parser = argparse.ArgumentParser(description='MMDetection video demo') parser.add_argument('video', help='Video file') parser.add_argument('config', help='Config file') parser.add_argument('checkpoint', help='Checkpoint file') parser.add_argument( '--device', default='cuda:0', help='Device used for inference') parser.add_argument( '--score-thr', type=float, default=0.3, help='Bbox score threshold') parser.add_argument('--out', type=str, help='Output video file') parser.add_argument('--show', action='store_true', help='Show video') parser.add_argument( '--wait-time', type=float, default=1, help='The interval of show (s), 0 is block') args = parser.parse_args() return args def main(): args = parse_args() assert args.out or args.show, \ ('Please specify at least one operation (save/show the ' 'video) with the argument "--out" or "--show"') # register all modules in mmdet into the registries register_all_modules() # build the model from a config file and a checkpoint file model = init_detector(args.config, args.checkpoint, device=args.device) # build test pipeline model.cfg.test_dataloader.dataset.pipeline[0].type = 'LoadImageFromNDArray' test_pipeline = Compose(model.cfg.test_dataloader.dataset.pipeline) # init visualizer visualizer = VISUALIZERS.build(model.cfg.visualizer) # the dataset_meta is loaded from the checkpoint and # then pass to the model in init_detector visualizer.dataset_meta = model.dataset_meta video_reader = mmcv.VideoReader(args.video) video_writer = None if args.out: fourcc = cv2.VideoWriter_fourcc(*'mp4v') video_writer = cv2.VideoWriter( args.out, fourcc, video_reader.fps, (video_reader.width, video_reader.height)) for frame in mmcv.track_iter_progress(video_reader): result = inference_detector(model, frame, test_pipeline=test_pipeline) visualizer.add_datasample( name='video', image=frame, pred_sample=result, show=False, pred_score_thr=args.score_thr) frame = visualizer.get_image() if args.show: cv2.namedWindow('video', 0) mmcv.imshow(frame, 'video', args.wait_time) if args.out: video_writer.write(frame) if video_writer: video_writer.release() cv2.destroyAllWindows() if __name__ == '__main__': main()
__all__ = [ "Audio", "Array2D", "Array3D", "Array4D", "Array5D", "ClassLabel", "Features", "LargeList", "List", "Sequence", "Value", "Image", "Translation", "TranslationVariableLanguages", "Video", "Pdf", ] from .audio import Audio from .features import Array2D, Array3D, Array4D, Array5D, ClassLabel, Features, LargeList, List, Sequence, Value from .image import Image from .pdf import Pdf from .translation import Translation, TranslationVariableLanguages from .video import Video
__all__ = [ "Audio", "Array2D", "Array3D", "Array4D", "Array5D", "ClassLabel", "Features", "LargeList", "Sequence", "Value", "Image", "Translation", "TranslationVariableLanguages", "Video", "Pdf", ] from .audio import Audio from .features import Array2D, Array3D, Array4D, Array5D, ClassLabel, Features, LargeList, Sequence, Value from .image import Image from .pdf import Pdf from .translation import Translation, TranslationVariableLanguages from .video import Video
import os from pathlib import Path import pytest from jina import Flow from jina.excepts import RuntimeFailToStart from jina.orchestrate.deployments import Deployment from jina.parsers import set_deployment_parser from jina.serve.executors import BaseExecutor cur_dir = os.path.dirname(os.path.abspath(__file__)) def test_simple_use_abs_import_shall_fail(): with pytest.raises(ModuleNotFoundError): from .dummyhub_abs import DummyHubExecutorAbs DummyHubExecutorAbs() with pytest.raises(RuntimeFailToStart): with Flow().add(uses='DummyHubExecutorAbs'): pass def test_simple_use_relative_import(): from .dummyhub import DummyHubExecutor DummyHubExecutor() with Flow().add(uses='DummyHubExecutor'): pass def test_use_from_local_dir_exe_level(): with BaseExecutor.load_config('dummyhub/config.yml'): pass def test_use_from_local_dir_deployment_level(): a = set_deployment_parser().parse_args(['--uses', 'dummyhub/config.yml']) with Deployment(a): pass def test_use_from_local_dir_flow_level(): with Flow().add(uses='dummyhub/config.yml'): pass @pytest.fixture def local_hub_executor(tmpdir): from hubble.executor import HubExecutor, helper, hubapi pkg_path = Path(__file__).parent / 'dummyhub' stream_data = helper.archive_package(pkg_path) with open(tmpdir / 'dummy_test.zip', 'wb') as temp_zip_file: temp_zip_file.write(stream_data.getvalue()) hubapi.install_local( Path(tmpdir) / 'dummy_test.zip', HubExecutor(uuid='hello', tag='v0') ) @pytest.mark.parametrize('uses', ['jinahub://hello', 'jinaai://jina-ai/hello']) def test_use_from_local_hub_deployment_level( mocker, monkeypatch, local_hub_executor, uses ): from hubble.executor.hubio import HubExecutor, HubIO mock = mocker.Mock() def _mock_fetch( name, tag, image_required=True, rebuild_image=True, *, prefer_platform=None, secret=None, force=False, ): mock(name=name) return ( HubExecutor( uuid='hello', name='alias_dummy', tag='v0', image_name='jinahub/pod.dummy_mwu_encoder', md5sum=None, visibility=True, archive_url=None, ), False, ) monkeypatch.setattr(HubIO, 'fetch_meta', _mock_fetch) a = set_deployment_parser().parse_args(['--uses', uses]) with Deployment(a): pass @pytest.mark.parametrize('uses', ['jinahub://hello', 'jinaai://jina-ai/hello']) def test_use_from_local_hub_flow_level(mocker, monkeypatch, local_hub_executor, uses): from hubble.executor.hubio import HubExecutor, HubIO mock = mocker.Mock() def _mock_fetch( name, tag, image_required=True, rebuild_image=True, *, prefer_platform=None, secret=None, force=False, ): mock(name=name) return ( HubExecutor( uuid='hello', name='alias_dummy', tag='v0', image_name='jinahub/pod.dummy_mwu_encoder', md5sum=None, visibility=True, archive_url=None, ), False, ) monkeypatch.setattr(HubIO, 'fetch_meta', _mock_fetch) with Flow().add(uses=uses, install_requirements=True): pass
import os from pathlib import Path import pytest from jina import Flow from jina.excepts import RuntimeFailToStart from jina.orchestrate.deployments import Deployment from jina.parsers import set_deployment_parser from jina.serve.executors import BaseExecutor cur_dir = os.path.dirname(os.path.abspath(__file__)) def test_simple_use_abs_import_shall_fail(): with pytest.raises(ModuleNotFoundError): from .dummyhub_abs import DummyHubExecutorAbs DummyHubExecutorAbs() with pytest.raises(RuntimeFailToStart): with Flow().add(uses='DummyHubExecutorAbs'): pass def test_simple_use_relative_import(): from .dummyhub import DummyHubExecutor DummyHubExecutor() with Flow().add(uses='DummyHubExecutor'): pass def test_use_from_local_dir_exe_level(): with BaseExecutor.load_config('dummyhub/config.yml'): pass def test_use_from_local_dir_deployment_level(): a = set_deployment_parser().parse_args(['--uses', 'dummyhub/config.yml']) with Deployment(a): pass def test_use_from_local_dir_flow_level(): with Flow().add(uses='dummyhub/config.yml'): pass @pytest.fixture def local_hub_executor(tmpdir): from hubble.executor import HubExecutor, helper, hubapi pkg_path = Path(__file__).parent / 'dummyhub' stream_data = helper.archive_package(pkg_path) with open(tmpdir / 'dummy_test.zip', 'wb') as temp_zip_file: temp_zip_file.write(stream_data.getvalue()) hubapi.install_local( Path(tmpdir) / 'dummy_test.zip', HubExecutor(uuid='hello', tag='v0') ) @pytest.mark.parametrize('uses', ['jinahub://hello', 'jinaai://jina-ai/hello']) def test_use_from_local_hub_deployment_level( mocker, monkeypatch, local_hub_executor, uses ): from hubble.executor.hubio import HubExecutor, HubIO mock = mocker.Mock() def _mock_fetch( name, tag, image_required=True, rebuild_image=True, *, secret=None, force=False, ): mock(name=name) return ( HubExecutor( uuid='hello', name='alias_dummy', tag='v0', image_name='jinahub/pod.dummy_mwu_encoder', md5sum=None, visibility=True, archive_url=None, ), False, ) monkeypatch.setattr(HubIO, 'fetch_meta', _mock_fetch) a = set_deployment_parser().parse_args(['--uses', uses]) with Deployment(a): pass @pytest.mark.parametrize('uses', ['jinahub://hello', 'jinaai://jina-ai/hello']) def test_use_from_local_hub_flow_level(mocker, monkeypatch, local_hub_executor, uses): from hubble.executor.hubio import HubExecutor, HubIO mock = mocker.Mock() def _mock_fetch( name, tag, image_required=True, rebuild_image=True, *, secret=None, force=False, ): mock(name=name) return ( HubExecutor( uuid='hello', name='alias_dummy', tag='v0', image_name='jinahub/pod.dummy_mwu_encoder', md5sum=None, visibility=True, archive_url=None, ), False, ) monkeypatch.setattr(HubIO, 'fetch_meta', _mock_fetch) with Flow().add(uses=uses, install_requirements=True): pass
from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class GeneratorDatasetInputStream(AbstractDatasetInputStream): def __init__( self, generator: Callable, features: Optional[Features] = None, cache_dir: str = None, keep_in_memory: bool = False, streaming: bool = False, gen_kwargs: Optional[dict] = None, num_proc: Optional[int] = None, **kwargs, ): super().__init__( features=features, cache_dir=cache_dir, keep_in_memory=keep_in_memory, streaming=streaming, num_proc=num_proc, **kwargs, ) self.builder = Generator( cache_dir=cache_dir, features=features, generator=generator, gen_kwargs=gen_kwargs, **kwargs, ) def read(self): # Build iterable dataset if self.streaming: dataset = self.builder.as_streaming_dataset(split="train") # Build regular (map-style) dataset else: download_config = None download_mode = None ignore_verifications = False base_path = None self.builder.download_and_prepare( download_config=download_config, download_mode=download_mode, ignore_verifications=ignore_verifications, # try_from_hf_gcs=try_from_hf_gcs, base_path=base_path, num_proc=self.num_proc, ) dataset = self.builder.as_dataset( split="train", ignore_verifications=ignore_verifications, in_memory=self.keep_in_memory ) return dataset
from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class GeneratorDatasetInputStream(AbstractDatasetInputStream): def __init__( self, generator: Callable, features: Optional[Features] = None, cache_dir: str = None, keep_in_memory: bool = False, streaming: bool = False, gen_kwargs: Optional[dict] = None, num_proc: Optional[int] = None, **kwargs, ): super().__init__( features=features, cache_dir=cache_dir, keep_in_memory=keep_in_memory, streaming=streaming, num_proc=num_proc, **kwargs, ) self.builder = Generator( cache_dir=cache_dir, features=features, generator=generator, gen_kwargs=gen_kwargs, **kwargs, ) def read(self): # Build iterable dataset if self.streaming: dataset = self.builder.as_streaming_dataset(split="train") # Build regular (map-style) dataset else: download_config = None download_mode = None ignore_verifications = False use_auth_token = None base_path = None self.builder.download_and_prepare( download_config=download_config, download_mode=download_mode, ignore_verifications=ignore_verifications, # try_from_hf_gcs=try_from_hf_gcs, base_path=base_path, use_auth_token=use_auth_token, num_proc=self.num_proc, ) dataset = self.builder.as_dataset( split="train", ignore_verifications=ignore_verifications, in_memory=self.keep_in_memory ) return dataset
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) def _ignore_google_warnings(): import warnings warnings.filterwarnings( 'ignore', category=DeprecationWarning, message='Deprecated call to `pkg_resources.declare_namespace(\'google\')`.', append=True, ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning, append=True) _ignore_google_warnings() # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method try: _set_start_method('fork') _warnings.warn(f'multiprocessing start method is set to `fork`') except Exception as e: _warnings.warn(f'failed to set multiprocessing start_method to `fork`: {e!r}') # do not change this line manually this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.30.0' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.27' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) def _ignore_google_warnings(): import warnings warnings.filterwarnings( 'ignore', category=DeprecationWarning, message='Deprecated call to `pkg_resources.declare_namespace(\'google\')`.', append=True, ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning, append=True) _ignore_google_warnings() # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method try: _set_start_method('fork') _warnings.warn(f'multiprocessing start method is set to `fork`') except Exception as e: _warnings.warn(f'failed to set multiprocessing start_method to `fork`: {e!r}') # do not change this line manually this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.29.0' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.27' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
import pytest import test_models as TM import torch from common_utils import cpu_and_cuda, set_rng_seed from torchvision.prototype import models @pytest.mark.parametrize("model_fn", (models.depth.stereo.raft_stereo_base,)) @pytest.mark.parametrize("model_mode", ("standard", "scripted")) @pytest.mark.parametrize("dev", cpu_and_cuda()) def test_raft_stereo(model_fn, model_mode, dev): # A simple test to make sure the model can do forward pass and jit scriptable set_rng_seed(0) # Use corr_pyramid and corr_block with smaller num_levels and radius to prevent nan output # get the idea from test_models.test_raft corr_pyramid = models.depth.stereo.raft_stereo.CorrPyramid1d(num_levels=2) corr_block = models.depth.stereo.raft_stereo.CorrBlock1d(num_levels=2, radius=2) model = model_fn(corr_pyramid=corr_pyramid, corr_block=corr_block).eval().to(dev) if model_mode == "scripted": model = torch.jit.script(model) img1 = torch.rand(1, 3, 64, 64).to(dev) img2 = torch.rand(1, 3, 64, 64).to(dev) num_iters = 3 preds = model(img1, img2, num_iters=num_iters) depth_pred = preds[-1] assert len(preds) == num_iters, "Number of predictions should be the same as model.num_iters" assert depth_pred.shape == torch.Size( [1, 1, 64, 64] ), f"The output shape of depth_pred should be [1, 1, 64, 64] but instead it is {preds[0].shape}" # Test against expected file output TM._assert_expected(depth_pred, name=model_fn.__name__, atol=1e-2, rtol=1e-2) @pytest.mark.parametrize("model_fn", (models.depth.stereo.crestereo_base,)) @pytest.mark.parametrize("model_mode", ("standard", "scripted")) @pytest.mark.parametrize("dev", cpu_and_cuda()) def test_crestereo(model_fn, model_mode, dev): set_rng_seed(0) model = model_fn().eval().to(dev) if model_mode == "scripted": model = torch.jit.script(model) img1 = torch.rand(1, 3, 64, 64).to(dev) img2 = torch.rand(1, 3, 64, 64).to(dev) iterations = 3 preds = model(img1, img2, flow_init=None, num_iters=iterations) disparity_pred = preds[-1] # all the pyramid levels except the highest res make only half the number of iterations expected_iterations = (iterations // 2) * (len(model.resolutions) - 1) expected_iterations += iterations assert ( len(preds) == expected_iterations ), "Number of predictions should be the number of iterations multiplied by the number of pyramid levels" assert disparity_pred.shape == torch.Size( [1, 2, 64, 64] ), f"Predicted disparity should have the same spatial shape as the input. Inputs shape {img1.shape[2:]}, Prediction shape {disparity_pred.shape[2:]}" assert all( d.shape == torch.Size([1, 2, 64, 64]) for d in preds ), "All predicted disparities are expected to have the same shape" # test a backward pass with a dummy loss as well preds = torch.stack(preds, dim=0) targets = torch.ones_like(preds, requires_grad=False) loss = torch.nn.functional.mse_loss(preds, targets) try: loss.backward() except Exception as e: assert False, f"Backward pass failed with an unexpected exception: {e.__class__.__name__} {e}" TM._assert_expected(disparity_pred, name=model_fn.__name__, atol=1e-2, rtol=1e-2)
import pytest import test_models as TM import torch from common_utils import cpu_and_gpu, set_rng_seed from torchvision.prototype import models @pytest.mark.parametrize("model_fn", (models.depth.stereo.raft_stereo_base,)) @pytest.mark.parametrize("model_mode", ("standard", "scripted")) @pytest.mark.parametrize("dev", cpu_and_gpu()) def test_raft_stereo(model_fn, model_mode, dev): # A simple test to make sure the model can do forward pass and jit scriptable set_rng_seed(0) # Use corr_pyramid and corr_block with smaller num_levels and radius to prevent nan output # get the idea from test_models.test_raft corr_pyramid = models.depth.stereo.raft_stereo.CorrPyramid1d(num_levels=2) corr_block = models.depth.stereo.raft_stereo.CorrBlock1d(num_levels=2, radius=2) model = model_fn(corr_pyramid=corr_pyramid, corr_block=corr_block).eval().to(dev) if model_mode == "scripted": model = torch.jit.script(model) img1 = torch.rand(1, 3, 64, 64).to(dev) img2 = torch.rand(1, 3, 64, 64).to(dev) num_iters = 3 preds = model(img1, img2, num_iters=num_iters) depth_pred = preds[-1] assert len(preds) == num_iters, "Number of predictions should be the same as model.num_iters" assert depth_pred.shape == torch.Size( [1, 1, 64, 64] ), f"The output shape of depth_pred should be [1, 1, 64, 64] but instead it is {preds[0].shape}" # Test against expected file output TM._assert_expected(depth_pred, name=model_fn.__name__, atol=1e-2, rtol=1e-2) @pytest.mark.parametrize("model_fn", (models.depth.stereo.crestereo_base,)) @pytest.mark.parametrize("model_mode", ("standard", "scripted")) @pytest.mark.parametrize("dev", cpu_and_gpu()) def test_crestereo(model_fn, model_mode, dev): set_rng_seed(0) model = model_fn().eval().to(dev) if model_mode == "scripted": model = torch.jit.script(model) img1 = torch.rand(1, 3, 64, 64).to(dev) img2 = torch.rand(1, 3, 64, 64).to(dev) iterations = 3 preds = model(img1, img2, flow_init=None, num_iters=iterations) disparity_pred = preds[-1] # all the pyramid levels except the highest res make only half the number of iterations expected_iterations = (iterations // 2) * (len(model.resolutions) - 1) expected_iterations += iterations assert ( len(preds) == expected_iterations ), "Number of predictions should be the number of iterations multiplied by the number of pyramid levels" assert disparity_pred.shape == torch.Size( [1, 2, 64, 64] ), f"Predicted disparity should have the same spatial shape as the input. Inputs shape {img1.shape[2:]}, Prediction shape {disparity_pred.shape[2:]}" assert all( d.shape == torch.Size([1, 2, 64, 64]) for d in preds ), "All predicted disparities are expected to have the same shape" # test a backward pass with a dummy loss as well preds = torch.stack(preds, dim=0) targets = torch.ones_like(preds, requires_grad=False) loss = torch.nn.functional.mse_loss(preds, targets) try: loss.backward() except Exception as e: assert False, f"Backward pass failed with an unexpected exception: {e.__class__.__name__} {e}" TM._assert_expected(disparity_pred, name=model_fn.__name__, atol=1e-2, rtol=1e-2)
import logging from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseTranslationEvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model, not mutilingual but hope to see some on the hub soon model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # Load a parallel sentences dataset dataset = load_dataset("sentence-transformers/parallel-sentences-news-commentary", "en-nl", split="train[:1000]") # Initialize the TranslationEvaluator using the same texts from two languages translation_evaluator = SparseTranslationEvaluator( source_sentences=dataset["english"], target_sentences=dataset["non_english"], name="news-commentary-en-nl", ) results = translation_evaluator(model) """ Evaluating translation matching Accuracy of the model on the news-commentary-en-nl dataset: Accuracy src2trg: 41.40 Accuracy trg2src: 47.70 Model Sparsity: Active Dimensions: 113.6, Sparsity Ratio: 0.9963 """ # Print the results print(f"Primary metric: {translation_evaluator.primary_metric}") # => Primary metric: news-commentary-en-nl_mean_accuracy print(f"Primary metric value: {results[translation_evaluator.primary_metric]:.4f}") # => Primary metric value: 0.4455
import logging from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.evaluation import SparseTranslationEvaluator logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model, not mutilingual but hope to see some on the hub soon model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # Load a parallel sentences dataset dataset = load_dataset("sentence-transformers/parallel-sentences-news-commentary", "en-nl", split="train[:1000]") # Initialize the TranslationEvaluator using the same texts from two languages translation_evaluator = SparseTranslationEvaluator( source_sentences=dataset["english"], target_sentences=dataset["non_english"], name="news-commentary-en-nl", ) results = translation_evaluator(model) """ Evaluating translation matching Accuracy of the model on the news-commentary-en-nl dataset: Accuracy src2trg: 41.40 Accuracy trg2src: 47.70 Model Sparsity Stats: Row Non-Zero Mean: 113.6150016784668, Row Sparsity Mean: 0.9962776005268097 """ # Print the results print(f"Primary metric: {translation_evaluator.primary_metric}") # => Primary metric: news-commentary-en-nl_mean_accuracy print(f"Primary metric value: {results[translation_evaluator.primary_metric]:.4f}") # => Primary metric value: 0.4455
"""All minimum dependencies for scikit-learn.""" # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import argparse from collections import defaultdict # scipy and cython should by in sync with pyproject.toml NUMPY_MIN_VERSION = "1.19.5" SCIPY_MIN_VERSION = "1.6.0" JOBLIB_MIN_VERSION = "1.2.0" THREADPOOLCTL_MIN_VERSION = "3.1.0" PYTEST_MIN_VERSION = "7.1.2" CYTHON_MIN_VERSION = "3.0.10" # 'build' and 'install' is included to have structured metadata for CI. # It will NOT be included in setup's extras_require # The values are (version_spec, comma separated tags) dependent_packages = { "numpy": (NUMPY_MIN_VERSION, "build, install"), "scipy": (SCIPY_MIN_VERSION, "build, install"), "joblib": (JOBLIB_MIN_VERSION, "install"), "threadpoolctl": (THREADPOOLCTL_MIN_VERSION, "install"), "cython": (CYTHON_MIN_VERSION, "build"), "meson-python": ("0.16.0", "build"), "matplotlib": ("3.3.4", "benchmark, docs, examples, tests"), "scikit-image": ("0.17.2", "docs, examples, tests"), "pandas": ("1.1.5", "benchmark, docs, examples, tests"), "seaborn": ("0.9.0", "docs, examples"), "memory_profiler": ("0.57.0", "benchmark, docs"), "pytest": (PYTEST_MIN_VERSION, "tests"), "pytest-cov": ("2.9.0", "tests"), "ruff": ("0.5.1", "tests"), "black": ("24.3.0", "tests"), "mypy": ("1.9", "tests"), "pyamg": ("4.0.0", "tests"), "polars": ("0.20.30", "docs, tests"), "pyarrow": ("12.0.0", "tests"), "sphinx": ("7.3.7", "docs"), "sphinx-copybutton": ("0.5.2", "docs"), "sphinx-gallery": ("0.17.1", "docs"), "numpydoc": ("1.2.0", "docs, tests"), "Pillow": ("7.1.2", "docs"), "pooch": ("1.6.0", "docs, examples, tests"), "sphinx-prompt": ("1.4.0", "docs"), "sphinxext-opengraph": ("0.9.1", "docs"), "plotly": ("5.14.0", "docs, examples"), "sphinxcontrib-sass": ("0.3.4", "docs"), "sphinx-remove-toctrees": ("1.0.0.post1", "docs"), "sphinx-design": ("0.6.0", "docs"), "pydata-sphinx-theme": ("0.15.3", "docs"), "towncrier": ("24.8.0", "docs"), # XXX: Pin conda-lock to the latest released version (needs manual update # from time to time) "conda-lock": ("2.5.6", "maintenance"), } # create inverse mapping for setuptools tag_to_packages: dict = defaultdict(list) for package, (min_version, extras) in dependent_packages.items(): for extra in extras.split(", "): tag_to_packages[extra].append("{}>={}".format(package, min_version)) # Used by CI to get the min dependencies if __name__ == "__main__": parser = argparse.ArgumentParser(description="Get min dependencies for a package") parser.add_argument("package", choices=dependent_packages) args = parser.parse_args() min_version = dependent_packages[args.package][0] print(min_version)
"""All minimum dependencies for scikit-learn.""" # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import argparse from collections import defaultdict # scipy and cython should by in sync with pyproject.toml NUMPY_MIN_VERSION = "1.19.5" SCIPY_MIN_VERSION = "1.6.0" JOBLIB_MIN_VERSION = "1.2.0" THREADPOOLCTL_MIN_VERSION = "3.1.0" PYTEST_MIN_VERSION = "7.1.2" CYTHON_MIN_VERSION = "3.0.10" # 'build' and 'install' is included to have structured metadata for CI. # It will NOT be included in setup's extras_require # The values are (version_spec, comma separated tags) dependent_packages = { "numpy": (NUMPY_MIN_VERSION, "build, install"), "scipy": (SCIPY_MIN_VERSION, "build, install"), "joblib": (JOBLIB_MIN_VERSION, "install"), "threadpoolctl": (THREADPOOLCTL_MIN_VERSION, "install"), "cython": (CYTHON_MIN_VERSION, "build"), "meson-python": ("0.16.0", "build"), "matplotlib": ("3.3.4", "benchmark, docs, examples, tests"), "scikit-image": ("0.17.2", "docs, examples, tests"), "pandas": ("1.1.5", "benchmark, docs, examples, tests"), "seaborn": ("0.9.0", "docs, examples"), "memory_profiler": ("0.57.0", "benchmark, docs"), "pytest": (PYTEST_MIN_VERSION, "tests"), "pytest-cov": ("2.9.0", "tests"), "ruff": ("0.5.1", "tests"), "black": ("24.3.0", "tests"), "mypy": ("1.9", "tests"), "pyamg": ("4.0.0", "tests"), "polars": ("0.20.30", "docs, tests"), "pyarrow": ("12.0.0", "tests"), "sphinx": ("7.3.7", "docs"), "sphinx-copybutton": ("0.5.2", "docs"), "sphinx-gallery": ("0.17.1", "docs"), "numpydoc": ("1.2.0", "docs, tests"), "Pillow": ("7.1.2", "docs"), "pooch": ("1.6.0", "docs, examples, tests"), "sphinx-prompt": ("1.4.0", "docs"), "sphinxext-opengraph": ("0.9.1", "docs"), "plotly": ("5.14.0", "docs, examples"), "sphinxcontrib-sass": ("0.3.4", "docs"), "sphinx-remove-toctrees": ("1.0.0.post1", "docs"), "sphinx-design": ("0.6.0", "docs"), "pydata-sphinx-theme": ("0.15.3", "docs"), # XXX: Pin conda-lock to the latest released version (needs manual update # from time to time) "conda-lock": ("2.5.6", "maintenance"), } # create inverse mapping for setuptools tag_to_packages: dict = defaultdict(list) for package, (min_version, extras) in dependent_packages.items(): for extra in extras.split(", "): tag_to_packages[extra].append("{}>={}".format(package, min_version)) # Used by CI to get the min dependencies if __name__ == "__main__": parser = argparse.ArgumentParser(description="Get min dependencies for a package") parser.add_argument("package", choices=dependent_packages) args = parser.parse_args() min_version = dependent_packages[args.package][0] print(min_version)
_base_ = './solo_r50_fpn_1x_coco.py' train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='RandomChoiceResize', scales=[(1333, 800), (1333, 768), (1333, 736), (1333, 704), (1333, 672), (1333, 640)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) # training schedule for 3x max_epochs = 36 train_cfg = dict(by_epoch=True, max_epochs=max_epochs) # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=1.0 / 3, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=36, by_epoch=True, milestones=[27, 33], gamma=0.1) ]
_base_ = './solo_r50_fpn_1x_coco.py' train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( # TODO: Update after mmcv.RandomChoiceResize finish refactor type='RandomChoiceResize', scales=[(1333, 800), (1333, 768), (1333, 736), (1333, 704), (1333, 672), (1333, 640)], resize_cfg=dict(type='Resize', keep_ratio=True)), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) # training schedule for 3x max_epochs = 36 train_cfg = dict(by_epoch=True, max_epochs=max_epochs) # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=1.0 / 3, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=36, by_epoch=True, milestones=[27, 33], gamma=0.1) ]
