input
stringlengths
33
5k
output
stringlengths
32
5k
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.core.utils import ConfigType, OptConfigType, OptMultiConfig from mmdet.registry import MODELS from .single_stage import SingleStageDetector @MODELS.register_module() class CornerNet(SingleStageDetector): """CornerNet. This detector is the implementation of the paper `CornerNet: Detecting Objects as Paired Keypoints <https://arxiv.org/abs/1808.01244>`_ . """ def __init__(self, backbone: ConfigType, neck: ConfigType, bbox_head: ConfigType, train_cfg: OptConfigType = None, test_cfg: OptConfigType = None, data_preprocessor: OptConfigType = None, init_cfg: OptMultiConfig = None) -> None: super().__init__( backbone=backbone, neck=neck, bbox_head=bbox_head, train_cfg=train_cfg, test_cfg=test_cfg, data_preprocessor=data_preprocessor, init_cfg=init_cfg)
# Copyright (c) OpenMMLab. All rights reserved. import torch from mmdet.core import bbox2result, bbox_mapping_back from mmdet.registry import MODELS from .single_stage import SingleStageDetector @MODELS.register_module() class CornerNet(SingleStageDetector): """CornerNet. This detector is the implementation of the paper `CornerNet: Detecting Objects as Paired Keypoints <https://arxiv.org/abs/1808.01244>`_ . """ def __init__(self, backbone, neck, bbox_head, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None): super(CornerNet, self).__init__(backbone, neck, bbox_head, train_cfg, test_cfg, pretrained, init_cfg) def merge_aug_results(self, aug_results, img_metas): """Merge augmented detection bboxes and score. Args: aug_results (list[list[Tensor]]): Det_bboxes and det_labels of each image. img_metas (list[list[dict]]): Meta information of each image, e.g., image size, scaling factor, etc. Returns: tuple: (bboxes, labels) """ recovered_bboxes, aug_labels = [], [] for bboxes_labels, img_info in zip(aug_results, img_metas): img_shape = img_info[0]['img_shape'] # using shape before padding scale_factor = img_info[0]['scale_factor'] flip = img_info[0]['flip'] bboxes, labels = bboxes_labels bboxes, scores = bboxes[:, :4], bboxes[:, -1:] bboxes = bbox_mapping_back(bboxes, img_shape, scale_factor, flip) recovered_bboxes.append(torch.cat([bboxes, scores], dim=-1)) aug_labels.append(labels) bboxes = torch.cat(recovered_bboxes, dim=0) labels = torch.cat(aug_labels) if bboxes.shape[0] > 0: out_bboxes, out_labels = self.bbox_head._bboxes_nms( bboxes, labels, self.bbox_head.test_cfg) else: out_bboxes, out_labels = bboxes, labels return out_bboxes, out_labels def aug_test(self, imgs, img_metas, rescale=False): """Augment testing of CornerNet. Args: imgs (list[Tensor]): Augmented images. img_metas (list[list[dict]]): Meta information of each image, e.g., image size, scaling factor, etc. rescale (bool): If True, return boxes in original image space. Default: False. Note: ``imgs`` must including flipped image pairs. Returns: list[list[np.ndarray]]: BBox results of each image and classes. The outer list corresponds to each image. The inner list corresponds to each class. """ img_inds = list(range(len(imgs))) assert img_metas[0][0]['flip'] + img_metas[1][0]['flip'], ( 'aug test must have flipped image pair') aug_results = [] for ind, flip_ind in zip(img_inds[0::2], img_inds[1::2]): img_pair = torch.cat([imgs[ind], imgs[flip_ind]]) x = self.extract_feat(img_pair) outs = self.bbox_head(x) bbox_list = self.bbox_head.get_bboxes( *outs, [img_metas[ind], img_metas[flip_ind]], False, False) aug_results.append(bbox_list[0]) aug_results.append(bbox_list[1]) bboxes, labels = self.merge_aug_results(aug_results, img_metas) bbox_results = bbox2result(bboxes, labels, self.bbox_head.num_classes) return [bbox_results]
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.api import activations from keras.api import applications from keras.api import callbacks from keras.api import config from keras.api import constraints from keras.api import datasets from keras.api import distribution from keras.api import dtype_policies from keras.api import export from keras.api import initializers from keras.api import legacy from keras.api import mixed_precision from keras.api import models from keras.api import ops from keras.api import optimizers from keras.api import quantizers from keras.api import random from keras.api import regularizers from keras.api import tree from keras.api import utils from keras.api import visualization from keras.api import wrappers from keras.api._tf_keras.keras import backend from keras.api._tf_keras.keras import layers from keras.api._tf_keras.keras import losses from keras.api._tf_keras.keras import metrics from keras.api._tf_keras.keras import preprocessing from keras.src.backend import Variable from keras.src.backend import device from keras.src.backend import name_scope from keras.src.backend.common.keras_tensor import KerasTensor from keras.src.backend.common.remat import RematScope from keras.src.backend.common.remat import remat from keras.src.backend.common.stateless_scope import StatelessScope from keras.src.backend.common.symbolic_scope import SymbolicScope from keras.src.dtype_policies.dtype_policy import DTypePolicy from keras.src.dtype_policies.dtype_policy import FloatDTypePolicy from keras.src.initializers.initializer import Initializer from keras.src.layers.core.input_layer import Input from keras.src.layers.input_spec import InputSpec from keras.src.layers.layer import Layer from keras.src.losses.loss import Loss from keras.src.metrics.metric import Metric from keras.src.models.model import Model from keras.src.models.sequential import Sequential from keras.src.ops.function import Function from keras.src.ops.operation import Operation from keras.src.optimizers.optimizer import Optimizer from keras.src.quantizers.quantizers import Quantizer from keras.src.regularizers.regularizers import Regularizer from keras.src.version import __version__ from keras.src.version import version
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.api import activations from keras.api import applications from keras.api import callbacks from keras.api import config from keras.api import constraints from keras.api import datasets from keras.api import distribution from keras.api import dtype_policies from keras.api import export from keras.api import initializers from keras.api import legacy from keras.api import mixed_precision from keras.api import models from keras.api import ops from keras.api import optimizers from keras.api import quantizers from keras.api import random from keras.api import regularizers from keras.api import tree from keras.api import utils from keras.api import visualization from keras.api import wrappers from keras.api._tf_keras.keras import backend from keras.api._tf_keras.keras import layers from keras.api._tf_keras.keras import losses from keras.api._tf_keras.keras import metrics from keras.api._tf_keras.keras import preprocessing from keras.src.backend import Variable from keras.src.backend import device from keras.src.backend import name_scope from keras.src.backend.common.keras_tensor import KerasTensor from keras.src.backend.common.stateless_scope import StatelessScope from keras.src.backend.common.symbolic_scope import SymbolicScope from keras.src.dtype_policies.dtype_policy import DTypePolicy from keras.src.dtype_policies.dtype_policy import FloatDTypePolicy from keras.src.initializers.initializer import Initializer from keras.src.layers.core.input_layer import Input from keras.src.layers.input_spec import InputSpec from keras.src.layers.layer import Layer from keras.src.losses.loss import Loss from keras.src.metrics.metric import Metric from keras.src.models.model import Model from keras.src.models.sequential import Sequential from keras.src.ops.function import Function from keras.src.ops.operation import Operation from keras.src.optimizers.optimizer import Optimizer from keras.src.quantizers.quantizers import Quantizer from keras.src.regularizers.regularizers import Regularizer from keras.src.version import __version__ from keras.src.version import version
import multiprocessing import time import pytest from docarray import Document, DocumentArray from docarray.array.mixins.post import _parse_host from docarray.helper import random_port @pytest.mark.parametrize( 'host, expected_on, expected_host, expected_port, expected_version, expected_scheme', [ ( 'grpc://192.168.0.123:8080/index', '/index', 'grpc://192.168.0.123', 8080, None, 'grpc', ), ( 'ws://192.168.0.123:80/encode', '/encode', 'ws://192.168.0.123', 80, None, 'ws', ), ( 'http://192.168.192.123:8080/index', '/index', 'http://192.168.192.123', 8080, None, 'http', ), ( 'jinahub://Hello/endpoint', '/endpoint', 'jinahub://Hello', None, None, 'jinahub', ), ( 'jinahub+docker://Hello/index', '/index', 'jinahub+docker://Hello', None, None, 'jinahub+docker', ), ( 'jinahub+docker://Hello/v0.0.1/search', '/search', 'jinahub+docker://Hello/v0.0.1', None, 'v0.0.1', 'jinahub+docker', ), ( 'jinahub+docker://Hello/latest/index', '/index', 'jinahub+docker://Hello/latest', None, 'latest', 'jinahub+docker', ), ( 'jinahub+docker://Hello/v0.0.1-cpu/index', '/index', 'jinahub+docker://Hello/v0.0.1-cpu', None, 'v0.0.1-cpu', 'jinahub+docker', ), ( 'jinahub+docker://Hello/v0.5-gpu/index', '/index', 'jinahub+docker://Hello/v0.5-gpu', None, 'v0.5-gpu', 'jinahub+docker', ), ( 'jinahub+sandbox://Hello/index', '/index', 'jinahub+sandbox://Hello', None, None, 'jinahub+sandbox', ), ], ) def test_parse_host( host, expected_on, expected_host, expected_port, expected_version, expected_scheme ): parsed_host = _parse_host(host) assert parsed_host.on == expected_on assert parsed_host.host == expected_host assert parsed_host.port == expected_port assert parsed_host.version == expected_version assert parsed_host.scheme == expected_scheme @pytest.mark.parametrize( 'conn_config', [ (dict(protocol='grpc'), 'grpc://127.0.0.1:$port/'), (dict(protocol='grpc'), 'grpc://127.0.0.1:$port'), (dict(protocol='websocket'), 'ws://127.0.0.1:$port'), # (dict(protocol='http'), 'http://127.0.0.1:$port'), this somehow does not work on GH workflow ], ) @pytest.mark.parametrize('show_pbar', [True, False]) @pytest.mark.parametrize('batch_size', [None, 1, 10]) def test_post_to_a_flow(show_pbar, conn_config, batch_size): from jina import Flow p = random_port() da = DocumentArray.empty(100) with Flow(**{**conn_config[0], 'port': p}): da.post(conn_config[1].replace('$port', str(p)), batch_size=batch_size) @pytest.mark.parametrize( 'hub_uri', [ 'jinahub://Hello', 'jinahub+sandbox://Hello', # 'jinahub+docker://Hello', this somehow does not work on GH workflow ], ) def test_post_with_jinahub(hub_uri): da = DocumentArray.empty(100) da.post(hub_uri) assert isinstance(Document().post(hub_uri), Document) def test_post_bad_scheme(): da = DocumentArray.empty(100) with pytest.raises(ValueError): da.post('haha') def test_endpoint(): from jina import Executor, Flow, requests class MyExec(Executor): @requests(on='/foo') def foo(self, docs: DocumentArray, **kwargs): docs.texts = ['foo'] * len(docs) @requests(on='/bar') def bar(self, docs: DocumentArray, **kwargs): docs.texts = ['bar'] * len(docs) def start_flow(stop_event, **kwargs): """start a blocking Flow.""" with Flow(**kwargs).add(uses=MyExec) as f: f.block(stop_event=stop_event) e = multiprocessing.Event() # create new Event p = random_port() t = multiprocessing.Process( name='Blocked-Flow', target=start_flow, args=(e,), kwargs={'port': p} ) t.start() time.sleep(5) N = 100 da = DocumentArray.empty(N) try: assert da.post(f'grpc://127.0.0.1:{p}/')[:, 'text'] == [''] * N assert da.post(f'grpc://127.0.0.1:{p}/foo').texts == ['foo'] * N assert da.post(f'grpc://127.0.0.1:{p}/bar').texts == ['bar'] * N except: raise finally: e.set() t.join()
import multiprocessing import time import pytest from docarray import DocumentArray, Document from docarray.helper import random_port @pytest.mark.parametrize( 'conn_config', [ (dict(protocol='grpc'), 'grpc://127.0.0.1:$port/'), (dict(protocol='grpc'), 'grpc://127.0.0.1:$port'), (dict(protocol='websocket'), 'ws://127.0.0.1:$port'), # (dict(protocol='http'), 'http://127.0.0.1:$port'), this somehow does not work on GH workflow ], ) @pytest.mark.parametrize('show_pbar', [True, False]) @pytest.mark.parametrize('batch_size', [None, 1, 10]) def test_post_to_a_flow(show_pbar, conn_config, batch_size): from jina import Flow p = random_port() da = DocumentArray.empty(100) with Flow(**{**conn_config[0], 'port': p}): da.post(conn_config[1].replace('$port', str(p)), batch_size=batch_size) @pytest.mark.parametrize( 'hub_uri', [ 'jinahub://Hello', 'jinahub+sandbox://Hello', # 'jinahub+docker://Hello', this somehow does not work on GH workflow ], ) def test_post_with_jinahub(hub_uri): da = DocumentArray.empty(100) da.post(hub_uri) assert isinstance(Document().post(hub_uri), Document) def test_post_bad_scheme(): da = DocumentArray.empty(100) with pytest.raises(ValueError): da.post('haha') def test_endpoint(): from jina import Executor, requests, Flow class MyExec(Executor): @requests(on='/foo') def foo(self, docs: DocumentArray, **kwargs): docs.texts = ['foo'] * len(docs) @requests(on='/bar') def bar(self, docs: DocumentArray, **kwargs): docs.texts = ['bar'] * len(docs) def start_flow(stop_event, **kwargs): """start a blocking Flow.""" with Flow(**kwargs).add(uses=MyExec) as f: f.block(stop_event=stop_event) e = multiprocessing.Event() # create new Event p = random_port() t = multiprocessing.Process( name='Blocked-Flow', target=start_flow, args=(e,), kwargs={'port': p} ) t.start() time.sleep(5) N = 100 da = DocumentArray.empty(N) try: assert da.post(f'grpc://127.0.0.1:{p}/')[:, 'text'] == [''] * N assert da.post(f'grpc://127.0.0.1:{p}/foo').texts == ['foo'] * N assert da.post(f'grpc://127.0.0.1:{p}/bar').texts == ['bar'] * N except: raise finally: e.set() t.join()
import inspect import re from typing import Dict, List from huggingface_hub.utils import insecure_hashlib from .arrow import arrow from .audiofolder import audiofolder from .cache import cache # noqa F401 from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text from .webdataset import webdataset def _hash_python_lines(lines: List[str]) -> str: filtered_lines = [] for line in lines: line = re.sub(r"#.*", "", line) # remove comments if line: filtered_lines.append(line) full_str = "\n".join(filtered_lines) # Make a hash from all this code full_bytes = full_str.encode("utf-8") return insecure_hashlib.sha256(full_bytes).hexdigest() # get importable module names and hash for caching _PACKAGED_DATASETS_MODULES = { "csv": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), "json": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), "pandas": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), "parquet": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), "arrow": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), "text": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), "imagefolder": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), "audiofolder": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), "webdataset": (webdataset.__name__, _hash_python_lines(inspect.getsource(webdataset).splitlines())), } # Used to infer the module to use based on the data files extensions _EXTENSION_TO_MODULE = { ".csv": ("csv", {}), ".tsv": ("csv", {"sep": "\t"}), ".json": ("json", {}), ".jsonl": ("json", {}), ".parquet": ("parquet", {}), ".arrow": ("arrow", {}), ".txt": ("text", {}), ".tar": ("webdataset", {}), } _EXTENSION_TO_MODULE.update({ext: ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _MODULE_SUPPORTS_METADATA = {"imagefolder", "audiofolder"} # Used to filter data files based on extensions given a module name _MODULE_TO_EXTENSIONS: Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) for _module in _MODULE_TO_EXTENSIONS: _MODULE_TO_EXTENSIONS[_module].append(".zip")
import inspect import re from typing import Dict, List from huggingface_hub.utils import insecure_hashlib from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text from .webdataset import webdataset def _hash_python_lines(lines: List[str]) -> str: filtered_lines = [] for line in lines: line = re.sub(r"#.*", "", line) # remove comments if line: filtered_lines.append(line) full_str = "\n".join(filtered_lines) # Make a hash from all this code full_bytes = full_str.encode("utf-8") return insecure_hashlib.sha256(full_bytes).hexdigest() # get importable module names and hash for caching _PACKAGED_DATASETS_MODULES = { "csv": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), "json": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), "pandas": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), "parquet": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), "arrow": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), "text": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), "imagefolder": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), "audiofolder": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), "webdataset": (webdataset.__name__, _hash_python_lines(inspect.getsource(webdataset).splitlines())), } # Used to infer the module to use based on the data files extensions _EXTENSION_TO_MODULE = { ".csv": ("csv", {}), ".tsv": ("csv", {"sep": "\t"}), ".json": ("json", {}), ".jsonl": ("json", {}), ".parquet": ("parquet", {}), ".arrow": ("arrow", {}), ".txt": ("text", {}), ".tar": ("webdataset", {}), } _EXTENSION_TO_MODULE.update({ext: ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _MODULE_SUPPORTS_METADATA = {"imagefolder", "audiofolder"} # Used to filter data files based on extensions given a module name _MODULE_TO_EXTENSIONS: Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) for _module in _MODULE_TO_EXTENSIONS: _MODULE_TO_EXTENSIONS[_module].append(".zip")
# Copyright (c) OpenMMLab. All rights reserved. from abc import ABCMeta, abstractmethod import torch.nn.functional as F from mmcv.runner import BaseModule, force_fp32 from ...core.utils import stack_batch from ..builder import build_loss from ..utils import interpolate_as class BaseSemanticHead(BaseModule, metaclass=ABCMeta): """Base module of Semantic Head. Args: num_classes (int): the number of classes. init_cfg (dict): the initialization config. loss_seg (dict): the loss of the semantic head. """ def __init__(self, num_classes, init_cfg=None, loss_seg=dict( type='CrossEntropyLoss', ignore_index=255, loss_weight=1.0)): super(BaseSemanticHead, self).__init__(init_cfg) self.loss_seg = build_loss(loss_seg) self.num_classes = num_classes @force_fp32(apply_to=('seg_preds', )) def loss(self, seg_preds, gt_semantic_seg): """Get the loss of semantic head. Args: seg_preds (Tensor): The input logits with the shape (N, C, H, W). gt_semantic_seg: The ground truth of semantic segmentation with the shape (N, H, W). label_bias: The starting number of the semantic label. Default: 1. Returns: dict: the loss of semantic head. """ if seg_preds.shape[-2:] != gt_semantic_seg.shape[-2:]: seg_preds = interpolate_as(seg_preds, gt_semantic_seg) seg_preds = seg_preds.permute((0, 2, 3, 1)) loss_seg = self.loss_seg( seg_preds.reshape(-1, self.num_classes), # => [NxHxW, C] gt_semantic_seg.reshape(-1).long()) return dict(loss_seg=loss_seg) @abstractmethod def forward(self, x): """Placeholder of forward function. Returns: dict[str, Tensor]: A dictionary, including features and predicted scores. Required keys: 'seg_preds' and 'feats'. """ pass def forward_train(self, x, data_samples): output = self.forward(x) seg_preds = output['seg_preds'] gt_semantic_segs = [ data_sample.gt_sem_seg for data_sample in data_samples ] gt_semantic_segs = stack_batch(gt_semantic_segs, pad_value=255) return self.loss(seg_preds, gt_semantic_segs) def simple_test(self, x, img_metas, rescale=False): output = self.forward(x) seg_preds = output['seg_preds'] seg_preds = F.interpolate( seg_preds, size=img_metas[0]['pad_shape'][:2], mode='bilinear', align_corners=False) if rescale: h, w, _ = img_metas[0]['img_shape'] seg_preds = seg_preds[:, :, :h, :w] h, w, _ = img_metas[0]['ori_shape'] seg_preds = F.interpolate( seg_preds, size=(h, w), mode='bilinear', align_corners=False) return seg_preds
# Copyright (c) OpenMMLab. All rights reserved. from abc import ABCMeta, abstractmethod import torch.nn.functional as F from mmcv.runner import BaseModule, force_fp32 from ..builder import build_loss from ..utils import interpolate_as class BaseSemanticHead(BaseModule, metaclass=ABCMeta): """Base module of Semantic Head. Args: num_classes (int): the number of classes. init_cfg (dict): the initialization config. loss_seg (dict): the loss of the semantic head. """ def __init__(self, num_classes, init_cfg=None, loss_seg=dict( type='CrossEntropyLoss', ignore_index=255, loss_weight=1.0)): super(BaseSemanticHead, self).__init__(init_cfg) self.loss_seg = build_loss(loss_seg) self.num_classes = num_classes @force_fp32(apply_to=('seg_preds', )) def loss(self, seg_preds, gt_semantic_seg): """Get the loss of semantic head. Args: seg_preds (Tensor): The input logits with the shape (N, C, H, W). gt_semantic_seg: The ground truth of semantic segmentation with the shape (N, H, W). label_bias: The starting number of the semantic label. Default: 1. Returns: dict: the loss of semantic head. """ if seg_preds.shape[-2:] != gt_semantic_seg.shape[-2:]: seg_preds = interpolate_as(seg_preds, gt_semantic_seg) seg_preds = seg_preds.permute((0, 2, 3, 1)) loss_seg = self.loss_seg( seg_preds.reshape(-1, self.num_classes), # => [NxHxW, C] gt_semantic_seg.reshape(-1).long()) return dict(loss_seg=loss_seg) @abstractmethod def forward(self, x): """Placeholder of forward function. Returns: dict[str, Tensor]: A dictionary, including features and predicted scores. Required keys: 'seg_preds' and 'feats'. """ pass def forward_train(self, x, gt_semantic_seg): output = self.forward(x) seg_preds = output['seg_preds'] return self.loss(seg_preds, gt_semantic_seg) def simple_test(self, x, img_metas, rescale=False): output = self.forward(x) seg_preds = output['seg_preds'] seg_preds = F.interpolate( seg_preds, size=img_metas[0]['pad_shape'][:2], mode='bilinear', align_corners=False) if rescale: h, w, _ = img_metas[0]['img_shape'] seg_preds = seg_preds[:, :, :h, :w] h, w, _ = img_metas[0]['ori_shape'] seg_preds = F.interpolate( seg_preds, size=(h, w), mode='bilinear', align_corners=False) return seg_preds
import urllib.parse from typing import ClassVar, Optional from backend.data.model import OAuth2Credentials, ProviderName from backend.integrations.oauth.base import BaseOAuthHandler from backend.util.request import Requests class TodoistOAuthHandler(BaseOAuthHandler): PROVIDER_NAME = ProviderName.TODOIST DEFAULT_SCOPES: ClassVar[list[str]] = [ "task:add", "data:read", "data:read_write", "data:delete", "project:delete", ] AUTHORIZE_URL = "https://todoist.com/oauth/authorize" TOKEN_URL = "https://todoist.com/oauth/access_token" def __init__(self, client_id: str, client_secret: str, redirect_uri: str): self.client_id = client_id self.client_secret = client_secret self.redirect_uri = redirect_uri def get_login_url( self, scopes: list[str], state: str, code_challenge: Optional[str] ) -> str: params = { "client_id": self.client_id, "scope": ",".join(self.DEFAULT_SCOPES), "state": state, } return f"{self.AUTHORIZE_URL}?{urllib.parse.urlencode(params)}" async def exchange_code_for_tokens( self, code: str, scopes: list[str], code_verifier: Optional[str] ) -> OAuth2Credentials: """Exchange authorization code for access tokens""" data = { "client_id": self.client_id, "client_secret": self.client_secret, "code": code, "redirect_uri": self.redirect_uri, } response = await Requests().post(self.TOKEN_URL, data=data) tokens = response.json() response = await Requests().post( "https://api.todoist.com/sync/v9/sync", headers={"Authorization": f"Bearer {tokens['access_token']}"}, data={"sync_token": "*", "resource_types": '["user"]'}, ) user_info = response.json() user_email = user_info["user"].get("email") return OAuth2Credentials( provider=self.PROVIDER_NAME, title=None, username=user_email, access_token=tokens["access_token"], refresh_token=None, access_token_expires_at=None, refresh_token_expires_at=None, scopes=scopes, ) async def _refresh_tokens( self, credentials: OAuth2Credentials ) -> OAuth2Credentials: # Todoist does not support token refresh return credentials async def revoke_tokens(self, credentials: OAuth2Credentials) -> bool: return False
import urllib.parse from typing import ClassVar, Optional from backend.data.model import OAuth2Credentials, ProviderName from backend.integrations.oauth.base import BaseOAuthHandler from backend.util.request import Requests class TodoistOAuthHandler(BaseOAuthHandler): PROVIDER_NAME = ProviderName.TODOIST DEFAULT_SCOPES: ClassVar[list[str]] = [ "task:add", "data:read", "data:read_write", "data:delete", "project:delete", ] AUTHORIZE_URL = "https://todoist.com/oauth/authorize" TOKEN_URL = "https://todoist.com/oauth/access_token" def __init__(self, client_id: str, client_secret: str, redirect_uri: str): self.client_id = client_id self.client_secret = client_secret self.redirect_uri = redirect_uri def get_login_url( self, scopes: list[str], state: str, code_challenge: Optional[str] ) -> str: params = { "client_id": self.client_id, "scope": ",".join(self.DEFAULT_SCOPES), "state": state, } return f"{self.AUTHORIZE_URL}?{urllib.parse.urlencode(params)}" def exchange_code_for_tokens( self, code: str, scopes: list[str], code_verifier: Optional[str] ) -> OAuth2Credentials: """Exchange authorization code for access tokens""" data = { "client_id": self.client_id, "client_secret": self.client_secret, "code": code, "redirect_uri": self.redirect_uri, } response = Requests().post(self.TOKEN_URL, data=data) response.raise_for_status() tokens = response.json() response = Requests().post( "https://api.todoist.com/sync/v9/sync", headers={"Authorization": f"Bearer {tokens['access_token']}"}, data={"sync_token": "*", "resource_types": '["user"]'}, ) response.raise_for_status() user_info = response.json() user_email = user_info["user"].get("email") return OAuth2Credentials( provider=self.PROVIDER_NAME, title=None, username=user_email, access_token=tokens["access_token"], refresh_token=None, access_token_expires_at=None, refresh_token_expires_at=None, scopes=scopes, ) def _refresh_tokens(self, credentials: OAuth2Credentials) -> OAuth2Credentials: # Todoist does not support token refresh return credentials def revoke_tokens(self, credentials: OAuth2Credentials) -> bool: return False
class MonitoringMixin: """The Monitoring Mixin for pods""" def _setup_monitoring(self): """ Wait for the monitoring server to start """ if self.args.monitoring: from prometheus_client import CollectorRegistry self.metrics_registry = CollectorRegistry() else: self.metrics_registry = None if self.args.monitoring: from prometheus_client import start_http_server start_http_server( int(self.args.port_monitoring), registry=self.metrics_registry )
class MonitoringMixin: """The Monitoring Mixin for pods""" def _setup_monitoring(self): """ Wait for the monitoring server to start """ if self.args.monitoring: from prometheus_client import CollectorRegistry self.metrics_registry = CollectorRegistry() else: self.metrics_registry = None if self.args.monitoring: from prometheus_client import start_http_server start_http_server(self.args.port_monitoring, registry=self.metrics_registry)
# coding: utf-8 """Find the path to LightGBM dynamic library files.""" from pathlib import Path from platform import system from typing import List __all__: List[str] = [] def find_lib_path() -> List[str]: """Find the path to LightGBM library files. Returns ------- lib_path: list of str List of all found library paths to LightGBM. """ curr_path = Path(__file__).absolute() dll_path = [curr_path, curr_path.parents[1], curr_path.parents[0] / 'bin', curr_path.parents[0] / 'lib'] if system() in ('Windows', 'Microsoft'): dll_path.append(curr_path.parents[1] / 'Release') dll_path.append(curr_path.parents[1] / 'windows' / 'x64' / 'DLL') dll_path = [p / 'lib_lightgbm.dll' for p in dll_path] else: dll_path = [p / 'lib_lightgbm.so' for p in dll_path] lib_path = [str(p) for p in dll_path if p.is_file()] if not lib_path: dll_path_joined = '\n'.join(map(str, dll_path)) raise Exception(f'Cannot find lightgbm library file in following paths:\n{dll_path_joined}') return lib_path
# coding: utf-8 """Find the path to LightGBM dynamic library files.""" from pathlib import Path from platform import system from typing import List __all__: List[str] = [] def find_lib_path() -> List[str]: """Find the path to LightGBM library files. Returns ------- lib_path: list of str List of all found library paths to LightGBM. """ curr_path = Path(__file__).absolute().parent dll_path = [curr_path, curr_path.parents[1], curr_path / 'compile', curr_path.parent / 'compile', curr_path.parents[1] / 'lib'] if system() in ('Windows', 'Microsoft'): dll_path.append(curr_path.parent / 'compile' / 'Release') dll_path.append(curr_path.parent / 'compile' / 'windows' / 'x64' / 'DLL') dll_path.append(curr_path.parents[1] / 'Release') dll_path.append(curr_path.parents[1] / 'windows' / 'x64' / 'DLL') dll_path = [p / 'lib_lightgbm.dll' for p in dll_path] else: dll_path = [p / 'lib_lightgbm.so' for p in dll_path] lib_path = [str(p) for p in dll_path if p.is_file()] if not lib_path: dll_path_joined = '\n'.join(map(str, dll_path)) raise Exception(f'Cannot find lightgbm library file in following paths:\n{dll_path_joined}') return lib_path
"""Test functionality related to length based selector.""" import pytest from langchain_core.example_selectors import ( LengthBasedExampleSelector, ) from langchain_core.prompts import PromptTemplate EXAMPLES = [ {"question": "Question: who are you?\nAnswer: foo"}, {"question": "Question: who are you?\nAnswer: foo"}, ] @pytest.fixture def selector() -> LengthBasedExampleSelector: """Get length based selector to use in tests.""" prompts = PromptTemplate(input_variables=["question"], template="{question}") return LengthBasedExampleSelector( examples=EXAMPLES, example_prompt=prompts, max_length=30, ) def test_selector_valid(selector: LengthBasedExampleSelector) -> None: """Test LengthBasedExampleSelector can select examples..""" short_question = "Short question?" output = selector.select_examples({"question": short_question}) assert output == EXAMPLES def test_selector_add_example(selector: LengthBasedExampleSelector) -> None: """Test LengthBasedExampleSelector can add an example.""" new_example = {"question": "Question: what are you?\nAnswer: bar"} selector.add_example(new_example) short_question = "Short question?" output = selector.select_examples({"question": short_question}) assert output == EXAMPLES + [new_example] def test_selector_trims_one_example(selector: LengthBasedExampleSelector) -> None: """Test LengthBasedExampleSelector can trim one example.""" long_question = """I am writing a really long question, this probably is going to affect the example right?""" output = selector.select_examples({"question": long_question}) assert output == EXAMPLES[:1] def test_selector_trims_all_examples( selector: LengthBasedExampleSelector, ) -> None: """Test LengthBasedExampleSelector can trim all examples.""" longest_question = """This question is super super super, super super super super super super super super super super super, super super super super long, this will affect the example right?""" output = selector.select_examples({"question": longest_question}) assert output == []
"""Test functionality related to length based selector.""" import pytest from langchain_core.example_selectors import ( LengthBasedExampleSelector, ) from langchain_core.prompts import PromptTemplate EXAMPLES = [ {"question": "Question: who are you?\nAnswer: foo"}, {"question": "Question: who are you?\nAnswer: foo"}, ] @pytest.fixture def selector() -> LengthBasedExampleSelector: """Get length based selector to use in tests.""" prompts = PromptTemplate(input_variables=["question"], template="{question}") selector = LengthBasedExampleSelector( examples=EXAMPLES, example_prompt=prompts, max_length=30, ) return selector def test_selector_valid(selector: LengthBasedExampleSelector) -> None: """Test LengthBasedExampleSelector can select examples..""" short_question = "Short question?" output = selector.select_examples({"question": short_question}) assert output == EXAMPLES def test_selector_add_example(selector: LengthBasedExampleSelector) -> None: """Test LengthBasedExampleSelector can add an example.""" new_example = {"question": "Question: what are you?\nAnswer: bar"} selector.add_example(new_example) short_question = "Short question?" output = selector.select_examples({"question": short_question}) assert output == EXAMPLES + [new_example] def test_selector_trims_one_example(selector: LengthBasedExampleSelector) -> None: """Test LengthBasedExampleSelector can trim one example.""" long_question = """I am writing a really long question, this probably is going to affect the example right?""" output = selector.select_examples({"question": long_question}) assert output == EXAMPLES[:1] def test_selector_trims_all_examples( selector: LengthBasedExampleSelector, ) -> None: """Test LengthBasedExampleSelector can trim all examples.""" longest_question = """This question is super super super, super super super super super super super super super super super, super super super super long, this will affect the example right?""" output = selector.select_examples({"question": longest_question}) assert output == []
""" This is a more complex example on performing clustering on large scale dataset. This examples find in a large set of sentences local communities, i.e., groups of sentences that are highly similar. You can freely configure the threshold what is considered as similar. A high threshold will only find extremely similar sentences, a lower threshold will find more sentence that are less similar. A second parameter is 'min_community_size': Only communities with at least a certain number of sentences will be returned. The method for finding the communities is extremely fast, for clustering 50k sentences it requires only 5 seconds (plus embedding comuptation). In this example, we download a large set of questions from Quora and then find similar questions in this set. """ from sentence_transformers import SentenceTransformer, util import os import csv import time # Model for computing sentence embeddings. We use one trained for similar questions detection model = SentenceTransformer("all-MiniLM-L6-v2") # We download the Quora Duplicate Questions Dataset (https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs) # and find similar question in it url = "http://qim.fs.quoracdn.net/quora_duplicate_questions.tsv" dataset_path = "quora_duplicate_questions.tsv" max_corpus_size = 50000 # We limit our corpus to only the first 50k questions # Check if the dataset exists. If not, download and extract # Download dataset if needed if not os.path.exists(dataset_path): print("Download dataset") util.http_get(url, dataset_path) # Get all unique sentences from the file corpus_sentences = set() with open(dataset_path, encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_MINIMAL) for row in reader: corpus_sentences.add(row["question1"]) corpus_sentences.add(row["question2"]) if len(corpus_sentences) >= max_corpus_size: break corpus_sentences = list(corpus_sentences) print("Encode the corpus. This might take a while") corpus_embeddings = model.encode(corpus_sentences, batch_size=64, show_progress_bar=True, convert_to_tensor=True) print("Start clustering") start_time = time.time() # Two parameters to tune: # min_cluster_size: Only consider cluster that have at least 25 elements # threshold: Consider sentence pairs with a cosine-similarity larger than threshold as similar clusters = util.community_detection(corpus_embeddings, min_community_size=25, threshold=0.75) print("Clustering done after {:.2f} sec".format(time.time() - start_time)) # Print for all clusters the top 3 and bottom 3 elements for i, cluster in enumerate(clusters): print("\nCluster {}, #{} Elements ".format(i + 1, len(cluster))) for sentence_id in cluster[0:3]: print("\t", corpus_sentences[sentence_id]) print("\t", "...") for sentence_id in cluster[-3:]: print("\t", corpus_sentences[sentence_id])
""" This is a more complex example on performing clustering on large scale dataset. This examples find in a large set of sentences local communities, i.e., groups of sentences that are highly similar. You can freely configure the threshold what is considered as similar. A high threshold will only find extremely similar sentences, a lower threshold will find more sentence that are less similar. A second parameter is 'min_community_size': Only communities with at least a certain number of sentences will be returned. The method for finding the communities is extremely fast, for clustering 50k sentences it requires only 5 seconds (plus embedding comuptation). In this example, we download a large set of questions from Quora and then find similar questions in this set. """ from sentence_transformers import SentenceTransformer, util import os import csv import time # Model for computing sentence embeddings. We use one trained for similar questions detection model = SentenceTransformer("all-MiniLM-L6-v2") # We download the Quora Duplicate Questions Dataset (https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs) # and find similar question in it url = "http://qim.fs.quoracdn.net/quora_duplicate_questions.tsv" dataset_path = "quora_duplicate_questions.tsv" max_corpus_size = 50000 # We limit our corpus to only the first 50k questions # Check if the dataset exists. If not, download and extract # Download dataset if needed if not os.path.exists(dataset_path): print("Download dataset") util.http_get(url, dataset_path) # Get all unique sentences from the file corpus_sentences = set() with open(dataset_path, encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_MINIMAL) for row in reader: corpus_sentences.add(row["question1"]) corpus_sentences.add(row["question2"]) if len(corpus_sentences) >= max_corpus_size: break corpus_sentences = list(corpus_sentences) print("Encode the corpus. This might take a while") corpus_embeddings = model.encode(corpus_sentences, batch_size=64, show_progress_bar=True, convert_to_tensor=True) print("Start clustering") start_time = time.time() # Two parameters to tune: # min_cluster_size: Only consider cluster that have at least 25 elements # threshold: Consider sentence pairs with a cosine-similarity larger than threshold as similar clusters = util.community_detection(corpus_embeddings, min_community_size=25, threshold=0.75) print("Clustering done after {:.2f} sec".format(time.time() - start_time)) # Print for all clusters the top 3 and bottom 3 elements for i, cluster in enumerate(clusters): print("\nCluster {}, #{} Elements ".format(i + 1, len(cluster))) for sentence_id in cluster[0:3]: print("\t", corpus_sentences[sentence_id]) print("\t", "...") for sentence_id in cluster[-3:]: print("\t", corpus_sentences[sentence_id])
# Copyright (c) OpenMMLab. All rights reserved. from mmdet.registry import MODELS from .single_stage import SingleStageDetector @MODELS.register_module() class RetinaNet(SingleStageDetector): """Implementation of `RetinaNet <https://arxiv.org/abs/1708.02002>`_""" def __init__(self, backbone, neck, bbox_head, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None, img_norm_cfg=None): super(RetinaNet, self).__init__(backbone, neck, bbox_head, train_cfg, test_cfg, pretrained, init_cfg, img_norm_cfg)
# Copyright (c) OpenMMLab. All rights reserved. from ..builder import DETECTORS from .single_stage import SingleStageDetector @DETECTORS.register_module() class RetinaNet(SingleStageDetector): """Implementation of `RetinaNet <https://arxiv.org/abs/1708.02002>`_""" def __init__(self, backbone, neck, bbox_head, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None, img_norm_cfg=None): super(RetinaNet, self).__init__(backbone, neck, bbox_head, train_cfg, test_cfg, pretrained, init_cfg, img_norm_cfg)
"""Feishu docs reader.""" import json import os import time from typing import List import requests from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document # Copyright (2023) Bytedance Ltd. and/or its affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. class FeishuDocsReader(BaseReader): """ Feishu Docs reader. Reads a page from Google Docs """ host = "https://open.feishu.cn" documents_raw_content_url_path = "/open-apis/docx/v1/documents/{}/raw_content" tenant_access_token_internal_url_path = ( "/open-apis/auth/v3/tenant_access_token/internal" ) def __init__(self, app_id, app_secret) -> None: """ Args: app_id: The unique identifier of the application is obtained after the application is created. app_secret: Application key, obtained after creating the application. """ super().__init__() self.app_id = app_id self.app_secret = app_secret self.tenant_access_token = "" self.expire = 0 def load_data(self, document_ids: List[str]) -> List[Document]: """ Load data from the input directory. Args: document_ids (List[str]): a list of document ids. """ if document_ids is None: raise ValueError('Must specify a "document_ids" in `load_kwargs`.') results = [] for document_id in document_ids: doc = self._load_doc(document_id) results.append(Document(text=doc, extra_info={"document_id": document_id})) return results def _load_doc(self, document_id) -> str: """ Load a document from Feishu Docs. Args: document_id: the document id. Returns: The document text. """ url = self.host + self.documents_raw_content_url_path.format(document_id) if self.tenant_access_token == "" or self.expire < time.time(): self._update_tenant_access_token() headers = { "Authorization": f"Bearer {self.tenant_access_token}", "Content-Type": "application/json; charset=utf-8", } response = requests.get(url, headers=headers) return response.json()["data"]["content"] def _update_tenant_access_token(self): """For update tenant_access_token.""" url = self.host + self.tenant_access_token_internal_url_path headers = {"Content-Type": "application/json; charset=utf-8"} data = {"app_id": self.app_id, "app_secret": self.app_secret} response = requests.post(url, data=json.dumps(data), headers=headers) self.tenant_access_token = response.json()["tenant_access_token"] self.expire = time.time() + response.json()["expire"] def set_lark_domain(self): """The default API endpoints are for Feishu, in order to switch to Lark, we should use set_lark_domain.""" self.host = "https://open.larksuite.com" if __name__ == "__main__": app_id = os.environ.get("FEISHU_APP_ID") app_secret = os.environ.get("FEISHU_APP_SECRET") reader = FeishuDocsReader(app_id, app_secret) print(reader.load_data(document_ids=[os.environ.get("FEISHU_DOC_ID")]))
"""Feishu docs reader.""" import json import os import time from typing import List import requests from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document # Copyright (2023) Bytedance Ltd. and/or its affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. class FeishuDocsReader(BaseReader): """ Feishu Docs reader. Reads a page from Google Docs """ host = "https://open.feishu.cn" documents_raw_content_url_path = "/open-apis/docx/v1/documents/{}/raw_content" tenant_access_token_internal_url_path = ( "/open-apis/auth/v3/tenant_access_token/internal" ) def __init__(self, app_id, app_secret) -> None: """ Args: app_id: The unique identifier of the application is obtained after the application is created. app_secret: Application key, obtained after creating the application. """ super().__init__() self.app_id = app_id self.app_secret = app_secret self.tenant_access_token = "" self.expire = 0 def load_data(self, document_ids: List[str]) -> List[Document]: """ Load data from the input directory. Args: document_ids (List[str]): a list of document ids. """ if document_ids is None: raise ValueError('Must specify a "document_ids" in `load_kwargs`.') results = [] for document_id in document_ids: doc = self._load_doc(document_id) results.append(Document(text=doc, extra_info={"document_id": document_id})) return results def _load_doc(self, document_id) -> str: """ Load a document from Feishu Docs. Args: document_id: the document id. Returns: The document text. """ url = self.host + self.documents_raw_content_url_path.format(document_id) if self.tenant_access_token == "" or self.expire < time.time(): self._update_tenant_access_token() headers = { "Authorization": f"Bearer {self.tenant_access_token}", "Content-Type": "application/json; charset=utf-8", } response = requests.get(url, headers=headers) return response.json()["data"]["content"] def _update_tenant_access_token(self): """For update tenant_access_token.""" url = self.host + self.tenant_access_token_internal_url_path headers = {"Content-Type": "application/json; charset=utf-8"} data = {"app_id": self.app_id, "app_secret": self.app_secret} response = requests.post(url, data=json.dumps(data), headers=headers) self.tenant_access_token = response.json()["tenant_access_token"] self.expire = time.time() + response.json()["expire"] def set_lark_domain(self): """The default API endpoints are for Feishu, in order to switch to Lark, we should use set_lark_domain.""" self.host = "https://open.larksuite.com" if __name__ == "__main__": app_id = os.environ.get("FEISHU_APP_ID") app_secret = os.environ.get("FEISHU_APP_SECRET") reader = FeishuDocsReader(app_id, app_secret) print(reader.load_data(document_ids=[os.environ.get("FEISHU_DOC_ID")]))
from __future__ import annotations from collections.abc import Iterable from torch import Tensor from sentence_transformers.losses.TripletLoss import TripletDistanceMetric, TripletLoss from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class SparseTripletLoss(TripletLoss): def __init__( self, model: SparseEncoder, distance_metric=TripletDistanceMetric.EUCLIDEAN, triplet_margin: float = 5 ) -> None: """ This class implements triplet loss. Given a triplet of (anchor, positive, negative), the loss minimizes the distance between anchor and positive while it maximizes the distance between anchor and negative. It compute the following loss function: ``loss = max(||anchor - positive|| - ||anchor - negative|| + margin, 0)``. Margin is an important hyperparameter and needs to be tuned respectively. Args: model: SparseEncoder distance_metric: Function to compute distance between two embeddings. The class TripletDistanceMetric contains common distance metrices that can be used. triplet_margin: The negative should be at least this much further away from the anchor than the positive. References: - For further details, see: https://en.wikipedia.org/wiki/Triplet_loss Requirements: 1. Need to be used in SpladeLoss or CSRLoss as a loss function. 2. (anchor, positive, negative) triplets Inputs: +---------------------------------------+--------+ | Texts | Labels | +=======================================+========+ | (anchor, positive, negative) triplets | none | +---------------------------------------+--------+ Example: :: from datasets import Dataset from sentence_transformers.sparse_encoder import SparseEncoder, SparseEncoderTrainer, losses model = SparseEncoder("distilbert/distilbert-base-uncased") train_dataset = Dataset.from_dict( { "anchor": ["It's nice weather outside today.", "He drove to work."], "positive": ["It's so sunny.", "He took the car to the office."], "negative": ["It's quite rainy, sadly.", "She walked to the store."], } ) loss = losses.SpladeLoss(model=model, loss=losses.SparseTripletLoss(model), lambda_corpus=3e-5, lambda_query=5e-5) trainer = SparseEncoderTrainer(model=model, train_dataset=train_dataset, loss=loss) trainer.train() """ super().__init__(model, distance_metric=distance_metric, triplet_margin=triplet_margin) def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor: raise AttributeError("SparseTripletLoss shold not be used alone. Use it with SpladeLoss or CSRLoss.")