# Copyright (c) OpenMMLab. All rights reserved. import torch from mmdet.registry import TASK_UTILS from mmdet.structures.bbox import bbox_overlaps, get_box_tensor def cast_tensor_type(x, scale=1., dtype=None): if dtype == 'fp16': # scale is for preventing overflows x = (x / scale).half() return x @TASK_UTILS.register_module() class BboxOverlaps2D: """2D Overlaps (e.g. IoUs, GIoUs) Calculator.""" def __init__(self, scale=1., dtype=None): self.scale = scale self.dtype = dtype def __call__(self, bboxes1, bboxes2, mode='iou', is_aligned=False): """Calculate IoU between 2D bboxes. Args: bboxes1 (Tensor or :obj:`BaseBoxes`): bboxes have shape (m, 4) in <x1, y1, x2, y2> format, or shape (m, 5) in <x1, y1, x2, y2, score> format. bboxes2 (Tensor or :obj:`BaseBoxes`): bboxes have shape (m, 4) in <x1, y1, x2, y2> format, shape (m, 5) in <x1, y1, x2, y2, score> format, or be empty. If ``is_aligned `` is ``True``, then m and n must be equal. mode (str): "iou" (intersection over union), "iof" (intersection over foreground), or "giou" (generalized intersection over union). is_aligned (bool, optional): If True, then m and n must be equal. Default False. Returns: Tensor: shape (m, n) if ``is_aligned `` is False else shape (m,) """ bboxes1 = get_box_tensor(bboxes1) bboxes2 = get_box_tensor(bboxes2) assert bboxes1.size(-1) in [0, 4, 5] assert bboxes2.size(-1) in [0, 4, 5] if bboxes2.size(-1) == 5: bboxes2 = bboxes2[..., :4] if bboxes1.size(-1) == 5: bboxes1 = bboxes1[..., :4] if self.dtype == 'fp16': # change tensor type to save cpu and cuda memory and keep speed bboxes1 = cast_tensor_type(bboxes1, self.scale, self.dtype) bboxes2 = cast_tensor_type(bboxes2, self.scale, self.dtype) overlaps = bbox_overlaps(bboxes1, bboxes2, mode, is_aligned) if not overlaps.is_cuda and overlaps.dtype == torch.float16: # resume cpu float32 overlaps = overlaps.float() return overlaps return bbox_overlaps(bboxes1, bboxes2, mode, is_aligned) def __repr__(self): """str: a string describing the module""" repr_str = self.__class__.__name__ + f'(' \ f'scale={self.scale}, dtype={self.dtype})' return repr_str @TASK_UTILS.register_module() class BboxOverlaps2D_GLIP(BboxOverlaps2D): def __call__(self, bboxes1, bboxes2, mode='iou', is_aligned=False): TO_REMOVE = 1 area1 = (bboxes1[:, 2] - bboxes1[:, 0] + TO_REMOVE) * ( bboxes1[:, 3] - bboxes1[:, 1] + TO_REMOVE) area2 = (bboxes2[:, 2] - bboxes2[:, 0] + TO_REMOVE) * ( bboxes2[:, 3] - bboxes2[:, 1] + TO_REMOVE) lt = torch.max(bboxes1[:, None, :2], bboxes2[:, :2]) # [N,M,2] rb = torch.min(bboxes1[:, None, 2:], bboxes2[:, 2:]) # [N,M,2] wh = (rb - lt + TO_REMOVE).clamp(min=0) # [N,M,2] inter = wh[:, :, 0] * wh[:, :, 1] # [N,M] iou = inter / (area1[:, None] + area2 - inter) return iou
# Copyright (c) OpenMMLab. All rights reserved. import torch from mmdet.registry import TASK_UTILS from mmdet.structures.bbox import bbox_overlaps, get_box_tensor def cast_tensor_type(x, scale=1., dtype=None): if dtype == 'fp16': # scale is for preventing overflows x = (x / scale).half() return x @TASK_UTILS.register_module() class BboxOverlaps2D: """2D Overlaps (e.g. IoUs, GIoUs) Calculator.""" def __init__(self, scale=1., dtype=None): self.scale = scale self.dtype = dtype def __call__(self, bboxes1, bboxes2, mode='iou', is_aligned=False): """Calculate IoU between 2D bboxes. Args: bboxes1 (Tensor or :obj:`BaseBoxes`): bboxes have shape (m, 4) in <x1, y1, x2, y2> format, or shape (m, 5) in <x1, y1, x2, y2, score> format. bboxes2 (Tensor or :obj:`BaseBoxes`): bboxes have shape (m, 4) in <x1, y1, x2, y2> format, shape (m, 5) in <x1, y1, x2, y2, score> format, or be empty. If ``is_aligned `` is ``True``, then m and n must be equal. mode (str): "iou" (intersection over union), "iof" (intersection over foreground), or "giou" (generalized intersection over union). is_aligned (bool, optional): If True, then m and n must be equal. Default False. Returns: Tensor: shape (m, n) if ``is_aligned `` is False else shape (m,) """ bboxes1 = get_box_tensor(bboxes1) bboxes2 = get_box_tensor(bboxes2) assert bboxes1.size(-1) in [0, 4, 5] assert bboxes2.size(-1) in [0, 4, 5] if bboxes2.size(-1) == 5: bboxes2 = bboxes2[..., :4] if bboxes1.size(-1) == 5: bboxes1 = bboxes1[..., :4] if self.dtype == 'fp16': # change tensor type to save cpu and cuda memory and keep speed bboxes1 = cast_tensor_type(bboxes1, self.scale, self.dtype) bboxes2 = cast_tensor_type(bboxes2, self.scale, self.dtype) overlaps = bbox_overlaps(bboxes1, bboxes2, mode, is_aligned) if not overlaps.is_cuda and overlaps.dtype == torch.float16: # resume cpu float32 overlaps = overlaps.float() return overlaps return bbox_overlaps(bboxes1, bboxes2, mode, is_aligned) def __repr__(self): """str: a string describing the module""" repr_str = self.__class__.__name__ + f'(' \ f'scale={self.scale}, dtype={self.dtype})' return repr_str
_base_ = [ '../_base_/models/mask-rcnn_r50_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] vis_backends = [dict(type='LocalVisBackend'), dict(type='WandBVisBackend')] visualizer = dict(vis_backends=vis_backends) # MMEngine support the following two ways, users can choose # according to convenience # default_hooks = dict(checkpoint=dict(interval=4)) _base_.default_hooks.checkpoint.interval = 4 # train_cfg = dict(val_interval=2) _base_.train_cfg.val_interval = 2
# TODO: Awaiting refactoring _base_ = [ '../_base_/models/mask-rcnn_r50_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] # Set evaluation interval evaluation = dict(interval=2) # Set checkpoint interval checkpoint_config = dict(interval=4) # yapf:disable log_config = dict( interval=50, hooks=[ dict(type='TextLoggerHook'), dict(type='MMDetWandbHook', init_kwargs={ 'project': 'mmdetection', 'group': 'maskrcnn-r50-fpn-1x-coco' }, interval=50, log_checkpoint=True, log_checkpoint_metadata=True, num_eval_images=100) ])
import json from jina.logging.logger import JinaLogger from jina.parsers import set_gateway_parser from jina.serve.runtimes.gateway.http.app import get_fastapi_app JINA_LOGO_URL = 'https://api.jina.ai/logo/logo-product/jina-core/horizontal-layout/colored/Product%20logo_Core_vertical_colorful%402x-margin.png' GATEWAY_SCHEMA_FILENAME = 'gateway.json' args = set_gateway_parser().parse_args([]) logger = JinaLogger('') gateway_app = get_fastapi_app( args, logger=logger, ) gateway_schema = gateway_app.openapi() gateway_schema['info']['x-logo'] = {'url': JINA_LOGO_URL} gateway_schema['servers'] = [] gateway_schema['servers'].append( {'url': f'http://localhost:{args.port}', 'description': 'Local Jina gateway'} ) with open(GATEWAY_SCHEMA_FILENAME, 'w') as f: json.dump(gateway_schema, f)
import json from jina.logging.logger import JinaLogger from jina.parsers import set_gateway_parser from jina.serve.networking import GrpcConnectionPool from jina.serve.runtimes.gateway.graph.topology_graph import TopologyGraph from jina.serve.runtimes.gateway.http.app import get_fastapi_app JINA_LOGO_URL = 'https://api.jina.ai/logo/logo-product/jina-core/horizontal-layout/colored/Product%20logo_Core_vertical_colorful%402x-margin.png' GATEWAY_SCHEMA_FILENAME = 'gateway.json' args = set_gateway_parser().parse_args([]) logger = JinaLogger('') gateway_app = get_fastapi_app( args, topology_graph=TopologyGraph({}), connection_pool=GrpcConnectionPool(logger=logger), logger=logger, ) gateway_schema = gateway_app.openapi() gateway_schema['info']['x-logo'] = {'url': JINA_LOGO_URL} gateway_schema['servers'] = [] gateway_schema['servers'].append( {'url': f'http://localhost:{args.port}', 'description': 'Local Jina gateway'} ) with open(GATEWAY_SCHEMA_FILENAME, 'w') as f: json.dump(gateway_schema, f)
# Copyright (c) OpenMMLab. All rights reserved. from .dist_utils import (DistOptimizerHook, all_reduce_dict, allreduce_grads, reduce_mean, sync_random_seed) from .misc import (center_of_mass, filter_scores_and_topk, flip_tensor, generate_coordinate, mask2ndarray, multi_apply, select_single_mlvl, stack_batch, unmap) from .typing import (ConfigType, InstanceList, MultiConfig, OptConfigType, OptInstanceList, OptMultiConfig, OptSampleList, SampleList) __all__ = [ 'allreduce_grads', 'DistOptimizerHook', 'reduce_mean', 'multi_apply', 'unmap', 'mask2ndarray', 'flip_tensor', 'all_reduce_dict', 'center_of_mass', 'generate_coordinate', 'select_single_mlvl', 'filter_scores_and_topk', 'sync_random_seed', 'stack_batch', 'ConfigType', 'OptConfigType', 'MultiConfig', 'OptMultiConfig', 'InstanceList', 'OptInstanceList', 'SampleList', 'OptSampleList' ]
# Copyright (c) OpenMMLab. All rights reserved. from .dist_utils import (DistOptimizerHook, all_reduce_dict, allreduce_grads, reduce_mean, sync_random_seed) from .misc import (center_of_mass, filter_scores_and_topk, flip_tensor, generate_coordinate, mask2ndarray, multi_apply, select_single_mlvl, stack_batch, unmap) __all__ = [ 'allreduce_grads', 'DistOptimizerHook', 'reduce_mean', 'multi_apply', 'unmap', 'mask2ndarray', 'flip_tensor', 'all_reduce_dict', 'center_of_mass', 'generate_coordinate', 'select_single_mlvl', 'filter_scores_and_topk', 'stack_batch' ]
from __future__ import annotations import logging from typing import Union from langchain_core.agents import AgentAction, AgentFinish from langchain_core.exceptions import OutputParserException from langchain_core.utils.json import parse_json_markdown from langchain.agents.agent import AgentOutputParser logger = logging.getLogger(__name__) class JSONAgentOutputParser(AgentOutputParser): """Parses tool invocations and final answers in JSON format. Expects output to be in one of two formats. If the output signals that an action should be taken, should be in the below format. This will result in an AgentAction being returned. ``` { "action": "search", "action_input": "2+2" } ``` If the output signals that a final answer should be given, should be in the below format. This will result in an AgentFinish being returned. ``` { "action": "Final Answer", "action_input": "4" } ``` """ def parse(self, text: str) -> Union[AgentAction, AgentFinish]: try: response = parse_json_markdown(text) if isinstance(response, list): # gpt turbo frequently ignores the directive to emit a single action logger.warning("Got multiple action responses: %s", response) response = response[0] if response["action"] == "Final Answer": return AgentFinish({"output": response["action_input"]}, text) action_input = response.get("action_input", {}) if action_input is None: action_input = {} return AgentAction(response["action"], action_input, text) except Exception as e: msg = f"Could not parse LLM output: {text}" raise OutputParserException(msg) from e @property def _type(self) -> str: return "json-agent"
from __future__ import annotations import logging from typing import Union from langchain_core.agents import AgentAction, AgentFinish from langchain_core.exceptions import OutputParserException from langchain_core.utils.json import parse_json_markdown from langchain.agents.agent import AgentOutputParser logger = logging.getLogger(__name__) class JSONAgentOutputParser(AgentOutputParser): """Parses tool invocations and final answers in JSON format. Expects output to be in one of two formats. If the output signals that an action should be taken, should be in the below format. This will result in an AgentAction being returned. ``` { "action": "search", "action_input": "2+2" } ``` If the output signals that a final answer should be given, should be in the below format. This will result in an AgentFinish being returned. ``` { "action": "Final Answer", "action_input": "4" } ``` """ def parse(self, text: str) -> Union[AgentAction, AgentFinish]: try: response = parse_json_markdown(text) if isinstance(response, list): # gpt turbo frequently ignores the directive to emit a single action logger.warning("Got multiple action responses: %s", response) response = response[0] if response["action"] == "Final Answer": return AgentFinish({"output": response["action_input"]}, text) else: action_input = response.get("action_input", {}) if action_input is None: action_input = {} return AgentAction(response["action"], action_input, text) except Exception as e: msg = f"Could not parse LLM output: {text}" raise OutputParserException(msg) from e @property def _type(self) -> str: return "json-agent"
from sentence_transformers import models from sentence_transformers.sparse_encoder import SparseEncoder from sentence_transformers.sparse_encoder.models import IDF, MLMTransformer, SpladePooling print("# ------------------------------------------example with v2 distill-----------------------------------------") doc_encoder = MLMTransformer("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill") asym = models.Asym( { "query": [ IDF.from_json( "opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill", tokenizer=doc_encoder.tokenizer, frozen=True, ), ], "doc": [ doc_encoder, SpladePooling("max"), ], } ) model = SparseEncoder( modules=[asym], similarity_fn_name="dot", ) query = "What's the weather in ny now?" document = "Currently New York is rainy." query_embed = model.encode([{"query": query}]) document_embed = model.encode([{"doc": document}]) sim = model.similarity(query_embed, document_embed) print(f"Similarity: {sim}") # Visualize top tokens for each text top_k = 3 print(f"\nTop tokens {top_k} for each text:") decoded_query = model.decode(query_embed[0], top_k=top_k) decoded_document = model.decode(document_embed[0]) for i in range(top_k): query_token, query_score = decoded_query[i] doc_score = next((score for token, score in decoded_document if token == query_token), 0) if doc_score != 0: print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}") """ # ------------------------------------------example with v2 distill----------------------------------------- Similarity: tensor([[17.5307]], device='cuda:0') Top tokens 3 for each text: Token: ny, Query score: 5.7729, Document score: 1.4109 Token: weather, Query score: 4.5684, Document score: 1.4673 Token: now, Query score: 3.5895, Document score: 0.7473 """ print("# -----------------------------------------example with v3 distill-----------------------------------------") doc_encoder = MLMTransformer("opensearch-project/opensearch-neural-sparse-encoding-doc-v3-distill") asym = models.Asym( { "query": [ IDF.from_json( "opensearch-project/opensearch-neural-sparse-encoding-doc-v3-distill", tokenizer=doc_encoder.tokenizer, frozen=True, ), ], "doc": [ doc_encoder, SpladePooling(pooling_strategy="max", activation_function="log1p_relu"), ], } ) model = SparseEncoder( modules=[asym], similarity_fn_name="dot", ) query = "What's the weather in ny now?" document = "Currently New York is rainy." query_embed = model.encode([{"query": query}]) document_embed = model.encode([{"doc": document}]) sim = model.similarity(query_embed, document_embed) print(f"Similarity: {sim}") # Visualize top tokens for each text top_k = 10 print(f"\nTop tokens {top_k} for each text:") decoded_query = model.decode(query_embed[0], top_k=top_k) decoded_document = model.decode(document_embed[0]) for i in range(min(top_k, len(decoded_query))): query_token, query_score = decoded_query[i] doc_score = next((score for token, score in decoded_document if token == query_token), 0) if doc_score != 0: print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}") """ # -----------------------------------------example with v3 distill----------------------------------------- Similarity: tensor([[11.1105]], device='cuda:0') Top tokens 10 for each text: Token: ny, Query score: 5.7729, Document score: 0.8049 Token: weather, Query score: 4.5684, Document score: 0.9710 Token: now, Query score: 3.5895, Document score: 0.4720 Token: ?, Query score: 3.3313, Document score: 0.0286 Token: what, Query score: 2.7699, Document score: 0.0787 Token: in, Query score: 0.4989, Document score: 0.0417 """
from sentence_transformers import models from sentence_transformers.sparse_encoder import SparseEncoder from sentence_transformers.sparse_encoder.models import IDF, MLMTransformer, SpladePooling print("# ------------------------------------------example with v2 distill-----------------------------------------") doc_encoder = MLMTransformer("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill") asym = models.Asym( { "query": [ IDF.from_json( "opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill", tokenizer=doc_encoder.tokenizer, frozen=True, ), ], "doc": [ doc_encoder, SpladePooling("max"), ], } ) model = SparseEncoder( modules=[asym], similarity_fn_name="dot", ) query = "What's the weather in ny now?" document = "Currently New York is rainy." query_embed = model.encode([{"query": query}]) document_embed = model.encode([{"doc": document}]) sim = model.similarity(query_embed, document_embed) print(f"Similarity: {sim}") # Visualize top tokens for each text top_k = 3 print(f"\nTop tokens {top_k} for each text:") decoded_query = model.decode(query_embed)[0] decoded_document = model.decode(document_embed[0], top_k=100) for i in range(top_k): query_token, query_score = decoded_query[i] doc_score = next((score for token, score in decoded_document if token == query_token), 0) if doc_score != 0: print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}") """ # ------------------------------------------example with v2 distill----------------------------------------- Similarity: tensor([[17.5307]], device='cuda:0') Top tokens 3 for each text: Token: ny, Query score: 5.7729, Document score: 1.4109 Token: weather, Query score: 4.5684, Document score: 1.4673 Token: now, Query score: 3.5895, Document score: 0.7473 """ print("# -----------------------------------------example with v3 distill-----------------------------------------") doc_encoder = MLMTransformer("opensearch-project/opensearch-neural-sparse-encoding-doc-v3-distill") asym = models.Asym( { "query": [ IDF.from_json( "opensearch-project/opensearch-neural-sparse-encoding-doc-v3-distill", tokenizer=doc_encoder.tokenizer, frozen=True, ), ], "doc": [ doc_encoder, SpladePooling(pooling_strategy="max", activation_function="log1p_relu"), ], } ) model = SparseEncoder( modules=[asym], similarity_fn_name="dot", ) query = "What's the weather in ny now?" document = "Currently New York is rainy." query_embed = model.encode([{"query": query}]) document_embed = model.encode([{"doc": document}]) sim = model.similarity(query_embed, document_embed) print(f"Similarity: {sim}") # Visualize top tokens for each text top_k = 10 print(f"\nTop tokens {top_k} for each text:") decoded_query = model.decode(query_embed)[0] decoded_document = model.decode(document_embed[0], top_k=100) for i in range(top_k): query_token, query_score = decoded_query[i] doc_score = next((score for token, score in decoded_document if token == query_token), 0) if doc_score != 0: print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}") """ # -----------------------------------------example with v3 distill----------------------------------------- Similarity: tensor([[11.1105]], device='cuda:0') Top tokens 10 for each text: Token: ny, Query score: 5.7729, Document score: 0.8049 Token: weather, Query score: 4.5684, Document score: 0.9710 Token: now, Query score: 3.5895, Document score: 0.4720 Token: ?, Query score: 3.3313, Document score: 0.0286 Token: what, Query score: 2.7699, Document score: 0.0787 Token: in, Query score: 0.4989, Document score: 0.0417 """
import os import time import pytest import requests from docarray import Document from jina import Client, Flow from jina.helper import random_port from jina.serve.runtimes.servers import BaseServer from tests.integration.multiple_protocol_gateway.gateway.multiprotocol_gateway import ( MultiProtocolGateway, ) cur_dir = os.path.dirname(os.path.abspath(__file__)) @pytest.fixture(scope='module') def multi_port_gateway_docker_image_built(): import docker client = docker.from_env() client.images.build( path=os.path.join(cur_dir, 'gateway/'), tag='multiprotocol-gateway' ) client.close() yield time.sleep(2) client = docker.from_env() client.containers.prune() @pytest.mark.parametrize( 'uses', [ 'MultiProtocolGateway', 'docker://multiprotocol-gateway', ], ) @pytest.mark.parametrize('use_stream', [False, True]) def test_multiple_protocols_gateway(multi_port_gateway_docker_image_built, uses, use_stream): http_port = random_port() grpc_port = random_port() flow = Flow().config_gateway( uses=uses, port=[http_port, grpc_port], protocol=['http', 'grpc'] ) assert flow.port == [http_port, grpc_port] grpc_client = Client(protocol='grpc', port=grpc_port) with flow: grpc_client.post('/', inputs=Document(), stream=use_stream) resp = requests.get(f'http://localhost:{http_port}').json() assert resp['protocol'] == 'http' assert BaseServer.is_ready(f'localhost:{grpc_port}')
import os import time import pytest import requests from docarray import Document from jina import Client, Flow from jina.helper import random_port from jina.serve.runtimes.asyncio import AsyncNewLoopRuntime from tests.integration.multiple_protocol_gateway.gateway.multiprotocol_gateway import ( MultiProtocolGateway, ) cur_dir = os.path.dirname(os.path.abspath(__file__)) @pytest.fixture(scope='module') def multi_port_gateway_docker_image_built(): import docker client = docker.from_env() client.images.build( path=os.path.join(cur_dir, 'gateway/'), tag='multiprotocol-gateway' ) client.close() yield time.sleep(2) client = docker.from_env() client.containers.prune() @pytest.mark.parametrize( 'uses', [ 'MultiProtocolGateway', 'docker://multiprotocol-gateway', ], ) @pytest.mark.parametrize('use_stream', [False, True]) def test_multiple_protocols_gateway(multi_port_gateway_docker_image_built, uses, use_stream): http_port = random_port() grpc_port = random_port() flow = Flow().config_gateway( uses=uses, port=[http_port, grpc_port], protocol=['http', 'grpc'] ) assert flow.port == [http_port, grpc_port] grpc_client = Client(protocol='grpc', port=grpc_port) with flow: grpc_client.post('/', inputs=Document(), stream=use_stream) resp = requests.get(f'http://localhost:{http_port}').json() assert resp['protocol'] == 'http' assert AsyncNewLoopRuntime.is_ready(f'localhost:{grpc_port}')
import numpy as np from sentence_transformers.sparse_encoder import SparseEncoder from sentence_transformers.sparse_encoder.models import MLMTransformer, SpladePooling def main(): # Initialize the SPLADE model model_name = "opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill" # "prithivida/Splade_PP_en_v1" # "naver/splade-cocondenser-ensembledistil" model = SparseEncoder( modules=[ MLMTransformer(model_name), SpladePooling(pooling_strategy="max"), # You can also use 'sum' ], device="cpu", ) # Sample texts texts = [ "The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium.", ] # Generate embeddings embeddings = model.encode(texts, convert_to_sparse_tensor=True) print(type(embeddings)) # Print embedding shape and sparsity print(f"Embedding shape: {embeddings.shape}") print(f"Embedding sparsity: {model.get_sparsity_stats(embeddings)}%") # Compute similarity matrix similarity_matrix = model.similarity(embeddings, embeddings) # Print similarity matrix print("\nSimilarity Matrix:") for i, text in enumerate(texts): print(f"{i}: {text[:50]}...") print("\n" + " " * 10 + " ".join([f"{i:5d}" for i in range(len(texts))])) for i, row in enumerate(similarity_matrix): print(f"{i:5d} " + " ".join([f"{val:.3f}" for val in row])) vocab_size = embeddings.shape[1] print(f"Vocabulary size: {vocab_size}") # Visualize top tokens for each text top_k = 20 print(f"\nTop tokens {top_k} for each text:") for i, text in enumerate(texts): # Get top k indices in sparse tensor # Get top k indices in sparse tensor (sorted from highest to lowest) top_indices = np.argsort(-embeddings[i].to_dense().cpu().numpy())[:top_k] top_values = embeddings[i].to_dense().cpu().numpy()[top_indices] top_tokens = [model.tokenizer.decode([idx]) for idx in top_indices] print(f"{i}: {text}") print(f"Top tokens: {top_tokens}") print(f"Top values: {top_values}") print() if __name__ == "__main__": main()
import numpy as np from sentence_transformers.sparse_encoder import SparseEncoder from sentence_transformers.sparse_encoder.models import MLMTransformer, SpladePooling def main(): # Initialize the SPLADE model model_name = "opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill" # "prithivida/Splade_PP_en_v1" # "naver/splade-cocondenser-ensembledistil" model = SparseEncoder( modules=[ MLMTransformer(model_name), SpladePooling(pooling_strategy="max"), # You can also use 'sum' ], device="cpu", ) # Sample texts texts = [ "The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium.", ] # Generate embeddings embeddings = model.encode(texts, convert_to_sparse_tensor=True) print(type(embeddings)) # Print embedding shape and sparsity print(f"Embedding shape: {embeddings.shape}") print(f"Embedding sparsity: {model.get_sparsity_stats(embeddings)}%") # Compute similarity matrix similarity_matrix = model.similarity(embeddings, embeddings) # Print similarity matrix print("\nSimilarity Matrix:") for i, text in enumerate(texts): print(f"{i}: {text[:50]}...") print("\n" + " " * 10 + " ".join([f"{i:5d}" for i in range(len(texts))])) for i, row in enumerate(similarity_matrix): print(f"{i:5d} " + " ".join([f"{val:.3f}" for val in row])) vocab_size = embeddings.shape[1] print(f"Vocabulary size: {vocab_size}") # Visualize top tokens for each text top_k = 20 print(f"\nTop tokens {top_k} for each text:") for i, text in enumerate(texts): # Get top k indices in sparse tensor # Get top k indices in sparse tensor (sorted from highest to lowest) top_indices = np.argsort(-embeddings[i].to_dense().numpy())[:top_k] top_values = embeddings[i].to_dense().numpy()[top_indices] top_tokens = [model.tokenizer.decode([idx]) for idx in top_indices] print(f"{i}: {text}") print(f"Top tokens: {top_tokens}") print(f"Top values: {top_values}") print() if __name__ == "__main__": main()
# Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause # TODO(1.7): remove this file import warnings as _warnings with _warnings.catch_warnings(): _warnings.simplefilter("ignore") # joblib imports may raise DeprecationWarning on certain Python # versions import joblib from joblib import ( Memory, Parallel, __version__, cpu_count, delayed, dump, effective_n_jobs, hash, load, logger, parallel_backend, register_parallel_backend, ) __all__ = [ "Memory", "Parallel", "__version__", "cpu_count", "delayed", "dump", "effective_n_jobs", "hash", "joblib", "load", "logger", "parallel_backend", "register_parallel_backend", ]
# Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause # TODO(1.7): remove this file import warnings as _warnings with _warnings.catch_warnings(): _warnings.simplefilter("ignore") # joblib imports may raise DeprecationWarning on certain Python # versions import joblib from joblib import ( Memory, Parallel, __version__, cpu_count, delayed, dump, effective_n_jobs, hash, load, logger, parallel_backend, register_parallel_backend, ) __all__ = [ "parallel_backend", "register_parallel_backend", "cpu_count", "Parallel", "Memory", "delayed", "effective_n_jobs", "hash", "logger", "dump", "load", "joblib", "__version__", ]
import pytest from jina import Client, Deployment, Executor, requests from jina._docarray import Document, DocumentArray from jina.excepts import BadServer from jina.helper import random_port class MyExecutor(Executor): @requests(on='/hello') async def task(self, doc: Document, **kwargs): for i in range(100): yield Document(text=f'{doc.text} {i}') @requests(on='/world') async def non_gen_task(self, docs: DocumentArray, **kwargs): return docs @pytest.mark.asyncio @pytest.mark.parametrize('protocol', ['http', 'grpc']) async def test_streaming_deployment(protocol): from jina import Deployment port = random_port() with Deployment( uses=MyExecutor, timeout_ready=-1, protocol=protocol, cors=True, port=port, include_gateway=False, ): client = Client(port=port, protocol=protocol, cors=True, asyncio=True) i = 0 async for doc in client.stream_doc( on='/hello', inputs=Document(text='hello world') ): assert doc.text == f'hello world {i}' i += 1 @pytest.mark.asyncio @pytest.mark.parametrize('protocol', ['grpc']) async def test_streaming_client_non_gen_endpoint(protocol): from jina import Deployment port = random_port() with Deployment( uses=MyExecutor, timeout_ready=-1, protocol=protocol, cors=True, port=port, include_gateway=False, ): client = Client(port=port, protocol=protocol, cors=True, asyncio=True) i = 0 with pytest.raises(BadServer): async for _ in client.stream_doc( on='/world', inputs=Document(text='hello world') ): pass def test_invalid_executor(): with pytest.raises(RuntimeError) as exc_info: class InvalidExecutor1(Executor): @requests(on='/invalid') async def invalid(self, doc: Document, **kwargs): return doc assert type(exc_info.value.__cause__) is AssertionError with pytest.raises(RuntimeError) as exc_info: class InvalidExecutor2(Executor): @requests(on='/invalid') def invalid(self, doc: Document, **kwargs): return doc assert type(exc_info.value.__cause__) is AssertionError with pytest.raises(RuntimeError) as exc_info: class InvalidExecutor3(Executor): @requests(on='/invalid') async def invalid(self, docs: DocumentArray, **kwargs): yield docs[0] assert type(exc_info.value.__cause__) is AssertionError with pytest.raises(RuntimeError) as exc_info: class InvalidExecutor4(Executor): @requests(on='/invalid') def invalid(self, docs: DocumentArray, **kwargs): yield docs[0] assert type(exc_info.value.__cause__) is AssertionError class Executor1(Executor): @requests def generator(self, **kwargs): yield Document(text='new document') @requests(on='/non_generator') def non_generator(self, docs: DocumentArray, **kwargs): return docs class Executor2(Executor): @requests def non_generator(self, docs: DocumentArray, **kwargs): return docs @requests(on='/generator') def generator(self, **kwargs): yield Document(text='new document') class Executor3(Executor): @requests(on='/non_generator') def non_generator(self, docs: DocumentArray, **kwargs): return docs @requests(on='/generator') def generator(self, **kwargs): yield Document(text='new document') @pytest.mark.asyncio @pytest.mark.parametrize( 'executor,expected', [ ('Executor1', {'/default': True, '/non_generator': False}), ('Executor2', {'/default': False, '/generator': True}), ('Executor3', {'/generator': True, '/non_generator': False}), ], ) async def test_endpoint_discovery(executor, expected): from google.protobuf import json_format from jina.logging.logger import JinaLogger from jina.parsers import set_pod_parser from jina.serve.runtimes.worker.request_handling import WorkerRequestHandler args = set_pod_parser().parse_args(['--uses', executor]) handler = WorkerRequestHandler(args, JinaLogger('data request handler')) res = await handler.endpoint_discovery(None, None) for endpoint, is_generator in expected.items(): assert ( json_format.MessageToDict(res.schemas)[endpoint]['is_generator'] == is_generator )
import pytest from jina import Client, Executor, requests from jina._docarray import Document, DocumentArray from jina.helper import random_port class MyExecutor(Executor): @requests(on='/hello') async def task(self, doc: Document, **kwargs): for i in range(100): yield Document(text=f'{doc.text} {i}') @pytest.mark.asyncio async def test_streaming_sse_http_deployment(): from jina import Deployment port = random_port() with Deployment( uses=MyExecutor, timeout_ready=-1, protocol='http', cors=True, port=port, include_gateway=False, ): client = Client(port=port, protocol='http', cors=True, asyncio=True) i = 0 async for doc in client.stream_doc( on='/hello', inputs=Document(text='hello world') ): assert doc.text == f'hello world {i}' i += 1 class Executor1(Executor): @requests def generator(self, **kwargs): yield Document(text='new document') @requests(on='/non_generator') def non_generator(self, docs: DocumentArray, **kwargs): return docs class Executor2(Executor): @requests def non_generator(self, docs: DocumentArray, **kwargs): return docs @requests(on='/generator') def generator(self, **kwargs): yield Document(text='new document') class Executor3(Executor): @requests(on='/non_generator') def non_generator(self, docs: DocumentArray, **kwargs): return docs @requests(on='/generator') def generator(self, **kwargs): yield Document(text='new document') @pytest.mark.asyncio @pytest.mark.parametrize( 'executor,expected', [ ('Executor1', {'/default': True, '/non_generator': False}), ('Executor2', {'/default': False, '/generator': True}), ('Executor3', {'/generator': True, '/non_generator': False}), ], ) async def test_endpoint_discovery(executor, expected): from google.protobuf import json_format from jina.logging.logger import JinaLogger from jina.parsers import set_pod_parser from jina.serve.runtimes.worker.request_handling import WorkerRequestHandler args = set_pod_parser().parse_args(['--uses', executor]) handler = WorkerRequestHandler(args, JinaLogger('data request handler')) res = await handler.endpoint_discovery(None, None) for endpoint, is_generator in expected.items(): assert ( json_format.MessageToDict(res.schemas)[endpoint]['is_generator'] == is_generator )
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.legacy.preprocessing.sequence import TimeseriesGenerator from keras.src.legacy.preprocessing.sequence import make_sampling_table from keras.src.legacy.preprocessing.sequence import skipgrams from keras.src.utils.sequence_utils import pad_sequences
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.utils.sequence_utils import pad_sequences """DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.src.legacy.preprocessing.sequence import TimeseriesGenerator from keras.src.legacy.preprocessing.sequence import make_sampling_table from keras.src.legacy.preprocessing.sequence import skipgrams
from keras.src import backend from keras.src import layers from keras.src import ops from keras.src.api_export import keras_export @keras_export("keras.layers.GaussianNoise") class GaussianNoise(layers.Layer): """Apply additive zero-centered Gaussian noise. This is useful to mitigate overfitting (you could see it as a form of random data augmentation). Gaussian Noise (GS) is a natural choice as corruption process for real valued inputs. As it is a regularization layer, it is only active at training time. Args: stddev: Float, standard deviation of the noise distribution. seed: Integer, optional random seed to enable deterministic behavior. Call arguments: inputs: Input tensor (of any rank). training: Python boolean indicating whether the layer should behave in training mode (adding noise) or in inference mode (doing nothing). """ def __init__(self, stddev, seed=None, **kwargs): super().__init__(**kwargs) if not 0 <= stddev <= 1: raise ValueError( f"Invalid value received for argument " "`stddev`. Expected a float value between 0 and 1. " f"Received: stddev={stddev}" ) self.stddev = stddev self.seed = seed if stddev > 0: self.seed_generator = backend.random.SeedGenerator(seed) self.supports_masking = True self.built = True def call(self, inputs, training=False): if training and self.stddev > 0: return inputs + backend.random.normal( shape=ops.shape(inputs), mean=0.0, stddev=self.stddev, dtype=self.compute_dtype, seed=self.seed_generator, ) return inputs def compute_output_shape(self, input_shape): return input_shape def get_config(self): base_config = super().get_config() config = { "stddev": self.stddev, "seed": self.seed, } return {**base_config, **config}
from keras.src import backend from keras.src import layers from keras.src import ops from keras.src.api_export import keras_export @keras_export("keras.layers.GaussianNoise") class GaussianNoise(layers.Layer): """Apply additive zero-centered Gaussian noise. This is useful to mitigate overfitting (you could see it as a form of random data augmentation). Gaussian Noise (GS) is a natural choice as corruption process for real valued inputs. As it is a regularization layer, it is only active at training time. Args: stddev: Float, standard deviation of the noise distribution. seed: Integer, optional random seed to enable deterministic behavior. Call arguments: inputs: Input tensor (of any rank). training: Python boolean indicating whether the layer should behave in training mode (adding noise) or in inference mode (doing nothing). """ def __init__(self, stddev, seed=None, **kwargs): super().__init__(**kwargs) if not 0 <= stddev <= 1: raise ValueError( f"Invalid value received for argument " "`stddev`. Expected a float value between 0 and 1. " f"Received: stddev={stddev}" ) self.stddev = stddev self.seed = seed if stddev > 0: self.seed_generator = backend.random.SeedGenerator(seed) self.supports_masking = True def call(self, inputs, training=False): if training and self.stddev > 0: return inputs + backend.random.normal( shape=ops.shape(inputs), mean=0.0, stddev=self.stddev, dtype=self.compute_dtype, seed=self.seed_generator, ) return inputs def compute_output_shape(self, input_shape): return input_shape def get_config(self): base_config = super().get_config() config = { "stddev": self.stddev, "seed": self.seed, } return {**base_config, **config}
import numpy as np import pytest from docarray import Document @pytest.fixture def doc(): d = Document( text='test', embedding=np.random.random(10), tags={ 'v': np.zeros(3), 'w': 0, 'x': 0.1, 'y': 1.5, 'z': 1, 'name': 'test', 'bar': '', 'labels': ['a', 'b', 'test'], }, ) return d def test_lookup_ops(doc): from docarray.array.queryset.lookup import lookup assert lookup('text__exact', 'test', doc) assert lookup('tags__x__neq', 0.2, doc) assert lookup('tags__labels__contains', 'a', doc) assert not lookup('tags__labels__contains', 'c', doc) assert lookup('tags__name__in', ['test'], doc) assert lookup('tags__x__nin', [0.2, 0.3], doc) assert lookup('tags__name__startswith', 'test', doc) assert not lookup('tags__name__startswith', 'Test', doc) assert lookup('tags__name__istartswith', 'Test', doc) assert lookup('tags__name__endswith', 'test', doc) assert not lookup('tags__name__endswith', 'Test', doc) assert lookup('tags__name__iendswith', 'Test', doc) assert lookup('tags__x__gte', 0.1, doc) assert not lookup('tags__y__gt', 1.5, doc) assert lookup('tags__x__lte', 0.1, doc) assert not lookup('tags__y__lt', 1.5, doc) assert lookup('text__regex', '^test', doc) assert not lookup('text__regex', '^est', doc) assert lookup('tags__size', 8, doc) assert lookup('tags__labels__size', 3, doc) assert lookup('tags__exists', True, doc) assert lookup('tags__z__exists', True, doc) assert lookup('tags__v__exists', True, doc) assert lookup('tags__w__exists', True, doc) assert lookup('tags__foo__exists', False, doc) assert lookup('tags__bar__exists', True, doc) assert lookup('embedding__exists', True, doc) assert lookup('tensor__exists', False, doc) assert lookup('blob__exists', False, doc) assert lookup('text__exists', True, doc) def test_lookup_pl(doc): from docarray.array.queryset.lookup import lookup assert lookup('tags__x__lt', '{tags__y}', doc) assert lookup('text__exact', '{tags__name}', doc) assert lookup('text__exact', '{tags__name}', doc) assert lookup('text__in', '{tags__labels}', doc) def test_lookup_funcs(): from docarray.array.queryset import lookup assert lookup.dunder_partition('a') == ('a', None) assert lookup.dunder_partition('a__b__c') == ('a__b', 'c') assert lookup.iff_not_none('a', lambda y: y == 'a') assert not lookup.iff_not_none(None, lambda y: y == 'a') lookup.guard_str('a') == 'a' lookup.guard_list(['a']) == ['a'] with pytest.raises(lookup.LookupyError): lookup.guard_str(0.1) lookup.guard_list(0.1) lookup.guard_Q(0.1)
import pytest from docarray import Document import numpy as np @pytest.fixture def doc(): d = Document( text='test', embedding=np.random.random(10), tags={ 'x': 0.1, 'y': 1.5, 'z': 1, 'name': 'test', 'bar': '', 'labels': ['a', 'b', 'test'], }, ) return d def test_lookup_ops(doc): from docarray.array.queryset.lookup import lookup assert lookup('text__exact', 'test', doc) assert lookup('tags__x__neq', 0.2, doc) assert lookup('tags__labels__contains', 'a', doc) assert not lookup('tags__labels__contains', 'c', doc) assert lookup('tags__name__in', ['test'], doc) assert lookup('tags__x__nin', [0.2, 0.3], doc) assert lookup('tags__name__startswith', 'test', doc) assert not lookup('tags__name__startswith', 'Test', doc) assert lookup('tags__name__istartswith', 'Test', doc) assert lookup('tags__name__endswith', 'test', doc) assert not lookup('tags__name__endswith', 'Test', doc) assert lookup('tags__name__iendswith', 'Test', doc) assert lookup('tags__x__gte', 0.1, doc) assert not lookup('tags__y__gt', 1.5, doc) assert lookup('tags__x__lte', 0.1, doc) assert not lookup('tags__y__lt', 1.5, doc) assert lookup('text__regex', '^test', doc) assert not lookup('text__regex', '^est', doc) assert lookup('tags__size', 6, doc) assert lookup('tags__labels__size', 3, doc) assert lookup('tags__exists', True, doc) assert lookup('tags__z__exists', True, doc) assert lookup('tags__foo__exists', False, doc) assert lookup('tags__bar__exists', False, doc) assert lookup('embedding__exists', True, doc) assert lookup('tensor__exists', False, doc) assert lookup('blob__exists', False, doc) assert lookup('text__exists', True, doc) def test_lookup_pl(doc): from docarray.array.queryset.lookup import lookup assert lookup('tags__x__lt', '{tags__y}', doc) assert lookup('text__exact', '{tags__name}', doc) assert lookup('text__exact', '{tags__name}', doc) assert lookup('text__in', '{tags__labels}', doc) def test_lookup_funcs(): from docarray.array.queryset import lookup assert lookup.dunder_partition('a') == ('a', None) assert lookup.dunder_partition('a__b__c') == ('a__b', 'c') assert lookup.iff_not_none('a', lambda y: y == 'a') assert not lookup.iff_not_none(None, lambda y: y == 'a') lookup.guard_str('a') == 'a' lookup.guard_list(['a']) == ['a'] with pytest.raises(lookup.LookupyError): lookup.guard_str(0.1) lookup.guard_list(0.1) lookup.guard_Q(0.1)
import csv import pathlib from typing import Any, Callable, Optional, Tuple import PIL from .folder import make_dataset from .utils import download_and_extract_archive, verify_str_arg from .vision import VisionDataset class GTSRB(VisionDataset): """`German Traffic Sign Recognition Benchmark (GTSRB) <https://benchmark.ini.rub.de/>`_ Dataset. Args: root (string): Root directory of the dataset. split (string, optional): The dataset split, supports ``"train"`` (default), or ``"test"``. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop``. target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If True, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. """ def __init__( self, root: str, split: str = "train", transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, ) -> None: super().__init__(root, transform=transform, target_transform=target_transform) self._split = verify_str_arg(split, "split", ("train", "test")) self._base_folder = pathlib.Path(root) / "gtsrb" self._target_folder = ( self._base_folder / "GTSRB" / ("Training" if self._split == "train" else "Final_Test/Images") ) if download: self.download() if not self._check_exists(): raise RuntimeError("Dataset not found. You can use download=True to download it") if self._split == "train": samples = make_dataset(str(self._target_folder), extensions=(".ppm",)) else: with open(self._base_folder / "GT-final_test.csv") as csv_file: samples = [ (str(self._target_folder / row["Filename"]), int(row["ClassId"])) for row in csv.DictReader(csv_file, delimiter=";", skipinitialspace=True) ] self._samples = samples self.transform = transform self.target_transform = target_transform def __len__(self) -> int: return len(self._samples) def __getitem__(self, index: int) -> Tuple[Any, Any]: path, target = self._samples[index] sample = PIL.Image.open(path).convert("RGB") if self.transform is not None: sample = self.transform(sample) if self.target_transform is not None: target = self.target_transform(target) return sample, target def _check_exists(self) -> bool: return self._target_folder.is_dir() def download(self) -> None: if self._check_exists(): return base_url = "https://sid.erda.dk/public/archives/daaeac0d7ce1152aea9b61d9f1e19370/" if self._split == "train": download_and_extract_archive( f"{base_url}GTSRB-Training_fixed.zip", download_root=str(self._base_folder), md5="513f3c79a4c5141765e10e952eaa2478", ) else: download_and_extract_archive( f"{base_url}GTSRB_Final_Test_Images.zip", download_root=str(self._base_folder), md5="c7e4e6327067d32654124b0fe9e82185", ) download_and_extract_archive( f"{base_url}GTSRB_Final_Test_GT.zip", download_root=str(self._base_folder), md5="fe31e9c9270bbcd7b84b7f21a9d9d9e5", )
import csv import pathlib from typing import Any, Callable, Optional, Tuple import PIL from .folder import make_dataset from .utils import download_and_extract_archive, verify_str_arg from .vision import VisionDataset class GTSRB(VisionDataset): """`German Traffic Sign Recognition Benchmark (GTSRB) <https://benchmark.ini.rub.de/>`_ Dataset. Args: root (string): Root directory of the dataset. split (string, optional): The dataset split, supports ``"train"`` (default), or ``"test"``. transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.RandomCrop``. target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If True, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. """ def __init__( self, root: str, split: str = "train", transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, ) -> None: super().__init__(root, transform=transform, target_transform=target_transform) self._split = verify_str_arg(split, "split", ("train", "test")) self._base_folder = pathlib.Path(root) / "gtsrb" self._target_folder = ( self._base_folder / "GTSRB" / ("Training" if self._split == "train" else "Final_Test/Images") ) if download: self.download() if not self._check_exists(): raise RuntimeError("Dataset not found. You can use download=True to download it") if self._split == "train": samples = make_dataset(str(self._target_folder), extensions=(".ppm",)) else: with open(self._base_folder / "GT-final_test.csv") as csv_file: samples = [ (str(self._target_folder / row["Filename"]), int(row["ClassId"])) for row in csv.DictReader(csv_file, delimiter=";", skipinitialspace=True) ] self._samples = samples self.transform = transform self.target_transform = target_transform def __len__(self) -> int: return len(self._samples) def __getitem__(self, index: int) -> Tuple[Any, Any]: path, target = self._samples[index] sample = PIL.Image.open(path).convert("RGB") if self.transform is not None: sample = self.transform(sample) if self.target_transform is not None: target = self.target_transform(target) return sample, target def _check_exists(self) -> bool: return self._target_folder.is_dir() def download(self) -> None: if self._check_exists(): return base_url = "https://sid.erda.dk/public/archives/daaeac0d7ce1152aea9b61d9f1e19370/" if self._split == "train": download_and_extract_archive( f"{base_url}GTSRB-Training_fixed.zip", download_root=str(self._base_folder), md5="513f3c79a4c5141765e10e952eaa2478", ) else: download_and_extract_archive( f"{base_url}GTSRB_Final_Test_Images.zip", download_root=str(self._base_folder), md5="c7e4e6327067d32654124b0fe9e82185", ) download_and_extract_archive( f"{base_url}GTSRB_Final_Test_GT.zip", download_root=str(self._base_folder), md5="fe31e9c9270bbcd7b84b7f21a9d9d9e5", )
from __future__ import annotations from enum import Enum from typing import Callable from numpy import ndarray from torch import Tensor from .util import ( cos_sim, dot_score, euclidean_sim, manhattan_sim, pairwise_cos_sim, pairwise_dot_score, pairwise_euclidean_sim, pairwise_manhattan_sim, ) class SimilarityFunction(Enum): """ Enum class for supported similarity functions. The following functions are supported: - ``SimilarityFunction.COSINE`` (``"cosine"``): Cosine similarity - ``SimilarityFunction.DOT_PRODUCT`` (``"dot"``, ``dot_product``): Dot product similarity - ``SimilarityFunction.EUCLIDEAN`` (``"euclidean"``): Euclidean distance - ``SimilarityFunction.MANHATTAN`` (``"manhattan"``): Manhattan distance """ COSINE = "cosine" DOT_PRODUCT = "dot" DOT = "dot" # Alias for DOT_PRODUCT EUCLIDEAN = "euclidean" MANHATTAN = "manhattan" @staticmethod def to_similarity_fn( similarity_function: str | SimilarityFunction, ) -> Callable[[Tensor | ndarray, Tensor | ndarray], Tensor]: """ Converts a similarity function name or enum value to the corresponding similarity function. Args: similarity_function (Union[str, SimilarityFunction]): The name or enum value of the similarity function. Returns: Callable[[Union[Tensor, ndarray], Union[Tensor, ndarray]], Tensor]: The corresponding similarity function. Raises: ValueError: If the provided function is not supported. Example: >>> similarity_fn = SimilarityFunction.to_similarity_fn("cosine") >>> similarity_scores = similarity_fn(embeddings1, embeddings2) >>> similarity_scores tensor([[0.3952, 0.0554], [0.0992, 0.1570]]) """ similarity_function = SimilarityFunction(similarity_function) if similarity_function == SimilarityFunction.COSINE: return cos_sim if similarity_function == SimilarityFunction.DOT_PRODUCT: return dot_score if similarity_function == SimilarityFunction.MANHATTAN: return manhattan_sim if similarity_function == SimilarityFunction.EUCLIDEAN: return euclidean_sim raise ValueError( f"The provided function {similarity_function} is not supported. Use one of the supported values: {SimilarityFunction.possible_values()}." ) @staticmethod def to_similarity_pairwise_fn( similarity_function: str | SimilarityFunction, ) -> Callable[[Tensor | ndarray, Tensor | ndarray], Tensor]: """ Converts a similarity function into a pairwise similarity function. The pairwise similarity function returns the diagonal vector from the similarity matrix, i.e. it only computes the similarity(a[i], b[i]) for each i in the range of the input tensors, rather than computing the similarity between all pairs of a and b. Args: similarity_function (Union[str, SimilarityFunction]): The name or enum value of the similarity function. Returns: Callable[[Union[Tensor, ndarray], Union[Tensor, ndarray]], Tensor]: The pairwise similarity function. Raises: ValueError: If the provided similarity function is not supported. Example: >>> pairwise_fn = SimilarityFunction.to_similarity_pairwise_fn("cosine") >>> similarity_scores = pairwise_fn(embeddings1, embeddings2) >>> similarity_scores tensor([0.3952, 0.1570]) """ similarity_function = SimilarityFunction(similarity_function) if similarity_function == SimilarityFunction.COSINE: return pairwise_cos_sim if similarity_function == SimilarityFunction.DOT_PRODUCT: return pairwise_dot_score if similarity_function == SimilarityFunction.MANHATTAN: return pairwise_manhattan_sim if similarity_function == SimilarityFunction.EUCLIDEAN: return pairwise_euclidean_sim raise ValueError( f"The provided function {similarity_function} is not supported. Use one of the supported values: {SimilarityFunction.possible_values()}." ) @staticmethod def possible_values() -> list[str]: """ Returns a list of possible values for the SimilarityFunction enum. Returns: list: A list of possible values for the SimilarityFunction enum. Example: >>> possible_values = SimilarityFunction.possible_values() >>> possible_values ['cosine', 'dot', 'euclidean', 'manhattan'] """ return [m.value for m in SimilarityFunction]
from __future__ import annotations from enum import Enum from typing import Callable from numpy import ndarray from torch import Tensor from .util import ( cos_sim, dot_score, euclidean_sim, manhattan_sim, pairwise_cos_sim, pairwise_dot_score, pairwise_euclidean_sim, pairwise_manhattan_sim, ) class SimilarityFunction(Enum): """ Enum class for supported similarity functions. The following functions are supported: - ``SimilarityFunction.COSINE`` (``"cosine"``): Cosine similarity - ``SimilarityFunction.DOT_PRODUCT`` (``"dot"``, ``dot_product``): Dot product similarity - ``SimilarityFunction.EUCLIDEAN`` (``"euclidean"``): Euclidean distance - ``SimilarityFunction.MANHATTAN`` (``"manhattan"``): Manhattan distance """ COSINE = "cosine" DOT_PRODUCT = "dot" DOT = "dot" # Alias for DOT_PRODUCT EUCLIDEAN = "euclidean" MANHATTAN = "manhattan" @staticmethod def to_similarity_fn( similarity_function: str | "SimilarityFunction", ) -> Callable[[Tensor | ndarray, Tensor | ndarray], Tensor]: """ Converts a similarity function name or enum value to the corresponding similarity function. Args: similarity_function (Union[str, SimilarityFunction]): The name or enum value of the similarity function. Returns: Callable[[Union[Tensor, ndarray], Union[Tensor, ndarray]], Tensor]: The corresponding similarity function. Raises: ValueError: If the provided function is not supported. Example: >>> similarity_fn = SimilarityFunction.to_similarity_fn("cosine") >>> similarity_scores = similarity_fn(embeddings1, embeddings2) >>> similarity_scores tensor([[0.3952, 0.0554], [0.0992, 0.1570]]) """ similarity_function = SimilarityFunction(similarity_function) if similarity_function == SimilarityFunction.COSINE: return cos_sim if similarity_function == SimilarityFunction.DOT_PRODUCT: return dot_score if similarity_function == SimilarityFunction.MANHATTAN: return manhattan_sim if similarity_function == SimilarityFunction.EUCLIDEAN: return euclidean_sim raise ValueError( "The provided function {} is not supported. Use one of the supported values: {}.".format( similarity_function, SimilarityFunction.possible_values() ) ) @staticmethod def to_similarity_pairwise_fn( similarity_function: str | "SimilarityFunction", ) -> Callable[[Tensor | ndarray, Tensor | ndarray], Tensor]: """ Converts a similarity function into a pairwise similarity function. The pairwise similarity function returns the diagonal vector from the similarity matrix, i.e. it only computes the similarity(a[i], b[i]) for each i in the range of the input tensors, rather than computing the similarity between all pairs of a and b. Args: similarity_function (Union[str, SimilarityFunction]): The name or enum value of the similarity function. Returns: Callable[[Union[Tensor, ndarray], Union[Tensor, ndarray]], Tensor]: The pairwise similarity function. Raises: ValueError: If the provided similarity function is not supported. Example: >>> pairwise_fn = SimilarityFunction.to_similarity_pairwise_fn("cosine") >>> similarity_scores = pairwise_fn(embeddings1, embeddings2) >>> similarity_scores tensor([0.3952, 0.1570]) """ similarity_function = SimilarityFunction(similarity_function) if similarity_function == SimilarityFunction.COSINE: return pairwise_cos_sim if similarity_function == SimilarityFunction.DOT_PRODUCT: return pairwise_dot_score if similarity_function == SimilarityFunction.MANHATTAN: return pairwise_manhattan_sim if similarity_function == SimilarityFunction.EUCLIDEAN: return pairwise_euclidean_sim raise ValueError( "The provided function {} is not supported. Use one of the supported values: {}.".format( similarity_function, SimilarityFunction.possible_values() ) ) @staticmethod def possible_values() -> list[str]: """ Returns a list of possible values for the SimilarityFunction enum. Returns: list: A list of possible values for the SimilarityFunction enum. Example: >>> possible_values = SimilarityFunction.possible_values() >>> possible_values ['cosine', 'dot', 'euclidean', 'manhattan'] """ return [m.value for m in SimilarityFunction]
"""Document loaders.""" from langchain_core.document_loaders.base import BaseBlobParser, BaseLoader from langchain_core.document_loaders.blob_loaders import Blob, BlobLoader, PathLike from langchain_core.document_loaders.langsmith import LangSmithLoader __all__ = [ "BaseBlobParser", "BaseLoader", "Blob", "BlobLoader", "PathLike", "LangSmithLoader", ]
from langchain_core.document_loaders.base import BaseBlobParser, BaseLoader from langchain_core.document_loaders.blob_loaders import Blob, BlobLoader, PathLike from langchain_core.document_loaders.langsmith import LangSmithLoader __all__ = [ "BaseBlobParser", "BaseLoader", "Blob", "BlobLoader", "PathLike", "LangSmithLoader", ]
AMI_ID = { # Managed by XGBoost team "linux-amd64-gpu": { "us-west-2": "ami-070080d04e81c5e39", }, "linux-amd64-mgpu": { "us-west-2": "ami-070080d04e81c5e39", }, "windows-gpu": { "us-west-2": "ami-07c14abcf529d816a", }, "windows-cpu": { "us-west-2": "ami-07c14abcf529d816a", }, # Managed by BuildKite # from https://s3.amazonaws.com/buildkite-aws-stack/latest/aws-stack.yml "linux-amd64-cpu": { "us-west-2": "ami-0180f7fb0f07eb0bc", }, "pipeline-loader": { "us-west-2": "ami-0180f7fb0f07eb0bc", }, "linux-arm64-cpu": { "us-west-2": "ami-00686bdc2043a5505", }, } STACK_PARAMS = { "linux-amd64-gpu": { "InstanceOperatingSystem": "linux", "InstanceTypes": "g4dn.xlarge", "AgentsPerInstance": "1", "MinSize": "0", "MaxSize": "8", "OnDemandPercentage": "100", "ScaleOutFactor": "1.0", "ScaleInIdlePeriod": "60", # in seconds }, "linux-amd64-mgpu": { "InstanceOperatingSystem": "linux", "InstanceTypes": "g4dn.12xlarge", "AgentsPerInstance": "1", "MinSize": "0", "MaxSize": "1", "OnDemandPercentage": "100", "ScaleOutFactor": "1.0", "ScaleInIdlePeriod": "60", # in seconds }, "windows-gpu": { "InstanceOperatingSystem": "windows", "InstanceTypes": "g4dn.2xlarge", "AgentsPerInstance": "1", "MinSize": "0", "MaxSize": "2", "OnDemandPercentage": "100", "ScaleOutFactor": "1.0", "ScaleInIdlePeriod": "60", # in seconds }, "windows-cpu": { "InstanceOperatingSystem": "windows", "InstanceTypes": "c5a.2xlarge", "AgentsPerInstance": "1", "MinSize": "0", "MaxSize": "2", "OnDemandPercentage": "100", "ScaleOutFactor": "1.0", "ScaleInIdlePeriod": "60", # in seconds }, "linux-amd64-cpu": { "InstanceOperatingSystem": "linux", "InstanceTypes": "c5a.4xlarge", "AgentsPerInstance": "1", "MinSize": "0", "MaxSize": "16", "OnDemandPercentage": "100", "ScaleOutFactor": "1.0", "ScaleInIdlePeriod": "60", # in seconds }, "pipeline-loader": { "InstanceOperatingSystem": "linux", "InstanceTypes": "t3a.micro", "AgentsPerInstance": "1", "MinSize": "2", "MaxSize": "2", "OnDemandPercentage": "100", "ScaleOutFactor": "1.0", "ScaleInIdlePeriod": "60", # in seconds }, "linux-arm64-cpu": { "InstanceOperatingSystem": "linux", "InstanceTypes": "c6g.4xlarge", "AgentsPerInstance": "1", "MinSize": "0", "MaxSize": "8", "OnDemandPercentage": "100", "ScaleOutFactor": "1.0", "ScaleInIdlePeriod": "60", # in seconds }, } COMMON_STACK_PARAMS = { "BuildkiteAgentTimestampLines": "false", "BuildkiteWindowsAdministrator": "true", "AssociatePublicIpAddress": "true", "ScaleOutForWaitingJobs": "false", "EnableCostAllocationTags": "true", "CostAllocationTagName": "CreatedBy", "ECRAccessPolicy": "full", "EnableSecretsPlugin": "false", "EnableECRPlugin": "false", "EnableDockerLoginPlugin": "false", "EnableDockerUserNamespaceRemap": "false", "BuildkiteAgentExperiments": "normalised-upload-paths,resolve-commit-after-checkout", }