from __future__ import annotations from sentence_transformers.losses.TripletLoss import TripletDistanceMetric, TripletLoss from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class SparseTripletLoss(TripletLoss): def __init__( self, model: SparseEncoder, distance_metric=TripletDistanceMetric.EUCLIDEAN, triplet_margin: float = 5 ) -> None: super().__init__(model, distance_metric=distance_metric, triplet_margin=triplet_margin)
#!/usr/bin/env python3 """Generate feature statistics for training set. Example: python global_stats.py --model-type librispeech --dataset-path /home/librispeech """ import json import logging import pathlib from argparse import ArgumentParser, RawTextHelpFormatter import torch import torchaudio from common import ( MODEL_TYPE_LIBRISPEECH, MODEL_TYPE_TEDLIUM3, MODEL_TYPE_MUSTC, piecewise_linear_log, spectrogram_transform, ) from must.dataset import MUSTC logger = logging.getLogger() def parse_args(): parser = ArgumentParser(description=__doc__, formatter_class=RawTextHelpFormatter) parser.add_argument( "--model-type", type=str, choices=[MODEL_TYPE_LIBRISPEECH, MODEL_TYPE_TEDLIUM3, MODEL_TYPE_MUSTC], required=True ) parser.add_argument( "--dataset-path", required=True, type=pathlib.Path, help="Path to dataset. " "For LibriSpeech, all of 'train-clean-360', 'train-clean-100', and 'train-other-500' must exist.", ) parser.add_argument( "--output-path", default=pathlib.Path("global_stats.json"), type=pathlib.Path, help="File to save feature statistics to. (Default: './global_stats.json')", ) return parser.parse_args() def generate_statistics(samples): E_x = 0 E_x_2 = 0 N = 0 for idx, sample in enumerate(samples): mel_spec = spectrogram_transform(sample[0].squeeze()).transpose(1, 0) scaled_mel_spec = piecewise_linear_log(mel_spec) sum = scaled_mel_spec.sum(0) sq_sum = scaled_mel_spec.pow(2).sum(0) M = scaled_mel_spec.size(0) E_x = E_x * (N / (N + M)) + sum / (N + M) E_x_2 = E_x_2 * (N / (N + M)) + sq_sum / (N + M) N += M if idx % 100 == 0: logger.info(f"Processed {idx}") return E_x, (E_x_2 - E_x**2) ** 0.5 def get_dataset(args): if args.model_type == MODEL_TYPE_LIBRISPEECH: return torch.utils.data.ConcatDataset( [ torchaudio.datasets.LIBRISPEECH(args.dataset_path, url="train-clean-360"), torchaudio.datasets.LIBRISPEECH(args.dataset_path, url="train-clean-100"), torchaudio.datasets.LIBRISPEECH(args.dataset_path, url="train-other-500"), ] ) elif args.model_type == MODEL_TYPE_TEDLIUM3: return torchaudio.datasets.TEDLIUM(args.dataset_path, release="release3", subset="train") elif args.model_type == MODEL_TYPE_MUSTC: return MUSTC(args.dataset_path, subset="train") else: raise ValueError(f"Encountered unsupported model type {args.model_type}.") def cli_main(): args = parse_args() dataset = get_dataset(args) dataloader = torch.utils.data.DataLoader(dataset, num_workers=4) mean, stddev = generate_statistics(iter(dataloader)) json_str = json.dumps({"mean": mean.tolist(), "invstddev": (1 / stddev).tolist()}, indent=2) with open(args.output_path, "w") as f: f.write(json_str) if __name__ == "__main__": cli_main()
#!/usr/bin/env python3 """Generate feature statistics for training set. Example: python global_stats.py --model-type librispeech --dataset-path /home/librispeech """ import json import logging import pathlib from argparse import ArgumentParser, RawTextHelpFormatter import torch import torchaudio from common import ( MODEL_TYPE_LIBRISPEECH, MODEL_TYPE_TEDLIUM3, MODEL_TYPE_MUSTC, piecewise_linear_log, spectrogram_transform, ) from must.dataset import MUSTC logger = logging.getLogger() def parse_args(): parser = ArgumentParser(description=__doc__, formatter_class=RawTextHelpFormatter) parser.add_argument( "--model-type", type=str, choices=[MODEL_TYPE_LIBRISPEECH, MODEL_TYPE_TEDLIUM3, MODEL_TYPE_MUSTC], required=True ) parser.add_argument( "--dataset-path", required=True, type=pathlib.Path, help="Path to dataset. " "For LibriSpeech, all of 'train-clean-360', 'train-clean-100', and 'train-other-500' must exist.", ) parser.add_argument( "--output-path", default=pathlib.Path("global_stats.json"), type=pathlib.Path, help="File to save feature statistics to. (Default: './global_stats.json')", ) return parser.parse_args() def generate_statistics(samples): E_x = 0 E_x_2 = 0 N = 0 for idx, sample in enumerate(samples): mel_spec = spectrogram_transform(sample[0].squeeze()).transpose(1, 0) scaled_mel_spec = piecewise_linear_log(mel_spec) sum = scaled_mel_spec.sum(0) sq_sum = scaled_mel_spec.pow(2).sum(0) M = scaled_mel_spec.size(0) E_x = E_x * (N / (N + M)) + sum / (N + M) E_x_2 = E_x_2 * (N / (N + M)) + sq_sum / (N + M) N += M if idx % 100 == 0: logger.info(f"Processed {idx}") return E_x, (E_x_2 - E_x ** 2) ** 0.5 def get_dataset(args): if args.model_type == MODEL_TYPE_LIBRISPEECH: return torch.utils.data.ConcatDataset( [ torchaudio.datasets.LIBRISPEECH(args.dataset_path, url="train-clean-360"), torchaudio.datasets.LIBRISPEECH(args.dataset_path, url="train-clean-100"), torchaudio.datasets.LIBRISPEECH(args.dataset_path, url="train-other-500"), ] ) elif args.model_type == MODEL_TYPE_TEDLIUM3: return torchaudio.datasets.TEDLIUM(args.dataset_path, release="release3", subset="train") elif args.model_type == MODEL_TYPE_MUSTC: return MUSTC(args.dataset_path, subset="train") else: raise ValueError(f"Encountered unsupported model type {args.model_type}.") def cli_main(): args = parse_args() dataset = get_dataset(args) dataloader = torch.utils.data.DataLoader(dataset, num_workers=4) mean, stddev = generate_statistics(iter(dataloader)) json_str = json.dumps({"mean": mean.tolist(), "invstddev": (1 / stddev).tolist()}, indent=2) with open(args.output_path, "w") as f: f.write(json_str) if __name__ == "__main__": cli_main()
from __future__ import annotations from collections.abc import Iterable import torch from torch import Tensor, nn from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class FlopsLoss(nn.Module): def __init__(self, model: SparseEncoder, threshold: float = None) -> None: """ FlopsLoss implements a regularization technique to promote sparsity in sparse encoder models. It calculates the squared L2 norm of the mean embedding vector, which helps reduce the number of floating-point operations (FLOPs) required during inference by encouraging more zero values in the embeddings. It can use a threshold to ignore embeddings with too few non-zero elements. This loss is used as a regularization component within other losses like :class:`SpladeLoss` rather than being used as a standalone loss function. Args: model: SparseEncoder model to be regularized threshold: Optional threshold for the number of non-zero elements in the embeddings. If specified, only embeddings with more than this number of non-zero elements will be considered. This can help to ignore embeddings that are too sparse and may not contribute meaningfully to the loss. References: - For further details, see: https://arxiv.org/pdf/2004.05665 for the general FLOPS loss and https://arxiv.org/pdf/2504.14839 for FLOPS with thresholds, a.k.a. FLOPS with l0 masking. Relations: - Used as a component within :class:`SpladeLoss` to regularize both query and document embeddings Example: - This loss is typically used within the :class:`SpladeLoss` class, which combines it with other loss components. """ super().__init__() self.model = model self.threshold = threshold def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor: # Compute the embeddings and distribute them to anchor and candidates (positive and optionally negatives) embeddings = [self.model(sentence_feature)["sentence_embedding"] for sentence_feature in sentence_features] return self.compute_loss_from_embeddings(embeddings) def compute_loss_from_embeddings(self, embeddings: list[torch.Tensor], embeddings_type: str) -> torch.Tensor: if embeddings_type == "query": embeddings_to_use = embeddings[0] # (batch_size, embedding_dim) else: embeddings_to_use = torch.cat(embeddings[1:]) # (batch_size * (1 + num_negatives), embedding_dim) if self.threshold is not None: l0_norm = (embeddings_to_use != 0).sum(dim=1) mask = (l0_norm > self.threshold).float() embeddings_to_use = embeddings_to_use * mask.unsqueeze(1) if embeddings_type == "query": return torch.sum(torch.mean(embeddings_to_use, dim=0) ** 2) else: return torch.sum(torch.mean(embeddings_to_use, dim=0) ** 2) @property def citation(self) -> str: return """ @article{paria2020minimizing, title={Minimizing flops to learn efficient sparse representations}, author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{\'o}czos, Barnab{\'a}s}, journal={arXiv preprint arXiv:2004.05665}, year={2020} } """
from __future__ import annotations from collections.abc import Iterable import torch from torch import Tensor, nn from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class FlopsLoss(nn.Module): def __init__(self, model: SparseEncoder, threshold: float = None) -> None: """ FlopsLoss implements a regularization technique to promote sparsity in sparse encoder models. It calculates the squared L2 norm of the mean embedding vector, which helps reduce the number of floating-point operations (FLOPs) required during inference by encouraging more zero values in the embeddings. It can use a threshold to ignore embeddings with too few non-zero elements. This loss is used as a regularization component within other losses like :class:`SpladeLoss` rather than being used as a standalone loss function. Args: model: SparseEncoder model to be regularized threshold: Optional threshold for the number of non-zero elements in the embeddings. If specified, only embeddings with more than this number of non-zero elements will be considered. This can help to ignore embeddings that are too sparse and may not contribute meaningfully to the loss. References: - For further details, see: https://arxiv.org/pdf/2004.05665 for the general FLOPS loss and https://arxiv.org/pdf/2504.14839 for FLOPS with thresholds, a.k.a. FLOPS with l0 masking. Relations: - Used as a component within :class:`SpladeLoss` to regularize both query and document embeddings Example: - This loss is typically used within the :class:`SpladeLoss` class, which combines it with other loss components. """ super().__init__() self.model = model self.threshold = threshold def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor: # Compute the embeddings and distribute them to anchor and candidates (positive and optionally negatives) embeddings = [self.model(sentence_feature)["sentence_embedding"] for sentence_feature in sentence_features] return self.compute_loss_from_embeddings(embeddings) def compute_loss_from_embeddings(self, embeddings: list[torch.Tensor], embeddings_type: str) -> torch.Tensor: if embeddings_type == "query": embeddings_to_use = embeddings[0] # (batch_size, embedding_dim) else: embeddings_to_use = torch.cat(embeddings[1:]) # (batch_size * (1 + num_negatives), embedding_dim) if self.treshold is not None: l0_norm = (embeddings_to_use != 0).sum(dim=1) mask = (l0_norm > self.threshold).float() embeddings_to_use = embeddings_to_use * mask.unsqueeze(1) if embeddings_type == "query": return torch.sum(torch.mean(embeddings_to_use, dim=0) ** 2) else: return torch.sum(torch.mean(embeddings_to_use, dim=0) ** 2) @property def citation(self) -> str: return """ @article{paria2020minimizing, title={Minimizing flops to learn efficient sparse representations}, author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{\'o}czos, Barnab{\'a}s}, journal={arXiv preprint arXiv:2004.05665}, year={2020} } """
from __future__ import annotations import json import logging import os import torch from torch import Tensor, nn logger = logging.getLogger(__name__) class WordWeights(nn.Module): """This model can weight word embeddings, for example, with idf-values.""" def __init__(self, vocab: list[str], word_weights: dict[str, float], unknown_word_weight: float = 1): """ Initializes the WordWeights class. Args: vocab (List[str]): Vocabulary of the tokenizer. word_weights (Dict[str, float]): Mapping of tokens to a float weight value. Word embeddings are multiplied by this float value. Tokens in word_weights must not be equal to the vocab (can contain more or less values). unknown_word_weight (float, optional): Weight for words in vocab that do not appear in the word_weights lookup. These can be, for example, rare words in the vocab where no weight exists. Defaults to 1. """ super(WordWeights, self).__init__() self.config_keys = ["vocab", "word_weights", "unknown_word_weight"] self.vocab = vocab self.word_weights = word_weights self.unknown_word_weight = unknown_word_weight weights = [] num_unknown_words = 0 for word in vocab: weight = unknown_word_weight if word in word_weights: weight = word_weights[word] elif word.lower() in word_weights: weight = word_weights[word.lower()] else: num_unknown_words += 1 weights.append(weight) logger.info( "{} of {} words without a weighting value. Set weight to {}".format( num_unknown_words, len(vocab), unknown_word_weight ) ) self.emb_layer = nn.Embedding(len(vocab), 1) self.emb_layer.load_state_dict({"weight": torch.FloatTensor(weights).unsqueeze(1)}) def forward(self, features: dict[str, Tensor]): attention_mask = features["attention_mask"] token_embeddings = features["token_embeddings"] # Compute a weight value for each token token_weights_raw = self.emb_layer(features["input_ids"]).squeeze(-1) token_weights = token_weights_raw * attention_mask.float() token_weights_sum = torch.sum(token_weights, 1) # Multiply embedding by token weight value token_weights_expanded = token_weights.unsqueeze(-1).expand(token_embeddings.size()) token_embeddings = token_embeddings * token_weights_expanded features.update({"token_embeddings": token_embeddings, "token_weights_sum": token_weights_sum}) return features def get_config_dict(self): return {key: self.__dict__[key] for key in self.config_keys} def save(self, output_path): with open(os.path.join(output_path, "config.json"), "w") as fOut: json.dump(self.get_config_dict(), fOut, indent=2) @staticmethod def load(input_path): with open(os.path.join(input_path, "config.json")) as fIn: config = json.load(fIn) return WordWeights(**config)
import json import logging import os from typing import Dict, List import torch from torch import Tensor, nn logger = logging.getLogger(__name__) class WordWeights(nn.Module): """This model can weight word embeddings, for example, with idf-values.""" def __init__(self, vocab: List[str], word_weights: Dict[str, float], unknown_word_weight: float = 1): """ Initializes the WordWeights class. Args: vocab (List[str]): Vocabulary of the tokenizer. word_weights (Dict[str, float]): Mapping of tokens to a float weight value. Word embeddings are multiplied by this float value. Tokens in word_weights must not be equal to the vocab (can contain more or less values). unknown_word_weight (float, optional): Weight for words in vocab that do not appear in the word_weights lookup. These can be, for example, rare words in the vocab where no weight exists. Defaults to 1. """ super(WordWeights, self).__init__() self.config_keys = ["vocab", "word_weights", "unknown_word_weight"] self.vocab = vocab self.word_weights = word_weights self.unknown_word_weight = unknown_word_weight weights = [] num_unknown_words = 0 for word in vocab: weight = unknown_word_weight if word in word_weights: weight = word_weights[word] elif word.lower() in word_weights: weight = word_weights[word.lower()] else: num_unknown_words += 1 weights.append(weight) logger.info( "{} of {} words without a weighting value. Set weight to {}".format( num_unknown_words, len(vocab), unknown_word_weight ) ) self.emb_layer = nn.Embedding(len(vocab), 1) self.emb_layer.load_state_dict({"weight": torch.FloatTensor(weights).unsqueeze(1)}) def forward(self, features: Dict[str, Tensor]): attention_mask = features["attention_mask"] token_embeddings = features["token_embeddings"] # Compute a weight value for each token token_weights_raw = self.emb_layer(features["input_ids"]).squeeze(-1) token_weights = token_weights_raw * attention_mask.float() token_weights_sum = torch.sum(token_weights, 1) # Multiply embedding by token weight value token_weights_expanded = token_weights.unsqueeze(-1).expand(token_embeddings.size()) token_embeddings = token_embeddings * token_weights_expanded features.update({"token_embeddings": token_embeddings, "token_weights_sum": token_weights_sum}) return features def get_config_dict(self): return {key: self.__dict__[key] for key in self.config_keys} def save(self, output_path): with open(os.path.join(output_path, "config.json"), "w") as fOut: json.dump(self.get_config_dict(), fOut, indent=2) @staticmethod def load(input_path): with open(os.path.join(input_path, "config.json")) as fIn: config = json.load(fIn) return WordWeights(**config)
from __future__ import annotations from collections.abc import Iterable import torch import torch.nn as nn import torch.nn.functional as F from sentence_transformers.sparse_encoder import SparseEncoder def normalized_mean_squared_error(reconstruction: torch.Tensor, original_input: torch.Tensor) -> torch.Tensor: """ :param reconstruction: output of Autoencoder.decode (shape: [batch, n_inputs]) :param original_input: input of Autoencoder.encode (shape: [batch, n_inputs]) :return: normalized mean squared error (shape: [1]) """ return (((reconstruction - original_input) ** 2).mean(dim=1) / (original_input**2).mean(dim=1)).mean() class CSRReconstructionLoss(nn.Module): def __init__(self, model: SparseEncoder, beta: float = 1.0) -> None: """ CSRReconstructionLoss implements the reconstruction loss component for Contrastive Sparse Representation (CSR) models. This loss ensures that the sparse encoding can accurately reconstruct the original model embeddings through three components: 1. A primary reconstruction loss (L_k) that measures the error between the original embedding and its reconstruction using the top-k sparse components. 2. A secondary reconstruction loss (L_4k) that measures the error using the top-4k sparse components. 3. An auxiliary loss (L_aux) that helps to learn residual information. Args: model: SparseEncoder model with autoencoder components beta: Weight for the auxiliary loss component (L_aux) References: - For more details, see the paper "Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation" https://arxiv.org/abs/2503.01776 Requirements: 1. The model must be configured to output the necessary reconstruction components 2. Used with SparseEncoder models that implement compositional sparse autoencoding Relations: - Used as a component within :class:`CSRLoss` combined with a contrastive loss Example: :: This loss is typically used within the :class:`CSRLoss` class, which combines it with other loss components. """ super().__init__() self.model = model self.beta = beta def forward(self, sentence_features: Iterable[dict[str, torch.Tensor]]) -> dict[str, torch.Tensor]: """ Forward pass of the CSRReconstruction Loss module. This method is used when the loss is computed as part of the model's forward pass. Args: sentence_features: Iterable of dictionaries containing sentence embeddings and their sparse representations Returns: Dictionary containing the total loss and individual loss components """ # Compute embeddings using the model outputs = [self.model(sentence_feature) for sentence_feature in sentence_features] return self.compute_loss_from_embeddings(outputs) def compute_loss_from_embeddings(self, outputs: list[dict[str, torch.Tensor]]) -> dict[str, torch.Tensor]: """ Compute the CSRReconstruction loss from embeddings. Args: outputs: List of dictionaries containing sentence embeddings and their sparse representations Returns: Dictionary containing the total loss and individual loss components """ # Initialize loss components total_L_k = 0.0 total_L_4k = 0.0 total_L_aux = 0.0 # Process each sentence feature for features in outputs: x = features["sentence_embedding_backbone"] recons_k = features["decoded_embedding_k"] recons_4k = features["decoded_embedding_4k"] recons_aux = features["decoded_embedding_aux"] reconsk_pre_bias = features["decoded_embedding_k_pre_bias"] # L(k) = ||f(x) - f(dx)_k||₂² L_k = F.mse_loss(x, recons_k) # L(4k) = ||f(x) - f(dx)_4k||₂² L_4k = F.mse_loss(x, recons_4k) # L_aux = ||e - ê||₂² L_aux = normalized_mean_squared_error(recons_aux, x - reconsk_pre_bias) # Accumulate losses total_L_k += L_k total_L_4k += L_4k total_L_aux += L_aux # Average losses over batch batch_size = len(outputs) if batch_size > 0: total_L_k /= batch_size total_L_4k /= batch_size total_L_aux /= batch_size # Total loss: L_recon = L(k) + L(4k)/8 + β*L_aux total_loss = total_L_k + total_L_4k / 8 + self.beta * total_L_aux return total_loss def get_config_dict(self): """ Get the configuration dictionary. Returns: Dictionary containing the configuration parameters """ return {"beta": self.beta}
from __future__ import annotations from collections.abc import Iterable import torch import torch.nn as nn import torch.nn.functional as F from sentence_transformers.sparse_encoder import SparseEncoder def normalized_mean_squared_error(reconstruction: torch.Tensor, original_input: torch.Tensor) -> torch.Tensor: """ :param reconstruction: output of Autoencoder.decode (shape: [batch, n_inputs]) :param original_input: input of Autoencoder.encode (shape: [batch, n_inputs]) :return: normalized mean squared error (shape: [1]) """ return (((reconstruction - original_input) ** 2).mean(dim=1) / (original_input**2).mean(dim=1)).mean() class CSRReconstructionLoss(nn.Module): def __init__(self, model: SparseEncoder, beta: float = 1.0) -> None: """ CSRReconstructionLoss implements the reconstruction loss component for Contrastive Sparse Representation (CSR) models. This loss ensures that the sparse encoding can accurately reconstruct the original model embeddings through three components: 1. A primary reconstruction loss (L_k) that measures the error between the original embedding and its reconstruction using the top-k sparse components. 2. A secondary reconstruction loss (L_4k) that measures the error using the top-4k sparse components. 3. An auxiliary loss (L_aux) that helps to learn residual information. Args: model: SparseEncoder model with autoencoder components beta: Weight for the auxiliary loss component (L_aux) References: - For more details, see the paper "Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation" https://arxiv.org/abs/2503.01776 Requirements: 1. The model must be configured to output the necessary reconstruction components 2. Used with SparseEncoder models that implement compositional sparse autoencoding Relations: - Used as a component within :class:`CSRLoss` combined with a contrastive loss Example: :: This loss is typically used within the :class:`CSRLoss` class, which combines it with other loss components. """ super().__init__() self.model = model self.beta = beta def forward(self, sentence_features: Iterable[dict[str, torch.Tensor]]) -> dict[str, torch.Tensor]: """ Forward pass of the CSRReconstruction Loss module. This method is used when the loss is computed as part of the model's forward pass. Args: sentence_features: Iterable of dictionaries containing sentence embeddings and their sparse representations Returns: Dictionary containing the total loss and individual loss components """ # Compute embeddings using the model outputs = [self.model(sentence_feature) for sentence_feature in sentence_features] return self.compute_loss_from_embeddings(outputs) def compute_loss_from_embeddings(self, outputs: list[dict[str, torch.Tensor]]) -> dict[str, torch.Tensor]: """ Compute the CSRReconstruction loss from embeddings. Args: outputs: List of dictionaries containing sentence embeddings and their sparse representations Returns: Dictionary containing the total loss and individual loss components """ # Initialize loss components total_L_k = 0.0 total_L_4k = 0.0 total_L_aux = 0.0 # Process each sentence feature for features in outputs: x = features["sentence_embedding_backbone"] recons_k = features["decoded_embedding_k"] recons_4k = features["decoded_embedding_4k"] recons_aux = features["decoded_embedding_aux"] reconsk_pre_bias = features["decoded_embedding_k_pre_bias"] # L(k) = ||f(x) - f(dx)_k||₂² L_k = F.mse_loss(x, recons_k) # L(4k) = ||f(x) - f(dx)_4k||₂² L_4k = F.mse_loss(x, recons_4k) # L_aux = ||e - ê||₂² L_aux = normalized_mean_squared_error(recons_aux, x - reconsk_pre_bias) # Accumulate losses total_L_k += L_k total_L_4k += L_4k total_L_aux += L_aux # Average losses over batch batch_size = len(outputs) if batch_size > 0: total_L_k /= batch_size total_L_4k /= batch_size total_L_aux /= batch_size # Total loss: L_recon = L(k) + L(4k)/8 + β*L_aux total_loss = total_L_k + total_L_4k / 8 + self.beta * total_L_aux return total_loss def get_config_dict(self): """ Get the configuration dictionary. Returns: Dictionary containing the configuration parameters """ return {"beta": self.beta}
""" This file contains deprecated code that can only be used with the old `model.fit`-style Sentence Transformers v2.X training. It exists for backwards compatibility with the `model.old_fit` method, but will be removed in a future version. Nowadays, with Sentence Transformers v3+, it is recommended to use the `SentenceTransformerTrainer` class to train models. See https://www.sbert.net/docs/sentence_transformer/training_overview.html for more information. Instead, you should create a `datasets` `Dataset` for training: https://huggingface.co/docs/datasets/create_dataset """ from __future__ import annotations import csv import gzip import os from . import InputExample class STSDataReader: """Reads in the STS dataset. Each line contains two sentences (s1_col_idx, s2_col_idx) and one label (score_col_idx) Default values expects a tab separated file with the first & second column the sentence pair and third column the score (0...1). Default config normalizes scores from 0...5 to 0...1 """ def __init__( self, dataset_folder, s1_col_idx=0, s2_col_idx=1, score_col_idx=2, delimiter="\t", quoting=csv.QUOTE_NONE, normalize_scores=True, min_score=0, max_score=5, ): self.dataset_folder = dataset_folder self.score_col_idx = score_col_idx self.s1_col_idx = s1_col_idx self.s2_col_idx = s2_col_idx self.delimiter = delimiter self.quoting = quoting self.normalize_scores = normalize_scores self.min_score = min_score self.max_score = max_score def get_examples(self, filename, max_examples=0): """filename specified which data split to use (train.csv, dev.csv, test.csv).""" filepath = os.path.join(self.dataset_folder, filename) with ( gzip.open(filepath, "rt", encoding="utf8") if filename.endswith(".gz") else open(filepath, encoding="utf-8") ) as fIn: data = csv.reader(fIn, delimiter=self.delimiter, quoting=self.quoting) examples = [] for id, row in enumerate(data): score = float(row[self.score_col_idx]) if self.normalize_scores: # Normalize to a 0...1 value score = (score - self.min_score) / (self.max_score - self.min_score) s1 = row[self.s1_col_idx] s2 = row[self.s2_col_idx] examples.append(InputExample(guid=filename + str(id), texts=[s1, s2], label=score)) if max_examples > 0 and len(examples) >= max_examples: break return examples class STSBenchmarkDataReader(STSDataReader): """Reader especially for the STS benchmark dataset. There, the sentences are in column 5 and 6, the score is in column 4. Scores are normalized from 0...5 to 0...1 """ def __init__( self, dataset_folder, s1_col_idx=5, s2_col_idx=6, score_col_idx=4, delimiter="\t", quoting=csv.QUOTE_NONE, normalize_scores=True, min_score=0, max_score=5, ): super().__init__( dataset_folder=dataset_folder, s1_col_idx=s1_col_idx, s2_col_idx=s2_col_idx, score_col_idx=score_col_idx, delimiter=delimiter, quoting=quoting, normalize_scores=normalize_scores, min_score=min_score, max_score=max_score, )
""" This file contains deprecated code that can only be used with the old `model.fit`-style Sentence Transformers v2.X training. It exists for backwards compatibility with the `model.old_fit` method, but will be removed in a future version. Nowadays, with Sentence Transformers v3+, it is recommended to use the `SentenceTransformerTrainer` class to train models. See https://www.sbert.net/docs/sentence_transformer/training_overview.html for more information. Instead, you should create a `datasets` `Dataset` for training: https://huggingface.co/docs/datasets/create_dataset """ from __future__ import annotations import csv import gzip import os from . import InputExample class STSDataReader: """Reads in the STS dataset. Each line contains two sentences (s1_col_idx, s2_col_idx) and one label (score_col_idx) Default values expects a tab separated file with the first & second column the sentence pair and third column the score (0...1). Default config normalizes scores from 0...5 to 0...1 """ def __init__( self, dataset_folder, s1_col_idx=0, s2_col_idx=1, score_col_idx=2, delimiter="\t", quoting=csv.QUOTE_NONE, normalize_scores=True, min_score=0, max_score=5, ): self.dataset_folder = dataset_folder self.score_col_idx = score_col_idx self.s1_col_idx = s1_col_idx self.s2_col_idx = s2_col_idx self.delimiter = delimiter self.quoting = quoting self.normalize_scores = normalize_scores self.min_score = min_score self.max_score = max_score def get_examples(self, filename, max_examples=0): """filename specified which data split to use (train.csv, dev.csv, test.csv).""" filepath = os.path.join(self.dataset_folder, filename) with ( gzip.open(filepath, "rt", encoding="utf8") if filename.endswith(".gz") else open(filepath, encoding="utf-8") as fIn ): data = csv.reader(fIn, delimiter=self.delimiter, quoting=self.quoting) examples = [] for id, row in enumerate(data): score = float(row[self.score_col_idx]) if self.normalize_scores: # Normalize to a 0...1 value score = (score - self.min_score) / (self.max_score - self.min_score) s1 = row[self.s1_col_idx] s2 = row[self.s2_col_idx] examples.append(InputExample(guid=filename + str(id), texts=[s1, s2], label=score)) if max_examples > 0 and len(examples) >= max_examples: break return examples class STSBenchmarkDataReader(STSDataReader): """Reader especially for the STS benchmark dataset. There, the sentences are in column 5 and 6, the score is in column 4. Scores are normalized from 0...5 to 0...1 """ def __init__( self, dataset_folder, s1_col_idx=5, s2_col_idx=6, score_col_idx=4, delimiter="\t", quoting=csv.QUOTE_NONE, normalize_scores=True, min_score=0, max_score=5, ): super().__init__( dataset_folder=dataset_folder, s1_col_idx=s1_col_idx, s2_col_idx=s2_col_idx, score_col_idx=score_col_idx, delimiter=delimiter, quoting=quoting, normalize_scores=normalize_scores, min_score=min_score, max_score=max_score, )
# Copyright (c) OpenMMLab. All rights reserved. import os.path as osp from typing import Optional, Sequence, Tuple import cv2 import numpy as np from mmengine.data import BaseDataElement from mmengine.hooks import Hook from mmengine.registry import HOOKS from mmengine.utils.misc import tensor2imgs # TODO: Due to interface changes, the current class # functions incorrectly @HOOKS.register_module() class NaiveVisualizationHook(Hook): """Show or Write the predicted results during the process of testing. Args: interval (int): Visualization interval. Default: 1. draw_gt (bool): Whether to draw the ground truth. Default to True. draw_pred (bool): Whether to draw the predicted result. Default to True. """ priority = 'NORMAL' def __init__(self, interval: int = 1, draw_gt: bool = True, draw_pred: bool = True): self.draw_gt = draw_gt self.draw_pred = draw_pred self._interval = interval def _unpad(self, input: np.ndarray, unpad_shape: Tuple[int, int]) -> np.ndarray: """Unpad the input image. Args: input (np.ndarray): The image to unpad. unpad_shape (tuple): The shape of image before padding. Returns: np.ndarray: The image before padding. """ unpad_width, unpad_height = unpad_shape unpad_image = input[:unpad_height, :unpad_width] return unpad_image def after_test_iter( self, runner, batch_idx: int, data_batch: Optional[Sequence[dict]] = None, outputs: Optional[Sequence[BaseDataElement]] = None) -> None: """Show or Write the predicted results. Args: runner (Runner): The runner of the training process. batch_idx (int): The index of the current batch in the test loop. data_batch (Sequence[dict], optional): Data from dataloader. Defaults to None. outputs (Sequence[BaseDataElement], optional): Outputs from model. Defaults to None. """ if self.every_n_iters(runner, self._interval): for data, output in zip(data_batch, outputs): # type: ignore input = data['inputs'] data_sample = data['data_sample'] input = tensor2imgs(input, **data_sample.get('img_norm_cfg', dict()))[0] # TODO We will implement a function to revert the augmentation # in the future. ori_shape = (data_sample.ori_width, data_sample.ori_height) if 'pad_shape' in data_sample: input = self._unpad(input, data_sample.get('scale', ori_shape)) origin_image = cv2.resize(input, ori_shape) name = osp.basename(data_sample.img_path) runner.visualizer.add_datasample(name, origin_image, data_sample, output, self.draw_gt, self.draw_pred)
# Copyright (c) OpenMMLab. All rights reserved. import os.path as osp from typing import Optional, Sequence, Tuple import cv2 import numpy as np from mmengine.data import BaseDataElement from mmengine.hooks import Hook from mmengine.registry import HOOKS from mmengine.utils.misc import tensor2imgs # TODO: Due to interface changes, the current class # functions incorrectly @HOOKS.register_module() class NaiveVisualizationHook(Hook): """Show or Write the predicted results during the process of testing. Args: interval (int): Visualization interval. Default: 1. draw_gt (bool): Whether to draw the ground truth. Default to True. draw_pred (bool): Whether to draw the predicted result. Default to True. """ priority = 'NORMAL' def __init__(self, interval: int = 1, draw_gt: bool = True, draw_pred: bool = True): self.draw_gt = draw_gt self.draw_pred = draw_pred self._interval = interval def _unpad(self, input: np.ndarray, unpad_shape: Tuple[int, int]) -> np.ndarray: unpad_width, unpad_height = unpad_shape unpad_image = input[:unpad_height, :unpad_width] return unpad_image def after_test_iter( self, runner, batch_idx: int, data_batch: Optional[Sequence[dict]] = None, outputs: Optional[Sequence[BaseDataElement]] = None) -> None: """Show or Write the predicted results. Args: runner (Runner): The runner of the training process. batch_idx (int): The index of the current batch in the test loop. data_batch (Sequence[dict], optional): Data from dataloader. Defaults to None. outputs (Sequence[BaseDataElement], optional): Outputs from model. Defaults to None. """ if self.every_n_iters(runner, self._interval): for data, output in zip(data_batch, outputs): # type: ignore input = data['inputs'] data_sample = data['data_sample'] input = tensor2imgs(input, **data_sample.get('img_norm_cfg', dict()))[0] # TODO We will implement a function to revert the augmentation # in the future. ori_shape = (data_sample.ori_width, data_sample.ori_height) if 'pad_shape' in data_sample: input = self._unpad(input, data_sample.get('scale', ori_shape)) origin_image = cv2.resize(input, ori_shape) name = osp.basename(data_sample.img_path) runner.visualizer.add_datasample(name, origin_image, data_sample, output, self.draw_gt, self.draw_pred)
from collections import ChainMap from typing import ( TYPE_CHECKING, Any, Dict, Iterable, MutableMapping, Optional, Type, TypeVar, Union, ) from docarray.array.list_advance_indexing import ListAdvancedIndexing from docarray.typing import NdArray from docarray.typing.tensor.abstract_tensor import AbstractTensor if TYPE_CHECKING: from docarray.array.doc_vec.doc_vec import DocVec IndexIterType = Union[slice, Iterable[int], Iterable[bool], None] T = TypeVar('T', bound='ColumnStorage') class ColumnStorage: """ ColumnStorage is a container to store the columns of the :class:`~docarray.array.doc_vec.DocVec`. :param tensor_columns: a Dict of AbstractTensor :param doc_columns: a Dict of :class:`~docarray.array.doc_vec.DocVec` :param docs_vec_columns: a Dict of List of :class:`~docarray.array.doc_vec.DocVec` :param any_columns: a Dict of List :param tensor_type: Class used to wrap the doc_vec tensors """ def __init__( self, tensor_columns: Dict[str, Optional[AbstractTensor]], doc_columns: Dict[str, Optional['DocVec']], docs_vec_columns: Dict[str, Optional[ListAdvancedIndexing['DocVec']]], any_columns: Dict[str, ListAdvancedIndexing], tensor_type: Type[AbstractTensor] = NdArray, ): self.tensor_columns = tensor_columns self.doc_columns = doc_columns self.docs_vec_columns = docs_vec_columns self.any_columns = any_columns self.tensor_type = tensor_type self.columns = ChainMap( # type: ignore self.tensor_columns, # type: ignore self.doc_columns, # type: ignore self.docs_vec_columns, # type: ignore self.any_columns, # type: ignore ) # type: ignore def __len__(self) -> int: return len(self.any_columns['id']) # TODO what if ID are None ? def __getitem__(self: T, item: IndexIterType) -> T: if isinstance(item, tuple): item = list(item) tensor_columns = { key: col[item] if col is not None else None for key, col in self.tensor_columns.items() } doc_columns = { key: col[item] if col is not None else None for key, col in self.doc_columns.items() } docs_vec_columns = { key: col[item] if col is not None else None for key, col in self.docs_vec_columns.items() } any_columns = { key: col[item] if col is not None else None for key, col in self.any_columns.items() } return self.__class__( tensor_columns, doc_columns, docs_vec_columns, any_columns, self.tensor_type, ) class ColumnStorageView(dict, MutableMapping[str, Any]): index: int storage: ColumnStorage def __init__(self, index: int, storage: ColumnStorage): super().__init__() self.index = index self.storage = storage def __getitem__(self, name: str) -> Any: if name in self.storage.tensor_columns.keys(): tensor = self.storage.tensor_columns[name] if tensor is None: return None if tensor.get_comp_backend().n_dim(tensor) == 1: # to ensure consistensy between numpy and pytorch # we wrap the scalr in a tensor of ndim = 1 # otherwise numpy pass by value whereas torch by reference col = self.storage.tensor_columns[name] if col is not None: return col[self.index : self.index + 1] else: return None col = self.storage.columns[name] if col is None: return None return col[self.index] def __setitem__(self, name, value) -> None: if self.storage.columns[name] is None: raise ValueError( f'Cannot set an item to a None column. This mean that ' f'the DocVec that encapsulate this doc has the field ' f'{name} set to None. If you want to modify that you need to do it at the' f'DocVec level. `docs.field = np.zeros(10)`' ) self.storage.columns[name][self.index] = value def __delitem__(self, key): raise RuntimeError('Cannot delete an item from a StorageView') def __iter__(self): return self.storage.columns.keys() def __len__(self): return len(self.storage.columns) def keys(self): return self.storage.columns.keys()
from collections import ChainMap from typing import ( TYPE_CHECKING, Any, Dict, Iterable, MutableMapping, Optional, Type, TypeVar, Union, ) from docarray.array.list_advance_indexing import ListAdvancedIndexing from docarray.typing import NdArray from docarray.typing.tensor.abstract_tensor import AbstractTensor if TYPE_CHECKING: from docarray.array.doc_vec.doc_vec import DocVec IndexIterType = Union[slice, Iterable[int], Iterable[bool], None] T = TypeVar('T', bound='ColumnStorage') class ColumnStorage: """ ColumnStorage is a container to store the columns of the :class:`~docarray.array.doc_vec.DocVec`. :param tensor_columns: a Dict of AbstractTensor :param doc_columns: a Dict of :class:`~docarray.array.doc_vec.DocVec` :param docs_vec_columns: a Dict of List of :class:`~docarray.array.doc_vec.DocVec` :param any_columns: a Dict of List :param tensor_type: Class used to wrap the doc_vec tensors """ def __init__( self, tensor_columns: Dict[str, Optional[AbstractTensor]], doc_columns: Dict[str, Optional['DocVec']], docs_vec_columns: Dict[str, Optional[ListAdvancedIndexing['DocVec']]], any_columns: Dict[str, ListAdvancedIndexing], tensor_type: Type[AbstractTensor] = NdArray, ): self.tensor_columns = tensor_columns self.doc_columns = doc_columns self.docs_vec_columns = docs_vec_columns self.any_columns = any_columns self.tensor_type = tensor_type self.columns = ChainMap( # type: ignore self.tensor_columns, # type: ignore self.doc_columns, # type: ignore self.docs_vec_columns, # type: ignore self.any_columns, # type: ignore ) # type: ignore def __len__(self) -> int: return len(self.any_columns['id']) # TODO what if ID are None ? def __getitem__(self: T, item: IndexIterType) -> T: if isinstance(item, tuple): item = list(item) tensor_columns = { key: col[item] if col is not None else None for key, col in self.tensor_columns.items() } doc_columns = { key: col[item] if col is not None else None for key, col in self.doc_columns.items() } docs_vec_columns = { key: col[item] if col is not None else None for key, col in self.docs_vec_columns.items() } any_columns = { key: col[item] if col is not None else None for key, col in self.any_columns.items() } return self.__class__( tensor_columns, doc_columns, docs_vec_columns, any_columns, self.tensor_type, ) class ColumnStorageView(dict, MutableMapping[str, Any]): index: int storage: ColumnStorage def __init__(self, index: int, storage: ColumnStorage): super().__init__() self.index = index self.storage = storage def __getitem__(self, name: str) -> Any: if name in self.storage.tensor_columns.keys(): tensor = self.storage.tensor_columns[name] if tensor is None: return None if tensor.get_comp_backend().n_dim(tensor) == 1: # to ensure consistensy between numpy and pytorch # we wrap the scalr in a tensor of ndim = 1 # otherwise numpy pass by value whereas torch by reference col = self.storage.tensor_columns[name] if col is not None: return col[self.index : self.index + 1] else: return None col = self.storage.columns[name] if col is None: return None return col[self.index] def __setitem__(self, name, value) -> None: if self.storage.columns[name] is None: raise ValueError( f'Cannot set an item to a None column. This mean that ' f'the DocVec that encapsulate this doc has the field ' f'{name} set to None. If you want to modify that you need to do it at the' f'DocVec level. `docs.field = np.zeros(10)`' ) self.storage.columns[name][self.index] = value def __delitem__(self, key): raise RuntimeError('Cannot delete an item from a StorageView') def __iter__(self): return self.storage.columns.keys() def __len__(self): return len(self.storage.columns)
_base_ = 'mask-rcnn_r50_fpn_rpn-2conv_4conv1fc_syncbn-all_lsj-100e_coco.py' # Enable automatic-mixed-precision training with AmpOptimWrapper. optim_wrapper = dict(type='AmpOptimWrapper')
_base_ = 'mask_rcnn_r50_fpn_syncbn-all_rpn-2conv_lsj_100e_coco.py' # Enable automatic-mixed-precision training with AmpOptimWrapper. optim_wrapper = dict(type='AmpOptimWrapper')
import pathlib from typing import Any, Optional, Union from torchdata.datapipes.iter import CSVDictParser, Demultiplexer, Filter, IterDataPipe, Mapper, Zipper from torchvision.prototype.datasets.utils import Dataset, EncodedImage, HttpResource, OnlineResource from torchvision.prototype.datasets.utils._internal import ( hint_sharding, hint_shuffling, INFINITE_BUFFER_SIZE, path_comparator, ) from torchvision.prototype.tv_tensors import Label from torchvision.tv_tensors import BoundingBoxes from .._api import register_dataset, register_info NAME = "gtsrb" @register_info(NAME) def _info() -> dict[str, Any]: return dict( categories=[f"{label:05d}" for label in range(43)], ) @register_dataset(NAME) class GTSRB(Dataset): """GTSRB Dataset homepage="https://benchmark.ini.rub.de" """ def __init__( self, root: Union[str, pathlib.Path], *, split: str = "train", skip_integrity_check: bool = False ) -> None: self._split = self._verify_str_arg(split, "split", {"train", "test"}) self._categories = _info()["categories"] super().__init__(root, skip_integrity_check=skip_integrity_check) _URL_ROOT = "https://sid.erda.dk/public/archives/daaeac0d7ce1152aea9b61d9f1e19370/" _URLS = { "train": f"{_URL_ROOT}GTSRB-Training_fixed.zip", "test": f"{_URL_ROOT}GTSRB_Final_Test_Images.zip", "test_ground_truth": f"{_URL_ROOT}GTSRB_Final_Test_GT.zip", } _CHECKSUMS = { "train": "df4144942083645bd60b594de348aa6930126c3e0e5de09e39611630abf8455a", "test": "48ba6fab7e877eb64eaf8de99035b0aaecfbc279bee23e35deca4ac1d0a837fa", "test_ground_truth": "f94e5a7614d75845c74c04ddb26b8796b9e483f43541dd95dd5b726504e16d6d", } def _resources(self) -> list[OnlineResource]: rsrcs: list[OnlineResource] = [HttpResource(self._URLS[self._split], sha256=self._CHECKSUMS[self._split])] if self._split == "test": rsrcs.append( HttpResource( self._URLS["test_ground_truth"], sha256=self._CHECKSUMS["test_ground_truth"], ) ) return rsrcs def _classify_train_archive(self, data: tuple[str, Any]) -> Optional[int]: path = pathlib.Path(data[0]) if path.suffix == ".ppm": return 0 elif path.suffix == ".csv": return 1 else: return None def _prepare_sample(self, data: tuple[tuple[str, Any], dict[str, Any]]) -> dict[str, Any]: (path, buffer), csv_info = data label = int(csv_info["ClassId"]) bounding_boxes = BoundingBoxes( [int(csv_info[k]) for k in ("Roi.X1", "Roi.Y1", "Roi.X2", "Roi.Y2")], format="xyxy", spatial_size=(int(csv_info["Height"]), int(csv_info["Width"])), ) return { "path": path, "image": EncodedImage.from_file(buffer), "label": Label(label, categories=self._categories), "bounding_boxes": bounding_boxes, } def _datapipe(self, resource_dps: list[IterDataPipe]) -> IterDataPipe[dict[str, Any]]: if self._split == "train": images_dp, ann_dp = Demultiplexer( resource_dps[0], 2, self._classify_train_archive, drop_none=True, buffer_size=INFINITE_BUFFER_SIZE ) else: images_dp, ann_dp = resource_dps images_dp = Filter(images_dp, path_comparator("suffix", ".ppm")) # The order of the image files in the .zip archives perfectly match the order of the entries in the # (possibly concatenated) .csv files. So we're able to use Zipper here instead of a IterKeyZipper. ann_dp = CSVDictParser(ann_dp, delimiter=";") dp = Zipper(images_dp, ann_dp) dp = hint_shuffling(dp) dp = hint_sharding(dp) return Mapper(dp, self._prepare_sample) def __len__(self) -> int: return 26_640 if self._split == "train" else 12_630