AMI_ID = { # Managed by XGBoost team "linux-amd64-gpu": { "us-west-2": "ami-08c3bc1dd5ec8bc5c", }, "linux-amd64-mgpu": { "us-west-2": "ami-08c3bc1dd5ec8bc5c", }, "windows-gpu": { "us-west-2": "ami-03c7f2156f93b22a7", }, "windows-cpu": { "us-west-2": "ami-03c7f2156f93b22a7", }, # Managed by BuildKite # from https://s3.amazonaws.com/buildkite-aws-stack/latest/aws-stack.yml "linux-amd64-cpu": { "us-west-2": "ami-015e64acb52b3e595", }, "pipeline-loader": { "us-west-2": "ami-015e64acb52b3e595", }, "linux-arm64-cpu": { "us-west-2": "ami-0884e9c23a2fa98d0", }, } STACK_PARAMS = { "linux-amd64-gpu": { "InstanceOperatingSystem": "linux", "InstanceTypes": "g4dn.xlarge", "AgentsPerInstance": "1", "MinSize": "0", "MaxSize": "8", "OnDemandPercentage": "100", "ScaleOutFactor": "1.0", "ScaleInIdlePeriod": "60", # in seconds }, "linux-amd64-mgpu": { "InstanceOperatingSystem": "linux", "InstanceTypes": "g4dn.12xlarge", "AgentsPerInstance": "1", "MinSize": "0", "MaxSize": "1", "OnDemandPercentage": "100", "ScaleOutFactor": "1.0", "ScaleInIdlePeriod": "60", # in seconds }, "windows-gpu": { "InstanceOperatingSystem": "windows", "InstanceTypes": "g4dn.2xlarge", "AgentsPerInstance": "1", "MinSize": "0", "MaxSize": "2", "OnDemandPercentage": "100", "ScaleOutFactor": "1.0", "ScaleInIdlePeriod": "60", # in seconds }, "windows-cpu": { "InstanceOperatingSystem": "windows", "InstanceTypes": "c5a.2xlarge", "AgentsPerInstance": "1", "MinSize": "0", "MaxSize": "2", "OnDemandPercentage": "100", "ScaleOutFactor": "1.0", "ScaleInIdlePeriod": "60", # in seconds }, "linux-amd64-cpu": { "InstanceOperatingSystem": "linux", "InstanceTypes": "c5a.4xlarge", "AgentsPerInstance": "1", "MinSize": "0", "MaxSize": "16", "OnDemandPercentage": "100", "ScaleOutFactor": "1.0", "ScaleInIdlePeriod": "60", # in seconds }, "pipeline-loader": { "InstanceOperatingSystem": "linux", "InstanceTypes": "t3a.micro", "AgentsPerInstance": "1", "MinSize": "2", "MaxSize": "2", "OnDemandPercentage": "100", "ScaleOutFactor": "1.0", "ScaleInIdlePeriod": "60", # in seconds }, "linux-arm64-cpu": { "InstanceOperatingSystem": "linux", "InstanceTypes": "c6g.4xlarge", "AgentsPerInstance": "1", "MinSize": "0", "MaxSize": "8", "OnDemandPercentage": "100", "ScaleOutFactor": "1.0", "ScaleInIdlePeriod": "60", # in seconds }, } COMMON_STACK_PARAMS = { "BuildkiteAgentTimestampLines": "false", "BuildkiteWindowsAdministrator": "true", "AssociatePublicIpAddress": "true", "ScaleOutForWaitingJobs": "false", "EnableCostAllocationTags": "true", "CostAllocationTagName": "CreatedBy", "ECRAccessPolicy": "full", "EnableSecretsPlugin": "false", "EnableECRPlugin": "false", "EnableDockerLoginPlugin": "false", "EnableDockerUserNamespaceRemap": "false", "BuildkiteAgentExperiments": "normalised-upload-paths,resolve-commit-after-checkout", }
# coding: utf-8 from pathlib import Path import pandas as pd import lightgbm as lgb if lgb.compat.MATPLOTLIB_INSTALLED: import matplotlib.pyplot as plt else: raise ImportError("You need to install matplotlib and restart your session for plot_example.py.") print("Loading data...") # load or create your dataset regression_example_dir = Path(__file__).absolute().parents[1] / "regression" df_train = pd.read_csv(str(regression_example_dir / "regression.train"), header=None, sep="\t") df_test = pd.read_csv(str(regression_example_dir / "regression.test"), header=None, sep="\t") y_train = df_train[0] y_test = df_test[0] X_train = df_train.drop(0, axis=1) X_test = df_test.drop(0, axis=1) # create dataset for lightgbm lgb_train = lgb.Dataset( X_train, y_train, feature_name=[f"f{i + 1}" for i in range(X_train.shape[-1])], categorical_feature=[21], ) lgb_test = lgb.Dataset(X_test, y_test, reference=lgb_train) # specify your configurations as a dict params = {"num_leaves": 5, "metric": ("l1", "l2"), "verbose": 0} evals_result = {} # to record eval results for plotting print("Starting training...") # train gbm = lgb.train( params, lgb_train, num_boost_round=100, valid_sets=[lgb_train, lgb_test], callbacks=[lgb.log_evaluation(10), lgb.record_evaluation(evals_result)], ) print("Plotting metrics recorded during training...") ax = lgb.plot_metric(evals_result, metric="l1") plt.show() print("Plotting feature importances...") ax = lgb.plot_importance(gbm, max_num_features=10) plt.show() print("Plotting split value histogram...") ax = lgb.plot_split_value_histogram(gbm, feature="f26", bins="auto") plt.show() print("Plotting 54th tree...") # one tree use categorical feature to split ax = lgb.plot_tree(gbm, tree_index=53, figsize=(15, 15), show_info=["split_gain"]) plt.show() print("Plotting 54th tree with graphviz...") graph = lgb.create_tree_digraph(gbm, tree_index=53, name="Tree54") graph.render(view=True)
# coding: utf-8 from pathlib import Path import pandas as pd import lightgbm as lgb if lgb.compat.MATPLOTLIB_INSTALLED: import matplotlib.pyplot as plt else: raise ImportError("You need to install matplotlib and restart your session for plot_example.py.") print("Loading data...") # load or create your dataset regression_example_dir = Path(__file__).absolute().parents[1] / "regression" df_train = pd.read_csv(str(regression_example_dir / "regression.train"), header=None, sep="\t") df_test = pd.read_csv(str(regression_example_dir / "regression.test"), header=None, sep="\t") y_train = df_train[0] y_test = df_test[0] X_train = df_train.drop(0, axis=1) X_test = df_test.drop(0, axis=1) # create dataset for lightgbm lgb_train = lgb.Dataset(X_train, y_train) lgb_test = lgb.Dataset(X_test, y_test, reference=lgb_train) # specify your configurations as a dict params = {"num_leaves": 5, "metric": ("l1", "l2"), "verbose": 0} evals_result = {} # to record eval results for plotting print("Starting training...") # train gbm = lgb.train( params, lgb_train, num_boost_round=100, valid_sets=[lgb_train, lgb_test], feature_name=[f"f{i + 1}" for i in range(X_train.shape[-1])], categorical_feature=[21], callbacks=[lgb.log_evaluation(10), lgb.record_evaluation(evals_result)], ) print("Plotting metrics recorded during training...") ax = lgb.plot_metric(evals_result, metric="l1") plt.show() print("Plotting feature importances...") ax = lgb.plot_importance(gbm, max_num_features=10) plt.show() print("Plotting split value histogram...") ax = lgb.plot_split_value_histogram(gbm, feature="f26", bins="auto") plt.show() print("Plotting 54th tree...") # one tree use categorical feature to split ax = lgb.plot_tree(gbm, tree_index=53, figsize=(15, 15), show_info=["split_gain"]) plt.show() print("Plotting 54th tree with graphviz...") graph = lgb.create_tree_digraph(gbm, tree_index=53, name="Tree54") graph.render(view=True)
from __future__ import annotations from copy import deepcopy import pytest from sentence_transformers import CrossEncoder @pytest.fixture() def distilroberta_base_ce_model() -> CrossEncoder: return CrossEncoder("distilroberta-base", num_labels=1) @pytest.fixture(scope="session") def _reranker_bert_tiny_model() -> CrossEncoder: return CrossEncoder("cross-encoder-testing/reranker-bert-tiny-gooaq-bce") @pytest.fixture() def reranker_bert_tiny_model(_reranker_bert_tiny_model) -> CrossEncoder: return deepcopy(_reranker_bert_tiny_model)
from __future__ import annotations import pytest from sentence_transformers import CrossEncoder @pytest.fixture() def distilroberta_base_ce_model() -> CrossEncoder: return CrossEncoder("distilroberta-base", num_labels=1) @pytest.fixture() def reranker_bert_tiny_model() -> CrossEncoder: return CrossEncoder("cross-encoder-testing/reranker-bert-tiny-gooaq-bce") @pytest.fixture(scope="session") def reranker_bert_tiny_model_reused() -> CrossEncoder: return CrossEncoder("cross-encoder-testing/reranker-bert-tiny-gooaq-bce")
import logging import os import zlib from contextlib import asynccontextmanager from urllib.parse import parse_qsl, urlencode, urlparse, urlunparse from uuid import uuid4 from dotenv import load_dotenv from prisma import Prisma from pydantic import BaseModel, Field, field_validator from backend.util.retry import conn_retry load_dotenv() PRISMA_SCHEMA = os.getenv("PRISMA_SCHEMA", "schema.prisma") os.environ["PRISMA_SCHEMA_PATH"] = PRISMA_SCHEMA def add_param(url: str, key: str, value: str) -> str: p = urlparse(url) qs = dict(parse_qsl(p.query)) qs[key] = value return urlunparse(p._replace(query=urlencode(qs))) DATABASE_URL = os.getenv("DATABASE_URL", "postgresql://localhost:5432") CONN_LIMIT = os.getenv("DB_CONNECTION_LIMIT") if CONN_LIMIT: DATABASE_URL = add_param(DATABASE_URL, "connection_limit", CONN_LIMIT) CONN_TIMEOUT = os.getenv("DB_CONNECT_TIMEOUT") if CONN_TIMEOUT: DATABASE_URL = add_param(DATABASE_URL, "connect_timeout", CONN_TIMEOUT) POOL_TIMEOUT = os.getenv("DB_POOL_TIMEOUT") if POOL_TIMEOUT: DATABASE_URL = add_param(DATABASE_URL, "pool_timeout", POOL_TIMEOUT) HTTP_TIMEOUT = int(POOL_TIMEOUT) if POOL_TIMEOUT else None prisma = Prisma( auto_register=True, http={"timeout": HTTP_TIMEOUT}, datasource={"url": DATABASE_URL}, ) logger = logging.getLogger(__name__) @conn_retry("Prisma", "Acquiring connection") async def connect(): if prisma.is_connected(): return await prisma.connect() if not prisma.is_connected(): raise ConnectionError("Failed to connect to Prisma.") # Connection acquired from a pool like Supabase somehow still possibly allows # the db client obtains a connection but still reject query connection afterward. # try: # await prisma.execute_raw("SELECT 1") # except Exception as e: # raise ConnectionError("Failed to connect to Prisma.") from e @conn_retry("Prisma", "Releasing connection") async def disconnect(): if not prisma.is_connected(): return await prisma.disconnect() if prisma.is_connected(): raise ConnectionError("Failed to disconnect from Prisma.") @asynccontextmanager async def transaction(): async with prisma.tx() as tx: yield tx @asynccontextmanager async def locked_transaction(key: str): lock_key = zlib.crc32(key.encode("utf-8")) async with transaction() as tx: await tx.execute_raw("SELECT pg_advisory_xact_lock($1)", lock_key) yield tx class BaseDbModel(BaseModel): id: str = Field(default_factory=lambda: str(uuid4())) @field_validator("id", mode="before") def set_model_id(cls, id: str) -> str: # In case an empty ID is submitted return id or str(uuid4())
import logging import os import zlib from contextlib import asynccontextmanager from urllib.parse import parse_qsl, urlencode, urlparse, urlunparse from uuid import uuid4 from dotenv import load_dotenv from prisma import Prisma from pydantic import BaseModel, Field, field_validator from backend.util.retry import conn_retry load_dotenv() PRISMA_SCHEMA = os.getenv("PRISMA_SCHEMA", "schema.prisma") os.environ["PRISMA_SCHEMA_PATH"] = PRISMA_SCHEMA def add_param(url: str, key: str, value: str) -> str: p = urlparse(url) qs = dict(parse_qsl(p.query)) qs[key] = value return urlunparse(p._replace(query=urlencode(qs))) DATABASE_URL = os.getenv("DATABASE_URL", "postgresql://localhost:5432") CONN_LIMIT = os.getenv("DB_CONNECTION_LIMIT") if CONN_LIMIT: DATABASE_URL = add_param(DATABASE_URL, "connection_limit", CONN_LIMIT) CONN_TIMEOUT = os.getenv("DB_CONNECT_TIMEOUT") if CONN_TIMEOUT: DATABASE_URL = add_param(DATABASE_URL, "connect_timeout", CONN_TIMEOUT) POOL_TIMEOUT = os.getenv("DB_POOL_TIMEOUT") if POOL_TIMEOUT: DATABASE_URL = add_param(DATABASE_URL, "pool_timeout", POOL_TIMEOUT) HTTP_TIMEOUT = int(POOL_TIMEOUT) if POOL_TIMEOUT else None prisma = Prisma( auto_register=True, http={"timeout": HTTP_TIMEOUT}, datasource={"url": DATABASE_URL}, ) logger = logging.getLogger(__name__) @conn_retry("Prisma", "Acquiring connection") async def connect(): if prisma.is_connected(): return await prisma.connect() if not prisma.is_connected(): raise ConnectionError("Failed to connect to Prisma.") # Connection acquired from a pool like Supabase somehow still possibly allows # the db client obtains a connection but still reject query connection afterward. try: await prisma.execute_raw("SELECT 1") except Exception as e: raise ConnectionError("Failed to connect to Prisma.") from e @conn_retry("Prisma", "Releasing connection") async def disconnect(): if not prisma.is_connected(): return await prisma.disconnect() if prisma.is_connected(): raise ConnectionError("Failed to disconnect from Prisma.") @asynccontextmanager async def transaction(): async with prisma.tx() as tx: yield tx @asynccontextmanager async def locked_transaction(key: str): lock_key = zlib.crc32(key.encode("utf-8")) async with transaction() as tx: await tx.execute_raw("SELECT pg_advisory_xact_lock($1)", lock_key) yield tx class BaseDbModel(BaseModel): id: str = Field(default_factory=lambda: str(uuid4())) @field_validator("id", mode="before") def set_model_id(cls, id: str) -> str: # In case an empty ID is submitted return id or str(uuid4())
from typing import Any, Dict, List, Optional, Sequence, Type, Union import PIL.Image import torch from torchvision import datapoints from torchvision.prototype.datapoints import Label, OneHotLabel from torchvision.transforms.v2 import functional as F, Transform from torchvision.transforms.v2._utils import _FillType, _get_fill, _setup_fill_arg, _setup_size from torchvision.transforms.v2.utils import get_bounding_boxes, has_any, is_simple_tensor, query_size class FixedSizeCrop(Transform): def __init__( self, size: Union[int, Sequence[int]], fill: Union[_FillType, Dict[Union[Type, str], _FillType]] = 0, padding_mode: str = "constant", ) -> None: super().__init__() size = tuple(_setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")) self.crop_height = size[0] self.crop_width = size[1] self.fill = fill self._fill = _setup_fill_arg(fill) self.padding_mode = padding_mode def _check_inputs(self, flat_inputs: List[Any]) -> None: if not has_any( flat_inputs, PIL.Image.Image, datapoints.Image, is_simple_tensor, datapoints.Video, ): raise TypeError( f"{type(self).__name__}() requires input sample to contain an tensor or PIL image or a Video." ) if has_any(flat_inputs, datapoints.BoundingBoxes) and not has_any(flat_inputs, Label, OneHotLabel): raise TypeError( f"If a BoundingBoxes is contained in the input sample, " f"{type(self).__name__}() also requires it to contain a Label or OneHotLabel." ) def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]: height, width = query_size(flat_inputs) new_height = min(height, self.crop_height) new_width = min(width, self.crop_width) needs_crop = new_height != height or new_width != width offset_height = max(height - self.crop_height, 0) offset_width = max(width - self.crop_width, 0) r = torch.rand(1) top = int(offset_height * r) left = int(offset_width * r) bounding_boxes: Optional[torch.Tensor] try: bounding_boxes = get_bounding_boxes(flat_inputs) except ValueError: bounding_boxes = None if needs_crop and bounding_boxes is not None: format = bounding_boxes.format bounding_boxes, canvas_size = F.crop_bounding_boxes( bounding_boxes.as_subclass(torch.Tensor), format=format, top=top, left=left, height=new_height, width=new_width, ) bounding_boxes = F.clamp_bounding_boxes(bounding_boxes, format=format, canvas_size=canvas_size) height_and_width = F.convert_format_bounding_boxes( bounding_boxes, old_format=format, new_format=datapoints.BoundingBoxFormat.XYWH )[..., 2:] is_valid = torch.all(height_and_width > 0, dim=-1) else: is_valid = None pad_bottom = max(self.crop_height - new_height, 0) pad_right = max(self.crop_width - new_width, 0) needs_pad = pad_bottom != 0 or pad_right != 0 return dict( needs_crop=needs_crop, top=top, left=left, height=new_height, width=new_width, is_valid=is_valid, padding=[0, 0, pad_right, pad_bottom], needs_pad=needs_pad, ) def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any: if params["needs_crop"]: inpt = self._call_kernel( F.crop, inpt, top=params["top"], left=params["left"], height=params["height"], width=params["width"], ) if params["is_valid"] is not None: if isinstance(inpt, (Label, OneHotLabel, datapoints.Mask)): inpt = inpt.wrap_like(inpt, inpt[params["is_valid"]]) # type: ignore[arg-type] elif isinstance(inpt, datapoints.BoundingBoxes): inpt = datapoints.BoundingBoxes.wrap_like( inpt, F.clamp_bounding_boxes(inpt[params["is_valid"]], format=inpt.format, canvas_size=inpt.canvas_size), ) if params["needs_pad"]: fill = _get_fill(self._fill, type(inpt)) inpt = self._call_kernel(F.pad, inpt, params["padding"], fill=fill, padding_mode=self.padding_mode) return inpt
from typing import Any, Dict, List, Optional, Sequence, Type, Union import PIL.Image import torch from torchvision import datapoints from torchvision.prototype.datapoints import Label, OneHotLabel from torchvision.transforms.v2 import functional as F, Transform from torchvision.transforms.v2._utils import _FillType, _get_fill, _setup_fill_arg, _setup_size from torchvision.transforms.v2.utils import get_bounding_boxes, has_any, is_simple_tensor, query_size class FixedSizeCrop(Transform): def __init__( self, size: Union[int, Sequence[int]], fill: Union[_FillType, Dict[Union[Type, str], _FillType]] = 0, padding_mode: str = "constant", ) -> None: super().__init__() size = tuple(_setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")) self.crop_height = size[0] self.crop_width = size[1] self.fill = fill self._fill = _setup_fill_arg(fill) self.padding_mode = padding_mode def _check_inputs(self, flat_inputs: List[Any]) -> None: if not has_any( flat_inputs, PIL.Image.Image, datapoints.Image, is_simple_tensor, datapoints.Video, ): raise TypeError( f"{type(self).__name__}() requires input sample to contain an tensor or PIL image or a Video." ) if has_any(flat_inputs, datapoints.BoundingBoxes) and not has_any(flat_inputs, Label, OneHotLabel): raise TypeError( f"If a BoundingBoxes is contained in the input sample, " f"{type(self).__name__}() also requires it to contain a Label or OneHotLabel." ) def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]: height, width = query_size(flat_inputs) new_height = min(height, self.crop_height) new_width = min(width, self.crop_width) needs_crop = new_height != height or new_width != width offset_height = max(height - self.crop_height, 0) offset_width = max(width - self.crop_width, 0) r = torch.rand(1) top = int(offset_height * r) left = int(offset_width * r) bounding_boxes: Optional[torch.Tensor] try: bounding_boxes = get_bounding_boxes(flat_inputs) except ValueError: bounding_boxes = None if needs_crop and bounding_boxes is not None: format = bounding_boxes.format bounding_boxes, canvas_size = F.crop_bounding_boxes( bounding_boxes.as_subclass(torch.Tensor), format=format, top=top, left=left, height=new_height, width=new_width, ) bounding_boxes = F.clamp_bounding_boxes(bounding_boxes, format=format, canvas_size=canvas_size) height_and_width = F.convert_format_bounding_boxes( bounding_boxes, old_format=format, new_format=datapoints.BoundingBoxFormat.XYWH )[..., 2:] is_valid = torch.all(height_and_width > 0, dim=-1) else: is_valid = None pad_bottom = max(self.crop_height - new_height, 0) pad_right = max(self.crop_width - new_width, 0) needs_pad = pad_bottom != 0 or pad_right != 0 return dict( needs_crop=needs_crop, top=top, left=left, height=new_height, width=new_width, is_valid=is_valid, padding=[0, 0, pad_right, pad_bottom], needs_pad=needs_pad, ) def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any: if params["needs_crop"]: inpt = F.crop( inpt, top=params["top"], left=params["left"], height=params["height"], width=params["width"], ) if params["is_valid"] is not None: if isinstance(inpt, (Label, OneHotLabel, datapoints.Mask)): inpt = inpt.wrap_like(inpt, inpt[params["is_valid"]]) # type: ignore[arg-type] elif isinstance(inpt, datapoints.BoundingBoxes): inpt = datapoints.BoundingBoxes.wrap_like( inpt, F.clamp_bounding_boxes(inpt[params["is_valid"]], format=inpt.format, canvas_size=inpt.canvas_size), ) if params["needs_pad"]: fill = _get_fill(self._fill, type(inpt)) inpt = F.pad(inpt, params["padding"], fill=fill, padding_mode=self.padding_mode) return inpt
from keras.src import backend from keras.src import ops from keras.src.api_export import keras_export from keras.src.layers.layer import Layer @keras_export("keras.layers.AlphaDropout") class AlphaDropout(Layer): """Applies Alpha Dropout to the input. Alpha Dropout is a `Dropout` that keeps mean and variance of inputs to their original values, in order to ensure the self-normalizing property even after this dropout. Alpha Dropout fits well to Scaled Exponential Linear Units (SELU) by randomly setting activations to the negative saturation value. Args: rate: Float between 0 and 1. The multiplicative noise will have standard deviation `sqrt(rate / (1 - rate))`. noise_shape: 1D integer tensor representing the shape of the binary alpha dropout mask that will be multiplied with the input. For instance, if your inputs have shape `(batch_size, timesteps, features)` and you want the alpha dropout mask to be the same for all timesteps, you can use `noise_shape=(batch_size, 1, features)`. seed: A Python integer to use as random seed. Call arguments: inputs: Input tensor (of any rank). training: Python boolean indicating whether the layer should behave in training mode (adding alpha dropout) or in inference mode (doing nothing). """ def __init__(self, rate, noise_shape=None, seed=None, **kwargs): super().__init__(**kwargs) if not 0 <= rate <= 1: raise ValueError( f"Invalid value received for argument " "`rate`. Expected a float value between 0 and 1. " f"Received: rate={rate}" ) self.rate = rate self.seed = seed self.noise_shape = noise_shape if rate > 0: self.seed_generator = backend.random.SeedGenerator(seed) self.supports_masking = True self._build_at_init() def call(self, inputs, training=False): if training and self.rate > 0: noise_shape = self._get_concrete_noise_shape( inputs, self.noise_shape ) alpha = 1.6732632423543772848170429916717 scale = 1.0507009873554804934193349852946 alpha_p = -alpha * scale kept_idx = ops.greater_equal( ops.random.uniform(noise_shape, seed=self.seed_generator), self.rate, ) kept_idx = ops.cast(kept_idx, inputs.dtype) # Compute affine transformation parameters a = ((1 - self.rate) * (1 + self.rate * alpha_p**2)) ** -0.5 b = -a * alpha_p * self.rate # Apply mask x = inputs * kept_idx + alpha_p * (1 - kept_idx) return a * x + b return inputs def compute_output_shape(self, input_shape): return input_shape def _get_concrete_noise_shape(self, inputs, noise_shape): if noise_shape is None: return ops.shape(inputs) concrete_inputs_shape = ops.shape(inputs) concrete_noise_shape = [] for i, value in enumerate(noise_shape): concrete_noise_shape.append( concrete_inputs_shape[i] if value is None else value ) return concrete_noise_shape def get_config(self): base_config = super().get_config() config = { "rate": self.rate, "seed": self.seed, "noise_shape": self.noise_shape, } return {**base_config, **config}
from keras.src import backend from keras.src import ops from keras.src.api_export import keras_export from keras.src.layers.layer import Layer @keras_export("keras.layers.AlphaDropout") class AlphaDropout(Layer): """Applies Alpha Dropout to the input. Alpha Dropout is a `Dropout` that keeps mean and variance of inputs to their original values, in order to ensure the self-normalizing property even after this dropout. Alpha Dropout fits well to Scaled Exponential Linear Units (SELU) by randomly setting activations to the negative saturation value. Args: rate: Float between 0 and 1. The multiplicative noise will have standard deviation `sqrt(rate / (1 - rate))`. noise_shape: 1D integer tensor representing the shape of the binary alpha dropout mask that will be multiplied with the input. For instance, if your inputs have shape `(batch_size, timesteps, features)` and you want the alpha dropout mask to be the same for all timesteps, you can use `noise_shape=(batch_size, 1, features)`. seed: A Python integer to use as random seed. Call arguments: inputs: Input tensor (of any rank). training: Python boolean indicating whether the layer should behave in training mode (adding alpha dropout) or in inference mode (doing nothing). """ def __init__(self, rate, noise_shape=None, seed=None, **kwargs): super().__init__(**kwargs) if not 0 <= rate <= 1: raise ValueError( f"Invalid value received for argument " "`rate`. Expected a float value between 0 and 1. " f"Received: rate={rate}" ) self.rate = rate self.seed = seed self.noise_shape = noise_shape if rate > 0: self.seed_generator = backend.random.SeedGenerator(seed) self.supports_masking = True self.built = True def call(self, inputs, training=False): if training and self.rate > 0: noise_shape = self._get_concrete_noise_shape( inputs, self.noise_shape ) alpha = 1.6732632423543772848170429916717 scale = 1.0507009873554804934193349852946 alpha_p = -alpha * scale kept_idx = ops.greater_equal( ops.random.uniform(noise_shape, seed=self.seed_generator), self.rate, ) kept_idx = ops.cast(kept_idx, inputs.dtype) # Compute affine transformation parameters a = ((1 - self.rate) * (1 + self.rate * alpha_p**2)) ** -0.5 b = -a * alpha_p * self.rate # Apply mask x = inputs * kept_idx + alpha_p * (1 - kept_idx) return a * x + b return inputs def compute_output_shape(self, input_shape): return input_shape def _get_concrete_noise_shape(self, inputs, noise_shape): if noise_shape is None: return ops.shape(inputs) concrete_inputs_shape = ops.shape(inputs) concrete_noise_shape = [] for i, value in enumerate(noise_shape): concrete_noise_shape.append( concrete_inputs_shape[i] if value is None else value ) return concrete_noise_shape def get_config(self): base_config = super().get_config() config = { "rate": self.rate, "seed": self.seed, "noise_shape": self.noise_shape, } return {**base_config, **config}
import builtins import json from typing import Optional, Type from langchain_core.callbacks import AsyncCallbackManagerForToolRun from pydantic import BaseModel, Field from langchain_community.tools.ainetwork.base import AINBaseTool, OperationType class RuleSchema(BaseModel): """Schema for owner operations.""" type: OperationType = Field(...) path: str = Field(..., description="Path on the blockchain where the rule applies") eval: Optional[str] = Field(None, description="eval string to determine permission") class AINRuleOps(AINBaseTool): """Tool for owner operations.""" name: str = "AINruleOps" description: str = """ Covers the write `rule` for the AINetwork Blockchain database. The SET type specifies write permissions using the `eval` variable as a JavaScript eval string. In order to AINvalueOps with SET at the path, the execution result of the `eval` string must be true. ## Path Rules 1. Allowed characters for directory: `[a-zA-Z_0-9]` 2. Use `$<key>` for template variables as directory. ## Eval String Special Variables - auth.addr: Address of the writer for the path - newData: New data for the path - data: Current data for the path - currentTime: Time in seconds - lastBlockNumber: Latest processed block number ## Eval String Functions - getValue(<path>) - getRule(<path>) - getOwner(<path>) - getFunction(<path>) - evalRule(<path>, <value to set>, auth, currentTime) - evalOwner(<path>, 'write_owner', auth) ## SET Example - type: SET - path: /apps/langchain_project_1/$from/$to/$img - eval: auth.addr===$from&&!getValue('/apps/image_db/'+$img) ## GET Example - type: GET - path: /apps/langchain_project_1 """ # noqa: E501 args_schema: Type[BaseModel] = RuleSchema async def _arun( self, type: OperationType, path: str, eval: Optional[str] = None, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: from ain.types import ValueOnlyTransactionInput try: if type is OperationType.SET: if eval is None: raise ValueError("'eval' is required for SET operation.") res = await self.interface.db.ref(path).setRule( transactionInput=ValueOnlyTransactionInput( value={".rule": {"write": eval}} ) ) elif type is OperationType.GET: res = await self.interface.db.ref(path).getRule() else: raise ValueError(f"Unsupported 'type': {type}.") return json.dumps(res, ensure_ascii=False) except Exception as e: return f"{builtins.type(e).__name__}: {str(e)}"