import pathlib from typing import Any, Dict, List, Optional, Tuple, Union from torchdata.datapipes.iter import CSVDictParser, Demultiplexer, Filter, IterDataPipe, Mapper, Zipper from torchvision.prototype.datasets.utils import Dataset, EncodedImage, HttpResource, OnlineResource from torchvision.prototype.datasets.utils._internal import ( hint_sharding, hint_shuffling, INFINITE_BUFFER_SIZE, path_comparator, ) from torchvision.prototype.tv_tensors import Label from torchvision.tv_tensors import BoundingBoxes from .._api import register_dataset, register_info NAME = "gtsrb" @register_info(NAME) def _info() -> Dict[str, Any]: return dict( categories=[f"{label:05d}" for label in range(43)], ) @register_dataset(NAME) class GTSRB(Dataset): """GTSRB Dataset homepage="https://benchmark.ini.rub.de" """ def __init__( self, root: Union[str, pathlib.Path], *, split: str = "train", skip_integrity_check: bool = False ) -> None: self._split = self._verify_str_arg(split, "split", {"train", "test"}) self._categories = _info()["categories"] super().__init__(root, skip_integrity_check=skip_integrity_check) _URL_ROOT = "https://sid.erda.dk/public/archives/daaeac0d7ce1152aea9b61d9f1e19370/" _URLS = { "train": f"{_URL_ROOT}GTSRB-Training_fixed.zip", "test": f"{_URL_ROOT}GTSRB_Final_Test_Images.zip", "test_ground_truth": f"{_URL_ROOT}GTSRB_Final_Test_GT.zip", } _CHECKSUMS = { "train": "df4144942083645bd60b594de348aa6930126c3e0e5de09e39611630abf8455a", "test": "48ba6fab7e877eb64eaf8de99035b0aaecfbc279bee23e35deca4ac1d0a837fa", "test_ground_truth": "f94e5a7614d75845c74c04ddb26b8796b9e483f43541dd95dd5b726504e16d6d", } def _resources(self) -> List[OnlineResource]: rsrcs: List[OnlineResource] = [HttpResource(self._URLS[self._split], sha256=self._CHECKSUMS[self._split])] if self._split == "test": rsrcs.append( HttpResource( self._URLS["test_ground_truth"], sha256=self._CHECKSUMS["test_ground_truth"], ) ) return rsrcs def _classify_train_archive(self, data: Tuple[str, Any]) -> Optional[int]: path = pathlib.Path(data[0]) if path.suffix == ".ppm": return 0 elif path.suffix == ".csv": return 1 else: return None def _prepare_sample(self, data: Tuple[Tuple[str, Any], Dict[str, Any]]) -> Dict[str, Any]: (path, buffer), csv_info = data label = int(csv_info["ClassId"]) bounding_boxes = BoundingBoxes( [int(csv_info[k]) for k in ("Roi.X1", "Roi.Y1", "Roi.X2", "Roi.Y2")], format="xyxy", spatial_size=(int(csv_info["Height"]), int(csv_info["Width"])), ) return { "path": path, "image": EncodedImage.from_file(buffer), "label": Label(label, categories=self._categories), "bounding_boxes": bounding_boxes, } def _datapipe(self, resource_dps: List[IterDataPipe]) -> IterDataPipe[Dict[str, Any]]: if self._split == "train": images_dp, ann_dp = Demultiplexer( resource_dps[0], 2, self._classify_train_archive, drop_none=True, buffer_size=INFINITE_BUFFER_SIZE ) else: images_dp, ann_dp = resource_dps images_dp = Filter(images_dp, path_comparator("suffix", ".ppm")) # The order of the image files in the .zip archives perfectly match the order of the entries in the # (possibly concatenated) .csv files. So we're able to use Zipper here instead of a IterKeyZipper. ann_dp = CSVDictParser(ann_dp, delimiter=";") dp = Zipper(images_dp, ann_dp) dp = hint_shuffling(dp) dp = hint_sharding(dp) return Mapper(dp, self._prepare_sample) def __len__(self) -> int: return 26_640 if self._split == "train" else 12_630
from dataclasses import dataclass, field from typing import Any, Dict, Type import pytest from pydantic import Field from docarray import BaseDoc from docarray.index.abstract import BaseDocIndex from docarray.typing import NdArray pytestmark = pytest.mark.index class SimpleDoc(BaseDoc): tens: NdArray[10] = Field(dim=1000) class FakeQueryBuilder: ... @dataclass class DBConfig(BaseDocIndex.DBConfig): work_dir: str = '.' other: int = 5 @dataclass class RuntimeConfig(BaseDocIndex.RuntimeConfig): default_column_config: Dict[Type, Dict[str, Any]] = field( default_factory=lambda: { str: { 'dim': 128, 'space': 'l2', }, } ) default_ef: int = 50 def _identity(*x, **y): return x, y class DummyDocIndex(BaseDocIndex): DBConfig = DBConfig RuntimeConfig = RuntimeConfig def python_type_to_db_type(self, x): return str _index = _identity num_docs = _identity _del_items = _identity _get_items = _identity execute_query = _identity _find = _identity _find_batched = _identity _filter = _identity _filter_batched = _identity _text_search = _identity _text_search_batched = _identity def test_defaults(): index = DummyDocIndex[SimpleDoc]() assert index._db_config.other == 5 assert index._db_config.work_dir == '.' assert index._runtime_config.default_column_config[str] == { 'dim': 128, 'space': 'l2', } def test_set_by_class(): # change all settings index = DummyDocIndex[SimpleDoc](DBConfig(work_dir='hi', other=10)) assert index._db_config.other == 10 assert index._db_config.work_dir == 'hi' index.configure(RuntimeConfig(default_column_config={}, default_ef=10)) assert index._runtime_config.default_column_config == {} # change only some settings index = DummyDocIndex[SimpleDoc](DBConfig(work_dir='hi')) assert index._db_config.other == 5 assert index._db_config.work_dir == 'hi' index.configure(RuntimeConfig(default_column_config={})) assert index._runtime_config.default_column_config == {} def test_set_by_kwargs(): # change all settings index = DummyDocIndex[SimpleDoc](work_dir='hi', other=10) assert index._db_config.other == 10 assert index._db_config.work_dir == 'hi' index.configure(default_column_config={}, default_ef=10) assert index._runtime_config.default_column_config == {} # change only some settings index = DummyDocIndex[SimpleDoc](work_dir='hi') assert index._db_config.other == 5 assert index._db_config.work_dir == 'hi' index.configure(default_column_config={}) assert index._runtime_config.default_column_config == {} def test_default_column_config(): index = DummyDocIndex[SimpleDoc]() assert index._runtime_config.default_column_config == { str: { 'dim': 128, 'space': 'l2', }, }
from dataclasses import dataclass, field from typing import Any, Dict, Type import pytest from pydantic import Field from docarray import BaseDoc from docarray.index.abstract import BaseDocIndex from docarray.typing import NdArray pytestmark = pytest.mark.index class SimpleDoc(BaseDoc): tens: NdArray[10] = Field(dim=1000) class FakeQueryBuilder: ... @dataclass class DBConfig(BaseDocIndex.DBConfig): work_dir: str = '.' other: int = 5 @dataclass class RuntimeConfig(BaseDocIndex.RuntimeConfig): default_column_config: Dict[Type, Dict[str, Any]] = field( default_factory=lambda: { str: { 'dim': 128, 'space': 'l2', }, } ) default_ef: int = 50 def _identity(*x, **y): return x, y class DummyDocIndex(BaseDocIndex): DBConfig = DBConfig RuntimeConfig = RuntimeConfig def python_type_to_db_type(self, x): return str _index = _identity num_docs = _identity _del_items = _identity _get_items = _identity execute_query = _identity _find = _identity _find_batched = _identity _filter = _identity _filter_batched = _identity _text_search = _identity _text_search_batched = _identity def test_defaults(): store = DummyDocIndex[SimpleDoc]() assert store._db_config.other == 5 assert store._db_config.work_dir == '.' assert store._runtime_config.default_column_config[str] == { 'dim': 128, 'space': 'l2', } def test_set_by_class(): # change all settings store = DummyDocIndex[SimpleDoc](DBConfig(work_dir='hi', other=10)) assert store._db_config.other == 10 assert store._db_config.work_dir == 'hi' store.configure(RuntimeConfig(default_column_config={}, default_ef=10)) assert store._runtime_config.default_column_config == {} # change only some settings store = DummyDocIndex[SimpleDoc](DBConfig(work_dir='hi')) assert store._db_config.other == 5 assert store._db_config.work_dir == 'hi' store.configure(RuntimeConfig(default_column_config={})) assert store._runtime_config.default_column_config == {} def test_set_by_kwargs(): # change all settings store = DummyDocIndex[SimpleDoc](work_dir='hi', other=10) assert store._db_config.other == 10 assert store._db_config.work_dir == 'hi' store.configure(default_column_config={}, default_ef=10) assert store._runtime_config.default_column_config == {} # change only some settings store = DummyDocIndex[SimpleDoc](work_dir='hi') assert store._db_config.other == 5 assert store._db_config.work_dir == 'hi' store.configure(default_column_config={}) assert store._runtime_config.default_column_config == {} def test_default_column_config(): store = DummyDocIndex[SimpleDoc]() assert store._runtime_config.default_column_config == { str: { 'dim': 128, 'space': 'l2', }, }
import numpy as np import pytest from absl.testing import parameterized from tensorflow import data as tf_data from keras.src import layers from keras.src import testing class MelSpectrogramTest(testing.TestCase): @pytest.mark.requires_trainable_backend def test_mel_spectrogram_basics(self): self.run_layer_test( layers.MelSpectrogram, init_kwargs={ "num_mel_bins": 80, "sampling_rate": 8000, "sequence_stride": 128, "fft_length": 2048, }, input_shape=(2, 16000), expected_output_shape=(2, 80, 126), expected_num_trainable_weights=0, expected_num_non_trainable_weights=0, expected_num_seed_generators=0, expected_num_losses=0, supports_masking=False, ) self.run_layer_test( layers.MelSpectrogram, init_kwargs={ "num_mel_bins": 80, "sampling_rate": 8000, "sequence_stride": 128, "fft_length": 2048, }, input_shape=(16000,), expected_output_shape=(80, 126), expected_num_trainable_weights=0, expected_num_non_trainable_weights=0, expected_num_seed_generators=0, expected_num_losses=0, supports_masking=False, ) @parameterized.parameters( [ ((2, 16000), 80, 128, 2048, 8000, False), ((16000,), 80, 128, 2048, 8000, False), ((2, 16001), 80, 128, 2048, 16000, False), ((16001,), 80, 128, 2048, 8000, False), ((2, 8000), 128, 64, 512, 32000, False), ((8000,), 128, 64, 512, 32000, False), ((2, 8000), 128, 64, 512, 32000, True), ((8000,), 128, 64, 512, 32000, True), ] ) def test_output_shape( self, input_shape, num_mel_bins, sequence_stride, fft_length, sampling_rate, all_zero, ): if all_zero: audios = np.zeros(input_shape) else: audios = np.random.random(input_shape) out = layers.MelSpectrogram( num_mel_bins=num_mel_bins, sequence_stride=sequence_stride, fft_length=fft_length, sampling_rate=sampling_rate, )(audios) if len(input_shape) == 1: ref_shape = ( num_mel_bins, (input_shape[0] + sequence_stride + 1) // sequence_stride, ) else: ref_shape = ( input_shape[0], num_mel_bins, (input_shape[1] + sequence_stride + 1) // sequence_stride, ) self.assertEqual(tuple(out.shape), ref_shape) def test_tf_data_compatibility(self): input_shape = (2, 16000) output_shape = (2, 80, 126) layer = layers.MelSpectrogram( num_mel_bins=80, sampling_rate=8000, sequence_stride=128, fft_length=2048, ) input_data = np.random.random(input_shape) ds = tf_data.Dataset.from_tensor_slices(input_data).batch(2).map(layer) for output in ds.take(1): output = output.numpy() self.assertEqual(tuple(output.shape), output_shape)
import numpy as np import pytest from absl.testing import parameterized from tensorflow import data as tf_data from keras.src import layers from keras.src import testing class MelSpectrogramTest(testing.TestCase, parameterized.TestCase): @pytest.mark.requires_trainable_backend def test_mel_spectrogram_basics(self): self.run_layer_test( layers.MelSpectrogram, init_kwargs={ "num_mel_bins": 80, "sampling_rate": 8000, "sequence_stride": 128, "fft_length": 2048, }, input_shape=(2, 16000), expected_output_shape=(2, 80, 126), expected_num_trainable_weights=0, expected_num_non_trainable_weights=0, expected_num_seed_generators=0, expected_num_losses=0, supports_masking=False, ) self.run_layer_test( layers.MelSpectrogram, init_kwargs={ "num_mel_bins": 80, "sampling_rate": 8000, "sequence_stride": 128, "fft_length": 2048, }, input_shape=(16000,), expected_output_shape=(80, 126), expected_num_trainable_weights=0, expected_num_non_trainable_weights=0, expected_num_seed_generators=0, expected_num_losses=0, supports_masking=False, ) @parameterized.parameters( [ ((2, 16000), 80, 128, 2048, 8000, False), ((16000,), 80, 128, 2048, 8000, False), ((2, 16001), 80, 128, 2048, 16000, False), ((16001,), 80, 128, 2048, 8000, False), ((2, 8000), 128, 64, 512, 32000, False), ((8000,), 128, 64, 512, 32000, False), ((2, 8000), 128, 64, 512, 32000, True), ((8000,), 128, 64, 512, 32000, True), ] ) def test_output_shape( self, input_shape, num_mel_bins, sequence_stride, fft_length, sampling_rate, all_zero, ): if all_zero: audios = np.zeros(input_shape) else: audios = np.random.random(input_shape) out = layers.MelSpectrogram( num_mel_bins=num_mel_bins, sequence_stride=sequence_stride, fft_length=fft_length, sampling_rate=sampling_rate, )(audios) if len(input_shape) == 1: ref_shape = ( num_mel_bins, (input_shape[0] + sequence_stride + 1) // sequence_stride, ) else: ref_shape = ( input_shape[0], num_mel_bins, (input_shape[1] + sequence_stride + 1) // sequence_stride, ) self.assertEqual(tuple(out.shape), ref_shape) def test_tf_data_compatibility(self): input_shape = (2, 16000) output_shape = (2, 80, 126) layer = layers.MelSpectrogram( num_mel_bins=80, sampling_rate=8000, sequence_stride=128, fft_length=2048, ) input_data = np.random.random(input_shape) ds = tf_data.Dataset.from_tensor_slices(input_data).batch(2).map(layer) for output in ds.take(1): output = output.numpy() self.assertEqual(tuple(output.shape), output_shape)
from llama_index.llms.bedrock.base import ( Bedrock, completion_response_to_chat_response, completion_with_retry, ) from llama_index.llms.bedrock.utils import ProviderType __all__ = [ "Bedrock", "completion_with_retry", "completion_response_to_chat_response", "ProviderType", ]
from llama_index.llms.bedrock.base import ( Bedrock, completion_response_to_chat_response, completion_with_retry, ) __all__ = ["Bedrock", "completion_with_retry", "completion_response_to_chat_response"]
"""Base argparser module for Pod and Deployment runtime""" import argparse import os from jina.enums import PollingType from jina.helper import random_identity from jina.parsers.helper import _SHOW_ALL_ARGS, add_arg_group def mixin_essential_parser(parser): """Mixing in arguments required by every module into the given parser. :param parser: the parser instance to which we add arguments """ gp = add_arg_group(parser, title='Essential') gp.add_argument( '--name', type=str, help=''' The name of this object. This will be used in the following places: - how you refer to this object in Python/YAML/CLI - visualization - log message header - ... When not given, then the default naming strategy will apply. ''', ) gp.add_argument( '--workspace', type=str, default=None, help='The working directory for any IO operations in this object. ' 'If not set, then derive from its parent `workspace`.', ) gp.add_argument( '--log-config', type=str, default='default', help='The YAML config of the logger used in this object.', ) gp.add_argument( '--quiet', action='store_true', default=False, help='If set, then no log will be emitted from this object.', ) gp.add_argument( '--quiet-error', action='store_true', default=False, help='If set, then exception stack information will not be added to the log', ) gp.add_argument( '--workspace-id', type=str, default=random_identity(), help='the UUID for identifying the workspace. When not given a random id will be assigned.' 'Multiple Pod/Deployment/Flow will work under the same workspace if they share the same ' '`workspace-id`.' if _SHOW_ALL_ARGS else argparse.SUPPRESS, ) def mixin_base_deployment_parser(parser, title='Base Deployment'): """Mixing in arguments required by a deployment into the given parser. The Deployment doesn't have scalable features like shards, replicas and polling :param parser: the parser instance to which we add arguments :param title: the title of the create args group :return: returns the created arg group """ mixin_essential_parser(parser) gp = add_arg_group(parser, title=title) gp.add_argument( '--extra-search-paths', type=str, default=[], nargs='*', help='Extra search paths to be used when loading modules and finding YAML config files.' if _SHOW_ALL_ARGS else argparse.SUPPRESS, ) gp.add_argument( '--timeout-ctrl', type=int, default=int(os.getenv('JINA_DEFAULT_TIMEOUT_CTRL', '60')), help='The timeout in milliseconds of the control request, -1 for waiting forever', ) gp.add_argument( '--k8s-namespace', type=str, help='Name of the namespace where Kubernetes deployment should be deployed, to be filled by flow name' if _SHOW_ALL_ARGS else argparse.SUPPRESS, ) return gp def mixin_scalable_deployment_parser(parser): """Mixing in arguments required by a scalable deployment into the given parser. The deployment is scalable and can have shards, replicas and polling :param parser: the parser instance to which we add arguments """ gp = mixin_base_deployment_parser(parser, title='Scalable Deployment') gp.add_argument( '--polling', type=str, default=PollingType.ANY.name, help=''' The polling strategy of the Deployment and its endpoints (when `shards>1`). Can be defined for all endpoints of a Deployment or by endpoint. Define per Deployment: - ANY: only one (whoever is idle) Pod polls the message - ALL: all Pods poll the message (like a broadcast) Define per Endpoint: JSON dict, {endpoint: PollingType} {'/custom': 'ALL', '/search': 'ANY', '*': 'ANY'} ''', ) gp.add_argument( '--shards', type=int, default=1, help='The number of shards in the deployment running at the same time. For more details check ' 'https://docs.jina.ai/fundamentals/flow/create-flow/#complex-flow-topologies', ) gp.add_argument( '--replicas', type=int, default=1, help='The number of replicas in the deployment', ) gp.add_argument( '--native', action='store_true', default=False, help='If set, only native Executors is allowed, and the Executor is always run inside WorkerRuntime.', )
"""Base argparser module for Pod and Deployment runtime""" import argparse import os from jina.enums import PollingType from jina.helper import random_identity from jina.parsers.helper import _SHOW_ALL_ARGS, add_arg_group def mixin_essential_parser(parser): """Mixing in arguments required by every module into the given parser. :param parser: the parser instance to which we add arguments """ gp = add_arg_group(parser, title='Essential') gp.add_argument( '--name', type=str, help=''' The name of this object. This will be used in the following places: - how you refer to this object in Python/YAML/CLI - visualization - log message header - ... When not given, then the default naming strategy will apply. ''', ) gp.add_argument( '--workspace', type=str, default=None, help='The working directory for any IO operations in this object. ' 'If not set, then derive from its parent `workspace`.', ) gp.add_argument( '--log-config', type=str, default='default', help='The YAML config of the logger used in this object.', ) gp.add_argument( '--quiet', action='store_true', default=False, help='If set, then no log will be emitted from this object.', ) gp.add_argument( '--quiet-error', action='store_true', default=False, help='If set, then exception stack information will not be added to the log', ) gp.add_argument( '--workspace-id', type=str, default=random_identity(), help='the UUID for identifying the workspace. When not given a random id will be assigned.' 'Multiple Pod/Deployment/Flow will work under the same workspace if they share the same ' '`workspace-id`.' if _SHOW_ALL_ARGS else argparse.SUPPRESS, ) def mixin_base_deployment_parser(parser, title='Base Deployment'): """Mixing in arguments required by a deployment into the given parser. The Deployment doesn't have scalable features like shards, replicas and polling :param parser: the parser instance to which we add arguments :param title: the title of the create args group :return: returns the created arg group """ mixin_essential_parser(parser) gp = add_arg_group(parser, title=title) gp.add_argument( '--extra-search-paths', type=str, default=[], nargs='*', help='Extra search paths to be used when loading modules and finding YAML config files.' if _SHOW_ALL_ARGS else argparse.SUPPRESS, ) gp.add_argument( '--timeout-ctrl', type=int, default=int(os.getenv('JINA_DEFAULT_TIMEOUT_CTRL', '60')), help='The timeout in milliseconds of the control request, -1 for waiting forever', ) gp.add_argument( '--k8s-namespace', type=str, help='Name of the namespace where Kubernetes deployment should be deployed, to be filled by flow name' if _SHOW_ALL_ARGS else argparse.SUPPRESS, ) return gp def mixin_scalable_deployment_parser(parser): """Mixing in arguments required by a scalable deployment into the given parser. The deployment is scalable and can have shards, replicas and polling :param parser: the parser instance to which we add arguments """ gp = mixin_base_deployment_parser(parser, title='Scalable Deployment') gp.add_argument( '--polling', type=str, default=PollingType.ANY.name, help=''' The polling strategy of the Deployment and its endpoints (when `shards>1`). Can be defined for all endpoints of a Deployment or by endpoint. Define per Deployment: - ANY: only one (whoever is idle) Pod polls the message - ALL: all Pods poll the message (like a broadcast) Define per Endpoint: JSON dict, {endpoint: PollingType} {'/custom': 'ALL', '/search': 'ANY', '*': 'ANY'} ''', ) gp.add_argument( '--shards', type=int, default=1, help='The number of shards in the deployment running at the same time. For more details check ' 'https://docs.jina.ai/fundamentals/flow/create-flow/#complex-flow-topologies', ) gp.add_argument( '--replicas', type=int, default=1, help='The number of replicas in the deployment', ) gp.add_argument( '--native', action='store_true', default=False, help='If set, only native Executors is allowed, and the Executor is always run inside WorkerRuntime.', )
from __future__ import annotations import logging from typing import Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun from pydantic import BaseModel, Field, HttpUrl from langchain_community.tools.edenai.edenai_base_tool import EdenaiTool logger = logging.getLogger(__name__) class InvoiceParsingInput(BaseModel): query: HttpUrl = Field(description="url of the document to parse") class EdenAiParsingInvoiceTool(EdenaiTool): """Tool that queries the Eden AI Invoice parsing API. for api reference check edenai documentation: https://docs.edenai.co/reference/ocr_invoice_parser_create. To use, you should have the environment variable ``EDENAI_API_KEY`` set with your API token. You can find your token here: https://app.edenai.run/admin/account/settings """ name: str = "edenai_invoice_parsing" description: str = ( "A wrapper around edenai Services invoice parsing. " """Useful for when you have to extract information from an image it enables to take invoices in a variety of formats and returns the data in contains (items, prices, addresses, vendor name, etc.) in a structured format to automate the invoice processing """ "Input should be the string url of the document to parse." ) args_schema: Type[BaseModel] = InvoiceParsingInput language: Optional[str] = None """ language of the image passed to the model. """ feature: str = "ocr" subfeature: str = "invoice_parser" def _parse_response(self, response: list) -> str: formatted_list: list = [] if len(response) == 1: self._parse_json_multilevel( response[0]["extracted_data"][0], formatted_list ) else: for entry in response: if entry.get("provider") == "eden-ai": self._parse_json_multilevel( entry["extracted_data"][0], formatted_list ) return "\n".join(formatted_list) def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" query_params = { "file_url": query, "language": self.language, "attributes_as_list": False, } return self._call_eden_ai(query_params)
from __future__ import annotations import logging from typing import Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun from pydantic import BaseModel, Field, HttpUrl from langchain_community.tools.edenai.edenai_base_tool import EdenaiTool logger = logging.getLogger(__name__) class InvoiceParsingInput(BaseModel): query: HttpUrl = Field(description="url of the document to parse") class EdenAiParsingInvoiceTool(EdenaiTool): # type: ignore[override, override, override] """Tool that queries the Eden AI Invoice parsing API. for api reference check edenai documentation: https://docs.edenai.co/reference/ocr_invoice_parser_create. To use, you should have the environment variable ``EDENAI_API_KEY`` set with your API token. You can find your token here: https://app.edenai.run/admin/account/settings """ name: str = "edenai_invoice_parsing" description: str = ( "A wrapper around edenai Services invoice parsing. " """Useful for when you have to extract information from an image it enables to take invoices in a variety of formats and returns the data in contains (items, prices, addresses, vendor name, etc.) in a structured format to automate the invoice processing """ "Input should be the string url of the document to parse." ) args_schema: Type[BaseModel] = InvoiceParsingInput language: Optional[str] = None """ language of the image passed to the model. """ feature: str = "ocr" subfeature: str = "invoice_parser" def _parse_response(self, response: list) -> str: formatted_list: list = [] if len(response) == 1: self._parse_json_multilevel( response[0]["extracted_data"][0], formatted_list ) else: for entry in response: if entry.get("provider") == "eden-ai": self._parse_json_multilevel( entry["extracted_data"][0], formatted_list ) return "\n".join(formatted_list) def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" query_params = { "file_url": query, "language": self.language, "attributes_as_list": False, } return self._call_eden_ai(query_params)
import pathlib from typing import Any, Callable, Optional, TypeVar, Union from torchvision.prototype.datasets import home from torchvision.prototype.datasets.utils import Dataset from torchvision.prototype.utils._internal import add_suggestion T = TypeVar("T") D = TypeVar("D", bound=type[Dataset]) BUILTIN_INFOS: dict[str, dict[str, Any]] = {} def register_info(name: str) -> Callable[[Callable[[], dict[str, Any]]], Callable[[], dict[str, Any]]]: def wrapper(fn: Callable[[], dict[str, Any]]) -> Callable[[], dict[str, Any]]: BUILTIN_INFOS[name] = fn() return fn return wrapper BUILTIN_DATASETS = {} def register_dataset(name: str) -> Callable[[D], D]: def wrapper(dataset_cls: D) -> D: BUILTIN_DATASETS[name] = dataset_cls return dataset_cls return wrapper def list_datasets() -> list[str]: return sorted(BUILTIN_DATASETS.keys()) def find(dct: dict[str, T], name: str) -> T: name = name.lower() try: return dct[name] except KeyError as error: raise ValueError( add_suggestion( f"Unknown dataset '{name}'.", word=name, possibilities=dct.keys(), alternative_hint=lambda _: ( "You can use torchvision.datasets.list_datasets() to get a list of all available datasets." ), ) ) from error def info(name: str) -> dict[str, Any]: return find(BUILTIN_INFOS, name) def load(name: str, *, root: Optional[Union[str, pathlib.Path]] = None, **config: Any) -> Dataset: dataset_cls = find(BUILTIN_DATASETS, name) if root is None: root = pathlib.Path(home()) / name return dataset_cls(root, **config)
import pathlib from typing import Any, Callable, Dict, List, Optional, Type, TypeVar, Union from torchvision.prototype.datasets import home from torchvision.prototype.datasets.utils import Dataset from torchvision.prototype.utils._internal import add_suggestion T = TypeVar("T") D = TypeVar("D", bound=Type[Dataset]) BUILTIN_INFOS: Dict[str, Dict[str, Any]] = {} def register_info(name: str) -> Callable[[Callable[[], Dict[str, Any]]], Callable[[], Dict[str, Any]]]: def wrapper(fn: Callable[[], Dict[str, Any]]) -> Callable[[], Dict[str, Any]]: BUILTIN_INFOS[name] = fn() return fn return wrapper BUILTIN_DATASETS = {} def register_dataset(name: str) -> Callable[[D], D]: def wrapper(dataset_cls: D) -> D: BUILTIN_DATASETS[name] = dataset_cls return dataset_cls return wrapper def list_datasets() -> List[str]: return sorted(BUILTIN_DATASETS.keys()) def find(dct: Dict[str, T], name: str) -> T: name = name.lower() try: return dct[name] except KeyError as error: raise ValueError( add_suggestion( f"Unknown dataset '{name}'.", word=name, possibilities=dct.keys(), alternative_hint=lambda _: ( "You can use torchvision.datasets.list_datasets() to get a list of all available datasets." ), ) ) from error def info(name: str) -> Dict[str, Any]: return find(BUILTIN_INFOS, name) def load(name: str, *, root: Optional[Union[str, pathlib.Path]] = None, **config: Any) -> Dataset: dataset_cls = find(BUILTIN_DATASETS, name) if root is None: root = pathlib.Path(home()) / name return dataset_cls(root, **config)
import importlib import os from pathlib import Path import pytest from fastapi.testclient import TestClient from ...utils import needs_py39, needs_py310 @pytest.fixture( name="client", params=[ "tutorial002", pytest.param("tutorial002_py310", marks=needs_py310), "tutorial002_an", pytest.param("tutorial002_an_py39", marks=needs_py39), pytest.param("tutorial002_an_py310", marks=needs_py310), ], ) def get_client(request: pytest.FixtureRequest): mod = importlib.import_module(f"docs_src.background_tasks.{request.param}") client = TestClient(mod.app) return client def test(client: TestClient): log = Path("log.txt") if log.is_file(): os.remove(log) # pragma: no cover response = client.post("/send-notification/[email protected]?q=some-query") assert response.status_code == 200, response.text assert response.json() == {"message": "Message sent"} with open("./log.txt") as f: assert "found query: some-query\nmessage to [email protected]" in f.read()
import os from pathlib import Path from fastapi.testclient import TestClient from docs_src.background_tasks.tutorial002 import app client = TestClient(app) def test(): log = Path("log.txt") if log.is_file(): os.remove(log) # pragma: no cover response = client.post("/send-notification/[email protected]?q=some-query") assert response.status_code == 200, response.text assert response.json() == {"message": "Message sent"} with open("./log.txt") as f: assert "found query: some-query\nmessage to [email protected]" in f.read()
""" Tests the correct computation of evaluation scores from BinaryClassificationEvaluator """ from __future__ import annotations import csv import gzip import os from pathlib import Path from torch.utils.data import DataLoader from sentence_transformers import ( InputExample, SentenceTransformer, evaluation, losses, util, ) def test_LabelAccuracyEvaluator(paraphrase_distilroberta_base_v1_model: SentenceTransformer, tmp_path: Path) -> None: """Tests that the LabelAccuracyEvaluator can be loaded correctly""" model = paraphrase_distilroberta_base_v1_model nli_dataset_path = "datasets/AllNLI.tsv.gz" if not os.path.exists(nli_dataset_path): util.http_get("https://sbert.net/datasets/AllNLI.tsv.gz", nli_dataset_path) label2int = {"contradiction": 0, "entailment": 1, "neutral": 2} dev_samples = [] with gzip.open(nli_dataset_path, "rt", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: if row["split"] == "train": label_id = label2int[row["label"]] dev_samples.append(InputExample(texts=[row["sentence1"], row["sentence2"]], label=label_id)) if len(dev_samples) >= 100: break train_loss = losses.SoftmaxLoss( model=model, sentence_embedding_dimension=model.get_sentence_embedding_dimension(), num_labels=len(label2int), ) dev_dataloader = DataLoader(dev_samples, shuffle=False, batch_size=16) evaluator = evaluation.LabelAccuracyEvaluator(dev_dataloader, softmax_model=train_loss) metrics = evaluator(model, output_path=str(tmp_path)) assert "accuracy" in metrics assert metrics["accuracy"] > 0.2
""" Tests the correct computation of evaluation scores from BinaryClassificationEvaluator """ from __future__ import annotations import csv import gzip import os from torch.utils.data import DataLoader from sentence_transformers import ( InputExample, SentenceTransformer, evaluation, losses, util, ) def test_LabelAccuracyEvaluator(paraphrase_distilroberta_base_v1_model: SentenceTransformer) -> None: """Tests that the LabelAccuracyEvaluator can be loaded correctly""" model = paraphrase_distilroberta_base_v1_model nli_dataset_path = "datasets/AllNLI.tsv.gz" if not os.path.exists(nli_dataset_path): util.http_get("https://sbert.net/datasets/AllNLI.tsv.gz", nli_dataset_path) label2int = {"contradiction": 0, "entailment": 1, "neutral": 2} dev_samples = [] with gzip.open(nli_dataset_path, "rt", encoding="utf8") as fIn: reader = csv.DictReader(fIn, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: if row["split"] == "train": label_id = label2int[row["label"]] dev_samples.append(InputExample(texts=[row["sentence1"], row["sentence2"]], label=label_id)) if len(dev_samples) >= 100: break train_loss = losses.SoftmaxLoss( model=model, sentence_embedding_dimension=model.get_sentence_embedding_dimension(), num_labels=len(label2int), ) dev_dataloader = DataLoader(dev_samples, shuffle=False, batch_size=16) evaluator = evaluation.LabelAccuracyEvaluator(dev_dataloader, softmax_model=train_loss) metrics = evaluator(model) assert "accuracy" in metrics assert metrics["accuracy"] > 0.2
from abc import abstractmethod import pytest from langchain_core.documents import Document from langchain_core.retrievers import BaseRetriever from langchain_tests.base import BaseStandardTests class RetrieversIntegrationTests(BaseStandardTests): """ Base class for retrievers integration tests. """ @property @abstractmethod def retriever_constructor(self) -> type[BaseRetriever]: """ A BaseRetriever subclass to be tested. """ ... @property def retriever_constructor_params(self) -> dict: """ Returns a dictionary of parameters to pass to the retriever constructor. """ return {} @property @abstractmethod def retriever_query_example(self) -> str: """ Returns a str representing the "query" of an example retriever call. """ ... @pytest.fixture def retriever(self) -> BaseRetriever: """ :private: """ return self.retriever_constructor(**self.retriever_constructor_params) def test_k_constructor_param(self) -> None: """ Test that the retriever constructor accepts a k parameter, representing the number of documents to return. .. dropdown:: Troubleshooting If this test fails, either the retriever constructor does not accept a k parameter, or the retriever does not return the correct number of documents (`k`) when it is set. For example, a retriever like .. code-block:: python MyRetriever(k=3).invoke("query") should return 3 documents when invoked with a query. """ params = { k: v for k, v in self.retriever_constructor_params.items() if k != "k" } params_3 = {**params, "k": 3} retriever_3 = self.retriever_constructor(**params_3) result_3 = retriever_3.invoke(self.retriever_query_example) assert len(result_3) == 3 assert all(isinstance(doc, Document) for doc in result_3) params_1 = {**params, "k": 1} retriever_1 = self.retriever_constructor(**params_1) result_1 = retriever_1.invoke(self.retriever_query_example) assert len(result_1) == 1 assert all(isinstance(doc, Document) for doc in result_1) def test_invoke_with_k_kwarg(self, retriever: BaseRetriever) -> None: """ Test that the invoke method accepts a k parameter, representing the number of documents to return. .. dropdown:: Troubleshooting If this test fails, the retriever's invoke method does not accept a k parameter, or the retriever does not return the correct number of documents (`k`) when it is set. For example, a retriever like .. code-block:: python MyRetriever().invoke("query", k=3) should return 3 documents when invoked with a query. """ result_1 = retriever.invoke(self.retriever_query_example, k=1) assert len(result_1) == 1 assert all(isinstance(doc, Document) for doc in result_1) result_3 = retriever.invoke(self.retriever_query_example, k=3) assert len(result_3) == 3 assert all(isinstance(doc, Document) for doc in result_3) def test_invoke_returns_documents(self, retriever: BaseRetriever) -> None: """ If invoked with the example params, the retriever should return a list of Documents. .. dropdown:: Troubleshooting If this test fails, the retriever's invoke method does not return a list of `langchain_core.document.Document` objects. Please confirm that your `_get_relevant_documents` method returns a list of `Document` objects. """ result = retriever.invoke(self.retriever_query_example) assert isinstance(result, list) assert all(isinstance(doc, Document) for doc in result) async def test_ainvoke_returns_documents(self, retriever: BaseRetriever) -> None: """ If ainvoked with the example params, the retriever should return a list of Documents. See :meth:`test_invoke_returns_documents` for more information on troubleshooting. """ result = await retriever.ainvoke(self.retriever_query_example) assert isinstance(result, list) assert all(isinstance(doc, Document) for doc in result)
from abc import abstractmethod from typing import Type import pytest from langchain_core.documents import Document from langchain_core.retrievers import BaseRetriever from langchain_tests.base import BaseStandardTests class RetrieversIntegrationTests(BaseStandardTests): """ Base class for retrievers integration tests. """ @property @abstractmethod def retriever_constructor(self) -> Type[BaseRetriever]: """ A BaseRetriever subclass to be tested. """ ... @property def retriever_constructor_params(self) -> dict: """ Returns a dictionary of parameters to pass to the retriever constructor. """ return {} @property @abstractmethod def retriever_query_example(self) -> str: """ Returns a str representing the "query" of an example retriever call. """ ... @pytest.fixture def retriever(self) -> BaseRetriever: """ :private: """ return self.retriever_constructor(**self.retriever_constructor_params) def test_k_constructor_param(self) -> None: """ Test that the retriever constructor accepts a k parameter, representing the number of documents to return. .. dropdown:: Troubleshooting If this test fails, either the retriever constructor does not accept a k parameter, or the retriever does not return the correct number of documents (`k`) when it is set. For example, a retriever like .. code-block:: python MyRetriever(k=3).invoke("query") should return 3 documents when invoked with a query. """ params = { k: v for k, v in self.retriever_constructor_params.items() if k != "k" } params_3 = {**params, "k": 3} retriever_3 = self.retriever_constructor(**params_3) result_3 = retriever_3.invoke(self.retriever_query_example) assert len(result_3) == 3 assert all(isinstance(doc, Document) for doc in result_3) params_1 = {**params, "k": 1} retriever_1 = self.retriever_constructor(**params_1) result_1 = retriever_1.invoke(self.retriever_query_example) assert len(result_1) == 1 assert all(isinstance(doc, Document) for doc in result_1) def test_invoke_with_k_kwarg(self, retriever: BaseRetriever) -> None: """ Test that the invoke method accepts a k parameter, representing the number of documents to return. .. dropdown:: Troubleshooting If this test fails, the retriever's invoke method does not accept a k parameter, or the retriever does not return the correct number of documents (`k`) when it is set. For example, a retriever like .. code-block:: python MyRetriever().invoke("query", k=3) should return 3 documents when invoked with a query. """ result_1 = retriever.invoke(self.retriever_query_example, k=1) assert len(result_1) == 1 assert all(isinstance(doc, Document) for doc in result_1) result_3 = retriever.invoke(self.retriever_query_example, k=3) assert len(result_3) == 3 assert all(isinstance(doc, Document) for doc in result_3) def test_invoke_returns_documents(self, retriever: BaseRetriever) -> None: """ If invoked with the example params, the retriever should return a list of Documents. .. dropdown:: Troubleshooting If this test fails, the retriever's invoke method does not return a list of `langchain_core.document.Document` objects. Please confirm that your `_get_relevant_documents` method returns a list of `Document` objects. """ result = retriever.invoke(self.retriever_query_example) assert isinstance(result, list) assert all(isinstance(doc, Document) for doc in result) async def test_ainvoke_returns_documents(self, retriever: BaseRetriever) -> None: """ If ainvoked with the example params, the retriever should return a list of Documents. See :meth:`test_invoke_returns_documents` for more information on troubleshooting. """ result = await retriever.ainvoke(self.retriever_query_example) assert isinstance(result, list) assert all(isinstance(doc, Document) for doc in result)
from typing import TYPE_CHECKING, Dict, Iterable from sentence_transformers.evaluation.SentenceEvaluator import SentenceEvaluator if TYPE_CHECKING: from sentence_transformers.SentenceTransformer import SentenceTransformer class SequentialEvaluator(SentenceEvaluator): """ This evaluator allows that multiple sub-evaluators are passed. When the model is evaluated, the data is passed sequentially to all sub-evaluators. All scores are passed to 'main_score_function', which derives one final score value """ def __init__(self, evaluators: Iterable[SentenceEvaluator], main_score_function=lambda scores: scores[-1]): """ Initializes a SequentialEvaluator object. Args: evaluators (Iterable[SentenceEvaluator]): A collection of SentenceEvaluator objects. main_score_function (function, optional): A function that takes a list of scores and returns the main score. Defaults to selecting the last score in the list. Example: :: evaluator1 = BinaryClassificationEvaluator(...) evaluator2 = InformationRetrievalEvaluator(...) evaluator3 = MSEEvaluator(...) seq_evaluator = SequentialEvaluator([evaluator1, evaluator2, evaluator3]) """ super().__init__() self.evaluators = evaluators self.main_score_function = main_score_function def __call__( self, model: "SentenceTransformer", output_path: str = None, epoch: int = -1, steps: int = -1 ) -> Dict[str, float]: evaluations = [] scores = [] for evaluator_idx, evaluator in enumerate(self.evaluators): evaluation = evaluator(model, output_path, epoch, steps) if not isinstance(evaluation, dict): scores.append(evaluation) evaluation = {f"evaluator_{evaluator_idx}": evaluation} else: if hasattr(evaluator, "primary_metric"): scores.append(evaluation[evaluator.primary_metric]) else: scores.append(evaluation[list(evaluation.keys())[0]]) evaluations.append(evaluation) self.primary_metric = "sequential_score" main_score = self.main_score_function(scores) results = {key: value for evaluation in evaluations for key, value in evaluation.items()} results["sequential_score"] = main_score return results
from typing import TYPE_CHECKING, Dict, Iterable from sentence_transformers.evaluation.SentenceEvaluator import SentenceEvaluator if TYPE_CHECKING: from sentence_transformers.SentenceTransformer import SentenceTransformer class SequentialEvaluator(SentenceEvaluator): """ This evaluator allows that multiple sub-evaluators are passed. When the model is evaluated, the data is passed sequentially to all sub-evaluators. All scores are passed to 'main_score_function', which derives one final score value """ def __init__(self, evaluators: Iterable[SentenceEvaluator], main_score_function=lambda scores: scores[-1]): """ Initializes a SequentialEvaluator object. Args: evaluators (Iterable[SentenceEvaluator]): A collection of SentenceEvaluator objects. main_score_function (function, optional): A function that takes a list of scores and returns the main score. Defaults to selecting the last score in the list. Example: :: evaluator1 = BinaryClassificationEvaluator(...) evaluator2 = InformationRetrievalEvaluator(...) evaluator3 = MSEEvaluator(...) seq_evaluator = SequentialEvaluator([evaluator1, evaluator2, evaluator3]) """ super().__init__() self.evaluators = evaluators self.main_score_function = main_score_function def __call__( self, model: "SentenceTransformer", output_path: str = None, epoch: int = -1, steps: int = -1 ) -> Dict[str, float]: evaluations = [] scores = [] for evaluator_idx, evaluator in enumerate(self.evaluators): evaluation = evaluator(model, output_path, epoch, steps) if not isinstance(evaluation, dict): scores.append(evaluation) evaluation = {f"evaluator_{evaluator_idx}": evaluation} else: if hasattr(evaluation, "primary_metric"): scores.append(evaluation[evaluation.primary_metric]) else: scores.append(evaluation[list(evaluation.keys())[0]]) evaluations.append(evaluation) self.primary_metric = "sequential_score" main_score = self.main_score_function(scores) results = {key: value for evaluation in evaluations for key, value in evaluation.items()} results["sequential_score"] = main_score return results
# Copyright (c) OpenMMLab. All rights reserved. from typing import Dict, Optional from torch import Tensor from mmdet.registry import MODELS from mmdet.structures import SampleList, TrackSampleList from mmdet.utils import OptConfigType, OptMultiConfig from .base import BaseMOTModel @MODELS.register_module() class ByteTrack(BaseMOTModel): """ByteTrack: Multi-Object Tracking by Associating Every Detection Box. This multi object tracker is the implementation of `ByteTrack <https://arxiv.org/abs/2110.06864>`_. Args: detector (dict): Configuration of detector. Defaults to None. tracker (dict): Configuration of tracker. Defaults to None. data_preprocessor (dict or ConfigDict, optional): The pre-process config of :class:`TrackDataPreprocessor`. it usually includes, ``pad_size_divisor``, ``pad_value``, ``mean`` and ``std``. init_cfg (dict or list[dict]): Configuration of initialization. Defaults to None. """ def __init__(self, detector: Optional[dict] = None, tracker: Optional[dict] = None, data_preprocessor: OptConfigType = None, init_cfg: OptMultiConfig = None): super().__init__(data_preprocessor, init_cfg) if detector is not None: self.detector = MODELS.build(detector) if tracker is not None: self.tracker = MODELS.build(tracker) def loss(self, inputs: Tensor, data_samples: SampleList, **kwargs) -> dict: """Calculate losses from a batch of inputs and data samples. Args: inputs (Tensor): of shape (N, C, H, W) encoding input images. Typically these should be mean centered and std scaled. The N denotes batch size data_samples (list[:obj:`DetDataSample`]): The batch data samples. It usually includes information such as `gt_instance`. Returns: dict: A dictionary of loss components. """ return self.detector.loss(inputs, data_samples, **kwargs) def predict(self, inputs: Dict[str, Tensor], data_samples: TrackSampleList, **kwargs) -> TrackSampleList: """Predict results from a video and data samples with post-processing. Args: inputs (Tensor): of shape (N, T, C, H, W) encoding input images. The N denotes batch size. The T denotes the number of frames in a video. data_samples (list[:obj:`TrackDataSample`]): The batch data samples. It usually includes information such as `video_data_samples`. Returns: TrackSampleList: Tracking results of the inputs. """ assert inputs.dim() == 5, 'The img must be 5D Tensor (N, T, C, H, W).' assert inputs.size(0) == 1, \ 'Bytetrack inference only support ' \ '1 batch size per gpu for now.' assert len(data_samples) == 1, \ 'Bytetrack inference only support 1 batch size per gpu for now.' track_data_sample = data_samples[0] video_len = len(track_data_sample) for frame_id in range(video_len): img_data_sample = track_data_sample[frame_id] single_img = inputs[:, frame_id].contiguous() # det_results List[DetDataSample] det_results = self.detector.predict(single_img, [img_data_sample]) assert len(det_results) == 1, 'Batch inference is not supported.' pred_track_instances = self.tracker.track( data_sample=det_results[0], **kwargs) img_data_sample.pred_track_instances = pred_track_instances return [track_data_sample]
# Copyright (c) OpenMMLab. All rights reserved. from typing import Dict, Optional from torch import Tensor from mmdet.registry import MODELS from mmdet.structures import SampleList, TrackSampleList from mmdet.utils import OptConfigType, OptMultiConfig from .base import BaseMOTModel @MODELS.register_module() class ByteTrack(BaseMOTModel): """ByteTrack: Multi-Object Tracking by Associating Every Detection Box. This multi object tracker is the implementation of `ByteTrack <https://arxiv.org/abs/2110.06864>`_. Args: detector (dict): Configuration of detector. Defaults to None. tracker (dict): Configuration of tracker. Defaults to None. data_preprocessor (dict or ConfigDict, optional): The pre-process config of :class:`TrackDataPreprocessor`. it usually includes, ``pad_size_divisor``, ``pad_value``, ``mean`` and ``std``. init_cfg (dict or list[dict]): Configuration of initialization. Defaults to None. """ def __init__(self, detector: Optional[dict] = None, tracker: Optional[dict] = None, data_preprocessor: OptConfigType = None, init_cfg: OptMultiConfig = None): super().__init__(data_preprocessor, init_cfg) if detector is not None: self.detector = MODELS.build(detector) if tracker is not None: self.tracker = MODELS.build(tracker) def loss(self, inputs: Tensor, data_samples: SampleList, **kwargs) -> dict: """Calculate losses from a batch of inputs and data samples. Args: inputs (Tensor): of shape (N, C, H, W) encoding input images. Typically these should be mean centered and std scaled. The N denotes batch size data_samples (list[:obj:`DetDataSample`]): The batch data samples. It usually includes information such as `gt_instance`. Returns: dict: A dictionary of loss components. """ return self.detector.loss(inputs, data_samples, **kwargs) def predict(self, inputs: Dict[str, Tensor], data_samples: TrackSampleList, **kwargs) -> TrackSampleList: """Predict results from a video and data samples with post-processing. Args: inputs (Tensor): of shape (N, T, C, H, W) encoding input images. The N denotes batch size. The T denotes the number of frames in a video. data_samples (list[:obj:`TrackDataSample`]): The batch data samples. It usually includes information such as `video_data_samples`. Returns: TrackSampleList: Tracking results of the inputs. """ assert inputs.dim() == 5, 'The img must be 5D Tensor (N, T, C, H, W).' assert inputs.size(0) == 1, \ 'SORT/DeepSORT inference only support ' \ '1 batch size per gpu for now.' assert len(data_samples) == 1, \ 'Bytetrack inference only support 1 batch size per gpu for now.' track_data_sample = data_samples[0] video_len = len(track_data_sample) for frame_id in range(video_len): img_data_sample = track_data_sample[frame_id] single_img = inputs[:, frame_id].contiguous() # det_results List[DetDataSample] det_results = self.detector.predict(single_img, [img_data_sample]) assert len(det_results) == 1, 'Batch inference is not supported.' pred_track_instances = self.tracker.track( data_sample=det_results[0], **kwargs) img_data_sample.pred_track_instances = pred_track_instances return [track_data_sample]
from typing import Any, Dict, Union import torch from torchvision import transforms as _transforms from torchvision.prototype import datapoints from torchvision.prototype.transforms import functional as F, Transform from .utils import is_simple_tensor class ConvertBoundingBoxFormat(Transform): _transformed_types = (datapoints.BoundingBox,) def __init__(self, format: Union[str, datapoints.BoundingBoxFormat]) -> None: super().__init__() if isinstance(format, str): format = datapoints.BoundingBoxFormat[format] self.format = format def _transform(self, inpt: datapoints.BoundingBox, params: Dict[str, Any]) -> datapoints.BoundingBox: # We need to unwrap here to avoid unnecessary `__torch_function__` calls, # since `convert_format_bounding_box` does not have a dispatcher function that would do that for us output = F.convert_format_bounding_box( inpt.as_subclass(torch.Tensor), old_format=inpt.format, new_format=params["format"] ) return datapoints.BoundingBox.wrap_like(inpt, output, format=params["format"]) class ConvertDtype(Transform): _v1_transform_cls = _transforms.ConvertImageDtype _transformed_types = (is_simple_tensor, datapoints.Image, datapoints.Video) def __init__(self, dtype: torch.dtype = torch.float32) -> None: super().__init__() self.dtype = dtype def _transform( self, inpt: Union[datapoints.TensorImageType, datapoints.TensorVideoType], params: Dict[str, Any] ) -> Union[datapoints.TensorImageType, datapoints.TensorVideoType]: return F.convert_dtype(inpt, self.dtype) # We changed the name to align it with the new naming scheme. Still, `ConvertImageDtype` is # prevalent and well understood. Thus, we just alias it without deprecating the old name. ConvertImageDtype = ConvertDtype class ClampBoundingBoxes(Transform): _transformed_types = (datapoints.BoundingBox,) def _transform(self, inpt: datapoints.BoundingBox, params: Dict[str, Any]) -> datapoints.BoundingBox: # We need to unwrap here to avoid unnecessary `__torch_function__` calls, # since `clamp_bounding_box` does not have a dispatcher function that would do that for us output = F.clamp_bounding_box( inpt.as_subclass(torch.Tensor), format=inpt.format, spatial_size=inpt.spatial_size ) return datapoints.BoundingBox.wrap_like(inpt, output)
from typing import Any, Dict, Union import torch from torchvision.prototype import datapoints from torchvision.prototype.transforms import functional as F, Transform from .utils import is_simple_tensor class ConvertBoundingBoxFormat(Transform): _transformed_types = (datapoints.BoundingBox,) def __init__(self, format: Union[str, datapoints.BoundingBoxFormat]) -> None: super().__init__() if isinstance(format, str): format = datapoints.BoundingBoxFormat[format] self.format = format def _transform(self, inpt: datapoints.BoundingBox, params: Dict[str, Any]) -> datapoints.BoundingBox: # We need to unwrap here to avoid unnecessary `__torch_function__` calls, # since `convert_format_bounding_box` does not have a dispatcher function that would do that for us output = F.convert_format_bounding_box( inpt.as_subclass(torch.Tensor), old_format=inpt.format, new_format=params["format"] ) return datapoints.BoundingBox.wrap_like(inpt, output, format=params["format"]) class ConvertDtype(Transform): _transformed_types = (is_simple_tensor, datapoints.Image, datapoints.Video) def __init__(self, dtype: torch.dtype = torch.float32) -> None: super().__init__() self.dtype = dtype def _transform( self, inpt: Union[datapoints.TensorImageType, datapoints.TensorVideoType], params: Dict[str, Any] ) -> Union[datapoints.TensorImageType, datapoints.TensorVideoType]: return F.convert_dtype(inpt, self.dtype) # We changed the name to align it with the new naming scheme. Still, `ConvertImageDtype` is # prevalent and well understood. Thus, we just alias it without deprecating the old name. ConvertImageDtype = ConvertDtype class ClampBoundingBoxes(Transform): _transformed_types = (datapoints.BoundingBox,) def _transform(self, inpt: datapoints.BoundingBox, params: Dict[str, Any]) -> datapoints.BoundingBox: # We need to unwrap here to avoid unnecessary `__torch_function__` calls, # since `clamp_bounding_box` does not have a dispatcher function that would do that for us output = F.clamp_bounding_box( inpt.as_subclass(torch.Tensor), format=inpt.format, spatial_size=inpt.spatial_size ) return datapoints.BoundingBox.wrap_like(inpt, output)
from backend.data.credit import get_user_credit_model from backend.data.execution import ( ExecutionResult, NodeExecutionEntry, RedisExecutionEventBus, create_graph_execution, get_execution_results, get_incomplete_executions, get_latest_execution, update_execution_status, update_graph_execution_start_time, update_graph_execution_stats, update_node_execution_stats, upsert_execution_input, upsert_execution_output, ) from backend.data.graph import get_graph, get_graph_metadata, get_node from backend.data.user import ( get_user_integrations, get_user_metadata, update_user_integrations, update_user_metadata, ) from backend.util.service import AppService, expose, exposed_run_and_wait from backend.util.settings import Config config = Config() _user_credit_model = get_user_credit_model() async def _spend_credits(entry: NodeExecutionEntry) -> int: return await _user_credit_model.spend_credits(entry, 0, 0) class DatabaseManager(AppService): def __init__(self): super().__init__() self.use_db = True self.use_redis = True self.event_queue = RedisExecutionEventBus() @classmethod def get_port(cls) -> int: return config.database_api_port @expose def send_execution_update(self, execution_result: ExecutionResult): self.event_queue.publish(execution_result) # Executions create_graph_execution = exposed_run_and_wait(create_graph_execution) get_execution_results = exposed_run_and_wait(get_execution_results) get_incomplete_executions = exposed_run_and_wait(get_incomplete_executions) get_latest_execution = exposed_run_and_wait(get_latest_execution) update_execution_status = exposed_run_and_wait(update_execution_status) update_graph_execution_start_time = exposed_run_and_wait( update_graph_execution_start_time ) update_graph_execution_stats = exposed_run_and_wait(update_graph_execution_stats) update_node_execution_stats = exposed_run_and_wait(update_node_execution_stats) upsert_execution_input = exposed_run_and_wait(upsert_execution_input) upsert_execution_output = exposed_run_and_wait(upsert_execution_output) # Graphs get_node = exposed_run_and_wait(get_node) get_graph = exposed_run_and_wait(get_graph) get_graph_metadata = exposed_run_and_wait(get_graph_metadata) # Credits spend_credits = exposed_run_and_wait(_spend_credits) # User + User Metadata + User Integrations get_user_metadata = exposed_run_and_wait(get_user_metadata) update_user_metadata = exposed_run_and_wait(update_user_metadata) get_user_integrations = exposed_run_and_wait(get_user_integrations) update_user_integrations = exposed_run_and_wait(update_user_integrations)
from backend.data.credit import get_user_credit_model from backend.data.execution import ( ExecutionResult, NodeExecutionEntry, RedisExecutionEventBus, create_graph_execution, get_execution_results, get_incomplete_executions, get_latest_execution, update_execution_status, update_graph_execution_stats, update_node_execution_stats, upsert_execution_input, upsert_execution_output, ) from backend.data.graph import get_graph, get_graph_metadata, get_node from backend.data.user import ( get_user_integrations, get_user_metadata, update_user_integrations, update_user_metadata, ) from backend.util.service import AppService, expose, exposed_run_and_wait from backend.util.settings import Config config = Config() _user_credit_model = get_user_credit_model() async def _spend_credits(entry: NodeExecutionEntry) -> int: return await _user_credit_model.spend_credits(entry, 0, 0) class DatabaseManager(AppService): def __init__(self): super().__init__() self.use_db = True self.use_redis = True self.event_queue = RedisExecutionEventBus() @classmethod def get_port(cls) -> int: return config.database_api_port @expose def send_execution_update(self, execution_result: ExecutionResult): self.event_queue.publish(execution_result) # Executions create_graph_execution = exposed_run_and_wait(create_graph_execution) get_execution_results = exposed_run_and_wait(get_execution_results) get_incomplete_executions = exposed_run_and_wait(get_incomplete_executions) get_latest_execution = exposed_run_and_wait(get_latest_execution) update_execution_status = exposed_run_and_wait(update_execution_status) update_graph_execution_stats = exposed_run_and_wait(update_graph_execution_stats) update_node_execution_stats = exposed_run_and_wait(update_node_execution_stats) upsert_execution_input = exposed_run_and_wait(upsert_execution_input) upsert_execution_output = exposed_run_and_wait(upsert_execution_output) # Graphs get_node = exposed_run_and_wait(get_node) get_graph = exposed_run_and_wait(get_graph) get_graph_metadata = exposed_run_and_wait(get_graph_metadata) # Credits spend_credits = exposed_run_and_wait(_spend_credits) # User + User Metadata + User Integrations get_user_metadata = exposed_run_and_wait(get_user_metadata) update_user_metadata = exposed_run_and_wait(update_user_metadata) get_user_integrations = exposed_run_and_wait(get_user_integrations) update_user_integrations = exposed_run_and_wait(update_user_integrations)
"""Tests for tf.distribute related functionality under tf implementation.""" import numpy as np import pytest import tensorflow as tf from tensorflow.python.eager import context from keras.src import backend from keras.src import layers from keras.src import models from keras.src import testing from keras.src.backend.tensorflow import trainer as tf_trainer @pytest.mark.skipif( backend.backend() != "tensorflow", reason="The distribute test can only run with TF backend.", ) class DistributeTest(testing.TestCase): def setUp(self): super().setUp() # Need at least 2 devices for distribution related tests. cpus = tf.config.list_physical_devices("CPU") context._reset_context() tf.config.set_logical_device_configuration( cpus[0], [ tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration(), ], ) def test_variable_creation(self): strategy = tf.distribute.MirroredStrategy(["CPU:0", "CPU:1"]) with strategy.scope(): dense = layers.Dense(2) dense.build([4, 2]) self.assertIsInstance(dense.kernel, backend.Variable) self.assertIsInstance( dense.kernel.value, tf.distribute.DistributedValues ) self.assertIn("MirroredVariable", dense.kernel.value.__class__.__name__) self.assertIsInstance(dense.kernel, backend.Variable) self.assertIsInstance(dense.bias.value, tf.distribute.DistributedValues) self.assertIn("MirroredVariable", dense.bias.value.__class__.__name__) def test_strategy_run(self): strategy = tf.distribute.MirroredStrategy(["CPU:0", "CPU:1"]) with strategy.scope(): inputs = layers.Input(shape=[4]) dense = layers.Dense(2) output = dense(inputs) model = models.Functional(inputs, output) self.assertIsInstance(dense.kernel, backend.Variable) self.assertIsInstance( dense.kernel.value, tf.distribute.DistributedValues ) def input_fn(ctx): if ctx.replica_id_in_sync_group == 1: return tf.ones([8, 4]) else: return tf.zeros([8, 4]) distributed_inputs = ( strategy.experimental_distribute_values_from_function(input_fn) ) @tf.function def run_fn(data): return model(data) result = strategy.run(run_fn, args=(distributed_inputs,)) self.assertIsInstance( result, tf.types.experimental.distributed.PerReplica ) self.assertLen(result.values, 2) self.assertEqual(result.values[0].shape, [8, 2]) self.assertEqual(result.values[1].shape, [8, 2]) self.assertNotAllClose(result.values[0], result.values[1]) self.assertAllClose(result.values[0], tf.zeros([8, 2])) def test_epoch_iterator(self): x = np.random.random((100, 16)) y = np.random.random((100, 4)) sample_weight = np.random.random((100,)) batch_size = 16 shuffle = True strategy = tf.distribute.MirroredStrategy(["CPU:0", "CPU:1"]) epoch_iterator = tf_trainer.TFEpochIterator( x=x, y=y, sample_weight=sample_weight, batch_size=batch_size, shuffle=shuffle, distribute_strategy=strategy, ) steps_seen = [] for step, data_iterator in epoch_iterator: steps_seen.append(step) batch = next(data_iterator) self.assertEqual(len(batch), 3) x, y, sample_weight = batch self.assertTrue( isinstance(x, tf.types.experimental.distributed.PerReplica) ) # Make sure the local batch size is 8 if step < 6: self.assertEqual(x.values[0].shape, [8, 16]) self.assertEqual(y.values[0].shape, [8, 4]) self.assertEqual(sample_weight.values[0].shape, [8]) else: # Last partial batch self.assertEqual(x.values[0].shape, [2, 16]) self.assertEqual(y.values[0].shape, [2, 4]) self.assertEqual(sample_weight.values[0].shape, [2]) self.assertEqual(steps_seen, [0, 1, 2, 3, 4, 5, 6])
"""Tests for tf.distribute related functionality under tf implementation.""" import numpy as np import pytest import tensorflow as tf from tensorflow.python.eager import context from keras.src import backend from keras.src import layers from keras.src import models from keras.src import testing from keras.src.backend.tensorflow import trainer as tf_trainer @pytest.mark.skipif( backend.backend() != "tensorflow", reason="The distribute test can only run with TF backend.", ) class DistributeTest(testing.TestCase): def setUp(self): super().setUp() # Need at least 2 devices for distribution related tests. cpus = tf.config.list_physical_devices("CPU") context._reset_context() tf.config.set_logical_device_configuration( cpus[0], [ tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration(), ], ) def test_variable_creation(self): strategy = tf.distribute.MirroredStrategy(["CPU:0", "CPU:1"]) with strategy.scope(): dense = layers.Dense(2) dense.build([4, 2]) self.assertIsInstance(dense.kernel, backend.Variable) self.assertIsInstance( dense.kernel.value, tf.distribute.DistributedValues ) self.assertIn("MirroredVariable", dense.kernel.value.__class__.__name__) self.assertIsInstance(dense.kernel, backend.Variable) self.assertIsInstance(dense.bias.value, tf.distribute.DistributedValues) self.assertIn("MirroredVariable", dense.bias.value.__class__.__name__) def test_strategy_run(self): strategy = tf.distribute.MirroredStrategy(["CPU:0", "CPU:1"]) with strategy.scope(): inputs = layers.Input(shape=[4]) dense = layers.Dense(2) output = dense(inputs) model = models.Functional(inputs, output) self.assertIsInstance(dense.kernel, backend.Variable) self.assertIsInstance( dense.kernel.value, tf.distribute.DistributedValues ) def input_fn(ctx): if ctx.replica_id_in_sync_group == 1: return tf.ones([8, 4]) else: return tf.zeros([8, 4]) distributed_inputs = ( strategy.experimental_distribute_values_from_function(input_fn) ) @tf.function def run_fn(data): return model(data) result = strategy.run(run_fn, args=(distributed_inputs,)) self.assertIsInstance( result, tf.types.experimental.distributed.PerReplica ) self.assertLen(result.values, 2) self.assertEqual(result.values[0].shape, [8, 2]) self.assertEqual(result.values[1].shape, [8, 2]) self.assertNotAllClose(result.values[0], result.values[1]) self.assertAllClose(result.values[0], tf.zeros([8, 2])) def test_epoch_iterator(self): x = np.random.random((100, 16)) y = np.random.random((100, 4)) sample_weight = np.random.random((100,)) batch_size = 16 shuffle = True strategy = tf.distribute.MirroredStrategy(["CPU:0", "CPU:1"]) epoch_iterator = tf_trainer.TFEpochIterator( x=x, y=y, sample_weight=sample_weight, batch_size=batch_size, shuffle=shuffle, distribute_strategy=strategy, ) steps_seen = [] for step, data_iterator in epoch_iterator.enumerate_epoch(): steps_seen.append(step) batch = next(data_iterator) self.assertEqual(len(batch), 3) x, y, sample_weight = batch self.assertTrue( isinstance(x, tf.types.experimental.distributed.PerReplica) ) # Make sure the local batch size is 8 if step < 6: self.assertEqual(x.values[0].shape, [8, 16]) self.assertEqual(y.values[0].shape, [8, 4]) self.assertEqual(sample_weight.values[0].shape, [8]) else: # Last partial batch self.assertEqual(x.values[0].shape, [2, 16]) self.assertEqual(y.values[0].shape, [2, 4]) self.assertEqual(sample_weight.values[0].shape, [2]) self.assertEqual(steps_seen, [0, 1, 2, 3, 4, 5, 6])
from pathlib import Path def find_and_replace(source: str, replacements: dict[str, str]) -> str: rtn = source # replace keys in deterministic alphabetical order finds = sorted(replacements.keys()) for find in finds: replace = replacements[find] rtn = rtn.replace(find, replace) return rtn def replace_file(source: Path, replacements: dict[str, str]) -> None: try: content = source.read_text() except UnicodeDecodeError: # binary file return new_content = find_and_replace(content, replacements) if new_content != content: source.write_text(new_content) def replace_glob(parent: Path, glob: str, replacements: dict[str, str]) -> None: for file in parent.glob(glob): if not file.is_file(): continue replace_file(file, replacements)
from pathlib import Path from typing import Dict def find_and_replace(source: str, replacements: Dict[str, str]) -> str: rtn = source # replace keys in deterministic alphabetical order finds = sorted(replacements.keys()) for find in finds: replace = replacements[find] rtn = rtn.replace(find, replace) return rtn def replace_file(source: Path, replacements: dict[str, str]) -> None: try: content = source.read_text() except UnicodeDecodeError: # binary file return new_content = find_and_replace(content, replacements) if new_content != content: source.write_text(new_content) def replace_glob(parent: Path, glob: str, replacements: dict[str, str]) -> None: for file in parent.glob(glob): if not file.is_file(): continue replace_file(file, replacements)
import pytest from keras.src import backend from keras.src import testing class DeviceTest(testing.TestCase): @pytest.mark.skipif(backend.backend() != "tensorflow", reason="tf only") def test_tf_device_scope(self): import tensorflow as tf if not tf.config.list_physical_devices("GPU"): self.skipTest("Need at least one GPU for testing") with backend.device_scope("cpu:0"): t = backend.numpy.ones((2, 1)) self.assertIn("CPU:0", t.device) with backend.device_scope("CPU:0"): t = backend.numpy.ones((2, 1)) self.assertIn("CPU:0", t.device) # When leaving the scope, the device should be back with gpu:0 t = backend.numpy.ones((2, 1)) self.assertIn("GPU:0", t.device) # Also verify the explicit gpu device with backend.device_scope("gpu:0"): t = backend.numpy.ones((2, 1)) self.assertIn("GPU:0", t.device) @pytest.mark.skipif(backend.backend() != "jax", reason="jax only") def test_jax_device_scope(self): import jax from jax.lib import xla_bridge platform = xla_bridge.get_backend().platform if platform != "gpu": self.skipTest("Need at least one GPU for testing") with backend.device_scope("cpu:0"): t = backend.numpy.ones((2, 1)) self.assertEqual(t.device, jax.devices("cpu")[0]) with backend.device_scope("CPU:0"): t = backend.numpy.ones((2, 1)) self.assertEqual(t.device, jax.devices("cpu")[0]) # When leaving the scope, the device should be back with gpu:0 t = backend.numpy.ones((2, 1)) self.assertEqual(t.device, jax.devices("gpu")[0]) # Also verify the explicit gpu device with backend.device_scope("gpu:0"): t = backend.numpy.ones((2, 1)) self.assertEqual(t.device, jax.devices("gpu")[0]) @pytest.mark.skipif(backend.backend() != "jax", reason="jax only") def test_invalid_jax_device(self): with self.assertRaisesRegex(ValueError, "Received: device_name='123'"): backend.device_scope(123).__enter__() @pytest.mark.skipif(backend.backend() != "torch", reason="torch only") def test_torch_device_scope(self): import torch if not torch.cuda.device_count(): self.skipTest("Need at least one GPU for testing") with backend.device_scope("cpu:0"): t = backend.numpy.ones((2, 1)) self.assertEqual(t.device, torch.device("cpu")) with backend.device_scope("CPU:0"): t = backend.numpy.ones((2, 1)) self.assertEqual(t.device, torch.device("cpu")) # When leaving the scope, the device should be back with gpu:0 t = backend.numpy.ones((2, 1)) self.assertEqual(t.device, torch.device("cuda", 0)) # Also verify the explicit gpu -> cuda conversion with backend.device_scope("gpu:0"): t = backend.numpy.ones((2, 1)) self.assertEqual(t.device, torch.device("cuda", 0)) @pytest.mark.skipif(backend.backend() != "torch", reason="torch only") def test_invalid_torch_device(self): with self.assertRaisesRegex(ValueError, "Received: device_name='123'"): backend.device_scope(123).__enter__()
import pytest from keras.src import backend from keras.src import testing class DeviceTest(testing.TestCase): @pytest.mark.skipif(backend.backend() != "tensorflow", reason="tf only") def test_tf_device_scope(self): import tensorflow as tf if not tf.config.list_physical_devices("GPU"): self.skipTest("Need at least one GPU for testing") with backend.device_scope("cpu:0"): t = backend.numpy.ones((2, 1)) self.assertIn("CPU:0", t.device) with backend.device_scope("CPU:0"): t = backend.numpy.ones((2, 1)) self.assertIn("CPU:0", t.device) # When leaving the scope, the device should be back with gpu:0 t = backend.numpy.ones((2, 1)) self.assertIn("GPU:0", t.device) # Also verify the explicit gpu device with backend.device_scope("gpu:0"): t = backend.numpy.ones((2, 1)) self.assertIn("GPU:0", t.device) @pytest.mark.skipif(backend.backend() != "jax", reason="jax only") def test_jax_device_scope(self): import jax from jax.lib import xla_bridge platform = xla_bridge.get_backend().platform if platform != "gpu": self.skipTest("Need at least one GPU for testing") with backend.device_scope("cpu:0"): t = backend.numpy.ones((2, 1)) self.assertEqual(t.device(), jax.devices("cpu")[0]) with backend.device_scope("CPU:0"): t = backend.numpy.ones((2, 1)) self.assertEqual(t.device(), jax.devices("cpu")[0]) # When leaving the scope, the device should be back with gpu:0 t = backend.numpy.ones((2, 1)) self.assertEqual(t.device(), jax.devices("gpu")[0]) # Also verify the explicit gpu device with backend.device_scope("gpu:0"): t = backend.numpy.ones((2, 1)) self.assertEqual(t.device(), jax.devices("gpu")[0]) @pytest.mark.skipif(backend.backend() != "jax", reason="jax only") def test_invalid_jax_device(self): with self.assertRaisesRegex(ValueError, "Received: device_name='123'"): backend.device_scope(123).__enter__() @pytest.mark.skipif(backend.backend() != "torch", reason="torch only") def test_torch_device_scope(self): import torch if not torch.cuda.device_count(): self.skipTest("Need at least one GPU for testing") with backend.device_scope("cpu:0"): t = backend.numpy.ones((2, 1)) self.assertEqual(t.device, torch.device("cpu")) with backend.device_scope("CPU:0"): t = backend.numpy.ones((2, 1)) self.assertEqual(t.device, torch.device("cpu")) # When leaving the scope, the device should be back with gpu:0 t = backend.numpy.ones((2, 1)) self.assertEqual(t.device, torch.device("cuda", 0)) # Also verify the explicit gpu -> cuda conversion with backend.device_scope("gpu:0"): t = backend.numpy.ones((2, 1)) self.assertEqual(t.device, torch.device("cuda", 0)) @pytest.mark.skipif(backend.backend() != "torch", reason="torch only") def test_invalid_torch_device(self): with self.assertRaisesRegex(ValueError, "Received: device_name='123'"): backend.device_scope(123).__enter__()
# Copyright (c) OpenMMLab. All rights reserved. import logging import random from typing import List, Optional, Tuple import numpy as np import torch from mmengine.dist import get_rank, sync_random_seed from mmengine.logging import print_log from mmengine.utils import digit_version, is_list_of from mmengine.utils.dl_utils import TORCH_VERSION def calc_dynamic_intervals( start_interval: int, dynamic_interval_list: Optional[List[Tuple[int, int]]] = None ) -> Tuple[List[int], List[int]]: """Calculate dynamic intervals. Args: start_interval (int): The interval used in the beginning. dynamic_interval_list (List[Tuple[int, int]], optional): The first element in the tuple is a milestone and the second element is a interval. The interval is used after the corresponding milestone. Defaults to None. Returns: Tuple[List[int], List[int]]: a list of milestone and its corresponding intervals. """ if dynamic_interval_list is None: return [0], [start_interval] assert is_list_of(dynamic_interval_list, tuple) dynamic_milestones = [0] dynamic_milestones.extend( [dynamic_interval[0] for dynamic_interval in dynamic_interval_list]) dynamic_intervals = [start_interval] dynamic_intervals.extend( [dynamic_interval[1] for dynamic_interval in dynamic_interval_list]) return dynamic_milestones, dynamic_intervals def set_random_seed(seed: Optional[int] = None, deterministic: bool = False, diff_rank_seed: bool = False) -> int: """Set random seed. Args: seed (int, optional): Seed to be used. deterministic (bool): Whether to set the deterministic option for CUDNN backend, i.e., set `torch.backends.cudnn.deterministic` to True and `torch.backends.cudnn.benchmark` to False. Default: False. diff_rank_seed (bool): Whether to add rank number to the random seed to have different random seed in different threads. Default: False. """ if seed is None: seed = sync_random_seed() if diff_rank_seed: rank = get_rank() seed += rank random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) # torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) # os.environ['PYTHONHASHSEED'] = str(seed) if deterministic: if torch.backends.cudnn.benchmark: print_log( 'torch.backends.cudnn.benchmark is going to be set as ' '`False` to cause cuDNN to deterministically select an ' 'algorithm', logger='current', level=logging.WARNING) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False if digit_version(TORCH_VERSION) >= digit_version('1.10.0'): torch.use_deterministic_algorithms(True) return seed
# Copyright (c) OpenMMLab. All rights reserved. from typing import List, Optional, Tuple from mmengine.utils import is_list_of def calc_dynamic_intervals( start_interval: int, dynamic_interval_list: Optional[List[Tuple[int, int]]] = None ) -> Tuple[List[int], List[int]]: """Calculate dynamic intervals. Args: start_interval (int): The interval used in the beginning. dynamic_interval_list (List[Tuple[int, int]], optional): The first element in the tuple is a milestone and the second element is a interval. The interval is used after the corresponding milestone. Defaults to None. Returns: Tuple[List[int], List[int]]: a list of milestone and its corresponding intervals. """ if dynamic_interval_list is None: return [0], [start_interval] assert is_list_of(dynamic_interval_list, tuple) dynamic_milestones = [0] dynamic_milestones.extend( [dynamic_interval[0] for dynamic_interval in dynamic_interval_list]) dynamic_intervals = [start_interval] dynamic_intervals.extend( [dynamic_interval[1] for dynamic_interval in dynamic_interval_list]) return dynamic_milestones, dynamic_intervals
# Copyright (c) OpenMMLab. All rights reserved. from .base_video_metric import BaseVideoMetric from .cityscapes_metric import CityScapesMetric from .coco_caption_metric import COCOCaptionMetric from .coco_metric import CocoMetric from .coco_occluded_metric import CocoOccludedSeparatedMetric from .coco_panoptic_metric import CocoPanopticMetric from .coco_video_metric import CocoVideoMetric from .crowdhuman_metric import CrowdHumanMetric from .dod_metric import DODCocoMetric from .dump_det_results import DumpDetResults from .dump_odvg_results import DumpODVGResults from .dump_proposals_metric import DumpProposals from .flickr30k_metric import Flickr30kMetric from .grefcoco_metric import gRefCOCOMetric from .lvis_metric import LVISMetric from .mot_challenge_metric import MOTChallengeMetric from .openimages_metric import OpenImagesMetric from .ov_coco_metric import OVCocoMetric from .refexp_metric import RefExpMetric from .refseg_metric import RefSegMetric from .reid_metric import ReIDMetrics from .semseg_metric import SemSegMetric from .voc_metric import VOCMetric from .youtube_vis_metric import YouTubeVISMetric __all__ = [ 'CityScapesMetric', 'CocoMetric', 'CocoPanopticMetric', 'OpenImagesMetric', 'VOCMetric', 'LVISMetric', 'CrowdHumanMetric', 'DumpProposals', 'CocoOccludedSeparatedMetric', 'DumpDetResults', 'BaseVideoMetric', 'MOTChallengeMetric', 'CocoVideoMetric', 'ReIDMetrics', 'YouTubeVISMetric', 'COCOCaptionMetric', 'SemSegMetric', 'RefSegMetric', 'RefExpMetric', 'gRefCOCOMetric', 'DODCocoMetric', 'DumpODVGResults', 'Flickr30kMetric', 'OVCocoMetric' ]
# Copyright (c) OpenMMLab. All rights reserved. from .base_video_metric import BaseVideoMetric from .cityscapes_metric import CityScapesMetric from .coco_caption_metric import COCOCaptionMetric from .coco_metric import CocoMetric from .coco_occluded_metric import CocoOccludedSeparatedMetric from .coco_panoptic_metric import CocoPanopticMetric from .coco_video_metric import CocoVideoMetric from .crowdhuman_metric import CrowdHumanMetric from .dump_det_results import DumpDetResults from .dump_proposals_metric import DumpProposals from .lvis_metric import LVISMetric from .mot_challenge_metric import MOTChallengeMetric from .openimages_metric import OpenImagesMetric from .refseg_metric import RefSegMetric from .reid_metric import ReIDMetrics from .semseg_metric import SemSegMetric from .voc_metric import VOCMetric from .youtube_vis_metric import YouTubeVISMetric __all__ = [ 'CityScapesMetric', 'CocoMetric', 'CocoPanopticMetric', 'OpenImagesMetric', 'VOCMetric', 'LVISMetric', 'CrowdHumanMetric', 'DumpProposals', 'CocoOccludedSeparatedMetric', 'DumpDetResults', 'BaseVideoMetric', 'MOTChallengeMetric', 'CocoVideoMetric', 'ReIDMetrics', 'YouTubeVISMetric', 'COCOCaptionMetric', 'SemSegMetric', 'RefSegMetric' ]
__version__ = '0.13.16' import os from .document import Document from .array import DocumentArray from .dataclasses import dataclass, field if 'DA_NO_RICH_HANDLER' not in os.environ: from rich.traceback import install install()
__version__ = '0.13.15' import os from .document import Document from .array import DocumentArray from .dataclasses import dataclass, field if 'DA_NO_RICH_HANDLER' not in os.environ: from rich.traceback import install install()
""" NOTE: This file must be imported like ``import torch.distributed.fsdp._traversal_utils`` and not like ``from torch.distributed.fsdp._traversal_utils import ...`` to avoid circular imports. For brevity, we may import the file as ``traversal_utils``. """ import collections import torch.nn as nn from torch.distributed._composable.contract import _get_registry from torch.distributed.fsdp._common_utils import _FSDPState, _get_module_fsdp_state """ [Note: FSDP State Traversal] For the wrapper code path, ``_FSDPState`` is the ``FullyShardedDataParallel`` module wrapping a fully sharded module, and for the non-wrapper code path, ``_FSDPState`` is an object that gets embedded on a fully sharded module. See [Note: Fully Sharded Module] for the definition. There are three common traversal idioms: Given a root module, - ``_get_fsdp_states()`` returns all ``_FSDPState`` s in the tree. - ``get_fsdp_root_states()`` returns all local root ``_FSDPState`` s in the tree (i.e. those with ``_is_root == True``). - ``_get_fsdp_handles()``returns all ``FlatParamHandle`` s in the tree. All of these methods must take in the root module (i.e. an ``nn.Module``) and not a general ``_FSDPState`` because ``_FSDPState`` does not support a graph traversal, whereas ``nn.Module`` has ``nn.Module.modules()`` for traversal. """ def _composable(module: nn.Module) -> bool: """ Returns if ``module`` can compose with ``fully_shard``. """ # TODO: Add any other composable APIs that are mutually exclusive. registry = _get_registry(module) if registry is None: return True return "replicate" not in registry # TODO (awgu): We may be able to remove this function if we retired the # `use_orig_params=False` code path since so far we only need the module for # `FlatParameter` registration, which is not needed for `use_orig_params=True`. def _get_fsdp_states_with_modules( module: nn.Module, ) -> tuple[list[_FSDPState], list[nn.Module]]: """ Returns a tuple containing: 1. A list of the ``_FSDPState`` instances in the module tree rooted at ``module`` without any duplicates and following the ``module.modules()`` traversal order (which is assumed to be depth-first). 2. A corresponding list of the modules owning the states in the first list. For the wrapper code path, both returned lists are the same, each containing all ``FullyShardedDataParallel`` instances. For the composable code path, this returns a list of all composable state instances and a list of the corresponding fully sharded modules. See [Note: Fully Sharded Module]. NOTE: The traversal does not proceed into any module annotated by an incompatible API (e.g. ``replicate``). """ fsdp_states: list[_FSDPState] = [] fsdp_modules: list[nn.Module] = [] # Track the visited FSDP states since multiple modules may share the same # one and we want to return a de-duplicated list visited_fsdp_states: set[_FSDPState] = set() # Track the visited modules in case of shared modules, which implies the # module graph is no longer a tree visited_modules: set[nn.Module] = set() # Perform depth-first search from `module` to ensure that we do not # traverse into an incompatible API's subtree (use DFS instead of BFS to # match `.modules()` order) deque: collections.deque[nn.Module] = collections.deque([module]) while deque: submodule = deque.popleft() visited_modules.add(submodule) if not _composable(submodule): continue for child_module in reversed(list(submodule.children())): if child_module not in visited_modules: deque.appendleft(child_module) optional_state = _get_module_fsdp_state(submodule) if optional_state is not None and optional_state not in visited_fsdp_states: visited_fsdp_states.add(optional_state) fsdp_states.append(optional_state) fsdp_modules.append(submodule) return fsdp_states, fsdp_modules def _get_fsdp_states(module: nn.Module) -> list[_FSDPState]: """See :func:`_get_fsdp_states_with_modules`.""" fsdp_states, _ = _get_fsdp_states_with_modules(module) return fsdp_states def _get_fsdp_handles(module: nn.Module) -> list: """ Returns all ``FlatParamHandle`` s in the module tree rooted at ``module`` following the rules in :func:`_get_fsdp_state`. """ handles = [ fsdp_state._handle for fsdp_state in _get_fsdp_states(module) if fsdp_state._handle is not None ] return handles
""" NOTE: This file must be imported like ``import torch.distributed.fsdp._traversal_utils`` and not like ``from torch.distirbuted.fsdp._traversal_utils import ...`` to avoid circular imports. For brevity, we may import the file as ``traversal_utils``. """ import collections import torch.nn as nn from torch.distributed._composable.contract import _get_registry from torch.distributed.fsdp._common_utils import _FSDPState, _get_module_fsdp_state """ [Note: FSDP State Traversal] For the wrapper code path, ``_FSDPState`` is the ``FullyShardedDataParallel`` module wrapping a fully sharded module, and for the non-wrapper code path, ``_FSDPState`` is an object that gets embedded on a fully sharded module. See [Note: Fully Sharded Module] for the definition. There are three common traversal idioms: Given a root module, - ``_get_fsdp_states()`` returns all ``_FSDPState`` s in the tree. - ``get_fsdp_root_states()`` returns all local root ``_FSDPState`` s in the tree (i.e. those with ``_is_root == True``). - ``_get_fsdp_handles()``returns all ``FlatParamHandle`` s in the tree. All of these methods must take in the root module (i.e. an ``nn.Module``) and not a general ``_FSDPState`` because ``_FSDPState`` does not support a graph traversal, whereas ``nn.Module`` has ``nn.Module.modules()`` for traversal. """ def _composable(module: nn.Module) -> bool: """ Returns if ``module`` can compose with ``fully_shard``. """ # TODO: Add any other composable APIs that are mutually exclusive. registry = _get_registry(module) if registry is None: return True return "replicate" not in registry # TODO (awgu): We may be able to remove this function if we retired the # `use_orig_params=False` code path since so far we only need the module for # `FlatParameter` registration, which is not needed for `use_orig_params=True`. def _get_fsdp_states_with_modules( module: nn.Module, ) -> tuple[list[_FSDPState], list[nn.Module]]: """ Returns a tuple containing: 1. A list of the ``_FSDPState`` instances in the module tree rooted at ``module`` without any duplicates and following the ``module.modules()`` traversal order (which is assumed to be depth-first). 2. A corresponding list of the modules owning the states in the first list. For the wrapper code path, both returned lists are the same, each containing all ``FullyShardedDataParallel`` instances. For the composable code path, this returns a list of all composable state instances and a list of the corresponding fully sharded modules. See [Note: Fully Sharded Module]. NOTE: The traversal does not proceed into any module annotated by an incompatible API (e.g. ``replicate``). """ fsdp_states: list[_FSDPState] = [] fsdp_modules: list[nn.Module] = [] # Track the visited FSDP states since multiple modules may share the same # one and we want to return a de-duplicated list visited_fsdp_states: set[_FSDPState] = set() # Track the visited modules in case of shared modules, which implies the # module graph is no longer a tree visited_modules: set[nn.Module] = set() # Perform depth-first search from `module` to ensure that we do not # traverse into an incompatible API's subtree (use DFS instead of BFS to # match `.modules()` order) deque: collections.deque[nn.Module] = collections.deque([module]) while deque: submodule = deque.popleft() visited_modules.add(submodule) if not _composable(submodule): continue for child_module in reversed(list(submodule.children())): if child_module not in visited_modules: deque.appendleft(child_module) optional_state = _get_module_fsdp_state(submodule) if optional_state is not None and optional_state not in visited_fsdp_states: visited_fsdp_states.add(optional_state) fsdp_states.append(optional_state) fsdp_modules.append(submodule) return fsdp_states, fsdp_modules def _get_fsdp_states(module: nn.Module) -> list[_FSDPState]: """See :func:`_get_fsdp_states_with_modules`.""" fsdp_states, _ = _get_fsdp_states_with_modules(module) return fsdp_states def _get_fsdp_handles(module: nn.Module) -> list: """ Returns all ``FlatParamHandle`` s in the module tree rooted at ``module`` following the rules in :func:`_get_fsdp_state`. """ handles = [ fsdp_state._handle for fsdp_state in _get_fsdp_states(module) if fsdp_state._handle is not None ] return handles
from typing import Dict, Iterable import torch.nn.functional as F from torch import Tensor, nn from sentence_transformers.SentenceTransformer import SentenceTransformer from .ContrastiveLoss import SiameseDistanceMetric class OnlineContrastiveLoss(nn.Module): def __init__( self, model: SentenceTransformer, distance_metric=SiameseDistanceMetric.COSINE_DISTANCE, margin: float = 0.5 ): """ This Online Contrastive loss is similar to :class:`ConstrativeLoss`, but it selects hard positive (positives that are far apart) and hard negative pairs (negatives that are close) and computes the loss only for these pairs. This loss often yields better performances than ContrastiveLoss. Args: model: SentenceTransformer model distance_metric: Function that returns a distance between two embeddings. The class SiameseDistanceMetric contains pre-defined metrics that can be used margin: Negative samples (label == 0) should have a distance of at least the margin value. References: - `Training Examples > Quora Duplicate Questions <../../examples/training/quora_duplicate_questions/README.html>`_ Requirements: 1. (anchor, positive/negative) pairs 2. Data should include hard positives and hard negatives Relations: - :class:`ContrastiveLoss` is similar, but does not use hard positive and hard negative pairs. :class:`OnlineContrastiveLoss` often yields better results. Inputs: +-----------------------------------------------+------------------------------+ | Texts | Labels | +===============================================+==============================+ | (anchor, positive/negative) pairs | 1 if positive, 0 if negative | +-----------------------------------------------+------------------------------+ Example: :: from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer, losses from datasets import Dataset model = SentenceTransformer("microsoft/mpnet-base") train_dataset = Dataset.from_dict({ "sentence1": ["It's nice weather outside today.", "He drove to work."], "sentence2": ["It's so sunny.", "She walked to the store."], "label": [1, 0], }) loss = losses.OnlineContrastiveLoss(model) trainer = SentenceTransformerTrainer( model=model, train_dataset=train_dataset, loss=loss, ) trainer.train() """ super(OnlineContrastiveLoss, self).__init__() self.model = model self.margin = margin self.distance_metric = distance_metric def forward(self, sentence_features: Iterable[Dict[str, Tensor]], labels: Tensor, size_average=False): embeddings = [self.model(sentence_feature)["sentence_embedding"] for sentence_feature in sentence_features] distance_matrix = self.distance_metric(embeddings[0], embeddings[1]) negs = distance_matrix[labels == 0] poss = distance_matrix[labels == 1] # select hard positive and hard negative pairs negative_pairs = negs[negs < (poss.max() if len(poss) > 1 else negs.mean())] positive_pairs = poss[poss > (negs.min() if len(negs) > 1 else poss.mean())] positive_loss = positive_pairs.pow(2).sum() negative_loss = F.relu(self.margin - negative_pairs).pow(2).sum() loss = positive_loss + negative_loss return loss