import builtins import json from typing import Optional, Type from langchain_core.callbacks import AsyncCallbackManagerForToolRun from pydantic import BaseModel, Field from langchain_community.tools.ainetwork.base import AINBaseTool, OperationType class RuleSchema(BaseModel): """Schema for owner operations.""" type: OperationType = Field(...) path: str = Field(..., description="Path on the blockchain where the rule applies") eval: Optional[str] = Field(None, description="eval string to determine permission") class AINRuleOps(AINBaseTool): # type: ignore[override, override] """Tool for owner operations.""" name: str = "AINruleOps" description: str = """ Covers the write `rule` for the AINetwork Blockchain database. The SET type specifies write permissions using the `eval` variable as a JavaScript eval string. In order to AINvalueOps with SET at the path, the execution result of the `eval` string must be true. ## Path Rules 1. Allowed characters for directory: `[a-zA-Z_0-9]` 2. Use `$<key>` for template variables as directory. ## Eval String Special Variables - auth.addr: Address of the writer for the path - newData: New data for the path - data: Current data for the path - currentTime: Time in seconds - lastBlockNumber: Latest processed block number ## Eval String Functions - getValue(<path>) - getRule(<path>) - getOwner(<path>) - getFunction(<path>) - evalRule(<path>, <value to set>, auth, currentTime) - evalOwner(<path>, 'write_owner', auth) ## SET Example - type: SET - path: /apps/langchain_project_1/$from/$to/$img - eval: auth.addr===$from&&!getValue('/apps/image_db/'+$img) ## GET Example - type: GET - path: /apps/langchain_project_1 """ # noqa: E501 args_schema: Type[BaseModel] = RuleSchema async def _arun( self, type: OperationType, path: str, eval: Optional[str] = None, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: from ain.types import ValueOnlyTransactionInput try: if type is OperationType.SET: if eval is None: raise ValueError("'eval' is required for SET operation.") res = await self.interface.db.ref(path).setRule( transactionInput=ValueOnlyTransactionInput( value={".rule": {"write": eval}} ) ) elif type is OperationType.GET: res = await self.interface.db.ref(path).getRule() else: raise ValueError(f"Unsupported 'type': {type}.") return json.dumps(res, ensure_ascii=False) except Exception as e: return f"{builtins.type(e).__name__}: {str(e)}"
__all__ = [ "Audio", "Array2D", "Array3D", "Array4D", "Array5D", "ClassLabel", "Features", "LargeList", "Sequence", "Value", "Image", "Translation", "TranslationVariableLanguages", "Video", "Pdf", ] from .audio import Audio from .features import Array2D, Array3D, Array4D, Array5D, ClassLabel, Features, LargeList, Sequence, Value from .image import Image from .pdf import Pdf from .translation import Translation, TranslationVariableLanguages from .video import Video
__all__ = [ "Audio", "Array2D", "Array3D", "Array4D", "Array5D", "ClassLabel", "Features", "LargeList", "Sequence", "Value", "Image", "Translation", "TranslationVariableLanguages", "Video", ] from .audio import Audio from .features import Array2D, Array3D, Array4D, Array5D, ClassLabel, Features, LargeList, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages from .video import Video
"""langchain-core version information and utilities.""" VERSION = "0.3.55"
"""langchain-core version information and utilities.""" VERSION = "0.3.54"
import random import numpy as np import torch import torch.distributed as dist import torch.nn as nn from torch.utils.data import Dataset from transformers import ( HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.testing_utils import ( TestCasePlus, backend_device_count, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_accelerator, run_first, torch_device, ) def gather_from_all_gpus(tensor, world_size): # Prepare a list to gather tensors from all processes gather_list = [torch.zeros_like(tensor) for _ in range(world_size)] dist.all_gather(gather_list, tensor) return gather_list # List of tensors from all ranks class DummyDataset(Dataset): def __init__(self): self.length = 64 def __len__(self): return self.length def __getitem__(self, i) -> int: x = random.random() y = np.random.random() z = torch.rand([]).item() return {"x": torch.tensor([x, y, z])} class DummyModel(nn.Module): def __init__(self): super().__init__() self.fc = nn.Linear(3, 1) def forward(self, x): local_tensor = torch.tensor(x, device=torch_device) gathered = gather_from_all_gpus(local_tensor, dist.get_world_size()) assert not all(torch.allclose(t, gathered[0]) for t in gathered[1:]) y = self.fc(x) return (y.mean(), y) class TestTrainerDistributedWorkerSeed(TestCasePlus): @run_first @require_torch_multi_accelerator def test_trainer(self): device_count = backend_device_count(torch_device) output_dir = self.get_auto_remove_tmp_dir() distributed_args = f"""--nproc_per_node={device_count} --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed_worker_seed.py """.split() args = f"--output_dir {output_dir}".split() cmd = ["torchrun"] + distributed_args + args execute_subprocess_async(cmd, env=self.get_env()) def run_distributed_training(training_args): set_seed(42) model = DummyModel() dataset = DummyDataset() training_args.max_steps = 10 # dataloader_num_workers must be > 0 to enable worker_init_fn training_args.dataloader_num_workers = 2 trainer = Trainer( model, training_args, train_dataset=dataset, ) trainer.train() if __name__ == "__main__": parser = HfArgumentParser((TrainingArguments,)) training_args = parser.parse_args_into_dataclasses()[0] run_distributed_training(training_args)
import random import numpy as np import torch import torch.distributed as dist import torch.nn as nn from torch.utils.data import Dataset from transformers import ( HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.testing_utils import ( TestCasePlus, backend_device_count, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_accelerator, torch_device, ) def gather_from_all_gpus(tensor, world_size): # Prepare a list to gather tensors from all processes gather_list = [torch.zeros_like(tensor) for _ in range(world_size)] dist.all_gather(gather_list, tensor) return gather_list # List of tensors from all ranks class DummyDataset(Dataset): def __init__(self): self.length = 64 def __len__(self): return self.length def __getitem__(self, i) -> int: x = random.random() y = np.random.random() z = torch.rand([]).item() return {"x": torch.tensor([x, y, z])} class DummyModel(nn.Module): def __init__(self): super().__init__() self.fc = nn.Linear(3, 1) def forward(self, x): local_tensor = torch.tensor(x, device=torch_device) gathered = gather_from_all_gpus(local_tensor, dist.get_world_size()) assert not all(torch.allclose(t, gathered[0]) for t in gathered[1:]) y = self.fc(x) return (y.mean(), y) class TestTrainerDistributedWorkerSeed(TestCasePlus): @require_torch_multi_accelerator def test_trainer(self): device_count = backend_device_count(torch_device) output_dir = self.get_auto_remove_tmp_dir() distributed_args = f"""--nproc_per_node={device_count} --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed_worker_seed.py """.split() args = f"--output_dir {output_dir}".split() cmd = ["torchrun"] + distributed_args + args execute_subprocess_async(cmd, env=self.get_env()) def run_distributed_training(training_args): set_seed(42) model = DummyModel() dataset = DummyDataset() training_args.max_steps = 10 # dataloader_num_workers must be > 0 to enable worker_init_fn training_args.dataloader_num_workers = 2 trainer = Trainer( model, training_args, train_dataset=dataset, ) trainer.train() if __name__ == "__main__": parser = HfArgumentParser((TrainingArguments,)) training_args = parser.parse_args_into_dataclasses()[0] run_distributed_training(training_args)
# Copyright (c) OpenMMLab. All rights reserved. from typing import List, Optional, Union from mmcv.cnn import ConvModule from torch import Tensor from mmdet.registry import MODELS from .fcn_mask_head import FCNMaskHead @MODELS.register_module() class HTCMaskHead(FCNMaskHead): """Mask head for HTC. Args: with_conv_res (bool): Whether add conv layer for ``res_feat``. Defaults to True. """ def __init__(self, with_conv_res: bool = True, *args, **kwargs) -> None: super().__init__(*args, **kwargs) self.with_conv_res = with_conv_res if self.with_conv_res: self.conv_res = ConvModule( self.conv_out_channels, self.conv_out_channels, 1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg) def forward(self, x: Tensor, res_feat: Optional[Tensor] = None, return_logits: bool = True, return_feat: bool = True) -> Union[Tensor, List[Tensor]]: """ Args: x (Tensor): Feature map. res_feat (Tensor, optional): Feature for residual connection. Defaults to None. return_logits (bool): Whether return mask logits. Defaults to True. return_feat (bool): Whether return feature map. Defaults to True. Returns: Union[Tensor, List[Tensor]]: The return result is one of three results: res_feat, logits, or [logits, res_feat]. """ assert not (not return_logits and not return_feat) if res_feat is not None: assert self.with_conv_res res_feat = self.conv_res(res_feat) x = x + res_feat for conv in self.convs: x = conv(x) res_feat = x outs = [] if return_logits: x = self.upsample(x) if self.upsample_method == 'deconv': x = self.relu(x) mask_pred = self.conv_logits(x) outs.append(mask_pred) if return_feat: outs.append(res_feat) return outs if len(outs) > 1 else outs[0]
# Copyright (c) OpenMMLab. All rights reserved. from mmcv.cnn import ConvModule from mmdet.registry import MODELS from .fcn_mask_head import FCNMaskHead @MODELS.register_module() class HTCMaskHead(FCNMaskHead): def __init__(self, with_conv_res=True, *args, **kwargs): super(HTCMaskHead, self).__init__(*args, **kwargs) self.with_conv_res = with_conv_res if self.with_conv_res: self.conv_res = ConvModule( self.conv_out_channels, self.conv_out_channels, 1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg) def forward(self, x, res_feat=None, return_logits=True, return_feat=True): if res_feat is not None: assert self.with_conv_res res_feat = self.conv_res(res_feat) x = x + res_feat for conv in self.convs: x = conv(x) res_feat = x outs = [] if return_logits: x = self.upsample(x) if self.upsample_method == 'deconv': x = self.relu(x) mask_pred = self.conv_logits(x) outs.append(mask_pred) if return_feat: outs.append(res_feat) return outs if len(outs) > 1 else outs[0]
from __future__ import annotations __version__ = "3.3.0.dev0" __MODEL_HUB_ORGANIZATION__ = "sentence-transformers" import importlib import os from sentence_transformers.backend import export_dynamic_quantized_onnx_model, export_optimized_onnx_model from sentence_transformers.cross_encoder.CrossEncoder import CrossEncoder from sentence_transformers.datasets import ParallelSentencesDataset, SentencesDataset from sentence_transformers.LoggingHandler import LoggingHandler from sentence_transformers.model_card import SentenceTransformerModelCardData from sentence_transformers.quantization import quantize_embeddings from sentence_transformers.readers import InputExample from sentence_transformers.SentenceTransformer import SentenceTransformer from sentence_transformers.similarity_functions import SimilarityFunction from sentence_transformers.trainer import SentenceTransformerTrainer from sentence_transformers.training_args import SentenceTransformerTrainingArguments # If codecarbon is installed and the log level is not defined, # automatically overwrite the default to "error" if importlib.util.find_spec("codecarbon") and "CODECARBON_LOG_LEVEL" not in os.environ: os.environ["CODECARBON_LOG_LEVEL"] = "error" __all__ = [ "LoggingHandler", "SentencesDataset", "ParallelSentencesDataset", "SentenceTransformer", "SimilarityFunction", "InputExample", "CrossEncoder", "SentenceTransformerTrainer", "SentenceTransformerTrainingArguments", "SentenceTransformerModelCardData", "quantize_embeddings", "export_optimized_onnx_model", "export_dynamic_quantized_onnx_model", ]
from __future__ import annotations __version__ = "3.2.0.dev0" __MODEL_HUB_ORGANIZATION__ = "sentence-transformers" import importlib import os from sentence_transformers.backend import export_dynamic_quantized_onnx_model, export_optimized_onnx_model from sentence_transformers.cross_encoder.CrossEncoder import CrossEncoder from sentence_transformers.datasets import ParallelSentencesDataset, SentencesDataset from sentence_transformers.LoggingHandler import LoggingHandler from sentence_transformers.model_card import SentenceTransformerModelCardData from sentence_transformers.quantization import quantize_embeddings from sentence_transformers.readers import InputExample from sentence_transformers.SentenceTransformer import SentenceTransformer from sentence_transformers.similarity_functions import SimilarityFunction from sentence_transformers.trainer import SentenceTransformerTrainer from sentence_transformers.training_args import SentenceTransformerTrainingArguments # If codecarbon is installed and the log level is not defined, # automatically overwrite the default to "error" if importlib.util.find_spec("codecarbon") and "CODECARBON_LOG_LEVEL" not in os.environ: os.environ["CODECARBON_LOG_LEVEL"] = "error" __all__ = [ "LoggingHandler", "SentencesDataset", "ParallelSentencesDataset", "SentenceTransformer", "SimilarityFunction", "InputExample", "CrossEncoder", "SentenceTransformerTrainer", "SentenceTransformerTrainingArguments", "SentenceTransformerModelCardData", "quantize_embeddings", "export_optimized_onnx_model", "export_dynamic_quantized_onnx_model", ]
from pathlib import Path import h5py import numpy as np import pandas as pd import lightgbm as lgb class HDFSequence(lgb.Sequence): def __init__(self, hdf_dataset, batch_size): """ Construct a sequence object from HDF5 with required interface. Parameters ---------- hdf_dataset : h5py.Dataset Dataset in HDF5 file. batch_size : int Size of a batch. When reading data to construct lightgbm Dataset, each read reads batch_size rows. """ # We can also open HDF5 file once and get access to self.data = hdf_dataset self.batch_size = batch_size def __getitem__(self, idx): return self.data[idx] def __len__(self): return len(self.data) def create_dataset_from_multiple_hdf(input_flist, batch_size): data = [] ylist = [] for f in input_flist: f = h5py.File(f, "r") data.append(HDFSequence(f["X"], batch_size)) ylist.append(f["Y"][:]) params = { "bin_construct_sample_cnt": 200000, "max_bin": 255, } y = np.concatenate(ylist) dataset = lgb.Dataset(data, label=y, params=params) # With binary dataset created, we can use either Python API or cmdline version to train. # # Note: in order to create exactly the same dataset with the one created in simple_example.py, we need # to modify simple_example.py to pass numpy array instead of pandas DataFrame to Dataset constructor. # The reason is that DataFrame column names will be used in Dataset. For a DataFrame with Int64Index # as columns, Dataset will use column names like ["0", "1", "2", ...]. While for numpy array, column names # are using the default one assigned in C++ code (dataset_loader.cpp), like ["Column_0", "Column_1", ...]. dataset.save_binary("regression.train.from_hdf.bin") def save2hdf(input_data, fname, batch_size): """Store numpy array to HDF5 file. Please note chunk size settings in the implementation for I/O performance optimization. """ with h5py.File(fname, "w") as f: for name, data in input_data.items(): nrow, ncol = data.shape if ncol == 1: # Y has a single column and we read it in single shot. So store it as an 1-d array. chunk = (nrow,) data = data.values.flatten() else: # We use random access for data sampling when creating LightGBM Dataset from Sequence. # When accessing any element in a HDF5 chunk, it's read entirely. # To save I/O for sampling, we should keep number of total chunks much larger than sample count. # Here we are just creating a chunk size that matches with batch_size. # # Also note that the data is stored in row major order to avoid extra copy when passing to # lightgbm Dataset. chunk = (batch_size, ncol) f.create_dataset(name, data=data, chunks=chunk, compression="lzf") def generate_hdf(input_fname, output_basename, batch_size): # Save to 2 HDF5 files for demonstration. df = pd.read_csv(input_fname, header=None, sep="\t") mid = len(df) // 2 df1 = df.iloc[:mid] df2 = df.iloc[mid:] # We can store multiple datasets inside a single HDF5 file. # Separating X and Y for choosing best chunk size for data loading. fname1 = f"{output_basename}1.h5" fname2 = f"{output_basename}2.h5" save2hdf({"Y": df1.iloc[:, :1], "X": df1.iloc[:, 1:]}, fname1, batch_size) save2hdf({"Y": df2.iloc[:, :1], "X": df2.iloc[:, 1:]}, fname2, batch_size) return [fname1, fname2] def main(): batch_size = 64 output_basename = "regression" hdf_files = generate_hdf( str(Path(__file__).absolute().parents[1] / "regression" / "regression.train"), output_basename, batch_size ) create_dataset_from_multiple_hdf(hdf_files, batch_size=batch_size) if __name__ == "__main__": main()
from pathlib import Path import h5py import numpy as np import pandas as pd import lightgbm as lgb class HDFSequence(lgb.Sequence): def __init__(self, hdf_dataset, batch_size): """ Construct a sequence object from HDF5 with required interface. Parameters ---------- hdf_dataset : h5py.Dataset Dataset in HDF5 file. batch_size : int Size of a batch. When reading data to construct lightgbm Dataset, each read reads batch_size rows. """ # We can also open HDF5 file once and get access to self.data = hdf_dataset self.batch_size = batch_size def __getitem__(self, idx): return self.data[idx] def __len__(self): return len(self.data) def create_dataset_from_multiple_hdf(input_flist, batch_size): data = [] ylist = [] for f in input_flist: f = h5py.File(f, 'r') data.append(HDFSequence(f['X'], batch_size)) ylist.append(f['Y'][:]) params = { 'bin_construct_sample_cnt': 200000, 'max_bin': 255, } y = np.concatenate(ylist) dataset = lgb.Dataset(data, label=y, params=params) # With binary dataset created, we can use either Python API or cmdline version to train. # # Note: in order to create exactly the same dataset with the one created in simple_example.py, we need # to modify simple_example.py to pass numpy array instead of pandas DataFrame to Dataset constructor. # The reason is that DataFrame column names will be used in Dataset. For a DataFrame with Int64Index # as columns, Dataset will use column names like ["0", "1", "2", ...]. While for numpy array, column names # are using the default one assigned in C++ code (dataset_loader.cpp), like ["Column_0", "Column_1", ...]. dataset.save_binary('regression.train.from_hdf.bin') def save2hdf(input_data, fname, batch_size): """Store numpy array to HDF5 file. Please note chunk size settings in the implementation for I/O performance optimization. """ with h5py.File(fname, 'w') as f: for name, data in input_data.items(): nrow, ncol = data.shape if ncol == 1: # Y has a single column and we read it in single shot. So store it as an 1-d array. chunk = (nrow,) data = data.values.flatten() else: # We use random access for data sampling when creating LightGBM Dataset from Sequence. # When accessing any element in a HDF5 chunk, it's read entirely. # To save I/O for sampling, we should keep number of total chunks much larger than sample count. # Here we are just creating a chunk size that matches with batch_size. # # Also note that the data is stored in row major order to avoid extra copy when passing to # lightgbm Dataset. chunk = (batch_size, ncol) f.create_dataset(name, data=data, chunks=chunk, compression='lzf') def generate_hdf(input_fname, output_basename, batch_size): # Save to 2 HDF5 files for demonstration. df = pd.read_csv(input_fname, header=None, sep='\t') mid = len(df) // 2 df1 = df.iloc[:mid] df2 = df.iloc[mid:] # We can store multiple datasets inside a single HDF5 file. # Separating X and Y for choosing best chunk size for data loading. fname1 = f'{output_basename}1.h5' fname2 = f'{output_basename}2.h5' save2hdf({'Y': df1.iloc[:, :1], 'X': df1.iloc[:, 1:]}, fname1, batch_size) save2hdf({'Y': df2.iloc[:, :1], 'X': df2.iloc[:, 1:]}, fname2, batch_size) return [fname1, fname2] def main(): batch_size = 64 output_basename = 'regression' hdf_files = generate_hdf( str(Path(__file__).absolute().parents[1] / 'regression' / 'regression.train'), output_basename, batch_size ) create_dataset_from_multiple_hdf(hdf_files, batch_size=batch_size) if __name__ == '__main__': main()
from typing import Optional import aiohttp import numpy as np import pytest from docarray import DocumentArray from docarray.document.generators import from_ndarray from jina import Client, Flow from jina.excepts import BadClientCallback def validate(x): raise NotImplementedError @pytest.mark.skip( reason='something wrong with parametrize in the following, setting either False or True work, but combining them does not. see discussion in https://jinaai.slack.com/archives/C018F60RBL5/p1613984424012700?thread_ts=1613954151.005100&cid=C018F60RBL5' ) @pytest.mark.parametrize('protocol', ['websocket', 'grpc', 'http']) def test_client_on_error(protocol): # In this particular test, when you write two tests in a row, you are testing the following case: # # You are testing exception in client's callback, not error in client's request generator # 1. The exception breaks the `async for req in stub.Call(req_iter)` on the client # 2. Server probably has something hold in the stream # 3. Restart the client, keep server untouched. # 4. Now, server stucks (because it considers the last connection wasn't end yet) def validate(x): raise NotImplementedError with Flow(protocol=protocol).add() as f: t = 0 try: f.index( from_ndarray(np.random.random([5, 4])), on_done=validate, continue_on_error=False, ) except BadClientCallback: # bad client callback will break the `async for req in stub.Call(req_iter)` t = 1 # now query the gateway again, make sure gateway's channel is still usable f.index( from_ndarray(np.random.random([5, 4])), on_done=validate, continue_on_error=True, ) assert t == 1 @pytest.mark.parametrize( 'protocol,exception', [ ('websocket', aiohttp.ClientError), ('grpc', ConnectionError), ('http', aiohttp.ClientError), ], ) def test_client_on_error_call(protocol, exception): with pytest.raises(exception): Client(host='0.0.0.0', protocol=protocol, port=12345).post( '/blah', inputs=DocumentArray.empty(10), ) @pytest.mark.parametrize( 'protocol,exception', [ ('websocket', aiohttp.client_exceptions.ClientConnectorError), ('grpc', ConnectionError), ('http', aiohttp.client_exceptions.ClientConnectorError), ], ) def test_client_on_error_raise_exception(protocol, exception): with pytest.raises(exception): Client(host='0.0.0.0', protocol=protocol, port=12345).post( '/blah', inputs=DocumentArray.empty(10), )
from typing import Optional import aiohttp import numpy as np import pytest from docarray.document.generators import from_ndarray from docarray import DocumentArray from jina import Client, Flow from jina.excepts import BadClientCallback def validate(x): raise NotImplementedError @pytest.mark.skip( reason='something wrong with parametrize in the following, setting either False or True work, but combining them does not. see discussion in https://jinaai.slack.com/archives/C018F60RBL5/p1613984424012700?thread_ts=1613954151.005100&cid=C018F60RBL5' ) @pytest.mark.parametrize('protocol', ['websocket', 'grpc', 'http']) def test_client_on_error(protocol): # In this particular test, when you write two tests in a row, you are testing the following case: # # You are testing exception in client's callback, not error in client's request generator # 1. The exception breaks the `async for req in stub.Call(req_iter)` on the client # 2. Server probably has something hold in the stream # 3. Restart the client, keep server untouched. # 4. Now, server stucks (because it considers the last connection wasn't end yet) def validate(x): raise NotImplementedError with Flow(protocol=protocol).add() as f: t = 0 try: f.index( from_ndarray(np.random.random([5, 4])), on_done=validate, continue_on_error=False, ) except BadClientCallback: # bad client callback will break the `async for req in stub.Call(req_iter)` t = 1 # now query the gateway again, make sure gateway's channel is still usable f.index( from_ndarray(np.random.random([5, 4])), on_done=validate, continue_on_error=True, ) assert t == 1 @pytest.mark.parametrize( 'protocol,exception', [ ('websocket', aiohttp.ClientError), ('grpc', ConnectionError), ('http', aiohttp.ClientError), ], ) def test_client_on_error_call(protocol, exception): with pytest.raises(exception): Client(host='0.0.0.0', protocol=protocol, port=12345).post( '/blah', inputs=DocumentArray.empty(10), ) @pytest.mark.parametrize( 'protocol,exception', [ ('websocket', aiohttp.client_exceptions.ClientConnectorError), ('grpc', ConnectionError), ('http', aiohttp.client_exceptions.ClientConnectorError), ], ) def test_client_on_error_raise_exception(protocol, exception): class OnError: def __init__(self): self.is_called = False def __call__(self, response, exception_param: Optional[Exception] = None): self.is_called = True assert type(exception_param) == exception on_error = OnError() Client(host='0.0.0.0', protocol=protocol, port=12345).post( '/blah', inputs=DocumentArray.empty(10), on_error=on_error, ) assert on_error.is_called @pytest.mark.parametrize('protocol', ['websocket', 'grpc', 'http']) def test_client_on_error_deprecation(protocol): class OnError: def __init__(self): self.is_called = False def __call__(self, response): # this is deprecated self.is_called = True on_error = OnError() Client(host='0.0.0.0', protocol=protocol, port=12345).post( '/blah', inputs=DocumentArray.empty(10), on_error=on_error, ) assert on_error.is_called @pytest.mark.parametrize('protocol', ['websocket', 'grpc', 'http']) def test_client_on_always_after_exception(protocol): class OnAlways: def __init__(self): self.is_called = False def __call__(self, response): self.is_called = True on_always = OnAlways() Client(host='0.0.0.0', protocol=protocol, port=12345).post( '/blah', inputs=DocumentArray.empty(10), on_always=on_always, ) assert on_always.is_called
from collections import Counter from typing import Tuple, Dict, Union, Optional, TYPE_CHECKING import numpy as np from docarray.document.mixins.helper import _uri_to_blob, _to_datauri if TYPE_CHECKING: from docarray.typing import T class TextDataMixin: """Provide helper functions for :class:`Document` to support text data.""" def load_uri_to_text(self: 'T', charset: str = 'utf-8', **kwargs) -> 'T': """Convert :attr:`.uri` to :attr`.text` inplace. :param charset: charset may be any character set registered with IANA :param kwargs: keyword arguments to pass to `:meth:_uri_to_blob` such as timeout :return: itself after processed """ blob = _uri_to_blob(self.uri, **kwargs) self.text = blob.decode(charset) return self def get_vocabulary(self, text_attrs: Tuple[str, ...] = ('text',)) -> Dict[str, int]: """Get the text vocabulary in a counter dict that maps from the word to its frequency from all :attr:`text_fields`. :param text_attrs: the textual attributes where vocabulary will be derived from :return: a vocabulary in dictionary where key is the word, value is the frequency of that word in all text fields. """ all_tokens = Counter() for f in text_attrs: all_tokens.update(_text_to_word_sequence(getattr(self, f))) return all_tokens def convert_text_to_tensor( self: 'T', vocab: Dict[str, int], max_length: Optional[int] = None, dtype: str = 'int64', ) -> 'T': """Convert :attr:`.text` to :attr:`.tensor` inplace. In the end :attr:`.tensor` will be a 1D array where `D` is `max_length`. To get the vocab of a DocumentArray, you can use `jina.types.document.converters.build_vocab` to :param vocab: a dictionary that maps a word to an integer index, `0` is reserved for padding, `1` is reserved for unknown words in :attr:`.text`. So you should *not* include these two entries in `vocab`. :param max_length: the maximum length of the sequence. Sequence longer than this are cut off from *beginning*. Sequence shorter than this will be padded with `0` from right hand side. :param dtype: the dtype of the generated :attr:`.tensor` :return: Document itself after processed """ self.tensor = np.array( _text_to_int_sequence(self.text, vocab, max_length), dtype=dtype ) return self def convert_tensor_to_text( self: 'T', vocab: Union[Dict[str, int], Dict[int, str]], delimiter: str = ' ' ) -> 'T': """Convert :attr:`.tensor` to :attr:`.text` inplace. :param vocab: a dictionary that maps a word to an integer index, `0` is reserved for padding, `1` is reserved for unknown words in :attr:`.text` :param delimiter: the delimiter that used to connect all words into :attr:`.text` :return: Document itself after processed """ if isinstance(list(vocab.keys())[0], str): _vocab = {v: k for k, v in vocab.items()} _text = [] for k in self.tensor: k = int(k) if k == 0: continue elif k == 1: _text.append('<UNK>') else: _text.append(_vocab.get(k, '<UNK>')) self.text = delimiter.join(_text) return self def convert_text_to_datauri( self: 'T', charset: str = 'utf-8', base64: bool = False ) -> 'T': """Convert :attr:`.text` to data :attr:`.uri`. :param charset: charset may be any character set registered with IANA :param base64: used to encode arbitrary octet sequences into a form that satisfies the rules of 7bit. Designed to be efficient for non-text 8 bit and binary data. Sometimes used for text data that frequently uses non-US-ASCII characters. :return: itself after processed """ self.uri = _to_datauri(self.mime_type, self.text, charset, base64, binary=False) return self def _text_to_word_sequence( text, filters='!"#$%&()*+,-./:;<=>?@[\\]^_`{|}~\t\n', split=' ' ): translate_dict = {c: split for c in filters} translate_map = str.maketrans(translate_dict) text = text.lower().translate(translate_map) seq = text.split(split) for i in seq: if i: yield i def _text_to_int_sequence(text, vocab, max_len=None): seq = _text_to_word_sequence(text) vec = [vocab.get(s, 1) for s in seq] if max_len: if len(vec) < max_len: vec = [0] * (max_len - len(vec)) + vec elif len(vec) > max_len: vec = vec[-max_len:] return vec