from typing import Iterable, Dict import torch.nn.functional as F from torch import nn, Tensor from .ContrastiveLoss import SiameseDistanceMetric from sentence_transformers.SentenceTransformer import SentenceTransformer class OnlineContrastiveLoss(nn.Module): def __init__( self, model: SentenceTransformer, distance_metric=SiameseDistanceMetric.COSINE_DISTANCE, margin: float = 0.5 ): """ This Online Contrastive loss is similar to :class:`ConstrativeLoss`, but it selects hard positive (positives that are far apart) and hard negative pairs (negatives that are close) and computes the loss only for these pairs. This loss often yields better performances than ContrastiveLoss. :param model: SentenceTransformer model :param distance_metric: Function that returns a distance between two embeddings. The class SiameseDistanceMetric contains pre-defined metrics that can be used :param margin: Negative samples (label == 0) should have a distance of at least the margin value. References: - `Training Examples > Quora Duplicate Questions <../../examples/training/quora_duplicate_questions/README.html>`_ Requirements: 1. (anchor, positive/negative) pairs 2. Data should include hard positives and hard negatives Relations: - :class:`ContrastiveLoss` is similar, but does not use hard positive and hard negative pairs. :class:`OnlineContrastiveLoss` often yields better results. Inputs: +-----------------------------------------------+------------------------------+ | Texts | Labels | +===============================================+==============================+ | (anchor, positive/negative) pairs | 1 if positive, 0 if negative | +-----------------------------------------------+------------------------------+ Example: :: from sentence_transformers import SentenceTransformer, losses, InputExample from torch.utils.data import DataLoader model = SentenceTransformer('all-MiniLM-L6-v2') train_examples = [ InputExample(texts=['This is a positive pair', 'Where the distance will be minimized'], label=1), InputExample(texts=['This is a negative pair', 'Their distance will be increased'], label=0), ] train_dataloader = DataLoader(train_examples, shuffle=True, batch_size=2) train_loss = losses.OnlineContrastiveLoss(model=model) model.fit( [(train_dataloader, train_loss)], epochs=10, ) """ super(OnlineContrastiveLoss, self).__init__() self.model = model self.margin = margin self.distance_metric = distance_metric def forward(self, sentence_features: Iterable[Dict[str, Tensor]], labels: Tensor, size_average=False): embeddings = [self.model(sentence_feature)["sentence_embedding"] for sentence_feature in sentence_features] distance_matrix = self.distance_metric(embeddings[0], embeddings[1]) negs = distance_matrix[labels == 0] poss = distance_matrix[labels == 1] # select hard positive and hard negative pairs negative_pairs = negs[negs < (poss.max() if len(poss) > 1 else negs.mean())] positive_pairs = poss[poss > (negs.min() if len(negs) > 1 else poss.mean())] positive_loss = positive_pairs.pow(2).sum() negative_loss = F.relu(self.margin - negative_pairs).pow(2).sum() loss = positive_loss + negative_loss return loss
# Copyright (c) OpenMMLab. All rights reserved. import warnings from abc import ABCMeta, abstractmethod from typing import Any, List, Optional, Sequence, Union from mmengine.dist import (broadcast_object_list, collect_results, is_main_process) class BaseMetric(metaclass=ABCMeta): """Base class for a metric. The metric first processes each batch of data_samples and predictions, and appends the processed results to the results list. Then it collects all results together from all ranks if distributed training is used. Finally, it computes the metrics of the entire dataset. A subclass of class:`BaseMetric` should assign a meaningful value to the class attribute `default_prefix`. See the argument `prefix` for details. Args: collect_device (str): Device name used for collecting results from different ranks during distributed training. Must be 'cpu' or 'gpu'. Defaults to 'cpu'. prefix (str, optional): The prefix that will be added in the metric names to disambiguate homonymous metrics of different evaluators. If prefix is not provided in the argument, self.default_prefix will be used instead. Default: None """ default_prefix: Optional[str] = None def __init__(self, collect_device: str = 'cpu', prefix: Optional[str] = None) -> None: self._dataset_meta: Union[None, dict] = None self.collect_device = collect_device self.results: List[Any] = [] self.prefix = prefix or self.default_prefix if self.prefix is None: warnings.warn('The prefix is not set in metric class ' f'{self.__class__.__name__}.') @property def dataset_meta(self) -> Optional[dict]: return self._dataset_meta @dataset_meta.setter def dataset_meta(self, dataset_meta: dict) -> None: self._dataset_meta = dataset_meta @abstractmethod def process(self, data_batch: Sequence[dict], predictions: Sequence[dict]) -> None: """Process one batch of data samples and predictions. The processed results should be stored in ``self.results``, which will be used to compute the metrics when all batches have been processed. Args: data_batch (Sequence[dict]): A batch of data from the dataloader. predictions (Sequence[dict]): A batch of outputs from the model. """ @abstractmethod def compute_metrics(self, results: list) -> dict: """Compute the metrics from processed results. Args: results (list): The processed results of each batch. Returns: dict: The computed metrics. The keys are the names of the metrics, and the values are corresponding results. """ def evaluate(self, size: int) -> dict: """Evaluate the model performance of the whole dataset after processing all batches. Args: size (int): Length of the entire validation dataset. When batch size > 1, the dataloader may pad some data samples to make sure all ranks have the same length of dataset slice. The ``collect_results`` function will drop the padded data based on this size. Returns: dict: Evaluation metrics dict on the val dataset. The keys are the names of the metrics, and the values are corresponding results. """ if len(self.results) == 0: warnings.warn( f'{self.__class__.__name__} got empty `self.results`. Please ' 'ensure that the processed results are properly added into ' '`self.results` in `process` method.') results = collect_results(self.results, size, self.collect_device) if is_main_process(): _metrics = self.compute_metrics(results) # type: ignore # Add prefix to metric names if self.prefix: _metrics = { '/'.join((self.prefix, k)): v for k, v in _metrics.items() } metrics = [_metrics] else: metrics = [None] # type: ignore broadcast_object_list(metrics) # reset the results list self.results.clear() return metrics[0]
# Copyright (c) OpenMMLab. All rights reserved. import warnings from abc import ABCMeta, abstractmethod from typing import Any, List, Optional, Sequence, Tuple, Union from mmengine.dist import (broadcast_object_list, collect_results, is_main_process) class BaseMetric(metaclass=ABCMeta): """Base class for a metric. The metric first processes each batch of data_samples and predictions, and appends the processed results to the results list. Then it collects all results together from all ranks if distributed training is used. Finally, it computes the metrics of the entire dataset. A subclass of class:`BaseMetric` should assign a meaningful value to the class attribute `default_prefix`. See the argument `prefix` for details. Args: collect_device (str): Device name used for collecting results from different ranks during distributed training. Must be 'cpu' or 'gpu'. Defaults to 'cpu'. prefix (str, optional): The prefix that will be added in the metric names to disambiguate homonymous metrics of different evaluators. If prefix is not provided in the argument, self.default_prefix will be used instead. Default: None """ default_prefix: Optional[str] = None def __init__(self, collect_device: str = 'cpu', prefix: Optional[str] = None) -> None: self._dataset_meta: Union[None, dict] = None self.collect_device = collect_device self.results: List[Any] = [] self.prefix = prefix or self.default_prefix if self.prefix is None: warnings.warn('The prefix is not set in metric class ' f'{self.__class__.__name__}.') @property def dataset_meta(self) -> Optional[dict]: return self._dataset_meta @dataset_meta.setter def dataset_meta(self, dataset_meta: dict) -> None: self._dataset_meta = dataset_meta @abstractmethod def process(self, data_batch: Sequence[Tuple[Any, dict]], predictions: Sequence[dict]) -> None: """Process one batch of data samples and predictions. The processed results should be stored in ``self.results``, which will be used to compute the metrics when all batches have been processed. Args: data_batch (Sequence[Tuple[Any, dict]]): A batch of data from the dataloader. predictions (Sequence[dict]): A batch of outputs from the model. """ @abstractmethod def compute_metrics(self, results: list) -> dict: """Compute the metrics from processed results. Args: results (list): The processed results of each batch. Returns: dict: The computed metrics. The keys are the names of the metrics, and the values are corresponding results. """ def evaluate(self, size: int) -> dict: """Evaluate the model performance of the whole dataset after processing all batches. Args: size (int): Length of the entire validation dataset. When batch size > 1, the dataloader may pad some data samples to make sure all ranks have the same length of dataset slice. The ``collect_results`` function will drop the padded data based on this size. Returns: dict: Evaluation metrics dict on the val dataset. The keys are the names of the metrics, and the values are corresponding results. """ if len(self.results) == 0: warnings.warn( f'{self.__class__.__name__} got empty `self.results`. Please ' 'ensure that the processed results are properly added into ' '`self.results` in `process` method.') results = collect_results(self.results, size, self.collect_device) if is_main_process(): _metrics = self.compute_metrics(results) # type: ignore # Add prefix to metric names if self.prefix: _metrics = { '/'.join((self.prefix, k)): v for k, v in _metrics.items() } metrics = [_metrics] else: metrics = [None] # type: ignore broadcast_object_list(metrics) # reset the results list self.results.clear() return metrics[0]
import sys from dataclasses import dataclass from typing import TYPE_CHECKING, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast if TYPE_CHECKING: import sqlite3 import sqlalchemy logger = datasets.utils.logging.get_logger(__name__) @dataclass class SqlConfig(datasets.BuilderConfig): """BuilderConfig for SQL.""" sql: Union[str, "sqlalchemy.sql.Selectable"] = None con: Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] = None index_col: Optional[Union[str, list[str]]] = None coerce_float: bool = True params: Optional[Union[list, tuple, dict]] = None parse_dates: Optional[Union[list, dict]] = None columns: Optional[list[str]] = None chunksize: Optional[int] = 10_000 features: Optional[datasets.Features] = None def __post_init__(self): super().__post_init__() if self.sql is None: raise ValueError("sql must be specified") if self.con is None: raise ValueError("con must be specified") def create_config_id( self, config_kwargs: dict, custom_features: Optional[datasets.Features] = None, ) -> str: config_kwargs = config_kwargs.copy() # We need to stringify the Selectable object to make its hash deterministic # The process of stringifying is explained here: http://docs.sqlalchemy.org/en/latest/faq/sqlexpressions.html sql = config_kwargs["sql"] if not isinstance(sql, str): if datasets.config.SQLALCHEMY_AVAILABLE and "sqlalchemy" in sys.modules: import sqlalchemy if isinstance(sql, sqlalchemy.sql.Selectable): engine = sqlalchemy.create_engine(config_kwargs["con"].split("://")[0] + "://") sql_str = str(sql.compile(dialect=engine.dialect)) config_kwargs["sql"] = sql_str else: raise TypeError( f"Supported types for 'sql' are string and sqlalchemy.sql.Selectable but got {type(sql)}: {sql}" ) else: raise TypeError( f"Supported types for 'sql' are string and sqlalchemy.sql.Selectable but got {type(sql)}: {sql}" ) con = config_kwargs["con"] if not isinstance(con, str): config_kwargs["con"] = id(con) logger.info( f"SQL connection 'con' of type {type(con)} couldn't be hashed properly. To enable hashing, specify 'con' as URI string instead." ) return super().create_config_id(config_kwargs, custom_features=custom_features) @property def pd_read_sql_kwargs(self): pd_read_sql_kwargs = { "index_col": self.index_col, "columns": self.columns, "params": self.params, "coerce_float": self.coerce_float, "parse_dates": self.parse_dates, } return pd_read_sql_kwargs class Sql(datasets.ArrowBasedBuilder): BUILDER_CONFIG_CLASS = SqlConfig def _info(self): return datasets.DatasetInfo(features=self.config.features) def _split_generators(self, dl_manager): return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={})] def _cast_table(self, pa_table: pa.Table) -> pa.Table: if self.config.features is not None: schema = self.config.features.arrow_schema if all(not require_storage_cast(feature) for feature in self.config.features.values()): # cheaper cast pa_table = pa.Table.from_arrays([pa_table[field.name] for field in schema], schema=schema) else: # more expensive cast; allows str <-> int/float or str to Audio for example pa_table = table_cast(pa_table, schema) return pa_table def _generate_tables(self): chunksize = self.config.chunksize sql_reader = pd.read_sql( self.config.sql, self.config.con, chunksize=chunksize, **self.config.pd_read_sql_kwargs ) sql_reader = [sql_reader] if chunksize is None else sql_reader for chunk_idx, df in enumerate(sql_reader): pa_table = pa.Table.from_pandas(df) yield chunk_idx, self._cast_table(pa_table)
import sys from dataclasses import dataclass from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast if TYPE_CHECKING: import sqlite3 import sqlalchemy logger = datasets.utils.logging.get_logger(__name__) @dataclass class SqlConfig(datasets.BuilderConfig): """BuilderConfig for SQL.""" sql: Union[str, "sqlalchemy.sql.Selectable"] = None con: Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] = None index_col: Optional[Union[str, List[str]]] = None coerce_float: bool = True params: Optional[Union[List, Tuple, Dict]] = None parse_dates: Optional[Union[List, Dict]] = None columns: Optional[List[str]] = None chunksize: Optional[int] = 10_000 features: Optional[datasets.Features] = None def __post_init__(self): super().__post_init__() if self.sql is None: raise ValueError("sql must be specified") if self.con is None: raise ValueError("con must be specified") def create_config_id( self, config_kwargs: dict, custom_features: Optional[datasets.Features] = None, ) -> str: config_kwargs = config_kwargs.copy() # We need to stringify the Selectable object to make its hash deterministic # The process of stringifying is explained here: http://docs.sqlalchemy.org/en/latest/faq/sqlexpressions.html sql = config_kwargs["sql"] if not isinstance(sql, str): if datasets.config.SQLALCHEMY_AVAILABLE and "sqlalchemy" in sys.modules: import sqlalchemy if isinstance(sql, sqlalchemy.sql.Selectable): engine = sqlalchemy.create_engine(config_kwargs["con"].split("://")[0] + "://") sql_str = str(sql.compile(dialect=engine.dialect)) config_kwargs["sql"] = sql_str else: raise TypeError( f"Supported types for 'sql' are string and sqlalchemy.sql.Selectable but got {type(sql)}: {sql}" ) else: raise TypeError( f"Supported types for 'sql' are string and sqlalchemy.sql.Selectable but got {type(sql)}: {sql}" ) con = config_kwargs["con"] if not isinstance(con, str): config_kwargs["con"] = id(con) logger.info( f"SQL connection 'con' of type {type(con)} couldn't be hashed properly. To enable hashing, specify 'con' as URI string instead." ) return super().create_config_id(config_kwargs, custom_features=custom_features) @property def pd_read_sql_kwargs(self): pd_read_sql_kwargs = { "index_col": self.index_col, "columns": self.columns, "params": self.params, "coerce_float": self.coerce_float, "parse_dates": self.parse_dates, } return pd_read_sql_kwargs class Sql(datasets.ArrowBasedBuilder): BUILDER_CONFIG_CLASS = SqlConfig def _info(self): return datasets.DatasetInfo(features=self.config.features) def _split_generators(self, dl_manager): return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={})] def _cast_table(self, pa_table: pa.Table) -> pa.Table: if self.config.features is not None: schema = self.config.features.arrow_schema if all(not require_storage_cast(feature) for feature in self.config.features.values()): # cheaper cast pa_table = pa.Table.from_arrays([pa_table[field.name] for field in schema], schema=schema) else: # more expensive cast; allows str <-> int/float or str to Audio for example pa_table = table_cast(pa_table, schema) return pa_table def _generate_tables(self): chunksize = self.config.chunksize sql_reader = pd.read_sql( self.config.sql, self.config.con, chunksize=chunksize, **self.config.pd_read_sql_kwargs ) sql_reader = [sql_reader] if chunksize is None else sql_reader for chunk_idx, df in enumerate(sql_reader): pa_table = pa.Table.from_pandas(df) yield chunk_idx, self._cast_table(pa_table)
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.tools import ( BaseSQLDatabaseTool, InfoSQLDatabaseTool, ListSQLDatabaseTool, QuerySQLCheckerTool, QuerySQLDataBaseTool, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "BaseSQLDatabaseTool": "langchain_community.tools", "QuerySQLDataBaseTool": "langchain_community.tools", "InfoSQLDatabaseTool": "langchain_community.tools", "ListSQLDatabaseTool": "langchain_community.tools", "QuerySQLCheckerTool": "langchain_community.tools", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "BaseSQLDatabaseTool", "InfoSQLDatabaseTool", "ListSQLDatabaseTool", "QuerySQLCheckerTool", "QuerySQLDataBaseTool", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.tools import ( BaseSQLDatabaseTool, InfoSQLDatabaseTool, ListSQLDatabaseTool, QuerySQLCheckerTool, QuerySQLDataBaseTool, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "BaseSQLDatabaseTool": "langchain_community.tools", "QuerySQLDataBaseTool": "langchain_community.tools", "InfoSQLDatabaseTool": "langchain_community.tools", "ListSQLDatabaseTool": "langchain_community.tools", "QuerySQLCheckerTool": "langchain_community.tools", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "BaseSQLDatabaseTool", "QuerySQLDataBaseTool", "InfoSQLDatabaseTool", "ListSQLDatabaseTool", "QuerySQLCheckerTool", ]
import os from typing import Dict DEPLOYMENT_FILES = [ 'deployment-executor', 'deployment-gateway', 'deployment-uses-before', 'deployment-uses-after', 'deployment-uses-before-after', ] cur_dir = os.path.dirname(__file__) DEFAULT_RESOURCE_DIR = os.path.join( cur_dir, '..', '..', '..', '..', 'resources', 'k8s', 'template' ) def get_yaml(template: str, params: Dict) -> Dict: """Create a resource on Kubernetes based on the `template`. It fills the `template` using the `params`. :param template: path to the template file. :param params: dictionary for replacing the placeholders (keys) with the actual values. :return: The yaml dictionary with the corresponding template filled with parameters """ if template == 'configmap': yaml = _get_configmap_yaml(template, params) elif template in DEPLOYMENT_FILES and params.get('device_plugins'): yaml = _get_yaml(template, params) yaml = _get_deployment_with_device_plugins(yaml, params) else: yaml = _get_yaml(template, params) return yaml def _get_yaml(template: str, params: Dict) -> Dict: import yaml path = os.path.join(DEFAULT_RESOURCE_DIR, f'{template}.yml') with open(path) as f: content = f.read() for k, v in params.items(): content = content.replace(f'{{{k}}}', str(v)) d = yaml.safe_load(content) return d def _get_configmap_yaml(template: str, params: Dict): import yaml path = os.path.join(DEFAULT_RESOURCE_DIR, f'{template}.yml') with open(path) as f: config_map = yaml.safe_load(f) config_map['metadata']['name'] = params.get('name') + '-' + 'configmap' config_map['metadata']['namespace'] = params.get('namespace') if params.get('data'): for key, value in params['data'].items(): config_map['data'][key] = value return config_map def _get_device_plugins(params: Dict): data = {'limits': {}} for key, value in params.items(): data['limits'][key] = value return data def _get_deployment_with_device_plugins(deployment: Dict, params: Dict) -> Dict: device_plugins = _get_device_plugins(params['device_plugins']) deployment['spec']['template']['spec']['containers'][0][ 'resources' ] = device_plugins return deployment
import os from typing import Dict DEPLOYMENT_FILES = [ 'deployment', 'deployment-uses-before', 'deployment-uses-after', 'deployment-uses-before-after', ] cur_dir = os.path.dirname(__file__) DEFAULT_RESOURCE_DIR = os.path.join( cur_dir, '..', '..', '..', '..', 'resources', 'k8s', 'template' ) def get_yaml(template: str, params: Dict) -> Dict: """Create a resource on Kubernetes based on the `template`. It fills the `template` using the `params`. :param template: path to the template file. :param params: dictionary for replacing the placeholders (keys) with the actual values. :return: The yaml dictionary with the corresponding template filled with parameters """ if template == 'configmap': yaml = _get_configmap_yaml(template, params) elif template in DEPLOYMENT_FILES and params.get('device_plugins'): yaml = _get_yaml(template, params) yaml = _get_deployment_with_device_plugins(yaml, params) else: yaml = _get_yaml(template, params) return yaml def _get_yaml(template: str, params: Dict) -> Dict: import yaml path = os.path.join(DEFAULT_RESOURCE_DIR, f'{template}.yml') with open(path) as f: content = f.read() for k, v in params.items(): content = content.replace(f'{{{k}}}', str(v)) d = yaml.safe_load(content) return d def _get_configmap_yaml(template: str, params: Dict): import yaml path = os.path.join(DEFAULT_RESOURCE_DIR, f'{template}.yml') with open(path) as f: config_map = yaml.safe_load(f) config_map['metadata']['name'] = params.get('name') + '-' + 'configmap' config_map['metadata']['namespace'] = params.get('namespace') if params.get('data'): for key, value in params['data'].items(): config_map['data'][key] = value return config_map def _get_device_plugins(params: Dict): data = {'limits': {}} for key, value in params.items(): data['limits'][key] = value return data def _get_deployment_with_device_plugins(deployment: Dict, params: Dict) -> Dict: device_plugins = _get_device_plugins(params['device_plugins']) deployment['spec']['template']['spec']['containers'][0][ 'resources' ] = device_plugins return deployment
from __future__ import annotations from pathlib import Path from unittest.mock import Mock, PropertyMock import pytest import torch from sentence_transformers import SentenceTransformer from sentence_transformers.evaluation import InformationRetrievalEvaluator from sentence_transformers.util import cos_sim @pytest.fixture def mock_model(): def mock_encode(sentences: str | list[str], **kwargs) -> torch.Tensor: """ We simply one-hot encode the sentences; if a sentence contains a keyword, the corresponding one-hot encoding is added to the sentence embedding. """ one_hot_encodings = { "pokemon": torch.tensor([1.0, 0.0, 0.0, 0.0, 0.0]), "car": torch.tensor([0.0, 1.0, 0.0, 0.0, 0.0]), "vehicle": torch.tensor([0.0, 0.0, 1.0, 0.0, 0.0]), "fruit": torch.tensor([0.0, 0.0, 0.0, 1.0, 0.0]), "vegetable": torch.tensor([0.0, 0.0, 0.0, 0.0, 1.0]), } if isinstance(sentences, str): sentences = [sentences] embeddings = [] for sentence in sentences: encoding = torch.zeros(5) for keyword, one_hot in one_hot_encodings.items(): if keyword in sentence: encoding += one_hot embeddings.append(encoding) return torch.stack(embeddings) model = Mock(spec=SentenceTransformer) model.similarity_fn_name = "cosine" model.similarity.side_effect = cos_sim model.encode.side_effect = mock_encode model.encode_query.side_effect = mock_encode model.encode_document.side_effect = mock_encode model.model_card_data = PropertyMock(return_value=Mock()) return model @pytest.fixture def test_data(): queries = { "0": "What is a pokemon?", "1": "What is a vegetable?", "2": "What is a fruit?", "3": "What is a vehicle?", "4": "What is a car?", } corpus = { "0": "A pokemon is a fictional creature", "1": "A vegetable is a plant", "2": "A fruit is a plant", "3": "A vehicle is a machine", "4": "A car is a vehicle", } relevant_docs = {"0": {"0"}, "1": {"1"}, "2": {"2"}, "3": {"3", "4"}, "4": {"4"}} return queries, corpus, relevant_docs def test_simple(test_data, tmp_path: Path): queries, corpus, relevant_docs = test_data model = SentenceTransformer("sentence-transformers-testing/stsb-bert-tiny-safetensors") ir_evaluator = InformationRetrievalEvaluator( queries=queries, corpus=corpus, relevant_docs=relevant_docs, name="test", accuracy_at_k=[1, 3], precision_recall_at_k=[1, 3], mrr_at_k=[3], ndcg_at_k=[3], map_at_k=[5], ) results = ir_evaluator(model, output_path=str(tmp_path)) expected_keys = [ "test_cosine_accuracy@1", "test_cosine_accuracy@3", "test_cosine_precision@1", "test_cosine_precision@3", "test_cosine_recall@1", "test_cosine_recall@3", "test_cosine_ndcg@3", "test_cosine_mrr@3", "test_cosine_map@5", ] assert set(results.keys()) == set(expected_keys) def test_metrices(test_data, mock_model, tmp_path: Path): queries, corpus, relevant_docs = test_data ir_evaluator = InformationRetrievalEvaluator( queries=queries, corpus=corpus, relevant_docs=relevant_docs, name="test", accuracy_at_k=[1, 3], precision_recall_at_k=[1, 3], mrr_at_k=[3], ndcg_at_k=[3], map_at_k=[5], ) results = ir_evaluator(mock_model, output_path=str(tmp_path)) # We expect test_cosine_precision@3 to be 0.4, since 6 out of 15 (5 queries * 3) are True Positives # We expect test_cosine_recall@1 to be 0.9; the average of 4 times a recall of 1 and once a recall of 0.5 expected_results = { "test_cosine_accuracy@1": 1.0, "test_cosine_accuracy@3": 1.0, "test_cosine_precision@1": 1.0, "test_cosine_precision@3": 0.4, "test_cosine_recall@1": 0.9, "test_cosine_recall@3": 1.0, "test_cosine_ndcg@3": 1.0, "test_cosine_mrr@3": 1.0, "test_cosine_map@5": 1.0, } for key, expected_value in expected_results.items(): assert results[key] == pytest.approx(expected_value, abs=1e-9)
from __future__ import annotations from pathlib import Path from unittest.mock import Mock, PropertyMock import pytest import torch from sentence_transformers import SentenceTransformer from sentence_transformers.evaluation import InformationRetrievalEvaluator from sentence_transformers.util import cos_sim @pytest.fixture def mock_model(): def mock_encode(sentences: str | list[str], **kwargs) -> torch.Tensor: """ We simply one-hot encode the sentences; if a sentence contains a keyword, the corresponding one-hot encoding is added to the sentence embedding. """ one_hot_encodings = { "pokemon": torch.tensor([1.0, 0.0, 0.0, 0.0, 0.0]), "car": torch.tensor([0.0, 1.0, 0.0, 0.0, 0.0]), "vehicle": torch.tensor([0.0, 0.0, 1.0, 0.0, 0.0]), "fruit": torch.tensor([0.0, 0.0, 0.0, 1.0, 0.0]), "vegetable": torch.tensor([0.0, 0.0, 0.0, 0.0, 1.0]), } if isinstance(sentences, str): sentences = [sentences] embeddings = [] for sentence in sentences: encoding = torch.zeros(5) for keyword, one_hot in one_hot_encodings.items(): if keyword in sentence: encoding += one_hot embeddings.append(encoding) return torch.stack(embeddings) model = Mock(spec=SentenceTransformer) model.similarity_fn_name = "cosine" model.similarity.side_effect = cos_sim model.encode.side_effect = mock_encode model.model_card_data = PropertyMock(return_value=Mock()) return model @pytest.fixture def test_data(): queries = { "0": "What is a pokemon?", "1": "What is a vegetable?", "2": "What is a fruit?", "3": "What is a vehicle?", "4": "What is a car?", } corpus = { "0": "A pokemon is a fictional creature", "1": "A vegetable is a plant", "2": "A fruit is a plant", "3": "A vehicle is a machine", "4": "A car is a vehicle", } relevant_docs = {"0": {"0"}, "1": {"1"}, "2": {"2"}, "3": {"3", "4"}, "4": {"4"}} return queries, corpus, relevant_docs def test_simple(test_data, tmp_path: Path): queries, corpus, relevant_docs = test_data model = SentenceTransformer("sentence-transformers-testing/stsb-bert-tiny-safetensors") ir_evaluator = InformationRetrievalEvaluator( queries=queries, corpus=corpus, relevant_docs=relevant_docs, name="test", accuracy_at_k=[1, 3], precision_recall_at_k=[1, 3], mrr_at_k=[3], ndcg_at_k=[3], map_at_k=[5], ) results = ir_evaluator(model, output_path=str(tmp_path)) expected_keys = [ "test_cosine_accuracy@1", "test_cosine_accuracy@3", "test_cosine_precision@1", "test_cosine_precision@3", "test_cosine_recall@1", "test_cosine_recall@3", "test_cosine_ndcg@3", "test_cosine_mrr@3", "test_cosine_map@5", ] assert set(results.keys()) == set(expected_keys) def test_metrices(test_data, mock_model, tmp_path: Path): queries, corpus, relevant_docs = test_data ir_evaluator = InformationRetrievalEvaluator( queries=queries, corpus=corpus, relevant_docs=relevant_docs, name="test", accuracy_at_k=[1, 3], precision_recall_at_k=[1, 3], mrr_at_k=[3], ndcg_at_k=[3], map_at_k=[5], ) results = ir_evaluator(mock_model, output_path=str(tmp_path)) # We expect test_cosine_precision@3 to be 0.4, since 6 out of 15 (5 queries * 3) are True Positives # We expect test_cosine_recall@1 to be 0.9; the average of 4 times a recall of 1 and once a recall of 0.5 expected_results = { "test_cosine_accuracy@1": 1.0, "test_cosine_accuracy@3": 1.0, "test_cosine_precision@1": 1.0, "test_cosine_precision@3": 0.4, "test_cosine_recall@1": 0.9, "test_cosine_recall@3": 1.0, "test_cosine_ndcg@3": 1.0, "test_cosine_mrr@3": 1.0, "test_cosine_map@5": 1.0, } for key, expected_value in expected_results.items(): assert results[key] == pytest.approx(expected_value, abs=1e-9)
from functools import partial from huggingface_hub import hf_hub_url hf_dataset_url = partial(hf_hub_url, repo_type="dataset")
import time from functools import partial from huggingface_hub import HfApi, hf_hub_url from huggingface_hub.hf_api import RepoFile from packaging import version from requests import ConnectionError, HTTPError from .. import config from . import logging logger = logging.get_logger(__name__) # Retry `preupload_lfs_files` in `huggingface_hub<0.20.0` on the "500 (Internal Server Error)" and "503 (Service Unavailable)" HTTP errors if config.HF_HUB_VERSION.release < version.parse("0.20.0").release: def preupload_lfs_files(hf_api: HfApi, **kwargs): max_retries = 5 base_wait_time = 1 max_wait_time = 8 retry = 0 while True: try: hf_api.preupload_lfs_files(**kwargs) except (RuntimeError, HTTPError, ConnectionError) as err: if isinstance(err, RuntimeError): if isinstance(err.__cause__, (HTTPError, ConnectionError)): err = err.__cause__ else: raise err if retry >= max_retries or err.response and err.response.status_code not in [500, 503]: raise err else: sleep_time = min(max_wait_time, base_wait_time * 2**retry) # Exponential backoff logger.info( f"{hf_api.preupload_lfs_files} timed out, retrying in {sleep_time}s... [{retry/max_retries}]" ) time.sleep(sleep_time) retry += 1 else: break else: def preupload_lfs_files(hf_api: HfApi, **kwargs): hf_api.preupload_lfs_files(**kwargs) # `list_files_info` is deprecated in favor of `list_repo_tree` in `huggingface_hub>=0.20.0` if config.HF_HUB_VERSION.release < version.parse("0.20.0").release: def list_files_info(hf_api: HfApi, **kwargs): yield from hf_api.list_files_info(**kwargs) else: def list_files_info(hf_api: HfApi, **kwargs): kwargs = {**kwargs, "recursive": True} for repo_path in hf_api.list_repo_tree(**kwargs): if isinstance(repo_path, RepoFile): yield repo_path # bakckward compatibility hf_hub_url = partial(hf_hub_url, repo_type="dataset")
import warnings from typing import Any, Dict, Union import numpy as np import PIL.Image import torch from torchvision.transforms import functional as _F from torchvision.transforms.v2 import Transform class ToTensor(Transform): """[BETA] Convert a PIL Image or ndarray to tensor and scale the values accordingly. .. v2betastatus:: ToTensor transform .. warning:: :class:`v2.ToTensor` is deprecated and will be removed in a future release. Please use instead ``transforms.Compose([transforms.ToImageTensor(), transforms.ConvertImageDtype()])``. This transform does not support torchscript. Converts a PIL Image or numpy.ndarray (H x W x C) in the range [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0] if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1) or if the numpy.ndarray has dtype = np.uint8 In the other cases, tensors are returned without scaling. .. note:: Because the input image is scaled to [0.0, 1.0], this transformation should not be used when transforming target image masks. See the `references`_ for implementing the transforms for image masks. .. _references: https://github.com/pytorch/vision/tree/main/references/segmentation """ _transformed_types = (PIL.Image.Image, np.ndarray) def __init__(self) -> None: warnings.warn( "The transform `ToTensor()` is deprecated and will be removed in a future release. " "Instead, please use `transforms.Compose([transforms.ToImageTensor(), transforms.ConvertImageDtype()])`." ) super().__init__() def _transform(self, inpt: Union[PIL.Image.Image, np.ndarray], params: Dict[str, Any]) -> torch.Tensor: return _F.to_tensor(inpt)
import warnings from typing import Any, Dict, Union import numpy as np import PIL.Image import torch from torchvision.transforms import functional as _F from torchvision.transforms.v2 import Transform class ToTensor(Transform): """[BETA] Convert a PIL Image or ndarray to tensor and scale the values accordingly. .. betastatus:: ToTensor transform .. warning:: :class:`v2.ToTensor` is deprecated and will be removed in a future release. Please use instead ``transforms.Compose([transforms.ToImageTensor(), transforms.ConvertImageDtype()])``. This transform does not support torchscript. Converts a PIL Image or numpy.ndarray (H x W x C) in the range [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0] if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1) or if the numpy.ndarray has dtype = np.uint8 In the other cases, tensors are returned without scaling. .. note:: Because the input image is scaled to [0.0, 1.0], this transformation should not be used when transforming target image masks. See the `references`_ for implementing the transforms for image masks. .. _references: https://github.com/pytorch/vision/tree/main/references/segmentation """ _transformed_types = (PIL.Image.Image, np.ndarray) def __init__(self) -> None: warnings.warn( "The transform `ToTensor()` is deprecated and will be removed in a future release. " "Instead, please use `transforms.Compose([transforms.ToImageTensor(), transforms.ConvertImageDtype()])`." ) super().__init__() def _transform(self, inpt: Union[PIL.Image.Image, np.ndarray], params: Dict[str, Any]) -> torch.Tensor: return _F.to_tensor(inpt)
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import os import subprocess from pathlib import Path import pytest TEST_DIR = os.path.dirname(os.path.abspath(__file__)) @pytest.fixture(scope='session') def docker_image_name() -> str: return Path(__file__).parents[1].stem.lower() @pytest.fixture(scope='session') def build_docker_image(docker_image_name: str) -> str: subprocess.run(['docker', 'build', '-t', docker_image_name, '.'], check=True) return docker_image_name
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import subprocess from pathlib import Path import pytest @pytest.fixture(scope='session') def docker_image_name() -> str: return Path(__file__).parents[1].stem.lower() @pytest.fixture(scope='session') def build_docker_image(docker_image_name: str) -> str: subprocess.run(['docker', 'build', '-t', docker_image_name, '.'], check=True) return docker_image_name
import torch from torchvision import tv_tensors from torchvision.utils import _log_api_usage_once from ._utils import _get_kernel, _register_kernel_internal def uniform_temporal_subsample(inpt: torch.Tensor, num_samples: int) -> torch.Tensor: """See :class:`~torchvision.transforms.v2.UniformTemporalSubsample` for details.""" if torch.jit.is_scripting(): return uniform_temporal_subsample_video(inpt, num_samples=num_samples) _log_api_usage_once(uniform_temporal_subsample) kernel = _get_kernel(uniform_temporal_subsample, type(inpt)) return kernel(inpt, num_samples=num_samples) @_register_kernel_internal(uniform_temporal_subsample, torch.Tensor) @_register_kernel_internal(uniform_temporal_subsample, tv_tensors.Video) def uniform_temporal_subsample_video(video: torch.Tensor, num_samples: int) -> torch.Tensor: # Reference: https://github.com/facebookresearch/pytorchvideo/blob/a0a131e/pytorchvideo/transforms/functional.py#L19 t_max = video.shape[-4] - 1 indices = torch.linspace(0, t_max, num_samples, device=video.device).long() return torch.index_select(video, -4, indices)
import torch from torchvision import tv_tensors from torchvision.utils import _log_api_usage_once from ._utils import _get_kernel, _register_kernel_internal def uniform_temporal_subsample(inpt: torch.Tensor, num_samples: int) -> torch.Tensor: """[BETA] See :class:`~torchvision.transforms.v2.UniformTemporalSubsample` for details.""" if torch.jit.is_scripting(): return uniform_temporal_subsample_video(inpt, num_samples=num_samples) _log_api_usage_once(uniform_temporal_subsample) kernel = _get_kernel(uniform_temporal_subsample, type(inpt)) return kernel(inpt, num_samples=num_samples) @_register_kernel_internal(uniform_temporal_subsample, torch.Tensor) @_register_kernel_internal(uniform_temporal_subsample, tv_tensors.Video) def uniform_temporal_subsample_video(video: torch.Tensor, num_samples: int) -> torch.Tensor: # Reference: https://github.com/facebookresearch/pytorchvideo/blob/a0a131e/pytorchvideo/transforms/functional.py#L19 t_max = video.shape[-4] - 1 indices = torch.linspace(0, t_max, num_samples, device=video.device).long() return torch.index_select(video, -4, indices)
# Copyright (c) OpenMMLab. All rights reserved. import copy import time from contextlib import contextmanager from typing import Generator, Optional from mmengine.utils.manager import ManagerMixin, _accquire_lock, _release_lock class DefaultScope(ManagerMixin): """Scope of current task used to reset the current registry, which can be accessed globally. Consider the case of resetting the current ``Resgitry`` by``default_scope`` in the internal module which cannot access runner directly, it is difficult to get the ``default_scope`` defined in ``Runner``. However, if ``Runner`` created ``DefaultScope`` instance by given ``default_scope``, the internal module can get ``default_scope`` by ``DefaultScope.get_current_instance`` everywhere. Args: name (str): Name of default scope for global access. scope_name (str): Scope of current task. Examples: >>> from mmengine.model import MODELS >>> # Define default scope in runner. >>> DefaultScope.get_instance('task', scope_name='mmdet') >>> # Get default scope globally. >>> scope_name = DefaultScope.get_instance('task').scope_name """ def __init__(self, name: str, scope_name: str): super().__init__(name) assert isinstance( scope_name, str), (f'scope_name should be a string, but got {scope_name}') self._scope_name = scope_name @property def scope_name(self) -> str: """ Returns: str: Get current scope. """ return self._scope_name @classmethod def get_current_instance(cls) -> Optional['DefaultScope']: """Get latest created default scope. Since default_scope is an optional argument for ``Registry.build``. ``get_current_instance`` should return ``None`` if there is no ``DefaultScope`` created. Examples: >>> default_scope = DefaultScope.get_current_instance() >>> # There is no `DefaultScope` created yet, >>> # `get_current_instance` return `None`. >>> default_scope = DefaultScope.get_instance( >>> 'instance_name', scope_name='mmengine') >>> default_scope.scope_name mmengine >>> default_scope = DefaultScope.get_current_instance() >>> default_scope.scope_name mmengine Returns: Optional[DefaultScope]: Return None If there has not been ``DefaultScope`` instance created yet, otherwise return the latest created DefaultScope instance. """ _accquire_lock() if cls._instance_dict: instance = super().get_current_instance() else: instance = None _release_lock() return instance @classmethod @contextmanager def overwrite_default_scope(cls, scope_name: Optional[str]) -> Generator: """overwrite the current default scope with `scope_name`""" if scope_name is None: yield else: tmp = copy.deepcopy(cls._instance_dict) # To avoid create an instance with the same name. time.sleep(1e-6) cls.get_instance(f'overwrite-{time.time()}', scope_name=scope_name) try: yield finally: cls._instance_dict = tmp
# Copyright (c) OpenMMLab. All rights reserved. import copy import time from contextlib import contextmanager from typing import Generator, Optional from mmengine.utils.manager import ManagerMixin, _accquire_lock, _release_lock class DefaultScope(ManagerMixin): """Scope of current task used to reset the current registry, which can be accessed globally. Consider the case of resetting the current ``Resgitry`` by``default_scope`` in the internal module which cannot access runner directly, it is difficult to get the ``default_scope`` defined in ``Runner``. However, if ``Runner`` created ``DefaultScope`` instance by given ``default_scope``, the internal module can get ``default_scope`` by ``DefaultScope.get_current_instance`` everywhere. Args: name (str): Name of default scope for global access. scope_name (str): Scope of current task. Examples: >>> from mmengine.model import MODELS >>> # Define default scope in runner. >>> DefaultScope.get_instance('task', scope_name='mmdet') >>> # Get default scope globally. >>> scope_name = DefaultScope.get_instance('task').scope_name """ def __init__(self, name: str, scope_name: str): super().__init__(name) assert isinstance( scope_name, str), (f'scope_name should be a string, but got {scope_name}') self._scope_name = scope_name @property def scope_name(self) -> str: """ Returns: str: Get current scope. """ return self._scope_name @classmethod def get_current_instance(cls) -> Optional['DefaultScope']: """Get latest created default scope. Since default_scope is an optional argument for ``Registry.build``. ``get_current_instance`` should return ``None`` if there is no ``DefaultScope`` created. Examples: >>> default_scope = DefaultScope.get_current_instance() >>> # There is no `DefaultScope` created yet, >>> # `get_current_instance` return `None`. >>> default_scope = DefaultScope.get_instance( >>> 'instance_name', scope_name='mmengine') >>> default_scope.scope_name mmengine >>> default_scope = DefaultScope.get_current_instance() >>> default_scope.scope_name mmengine Returns: Optional[DefaultScope]: Return None If there has not been ``DefaultScope`` instance created yet, otherwise return the latest created DefaultScope instance. """ _accquire_lock() if cls._instance_dict: instance = super().get_current_instance() else: instance = None _release_lock() return instance @classmethod @contextmanager def overwrite_default_scope(cls, scope_name: Optional[str]) -> Generator: """overwrite the current default scope with `scope_name`""" if scope_name is None: yield else: tmp = copy.deepcopy(cls._instance_dict) cls.get_instance(f'overwrite-{time.time()}', scope_name=scope_name) try: yield finally: cls._instance_dict = tmp
_base_ = '../mask_rcnn/mask-rcnn_r101_fpn_1x_coco.py' model = dict( backbone=dict( dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False), stage_with_dcn=(False, True, True, True)))
_base_ = '../mask_rcnn/mask_rcnn_r101_fpn_1x_coco.py' model = dict( backbone=dict( dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False), stage_with_dcn=(False, True, True, True)))
"""PDF Table reader.""" from pathlib import Path from typing import Any, Dict, List, Optional import pandas as pd from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document class PDFTableReader(BaseReader): """ PDF Table Reader. Reads table from PDF. Args: row_separator (str): Row separator used to join rows of a DataFrame. col_separator (str): Col separator used to join columns of a DataFrame. """ def __init__( self, *args: Any, row_separator: str = "\n", col_separator: str = ", ", **kwargs: Any, ) -> None: super().__init__(*args, **kwargs) self._row_separator = row_separator self._col_separator = col_separator def load_data( self, file: Path, pages: str = "1", extra_info: Optional[Dict] = None ) -> List[Document]: """ Load data and extract table from PDF file. Args: file (Path): Path for the PDF file. pages (str): Pages to read tables from. extra_info (Optional[Dict]): Extra information. Returns: List[Document]: List of documents. """ import camelot results = [] tables = camelot.read_pdf(filepath=str(file), pages=pages) for table in tables: document = self._dataframe_to_document(df=table.df, extra_info=extra_info) results.append(document) return results def _dataframe_to_document( self, df: pd.DataFrame, extra_info: Optional[Dict] = None ) -> Document: df_list = df.apply( lambda row: (self._col_separator).join(row.astype(str).tolist()), axis=1 ).tolist() return Document( text=self._row_separator.join(df_list), extra_info=extra_info or {} )
"""PDF Table reader.""" from pathlib import Path from typing import Any, Dict, List, Optional import pandas as pd from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document class PDFTableReader(BaseReader): """ PDF Table Reader. Reads table from PDF. Args: row_separator (str): Row separator used to join rows of a DataFrame. col_separator (str): Col separator used to join columns of a DataFrame. """ def __init__( self, *args: Any, row_separator: str = "\n", col_separator: str = ", ", **kwargs: Any ) -> None: super().__init__(*args, **kwargs) self._row_separator = row_separator self._col_separator = col_separator def load_data( self, file: Path, pages: str = "1", extra_info: Optional[Dict] = None ) -> List[Document]: """ Load data and extract table from PDF file. Args: file (Path): Path for the PDF file. pages (str): Pages to read tables from. extra_info (Optional[Dict]): Extra information. Returns: List[Document]: List of documents. """ import camelot results = [] tables = camelot.read_pdf(filepath=str(file), pages=pages) for table in tables: document = self._dataframe_to_document(df=table.df, extra_info=extra_info) results.append(document) return results def _dataframe_to_document( self, df: pd.DataFrame, extra_info: Optional[Dict] = None ) -> Document: df_list = df.apply( lambda row: (self._col_separator).join(row.astype(str).tolist()), axis=1 ).tolist() return Document( text=self._row_separator.join(df_list), extra_info=extra_info or {} )