from collections import Counter from typing import Tuple, Dict, Union, Optional, TYPE_CHECKING import numpy as np from docarray.document.mixins.helper import _uri_to_blob, _to_datauri if TYPE_CHECKING: from docarray.typing import T class TextDataMixin: """Provide helper functions for :class:`Document` to support text data.""" def load_uri_to_text(self: 'T', charset: str = 'utf-8') -> 'T': """Convert :attr:`.uri` to :attr`.text` inplace. :param charset: charset may be any character set registered with IANA :return: itself after processed """ blob = _uri_to_blob(self.uri) self.text = blob.decode(charset) return self def get_vocabulary(self, text_attrs: Tuple[str, ...] = ('text',)) -> Dict[str, int]: """Get the text vocabulary in a counter dict that maps from the word to its frequency from all :attr:`text_fields`. :param text_attrs: the textual attributes where vocabulary will be derived from :return: a vocabulary in dictionary where key is the word, value is the frequency of that word in all text fields. """ all_tokens = Counter() for f in text_attrs: all_tokens.update(_text_to_word_sequence(getattr(self, f))) return all_tokens def convert_text_to_tensor( self: 'T', vocab: Dict[str, int], max_length: Optional[int] = None, dtype: str = 'int64', ) -> 'T': """Convert :attr:`.text` to :attr:`.tensor` inplace. In the end :attr:`.tensor` will be a 1D array where `D` is `max_length`. To get the vocab of a DocumentArray, you can use `jina.types.document.converters.build_vocab` to :param vocab: a dictionary that maps a word to an integer index, `0` is reserved for padding, `1` is reserved for unknown words in :attr:`.text`. So you should *not* include these two entries in `vocab`. :param max_length: the maximum length of the sequence. Sequence longer than this are cut off from *beginning*. Sequence shorter than this will be padded with `0` from right hand side. :param dtype: the dtype of the generated :attr:`.tensor` :return: Document itself after processed """ self.tensor = np.array( _text_to_int_sequence(self.text, vocab, max_length), dtype=dtype ) return self def convert_tensor_to_text( self: 'T', vocab: Union[Dict[str, int], Dict[int, str]], delimiter: str = ' ' ) -> 'T': """Convert :attr:`.tensor` to :attr:`.text` inplace. :param vocab: a dictionary that maps a word to an integer index, `0` is reserved for padding, `1` is reserved for unknown words in :attr:`.text` :param delimiter: the delimiter that used to connect all words into :attr:`.text` :return: Document itself after processed """ if isinstance(list(vocab.keys())[0], str): _vocab = {v: k for k, v in vocab.items()} _text = [] for k in self.tensor: k = int(k) if k == 0: continue elif k == 1: _text.append('<UNK>') else: _text.append(_vocab.get(k, '<UNK>')) self.text = delimiter.join(_text) return self def convert_text_to_datauri( self: 'T', charset: str = 'utf-8', base64: bool = False ) -> 'T': """Convert :attr:`.text` to data :attr:`.uri`. :param charset: charset may be any character set registered with IANA :param base64: used to encode arbitrary octet sequences into a form that satisfies the rules of 7bit. Designed to be efficient for non-text 8 bit and binary data. Sometimes used for text data that frequently uses non-US-ASCII characters. :return: itself after processed """ self.uri = _to_datauri(self.mime_type, self.text, charset, base64, binary=False) return self def _text_to_word_sequence( text, filters='!"#$%&()*+,-./:;<=>?@[\\]^_`{|}~\t\n', split=' ' ): translate_dict = {c: split for c in filters} translate_map = str.maketrans(translate_dict) text = text.lower().translate(translate_map) seq = text.split(split) for i in seq: if i: yield i def _text_to_int_sequence(text, vocab, max_len=None): seq = _text_to_word_sequence(text) vec = [vocab.get(s, 1) for s in seq] if max_len: if len(vec) < max_len: vec = [0] * (max_len - len(vec)) + vec elif len(vec) > max_len: vec = vec[-max_len:] return vec
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import os import librosa from jina import Flow, Document, DocumentArray from ...vggish import vggish_input from ...vggish_audio_encoder import VggishAudioEncoder cur_dir = os.path.dirname(os.path.abspath(__file__)) def test_flow_from_yml(): doc = DocumentArray([Document()]) with Flow.load_config(os.path.join(cur_dir, 'flow.yml')) as f: resp = f.post(on='test', inputs=doc, return_results=True) assert resp is not None def test_embedding_exists(): x_audio, sample_rate = librosa.load(os.path.join(cur_dir, '../test_data/sample.wav')) log_mel_examples = vggish_input.waveform_to_examples(x_audio, sample_rate) doc = DocumentArray([Document(blob=log_mel_examples)]) with Flow.load_config(os.path.join(cur_dir, 'flow.yml')) as f: responses = f.post(on='index', inputs=doc, return_results=True) assert responses[0].docs[0].embedding is not None
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import os import librosa from jina import Flow, Document, DocumentArray from vggish import vggish_input try: from vggish_audio_encoder import VggishAudioEncoder except: from jinahub.encoders.audio.vggish_audio_encoder import VggishAudioEncoder cur_dir = os.path.dirname(os.path.abspath(__file__)) def test_flow_from_yml(): doc = DocumentArray([Document()]) with Flow.load_config(os.path.join(cur_dir, 'flow.yml')) as f: resp = f.post(on='test', inputs=doc, return_results=True) assert resp is not None def test_embedding_exists(): x_audio, sample_rate = librosa.load(os.path.join(cur_dir, '../test_data/sample.wav')) log_mel_examples = vggish_input.waveform_to_examples(x_audio, sample_rate) doc = DocumentArray([Document(blob=log_mel_examples)]) with Flow.load_config(os.path.join(cur_dir, 'flow.yml')) as f: responses = f.post(on='index', inputs=doc, return_results=True) assert responses[0].docs[0].embedding is not None
import random import numpy as np import pytest from catboost_ranker import CatboostRanker from jina import Document, DocumentArray NUM_DOCS = 1000 NUM_MATCHES = 5 @pytest.fixture def ranker(): return CatboostRanker( query_features=['brand', 'price'], match_features=['brand', 'price'], relevance_label='relevance', ) @pytest.fixture def ranker_with_weight(): return CatboostRanker( query_features=['brand', 'price'], match_features=['brand', 'price'], relevance_label='relevance', weight='weight', ) @pytest.fixture def relevances(): return np.random.uniform(0, 1, [1, NUM_DOCS]).flatten() @pytest.fixture def documents_to_train_stub_model(relevances): """features: color, brand, price. Label relevance""" # initial stub model, relevance purely dependent on brand, not price. # brand relevance 5 > 4 > 3 > 2 > 1. da = DocumentArray() bins = np.array([0.0, 0.2, 0.4, 0.6, 0.8, 1.0]) inds = np.digitize(relevances, bins) for brand, relevance in zip(inds, relevances): doc = Document( tags={ 'brand': int(brand), 'price': random.randint(50, 200), 'weight': random.uniform(0, 1), } ) for _ in range(NUM_MATCHES): # each match has an extra relevance field indicates score. doc.matches.append( Document( tags={ 'brand': int(brand), 'price': random.randint(50, 200), 'relevance': float(relevance), } ) ) da.append(doc) return da @pytest.fixture def documents_to_train_price_sensitive_model(): """features: color, brand, price. Label relevance""" # price sensitive, relevance based on pure price, cheaper relevance higher. da = DocumentArray() for _ in range(NUM_DOCS): root = Document(tags={'price': random.randint(200, 500), 'brand': 1}) for _ in range(NUM_MATCHES): root_price = root.tags['price'] root.matches.extend( [ Document( tags={'price': root_price - 100, 'brand': 3, 'relevance': 0.8} ), Document(tags={'price': root_price, 'brand': 3, 'relevance': 0.6}), Document( tags={'price': root_price + 100, 'brand': 3, 'relevance': 0.4} ), Document( tags={'price': root_price + 200, 'brand': 3, 'relevance': 0.2} ), ] ) da.append(root) return da @pytest.fixture def documents_without_label_random_price(): """features: color, brand, price. Label relevance""" # expect 5 > 3 > 1 # expect price da = DocumentArray() d1 = Document(tags={'brand': random.randint(0, 5), 'price': 200}) d1.matches.append(Document(tags={'brand': random.randint(0, 5), 'price': 196})) d1.matches.append(Document(tags={'brand': random.randint(0, 5), 'price': 100})) d1.matches.append(Document(tags={'brand': random.randint(0, 5), 'price': 50})) da.append(d1) return da @pytest.fixture def documents_without_label_random_brand(): """features: color, brand, price. Label relevance""" # expect price da = DocumentArray() d1 = Document(tags={'brand': 2, 'price': 200}) d1.matches.append(Document(id=1, tags={'brand': 2, 'price': 405})) d1.matches.append(Document(id=2, tags={'brand': 2, 'price': 305})) d1.matches.append(Document(id=3, tags={'brand': 2, 'price': 96})) d1.matches.append(Document(id=4, tags={'brand': 2, 'price': 200})) da.append(d1) return da
import random import numpy as np import pytest from jina import Document, DocumentArray from ..catboost_ranker import CatboostRanker NUM_DOCS = 1000 NUM_MATCHES = 5 @pytest.fixture def ranker(): return CatboostRanker( query_features=['brand', 'price'], match_features=['brand', 'price'], relevance_label='relevance', ) @pytest.fixture def ranker_with_weight(): return CatboostRanker( query_features=['brand', 'price'], match_features=['brand', 'price'], relevance_label='relevance', weight='weight', ) @pytest.fixture def relevances(): return np.random.uniform(0, 1, [1, NUM_DOCS]).flatten() @pytest.fixture def documents_to_train_stub_model(relevances): """features: color, brand, price. Label relevance""" # initial stub model, relevance purely dependent on brand, not price. # brand relevance 5 > 4 > 3 > 2 > 1. da = DocumentArray() bins = np.array([0.0, 0.2, 0.4, 0.6, 0.8, 1.0]) inds = np.digitize(relevances, bins) for brand, relevance in zip(inds, relevances): doc = Document( tags={ 'brand': int(brand), 'price': random.randint(50, 200), 'weight': random.uniform(0, 1), } ) for _ in range(NUM_MATCHES): # each match has an extra relevance field indicates score. doc.matches.append( Document( tags={ 'brand': int(brand), 'price': random.randint(50, 200), 'relevance': float(relevance), } ) ) da.append(doc) return da @pytest.fixture def documents_to_train_price_sensitive_model(): """features: color, brand, price. Label relevance""" # price sensitive, relevance based on pure price, cheaper relevance higher. da = DocumentArray() for _ in range(NUM_DOCS): root = Document(tags={'price': random.randint(200, 500), 'brand': 1}) for _ in range(NUM_MATCHES): root_price = root.tags['price'] root.matches.extend( [ Document( tags={'price': root_price - 100, 'brand': 3, 'relevance': 0.8} ), Document(tags={'price': root_price, 'brand': 3, 'relevance': 0.6}), Document( tags={'price': root_price + 100, 'brand': 3, 'relevance': 0.4} ), Document( tags={'price': root_price + 200, 'brand': 3, 'relevance': 0.2} ), ] ) da.append(root) return da @pytest.fixture def documents_without_label_random_price(): """features: color, brand, price. Label relevance""" # expect 5 > 3 > 1 # expect price da = DocumentArray() d1 = Document(tags={'brand': random.randint(0, 5), 'price': 200}) d1.matches.append(Document(tags={'brand': random.randint(0, 5), 'price': 196})) d1.matches.append(Document(tags={'brand': random.randint(0, 5), 'price': 100})) d1.matches.append(Document(tags={'brand': random.randint(0, 5), 'price': 50})) da.append(d1) return da @pytest.fixture def documents_without_label_random_brand(): """features: color, brand, price. Label relevance""" # expect price da = DocumentArray() d1 = Document(tags={'brand': 2, 'price': 200}) d1.matches.append(Document(id=1, tags={'brand': 2, 'price': 405})) d1.matches.append(Document(id=2, tags={'brand': 2, 'price': 305})) d1.matches.append(Document(id=3, tags={'brand': 2, 'price': 96})) d1.matches.append(Document(id=4, tags={'brand': 2, 'price': 200})) da.append(d1) return da
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning) # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method _set_start_method('fork') # do not change this line manually # this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.15.3' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.27' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning) # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method _set_start_method('fork') # do not change this line manually # this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.15.3' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.17' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
# Copyright (c) OpenMMLab. All rights reserved. import argparse from typing import Tuple import cv2 import mmcv import numpy as np import torch import torch.nn as nn from mmcv.transforms import Compose from mmengine.utils import track_iter_progress from mmdet.apis import init_detector from mmdet.registry import VISUALIZERS from mmdet.structures import DetDataSample try: import ffmpegcv except ImportError: raise ImportError( 'Please install ffmpegcv with:\n\n pip install ffmpegcv') def parse_args(): parser = argparse.ArgumentParser( description='MMDetection video demo with GPU acceleration') parser.add_argument('video', help='Video file') parser.add_argument('config', help='Config file') parser.add_argument('checkpoint', help='Checkpoint file') parser.add_argument( '--device', default='cuda:0', help='Device used for inference') parser.add_argument( '--score-thr', type=float, default=0.3, help='Bbox score threshold') parser.add_argument('--out', type=str, help='Output video file') parser.add_argument('--show', action='store_true', help='Show video') parser.add_argument( '--nvdecode', action='store_true', help='Use NVIDIA decoder') parser.add_argument( '--wait-time', type=float, default=1, help='The interval of show (s), 0 is block') args = parser.parse_args() return args def prefetch_batch_input_shape(model: nn.Module, ori_wh: Tuple[int, int]) -> dict: cfg = model.cfg w, h = ori_wh cfg.test_dataloader.dataset.pipeline[0].type = 'LoadImageFromNDArray' test_pipeline = Compose(cfg.test_dataloader.dataset.pipeline) data = {'img': np.zeros((h, w, 3), dtype=np.uint8), 'img_id': 0} data = test_pipeline(data) _, data_sample = model.data_preprocessor([data], False) batch_input_shape = data_sample[0].batch_input_shape return batch_input_shape def pack_data(frame_resize: np.ndarray, batch_input_shape: Tuple[int, int], ori_shape: Tuple[int, int]) -> dict: assert frame_resize.shape[:2] == batch_input_shape data_sample = DetDataSample() data_sample.set_metainfo({ 'img_shape': batch_input_shape, 'ori_shape': ori_shape, 'scale_factor': (batch_input_shape[0] / ori_shape[0], batch_input_shape[1] / ori_shape[1]) }) frame_resize = torch.from_numpy(frame_resize).permute((2, 0, 1)) data = {'inputs': frame_resize, 'data_sample': data_sample} return data def main(): args = parse_args() assert args.out or args.show, \ ('Please specify at least one operation (save/show the ' 'video) with the argument "--out" or "--show"') model = init_detector(args.config, args.checkpoint, device=args.device) # init visualizer visualizer = VISUALIZERS.build(model.cfg.visualizer) # the dataset_meta is loaded from the checkpoint and # then pass to the model in init_detector visualizer.dataset_meta = model.dataset_meta if args.nvdecode: VideoCapture = ffmpegcv.VideoCaptureNV else: VideoCapture = ffmpegcv.VideoCapture video_origin = VideoCapture(args.video) batch_input_shape = prefetch_batch_input_shape( model, (video_origin.width, video_origin.height)) ori_shape = (video_origin.height, video_origin.width) resize_wh = batch_input_shape[::-1] video_resize = VideoCapture( args.video, resize=resize_wh, resize_keepratio=True, resize_keepratioalign='topleft') video_writer = None if args.out: video_writer = ffmpegcv.VideoWriter(args.out, fps=video_origin.fps) with torch.no_grad(): for i, (frame_resize, frame_origin) in enumerate( zip(track_iter_progress(video_resize), video_origin)): data = pack_data(frame_resize, batch_input_shape, ori_shape) result = model.test_step([data])[0] visualizer.add_datasample( name='video', image=frame_origin, data_sample=result, draw_gt=False, show=False, pred_score_thr=args.score_thr) frame_mask = visualizer.get_image() if args.show: cv2.namedWindow('video', 0) mmcv.imshow(frame_mask, 'video', args.wait_time) if args.out: video_writer.write(frame_mask) if video_writer: video_writer.release() video_origin.release() video_resize.release() cv2.destroyAllWindows() if __name__ == '__main__': main()
# Copyright (c) OpenMMLab. All rights reserved. import argparse from typing import Tuple import cv2 import mmcv import numpy as np import torch import torch.nn as nn from mmcv.transforms import Compose from mmengine.utils import track_iter_progress from mmdet.apis import init_detector from mmdet.registry import VISUALIZERS from mmdet.structures import DetDataSample from mmdet.utils import register_all_modules try: import ffmpegcv except ImportError: raise ImportError( 'Please install ffmpegcv with:\n\n pip install ffmpegcv') def parse_args(): parser = argparse.ArgumentParser( description='MMDetection video demo with GPU acceleration') parser.add_argument('video', help='Video file') parser.add_argument('config', help='Config file') parser.add_argument('checkpoint', help='Checkpoint file') parser.add_argument( '--device', default='cuda:0', help='Device used for inference') parser.add_argument( '--score-thr', type=float, default=0.3, help='Bbox score threshold') parser.add_argument('--out', type=str, help='Output video file') parser.add_argument('--show', action='store_true', help='Show video') parser.add_argument( '--nvdecode', action='store_true', help='Use NVIDIA decoder') parser.add_argument( '--wait-time', type=float, default=1, help='The interval of show (s), 0 is block') args = parser.parse_args() return args def prefetch_batch_input_shape(model: nn.Module, ori_wh: Tuple[int, int]) -> dict: cfg = model.cfg w, h = ori_wh cfg.test_dataloader.dataset.pipeline[0].type = 'LoadImageFromNDArray' test_pipeline = Compose(cfg.test_dataloader.dataset.pipeline) data = {'img': np.zeros((h, w, 3), dtype=np.uint8), 'img_id': 0} data = test_pipeline(data) _, data_sample = model.data_preprocessor([data], False) batch_input_shape = data_sample[0].batch_input_shape return batch_input_shape def pack_data(frame_resize: np.ndarray, batch_input_shape: Tuple[int, int], ori_shape: Tuple[int, int]) -> dict: assert frame_resize.shape[:2] == batch_input_shape data_sample = DetDataSample() data_sample.set_metainfo({ 'img_shape': batch_input_shape, 'ori_shape': ori_shape, 'scale_factor': (batch_input_shape[0] / ori_shape[0], batch_input_shape[1] / ori_shape[1]) }) frame_resize = torch.from_numpy(frame_resize).permute((2, 0, 1)) data = {'inputs': frame_resize, 'data_sample': data_sample} return data def main(): args = parse_args() assert args.out or args.show, \ ('Please specify at least one operation (save/show the ' 'video) with the argument "--out" or "--show"') # register all modules in mmdet into the registries register_all_modules() model = init_detector(args.config, args.checkpoint, device=args.device) # init visualizer visualizer = VISUALIZERS.build(model.cfg.visualizer) # the dataset_meta is loaded from the checkpoint and # then pass to the model in init_detector visualizer.dataset_meta = model.dataset_meta if args.nvdecode: VideoCapture = ffmpegcv.VideoCaptureNV else: VideoCapture = ffmpegcv.VideoCapture video_origin = VideoCapture(args.video) batch_input_shape = prefetch_batch_input_shape( model, (video_origin.width, video_origin.height)) ori_shape = (video_origin.height, video_origin.width) resize_wh = batch_input_shape[::-1] video_resize = VideoCapture( args.video, resize=resize_wh, resize_keepratio=True, resize_keepratioalign='topleft') video_writer = None if args.out: video_writer = ffmpegcv.VideoWriter(args.out, fps=video_origin.fps) with torch.no_grad(): for i, (frame_resize, frame_origin) in enumerate( zip(track_iter_progress(video_resize), video_origin)): data = pack_data(frame_resize, batch_input_shape, ori_shape) result = model.test_step([data])[0] visualizer.add_datasample( name='video', image=frame_origin, data_sample=result, draw_gt=False, show=False, pred_score_thr=args.score_thr) frame_mask = visualizer.get_image() if args.show: cv2.namedWindow('video', 0) mmcv.imshow(frame_mask, 'video', args.wait_time) if args.out: video_writer.write(frame_mask) if video_writer: video_writer.release() video_origin.release() video_resize.release() cv2.destroyAllWindows() if __name__ == '__main__': main()
from typing import Any, Optional, Type, TypeVar, Union import numpy as np from docarray.base_document import BaseDocument from docarray.typing import AnyEmbedding, AudioUrl from docarray.typing.bytes.audio_bytes import AudioBytes from docarray.typing.tensor.abstract_tensor import AbstractTensor from docarray.typing.tensor.audio.audio_tensor import AudioTensor try: import torch torch_available = True except ImportError: torch_available = False T = TypeVar('T', bound='Audio') class Audio(BaseDocument): """ Document for handling audios. The Audio Document can contain an AudioUrl (`Audio.url`), an AudioTensor (`Audio.tensor`), and an AnyEmbedding (`Audio.embedding`). EXAMPLE USAGE: You can use this Document directly: .. code-block:: python from docarray.documents import Audio # use it directly audio = Audio( url='https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/hello.wav?raw=true' ) audio.tensor = audio.url.load() model = MyEmbeddingModel() audio.embedding = model(audio.tensor) You can extend this Document: .. code-block:: python from docarray.documents import Audio, Text from typing import Optional # extend it class MyAudio(Audio): name: Optional[Text] audio = MyAudio( url='https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/hello.wav?raw=true' ) audio.tensor = audio.url.load() model = MyEmbeddingModel() audio.embedding = model(audio.tensor) audio.name = Text(text='my first audio') You can use this Document for composition: .. code-block:: python from docarray import BaseDocument from docarray.documents import Audio, Text # compose it class MultiModalDoc(Document): audio: Audio text: Text mmdoc = MultiModalDoc( audio=Audio( url='https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/hello.wav?raw=true' ), text=Text(text='hello world, how are you doing?'), ) mmdoc.audio.tensor = mmdoc.audio.url.load() # equivalent to mmdoc.audio.bytes = mmdoc.audio.url.load_bytes() mmdoc.audio.tensor = mmdoc.audio.bytes.load() """ url: Optional[AudioUrl] tensor: Optional[AudioTensor] embedding: Optional[AnyEmbedding] bytes: Optional[AudioBytes] @classmethod def validate( cls: Type[T], value: Union[str, AbstractTensor, Any], ) -> T: if isinstance(value, str): value = cls(url=value) elif isinstance(value, (AbstractTensor, np.ndarray)) or ( torch_available and isinstance(value, torch.Tensor) ): value = cls(tensor=value) return super().validate(value)
from typing import Any, Optional, Type, TypeVar, Union import numpy as np from docarray.base_document import BaseDocument from docarray.typing import AnyEmbedding, AudioUrl from docarray.typing.tensor.abstract_tensor import AbstractTensor from docarray.typing.tensor.audio.audio_tensor import AudioTensor try: import torch torch_available = True except ImportError: torch_available = False T = TypeVar('T', bound='Audio') class Audio(BaseDocument): """ Document for handling audios. The Audio Document can contain an AudioUrl (`Audio.url`), an AudioTensor (`Audio.tensor`), and an AnyEmbedding (`Audio.embedding`). EXAMPLE USAGE: You can use this Document directly: .. code-block:: python from docarray.documents import Audio # use it directly audio = Audio( url='https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/hello.wav?raw=true' ) audio.tensor = audio.url.load() model = MyEmbeddingModel() audio.embedding = model(audio.tensor) You can extend this Document: .. code-block:: python from docarray.documents import Audio, Text from typing import Optional # extend it class MyAudio(Audio): name: Optional[Text] audio = MyAudio( url='https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/hello.wav?raw=true' ) audio.tensor = audio.url.load() model = MyEmbeddingModel() audio.embedding = model(audio.tensor) audio.name = Text(text='my first audio') You can use this Document for composition: .. code-block:: python from docarray import BaseDocument from docarray.documents import Audio, Text # compose it class MultiModalDoc(Document): audio: Audio text: Text mmdoc = MultiModalDoc( audio=Audio( url='https://github.com/docarray/docarray/blob/feat-rewrite-v2/tests/toydata/hello.wav?raw=true' ), text=Text(text='hello world, how are you doing?'), ) mmdoc.audio.tensor = mmdoc.audio.url.load() """ url: Optional[AudioUrl] tensor: Optional[AudioTensor] embedding: Optional[AnyEmbedding] @classmethod def validate( cls: Type[T], value: Union[str, AbstractTensor, Any], ) -> T: if isinstance(value, str): value = cls(url=value) elif isinstance(value, (AbstractTensor, np.ndarray)) or ( torch_available and isinstance(value, torch.Tensor) ): value = cls(tensor=value) return super().validate(value)
"""RTF (Rich Text Format) reader.""" from pathlib import Path from typing import List, Union, Any, Dict, Optional from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document class RTFReader(BaseReader): """RTF (Rich Text Format) Reader. Reads rtf file and convert to Document.""" def load_data( self, input_file: Union[Path, str], extra_info: Optional[Dict[str, Any]] = None, **load_kwargs: Any, ) -> List[Document]: """ Load data from RTF file. Args: input_file (Path | str): Path for the RTF file. extra_info (Dict[str, Any]): Path for the RTF file. Returns: List[Document]: List of documents. """ try: from striprtf.striprtf import rtf_to_text except ImportError: raise ImportError("striprtf is required to read RTF files.") with open(str(input_file)) as f: text = rtf_to_text(f.read()) return [Document(text=text.strip(), metadata=extra_info or {})]
"""RTF (Rich Text Format) reader.""" from pathlib import Path from typing import List, Union, Any, Dict, Optional from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document class RTFReader(BaseReader): """RTF (Rich Text Format) Reader. Reads rtf file and convert to Document.""" def load_data( self, input_file: Union[Path, str], extra_info: Optional[Dict[str, Any]] = None, **load_kwargs: Any ) -> List[Document]: """ Load data from RTF file. Args: input_file (Path | str): Path for the RTF file. extra_info (Dict[str, Any]): Path for the RTF file. Returns: List[Document]: List of documents. """ try: from striprtf.striprtf import rtf_to_text except ImportError: raise ImportError("striprtf is required to read RTF files.") with open(str(input_file)) as f: text = rtf_to_text(f.read()) return [Document(text=text.strip(), metadata=extra_info or {})]