from __future__ import annotations from .CSRLoss import CSRLoss, CSRReconstructionLoss from .RegularizerLoss import FlopsLoss, L0FlopsLoss from .SparseAnglELoss import SparseAnglELoss from .SparseCachedGISTEmbedLoss import SparseCachedGISTEmbedLoss from .SparseCachedMultipleNegativesRankingLoss import SparseCachedMultipleNegativesRankingLoss from .SparseCoSENTLoss import SparseCoSENTLoss from .SparseCosineSimilarityLoss import SparseCosineSimilarityLoss from .SparseDistillKLDivLoss import SparseDistillKLDivLoss from .SparseGISTEmbedLoss import SparseGISTEmbedLoss from .SparseMarginMSELoss import SparseMarginMSELoss from .SparseMSELoss import SparseMSELoss from .SparseMultipleNegativesRankingLoss import SparseMultipleNegativesRankingLoss from .SparseTripletLoss import SparseTripletLoss from .SpladeLoss import SpladeLoss __all__ = [ "CSRLoss", "CSRReconstructionLoss", "SparseMultipleNegativesRankingLoss", "SparseCoSENTLoss", "SparseTripletLoss", "SparseCachedMultipleNegativesRankingLoss", "SparseMarginMSELoss", "SparseGISTEmbedLoss", "SparseCachedGISTEmbedLoss", "SparseCosineSimilarityLoss", "SparseMSELoss", "SparseAnglELoss", "SparseDistillKLDivLoss", "FlopsLoss", "L0FlopsLoss", "SpladeLoss", ] # TODO: Test cached losses
from __future__ import annotations from .CSRLoss import CSRLoss, CSRReconstructionLoss from .RegularizerLoss import FlopsLoss, IDFFlopsLoss from .SparseAnglELoss import SparseAnglELoss from .SparseCachedGISTEmbedLoss import SparseCachedGISTEmbedLoss from .SparseCachedMultipleNegativesRankingLoss import SparseCachedMultipleNegativesRankingLoss from .SparseCoSENTLoss import SparseCoSENTLoss from .SparseCosineSimilarityLoss import SparseCosineSimilarityLoss from .SparseDistillKLDivLoss import SparseDistillKLDivLoss from .SparseGISTEmbedLoss import SparseGISTEmbedLoss from .SparseMarginMSELoss import SparseMarginMSELoss from .SparseMSELoss import SparseMSELoss from .SparseMultipleNegativesRankingLoss import SparseMultipleNegativesRankingLoss from .SparseTripletLoss import SparseTripletLoss from .SpladeLoss import SpladeLoss __all__ = [ "CSRLoss", "CSRReconstructionLoss", "SparseMultipleNegativesRankingLoss", "SparseCoSENTLoss", "SparseTripletLoss", "SparseCachedMultipleNegativesRankingLoss", "SparseMarginMSELoss", "SparseGISTEmbedLoss", "SparseCachedGISTEmbedLoss", "SparseCosineSimilarityLoss", "SparseMSELoss", "SparseAnglELoss", "SparseDistillKLDivLoss", "FlopsLoss", "IDFFlopsLoss", "SpladeLoss", ] # TODO: Test cached losses
""" This script translates the queries in the MS MARCO dataset to the defined target languages. For machine translation, we use EasyNMT: https://github.com/UKPLab/EasyNMT You can install it via: pip install easynmt Usage: python translate_queries [target_language] """ import os from sentence_transformers import LoggingHandler, util import logging import tarfile from easynmt import EasyNMT import sys #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout target_lang = sys.argv[1] output_folder = "multilingual-data" data_folder = "../msmarco-data" output_filename = os.path.join(output_folder, "train_queries.en-{}.tsv".format(target_lang)) os.makedirs(output_folder, exist_ok=True) ## Does the output file exists? If yes, read it so we can continue the translation translated_qids = set() if os.path.exists(output_filename): with open(output_filename, "r", encoding="utf8") as fIn: for line in fIn: splits = line.strip().split("\t") translated_qids.add(splits[0]) ### Now we read the MS Marco dataset os.makedirs(data_folder, exist_ok=True) # Read qrels file for relevant positives per query train_queries = {} qrels_train = os.path.join(data_folder, "qrels.train.tsv") if not os.path.exists(qrels_train): util.http_get("https://msmarco.blob.core.windows.net/msmarcoranking/qrels.train.tsv", qrels_train) with open(qrels_train) as fIn: for line in fIn: qid, _, pid, _ = line.strip().split() if qid not in translated_qids: train_queries[qid] = None # Read all queries queries_filepath = os.path.join(data_folder, "queries.train.tsv") if not os.path.exists(queries_filepath): tar_filepath = os.path.join(data_folder, "queries.tar.gz") if not os.path.exists(tar_filepath): logging.info("Download queries.tar.gz") util.http_get("https://msmarco.blob.core.windows.net/msmarcoranking/queries.tar.gz", tar_filepath) with tarfile.open(tar_filepath, "r:gz") as tar: tar.extractall(path=data_folder) with open(queries_filepath, "r", encoding="utf8") as fIn: for line in fIn: qid, query = line.strip().split("\t") if qid in train_queries: train_queries[qid] = query.strip() qids = [qid for qid in train_queries if train_queries[qid] is not None] queries = [train_queries[qid] for qid in qids] # Define our translation model translation_model = EasyNMT("opus-mt") print("Start translation of {} queries.".format(len(queries))) print("This can take a while. But you can stop this script at any point") with open(output_filename, "a" if os.path.exists(output_filename) else "w", encoding="utf8") as fOut: for qid, query, translated_query in zip( qids, queries, translation_model.translate_stream( queries, source_lang="en", target_lang=target_lang, beam_size=2, perform_sentence_splitting=False, chunk_size=256, batch_size=64, ), ): fOut.write("{}\t{}\n".format(qid, translated_query.replace("\t", " "))) fOut.flush()
""" This script translates the queries in the MS MARCO dataset to the defined target languages. For machine translation, we use EasyNMT: https://github.com/UKPLab/EasyNMT You can install it via: pip install easynmt Usage: python translate_queries [target_language] """ import os from sentence_transformers import LoggingHandler, util import logging import tarfile from easynmt import EasyNMT import sys #### Just some code to print debug information to stdout logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, handlers=[LoggingHandler()] ) #### /print debug information to stdout target_lang = sys.argv[1] output_folder = "multilingual-data" data_folder = "../msmarco-data" output_filename = os.path.join(output_folder, "train_queries.en-{}.tsv".format(target_lang)) os.makedirs(output_folder, exist_ok=True) ## Does the output file exists? If yes, read it so we can continue the translation translated_qids = set() if os.path.exists(output_filename): with open(output_filename, "r", encoding="utf8") as fIn: for line in fIn: splits = line.strip().split("\t") translated_qids.add(splits[0]) ### Now we read the MS Marco dataset os.makedirs(data_folder, exist_ok=True) # Read qrels file for relevant positives per query train_queries = {} qrels_train = os.path.join(data_folder, "qrels.train.tsv") if not os.path.exists(qrels_train): util.http_get("https://msmarco.blob.core.windows.net/msmarcoranking/qrels.train.tsv", qrels_train) with open(qrels_train) as fIn: for line in fIn: qid, _, pid, _ = line.strip().split() if qid not in translated_qids: train_queries[qid] = None # Read all queries queries_filepath = os.path.join(data_folder, "queries.train.tsv") if not os.path.exists(queries_filepath): tar_filepath = os.path.join(data_folder, "queries.tar.gz") if not os.path.exists(tar_filepath): logging.info("Download queries.tar.gz") util.http_get("https://msmarco.blob.core.windows.net/msmarcoranking/queries.tar.gz", tar_filepath) with tarfile.open(tar_filepath, "r:gz") as tar: tar.extractall(path=data_folder) with open(queries_filepath, "r", encoding="utf8") as fIn: for line in fIn: qid, query = line.strip().split("\t") if qid in train_queries: train_queries[qid] = query.strip() qids = [qid for qid in train_queries if train_queries[qid] is not None] queries = [train_queries[qid] for qid in qids] # Define our translation model translation_model = EasyNMT("opus-mt") print("Start translation of {} queries.".format(len(queries))) print("This can take a while. But you can stop this script at any point") with open(output_filename, "a" if os.path.exists(output_filename) else "w", encoding="utf8") as fOut: for qid, query, translated_query in zip( qids, queries, translation_model.translate_stream( queries, source_lang="en", target_lang=target_lang, beam_size=2, perform_sentence_splitting=False, chunk_size=256, batch_size=64, ), ): fOut.write("{}\t{}\n".format(qid, translated_query.replace("\t", " "))) fOut.flush()
from langchain_core.callbacks.manager import ( AsyncCallbackManager, AsyncCallbackManagerForChainGroup, AsyncCallbackManagerForChainRun, AsyncCallbackManagerForLLMRun, AsyncCallbackManagerForRetrieverRun, AsyncCallbackManagerForToolRun, AsyncParentRunManager, AsyncRunManager, BaseRunManager, CallbackManager, CallbackManagerForChainGroup, CallbackManagerForChainRun, CallbackManagerForLLMRun, CallbackManagerForRetrieverRun, CallbackManagerForToolRun, ParentRunManager, RunManager, handle_event, trace_as_chain_group, ) from langchain_core.tracers.context import ( collect_runs, register_configure_hook, tracing_enabled, tracing_v2_enabled, ) from langchain_core.utils.env import env_var_is_set __all__ = [ "AsyncCallbackManager", "AsyncCallbackManagerForChainGroup", "AsyncCallbackManagerForChainRun", "AsyncCallbackManagerForLLMRun", "AsyncCallbackManagerForRetrieverRun", "AsyncCallbackManagerForToolRun", "AsyncParentRunManager", "AsyncRunManager", "BaseRunManager", "CallbackManager", "CallbackManagerForChainGroup", "CallbackManagerForChainRun", "CallbackManagerForLLMRun", "CallbackManagerForRetrieverRun", "CallbackManagerForToolRun", "ParentRunManager", "RunManager", "collect_runs", "env_var_is_set", "handle_event", "register_configure_hook", "trace_as_chain_group", "tracing_enabled", "tracing_v2_enabled", ]
from langchain_core.callbacks.manager import ( AsyncCallbackManager, AsyncCallbackManagerForChainGroup, AsyncCallbackManagerForChainRun, AsyncCallbackManagerForLLMRun, AsyncCallbackManagerForRetrieverRun, AsyncCallbackManagerForToolRun, AsyncParentRunManager, AsyncRunManager, BaseRunManager, CallbackManager, CallbackManagerForChainGroup, CallbackManagerForChainRun, CallbackManagerForLLMRun, CallbackManagerForRetrieverRun, CallbackManagerForToolRun, ParentRunManager, RunManager, handle_event, trace_as_chain_group, ) from langchain_core.tracers.context import ( collect_runs, register_configure_hook, tracing_enabled, tracing_v2_enabled, ) from langchain_core.utils.env import env_var_is_set __all__ = [ "tracing_enabled", "tracing_v2_enabled", "collect_runs", "trace_as_chain_group", "handle_event", "BaseRunManager", "RunManager", "ParentRunManager", "AsyncRunManager", "AsyncParentRunManager", "CallbackManagerForLLMRun", "AsyncCallbackManagerForLLMRun", "CallbackManagerForChainRun", "AsyncCallbackManagerForChainRun", "CallbackManagerForToolRun", "AsyncCallbackManagerForToolRun", "CallbackManagerForRetrieverRun", "AsyncCallbackManagerForRetrieverRun", "CallbackManager", "CallbackManagerForChainGroup", "AsyncCallbackManager", "AsyncCallbackManagerForChainGroup", "register_configure_hook", "env_var_is_set", ]
import os from jina import Flow, Document, DocumentArray from ...tfidf_text_executor import TFIDFTextEncoder # is implicitly required cur_dir = os.path.dirname(os.path.abspath(__file__)) def test_flow_generates_embedding(): doc = DocumentArray([Document(text='Han likes eating pizza')]) with Flow.load_config(os.path.join(cur_dir, 'flow.yml')) as f: responses = f.index(inputs=doc, return_results=True) assert responses[0].docs[0].embedding is not None # input has 4 different words assert responses[0].docs[0].embedding.nnz == 4
import os from jina import Flow, Document, DocumentArray from jinahub.encoder.tfidf_text_executor import TFIDFTextEncoder # is implicitly required cur_dir = os.path.dirname(os.path.abspath(__file__)) def test_flow_generates_embedding(): doc = DocumentArray([Document(text='Han likes eating pizza')]) with Flow.load_config(os.path.join(cur_dir, 'flow.yml')) as f: responses = f.index(inputs=doc, return_results=True) assert responses[0].docs[0].embedding is not None # input has 4 different words assert responses[0].docs[0].embedding.nnz == 4
from inspect import signature from typing import ( Any, Awaitable, Callable, List, Optional, Tuple, Type, Union, cast, get_origin, get_args, ) import typing from llama_index.core.bridge.pydantic import BaseModel, FieldInfo, create_model def create_schema_from_function( name: str, func: Union[Callable[..., Any], Callable[..., Awaitable[Any]]], additional_fields: Optional[ List[Union[Tuple[str, Type, Any], Tuple[str, Type]]] ] = None, ignore_fields: Optional[List[str]] = None, ) -> Type[BaseModel]: """Create schema from function.""" fields = {} ignore_fields = ignore_fields or [] params = signature(func).parameters for param_name in params: if param_name in ignore_fields: continue param_type = params[param_name].annotation param_default = params[param_name].default description = None if get_origin(param_type) is typing.Annotated: args = get_args(param_type) param_type = args[0] if isinstance(args[1], str): description = args[1] if param_type is params[param_name].empty: param_type = Any if param_default is params[param_name].empty: # Required field fields[param_name] = (param_type, FieldInfo(description=description)) elif isinstance(param_default, FieldInfo): # Field with pydantic.Field as default value fields[param_name] = (param_type, param_default) else: fields[param_name] = ( param_type, FieldInfo(default=param_default, description=description), ) additional_fields = additional_fields or [] for field_info in additional_fields: if len(field_info) == 3: field_info = cast(Tuple[str, Type, Any], field_info) field_name, field_type, field_default = field_info fields[field_name] = (field_type, FieldInfo(default=field_default)) elif len(field_info) == 2: # Required field has no default value field_info = cast(Tuple[str, Type], field_info) field_name, field_type = field_info fields[field_name] = (field_type, FieldInfo()) else: raise ValueError( f"Invalid additional field info: {field_info}. " "Must be a tuple of length 2 or 3." ) return create_model(name, **fields) # type: ignore
from inspect import signature from typing import ( Any, Awaitable, Callable, List, Optional, Tuple, Type, Union, cast, get_origin, get_args, ) import typing from llama_index.core.bridge.pydantic import BaseModel, FieldInfo, create_model def create_schema_from_function( name: str, func: Union[Callable[..., Any], Callable[..., Awaitable[Any]]], additional_fields: Optional[ List[Union[Tuple[str, Type, Any], Tuple[str, Type]]] ] = None, ) -> Type[BaseModel]: """Create schema from function.""" fields = {} params = signature(func).parameters for param_name in params: param_type = params[param_name].annotation param_default = params[param_name].default description = None if get_origin(param_type) is typing.Annotated: args = get_args(param_type) param_type = args[0] if isinstance(args[1], str): description = args[1] if param_type is params[param_name].empty: param_type = Any if param_default is params[param_name].empty: # Required field fields[param_name] = (param_type, FieldInfo(description=description)) elif isinstance(param_default, FieldInfo): # Field with pydantic.Field as default value fields[param_name] = (param_type, param_default) else: fields[param_name] = ( param_type, FieldInfo(default=param_default, description=description), ) additional_fields = additional_fields or [] for field_info in additional_fields: if len(field_info) == 3: field_info = cast(Tuple[str, Type, Any], field_info) field_name, field_type, field_default = field_info fields[field_name] = (field_type, FieldInfo(default=field_default)) elif len(field_info) == 2: # Required field has no default value field_info = cast(Tuple[str, Type], field_info) field_name, field_type = field_info fields[field_name] = (field_type, FieldInfo()) else: raise ValueError( f"Invalid additional field info: {field_info}. " "Must be a tuple of length 2 or 3." ) return create_model(name, **fields) # type: ignore
# Copyright 2021 The HuggingFace Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import Formatter if TYPE_CHECKING: import jax.numpy as jnp class JaxFormatter(Formatter[Mapping, "jnp.ndarray", Mapping]): def __init__(self, features=None, **jnp_array_kwargs): super().__init__(features=features) self.jnp_array_kwargs = jnp_array_kwargs import jax.numpy as jnp # noqa import jax at initialization def _consolidate(self, column): import jax.numpy as jnp if isinstance(column, list) and column: if all( isinstance(x, jnp.ndarray) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(column) return column def _tensorize(self, value): import jax import jax.numpy as jnp if isinstance(value, (str, bytes, type(None))): return value elif isinstance(value, (np.character, np.ndarray)) and np.issubdtype(value.dtype, np.character): return value.tolist() default_dtype = {} if isinstance(value, (np.number, np.ndarray)) and np.issubdtype(value.dtype, np.integer): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_x64: default_dtype = {"dtype": jnp.int64} else: default_dtype = {"dtype": jnp.int32} elif isinstance(value, (np.number, np.ndarray)) and np.issubdtype(value.dtype, np.floating): default_dtype = {"dtype": jnp.float32} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(value, PIL.Image.Image): value = np.asarray(value) # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(value, **{**default_dtype, **self.jnp_array_kwargs}) def _recursive_tensorize(self, data_struct: dict): # support for nested types like struct of list of struct if isinstance(data_struct, np.ndarray): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(substruct) for substruct in data_struct]) return self._tensorize(data_struct) def recursive_tensorize(self, data_struct: dict): return map_nested(self._recursive_tensorize, data_struct) def format_row(self, pa_table: pa.Table) -> Mapping: row = self.numpy_arrow_extractor().extract_row(pa_table) row = self.python_features_decoder.decode_row(row) return self.recursive_tensorize(row) def format_column(self, pa_table: pa.Table) -> "jnp.ndarray": column = self.numpy_arrow_extractor().extract_column(pa_table) column = self.python_features_decoder.decode_column(column, pa_table.column_names[0]) column = self.recursive_tensorize(column) column = self._consolidate(column) return column def format_batch(self, pa_table: pa.Table) -> Mapping: batch = self.numpy_arrow_extractor().extract_batch(pa_table) batch = self.python_features_decoder.decode_batch(batch) batch = self.recursive_tensorize(batch) for column_name in batch: batch[column_name] = self._consolidate(batch[column_name]) return batch
# Copyright 2021 The HuggingFace Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 import sys from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import Formatter if TYPE_CHECKING: import jax.numpy as jnp class JaxFormatter(Formatter[dict, "jnp.ndarray", dict]): def __init__(self, features=None, decoded=True, **jnp_array_kwargs): super().__init__(features=features, decoded=decoded) self.jnp_array_kwargs = jnp_array_kwargs import jax.numpy as jnp # noqa import jax at initialization def _consolidate(self, column): import jax.numpy as jnp if isinstance(column, list) and column: if all( isinstance(x, jnp.ndarray) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(column) return column def _tensorize(self, value): import jax import jax.numpy as jnp if isinstance(value, (str, bytes, type(None))): return value elif isinstance(value, (np.character, np.ndarray)) and np.issubdtype(value.dtype, np.character): return value.tolist() default_dtype = {} if isinstance(value, (np.number, np.ndarray)) and np.issubdtype(value.dtype, np.integer): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_x64: default_dtype = {"dtype": jnp.int64} else: default_dtype = {"dtype": jnp.int32} elif isinstance(value, (np.number, np.ndarray)) and np.issubdtype(value.dtype, np.floating): default_dtype = {"dtype": jnp.float32} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(value, PIL.Image.Image): value = np.asarray(value) # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(value, **{**default_dtype, **self.jnp_array_kwargs}) def _recursive_tensorize(self, data_struct: dict): # support for nested types like struct of list of struct if isinstance(data_struct, np.ndarray): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(substruct) for substruct in data_struct]) return self._tensorize(data_struct) def recursive_tensorize(self, data_struct: dict): return map_nested(self._recursive_tensorize, data_struct) def format_row(self, pa_table: pa.Table) -> dict: row = self.numpy_arrow_extractor().extract_row(pa_table) if self.decoded: row = self.python_features_decoder.decode_row(row) return self.recursive_tensorize(row) def format_column(self, pa_table: pa.Table) -> "jnp.ndarray": column = self.numpy_arrow_extractor().extract_column(pa_table) if self.decoded: column = self.python_features_decoder.decode_column(column, pa_table.column_names[0]) column = self.recursive_tensorize(column) column = self._consolidate(column) return column def format_batch(self, pa_table: pa.Table) -> dict: batch = self.numpy_arrow_extractor().extract_batch(pa_table) if self.decoded: batch = self.python_features_decoder.decode_batch(batch) batch = self.recursive_tensorize(batch) for column_name in batch: batch[column_name] = self._consolidate(batch[column_name]) return batch
from .torch_encoder import ImageTorchEncoder
from .torch_encoder import ImageTorchEncoder
import json import os from typing import Dict from torch import Tensor, nn class Dropout(nn.Module): """Dropout layer. Args: dropout: Sets a dropout value for dense layer. """ def __init__(self, dropout: float = 0.2): super(Dropout, self).__init__() self.dropout = dropout self.dropout_layer = nn.Dropout(self.dropout) def forward(self, features: Dict[str, Tensor]): features.update({"sentence_embedding": self.dropout_layer(features["sentence_embedding"])}) return features def save(self, output_path): with open(os.path.join(output_path, "config.json"), "w") as fOut: json.dump({"dropout": self.dropout}, fOut) @staticmethod def load(input_path): with open(os.path.join(input_path, "config.json")) as fIn: config = json.load(fIn) model = Dropout(**config) return model
from torch import Tensor from torch import nn from typing import Dict import os import json class Dropout(nn.Module): """Dropout layer. Args: dropout: Sets a dropout value for dense layer. """ def __init__(self, dropout: float = 0.2): super(Dropout, self).__init__() self.dropout = dropout self.dropout_layer = nn.Dropout(self.dropout) def forward(self, features: Dict[str, Tensor]): features.update({"sentence_embedding": self.dropout_layer(features["sentence_embedding"])}) return features def save(self, output_path): with open(os.path.join(output_path, "config.json"), "w") as fOut: json.dump({"dropout": self.dropout}, fOut) @staticmethod def load(input_path): with open(os.path.join(input_path, "config.json")) as fIn: config = json.load(fIn) model = Dropout(**config) return model
import json import pytest from langchain_core.agents import AgentFinish from langchain_core.exceptions import OutputParserException from langchain_core.messages import AIMessage, SystemMessage from langchain.agents.openai_functions_multi_agent.base import ( _FunctionsAgentAction, _parse_ai_message, ) # Test: _parse_ai_message() function. class TestParseAIMessage: # Test: Pass Non-AIMessage. def test_not_an_ai(self) -> None: err = f"Expected an AI message got {SystemMessage!s}" with pytest.raises(TypeError, match=err): _parse_ai_message(SystemMessage(content="x")) # Test: Model response (not a function call). def test_model_response(self) -> None: msg = AIMessage(content="Model response.") result = _parse_ai_message(msg) assert isinstance(result, AgentFinish) assert result.return_values == {"output": "Model response."} assert result.log == "Model response." # Test: Model response with a function call. def test_func_call(self) -> None: act = json.dumps([{"action_name": "foo", "action": {"param": 42}}]) msg = AIMessage( content="LLM thoughts.", additional_kwargs={ "function_call": {"name": "foo", "arguments": f'{{"actions": {act}}}'} }, ) result = _parse_ai_message(msg) assert isinstance(result, list) assert len(result) == 1 action = result[0] assert isinstance(action, _FunctionsAgentAction) assert action.tool == "foo" assert action.tool_input == {"param": 42} assert action.log == ( "\nInvoking: `foo` with `{'param': 42}`\nresponded: LLM thoughts.\n\n" ) assert action.message_log == [msg] # Test: Model response with a function call (old style tools). def test_func_call_oldstyle(self) -> None: act = json.dumps([{"action_name": "foo", "action": {"__arg1": "42"}}]) msg = AIMessage( content="LLM thoughts.", additional_kwargs={ "function_call": {"name": "foo", "arguments": f'{{"actions": {act}}}'} }, ) result = _parse_ai_message(msg) assert isinstance(result, list) assert len(result) == 1 action = result[0] assert isinstance(action, _FunctionsAgentAction) assert action.tool == "foo" assert action.tool_input == "42" assert action.log == ( "\nInvoking: `foo` with `42`\nresponded: LLM thoughts.\n\n" ) assert action.message_log == [msg] # Test: Invalid function call args. def test_func_call_invalid(self) -> None: msg = AIMessage( content="LLM thoughts.", additional_kwargs={"function_call": {"name": "foo", "arguments": "{42]"}}, ) err = ( "Could not parse tool input: {'name': 'foo', 'arguments': '{42]'} " "because the `arguments` is not valid JSON." ) with pytest.raises(OutputParserException, match=err): _parse_ai_message(msg)
import json import pytest from langchain_core.agents import AgentFinish from langchain_core.exceptions import OutputParserException from langchain_core.messages import AIMessage, SystemMessage from langchain.agents.openai_functions_multi_agent.base import ( _FunctionsAgentAction, _parse_ai_message, ) # Test: _parse_ai_message() function. class TestParseAIMessage: # Test: Pass Non-AIMessage. def test_not_an_ai(self) -> None: err = f"Expected an AI message got {str(SystemMessage)}" with pytest.raises(TypeError, match=err): _parse_ai_message(SystemMessage(content="x")) # Test: Model response (not a function call). def test_model_response(self) -> None: msg = AIMessage(content="Model response.") result = _parse_ai_message(msg) assert isinstance(result, AgentFinish) assert result.return_values == {"output": "Model response."} assert result.log == "Model response." # Test: Model response with a function call. def test_func_call(self) -> None: act = json.dumps([{"action_name": "foo", "action": {"param": 42}}]) msg = AIMessage( content="LLM thoughts.", additional_kwargs={ "function_call": {"name": "foo", "arguments": f'{{"actions": {act}}}'} }, ) result = _parse_ai_message(msg) assert isinstance(result, list) assert len(result) == 1 action = result[0] assert isinstance(action, _FunctionsAgentAction) assert action.tool == "foo" assert action.tool_input == {"param": 42} assert action.log == ( "\nInvoking: `foo` with `{'param': 42}`\nresponded: LLM thoughts.\n\n" ) assert action.message_log == [msg] # Test: Model response with a function call (old style tools). def test_func_call_oldstyle(self) -> None: act = json.dumps([{"action_name": "foo", "action": {"__arg1": "42"}}]) msg = AIMessage( content="LLM thoughts.", additional_kwargs={ "function_call": {"name": "foo", "arguments": f'{{"actions": {act}}}'} }, ) result = _parse_ai_message(msg) assert isinstance(result, list) assert len(result) == 1 action = result[0] assert isinstance(action, _FunctionsAgentAction) assert action.tool == "foo" assert action.tool_input == "42" assert action.log == ( "\nInvoking: `foo` with `42`\nresponded: LLM thoughts.\n\n" ) assert action.message_log == [msg] # Test: Invalid function call args. def test_func_call_invalid(self) -> None: msg = AIMessage( content="LLM thoughts.", additional_kwargs={"function_call": {"name": "foo", "arguments": "{42]"}}, ) err = ( "Could not parse tool input: {'name': 'foo', 'arguments': '{42]'} " "because the `arguments` is not valid JSON." ) with pytest.raises(OutputParserException, match=err): _parse_ai_message(msg)
import datetime import prisma.fields import prisma.models import pytest import backend.server.v2.library.model as library_model from backend.util import json @pytest.mark.asyncio async def test_agent_preset_from_db(): # Create mock DB agent db_agent = prisma.models.AgentPreset( id="test-agent-123", createdAt=datetime.datetime.now(), updatedAt=datetime.datetime.now(), agentId="agent-123", agentVersion=1, name="Test Agent", description="Test agent description", isActive=True, userId="test-user-123", isDeleted=False, InputPresets=[ prisma.models.AgentNodeExecutionInputOutput( id="input-123", time=datetime.datetime.now(), name="input1", data=json.dumps({"type": "string", "value": "test value"}), # type: ignore ) ], ) # Convert to LibraryAgentPreset agent = library_model.LibraryAgentPreset.from_db(db_agent) assert agent.id == "test-agent-123" assert agent.agent_version == 1 assert agent.is_active is True assert agent.name == "Test Agent" assert agent.description == "Test agent description" assert agent.inputs == {"input1": {"type": "string", "value": "test value"}}
import datetime import prisma.fields import prisma.models import backend.server.v2.library.model as library_model def test_agent_preset_from_db(): # Create mock DB agent db_agent = prisma.models.AgentPreset( id="test-agent-123", createdAt=datetime.datetime.now(), updatedAt=datetime.datetime.now(), agentId="agent-123", agentVersion=1, name="Test Agent", description="Test agent description", isActive=True, userId="test-user-123", isDeleted=False, InputPresets=[ prisma.models.AgentNodeExecutionInputOutput( id="input-123", time=datetime.datetime.now(), name="input1", data=prisma.fields.Json({"type": "string", "value": "test value"}), ) ], ) # Convert to LibraryAgentPreset agent = library_model.LibraryAgentPreset.from_db(db_agent) assert agent.id == "test-agent-123" assert agent.agent_version == 1 assert agent.is_active is True assert agent.name == "Test Agent" assert agent.description == "Test agent description" assert agent.inputs == {"input1": {"type": "string", "value": "test value"}}
"""Standard LangChain interface tests""" from pathlib import Path from typing import Literal, cast from langchain_core.language_models import BaseChatModel from langchain_core.messages import AIMessage from langchain_tests.integration_tests import ChatModelIntegrationTests from langchain_anthropic import ChatAnthropic REPO_ROOT_DIR = Path(__file__).parents[5] class TestAnthropicStandard(ChatModelIntegrationTests): @property def chat_model_class(self) -> type[BaseChatModel]: return ChatAnthropic @property def chat_model_params(self) -> dict: return {"model": "claude-3-5-sonnet-latest"} @property def supports_image_inputs(self) -> bool: return True @property def supports_image_urls(self) -> bool: return True @property def supports_pdf_inputs(self) -> bool: return True @property def supports_image_tool_message(self) -> bool: return True @property def supports_anthropic_inputs(self) -> bool: return True @property def enable_vcr_tests(self) -> bool: return True @property def supported_usage_metadata_details( self, ) -> dict[ Literal["invoke", "stream"], list[ Literal[ "audio_input", "audio_output", "reasoning_output", "cache_read_input", "cache_creation_input", ] ], ]: return { "invoke": ["cache_read_input", "cache_creation_input"], "stream": ["cache_read_input", "cache_creation_input"], } def invoke_with_cache_creation_input(self, *, stream: bool = False) -> AIMessage: llm = ChatAnthropic( model="claude-3-5-sonnet-20240620", # type: ignore[call-arg] extra_headers={"anthropic-beta": "prompt-caching-2024-07-31"}, # type: ignore[call-arg] ) with open(REPO_ROOT_DIR / "README.md") as f: readme = f.read() input_ = f"""What's langchain? Here's the langchain README: {readme} """ return _invoke( llm, [ { "role": "user", "content": [ { "type": "text", "text": input_, "cache_control": {"type": "ephemeral"}, } ], } ], stream, ) def invoke_with_cache_read_input(self, *, stream: bool = False) -> AIMessage: llm = ChatAnthropic( model="claude-3-5-sonnet-20240620", # type: ignore[call-arg] extra_headers={"anthropic-beta": "prompt-caching-2024-07-31"}, # type: ignore[call-arg] ) with open(REPO_ROOT_DIR / "README.md") as f: readme = f.read() input_ = f"""What's langchain? Here's the langchain README: {readme} """ # invoke twice so first invocation is cached _invoke( llm, [ { "role": "user", "content": [ { "type": "text", "text": input_, "cache_control": {"type": "ephemeral"}, } ], } ], stream, ) return _invoke( llm, [ { "role": "user", "content": [ { "type": "text", "text": input_, "cache_control": {"type": "ephemeral"}, } ], } ], stream, ) def _invoke(llm: ChatAnthropic, input_: list, stream: bool) -> AIMessage: if stream: full = None for chunk in llm.stream(input_): full = full + chunk if full else chunk # type: ignore[operator] return cast(AIMessage, full) else: return cast(AIMessage, llm.invoke(input_))
"""Standard LangChain interface tests""" from pathlib import Path from typing import Literal, cast from langchain_core.language_models import BaseChatModel from langchain_core.messages import AIMessage from langchain_tests.integration_tests import ChatModelIntegrationTests from langchain_anthropic import ChatAnthropic REPO_ROOT_DIR = Path(__file__).parents[5] class TestAnthropicStandard(ChatModelIntegrationTests): @property def chat_model_class(self) -> type[BaseChatModel]: return ChatAnthropic @property def chat_model_params(self) -> dict: return {"model": "claude-3-5-sonnet-latest"} @property def supports_image_inputs(self) -> bool: return True @property def supports_image_urls(self) -> bool: return True @property def supports_pdf_inputs(self) -> bool: return True @property def supports_image_tool_message(self) -> bool: return True @property def supports_anthropic_inputs(self) -> bool: return True @property def supported_usage_metadata_details( self, ) -> dict[ Literal["invoke", "stream"], list[ Literal[ "audio_input", "audio_output", "reasoning_output", "cache_read_input", "cache_creation_input", ] ], ]: return { "invoke": ["cache_read_input", "cache_creation_input"], "stream": ["cache_read_input", "cache_creation_input"], } def invoke_with_cache_creation_input(self, *, stream: bool = False) -> AIMessage: llm = ChatAnthropic( model="claude-3-5-sonnet-20240620", # type: ignore[call-arg] extra_headers={"anthropic-beta": "prompt-caching-2024-07-31"}, # type: ignore[call-arg] ) with open(REPO_ROOT_DIR / "README.md") as f: readme = f.read() input_ = f"""What's langchain? Here's the langchain README: {readme} """ return _invoke( llm, [ { "role": "user", "content": [ { "type": "text", "text": input_, "cache_control": {"type": "ephemeral"}, } ], } ], stream, ) def invoke_with_cache_read_input(self, *, stream: bool = False) -> AIMessage: llm = ChatAnthropic( model="claude-3-5-sonnet-20240620", # type: ignore[call-arg] extra_headers={"anthropic-beta": "prompt-caching-2024-07-31"}, # type: ignore[call-arg] ) with open(REPO_ROOT_DIR / "README.md") as f: readme = f.read() input_ = f"""What's langchain? Here's the langchain README: {readme} """ # invoke twice so first invocation is cached _invoke( llm, [ { "role": "user", "content": [ { "type": "text", "text": input_, "cache_control": {"type": "ephemeral"}, } ], } ], stream, ) return _invoke( llm, [ { "role": "user", "content": [ { "type": "text", "text": input_, "cache_control": {"type": "ephemeral"}, } ], } ], stream, ) def _invoke(llm: ChatAnthropic, input_: list, stream: bool) -> AIMessage: if stream: full = None for chunk in llm.stream(input_): full = full + chunk if full else chunk # type: ignore[operator] return cast(AIMessage, full) else: return cast(AIMessage, llm.invoke(input_))
from abc import abstractmethod from typing import ( TYPE_CHECKING, TypeVar, Sequence, List, Union, Optional, Dict, ) from qdrant_client.http.models.models import Distance from docarray import Document, DocumentArray from docarray.math import ndarray from docarray.score import NamedScore if TYPE_CHECKING: # pragma: no cover import tensorflow import torch import numpy as np from qdrant_client import QdrantClient QdrantArrayType = TypeVar( 'QdrantArrayType', np.ndarray, tensorflow.Tensor, torch.Tensor, Sequence[float], ) class FindMixin: @property @abstractmethod def client(self) -> 'QdrantClient': raise NotImplementedError() @property @abstractmethod def collection_name(self) -> str: raise NotImplementedError() @property @abstractmethod def serialize_config(self) -> dict: raise NotImplementedError() @property @abstractmethod def distance(self) -> 'Distance': raise NotImplementedError() def _find_similar_vectors( self, q: 'QdrantArrayType', limit: int = 10, filter: Optional[Dict] = None ): query_vector = self._map_embedding(q) search_result = self.client.search( self.collection_name, query_vector=query_vector, query_filter=filter, search_params=None, top=limit, append_payload=['_serialized'], ) docs = [] for hit in search_result: doc = Document.from_base64( hit.payload['_serialized'], **self.serialize_config ) doc.scores[f'{self.distance.lower()}_similarity'] = NamedScore( value=hit.score ) docs.append(doc) return DocumentArray(docs) def _find( self, query: 'QdrantArrayType', limit: int = 10, filter: Optional[Dict] = None, **kwargs, ) -> List['DocumentArray']: """Returns approximate nearest neighbors given a batch of input queries. :param query: input supported to be used in Qdrant. :param limit: number of retrieved items :param filter: filter query used for pre-filtering :return: a list of DocumentArrays containing the closest Document objects for each of the queries in `query`. """ num_rows, _ = ndarray.get_array_rows(query) if num_rows == 1: return [self._find_similar_vectors(query, limit=limit, filter=filter)] else: closest_docs = [] for q in query: da = self._find_similar_vectors(q, limit=limit, filter=filter) closest_docs.append(da) return closest_docs def _find_with_filter( self, filter: Optional[Dict], limit: Optional[Union[int, float]] = 10 ): list_of_points, _offset = self.client.scroll( collection_name=self.collection_name, scroll_filter=filter, with_payload=True, limit=limit, ) da = DocumentArray() for result in list_of_points[:limit]: doc = Document.from_base64( result.payload['_serialized'], **self.serialize_config ) da.append(doc) return da def _filter( self, filter: Optional[Dict], limit: Optional[Union[int, float]] = 10 ) -> 'DocumentArray': """Returns a subset of documents by filtering by the given filter (`Qdrant` filter).. :param limit: number of retrieved items :param filter: filter query used for filtering. For more information: https://docarray.jina.ai/advanced/document-store/qdrant/#qdrant :return: a `DocumentArray` containing the `Document` objects that verify the filter. """ return self._find_with_filter(filter, limit=limit)
from abc import abstractmethod from typing import ( TYPE_CHECKING, TypeVar, Sequence, List, Union, Optional, Dict, ) from qdrant_client.http.models.models import Distance from docarray import Document, DocumentArray from docarray.math import ndarray from docarray.score import NamedScore if TYPE_CHECKING: import tensorflow import torch import numpy as np from qdrant_client import QdrantClient QdrantArrayType = TypeVar( 'QdrantArrayType', np.ndarray, tensorflow.Tensor, torch.Tensor, Sequence[float], ) class FindMixin: @property @abstractmethod def client(self) -> 'QdrantClient': raise NotImplementedError() @property @abstractmethod def collection_name(self) -> str: raise NotImplementedError() @property @abstractmethod def serialize_config(self) -> dict: raise NotImplementedError() @property @abstractmethod def distance(self) -> 'Distance': raise NotImplementedError() def _find_similar_vectors( self, q: 'QdrantArrayType', limit: int = 10, filter: Optional[Dict] = None ): query_vector = self._map_embedding(q) search_result = self.client.search( self.collection_name, query_vector=query_vector, query_filter=filter, search_params=None, top=limit, append_payload=['_serialized'], ) docs = [] for hit in search_result: doc = Document.from_base64( hit.payload['_serialized'], **self.serialize_config ) doc.scores[f'{self.distance.lower()}_similarity'] = NamedScore( value=hit.score ) docs.append(doc) return DocumentArray(docs) def _find( self, query: 'QdrantArrayType', limit: int = 10, filter: Optional[Dict] = None, **kwargs, ) -> List['DocumentArray']: """Returns approximate nearest neighbors given a batch of input queries. :param query: input supported to be used in Qdrant. :param limit: number of retrieved items :param filter: filter query used for pre-filtering :return: a list of DocumentArrays containing the closest Document objects for each of the queries in `query`. """ num_rows, _ = ndarray.get_array_rows(query) if num_rows == 1: return [self._find_similar_vectors(query, limit=limit, filter=filter)] else: closest_docs = [] for q in query: da = self._find_similar_vectors(q, limit=limit, filter=filter) closest_docs.append(da) return closest_docs def _find_with_filter( self, filter: Optional[Dict], limit: Optional[Union[int, float]] = 10 ): list_of_points, _offset = self.client.scroll( collection_name=self.collection_name, scroll_filter=filter, with_payload=True, limit=limit, ) da = DocumentArray() for result in list_of_points[:limit]: doc = Document.from_base64( result.payload['_serialized'], **self.serialize_config ) da.append(doc) return da def _filter( self, filter: Optional[Dict], limit: Optional[Union[int, float]] = 10 ) -> 'DocumentArray': """Returns a subset of documents by filtering by the given filter (`Qdrant` filter).. :param limit: number of retrieved items :param filter: filter query used for filtering. For more information: https://docarray.jina.ai/advanced/document-store/qdrant/#qdrant :return: a `DocumentArray` containing the `Document` objects that verify the filter. """ return self._find_with_filter(filter, limit=limit)
import csv import gzip import os from . import InputExample class STSDataReader: """Reads in the STS dataset. Each line contains two sentences (s1_col_idx, s2_col_idx) and one label (score_col_idx) Default values expects a tab separated file with the first & second column the sentence pair and third column the score (0...1). Default config normalizes scores from 0...5 to 0...1 """ def __init__( self, dataset_folder, s1_col_idx=0, s2_col_idx=1, score_col_idx=2, delimiter="\t", quoting=csv.QUOTE_NONE, normalize_scores=True, min_score=0, max_score=5, ): self.dataset_folder = dataset_folder self.score_col_idx = score_col_idx self.s1_col_idx = s1_col_idx self.s2_col_idx = s2_col_idx self.delimiter = delimiter self.quoting = quoting self.normalize_scores = normalize_scores self.min_score = min_score self.max_score = max_score def get_examples(self, filename, max_examples=0): """filename specified which data split to use (train.csv, dev.csv, test.csv).""" filepath = os.path.join(self.dataset_folder, filename) with gzip.open(filepath, "rt", encoding="utf8") if filename.endswith(".gz") else open( filepath, encoding="utf-8" ) as fIn: data = csv.reader(fIn, delimiter=self.delimiter, quoting=self.quoting) examples = [] for id, row in enumerate(data): score = float(row[self.score_col_idx]) if self.normalize_scores: # Normalize to a 0...1 value score = (score - self.min_score) / (self.max_score - self.min_score) s1 = row[self.s1_col_idx] s2 = row[self.s2_col_idx] examples.append(InputExample(guid=filename + str(id), texts=[s1, s2], label=score)) if max_examples > 0 and len(examples) >= max_examples: break return examples class STSBenchmarkDataReader(STSDataReader): """Reader especially for the STS benchmark dataset. There, the sentences are in column 5 and 6, the score is in column 4. Scores are normalized from 0...5 to 0...1 """ def __init__( self, dataset_folder, s1_col_idx=5, s2_col_idx=6, score_col_idx=4, delimiter="\t", quoting=csv.QUOTE_NONE, normalize_scores=True, min_score=0, max_score=5, ): super().__init__( dataset_folder=dataset_folder, s1_col_idx=s1_col_idx, s2_col_idx=s2_col_idx, score_col_idx=score_col_idx, delimiter=delimiter, quoting=quoting, normalize_scores=normalize_scores, min_score=min_score, max_score=max_score, )
from . import InputExample import csv import gzip import os class STSDataReader: """ Reads in the STS dataset. Each line contains two sentences (s1_col_idx, s2_col_idx) and one label (score_col_idx) Default values expects a tab separated file with the first & second column the sentence pair and third column the score (0...1). Default config normalizes scores from 0...5 to 0...1 """ def __init__( self, dataset_folder, s1_col_idx=0, s2_col_idx=1, score_col_idx=2, delimiter="\t", quoting=csv.QUOTE_NONE, normalize_scores=True, min_score=0, max_score=5, ): self.dataset_folder = dataset_folder self.score_col_idx = score_col_idx self.s1_col_idx = s1_col_idx self.s2_col_idx = s2_col_idx self.delimiter = delimiter self.quoting = quoting self.normalize_scores = normalize_scores self.min_score = min_score self.max_score = max_score def get_examples(self, filename, max_examples=0): """ filename specified which data split to use (train.csv, dev.csv, test.csv). """ filepath = os.path.join(self.dataset_folder, filename) with gzip.open(filepath, "rt", encoding="utf8") if filename.endswith(".gz") else open( filepath, encoding="utf-8" ) as fIn: data = csv.reader(fIn, delimiter=self.delimiter, quoting=self.quoting) examples = [] for id, row in enumerate(data): score = float(row[self.score_col_idx]) if self.normalize_scores: # Normalize to a 0...1 value score = (score - self.min_score) / (self.max_score - self.min_score) s1 = row[self.s1_col_idx] s2 = row[self.s2_col_idx] examples.append(InputExample(guid=filename + str(id), texts=[s1, s2], label=score)) if max_examples > 0 and len(examples) >= max_examples: break return examples class STSBenchmarkDataReader(STSDataReader): """ Reader especially for the STS benchmark dataset. There, the sentences are in column 5 and 6, the score is in column 4. Scores are normalized from 0...5 to 0...1 """ def __init__( self, dataset_folder, s1_col_idx=5, s2_col_idx=6, score_col_idx=4, delimiter="\t", quoting=csv.QUOTE_NONE, normalize_scores=True, min_score=0, max_score=5, ): super().__init__( dataset_folder=dataset_folder, s1_col_idx=s1_col_idx, s2_col_idx=s2_col_idx, score_col_idx=score_col_idx, delimiter=delimiter, quoting=quoting, normalize_scores=normalize_scores, min_score=min_score, max_score=max_score, )