from typing import Dict, Iterable import torch.nn.functional as F from torch import Tensor, nn from sentence_transformers.SentenceTransformer import SentenceTransformer from .ContrastiveLoss import SiameseDistanceMetric class OnlineContrastiveLoss(nn.Module): def __init__( self, model: SentenceTransformer, distance_metric=SiameseDistanceMetric.COSINE_DISTANCE, margin: float = 0.5 ): """ This Online Contrastive loss is similar to :class:`ConstrativeLoss`, but it selects hard positive (positives that are far apart) and hard negative pairs (negatives that are close) and computes the loss only for these pairs. This loss often yields better performances than ContrastiveLoss. Args: model: SentenceTransformer model distance_metric: Function that returns a distance between two embeddings. The class SiameseDistanceMetric contains pre-defined metrics that can be used margin: Negative samples (label == 0) should have a distance of at least the margin value. References: - `Training Examples > Quora Duplicate Questions <../../examples/training/quora_duplicate_questions/README.html>`_ Requirements: 1. (anchor, positive/negative) pairs 2. Data should include hard positives and hard negatives Relations: - :class:`ContrastiveLoss` is similar, but does not use hard positive and hard negative pairs. :class:`OnlineContrastiveLoss` often yields better results. Inputs: +-----------------------------------------------+------------------------------+ | Texts | Labels | +===============================================+==============================+ | (anchor, positive/negative) pairs | 1 if positive, 0 if negative | +-----------------------------------------------+------------------------------+ Example: :: from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer, losses from datasets import Dataset model = SentenceTransformer("microsoft/mpnet-base") train_dataset = Dataset.from_dict({ "sentence1": ["It's nice weather outside today.", "He drove to work."], "sentence2": ["It's so sunny.", "She walked to the store."], "label": [1, 0], }) loss = losses.OnlineContrastiveLoss(model) trainer = SentenceTransformerTrainer( model=model, train_dataset=train_dataset, loss=loss, ) trainer.train() """ super(OnlineContrastiveLoss, self).__init__() self.model = model self.margin = margin self.distance_metric = distance_metric def forward(self, sentence_features: Iterable[Dict[str, Tensor]], labels: Tensor, size_average=False): embeddings = [self.model(sentence_feature)["sentence_embedding"] for sentence_feature in sentence_features] distance_matrix = self.distance_metric(embeddings[0], embeddings[1]) negs = distance_matrix[labels == 0] poss = distance_matrix[labels == 1] # select hard positive and hard negative pairs negative_pairs = negs[negs < (poss.max() if len(poss) > 1 else negs.mean())] positive_pairs = poss[poss > (negs.min() if len(negs) > 1 else poss.mean())] positive_loss = positive_pairs.pow(2).sum() negative_loss = F.relu(self.margin - negative_pairs).pow(2).sum() loss = positive_loss + negative_loss return loss
from typing import Iterable, Dict import torch.nn.functional as F from torch import nn, Tensor from .ContrastiveLoss import SiameseDistanceMetric from sentence_transformers.SentenceTransformer import SentenceTransformer class OnlineContrastiveLoss(nn.Module): def __init__( self, model: SentenceTransformer, distance_metric=SiameseDistanceMetric.COSINE_DISTANCE, margin: float = 0.5 ): """ This Online Contrastive loss is similar to :class:`ConstrativeLoss`, but it selects hard positive (positives that are far apart) and hard negative pairs (negatives that are close) and computes the loss only for these pairs. This loss often yields better performances than ContrastiveLoss. Args: model: SentenceTransformer model distance_metric: Function that returns a distance between two embeddings. The class SiameseDistanceMetric contains pre-defined metrics that can be used margin: Negative samples (label == 0) should have a distance of at least the margin value. References: - `Training Examples > Quora Duplicate Questions <../../examples/training/quora_duplicate_questions/README.html>`_ Requirements: 1. (anchor, positive/negative) pairs 2. Data should include hard positives and hard negatives Relations: - :class:`ContrastiveLoss` is similar, but does not use hard positive and hard negative pairs. :class:`OnlineContrastiveLoss` often yields better results. Inputs: +-----------------------------------------------+------------------------------+ | Texts | Labels | +===============================================+==============================+ | (anchor, positive/negative) pairs | 1 if positive, 0 if negative | +-----------------------------------------------+------------------------------+ Example: :: from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer, losses from datasets import Dataset model = SentenceTransformer("microsoft/mpnet-base") train_dataset = Dataset.from_dict({ "sentence1": ["It's nice weather outside today.", "He drove to work."], "sentence2": ["It's so sunny.", "She walked to the store."], "label": [1, 0], }) loss = losses.OnlineContrastiveLoss(model) trainer = SentenceTransformerTrainer( model=model, train_dataset=train_dataset, loss=loss, ) trainer.train() """ super(OnlineContrastiveLoss, self).__init__() self.model = model self.margin = margin self.distance_metric = distance_metric def forward(self, sentence_features: Iterable[Dict[str, Tensor]], labels: Tensor, size_average=False): embeddings = [self.model(sentence_feature)["sentence_embedding"] for sentence_feature in sentence_features] distance_matrix = self.distance_metric(embeddings[0], embeddings[1]) negs = distance_matrix[labels == 0] poss = distance_matrix[labels == 1] # select hard positive and hard negative pairs negative_pairs = negs[negs < (poss.max() if len(poss) > 1 else negs.mean())] positive_pairs = poss[poss > (negs.min() if len(negs) > 1 else poss.mean())] positive_loss = positive_pairs.pow(2).sum() negative_loss = F.relu(self.margin - negative_pairs).pow(2).sum() loss = positive_loss + negative_loss return loss
from typing import Any, Optional, Type, TypeVar, Union import numpy as np from docarray.base_document import BaseDocument from docarray.typing import AnyEmbedding, ImageBytes, ImageUrl from docarray.typing.tensor.abstract_tensor import AbstractTensor from docarray.typing.tensor.image.image_tensor import ImageTensor from docarray.utils.misc import is_tf_available, is_torch_available T = TypeVar('T', bound='Image') torch_available = is_torch_available() if torch_available: import torch tf_available = is_tf_available() if tf_available: import tensorflow as tf # type: ignore class Image(BaseDocument): """ Document for handling images. It can contain an ImageUrl (`Image.url`), an AnyTensor (`Image.tensor`), and an AnyEmbedding (`Image.embedding`). EXAMPLE USAGE: You can use this Document directly: .. code-block:: python from docarray.documents import Image # use it directly image = Image(url='http://www.jina.ai/image.jpg') image.tensor = image.url.load() model = MyEmbeddingModel() image.embedding = model(image.tensor) You can extend this Document: .. code-block:: python from docarray.documents import Image from docarray.typing import AnyEmbedding from typing import Optional # extend it class MyImage(Image): second_embedding: Optional[AnyEmbedding] image = MyImage(url='http://www.jina.ai/image.jpg') image.tensor = image.url.load() model = MyEmbeddingModel() image.embedding = model(image.tensor) image.second_embedding = model(image.tensor) You can use this Document for composition: .. code-block:: python from docarray import BaseDocument from docarray.documents import Image, Text # compose it class MultiModalDoc(BaseDocument): image: Image text: Text mmdoc = MultiModalDoc( image=Image(url="http://www.jina.ai/image.jpg"), text=Text(text="hello world, how are you doing?"), ) mmdoc.image.tensor = mmdoc.image.url.load() # or mmdoc.image.bytes = mmdoc.image.url.load_bytes() mmdoc.image.tensor = mmdoc.image.bytes.load() """ url: Optional[ImageUrl] tensor: Optional[ImageTensor] embedding: Optional[AnyEmbedding] bytes: Optional[ImageBytes] @classmethod def validate( cls: Type[T], value: Union[str, AbstractTensor, Any], ) -> T: if isinstance(value, str): value = cls(url=value) elif ( isinstance(value, (AbstractTensor, np.ndarray)) or (torch_available and isinstance(value, torch.Tensor)) or (tf_available and isinstance(value, tf.Tensor)) ): value = cls(tensor=value) elif isinstance(value, bytes): value = cls(byte=value) return super().validate(value)
from typing import Any, Optional, Type, TypeVar, Union import numpy as np from docarray.base_document import BaseDocument from docarray.typing import AnyEmbedding, ImageBytes, ImageUrl from docarray.typing.tensor.abstract_tensor import AbstractTensor from docarray.typing.tensor.image.image_tensor import ImageTensor from docarray.utils.misc import is_torch_available T = TypeVar('T', bound='Image') torch_available = is_torch_available() if torch_available: import torch class Image(BaseDocument): """ Document for handling images. It can contain an ImageUrl (`Image.url`), an AnyTensor (`Image.tensor`), and an AnyEmbedding (`Image.embedding`). EXAMPLE USAGE: You can use this Document directly: .. code-block:: python from docarray.documents import Image # use it directly image = Image(url='http://www.jina.ai/image.jpg') image.tensor = image.url.load() model = MyEmbeddingModel() image.embedding = model(image.tensor) You can extend this Document: .. code-block:: python from docarray.documents import Image from docarray.typing import AnyEmbedding from typing import Optional # extend it class MyImage(Image): second_embedding: Optional[AnyEmbedding] image = MyImage(url='http://www.jina.ai/image.jpg') image.tensor = image.url.load() model = MyEmbeddingModel() image.embedding = model(image.tensor) image.second_embedding = model(image.tensor) You can use this Document for composition: .. code-block:: python from docarray import BaseDocument from docarray.documents import Image, Text # compose it class MultiModalDoc(BaseDocument): image: Image text: Text mmdoc = MultiModalDoc( image=Image(url="http://www.jina.ai/image.jpg"), text=Text(text="hello world, how are you doing?"), ) mmdoc.image.tensor = mmdoc.image.url.load() # or mmdoc.image.bytes = mmdoc.image.url.load_bytes() mmdoc.image.tensor = mmdoc.image.bytes.load() """ url: Optional[ImageUrl] tensor: Optional[ImageTensor] embedding: Optional[AnyEmbedding] bytes: Optional[ImageBytes] @classmethod def validate( cls: Type[T], value: Union[str, AbstractTensor, Any], ) -> T: if isinstance(value, str): value = cls(url=value) elif isinstance(value, (AbstractTensor, np.ndarray)) or ( torch_available and isinstance(value, torch.Tensor) ): value = cls(tensor=value) elif isinstance(value, bytes): value = cls(byte=value) return super().validate(value)
import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder from datasets.utils._hf_hub_fixes import create_repo, delete_repo CI_HUB_USER = "__DUMMY_TRANSFORMERS_USER__" CI_HUB_USER_FULL_NAME = "Dummy User" CI_HUB_USER_TOKEN = "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" CI_HUB_ENDPOINT = "https://hub-ci.huggingface.co" CI_HUB_DATASETS_URL = CI_HUB_ENDPOINT + "/datasets/{repo_id}/resolve/{revision}/{path}" CI_HFH_HUGGINGFACE_CO_URL_TEMPLATE = CI_HUB_ENDPOINT + "/{repo_id}/resolve/{revision}/{filename}" CI_HUB_TOKEN_PATH = Path("~/.huggingface/hub_ci_token").expanduser() @pytest.fixture def ci_hfh_hf_hub_url(monkeypatch): monkeypatch.setattr( "huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE", CI_HFH_HUGGINGFACE_CO_URL_TEMPLATE ) @pytest.fixture def ci_hub_config(monkeypatch): monkeypatch.setattr("datasets.config.HF_ENDPOINT", CI_HUB_ENDPOINT) monkeypatch.setattr("datasets.config.HUB_DATASETS_URL", CI_HUB_DATASETS_URL) @pytest.fixture def ci_hub_token_path(monkeypatch): monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token", CI_HUB_TOKEN_PATH) @pytest.fixture def set_ci_hub_access_token(ci_hub_config, ci_hub_token_path): _api = HfApi(endpoint=CI_HUB_ENDPOINT) _api.set_access_token(CI_HUB_USER_TOKEN) HfFolder.save_token(CI_HUB_USER_TOKEN) yield HfFolder.delete_token() _api.unset_access_token() @pytest.fixture(scope="session") def hf_api(): return HfApi(endpoint=CI_HUB_ENDPOINT) @pytest.fixture(scope="session") def hf_token(hf_api: HfApi): hf_api.set_access_token(CI_HUB_USER_TOKEN) HfFolder.save_token(CI_HUB_USER_TOKEN) yield CI_HUB_USER_TOKEN try: hf_api.unset_access_token() except requests.exceptions.HTTPError: pass @pytest.fixture def cleanup_repo(hf_api): def _cleanup_repo(repo_id): delete_repo(hf_api, repo_id, token=CI_HUB_USER_TOKEN, repo_type="dataset") return _cleanup_repo @pytest.fixture def temporary_repo(cleanup_repo): @contextmanager def _temporary_repo(repo_id): try: yield repo_id finally: cleanup_repo(repo_id) return _temporary_repo @pytest.fixture(scope="session") def hf_private_dataset_repo_txt_data_(hf_api: HfApi, hf_token, text_file): repo_name = f"repo_txt_data-{int(time.time() * 10e3)}" repo_id = f"{CI_HUB_USER}/{repo_name}" create_repo(hf_api, repo_id, token=hf_token, repo_type="dataset", private=True) hf_api.upload_file( token=hf_token, path_or_fileobj=str(text_file), path_in_repo="data/text_data.txt", repo_id=repo_id, repo_type="dataset", ) yield repo_id try: delete_repo(hf_api, repo_id, token=hf_token, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def hf_private_dataset_repo_txt_data(hf_private_dataset_repo_txt_data_, ci_hub_config, ci_hfh_hf_hub_url): return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="session") def hf_private_dataset_repo_zipped_txt_data_(hf_api: HfApi, hf_token, zip_csv_with_dir_path): repo_name = f"repo_zipped_txt_data-{int(time.time() * 10e3)}" repo_id = f"{CI_HUB_USER}/{repo_name}" create_repo(hf_api, repo_id, token=hf_token, repo_type="dataset", private=True) hf_api.upload_file( token=hf_token, path_or_fileobj=str(zip_csv_with_dir_path), path_in_repo="data.zip", repo_id=repo_id, repo_type="dataset", ) yield repo_id try: delete_repo(hf_api, repo_id, token=hf_token, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def hf_private_dataset_repo_zipped_txt_data( hf_private_dataset_repo_zipped_txt_data_, ci_hub_config, ci_hfh_hf_hub_url ): return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="session") def hf_private_dataset_repo_zipped_img_data_(hf_api: HfApi, hf_token, zip_image_path): repo_name = f"repo_zipped_img_data-{int(time.time() * 10e3)}" repo_id = f"{CI_HUB_USER}/{repo_name}" create_repo(hf_api, repo_id, token=hf_token, repo_type="dataset", private=True) hf_api.upload_file( token=hf_token, path_or_fileobj=str(zip_image_path), path_in_repo="data.zip", repo_id=repo_id, repo_type="dataset", ) yield repo_id try: delete_repo(hf_api, repo_id, token=hf_token, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def hf_private_dataset_repo_zipped_img_data( hf_private_dataset_repo_zipped_img_data_, ci_hub_config, ci_hfh_hf_hub_url ): return hf_private_dataset_repo_zipped_img_data_
import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder from datasets.utils._hf_hub_fixes import create_repo, delete_repo CI_HUB_USER = "__DUMMY_TRANSFORMERS_USER__" CI_HUB_USER_FULL_NAME = "Dummy User" CI_HUB_USER_TOKEN = "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" CI_HUB_ENDPOINT = "https://hub-ci.huggingface.co" CI_HUB_DATASETS_URL = CI_HUB_ENDPOINT + "/datasets/{repo_id}/resolve/{revision}/{path}" CI_HUB_TOKEN_PATH = Path("~/.huggingface/hub_ci_token").expanduser() @pytest.fixture def ci_hub_config(monkeypatch): monkeypatch.setattr("datasets.config.HF_ENDPOINT", CI_HUB_ENDPOINT) monkeypatch.setattr("datasets.config.HUB_DATASETS_URL", CI_HUB_DATASETS_URL) @pytest.fixture def ci_hub_token_path(monkeypatch): monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token", CI_HUB_TOKEN_PATH) @pytest.fixture def set_ci_hub_access_token(ci_hub_config, ci_hub_token_path): _api = HfApi(endpoint=CI_HUB_ENDPOINT) _api.set_access_token(CI_HUB_USER_TOKEN) HfFolder.save_token(CI_HUB_USER_TOKEN) yield HfFolder.delete_token() _api.unset_access_token() @pytest.fixture(scope="session") def hf_api(): return HfApi(endpoint=CI_HUB_ENDPOINT) @pytest.fixture(scope="session") def hf_token(hf_api: HfApi): hf_api.set_access_token(CI_HUB_USER_TOKEN) HfFolder.save_token(CI_HUB_USER_TOKEN) yield CI_HUB_USER_TOKEN try: hf_api.unset_access_token() except requests.exceptions.HTTPError: pass @pytest.fixture def cleanup_repo(hf_api): def _cleanup_repo(repo_id): delete_repo(hf_api, repo_id, token=CI_HUB_USER_TOKEN, repo_type="dataset") return _cleanup_repo @pytest.fixture def temporary_repo(cleanup_repo): @contextmanager def _temporary_repo(repo_id): try: yield repo_id finally: cleanup_repo(repo_id) return _temporary_repo @pytest.fixture(scope="session") def hf_private_dataset_repo_txt_data_(hf_api: HfApi, hf_token, text_file): repo_name = f"repo_txt_data-{int(time.time() * 10e3)}" repo_id = f"{CI_HUB_USER}/{repo_name}" create_repo(hf_api, repo_id, token=hf_token, repo_type="dataset", private=True) hf_api.upload_file( token=hf_token, path_or_fileobj=str(text_file), path_in_repo="data/text_data.txt", repo_id=repo_id, repo_type="dataset", ) yield repo_id try: delete_repo(hf_api, repo_id, token=hf_token, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def hf_private_dataset_repo_txt_data(hf_private_dataset_repo_txt_data_, ci_hub_config): return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="session") def hf_private_dataset_repo_zipped_txt_data_(hf_api: HfApi, hf_token, zip_csv_with_dir_path): repo_name = f"repo_zipped_txt_data-{int(time.time() * 10e3)}" repo_id = f"{CI_HUB_USER}/{repo_name}" create_repo(hf_api, repo_id, token=hf_token, repo_type="dataset", private=True) hf_api.upload_file( token=hf_token, path_or_fileobj=str(zip_csv_with_dir_path), path_in_repo="data.zip", repo_id=repo_id, repo_type="dataset", ) yield repo_id try: delete_repo(hf_api, repo_id, token=hf_token, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def hf_private_dataset_repo_zipped_txt_data(hf_private_dataset_repo_zipped_txt_data_, ci_hub_config): return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="session") def hf_private_dataset_repo_zipped_img_data_(hf_api: HfApi, hf_token, zip_image_path): repo_name = f"repo_zipped_img_data-{int(time.time() * 10e3)}" repo_id = f"{CI_HUB_USER}/{repo_name}" create_repo(hf_api, repo_id, token=hf_token, repo_type="dataset", private=True) hf_api.upload_file( token=hf_token, path_or_fileobj=str(zip_image_path), path_in_repo="data.zip", repo_id=repo_id, repo_type="dataset", ) yield repo_id try: delete_repo(hf_api, repo_id, token=hf_token, repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def hf_private_dataset_repo_zipped_img_data(hf_private_dataset_repo_zipped_img_data_, ci_hub_config): return hf_private_dataset_repo_zipped_img_data_
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.utilities.tavily_search import TavilySearchAPIWrapper # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "TavilySearchAPIWrapper": "langchain_community.utilities.tavily_search", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "TavilySearchAPIWrapper", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.utilities.tavily_search import TavilySearchAPIWrapper # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "TavilySearchAPIWrapper": "langchain_community.utilities.tavily_search" } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "TavilySearchAPIWrapper", ]
import numpy as np import pytest from pydantic import parse_obj_as from docarray.base_doc.doc import BaseDoc from docarray.documents import Mesh3D from tests import TOYDATA_DIR LOCAL_OBJ_FILE = str(TOYDATA_DIR / 'tetrahedron.obj') REMOTE_OBJ_FILE = 'https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj' pytestmark = [pytest.mark.mesh] @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize('file_url', [LOCAL_OBJ_FILE, REMOTE_OBJ_FILE]) def test_mesh(file_url: str): mesh = Mesh3D(url=file_url) mesh.tensors = mesh.url.load() assert isinstance(mesh.tensors.vertices, np.ndarray) assert isinstance(mesh.tensors.faces, np.ndarray) def test_str_init(): t = parse_obj_as(Mesh3D, 'http://hello.ply') assert t.url == 'http://hello.ply' def test_doc(): class MyDoc(BaseDoc): mesh1: Mesh3D mesh2: Mesh3D doc = MyDoc(mesh1='http://hello.ply', mesh2=Mesh3D(url='http://hello.ply')) assert doc.mesh1.url == 'http://hello.ply' assert doc.mesh2.url == 'http://hello.ply'
import numpy as np import pytest from pydantic import parse_obj_as from docarray.base_doc.doc import BaseDoc from docarray.documents import Mesh3D from docarray.utils._internal.pydantic import is_pydantic_v2 from tests import TOYDATA_DIR LOCAL_OBJ_FILE = str(TOYDATA_DIR / 'tetrahedron.obj') REMOTE_OBJ_FILE = 'https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj' @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize('file_url', [LOCAL_OBJ_FILE, REMOTE_OBJ_FILE]) def test_mesh(file_url: str): mesh = Mesh3D(url=file_url) mesh.tensors = mesh.url.load() assert isinstance(mesh.tensors.vertices, np.ndarray) assert isinstance(mesh.tensors.faces, np.ndarray) @pytest.mark.skipif(is_pydantic_v2, reason="Not working with pydantic v2 for now") def test_str_init(): t = parse_obj_as(Mesh3D, 'http://hello.ply') assert t.url == 'http://hello.ply' @pytest.mark.skipif(is_pydantic_v2, reason="Not working with pydantic v2 for now") def test_doc(): class MyDoc(BaseDoc): mesh1: Mesh3D mesh2: Mesh3D doc = MyDoc(mesh1='http://hello.ply', mesh2=Mesh3D(url='http://hello.ply')) assert doc.mesh1.url == 'http://hello.ply' assert doc.mesh2.url == 'http://hello.ply'
from setuptools import find_packages import setuptools setuptools.setup( name="jina-executors", version="0.0.1", author='Jina Dev Team', author_email='[email protected]', description="A selection of Executors for Jina", url="https://github.com/jina-ai/executors", classifiers=[ "Programming Language :: Python :: 3", "Operating System :: OS Independent", ], packages=find_packages(where='.', include=['jinahub.*']), python_requires=">=3.7", )
from setuptools import find_packages import setuptools setuptools.setup( name="jinahub-indexer", version="0.0.1", author='Jina Dev Team', author_email='[email protected]', description="A set of indexers for Jina", url="https://github.com/jina-ai/indexers", classifiers=[ "Programming Language :: Python :: 3", "Operating System :: OS Independent", ], packages=find_packages(where='.', include=['jinahub.*']), python_requires=">=3.7", )
from .hubert_dataset import BucketizeBatchSampler, CollateFnHubert, HuBERTDataSet __all__ = [ "BucketizeBatchSampler", "CollateFnHubert", "HuBERTDataSet", ]
from .hubert_dataset import ( BucketizeBatchSampler, CollateFnHubert, HuBERTDataSet, ) __all__ = [ "BucketizeBatchSampler", "CollateFnHubert", "HuBERTDataSet", ]
""" This file contains deprecated code that can only be used with the old `model.fit`-style Sentence Transformers v2.X training. It exists for backwards compatibility with the `model.old_fit` method, but will be removed in a future version. Nowadays, with Sentence Transformers v3+, it is recommended to use the `SentenceTransformerTrainer` class to train models. See https://www.sbert.net/docs/sentence_transformer/training_overview.html for more information. Instead, you should create a `datasets` `Dataset` for training: https://huggingface.co/docs/datasets/create_dataset """ from __future__ import annotations import csv import gzip import os from . import InputExample class STSDataReader: """Reads in the STS dataset. Each line contains two sentences (s1_col_idx, s2_col_idx) and one label (score_col_idx) Default values expects a tab separated file with the first & second column the sentence pair and third column the score (0...1). Default config normalizes scores from 0...5 to 0...1 """ def __init__( self, dataset_folder, s1_col_idx=0, s2_col_idx=1, score_col_idx=2, delimiter="\t", quoting=csv.QUOTE_NONE, normalize_scores=True, min_score=0, max_score=5, ): self.dataset_folder = dataset_folder self.score_col_idx = score_col_idx self.s1_col_idx = s1_col_idx self.s2_col_idx = s2_col_idx self.delimiter = delimiter self.quoting = quoting self.normalize_scores = normalize_scores self.min_score = min_score self.max_score = max_score def get_examples(self, filename, max_examples=0): """filename specified which data split to use (train.csv, dev.csv, test.csv).""" filepath = os.path.join(self.dataset_folder, filename) with ( gzip.open(filepath, "rt", encoding="utf8") if filename.endswith(".gz") else open(filepath, encoding="utf-8") as fIn ): data = csv.reader(fIn, delimiter=self.delimiter, quoting=self.quoting) examples = [] for id, row in enumerate(data): score = float(row[self.score_col_idx]) if self.normalize_scores: # Normalize to a 0...1 value score = (score - self.min_score) / (self.max_score - self.min_score) s1 = row[self.s1_col_idx] s2 = row[self.s2_col_idx] examples.append(InputExample(guid=filename + str(id), texts=[s1, s2], label=score)) if max_examples > 0 and len(examples) >= max_examples: break return examples class STSBenchmarkDataReader(STSDataReader): """Reader especially for the STS benchmark dataset. There, the sentences are in column 5 and 6, the score is in column 4. Scores are normalized from 0...5 to 0...1 """ def __init__( self, dataset_folder, s1_col_idx=5, s2_col_idx=6, score_col_idx=4, delimiter="\t", quoting=csv.QUOTE_NONE, normalize_scores=True, min_score=0, max_score=5, ): super().__init__( dataset_folder=dataset_folder, s1_col_idx=s1_col_idx, s2_col_idx=s2_col_idx, score_col_idx=score_col_idx, delimiter=delimiter, quoting=quoting, normalize_scores=normalize_scores, min_score=min_score, max_score=max_score, )
from __future__ import annotations import csv import gzip import os from . import InputExample class STSDataReader: """Reads in the STS dataset. Each line contains two sentences (s1_col_idx, s2_col_idx) and one label (score_col_idx) Default values expects a tab separated file with the first & second column the sentence pair and third column the score (0...1). Default config normalizes scores from 0...5 to 0...1 """ def __init__( self, dataset_folder, s1_col_idx=0, s2_col_idx=1, score_col_idx=2, delimiter="\t", quoting=csv.QUOTE_NONE, normalize_scores=True, min_score=0, max_score=5, ): self.dataset_folder = dataset_folder self.score_col_idx = score_col_idx self.s1_col_idx = s1_col_idx self.s2_col_idx = s2_col_idx self.delimiter = delimiter self.quoting = quoting self.normalize_scores = normalize_scores self.min_score = min_score self.max_score = max_score def get_examples(self, filename, max_examples=0): """filename specified which data split to use (train.csv, dev.csv, test.csv).""" filepath = os.path.join(self.dataset_folder, filename) with ( gzip.open(filepath, "rt", encoding="utf8") if filename.endswith(".gz") else open(filepath, encoding="utf-8") as fIn ): data = csv.reader(fIn, delimiter=self.delimiter, quoting=self.quoting) examples = [] for id, row in enumerate(data): score = float(row[self.score_col_idx]) if self.normalize_scores: # Normalize to a 0...1 value score = (score - self.min_score) / (self.max_score - self.min_score) s1 = row[self.s1_col_idx] s2 = row[self.s2_col_idx] examples.append(InputExample(guid=filename + str(id), texts=[s1, s2], label=score)) if max_examples > 0 and len(examples) >= max_examples: break return examples class STSBenchmarkDataReader(STSDataReader): """Reader especially for the STS benchmark dataset. There, the sentences are in column 5 and 6, the score is in column 4. Scores are normalized from 0...5 to 0...1 """ def __init__( self, dataset_folder, s1_col_idx=5, s2_col_idx=6, score_col_idx=4, delimiter="\t", quoting=csv.QUOTE_NONE, normalize_scores=True, min_score=0, max_score=5, ): super().__init__( dataset_folder=dataset_folder, s1_col_idx=s1_col_idx, s2_col_idx=s2_col_idx, score_col_idx=score_col_idx, delimiter=delimiter, quoting=quoting, normalize_scores=normalize_scores, min_score=min_score, max_score=max_score, )
from keras.src.layers.layer import Layer from keras.src.metrics.metric import Metric from keras.src.optimizers.optimizer import Optimizer from keras.src.saving import saving_lib from keras.src.saving.keras_saveable import KerasSaveable def map_saveable_variables(saveable, store, visited_saveables): # If the saveable has already been seen, skip it. if id(saveable) in visited_saveables: return visited_saveables.add(id(saveable)) variables = [] if isinstance(saveable, Layer): variables = ( saveable._trainable_variables + saveable._non_trainable_variables ) elif isinstance(saveable, Optimizer): variables = saveable._variables elif isinstance(saveable, Metric): variables = saveable._variables for v in variables: if v.path in store: raise ValueError( "The model contains two variables with a duplicate path: " f"path='{v.path}' appears at least twice. " f"This path is used for {v} and for {store[v.path]}. " "In order to get a variable map, make sure to use " "unique paths/names for each variable." ) store[v.path] = v # Recursively save state of children saveables (layers, optimizers, etc.) for child_attr, child_obj in saving_lib._walk_saveable(saveable): if isinstance(child_obj, KerasSaveable): map_saveable_variables( child_obj, store, visited_saveables=visited_saveables, ) elif isinstance(child_obj, (list, dict, tuple, set)): map_container_variables( child_obj, store, visited_saveables=visited_saveables, ) def map_container_variables(container, store, visited_saveables): if isinstance(container, dict): container = list(container.values()) for saveable in container: if isinstance(saveable, KerasSaveable): map_saveable_variables( saveable, store, visited_saveables=visited_saveables, )
from keras.src.layers.layer import Layer from keras.src.metrics.metric import Metric from keras.src.optimizers.optimizer import Optimizer from keras.src.saving import saving_lib def map_trackable_variables(trackable, store, visited_trackables): # If the trackable has already been saved, skip it. if id(trackable) in visited_trackables: return visited_trackables.add(id(trackable)) variables = [] if isinstance(trackable, Layer): variables = ( trackable._trainable_variables + trackable._non_trainable_variables ) elif isinstance(trackable, Optimizer): variables = trackable._variables elif isinstance(trackable, Metric): variables = trackable._variables for v in variables: if v.path in store: raise ValueError( "The model contains two variables with a duplicate path: " f"path='{v.path}' appears at least twice. " f"This path is used for {v} and for {store[v.path]}. " "In order to get a variable map, make sure to use " "unique paths/names for each variable." ) store[v.path] = v # Recursively save state of children trackables (layers, optimizers, etc.) for child_attr, child_obj in saving_lib._walk_trackable(trackable): if saving_lib._is_keras_trackable(child_obj): map_trackable_variables( child_obj, store, visited_trackables=visited_trackables, ) elif isinstance(child_obj, (list, dict, tuple, set)): map_container_variables( child_obj, store, visited_trackables=visited_trackables, ) def map_container_variables(container, store, visited_trackables): if isinstance(container, dict): container = list(container.values()) for trackable in container: if saving_lib._is_keras_trackable(trackable): map_trackable_variables( trackable, store, visited_trackables=visited_trackables, )
""" This script trains sentence transformers with a triplet loss function. As corpus, we use the wikipedia sections dataset that was describd by Dor et al., 2018, Learning Thematic Similarity Metric Using Triplet Networks. """ import logging import traceback from datetime import datetime from datasets import load_dataset from sentence_transformers import SentenceTransformer from sentence_transformers.evaluation import TripletEvaluator from sentence_transformers.losses import TripletLoss from sentence_transformers.trainer import SentenceTransformerTrainer from sentence_transformers.training_args import SentenceTransformerTrainingArguments # Set the log level to INFO to get more information logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) # You can specify any huggingface/transformers pre-trained model here, for example, bert-base-uncased, roberta-base, xlm-roberta-base model_name = "distilbert-base-uncased" batch_size = 16 num_train_epochs = 1 output_dir = "output/training-wikipedia-sections-" + model_name + "-" + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") # 1. Here we define our SentenceTransformer model. If not already a Sentence Transformer model, it will automatically # create one with "mean" pooling. model = SentenceTransformer(model_name) # If we want, we can limit the maximum sequence length for the model # model.max_seq_length = 75 logging.info(model) # 2. Load the Wikipedia-Sections dataset: https://huggingface.co/datasets/sentence-transformers/wikipedia-sections train_dataset = load_dataset("sentence-transformers/wikipedia-sections", "triplet", split="train").select( range(10_000) ) eval_dataset = load_dataset("sentence-transformers/wikipedia-sections", "triplet", split="validation").select( range(1000) ) test_dataset = load_dataset("sentence-transformers/wikipedia-sections", "triplet", split="test").select(range(1000)) logging.info(train_dataset) # 3. Define our training loss # TripletLoss (https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) needs three text columns train_loss = TripletLoss(model) # 4. Define an evaluator for use during training. This is useful to keep track of alongside the evaluation loss. dev_evaluator = TripletEvaluator( anchors=eval_dataset[:1000]["anchor"], positives=eval_dataset[:1000]["positive"], negatives=eval_dataset[:1000]["negative"], name="wikipedia-sections-dev", ) # 5. Define the training arguments args = SentenceTransformerTrainingArguments( # Required parameter: output_dir=output_dir, # Optional training parameters: num_train_epochs=num_train_epochs, per_device_train_batch_size=batch_size, per_device_eval_batch_size=batch_size, warmup_ratio=0.1, fp16=True, # Set to False if you get an error that your GPU can't run on FP16 bf16=False, # Set to True if you have a GPU that supports BF16 # Optional tracking/debugging parameters: eval_strategy="steps", eval_steps=100, save_strategy="steps", save_steps=100, save_total_limit=2, logging_steps=100, run_name="wikipedia-sections-triplet", # Will be used in W&B if `wandb` is installed ) # 6. Create the trainer & start training trainer = SentenceTransformerTrainer( model=model, args=args, train_dataset=train_dataset, eval_dataset=eval_dataset, loss=train_loss, evaluator=dev_evaluator, ) trainer.train() # 7. Evaluate the model performance on the STS Benchmark test dataset test_evaluator = TripletEvaluator( anchors=test_dataset["anchor"], positives=test_dataset["positive"], negatives=test_dataset["negative"], name="wikipedia-sections-test", ) test_evaluator(model) # 8. Save the trained & evaluated model locally final_output_dir = f"{output_dir}/final" model.save(final_output_dir) # 9. (Optional) save the model to the Hugging Face Hub! # It is recommended to run `huggingface-cli login` to log into your Hugging Face account first model_name = model_name if "/" not in model_name else model_name.split("/")[-1] try: model.push_to_hub(f"{model_name}-wikipedia-sections-triplet") except Exception: logging.error( f"Error uploading model to the Hugging Face Hub:\n{traceback.format_exc()}To upload it manually, you can run " f"`huggingface-cli login`, followed by loading the model using `model = SentenceTransformer({final_output_dir!r})` " f"and saving it using `model.push_to_hub('{model_name}-wikipedia-sections-triplet')`." )
""" This script trains sentence transformers with a triplet loss function. As corpus, we use the wikipedia sections dataset that was describd by Dor et al., 2018, Learning Thematic Similarity Metric Using Triplet Networks. """ from sentence_transformers import SentenceTransformer, InputExample, LoggingHandler, losses, models, util from torch.utils.data import DataLoader from sentence_transformers.evaluation import TripletEvaluator from datetime import datetime from zipfile import ZipFile import csv import logging import os logging.basicConfig(format='%(asctime)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=logging.INFO, handlers=[LoggingHandler()]) logger = logging.getLogger(__name__) #You can specify any huggingface/transformers pre-trained model here, for example, bert-base-uncased, roberta-base, xlm-roberta-base model_name = 'distilbert-base-uncased' dataset_path = 'datasets/wikipedia-sections' if not os.path.exists(dataset_path): os.makedirs(dataset_path, exist_ok=True) filepath = os.path.join(dataset_path, 'wikipedia-sections-triplets.zip') util.http_get('https://sbert.net/datasets/wikipedia-sections-triplets.zip', filepath) with ZipFile(filepath, 'r') as zip: zip.extractall(dataset_path) ### Create a torch.DataLoader that passes training batch instances to our model train_batch_size = 16 output_path = "output/training-wikipedia-sections-"+model_name+"-"+datetime.now().strftime("%Y-%m-%d_%H-%M-%S") num_epochs = 1 ### Configure sentence transformers for training and train on the provided dataset # Use Huggingface/transformers model (like BERT, RoBERTa, XLNet, XLM-R) for mapping tokens to embeddings word_embedding_model = models.Transformer(model_name) # Apply mean pooling to get one fixed sized sentence vector pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(), pooling_mode_mean_tokens=True, pooling_mode_cls_token=False, pooling_mode_max_tokens=False) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) logger.info("Read Triplet train dataset") train_examples = [] with open(os.path.join(dataset_path, 'train.csv'), encoding="utf-8") as fIn: reader = csv.DictReader(fIn, delimiter=',', quoting=csv.QUOTE_MINIMAL) for row in reader: train_examples.append(InputExample(texts=[row['Sentence1'], row['Sentence2'], row['Sentence3']], label=0)) train_dataloader = DataLoader(train_examples, shuffle=True, batch_size=train_batch_size) train_loss = losses.TripletLoss(model=model) logger.info("Read Wikipedia Triplet dev dataset") dev_examples = [] with open(os.path.join(dataset_path, 'validation.csv'), encoding="utf-8") as fIn: reader = csv.DictReader(fIn, delimiter=',', quoting=csv.QUOTE_MINIMAL) for row in reader: dev_examples.append(InputExample(texts=[row['Sentence1'], row['Sentence2'], row['Sentence3']])) if len(dev_examples) >= 1000: break evaluator = TripletEvaluator.from_input_examples(dev_examples, name='dev') warmup_steps = int(len(train_dataloader) * num_epochs * 0.1) #10% of train data # Train the model model.fit(train_objectives=[(train_dataloader, train_loss)], evaluator=evaluator, epochs=num_epochs, evaluation_steps=1000, warmup_steps=warmup_steps, output_path=output_path) ############################################################################## # # Load the stored model and evaluate its performance on STS benchmark dataset # ############################################################################## logger.info("Read test examples") test_examples = [] with open(os.path.join(dataset_path, 'test.csv'), encoding="utf-8") as fIn: reader = csv.DictReader(fIn, delimiter=',', quoting=csv.QUOTE_MINIMAL) for row in reader: test_examples.append(InputExample(texts=[row['Sentence1'], row['Sentence2'], row['Sentence3']])) model = SentenceTransformer(output_path) test_evaluator = TripletEvaluator.from_input_examples(test_examples, name='test') test_evaluator(model, output_path=output_path)
# Copyright (c) OpenMMLab. All rights reserved. import contextlib import sys import time import torch if sys.version_info >= (3, 7): @contextlib.contextmanager def profile_time(trace_name, name, enabled=True, stream=None, end_stream=None): """Print time spent by CPU and GPU. Useful as a temporary context manager to find sweet spots of code suitable for async implementation. """ if (not enabled) or not torch.cuda.is_available(): yield return stream = stream if stream else torch.cuda.current_stream() end_stream = end_stream if end_stream else stream start = torch.cuda.Event(enable_timing=True) end = torch.cuda.Event(enable_timing=True) stream.record_event(start) try: cpu_start = time.monotonic() yield finally: cpu_end = time.monotonic() end_stream.record_event(end) end.synchronize() cpu_time = (cpu_end - cpu_start) * 1000 gpu_time = start.elapsed_time(end) msg = f'{trace_name} {name} cpu_time {cpu_time:.2f} ms ' msg += f'gpu_time {gpu_time:.2f} ms stream {stream}' print(msg, end_stream)
import contextlib import sys import time import torch if sys.version_info >= (3, 7): @contextlib.contextmanager def profile_time(trace_name, name, enabled=True, stream=None, end_stream=None): """Print time spent by CPU and GPU. Useful as a temporary context manager to find sweet spots of code suitable for async implementation. """ if (not enabled) or not torch.cuda.is_available(): yield return stream = stream if stream else torch.cuda.current_stream() end_stream = end_stream if end_stream else stream start = torch.cuda.Event(enable_timing=True) end = torch.cuda.Event(enable_timing=True) stream.record_event(start) try: cpu_start = time.monotonic() yield finally: cpu_end = time.monotonic() end_stream.record_event(end) end.synchronize() cpu_time = (cpu_end - cpu_start) * 1000 gpu_time = start.elapsed_time(end) msg = f'{trace_name} {name} cpu_time {cpu_time:.2f} ms ' msg += f'gpu_time {gpu_time:.2f} ms stream {stream}' print(msg, end_stream)
from __future__ import annotations import json import os from typing import Any import torch from torch import nn class SpladePooling(nn.Module): """SPLADE pooling layer that aggregates MLM logits using max or sum pooling. This pooling layer takes MLM logits (shape: batch_size, seq_length, vocab_size) and applies SPLADE transformation (ReLU + log) followed by pooling across the sequence length dimension. Args: pooling_strategy: Either 'max' or 'sum' for SPLADE pooling """ SPLADE_POOLING_MODES = ("sum", "max") def __init__(self, pooling_strategy: str = "max") -> None: super().__init__() self.pooling_strategy = pooling_strategy if pooling_strategy not in self.SPLADE_POOLING_MODES: raise ValueError("pooling_strategy must be either 'max' or 'sum'") self.config_keys = ["pooling_strategy"] self.word_embedding_dimension = None # This will be set in the forward method def forward(self, features: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]: """Forward pass of the model. Args: features: Dictionary containing input features with 'mlm_logits' key Returns: Dictionary containing SPLADE pooled embeddings """ # Get the MLM head logits (shape: batch_size, seq_length, vocab_size) mlm_logits = features["token_embeddings"] # Apply ReLU and log transformation for SPLADE splade_scores = torch.log1p(torch.relu(mlm_logits)) # Pool across sequence length dimension if self.pooling_strategy == "max": pooled_scores = torch.max(splade_scores, dim=1)[0] # shape: batch_size, vocab_size else: # sum pooled_scores = torch.sum(splade_scores, dim=1) # shape: batch_size, vocab_size # Set the word embedding dimension if self.word_embedding_dimension is None: self.word_embedding_dimension = pooled_scores.shape[1] features["sentence_embedding"] = pooled_scores return features def get_config_dict(self) -> dict[str, Any]: return {key: self.__dict__[key] for key in self.config_keys} def save(self, output_path) -> None: with open(os.path.join(output_path, "config.json"), "w") as fOut: json.dump(self.get_config_dict(), fOut, indent=2) @staticmethod def load(input_path) -> SpladePooling: with open(os.path.join(input_path, "config.json")) as fIn: config = json.load(fIn) return SpladePooling(**config) def __repr__(self) -> str: return f"SpladePooling({self.get_config_dict()})" def get_sentence_embedding_dimension(self) -> int: """Get the dimension of the sentence embedding. Returns: int: Dimension of the sentence embedding """ return self.word_embedding_dimension
from __future__ import annotations import json import os from typing import Any import torch from torch import nn class SpladePooling(nn.Module): """SPLADE pooling layer that aggregates MLM logits using max or sum pooling. This pooling layer takes MLM logits (shape: batch_size, seq_length, vocab_size) and applies SPLADE transformation (ReLU + log) followed by pooling across the sequence length dimension. Args: word_embedding_dimension: Dimension of the word embeddings (vocab size) pooling_strategy: Either 'max' or 'sum' for SPLADE pooling """ SPLADE_POOLING_MODES = ("sum", "max") def __init__(self, pooling_strategy: str = "max") -> None: super().__init__() self.pooling_strategy = pooling_strategy if pooling_strategy not in self.SPLADE_POOLING_MODES: raise ValueError("pooling_strategy must be either 'max' or 'sum'") self.config_keys = ["pooling_strategy"] self.word_embedding_dimension = None # This will be set in the forward method def forward(self, features: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]: """Forward pass of the model. Args: features: Dictionary containing input features with 'mlm_logits' key Returns: Dictionary containing SPLADE pooled embeddings """ # Get the MLM head logits (shape: batch_size, seq_length, vocab_size) mlm_logits = features["mlm_logits"] # Apply ReLU and log transformation for SPLADE splade_scores = torch.log1p(torch.relu(mlm_logits)) # Pool across sequence length dimension if self.pooling_strategy == "max": pooled_scores = torch.max(splade_scores, dim=1)[0] # shape: batch_size, vocab_size else: # sum pooled_scores = torch.sum(splade_scores, dim=1) # shape: batch_size, vocab_size # Set the word embedding dimension if self.word_embedding_dimension is None: self.word_embedding_dimension = pooled_scores.shape[1] return {"sentence_embedding": pooled_scores} def get_config_dict(self) -> dict[str, Any]: return {key: self.__dict__[key] for key in self.config_keys} def save(self, output_path) -> None: with open(os.path.join(output_path, "config.json"), "w") as fOut: json.dump(self.get_config_dict(), fOut, indent=2) @staticmethod def load(input_path) -> SpladePooling: with open(os.path.join(input_path, "config.json")) as fIn: config = json.load(fIn) return SpladePooling(**config) def __repr__(self) -> str: return f"SpladePooling({self.get_config_dict()})" def get_sentence_embedding_dimension(self) -> int: """Get the dimension of the sentence embedding. Returns: int: Dimension of the sentence embedding """ return self.word_embedding_dimension
# Copyright (c) OpenMMLab. All rights reserved. from .cityscapes_metric import CityScapesMetric from .coco_metric import CocoMetric from .coco_panoptic_metric import CocoPanopticMetric from .openimages_metric import OpenImagesMetric from .voc_metric import VOCMetric __all__ = [ 'CityScapesMetric', 'CocoMetric', 'CocoPanopticMetric', 'OpenImagesMetric', 'VOCMetric' ]
# Copyright (c) OpenMMLab. All rights reserved. from .cityscapes_metric import CityScapesMetric from .coco_metric import CocoMetric from .coco_panoptic_metric import CocoPanopticMetric from .openimages_metric import OpenImagesMetric __all__ = [ 'CityScapesMetric', 'CocoMetric', 'CocoPanopticMetric', 'OpenImagesMetric' ]
# Copyright 2025 The HuggingFace Team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ===== This file is an implementation of a dummy guardrail for the fast tests ===== from typing import Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin from diffusers.models.modeling_utils import ModelMixin class DummyCosmosSafetyChecker(ModelMixin, ConfigMixin): def __init__(self) -> None: super().__init__() self._dtype = torch.float32 def check_text_safety(self, prompt: str) -> bool: return True def check_video_safety(self, frames: np.ndarray) -> np.ndarray: return frames def to(self, device: Union[str, torch.device] = None, dtype: torch.dtype = None) -> None: self._dtype = dtype @property def device(self) -> torch.device: return None @property def dtype(self) -> torch.dtype: return self._dtype
# Copyright 2024 The HuggingFace Team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ===== This file is an implementation of a dummy guardrail for the fast tests ===== from typing import Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin from diffusers.models.modeling_utils import ModelMixin class DummyCosmosSafetyChecker(ModelMixin, ConfigMixin): def __init__(self) -> None: super().__init__() self._dtype = torch.float32 def check_text_safety(self, prompt: str) -> bool: return True def check_video_safety(self, frames: np.ndarray) -> np.ndarray: return frames def to(self, device: Union[str, torch.device] = None, dtype: torch.dtype = None) -> None: self._dtype = dtype @property def device(self) -> torch.device: return None @property def dtype(self) -> torch.dtype: return self._dtype
""" =================================================== Faces recognition example using eigenfaces and SVMs =================================================== The dataset used in this example is a preprocessed excerpt of the "Labeled Faces in the Wild", aka LFW: https://www.kaggle.com/datasets/jessicali9530/lfw-dataset """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause # %% from time import time import matplotlib.pyplot as plt from scipy.stats import loguniform from sklearn.datasets import fetch_lfw_people from sklearn.decomposition import PCA from sklearn.metrics import ConfusionMatrixDisplay, classification_report from sklearn.model_selection import RandomizedSearchCV, train_test_split from sklearn.preprocessing import StandardScaler from sklearn.svm import SVC # %% # Download the data, if not already on disk and load it as numpy arrays lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4) # introspect the images arrays to find the shapes (for plotting) n_samples, h, w = lfw_people.images.shape # for machine learning we use the 2 data directly (as relative pixel # positions info is ignored by this model) X = lfw_people.data n_features = X.shape[1] # the label to predict is the id of the person y = lfw_people.target target_names = lfw_people.target_names n_classes = target_names.shape[0] print("Total dataset size:") print("n_samples: %d" % n_samples) print("n_features: %d" % n_features) print("n_classes: %d" % n_classes) # %% # Split into a training set and a test and keep 25% of the data for testing. X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.25, random_state=42 ) scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) # %% # Compute a PCA (eigenfaces) on the face dataset (treated as unlabeled # dataset): unsupervised feature extraction / dimensionality reduction n_components = 150 print( "Extracting the top %d eigenfaces from %d faces" % (n_components, X_train.shape[0]) ) t0 = time() pca = PCA(n_components=n_components, svd_solver="randomized", whiten=True).fit(X_train) print("done in %0.3fs" % (time() - t0)) eigenfaces = pca.components_.reshape((n_components, h, w)) print("Projecting the input data on the eigenfaces orthonormal basis") t0 = time() X_train_pca = pca.transform(X_train) X_test_pca = pca.transform(X_test) print("done in %0.3fs" % (time() - t0)) # %% # Train a SVM classification model print("Fitting the classifier to the training set") t0 = time() param_grid = { "C": loguniform(1e3, 1e5), "gamma": loguniform(1e-4, 1e-1), } clf = RandomizedSearchCV( SVC(kernel="rbf", class_weight="balanced"), param_grid, n_iter=10 ) clf = clf.fit(X_train_pca, y_train) print("done in %0.3fs" % (time() - t0)) print("Best estimator found by grid search:") print(clf.best_estimator_) # %% # Quantitative evaluation of the model quality on the test set print("Predicting people's names on the test set") t0 = time() y_pred = clf.predict(X_test_pca) print("done in %0.3fs" % (time() - t0)) print(classification_report(y_test, y_pred, target_names=target_names)) ConfusionMatrixDisplay.from_estimator( clf, X_test_pca, y_test, display_labels=target_names, xticks_rotation="vertical" ) plt.tight_layout() plt.show() # %% # Qualitative evaluation of the predictions using matplotlib def plot_gallery(images, titles, h, w, n_row=3, n_col=4): """Helper function to plot a gallery of portraits""" plt.figure(figsize=(1.8 * n_col, 2.4 * n_row)) plt.subplots_adjust(bottom=0, left=0.01, right=0.99, top=0.90, hspace=0.35) for i in range(n_row * n_col): plt.subplot(n_row, n_col, i + 1) plt.imshow(images[i].reshape((h, w)), cmap=plt.cm.gray) plt.title(titles[i], size=12) plt.xticks(()) plt.yticks(()) # %% # plot the result of the prediction on a portion of the test set def title(y_pred, y_test, target_names, i): pred_name = target_names[y_pred[i]].rsplit(" ", 1)[-1] true_name = target_names[y_test[i]].rsplit(" ", 1)[-1] return "predicted: %s\ntrue: %s" % (pred_name, true_name) prediction_titles = [ title(y_pred, y_test, target_names, i) for i in range(y_pred.shape[0]) ] plot_gallery(X_test, prediction_titles, h, w) # %% # plot the gallery of the most significative eigenfaces eigenface_titles = ["eigenface %d" % i for i in range(eigenfaces.shape[0])] plot_gallery(eigenfaces, eigenface_titles, h, w) plt.show() # %% # Face recognition problem would be much more effectively solved by training # convolutional neural networks but this family of models is outside of the scope of # the scikit-learn library. Interested readers should instead try to use pytorch or # tensorflow to implement such models.
""" =================================================== Faces recognition example using eigenfaces and SVMs =================================================== The dataset used in this example is a preprocessed excerpt of the "Labeled Faces in the Wild", aka LFW_: http://vis-www.cs.umass.edu/lfw/lfw-funneled.tgz (233MB) .. _LFW: http://vis-www.cs.umass.edu/lfw/ """ # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause # %% from time import time import matplotlib.pyplot as plt from scipy.stats import loguniform from sklearn.datasets import fetch_lfw_people from sklearn.decomposition import PCA from sklearn.metrics import ConfusionMatrixDisplay, classification_report from sklearn.model_selection import RandomizedSearchCV, train_test_split from sklearn.preprocessing import StandardScaler from sklearn.svm import SVC # %% # Download the data, if not already on disk and load it as numpy arrays lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4) # introspect the images arrays to find the shapes (for plotting) n_samples, h, w = lfw_people.images.shape # for machine learning we use the 2 data directly (as relative pixel # positions info is ignored by this model) X = lfw_people.data n_features = X.shape[1] # the label to predict is the id of the person y = lfw_people.target target_names = lfw_people.target_names n_classes = target_names.shape[0] print("Total dataset size:") print("n_samples: %d" % n_samples) print("n_features: %d" % n_features) print("n_classes: %d" % n_classes) # %% # Split into a training set and a test and keep 25% of the data for testing. X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.25, random_state=42 ) scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) # %% # Compute a PCA (eigenfaces) on the face dataset (treated as unlabeled # dataset): unsupervised feature extraction / dimensionality reduction n_components = 150 print( "Extracting the top %d eigenfaces from %d faces" % (n_components, X_train.shape[0]) ) t0 = time() pca = PCA(n_components=n_components, svd_solver="randomized", whiten=True).fit(X_train) print("done in %0.3fs" % (time() - t0)) eigenfaces = pca.components_.reshape((n_components, h, w)) print("Projecting the input data on the eigenfaces orthonormal basis") t0 = time() X_train_pca = pca.transform(X_train) X_test_pca = pca.transform(X_test) print("done in %0.3fs" % (time() - t0)) # %% # Train a SVM classification model print("Fitting the classifier to the training set") t0 = time() param_grid = { "C": loguniform(1e3, 1e5), "gamma": loguniform(1e-4, 1e-1), } clf = RandomizedSearchCV( SVC(kernel="rbf", class_weight="balanced"), param_grid, n_iter=10 ) clf = clf.fit(X_train_pca, y_train) print("done in %0.3fs" % (time() - t0)) print("Best estimator found by grid search:") print(clf.best_estimator_) # %% # Quantitative evaluation of the model quality on the test set print("Predicting people's names on the test set") t0 = time() y_pred = clf.predict(X_test_pca) print("done in %0.3fs" % (time() - t0)) print(classification_report(y_test, y_pred, target_names=target_names)) ConfusionMatrixDisplay.from_estimator( clf, X_test_pca, y_test, display_labels=target_names, xticks_rotation="vertical" ) plt.tight_layout() plt.show() # %% # Qualitative evaluation of the predictions using matplotlib def plot_gallery(images, titles, h, w, n_row=3, n_col=4): """Helper function to plot a gallery of portraits""" plt.figure(figsize=(1.8 * n_col, 2.4 * n_row)) plt.subplots_adjust(bottom=0, left=0.01, right=0.99, top=0.90, hspace=0.35) for i in range(n_row * n_col): plt.subplot(n_row, n_col, i + 1) plt.imshow(images[i].reshape((h, w)), cmap=plt.cm.gray) plt.title(titles[i], size=12) plt.xticks(()) plt.yticks(()) # %% # plot the result of the prediction on a portion of the test set def title(y_pred, y_test, target_names, i): pred_name = target_names[y_pred[i]].rsplit(" ", 1)[-1] true_name = target_names[y_test[i]].rsplit(" ", 1)[-1] return "predicted: %s\ntrue: %s" % (pred_name, true_name) prediction_titles = [ title(y_pred, y_test, target_names, i) for i in range(y_pred.shape[0]) ] plot_gallery(X_test, prediction_titles, h, w) # %% # plot the gallery of the most significative eigenfaces eigenface_titles = ["eigenface %d" % i for i in range(eigenfaces.shape[0])] plot_gallery(eigenfaces, eigenface_titles, h, w) plt.show() # %% # Face recognition problem would be much more effectively solved by training # convolutional neural networks but this family of models is outside of the scope of # the scikit-learn library. Interested readers should instead try to use pytorch or # tensorflow to implement such models.
from docarray.base_document.mixins.proto import ProtoMixin from docarray.base_document.mixins.update import UpdateMixin __all__ = ['ProtoMixin', 'UpdateMixin']
from docarray.base_document.mixins.plot import PlotMixin from docarray.base_document.mixins.proto import ProtoMixin __all__ = ['PlotMixin', 'ProtoMixin']