import os.path from pathlib import Path from typing import Any, Callable, Optional, Union import numpy as np from PIL import Image from .utils import check_integrity, download_url from .vision import VisionDataset class SEMEION(VisionDataset): r"""`SEMEION <http://archive.ics.uci.edu/ml/datasets/semeion+handwritten+digit>`_ Dataset. Args: root (str or ``pathlib.Path``): Root directory of dataset where directory ``semeion.py`` exists. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. """ url = "http://archive.ics.uci.edu/ml/machine-learning-databases/semeion/semeion.data" filename = "semeion.data" md5_checksum = "cb545d371d2ce14ec121470795a77432" def __init__( self, root: Union[str, Path], transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = True, ) -> None: super().__init__(root, transform=transform, target_transform=target_transform) if download: self.download() if not self._check_integrity(): raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it") fp = os.path.join(self.root, self.filename) data = np.loadtxt(fp) # convert value to 8 bit unsigned integer # color (white #255) the pixels self.data = (data[:, :256] * 255).astype("uint8") self.data = np.reshape(self.data, (-1, 16, 16)) self.labels = np.nonzero(data[:, 256:])[1] def __getitem__(self, index: int) -> tuple[Any, Any]: """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ img, target = self.data[index], int(self.labels[index]) # doing this so that it is consistent with all other datasets # to return a PIL Image img = Image.fromarray(img, mode="L") if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target def __len__(self) -> int: return len(self.data) def _check_integrity(self) -> bool: root = self.root fpath = os.path.join(root, self.filename) if not check_integrity(fpath, self.md5_checksum): return False return True def download(self) -> None: if self._check_integrity(): return root = self.root download_url(self.url, root, self.filename, self.md5_checksum)
import os.path from pathlib import Path from typing import Any, Callable, Optional, Tuple, Union import numpy as np from PIL import Image from .utils import check_integrity, download_url from .vision import VisionDataset class SEMEION(VisionDataset): r"""`SEMEION <http://archive.ics.uci.edu/ml/datasets/semeion+handwritten+digit>`_ Dataset. Args: root (str or ``pathlib.Path``): Root directory of dataset where directory ``semeion.py`` exists. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. """ url = "http://archive.ics.uci.edu/ml/machine-learning-databases/semeion/semeion.data" filename = "semeion.data" md5_checksum = "cb545d371d2ce14ec121470795a77432" def __init__( self, root: Union[str, Path], transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = True, ) -> None: super().__init__(root, transform=transform, target_transform=target_transform) if download: self.download() if not self._check_integrity(): raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it") fp = os.path.join(self.root, self.filename) data = np.loadtxt(fp) # convert value to 8 bit unsigned integer # color (white #255) the pixels self.data = (data[:, :256] * 255).astype("uint8") self.data = np.reshape(self.data, (-1, 16, 16)) self.labels = np.nonzero(data[:, 256:])[1] def __getitem__(self, index: int) -> Tuple[Any, Any]: """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ img, target = self.data[index], int(self.labels[index]) # doing this so that it is consistent with all other datasets # to return a PIL Image img = Image.fromarray(img, mode="L") if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target def __len__(self) -> int: return len(self.data) def _check_integrity(self) -> bool: root = self.root fpath = os.path.join(root, self.filename) if not check_integrity(fpath, self.md5_checksum): return False return True def download(self) -> None: if self._check_integrity(): return root = self.root download_url(self.url, root, self.filename, self.md5_checksum)
import os import pytest from langchain_openai import OpenAI os.environ["OPENAI_API_KEY"] = "foo" def test_openai_model_param() -> None: llm = OpenAI(model="foo") assert llm.model_name == "foo" llm = OpenAI(model_name="foo") # type: ignore[call-arg] assert llm.model_name == "foo" # Test standard tracing params ls_params = llm._get_ls_params() assert ls_params == { "ls_provider": "openai", "ls_model_type": "llm", "ls_model_name": "foo", "ls_temperature": 0.7, "ls_max_tokens": 256, } def test_openai_model_kwargs() -> None: llm = OpenAI(model_kwargs={"foo": "bar"}) assert llm.model_kwargs == {"foo": "bar"} def test_openai_fields_in_model_kwargs() -> None: """Test that for backwards compatibility fields can be passed in as model_kwargs.""" llm = OpenAI(model_kwargs={"model_name": "foo"}) assert llm.model_name == "foo" llm = OpenAI(model_kwargs={"model": "foo"}) assert llm.model_name == "foo" def test_openai_incorrect_field() -> None: with pytest.warns(match="not default parameter"): llm = OpenAI(foo="bar") # type: ignore[call-arg] assert llm.model_kwargs == {"foo": "bar"} @pytest.fixture def mock_completion() -> dict: return { "id": "cmpl-3evkmQda5Hu7fcZavknQda3SQ", "object": "text_completion", "created": 1689989000, "model": "text-davinci-003", "choices": [ {"text": "Bar Baz", "index": 0, "logprobs": None, "finish_reason": "length"} ], "usage": {"prompt_tokens": 1, "completion_tokens": 2, "total_tokens": 3}, } @pytest.mark.parametrize("model", ["gpt-3.5-turbo-instruct"]) def test_get_token_ids(model: str) -> None: OpenAI(model=model).get_token_ids("foo") return def test_custom_token_counting() -> None: def token_encoder(text: str) -> list[int]: return [1, 2, 3] llm = OpenAI(custom_get_token_ids=token_encoder) assert llm.get_token_ids("foo") == [1, 2, 3]
import os from typing import List import pytest from langchain_openai import OpenAI os.environ["OPENAI_API_KEY"] = "foo" def test_openai_model_param() -> None: llm = OpenAI(model="foo") assert llm.model_name == "foo" llm = OpenAI(model_name="foo") # type: ignore[call-arg] assert llm.model_name == "foo" # Test standard tracing params ls_params = llm._get_ls_params() assert ls_params == { "ls_provider": "openai", "ls_model_type": "llm", "ls_model_name": "foo", "ls_temperature": 0.7, "ls_max_tokens": 256, } def test_openai_model_kwargs() -> None: llm = OpenAI(model_kwargs={"foo": "bar"}) assert llm.model_kwargs == {"foo": "bar"} def test_openai_fields_in_model_kwargs() -> None: """Test that for backwards compatibility fields can be passed in as model_kwargs.""" llm = OpenAI(model_kwargs={"model_name": "foo"}) assert llm.model_name == "foo" llm = OpenAI(model_kwargs={"model": "foo"}) assert llm.model_name == "foo" def test_openai_incorrect_field() -> None: with pytest.warns(match="not default parameter"): llm = OpenAI(foo="bar") # type: ignore[call-arg] assert llm.model_kwargs == {"foo": "bar"} @pytest.fixture def mock_completion() -> dict: return { "id": "cmpl-3evkmQda5Hu7fcZavknQda3SQ", "object": "text_completion", "created": 1689989000, "model": "text-davinci-003", "choices": [ {"text": "Bar Baz", "index": 0, "logprobs": None, "finish_reason": "length"} ], "usage": {"prompt_tokens": 1, "completion_tokens": 2, "total_tokens": 3}, } @pytest.mark.parametrize("model", ["gpt-3.5-turbo-instruct"]) def test_get_token_ids(model: str) -> None: OpenAI(model=model).get_token_ids("foo") return def test_custom_token_counting() -> None: def token_encoder(text: str) -> List[int]: return [1, 2, 3] llm = OpenAI(custom_get_token_ids=token_encoder) assert llm.get_token_ids("foo") == [1, 2, 3]
# Copyright (c) OpenMMLab. All rights reserved. from .bbox_overlaps import bbox_overlaps from .cityscapes_utils import evaluateImgLists from .class_names import (cityscapes_classes, coco_classes, coco_panoptic_classes, dataset_aliases, get_classes, imagenet_det_classes, imagenet_vid_classes, objects365v1_classes, objects365v2_classes, oid_challenge_classes, oid_v6_classes, voc_classes) from .mean_ap import average_precision, eval_map, print_map_summary from .panoptic_utils import (INSTANCE_OFFSET, pq_compute_multi_core, pq_compute_single_core) from .recall import (eval_recalls, plot_iou_recall, plot_num_recall, print_recall_summary) __all__ = [ 'voc_classes', 'imagenet_det_classes', 'imagenet_vid_classes', 'coco_classes', 'cityscapes_classes', 'dataset_aliases', 'get_classes', 'average_precision', 'eval_map', 'print_map_summary', 'eval_recalls', 'print_recall_summary', 'plot_num_recall', 'plot_iou_recall', 'oid_v6_classes', 'oid_challenge_classes', 'INSTANCE_OFFSET', 'pq_compute_single_core', 'pq_compute_multi_core', 'bbox_overlaps', 'objects365v1_classes', 'objects365v2_classes', 'coco_panoptic_classes', 'evaluateImgLists' ]
# Copyright (c) OpenMMLab. All rights reserved. from .bbox_overlaps import bbox_overlaps from .class_names import (cityscapes_classes, coco_classes, coco_panoptic_classes, dataset_aliases, get_classes, imagenet_det_classes, imagenet_vid_classes, objects365v1_classes, objects365v2_classes, oid_challenge_classes, oid_v6_classes, voc_classes) from .mean_ap import average_precision, eval_map, print_map_summary from .panoptic_utils import (INSTANCE_OFFSET, pq_compute_multi_core, pq_compute_single_core) from .recall import (eval_recalls, plot_iou_recall, plot_num_recall, print_recall_summary) __all__ = [ 'voc_classes', 'imagenet_det_classes', 'imagenet_vid_classes', 'coco_classes', 'cityscapes_classes', 'dataset_aliases', 'get_classes', 'average_precision', 'eval_map', 'print_map_summary', 'eval_recalls', 'print_recall_summary', 'plot_num_recall', 'plot_iou_recall', 'oid_v6_classes', 'oid_challenge_classes', 'INSTANCE_OFFSET', 'pq_compute_single_core', 'pq_compute_multi_core', 'bbox_overlaps', 'objects365v1_classes', 'objects365v2_classes', 'coco_panoptic_classes' ]
import os import yaml from jina.serve.runtimes.gateway.gateway import BaseGateway, Gateway from jina.jaml import JAML class MyDummyGateway(Gateway): async def setup_server(self): self.server = 'dummy server' async def run_server(self): self.logger.info(self.server) async def shutdown(self): pass def test_cls_from_tag(): assert JAML.cls_from_tag('MyDummyGateway') == MyDummyGateway assert JAML.cls_from_tag('!MyDummyGateway') == MyDummyGateway assert JAML.cls_from_tag('BaseGateway') == BaseGateway assert JAML.cls_from_tag('Nonexisting') is None def test_base_jtype(tmpdir): gateway_path = os.path.join(tmpdir, 'gateway.yml') g = BaseGateway.load_config('Gateway', runtime_args={'port': [12345]}) g.save_config(gateway_path) with open(gateway_path, 'r', encoding='utf-8') as file: conf = yaml.safe_load(file) assert 'jtype' in conf assert conf['jtype'] == 'Gateway' assert ( type(BaseGateway.load_config(gateway_path, runtime_args={'port': [12345]})) == Gateway ) def test_custom_jtype(tmpdir): gateway_path = os.path.join(tmpdir, 'gateway.yml') e = BaseGateway.load_config('MyDummyGateway', runtime_args={'port': [12345]}) print(f' e {type(e)} => {e.__dict__}') e.save_config(gateway_path) with open(gateway_path, 'r', encoding='utf-8') as file: conf = yaml.safe_load(file) assert 'jtype' in conf assert conf['jtype'] == 'MyDummyGateway' assert ( type(BaseGateway.load_config(gateway_path, runtime_args={'port': [12345]})) == MyDummyGateway )
import os import yaml from jina.serve.runtimes.gateway.gateway import BaseGateway, Gateway from jina.jaml import JAML class MyDummyGateway(Gateway): async def setup_server(self): self.server = 'dummy server' async def run_server(self): self.logger.info(self.server) async def shutdown(self): pass def test_cls_from_tag(): assert JAML.cls_from_tag('MyDummyGateway') == MyDummyGateway assert JAML.cls_from_tag('!MyDummyGateway') == MyDummyGateway assert JAML.cls_from_tag('BaseGateway') == BaseGateway assert JAML.cls_from_tag('Nonexisting') is None def test_base_jtype(tmpdir): gateway_path = os.path.join(tmpdir, 'gateway.yml') g = BaseGateway.load_config('Gateway', runtime_args={'port': [12345]}) g.save_config(gateway_path) with open(gateway_path, 'r') as file: conf = yaml.safe_load(file) assert 'jtype' in conf assert conf['jtype'] == 'Gateway' assert ( type(BaseGateway.load_config(gateway_path, runtime_args={'port': [12345]})) == Gateway ) def test_custom_jtype(tmpdir): gateway_path = os.path.join(tmpdir, 'gateway.yml') e = BaseGateway.load_config('MyDummyGateway', runtime_args={'port': [12345]}) print(f' e {type(e)} => {e.__dict__}') e.save_config(gateway_path) with open(gateway_path, 'r') as file: conf = yaml.safe_load(file) assert 'jtype' in conf assert conf['jtype'] == 'MyDummyGateway' assert ( type(BaseGateway.load_config(gateway_path, runtime_args={'port': [12345]})) == MyDummyGateway )
# Copyright (c) OpenMMLab. All rights reserved. from typing import Optional import torch.nn as nn import torch.nn.functional as F from torch import Tensor from mmdet.registry import MODELS from .utils import weighted_loss @weighted_loss def mse_loss(pred: Tensor, target: Tensor) -> Tensor: """A Wrapper of MSE loss. Args: pred (Tensor): The prediction. target (Tensor): The learning target of the prediction. Returns: Tensor: loss Tensor """ return F.mse_loss(pred, target, reduction='none') @MODELS.register_module() class MSELoss(nn.Module): """MSELoss. Args: reduction (str, optional): The method that reduces the loss to a scalar. Options are "none", "mean" and "sum". loss_weight (float, optional): The weight of the loss. Defaults to 1.0 """ def __init__(self, reduction: str = 'mean', loss_weight: float = 1.0) -> None: super().__init__() self.reduction = reduction self.loss_weight = loss_weight def forward(self, pred: Tensor, target: Tensor, weight: Optional[Tensor] = None, avg_factor: Optional[int] = None, reduction_override: Optional[str] = None) -> Tensor: """Forward function of loss. Args: pred (Tensor): The prediction. target (Tensor): The learning target of the prediction. weight (Tensor, optional): Weight of the loss for each prediction. Defaults to None. avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. reduction_override (str, optional): The reduction method used to override the original reduction method of the loss. Defaults to None. Returns: Tensor: The calculated loss. """ assert reduction_override in (None, 'none', 'mean', 'sum') reduction = ( reduction_override if reduction_override else self.reduction) loss = self.loss_weight * mse_loss( pred, target, weight, reduction=reduction, avg_factor=avg_factor) return loss
# Copyright (c) OpenMMLab. All rights reserved. import torch.nn as nn import torch.nn.functional as F from mmdet.registry import MODELS from .utils import weighted_loss @weighted_loss def mse_loss(pred, target): """Wrapper of mse loss.""" return F.mse_loss(pred, target, reduction='none') @MODELS.register_module() class MSELoss(nn.Module): """MSELoss. Args: reduction (str, optional): The method that reduces the loss to a scalar. Options are "none", "mean" and "sum". loss_weight (float, optional): The weight of the loss. Defaults to 1.0 """ def __init__(self, reduction='mean', loss_weight=1.0): super().__init__() self.reduction = reduction self.loss_weight = loss_weight def forward(self, pred, target, weight=None, avg_factor=None, reduction_override=None): """Forward function of loss. Args: pred (torch.Tensor): The prediction. target (torch.Tensor): The learning target of the prediction. weight (torch.Tensor, optional): Weight of the loss for each prediction. Defaults to None. avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. reduction_override (str, optional): The reduction method used to override the original reduction method of the loss. Defaults to None. Returns: torch.Tensor: The calculated loss """ assert reduction_override in (None, 'none', 'mean', 'sum') reduction = ( reduction_override if reduction_override else self.reduction) loss = self.loss_weight * mse_loss( pred, target, weight, reduction=reduction, avg_factor=avg_factor) return loss
_base_ = './retinanet_r50-caffe_fpn_ms-3x_coco.py' # learning policy model = dict( pretrained='open-mmlab://detectron2/resnet101_caffe', backbone=dict(depth=101))
_base_ = './retinanet_r50_caffe_fpn_mstrain_3x_coco.py' # learning policy model = dict( pretrained='open-mmlab://detectron2/resnet101_caffe', backbone=dict(depth=101))
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" from pathlib import Path import pytest from jina import Executor from ...minranker import MinRanker def test_config(): ex = Executor.load_config(str(Path(__file__).parents[2] / 'config.yml')) assert ex.metric == 'cosine' @pytest.mark.parametrize('default_traversal_paths', [['r'], ['c']]) def test_ranker(documents_chunk, documents_chunk_chunk, default_traversal_paths): ranker = MinRanker(metric='cosine', default_traversal_paths=default_traversal_paths) if default_traversal_paths == ['r']: ranking_docs = documents_chunk else: ranking_docs = documents_chunk_chunk ranker.rank(ranking_docs, parameters={}) assert ranking_docs for doc in ranking_docs.traverse_flat(default_traversal_paths): assert doc.matches for i in range(len(doc.matches) - 1): match = doc.matches[i] assert match.tags assert ( match.scores['cosine'].value >= doc.matches[i + 1].scores['cosine'].value )
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import pytest from ...minranker import MinRanker @pytest.mark.parametrize('default_traversal_paths', [['r'], ['c']]) def test_ranker(documents_chunk, documents_chunk_chunk, default_traversal_paths): ranker = MinRanker(metric='cosine', default_traversal_paths=default_traversal_paths) if default_traversal_paths == ['r']: ranking_docs = documents_chunk else: ranking_docs = documents_chunk_chunk ranker.rank(ranking_docs, parameters={}) assert ranking_docs for doc in ranking_docs.traverse_flat(default_traversal_paths): assert doc.matches for i in range(len(doc.matches) - 1): match = doc.matches[i] assert match.tags assert ( match.scores['cosine'].value >= doc.matches[i + 1].scores['cosine'].value )
import os import urllib import pytest from pydantic import parse_obj_as, schema_json_of from docarray.base_doc.io.json import orjson_dumps from docarray.typing import TextUrl from docarray.typing.url.mimetypes import ( OBJ_MIMETYPE, AUDIO_MIMETYPE, VIDEO_MIMETYPE, IMAGE_MIMETYPE, TEXT_MIMETYPE, ) from tests import TOYDATA_DIR REMOTE_TEXT_FILE = 'https://de.wikipedia.org/wiki/Brixen' CUR_DIR = os.path.dirname(os.path.abspath(__file__)) LOCAL_TEXT_FILES = [ str(TOYDATA_DIR / 'penal_colony.txt'), str(TOYDATA_DIR / 'test.md'), str(TOYDATA_DIR / 'test.html'), str(TOYDATA_DIR / 'test.css'), str(TOYDATA_DIR / 'test.csv'), str(TOYDATA_DIR / 'test.log'), ] LOCAL_TEXT_FILES_AND_BEGINNING = [ (str(TOYDATA_DIR / 'penal_colony.txt'), '“It’s a peculiar apparatus,”'), (str(TOYDATA_DIR / 'test.md'), "# Hello"), (str(TOYDATA_DIR / 'test.html'), "<html>"), (str(TOYDATA_DIR / 'test.css'), 'body {'), (str(TOYDATA_DIR / 'test.csv'), "John,Doe"), (str(TOYDATA_DIR / 'test.log'), "2022-11-25 12:34:56 INFO: Program started"), ] @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'url,expected_beginning', [(REMOTE_TEXT_FILE, '<!DOCTYPE html>'), *LOCAL_TEXT_FILES_AND_BEGINNING], ) def test_load(url, expected_beginning): uri = parse_obj_as(TextUrl, url) txt = uri.load() assert txt.startswith(expected_beginning) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize('url', [REMOTE_TEXT_FILE, *LOCAL_TEXT_FILES]) def test_load_to_bytes(url): uri = parse_obj_as(TextUrl, url) txt_bytes = uri.load_bytes() assert isinstance(txt_bytes, bytes) @pytest.mark.proto @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize('url', [REMOTE_TEXT_FILE, *LOCAL_TEXT_FILES]) def test_proto_text_url(url): uri = parse_obj_as(TextUrl, url) proto = uri._to_node_protobuf() assert 'text_url' in str(proto) @pytest.mark.internet def test_load_timeout(): url = parse_obj_as(TextUrl, REMOTE_TEXT_FILE) with pytest.raises(urllib.error.URLError): _ = url.load(timeout=0.001) with pytest.raises(urllib.error.URLError): _ = url.load_bytes(timeout=0.001) def test_json_schema(): schema_json_of(TextUrl) @pytest.mark.internet def test_dump_json(): url = parse_obj_as(TextUrl, REMOTE_TEXT_FILE) orjson_dumps(url) @pytest.mark.parametrize( 'path_to_file', [REMOTE_TEXT_FILE, *LOCAL_TEXT_FILES], ) def test_validation(path_to_file): url = parse_obj_as(TextUrl, path_to_file) assert isinstance(url, TextUrl) assert isinstance(url, str) @pytest.mark.parametrize( 'file_type, file_source', [ *[(TEXT_MIMETYPE, file) for file in LOCAL_TEXT_FILES], (TEXT_MIMETYPE, REMOTE_TEXT_FILE), (AUDIO_MIMETYPE, os.path.join(TOYDATA_DIR, 'hello.aac')), (AUDIO_MIMETYPE, os.path.join(TOYDATA_DIR, 'hello.mp3')), (AUDIO_MIMETYPE, os.path.join(TOYDATA_DIR, 'hello.ogg')), (IMAGE_MIMETYPE, os.path.join(TOYDATA_DIR, 'test.png')), (VIDEO_MIMETYPE, os.path.join(TOYDATA_DIR, 'mov_bbb.mp4')), (OBJ_MIMETYPE, os.path.join(TOYDATA_DIR, 'test.glb')), ], ) def test_file_validation(file_type, file_source): if file_type != TextUrl.mime_type(): with pytest.raises(ValueError): parse_obj_as(TextUrl, file_source) else: parse_obj_as(TextUrl, file_source)
import os import urllib import pytest from pydantic import parse_obj_as, schema_json_of from docarray.base_doc.io.json import orjson_dumps from docarray.typing import TextUrl from tests import TOYDATA_DIR REMOTE_TEXT_FILE = 'https://de.wikipedia.org/wiki/Brixen' CUR_DIR = os.path.dirname(os.path.abspath(__file__)) LOCAL_TEXT_FILES = [ str(TOYDATA_DIR / 'penal_colony.txt'), str(TOYDATA_DIR / 'test.md'), str(TOYDATA_DIR / 'test.html'), str(TOYDATA_DIR / 'test.css'), str(TOYDATA_DIR / 'test.csv'), str(TOYDATA_DIR / 'test.log'), ] LOCAL_TEXT_FILES_AND_BEGINNING = [ (str(TOYDATA_DIR / 'penal_colony.txt'), '“It’s a peculiar apparatus,”'), (str(TOYDATA_DIR / 'test.md'), "# Hello"), (str(TOYDATA_DIR / 'test.html'), "<html>"), (str(TOYDATA_DIR / 'test.css'), 'body {'), (str(TOYDATA_DIR / 'test.csv'), "John,Doe"), (str(TOYDATA_DIR / 'test.log'), "2022-11-25 12:34:56 INFO: Program started"), ] @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize( 'url,expected_beginning', [(REMOTE_TEXT_FILE, '<!DOCTYPE html>'), *LOCAL_TEXT_FILES_AND_BEGINNING], ) def test_load(url, expected_beginning): uri = parse_obj_as(TextUrl, url) txt = uri.load() assert txt.startswith(expected_beginning) @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize('url', [REMOTE_TEXT_FILE, *LOCAL_TEXT_FILES]) def test_load_to_bytes(url): uri = parse_obj_as(TextUrl, url) txt_bytes = uri.load_bytes() assert isinstance(txt_bytes, bytes) @pytest.mark.proto @pytest.mark.slow @pytest.mark.internet @pytest.mark.parametrize('url', [REMOTE_TEXT_FILE, *LOCAL_TEXT_FILES]) def test_proto_text_url(url): uri = parse_obj_as(TextUrl, url) proto = uri._to_node_protobuf() assert 'text_url' in str(proto) @pytest.mark.internet def test_load_timeout(): url = parse_obj_as(TextUrl, REMOTE_TEXT_FILE) with pytest.raises(urllib.error.URLError): _ = url.load(timeout=0.001) with pytest.raises(urllib.error.URLError): _ = url.load_bytes(timeout=0.001) def test_json_schema(): schema_json_of(TextUrl) @pytest.mark.internet def test_dump_json(): url = parse_obj_as(TextUrl, REMOTE_TEXT_FILE) orjson_dumps(url) @pytest.mark.parametrize( 'path_to_file', [REMOTE_TEXT_FILE, *LOCAL_TEXT_FILES], ) def test_validation(path_to_file): url = parse_obj_as(TextUrl, path_to_file) assert isinstance(url, TextUrl) assert isinstance(url, str)
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import os import subprocess import numpy as np import pytest from jina import Document, DocumentArray, Flow from jina.executors.metas import get_default_metas from ...faiss_searcher import FaissSearcher def _get_docs_from_vecs(queries): docs = DocumentArray() for q in queries: doc = Document(embedding=q) docs.append(doc) return docs @pytest.fixture(scope='function', autouse=True) def metas(tmpdir): os.environ['TEST_WORKSPACE'] = str(tmpdir) metas = get_default_metas() metas['workspace'] = os.environ['TEST_WORKSPACE'] metas['name'] = 'faiss_idx' yield metas del os.environ['TEST_WORKSPACE'] def test_train_and_index(metas, tmpdir): query = np.array(np.random.random([10, 10]), dtype=np.float32) query_docs = _get_docs_from_vecs(query) trained_index_file = os.path.join(tmpdir, 'faiss.index') train_data = np.array(np.random.random([512, 10]), dtype=np.float32) index_docs = _get_docs_from_vecs(train_data) f = Flow().add( uses=FaissSearcher, timeout_ready=-1, uses_with={ 'index_key': 'IVF6,PQ2', 'trained_index_file': trained_index_file, }, uses_meta=metas, ) with f: import faiss faiss_index = faiss.index_factory(10, 'IVF6,PQ2', faiss.METRIC_INNER_PRODUCT) faiss.normalize_L2(train_data) faiss_index.train(train_data) faiss.write_index(faiss_index, trained_index_file) # train and index docs first f.post(on='/index', data=index_docs) result = f.post( on='/search', data=query_docs, return_results=True, parameters={'limit': 4} )[0].docs assert len(result[0].matches) == 4 for d in result: assert ( d.matches[0].scores['cosine'].value <= d.matches[1].scores['cosine'].value ) @pytest.mark.gpu @pytest.mark.docker def test_docker_runtime_gpu(build_docker_image_gpu: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'executor', f'--uses=docker://{build_docker_image_gpu}', '--gpus', 'all', ], timeout=30, check=True, )
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import os import subprocess import numpy as np import pytest from jina import Document, DocumentArray, Flow from jina.executors.metas import get_default_metas from ...faiss_searcher import FaissSearcher def _get_docs_from_vecs(queries): docs = DocumentArray() for q in queries: doc = Document(embedding=q) docs.append(doc) return docs @pytest.fixture(scope='function', autouse=True) def metas(tmpdir): os.environ['TEST_WORKSPACE'] = str(tmpdir) metas = get_default_metas() metas['workspace'] = os.environ['TEST_WORKSPACE'] metas['name'] = 'faiss_idx' yield metas del os.environ['TEST_WORKSPACE'] def test_train_and_index(metas, tmpdir): query = np.array(np.random.random([10, 10]), dtype=np.float32) query_docs = _get_docs_from_vecs(query) trained_index_file = os.path.join(tmpdir, 'faiss.index') train_data = np.array(np.random.random([512, 10]), dtype=np.float32) index_docs = _get_docs_from_vecs(train_data) f = Flow().add( uses=FaissSearcher, timeout_ready=-1, uses_with={ 'index_key': 'IVF6,PQ2', 'trained_index_file': trained_index_file, }, uses_meta=metas, ) with f: import faiss faiss_index = faiss.index_factory(10, 'IVF6,PQ2', faiss.METRIC_INNER_PRODUCT) faiss.normalize_L2(train_data) faiss_index.train(train_data) faiss.write_index(faiss_index, trained_index_file) # train and index docs first f.post(on='/index', data=index_docs) result = f.post( on='/search', data=query_docs, return_results=True, parameters={'top_k': 4} )[0].docs assert len(result[0].matches) == 4 for d in result: assert ( d.matches[0].scores['cosine'].value <= d.matches[1].scores['cosine'].value ) @pytest.mark.gpu @pytest.mark.docker def test_docker_runtime_gpu(build_docker_image_gpu: str): with pytest.raises(subprocess.TimeoutExpired): subprocess.run( [ 'jina', 'executor', f'--uses=docker://{build_docker_image_gpu}', '--gpus', 'all', ], timeout=30, check=True, )
# Copyright (c) OpenMMLab. All rights reserved. from ..builder import DETECTORS from .single_stage import SingleStageDetector @DETECTORS.register_module() class YOLOX(SingleStageDetector): r"""Implementation of `YOLOX: Exceeding YOLO Series in 2021 <https://arxiv.org/abs/2107.08430>`_""" def __init__(self, backbone, neck, bbox_head, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None): super(YOLOX, self).__init__(backbone, neck, bbox_head, train_cfg, test_cfg, pretrained, init_cfg)
from ..builder import DETECTORS from .single_stage import SingleStageDetector @DETECTORS.register_module() class YOLOX(SingleStageDetector): r"""Implementation of `YOLOX: Exceeding YOLO Series in 2021 <https://arxiv.org/abs/2107.08430>`_""" def __init__(self, backbone, neck, bbox_head, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None): super(YOLOX, self).__init__(backbone, neck, bbox_head, train_cfg, test_cfg, pretrained, init_cfg)
""" This tool allows agents to interact with the pygithub library and operate on a GitHub repository. To use this tool, you must first set as environment variables: GITHUB_API_TOKEN GITHUB_REPOSITORY -> format: {owner}/{repo} """ from typing import Any, Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun from langchain_core.tools import BaseTool from pydantic import BaseModel, Field from langchain_community.utilities.github import GitHubAPIWrapper class GitHubAction(BaseTool): """Tool for interacting with the GitHub API.""" api_wrapper: GitHubAPIWrapper = Field(default_factory=GitHubAPIWrapper) mode: str name: str = "" description: str = "" args_schema: Optional[Type[BaseModel]] = None def _run( self, instructions: Optional[str] = "", run_manager: Optional[CallbackManagerForToolRun] = None, **kwargs: Any, ) -> str: """Use the GitHub API to run an operation.""" if not instructions or instructions == "{}": # Catch other forms of empty input that GPT-4 likes to send. instructions = "" if self.args_schema is not None: field_names = list(self.args_schema.schema()["properties"].keys()) if len(field_names) > 1: raise AssertionError( f"Expected one argument in tool schema, got {field_names}." ) if field_names: field = field_names[0] else: field = "" query = str(kwargs.get(field, "")) else: query = instructions return self.api_wrapper.run(self.mode, query)
""" This tool allows agents to interact with the pygithub library and operate on a GitHub repository. To use this tool, you must first set as environment variables: GITHUB_API_TOKEN GITHUB_REPOSITORY -> format: {owner}/{repo} """ from typing import Any, Optional, Type from langchain_core.callbacks import CallbackManagerForToolRun from langchain_core.tools import BaseTool from pydantic import BaseModel, Field from langchain_community.utilities.github import GitHubAPIWrapper class GitHubAction(BaseTool): # type: ignore[override] """Tool for interacting with the GitHub API.""" api_wrapper: GitHubAPIWrapper = Field(default_factory=GitHubAPIWrapper) # type: ignore[arg-type] mode: str name: str = "" description: str = "" args_schema: Optional[Type[BaseModel]] = None def _run( self, instructions: Optional[str] = "", run_manager: Optional[CallbackManagerForToolRun] = None, **kwargs: Any, ) -> str: """Use the GitHub API to run an operation.""" if not instructions or instructions == "{}": # Catch other forms of empty input that GPT-4 likes to send. instructions = "" if self.args_schema is not None: field_names = list(self.args_schema.schema()["properties"].keys()) if len(field_names) > 1: raise AssertionError( f"Expected one argument in tool schema, got {field_names}." ) if field_names: field = field_names[0] else: field = "" query = str(kwargs.get(field, "")) else: query = instructions return self.api_wrapper.run(self.mode, query)
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def deprecate(*args, take_from: Optional[Union[Dict, Any]] = None, standard_warn=True, stacklevel=2): from .. import __version__ deprecated_kwargs = take_from values = () if not isinstance(args[0], tuple): args = (args,) for attribute, version_name, message in args: if version.parse(version.parse(__version__).base_version) >= version.parse(version_name): raise ValueError( f"The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'" f" version {__version__} is >= {version_name}" ) warning = None if isinstance(deprecated_kwargs, dict) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(attribute),) warning = f"The `{attribute}` argument is deprecated and will be removed in version {version_name}." elif hasattr(deprecated_kwargs, attribute): values += (getattr(deprecated_kwargs, attribute),) warning = f"The `{attribute}` attribute is deprecated and will be removed in version {version_name}." elif deprecated_kwargs is None: warning = f"`{attribute}` is deprecated and will be removed in version {version_name}." if warning is not None: warning = warning + " " if standard_warn else "" warnings.warn(warning + message, FutureWarning, stacklevel=stacklevel) if isinstance(deprecated_kwargs, dict) and len(deprecated_kwargs) > 0: call_frame = inspect.getouterframes(inspect.currentframe())[1] filename = call_frame.filename line_number = call_frame.lineno function = call_frame.function key, value = next(iter(deprecated_kwargs.items())) raise TypeError(f"{function} in {filename} line {line_number - 1} got an unexpected keyword argument `{key}`") if len(values) == 0: return elif len(values) == 1: return values[0] return values
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def deprecate(*args, take_from: Optional[Union[Dict, Any]] = None, standard_warn=True, stacklevel=2): from .. import __version__ deprecated_kwargs = take_from values = () if not isinstance(args[0], tuple): args = (args,) for attribute, version_name, message in args: if version.parse(version.parse(__version__).base_version) >= version.parse(version_name): raise ValueError( f"The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'" f" version {__version__} is >= {version_name}" ) warning = None if isinstance(deprecated_kwargs, dict) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(attribute),) warning = f"The `{attribute}` argument is deprecated and will be removed in version {version_name}." elif hasattr(deprecated_kwargs, attribute): values += (getattr(deprecated_kwargs, attribute),) warning = f"The `{attribute}` attribute is deprecated and will be removed in version {version_name}." elif deprecated_kwargs is None: warning = f"`{attribute}` is deprecated and will be removed in version {version_name}." if warning is not None: warning = warning + " " if standard_warn else "" warnings.warn(warning + message, FutureWarning, stacklevel=stacklevel) if isinstance(deprecated_kwargs, dict) and len(deprecated_kwargs) > 0: call_frame = inspect.getouterframes(inspect.currentframe())[1] filename = call_frame.filename line_number = call_frame.lineno function = call_frame.function key, value = next(iter(deprecated_kwargs.items())) raise TypeError(f"{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`") if len(values) == 0: return elif len(values) == 1: return values[0] return values
_base_ = [ '../_base_/models/fast-rcnn_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] dataset_type = 'CocoDataset' data_root = 'data/coco/' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadProposals', num_max_proposals=2000), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'proposals', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadProposals', num_max_proposals=None), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='ToTensor', keys=['proposals']), dict( type='ToDataContainer', fields=[dict(key='proposals', stack=False)]), dict(type='Collect', keys=['img', 'proposals']), ]) ] data = dict( samples_per_gpu=2, workers_per_gpu=2, train=dict( proposal_file=data_root + 'proposals/rpn_r50_fpn_1x_train2017.pkl', pipeline=train_pipeline), val=dict( proposal_file=data_root + 'proposals/rpn_r50_fpn_1x_val2017.pkl', pipeline=test_pipeline), test=dict( proposal_file=data_root + 'proposals/rpn_r50_fpn_1x_val2017.pkl', pipeline=test_pipeline))
_base_ = [ '../_base_/models/fast_rcnn_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] dataset_type = 'CocoDataset' data_root = 'data/coco/' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadProposals', num_max_proposals=2000), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'proposals', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadProposals', num_max_proposals=None), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='ToTensor', keys=['proposals']), dict( type='ToDataContainer', fields=[dict(key='proposals', stack=False)]), dict(type='Collect', keys=['img', 'proposals']), ]) ] data = dict( samples_per_gpu=2, workers_per_gpu=2, train=dict( proposal_file=data_root + 'proposals/rpn_r50_fpn_1x_train2017.pkl', pipeline=train_pipeline), val=dict( proposal_file=data_root + 'proposals/rpn_r50_fpn_1x_val2017.pkl', pipeline=test_pipeline), test=dict( proposal_file=data_root + 'proposals/rpn_r50_fpn_1x_val2017.pkl', pipeline=test_pipeline))
import numpy as np from docarray.document import AnyDocument, BaseDocument from docarray.typing import NdArray def test_any_doc(): class InnerDocument(BaseDocument): text: str tensor: NdArray class CustomDoc(BaseDocument): inner: InnerDocument text: str doc = CustomDoc( text='bye', inner=InnerDocument(text='hello', tensor=np.zeros((3, 224, 224))) ) any_doc = AnyDocument(**doc.__dict__) assert any_doc.text == doc.text assert any_doc.inner.text == doc.inner.text assert (any_doc.inner.tensor == doc.inner.tensor).all()
import numpy as np from docarray.document import AnyDocument, BaseDocument from docarray.typing import Tensor def test_any_doc(): class InnerDocument(BaseDocument): text: str tensor: Tensor class CustomDoc(BaseDocument): inner: InnerDocument text: str doc = CustomDoc( text='bye', inner=InnerDocument(text='hello', tensor=np.zeros((3, 224, 224))) ) any_doc = AnyDocument(**doc.__dict__) assert any_doc.text == doc.text assert any_doc.inner.text == doc.inner.text assert (any_doc.inner.tensor == doc.inner.tensor).all()
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.callbacks.mlflow_callback import ( MlflowCallbackHandler, MlflowLogger, analyze_text, construct_html_from_prompt_and_generation, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "analyze_text": "langchain_community.callbacks.mlflow_callback", "construct_html_from_prompt_and_generation": ( "langchain_community.callbacks.mlflow_callback" ), "MlflowLogger": "langchain_community.callbacks.mlflow_callback", "MlflowCallbackHandler": "langchain_community.callbacks.mlflow_callback", } _import_attribute = create_importer(__file__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "MlflowCallbackHandler", "MlflowLogger", "analyze_text", "construct_html_from_prompt_and_generation", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.callbacks.mlflow_callback import ( MlflowCallbackHandler, MlflowLogger, analyze_text, construct_html_from_prompt_and_generation, ) # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "analyze_text": "langchain_community.callbacks.mlflow_callback", "construct_html_from_prompt_and_generation": ( "langchain_community.callbacks.mlflow_callback" ), "MlflowLogger": "langchain_community.callbacks.mlflow_callback", "MlflowCallbackHandler": "langchain_community.callbacks.mlflow_callback", } _import_attribute = create_importer(__file__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "analyze_text", "construct_html_from_prompt_and_generation", "MlflowLogger", "MlflowCallbackHandler", ]
# coding=utf-8 # Copyright 2025 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from pathlib import Path from tempfile import TemporaryDirectory from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card class CreateModelCardTest(unittest.TestCase): def test_generate_model_card_with_library_name(self): with TemporaryDirectory() as tmpdir: file_path = Path(tmpdir) / "README.md" file_path.write_text("---\nlibrary_name: foo\n---\nContent\n") model_card = load_or_create_model_card(file_path) populate_model_card(model_card) assert model_card.data.library_name == "foo"
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from pathlib import Path from tempfile import TemporaryDirectory from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card class CreateModelCardTest(unittest.TestCase): def test_generate_model_card_with_library_name(self): with TemporaryDirectory() as tmpdir: file_path = Path(tmpdir) / "README.md" file_path.write_text("---\nlibrary_name: foo\n---\nContent\n") model_card = load_or_create_model_card(file_path) populate_model_card(model_card) assert model_card.data.library_name == "foo"
""" This file runs Masked Language Model. You provide a training file. Each line is interpreted as a sentence / paragraph. Optionally, you can also provide a dev file. The fine-tuned model is stored in the output/model_name folder. Usage: python train_mlm.py model_name data/train_sentences.txt [data/dev_sentences.txt] """ import gzip import sys from datetime import datetime from transformers import ( AutoModelForMaskedLM, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForWholeWordMask, Trainer, TrainingArguments, ) if len(sys.argv) < 3: print("Usage: python train_mlm.py model_name data/train_sentences.txt [data/dev_sentences.txt]") exit() model_name = sys.argv[1] per_device_train_batch_size = 64 save_steps = 1000 # Save model every 1k steps num_train_epochs = 3 # Number of epochs use_fp16 = False # Set to True, if your GPU supports FP16 operations max_length = 100 # Max length for a text input do_whole_word_mask = True # If set to true, whole words are masked mlm_prob = 0.15 # Probability that a word is replaced by a [MASK] token # Load the model model = AutoModelForMaskedLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) output_dir = "output/{}-{}".format(model_name.replace("/", "_"), datetime.now().strftime("%Y-%m-%d_%H-%M-%S")) print("Save checkpoints to:", output_dir) ##### Load our training datasets train_sentences = [] train_path = sys.argv[2] with gzip.open(train_path, "rt", encoding="utf8") if train_path.endswith(".gz") else open( train_path, "r", encoding="utf8" ) as fIn: for line in fIn: line = line.strip() if len(line) >= 10: train_sentences.append(line) print("Train sentences:", len(train_sentences)) dev_sentences = [] if len(sys.argv) >= 4: dev_path = sys.argv[3] with gzip.open(dev_path, "rt", encoding="utf8") if dev_path.endswith(".gz") else open( dev_path, "r", encoding="utf8" ) as fIn: for line in fIn: line = line.strip() if len(line) >= 10: dev_sentences.append(line) print("Dev sentences:", len(dev_sentences)) # A dataset wrapper, that tokenizes our data on-the-fly class TokenizedSentencesDataset: def __init__(self, sentences, tokenizer, max_length, cache_tokenization=False): self.tokenizer = tokenizer self.sentences = sentences self.max_length = max_length self.cache_tokenization = cache_tokenization def __getitem__(self, item): if not self.cache_tokenization: return self.tokenizer( self.sentences[item], add_special_tokens=True, truncation=True, max_length=self.max_length, return_special_tokens_mask=True, ) if isinstance(self.sentences[item], str): self.sentences[item] = self.tokenizer( self.sentences[item], add_special_tokens=True, truncation=True, max_length=self.max_length, return_special_tokens_mask=True, ) return self.sentences[item] def __len__(self): return len(self.sentences) train_dataset = TokenizedSentencesDataset(train_sentences, tokenizer, max_length) dev_dataset = ( TokenizedSentencesDataset(dev_sentences, tokenizer, max_length, cache_tokenization=True) if len(dev_sentences) > 0 else None ) ##### Training arguments if do_whole_word_mask: data_collator = DataCollatorForWholeWordMask(tokenizer=tokenizer, mlm=True, mlm_probability=mlm_prob) else: data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=True, mlm_probability=mlm_prob) training_args = TrainingArguments( output_dir=output_dir, overwrite_output_dir=True, num_train_epochs=num_train_epochs, evaluation_strategy="steps" if dev_dataset is not None else "no", per_device_train_batch_size=per_device_train_batch_size, eval_steps=save_steps, save_steps=save_steps, logging_steps=save_steps, save_total_limit=1, prediction_loss_only=True, fp16=use_fp16, ) trainer = Trainer( model=model, args=training_args, data_collator=data_collator, train_dataset=train_dataset, eval_dataset=dev_dataset ) print("Save tokenizer to:", output_dir) tokenizer.save_pretrained(output_dir) trainer.train() print("Save model to:", output_dir) model.save_pretrained(output_dir) print("Training done")
""" This file runs Masked Language Model. You provide a training file. Each line is interpreted as a sentence / paragraph. Optionally, you can also provide a dev file. The fine-tuned model is stored in the output/model_name folder. Usage: python train_mlm.py model_name data/train_sentences.txt [data/dev_sentences.txt] """ from transformers import AutoModelForMaskedLM, AutoTokenizer from transformers import DataCollatorForLanguageModeling, DataCollatorForWholeWordMask from transformers import Trainer, TrainingArguments import sys import gzip from datetime import datetime if len(sys.argv) < 3: print("Usage: python train_mlm.py model_name data/train_sentences.txt [data/dev_sentences.txt]") exit() model_name = sys.argv[1] per_device_train_batch_size = 64 save_steps = 1000 # Save model every 1k steps num_train_epochs = 3 # Number of epochs use_fp16 = False # Set to True, if your GPU supports FP16 operations max_length = 100 # Max length for a text input do_whole_word_mask = True # If set to true, whole words are masked mlm_prob = 0.15 # Probability that a word is replaced by a [MASK] token # Load the model model = AutoModelForMaskedLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) output_dir = "output/{}-{}".format(model_name.replace("/", "_"), datetime.now().strftime("%Y-%m-%d_%H-%M-%S")) print("Save checkpoints to:", output_dir) ##### Load our training datasets train_sentences = [] train_path = sys.argv[2] with gzip.open(train_path, "rt", encoding="utf8") if train_path.endswith(".gz") else open( train_path, "r", encoding="utf8" ) as fIn: for line in fIn: line = line.strip() if len(line) >= 10: train_sentences.append(line) print("Train sentences:", len(train_sentences)) dev_sentences = [] if len(sys.argv) >= 4: dev_path = sys.argv[3] with gzip.open(dev_path, "rt", encoding="utf8") if dev_path.endswith(".gz") else open( dev_path, "r", encoding="utf8" ) as fIn: for line in fIn: line = line.strip() if len(line) >= 10: dev_sentences.append(line) print("Dev sentences:", len(dev_sentences)) # A dataset wrapper, that tokenizes our data on-the-fly class TokenizedSentencesDataset: def __init__(self, sentences, tokenizer, max_length, cache_tokenization=False): self.tokenizer = tokenizer self.sentences = sentences self.max_length = max_length self.cache_tokenization = cache_tokenization def __getitem__(self, item): if not self.cache_tokenization: return self.tokenizer( self.sentences[item], add_special_tokens=True, truncation=True, max_length=self.max_length, return_special_tokens_mask=True, ) if isinstance(self.sentences[item], str): self.sentences[item] = self.tokenizer( self.sentences[item], add_special_tokens=True, truncation=True, max_length=self.max_length, return_special_tokens_mask=True, ) return self.sentences[item] def __len__(self): return len(self.sentences) train_dataset = TokenizedSentencesDataset(train_sentences, tokenizer, max_length) dev_dataset = ( TokenizedSentencesDataset(dev_sentences, tokenizer, max_length, cache_tokenization=True) if len(dev_sentences) > 0 else None ) ##### Training arguments if do_whole_word_mask: data_collator = DataCollatorForWholeWordMask(tokenizer=tokenizer, mlm=True, mlm_probability=mlm_prob) else: data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=True, mlm_probability=mlm_prob) training_args = TrainingArguments( output_dir=output_dir, overwrite_output_dir=True, num_train_epochs=num_train_epochs, evaluation_strategy="steps" if dev_dataset is not None else "no", per_device_train_batch_size=per_device_train_batch_size, eval_steps=save_steps, save_steps=save_steps, logging_steps=save_steps, save_total_limit=1, prediction_loss_only=True, fp16=use_fp16, ) trainer = Trainer( model=model, args=training_args, data_collator=data_collator, train_dataset=train_dataset, eval_dataset=dev_dataset ) print("Save tokenizer to:", output_dir) tokenizer.save_pretrained(output_dir) trainer.train() print("Save model to:", output_dir) model.save_pretrained(output_dir) print("Training done")
# Copyright (c) OpenMMLab. All rights reserved. from .checkpoint_hook import CheckpointHook from .ema_hook import EMAHook from .empty_cache_hook import EmptyCacheHook from .hook import Hook from .iter_timer_hook import IterTimerHook from .logger_hook import LoggerHook from .naive_visualization_hook import NaiveVisualizationHook from .param_scheduler_hook import ParamSchedulerHook from .profiler_hook import NPUProfilerHook, ProfilerHook from .runtime_info_hook import RuntimeInfoHook from .sampler_seed_hook import DistSamplerSeedHook from .sync_buffer_hook import SyncBuffersHook from .test_time_aug_hook import PrepareTTAHook __all__ = [ 'Hook', 'IterTimerHook', 'DistSamplerSeedHook', 'ParamSchedulerHook', 'SyncBuffersHook', 'EmptyCacheHook', 'CheckpointHook', 'LoggerHook', 'NaiveVisualizationHook', 'EMAHook', 'RuntimeInfoHook', 'ProfilerHook', 'NPUProfilerHook', 'PrepareTTAHook' ]
# Copyright (c) OpenMMLab. All rights reserved. from .checkpoint_hook import CheckpointHook from .ema_hook import EMAHook from .empty_cache_hook import EmptyCacheHook from .hook import Hook from .iter_timer_hook import IterTimerHook from .logger_hook import LoggerHook from .naive_visualization_hook import NaiveVisualizationHook from .param_scheduler_hook import ParamSchedulerHook from .profiler_hook import ProfilerHook from .runtime_info_hook import RuntimeInfoHook from .sampler_seed_hook import DistSamplerSeedHook from .sync_buffer_hook import SyncBuffersHook from .test_time_aug_hook import PrepareTTAHook __all__ = [ 'Hook', 'IterTimerHook', 'DistSamplerSeedHook', 'ParamSchedulerHook', 'SyncBuffersHook', 'EmptyCacheHook', 'CheckpointHook', 'LoggerHook', 'NaiveVisualizationHook', 'EMAHook', 'RuntimeInfoHook', 'ProfilerHook', 'PrepareTTAHook' ]
""" This script contains an example how to perform semantic search with Elasticsearch. You need Elasticsearch up and running locally: https://www.elastic.co/guide/en/elasticsearch/reference/current/run-elasticsearch-locally.html Further, you need the Python Elasticsearch Client installed: https://elasticsearch-py.readthedocs.io/, e.g.: ``` pip install elasticsearch ``` This script was created for `elasticsearch` v8.0+. """ import time from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.search_engines import semantic_search_elasticsearch # 1. Load the natural-questions dataset with 100K answers dataset = load_dataset("sentence-transformers/natural-questions", split="train") num_docs = 10_000 corpus = dataset["answer"][:num_docs] # 2. Come up with some queries queries = dataset["query"][:2] # 3. Load the model sparse_model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # 5. Encode the corpus corpus_embeddings = sparse_model.encode(corpus, convert_to_sparse_tensor=True, batch_size=32, show_progress_bar=True) corpus_index = None while True: # 6. Encode the queries using the full precision start_time = time.time() query_embeddings = sparse_model.encode(queries, convert_to_sparse_tensor=True) print(f"Encoding time: {time.time() - start_time:.6f} seconds") # 7. Perform semantic search using qdrant results, search_time, corpus_index = semantic_search_elasticsearch( query_embeddings, corpus_index=corpus_index, corpus_embeddings=corpus_embeddings if corpus_index is None else None, top_k=5, output_index=True, ) # 8. Output the results print(f"Search time: {search_time:.6f} seconds") for query, result in zip(queries, results): print(f"Query: {query}") for entry in result: print(f"(Score: {entry['score']:.4f}) {corpus[entry['corpus_id']]}, corpus_id: {entry['corpus_id']}") print("") # 10. Prompt for more queries queries = [input("Please enter a question: ")]
""" This script contains an example how to perform semantic search with Elasticsearch. You need Elasticsearch up and running locally: https://www.elastic.co/guide/en/elasticsearch/reference/current/run-elasticsearch-locally.html Further, you need the Python Elasticsearch Client installed: https://elasticsearch-py.readthedocs.io/, e.g.: ``` pip install elasticsearch ``` This script was created for `elasticsearch` v8.0+. """ import time from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.search_engines import semantic_search_elasticsearch # 1. Load the natural-questions dataset with 100K answers dataset = load_dataset("sentence-transformers/natural-questions", split="train", trust_remote_code=True) corpus = dataset["answer"] # 2. Come up with some queries queries = dataset["query"][:2] # 3. Load the model sparse_model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # 5. Encode the corpus corpus_embeddings = sparse_model.encode(corpus, convert_to_sparse_tensor=True, batch_size=32, show_progress_bar=True) corpus_index = None while True: # 6. Encode the queries using the full precision start_time = time.time() query_embeddings = sparse_model.encode(queries, convert_to_sparse_tensor=True) print(f"Encoding time: {time.time() - start_time:.6f} seconds") # 7. Perform semantic search using qdrant results, search_time, corpus_index = semantic_search_elasticsearch( query_embeddings, corpus_index=corpus_index, corpus_embeddings=corpus_embeddings if corpus_index is None else None, top_k=5, output_index=True, ) # 8. Output the results print(f"Search time: {search_time:.6f} seconds") for query, result in zip(queries, results): print(f"Query: {query}") for entry in result: print(f"(Score: {entry['score']:.4f}) {corpus[entry['corpus_id']]}, corpus_id: {entry['corpus_id']}") print("") # 10. Prompt for more queries queries = [input("Please enter a question: ")]
import csv import os from pathlib import Path from typing import Union import torchaudio from torch.utils.data import Dataset class FluentSpeechCommands(Dataset): """Create *Fluent Speech Commands* :cite:`fluent` Dataset Args: root (str of Path): Path to the directory where the dataset is found. subset (str, optional): subset of the dataset to use. Options: [`"train"`, `"valid"`, `"test"`]. (Default: ``"train"``) """ def __init__(self, root: Union[str, Path], subset: str = "train"): if subset not in ["train", "valid", "test"]: raise ValueError("`subset` must be one of ['train', 'valid', 'test']") root = os.fspath(root) self._path = os.path.join(root, "fluent_speech_commands_dataset") if not os.path.isdir(self._path): raise RuntimeError("Dataset not found.") subset_path = os.path.join(self._path, "data", f"{subset}_data.csv") with open(subset_path) as subset_csv: subset_reader = csv.reader(subset_csv) data = list(subset_reader) self.header = data[0] self.data = data[1:] def __len__(self): return len(self.data) def __getitem__(self, n: int): """Load the n-th sample from the dataset. Args: n (int): The index of the sample to be loaded Returns: (Tensor, int, str, int, str, str, str, str): ``(waveform, sample_rate, file_name, speaker_id, transcription, action, object, location)`` """ sample = self.data[n] file_name = sample[self.header.index("path")].split("/")[-1] file_name = file_name.split(".")[0] speaker_id, transcription, action, obj, location = sample[2:] wav_path = os.path.join(self._path, "wavs", "speakers", speaker_id, f"{file_name}.wav") wav, sample_rate = torchaudio.load(wav_path) return wav, sample_rate, file_name, speaker_id, transcription, action, obj, location
import csv import os from pathlib import Path from typing import Union import torchaudio from torch.utils.data import Dataset class FluentSpeechCommands(Dataset): """Create *Fluent Speech Commands* [:footcite:`fluent`] Dataset Args: root (str of Path): Path to the directory where the dataset is found. subset (str, optional): subset of the dataset to use. Options: [`"train"`, `"valid"`, `"test"`]. (Default: ``"train"``) """ def __init__(self, root: Union[str, Path], subset: str = "train"): if subset not in ["train", "valid", "test"]: raise ValueError("`subset` must be one of ['train', 'valid', 'test']") root = os.fspath(root) self._path = os.path.join(root, "fluent_speech_commands_dataset") if not os.path.isdir(self._path): raise RuntimeError("Dataset not found.") subset_path = os.path.join(self._path, "data", f"{subset}_data.csv") with open(subset_path) as subset_csv: subset_reader = csv.reader(subset_csv) data = list(subset_reader) self.header = data[0] self.data = data[1:] def __len__(self): return len(self.data) def __getitem__(self, n: int): """Load the n-th sample from the dataset. Args: n (int): The index of the sample to be loaded Returns: (Tensor, int, str, int, str, str, str, str): ``(waveform, sample_rate, file_name, speaker_id, transcription, action, object, location)`` """ sample = self.data[n] file_name = sample[self.header.index("path")].split("/")[-1] file_name = file_name.split(".")[0] speaker_id, transcription, action, obj, location = sample[2:] wav_path = os.path.join(self._path, "wavs", "speakers", speaker_id, f"{file_name}.wav") wav, sample_rate = torchaudio.load(wav_path) return wav, sample_rate, file_name, speaker_id, transcription, action, obj, location
# Copyright 2021 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Mahalanobis metric.""" import numpy as np import datasets _DESCRIPTION = """ Compute the Mahalanobis Distance Mahalonobis distance is the distance between a point and a distribution. And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance. It was introduced by Prof. P. C. Mahalanobis in 1936 and has been used in various statistical applications ever since [source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/] """ _CITATION = """\ @article{de2000mahalanobis, title={The mahalanobis distance}, author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L}, journal={Chemometrics and intelligent laboratory systems}, volume={50}, number={1}, pages={1--18}, year={2000}, publisher={Elsevier} } """ _KWARGS_DESCRIPTION = """ Args: X: List of datapoints to be compared with the `reference_distribution`. reference_distribution: List of datapoints from the reference distribution we want to compare to. Returns: mahalanobis: The Mahalonobis distance for each datapoint in `X`. Examples: >>> mahalanobis_metric = datasets.load_metric("mahalanobis") >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]]) >>> print(results) {'mahalanobis': array([0.5])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class Mahalanobis(datasets.Metric): def _info(self): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "X": datasets.Sequence(datasets.Value("float", id="sequence"), id="X"), } ), ) def _compute(self, X, reference_distribution): # convert to numpy arrays X = np.array(X) reference_distribution = np.array(reference_distribution) # Assert that arrays are 2D if len(X.shape) != 2: raise ValueError("Expected `X` to be a 2D vector") if len(reference_distribution.shape) != 2: raise ValueError("Expected `reference_distribution` to be a 2D vector") if reference_distribution.shape[0] < 2: raise ValueError( "Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension" ) # Get mahalanobis distance for each prediction X_minus_mu = X - np.mean(reference_distribution) cov = np.cov(reference_distribution.T) try: inv_covmat = np.linalg.inv(cov) except np.linalg.LinAlgError: inv_covmat = np.linalg.pinv(cov) left_term = np.dot(X_minus_mu, inv_covmat) mahal_dist = np.dot(left_term, X_minus_mu.T).diagonal() return {"mahalanobis": mahal_dist}
# Copyright 2021 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Mahalanobis metric.""" import numpy as np import datasets _DESCRIPTION = """ Compute the Mahalanobis Distance Mahalonobis distance is the distance between a point and a distribution. And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance. It was introduced by Prof. P. C. Mahalanobis in 1936 and has been used in various statistical applications ever since [source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/] """ _CITATION = """\ @article{de2000mahalanobis, title={The mahalanobis distance}, author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L}, journal={Chemometrics and intelligent laboratory systems}, volume={50}, number={1}, pages={1--18}, year={2000}, publisher={Elsevier} } """ _KWARGS_DESCRIPTION = """ Args: X: List of datapoints to be compared with the `reference_distribution`. reference_distribution: List of datapoints from the reference distribution we want to compare to. Returns: mahalanobis: The Mahalonobis distance for each datapoint in `X`. Examples: >>> mahalanobis_metric = datasets.load_metric("mahalanobis") >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]]) >>> print(results) {'mahalanobis': array([0.5])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class Mahalanobis(datasets.Metric): def _info(self): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "X": datasets.Sequence(datasets.Value("float", id="sequence"), id="X"), } ), ) def _compute(self, X, reference_distribution): # convert to numpy arrays X = np.array(X) reference_distribution = np.array(reference_distribution) # Assert that arrays are 2D if len(X.shape) != 2: raise ValueError("Expected `X` to be a 2D vector") if len(reference_distribution.shape) != 2: raise ValueError("Expected `reference_distribution` to be a 2D vector") if reference_distribution.shape[0] < 2: raise ValueError( "Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension" ) # Get mahalanobis distance for each prediction X_minus_mu = X - np.mean(reference_distribution) cov = np.cov(reference_distribution.T) try: inv_covmat = np.linalg.inv(cov) except np.linalg.LinAlgError: inv_covmat = np.linalg.pinv(cov) left_term = np.dot(X_minus_mu, inv_covmat) mahal_dist = np.dot(left_term, X_minus_mu.T).diagonal() return {"mahalanobis": mahal_dist}
# NOTE: # The entire `torchaudio.backend` module is deprecated. # New things should be added to `torchaudio._backend`. # Only things related to backward compatibility should be placed here. from . import common, no_backend, soundfile_backend, sox_io_backend # noqa __all__ = []
# NOTE: # The entire `torchaudio.backend` module is deprecated. # New things should be added to `torchaudio._backend`. # Only things related to backward compatibility should be placed here. def __getattr__(name: str): if name == "common": from . import _common return _common if name in ["no_backend", "sox_io_backend", "soundfile_backend"]: import warnings warnings.warn( "Torchaudio's I/O functions now support par-call bakcend dispatch. " "Importing backend implementation directly is no longer guaranteed to work. " "Please use `backend` keyword with load/save/info function, instead of " "calling the udnerlying implementation directly.", stacklevel=2, ) if name == "sox_io_backend": from . import _sox_io_backend return _sox_io_backend if name == "soundfile_backend": from torchaudio._backend import soundfile_backend return soundfile_backend if name == "no_backend": from . import _no_backend return _no_backend raise AttributeError(f"module {__name__!r} has no attribute {name!r}")
""" ================================== Getting started with transforms v2 ================================== .. note:: Try on `collab <https://colab.research.google.com/github/pytorch/vision/blob/gh-pages/main/_generated_ipynb_notebooks/plot_transforms_v2.ipynb>`_ or :ref:`go to the end <sphx_glr_download_auto_examples_v2_transforms_plot_transforms_v2.py>` to download the full example code. Most computer vision tasks are not supported out of the box by ``torchvision.transforms`` v1, since it only supports images. ``torchvision.transforms.v2`` enables jointly transforming images, videos, bounding boxes, and masks. This example showcases the core functionality of the new ``torchvision.transforms.v2`` API. """ import pathlib import torch def load_data(): from torchvision.io import read_image from torchvision import datapoints from torchvision.ops import masks_to_boxes assets_directory = pathlib.Path("../assets") path = assets_directory / "FudanPed00054.png" image = datapoints.Image(read_image(str(path))) merged_masks = read_image(str(assets_directory / "FudanPed00054_mask.png")) labels = torch.unique(merged_masks)[1:] masks = datapoints.Mask(merged_masks == labels.view(-1, 1, 1)) bounding_boxes = datapoints.BoundingBoxes( masks_to_boxes(masks), format=datapoints.BoundingBoxFormat.XYXY, canvas_size=image.shape[-2:] ) return path, image, bounding_boxes, masks, labels # %% # The :mod:`torchvision.transforms.v2` API supports images, videos, bounding boxes, and instance and segmentation # masks. Thus, it offers native support for many Computer Vision tasks, like image and video classification, object # detection or instance and semantic segmentation. Still, the interface is the same, making # :mod:`torchvision.transforms.v2` a drop-in replacement for the existing :mod:`torchvision.transforms` API, aka v1. import torchvision.transforms.v2 as transforms transform = transforms.Compose( [ transforms.ColorJitter(contrast=0.5), transforms.RandomRotation(30), transforms.CenterCrop(480), ] ) # %% # :mod:`torchvision.transforms.v2` natively supports jointly transforming multiple inputs while making sure that # potential random behavior is consistent across all inputs. However, it doesn't enforce a specific input structure or # order. path, image, bounding_boxes, masks, labels = load_data() torch.manual_seed(0) new_image = transform(image) # Image Classification new_image, new_bounding_boxes, new_labels = transform(image, bounding_boxes, labels) # Object Detection new_image, new_bounding_boxes, new_masks, new_labels = transform( image, bounding_boxes, masks, labels ) # Instance Segmentation new_image, new_target = transform((image, {"boxes": bounding_boxes, "labels": labels})) # Arbitrary Structure # %% # Under the hood, :mod:`torchvision.transforms.v2` relies on :mod:`torchvision.datapoints` for the dispatch to the # appropriate function for the input data: :ref:`sphx_glr_auto_examples_v2_transforms_plot_datapoints.py`. Note however, that as # regular user, you likely don't have to touch this yourself. See # :ref:`sphx_glr_auto_examples_v2_transforms_plot_transforms_v2_e2e.py`. # # All "foreign" types like :class:`str`'s or :class:`pathlib.Path`'s are passed through, allowing to store extra # information directly with the sample: sample = {"path": path, "image": image} new_sample = transform(sample) assert new_sample["path"] is sample["path"] # %% # As stated above, :mod:`torchvision.transforms.v2` is a drop-in replacement for :mod:`torchvision.transforms` and thus # also supports transforming plain :class:`torch.Tensor`'s as image or video if applicable. This is achieved with a # simple heuristic: # # * If we find an explicit image or video (:class:`torchvision.datapoints.Image`, :class:`torchvision.datapoints.Video`, # or :class:`PIL.Image.Image`) in the input, all other plain tensors are passed through. # * If there is no explicit image or video, only the first plain :class:`torch.Tensor` will be transformed as image or # video, while all others will be passed through. plain_tensor_image = torch.rand(image.shape) print(image.shape, plain_tensor_image.shape) # passing a plain tensor together with an explicit image, will not transform the former plain_tensor_image, image = transform(plain_tensor_image, image) print(image.shape, plain_tensor_image.shape) # passing a plain tensor without an explicit image, will transform the former plain_tensor_image, _ = transform(plain_tensor_image, bounding_boxes) print(image.shape, plain_tensor_image.shape)
""" ================================== Getting started with transforms v2 ================================== Most computer vision tasks are not supported out of the box by ``torchvision.transforms`` v1, since it only supports images. ``torchvision.transforms.v2`` enables jointly transforming images, videos, bounding boxes, and masks. This example showcases the core functionality of the new ``torchvision.transforms.v2`` API. """ import pathlib import torch def load_data(): from torchvision.io import read_image from torchvision import datapoints from torchvision.ops import masks_to_boxes assets_directory = pathlib.Path("../assets") path = assets_directory / "FudanPed00054.png" image = datapoints.Image(read_image(str(path))) merged_masks = read_image(str(assets_directory / "FudanPed00054_mask.png")) labels = torch.unique(merged_masks)[1:] masks = datapoints.Mask(merged_masks == labels.view(-1, 1, 1)) bounding_boxes = datapoints.BoundingBoxes( masks_to_boxes(masks), format=datapoints.BoundingBoxFormat.XYXY, canvas_size=image.shape[-2:] ) return path, image, bounding_boxes, masks, labels # %% # The :mod:`torchvision.transforms.v2` API supports images, videos, bounding boxes, and instance and segmentation # masks. Thus, it offers native support for many Computer Vision tasks, like image and video classification, object # detection or instance and semantic segmentation. Still, the interface is the same, making # :mod:`torchvision.transforms.v2` a drop-in replacement for the existing :mod:`torchvision.transforms` API, aka v1. import torchvision.transforms.v2 as transforms transform = transforms.Compose( [ transforms.ColorJitter(contrast=0.5), transforms.RandomRotation(30), transforms.CenterCrop(480), ] ) # %% # :mod:`torchvision.transforms.v2` natively supports jointly transforming multiple inputs while making sure that # potential random behavior is consistent across all inputs. However, it doesn't enforce a specific input structure or # order. path, image, bounding_boxes, masks, labels = load_data() torch.manual_seed(0) new_image = transform(image) # Image Classification new_image, new_bounding_boxes, new_labels = transform(image, bounding_boxes, labels) # Object Detection new_image, new_bounding_boxes, new_masks, new_labels = transform( image, bounding_boxes, masks, labels ) # Instance Segmentation new_image, new_target = transform((image, {"boxes": bounding_boxes, "labels": labels})) # Arbitrary Structure # %% # Under the hood, :mod:`torchvision.transforms.v2` relies on :mod:`torchvision.datapoints` for the dispatch to the # appropriate function for the input data: :ref:`sphx_glr_auto_examples_v2_transforms_plot_datapoints.py`. Note however, that as # regular user, you likely don't have to touch this yourself. See # :ref:`sphx_glr_auto_examples_v2_transforms_plot_transforms_v2_e2e.py`. # # All "foreign" types like :class:`str`'s or :class:`pathlib.Path`'s are passed through, allowing to store extra # information directly with the sample: sample = {"path": path, "image": image} new_sample = transform(sample) assert new_sample["path"] is sample["path"] # %% # As stated above, :mod:`torchvision.transforms.v2` is a drop-in replacement for :mod:`torchvision.transforms` and thus # also supports transforming plain :class:`torch.Tensor`'s as image or video if applicable. This is achieved with a # simple heuristic: # # * If we find an explicit image or video (:class:`torchvision.datapoints.Image`, :class:`torchvision.datapoints.Video`, # or :class:`PIL.Image.Image`) in the input, all other plain tensors are passed through. # * If there is no explicit image or video, only the first plain :class:`torch.Tensor` will be transformed as image or # video, while all others will be passed through. plain_tensor_image = torch.rand(image.shape) print(image.shape, plain_tensor_image.shape) # passing a plain tensor together with an explicit image, will not transform the former plain_tensor_image, image = transform(plain_tensor_image, image) print(image.shape, plain_tensor_image.shape) # passing a plain tensor without an explicit image, will transform the former plain_tensor_image, _ = transform(plain_tensor_image, bounding_boxes) print(image.shape, plain_tensor_image.shape)
# Licensed to the LF AI & Data foundation under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import time import pytest import requests import weaviate HOST = "http://localhost:8080" cur_dir = os.path.dirname(os.path.abspath(__file__)) weaviate_yml = os.path.abspath(os.path.join(cur_dir, 'docker-compose.yml')) @pytest.fixture(scope='session', autouse=True) def start_storage(): os.system(f"docker-compose -f {weaviate_yml} up -d --remove-orphans") _wait_for_weaviate() yield os.system(f"docker-compose -f {weaviate_yml} down --remove-orphans") def _wait_for_weaviate(): while True: try: response = requests.get(f"{HOST}/v1/.well-known/ready") if response.status_code == 200: return else: time.sleep(0.5) except requests.exceptions.ConnectionError: time.sleep(1) @pytest.fixture def weaviate_client(start_storage): client = weaviate.Client(HOST) client.schema.delete_all() yield client client.schema.delete_all()
import os import time import pytest import requests import weaviate HOST = "http://localhost:8080" cur_dir = os.path.dirname(os.path.abspath(__file__)) weaviate_yml = os.path.abspath(os.path.join(cur_dir, 'docker-compose.yml')) @pytest.fixture(scope='session', autouse=True) def start_storage(): os.system(f"docker-compose -f {weaviate_yml} up -d --remove-orphans") _wait_for_weaviate() yield os.system(f"docker-compose -f {weaviate_yml} down --remove-orphans") def _wait_for_weaviate(): while True: try: response = requests.get(f"{HOST}/v1/.well-known/ready") if response.status_code == 200: return else: time.sleep(0.5) except requests.exceptions.ConnectionError: time.sleep(1) @pytest.fixture def weaviate_client(start_storage): client = weaviate.Client(HOST) client.schema.delete_all() yield client client.schema.delete_all()
import os # DO NOT EDIT. Generated by api_gen.sh from keras.api import DTypePolicy from keras.api import FloatDTypePolicy from keras.api import Function from keras.api import Initializer from keras.api import Input from keras.api import InputSpec from keras.api import KerasTensor from keras.api import Layer from keras.api import Loss from keras.api import Metric from keras.api import Model from keras.api import Operation from keras.api import Optimizer from keras.api import Quantizer from keras.api import Regularizer from keras.api import Sequential from keras.api import StatelessScope from keras.api import SymbolicScope from keras.api import Variable from keras.api import __version__ from keras.api import activations from keras.api import applications from keras.api import backend from keras.api import callbacks from keras.api import config from keras.api import constraints from keras.api import datasets from keras.api import device from keras.api import distribution from keras.api import dtype_policies from keras.api import export from keras.api import initializers from keras.api import layers from keras.api import legacy from keras.api import losses from keras.api import metrics from keras.api import mixed_precision from keras.api import models from keras.api import name_scope from keras.api import ops from keras.api import optimizers from keras.api import preprocessing from keras.api import quantizers from keras.api import random from keras.api import regularizers from keras.api import saving from keras.api import tree from keras.api import utils from keras.api import version # END DO NOT EDIT. # Add everything in /api/ to the module search path. __path__.append(os.path.join(os.path.dirname(__file__), "api")) # noqa: F405 # Don't pollute namespace. del os # Never autocomplete `.src` or `.api` on an imported keras object. def __dir__(): keys = dict.fromkeys((globals().keys())) keys.pop("src") keys.pop("api") return list(keys) # Don't import `.src` or `.api` during `from keras import *`. __all__ = [ name for name in globals().keys() if not (name.startswith("_") or name in ("src", "api")) ]
import os # DO NOT EDIT. Generated by api_gen.sh from keras.api import DTypePolicy from keras.api import FloatDTypePolicy from keras.api import Function from keras.api import Initializer from keras.api import Input from keras.api import InputSpec from keras.api import KerasTensor from keras.api import Layer from keras.api import Loss from keras.api import Metric from keras.api import Model from keras.api import Operation from keras.api import Optimizer from keras.api import Quantizer from keras.api import Regularizer from keras.api import Sequential from keras.api import StatelessScope from keras.api import Variable from keras.api import __version__ from keras.api import activations from keras.api import applications from keras.api import backend from keras.api import callbacks from keras.api import config from keras.api import constraints from keras.api import datasets from keras.api import device from keras.api import distribution from keras.api import dtype_policies from keras.api import export from keras.api import initializers from keras.api import layers from keras.api import legacy from keras.api import losses from keras.api import metrics from keras.api import mixed_precision from keras.api import models from keras.api import name_scope from keras.api import ops from keras.api import optimizers from keras.api import preprocessing from keras.api import quantizers from keras.api import random from keras.api import regularizers from keras.api import saving from keras.api import tree from keras.api import utils from keras.api import version # END DO NOT EDIT. # Add everything in /api/ to the module search path. __path__.append(os.path.join(os.path.dirname(__file__), "api")) # noqa: F405 # Don't pollute namespace. del os # Never autocomplete `.src` or `.api` on an imported keras object. def __dir__(): keys = dict.fromkeys((globals().keys())) keys.pop("src") keys.pop("api") return list(keys) # Don't import `.src` or `.api` during `from keras import *`. __all__ = [ name for name in globals().keys() if not (name.startswith("_") or name in ("src", "api")) ]
AUDIO_FILE_FORMATS = [ '3g2', '3ga', '3gp', 'aac', 'ac3', 'act', 'aiff', 'amr', 'ape', 'au', 'awb', 'dct', 'dsf', 'dvf', 'flac', 'gsm', 'iklax', 'ivs', 'm4a', 'm4b', 'm4p', 'mmf', 'mp2', 'mp3', 'mpc', 'msv', 'nsf', 'oga', 'ogg', 'opus', 'ra', 'rm', 'raw', 'sln', 'tta', 'voc', 'vox', 'wav', 'wma', 'wv', ] TEXT_FILE_FORMATS = [ 'txt', 'ics', 'ifb', 'css', 'csv', 'htm', 'html', 'js', 'md', 'markdown', 'mdown', 'markdn', 'mathml', 'mml', 'conf', 'def', 'diff', 'in', 'ksh', 'list', 'log', 'pl', 'text', 'dsc', 'rtx', 'sgm', 'sgml', 'tsv', 'man', 'me', 'ms', 'roff', 't', 'tr', 'uri', 'uris', 'urls', 'curl', 'dcurl', 'mcurl', 'scurl', 'fly', 'flx', 'gv', '3dml', 'spot', 'jad', 'si', 'sl', 'wml', 'wmls', 'asm', 's', 'c', 'cc', 'cpp', 'cxx', 'dic', 'h', 'hh', 'f', 'f77', 'f90', 'for', 'java', 'p', 'pas', 'pp', 'inc', 'py', 'etx', 'uu', 'vcs', 'vcf', ]
AUDIO_FILE_FORMATS = [ '3g2', '3ga', '3gp', 'aac', 'ac3', 'act', 'aiff', 'amr', 'ape', 'au', 'awb', 'dct', 'dsf', 'dvf', 'flac', 'gsm', 'iklax', 'ivs', 'm4a', 'm4b', 'm4p', 'mmf', 'mp2', 'mp3', 'mpc', 'msv', 'nsf', 'oga', 'ogg', 'opus', 'ra', 'rm', 'raw', 'sln', 'tta', 'voc', 'vox', 'wav', 'wma', 'wv', ]
# Licensed to the LF AI & Data foundation under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from functools import lru_cache from pathlib import Path @lru_cache(maxsize=None) def _get_cache_path() -> Path: """ Get the path to the cache directory. :return: The path to the cache directory. """ cache_path = Path.home() / '.cache' / 'docarray' if "DOCARRAY_CACHE" in os.environ: cache_path = Path(os.environ["DOCARRAY_CACHE"]) cache_path.mkdir(parents=True, exist_ok=True) return cache_path
import os from functools import lru_cache from pathlib import Path @lru_cache(maxsize=None) def _get_cache_path() -> Path: """ Get the path to the cache directory. :return: The path to the cache directory. """ cache_path = Path.home() / '.cache' / 'docarray' if "DOCARRAY_CACHE" in os.environ: cache_path = Path(os.environ["DOCARRAY_CACHE"]) cache_path.mkdir(parents=True, exist_ok=True) return cache_path
from typing import Union from torch import nn import transformers import torch from PIL import Image class CLIPModel(nn.Module): def __init__(self, model_name: str = "openai/clip-vit-base-patch32", processor_name=None): super(CLIPModel, self).__init__() if processor_name is None: processor_name = model_name self.model = transformers.CLIPModel.from_pretrained(model_name) self.processor = transformers.CLIPProcessor.from_pretrained(processor_name) def __repr__(self): return "CLIPModel()" def forward(self, features): image_embeds = [] text_embeds = [] if "pixel_values" in features: vision_outputs = self.model.vision_model(pixel_values=features["pixel_values"]) image_embeds = self.model.visual_projection(vision_outputs[1]) if "input_ids" in features: text_outputs = self.model.text_model( input_ids=features.get("input_ids"), attention_mask=features.get("attention_mask", None), position_ids=features.get("position_ids", None), output_attentions=features.get("output_attentions", None), output_hidden_states=features.get("output_hidden_states", None), ) text_embeds = self.model.text_projection(text_outputs[1]) sentence_embedding = [] image_features = iter(image_embeds) text_features = iter(text_embeds) for idx, input_type in enumerate(features["image_text_info"]): if input_type == 0: sentence_embedding.append(next(image_features)) else: sentence_embedding.append(next(text_features)) features["sentence_embedding"] = torch.stack(sentence_embedding).float() return features def tokenize(self, texts, padding: Union[str, bool] = True): images = [] texts_values = [] image_text_info = [] for idx, data in enumerate(texts): if isinstance(data, Image.Image): # An Image images.append(data) image_text_info.append(0) else: # A text texts_values.append(data) image_text_info.append(1) encoding = {} if len(texts_values): encoding = self.processor.tokenizer(texts_values, return_tensors="pt", padding=padding) if len(images): image_features = self.processor.image_processor(images, return_tensors="pt") encoding["pixel_values"] = image_features.pixel_values encoding["image_text_info"] = image_text_info return dict(encoding) def save(self, output_path: str): self.model.save_pretrained(output_path) self.processor.save_pretrained(output_path) @staticmethod def load(input_path: str): return CLIPModel(model_name=input_path)
from typing import Union from torch import nn import transformers import torch from PIL import Image class CLIPModel(nn.Module): def __init__(self, model_name: str = "openai/clip-vit-base-patch32", processor_name=None): super(CLIPModel, self).__init__() if processor_name is None: processor_name = model_name self.model = transformers.CLIPModel.from_pretrained(model_name) self.processor = transformers.CLIPProcessor.from_pretrained(processor_name) def __repr__(self): return "CLIPModel()" def forward(self, features): image_embeds = [] text_embeds = [] if "pixel_values" in features: vision_outputs = self.model.vision_model(pixel_values=features["pixel_values"]) image_embeds = self.model.visual_projection(vision_outputs[1]) if "input_ids" in features: text_outputs = self.model.text_model( input_ids=features.get("input_ids"), attention_mask=features.get("attention_mask", None), position_ids=features.get("position_ids", None), output_attentions=features.get("output_attentions", None), output_hidden_states=features.get("output_hidden_states", None), ) text_embeds = self.model.text_projection(text_outputs[1]) sentence_embedding = [] image_features = iter(image_embeds) text_features = iter(text_embeds) for idx, input_type in enumerate(features["image_text_info"]): if input_type == 0: sentence_embedding.append(next(image_features)) else: sentence_embedding.append(next(text_features)) features["sentence_embedding"] = torch.stack(sentence_embedding).float() return features def tokenize(self, texts, padding: Union[str, bool] = True): images = [] texts_values = [] image_text_info = [] for idx, data in enumerate(texts): if isinstance(data, Image.Image): # An Image images.append(data) image_text_info.append(0) else: # A text texts_values.append(data) image_text_info.append(1) encoding = {} if len(texts_values): encoding = self.processor.tokenizer(texts_values, return_tensors="pt", padding=padding) if len(images): image_features = self.processor.image_processor(images, return_tensors="pt") encoding["pixel_values"] = image_features.pixel_values encoding["image_text_info"] = image_text_info return encoding def save(self, output_path: str): self.model.save_pretrained(output_path) self.processor.save_pretrained(output_path) @staticmethod def load(input_path: str): return CLIPModel(model_name=input_path)
# Copyright (c) OpenMMLab. All rights reserved. __version__ = '2.17.0' short_version = __version__ def parse_version_info(version_str): version_info = [] for x in version_str.split('.'): if x.isdigit(): version_info.append(int(x)) elif x.find('rc') != -1: patch_version = x.split('rc') version_info.append(int(patch_version[0])) version_info.append(f'rc{patch_version[1]}') return tuple(version_info) version_info = parse_version_info(__version__)
# Copyright (c) OpenMMLab. All rights reserved. __version__ = '2.16.0' short_version = __version__ def parse_version_info(version_str): version_info = [] for x in version_str.split('.'): if x.isdigit(): version_info.append(int(x)) elif x.find('rc') != -1: patch_version = x.split('rc') version_info.append(int(patch_version[0])) version_info.append(f'rc{patch_version[1]}') return tuple(version_info) version_info = parse_version_info(__version__)
_base_ = '../dcn/cascade-mask-rcnn_x101-32x4d-dconv-c3-c5_fpn_1x_coco.py' model = dict( backbone=dict( norm_cfg=dict(type='SyncBN', requires_grad=True), norm_eval=False))
_base_ = '../dcn/cascade_mask_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco.py' model = dict( backbone=dict( norm_cfg=dict(type='SyncBN', requires_grad=True), norm_eval=False))
import numpy as np import pytest import torch from pydantic import parse_obj_as from docarray import BaseDocument from docarray.documents import ImageDoc from docarray.utils.misc import is_tf_available tf_available = is_tf_available() if tf_available: import tensorflow as tf import tensorflow._api.v2.experimental.numpy as tnp REMOTE_JPG = ( 'https://upload.wikimedia.org/wikipedia/commons/8/80/' 'Dag_Sebastian_Ahlander_at_G%C3%B6teborg_Book_Fair_2012b.jpg' ) @pytest.mark.slow @pytest.mark.internet def test_image(): image = ImageDoc(url=REMOTE_JPG) image.tensor = image.url.load() assert isinstance(image.tensor, np.ndarray) def test_image_str(): image = parse_obj_as(ImageDoc, 'http://myurl.jpg') assert image.url == 'http://myurl.jpg' def test_image_np(): image = parse_obj_as(ImageDoc, np.zeros((10, 10, 3))) assert (image.tensor == np.zeros((10, 10, 3))).all() def test_image_torch(): image = parse_obj_as(ImageDoc, torch.zeros(10, 10, 3)) assert (image.tensor == torch.zeros(10, 10, 3)).all() @pytest.mark.tensorflow def test_image_tensorflow(): image = ImageDoc(tensor=tf.zeros((10, 10, 3))) assert tnp.allclose(image.tensor.tensor, tf.zeros((10, 10, 3))) def test_image_shortcut_doc(): class MyDoc(BaseDocument): image: ImageDoc image2: ImageDoc image3: ImageDoc doc = MyDoc( image='http://myurl.jpg', image2=np.zeros((10, 10, 3)), image3=torch.zeros(10, 10, 3), ) assert doc.image.url == 'http://myurl.jpg' assert (doc.image2.tensor == np.zeros((10, 10, 3))).all() assert (doc.image3.tensor == torch.zeros(10, 10, 3)).all() @pytest.mark.slow @pytest.mark.internet def test_byte(): img = ImageDoc(url=REMOTE_JPG) img.bytes_ = img.url.load_bytes() @pytest.mark.slow @pytest.mark.internet def test_byte_from_tensor(): img = ImageDoc(url=REMOTE_JPG) img.tensor = img.url.load() img.bytes_ = img.tensor.to_bytes() assert isinstance(img.bytes_, bytes) assert len(img.bytes_) > 0
import numpy as np import pytest import torch from pydantic import parse_obj_as from docarray import BaseDocument from docarray.documents import ImageDoc from docarray.utils.misc import is_tf_available tf_available = is_tf_available() if tf_available: import tensorflow as tf import tensorflow._api.v2.experimental.numpy as tnp REMOTE_JPG = ( 'https://upload.wikimedia.org/wikipedia/commons/8/80/' 'Dag_Sebastian_Ahlander_at_G%C3%B6teborg_Book_Fair_2012b.jpg' ) @pytest.mark.slow @pytest.mark.internet def test_image(): image = ImageDoc(url=REMOTE_JPG) image.tensor = image.url.load() assert isinstance(image.tensor, np.ndarray) def test_image_str(): image = parse_obj_as(ImageDoc, 'http://myurl.jpg') assert image.url == 'http://myurl.jpg' def test_image_np(): image = parse_obj_as(ImageDoc, np.zeros((10, 10, 3))) assert (image.tensor == np.zeros((10, 10, 3))).all() def test_image_torch(): image = parse_obj_as(ImageDoc, torch.zeros(10, 10, 3)) assert (image.tensor == torch.zeros(10, 10, 3)).all() @pytest.mark.tensorflow def test_image_tensorflow(): image = ImageDoc(tensor=tf.zeros((10, 10, 3))) assert tnp.allclose(image.tensor.tensor, tf.zeros((10, 10, 3))) def test_image_shortcut_doc(): class MyDoc(BaseDocument): image: ImageDoc image2: ImageDoc image3: ImageDoc doc = MyDoc( image='http://myurl.jpg', image2=np.zeros((10, 10, 3)), image3=torch.zeros(10, 10, 3), ) assert doc.image.url == 'http://myurl.jpg' assert (doc.image2.tensor == np.zeros((10, 10, 3))).all() assert (doc.image3.tensor == torch.zeros(10, 10, 3)).all() @pytest.mark.slow @pytest.mark.internet def test_byte(): img = ImageDoc(url=REMOTE_JPG) img.bytes = img.url.load_bytes() @pytest.mark.slow @pytest.mark.internet def test_byte_from_tensor(): img = ImageDoc(url=REMOTE_JPG) img.tensor = img.url.load() img.bytes = img.tensor.to_bytes() assert isinstance(img.bytes, bytes) assert len(img.bytes) > 0
from typing import List import numpy as np import pytest from fastapi import FastAPI from httpx import AsyncClient from docarray import BaseDoc, DocArray from docarray.base_doc import DocArrayResponse from docarray.documents import ImageDoc, TextDoc from docarray.typing import NdArray @pytest.mark.asyncio async def test_fast_api(): class Mmdoc(BaseDoc): img: ImageDoc text: TextDoc title: str input_doc = Mmdoc( img=ImageDoc(tensor=np.zeros((3, 224, 224))), text=TextDoc(), title='hello' ) app = FastAPI() @app.post("/doc/", response_model=Mmdoc, response_class=DocArrayResponse) async def create_item(doc: Mmdoc) -> Mmdoc: return doc async with AsyncClient(app=app, base_url="http://test") as ac: response = await ac.post("/doc/", data=input_doc.json()) resp_doc = await ac.get("/docs") resp_redoc = await ac.get("/redoc") assert response.status_code == 200 assert resp_doc.status_code == 200 assert resp_redoc.status_code == 200 @pytest.mark.asyncio async def test_image(): class InputDoc(BaseDoc): img: ImageDoc class OutputDoc(BaseDoc): embedding_clip: NdArray embedding_bert: NdArray input_doc = InputDoc(img=ImageDoc(tensor=np.zeros((3, 224, 224)))) app = FastAPI() @app.post("/doc/", response_model=OutputDoc, response_class=DocArrayResponse) async def create_item(doc: InputDoc) -> OutputDoc: ## call my fancy model to generate the embeddings doc = OutputDoc( embedding_clip=np.zeros((100, 1)), embedding_bert=np.zeros((100, 1)) ) return doc async with AsyncClient(app=app, base_url="http://test") as ac: response = await ac.post("/doc/", data=input_doc.json()) resp_doc = await ac.get("/docs") resp_redoc = await ac.get("/redoc") assert response.status_code == 200 assert resp_doc.status_code == 200 assert resp_redoc.status_code == 200 doc = OutputDoc.parse_raw(response.content.decode()) assert isinstance(doc, OutputDoc) assert doc.embedding_clip.shape == (100, 1) assert doc.embedding_bert.shape == (100, 1) @pytest.mark.asyncio async def test_sentence_to_embeddings(): class InputDoc(BaseDoc): text: str class OutputDoc(BaseDoc): embedding_clip: NdArray embedding_bert: NdArray input_doc = InputDoc(text='hello') app = FastAPI() @app.post("/doc/", response_model=OutputDoc, response_class=DocArrayResponse) async def create_item(doc: InputDoc) -> OutputDoc: ## call my fancy model to generate the embeddings return OutputDoc( embedding_clip=np.zeros((100, 1)), embedding_bert=np.zeros((100, 1)) ) async with AsyncClient(app=app, base_url="http://test") as ac: response = await ac.post("/doc/", data=input_doc.json()) resp_doc = await ac.get("/docs") resp_redoc = await ac.get("/redoc") assert response.status_code == 200 assert resp_doc.status_code == 200 assert resp_redoc.status_code == 200 doc = OutputDoc.parse_raw(response.content.decode()) assert isinstance(doc, OutputDoc) assert doc.embedding_clip.shape == (100, 1) assert doc.embedding_bert.shape == (100, 1) @pytest.mark.asyncio async def test_docarray(): doc = ImageDoc(tensor=np.zeros((3, 224, 224))) docs = DocArray[ImageDoc]([doc, doc]) app = FastAPI() @app.post("/doc/", response_class=DocArrayResponse) async def func(fastapi_docs: List[ImageDoc]) -> List[ImageDoc]: docarray_docs = DocArray[ImageDoc].construct(fastapi_docs) return list(docarray_docs) async with AsyncClient(app=app, base_url="http://test") as ac: response = await ac.post("/doc/", data=docs.to_json()) resp_doc = await ac.get("/docs") resp_redoc = await ac.get("/redoc") assert response.status_code == 200 assert resp_doc.status_code == 200 assert resp_redoc.status_code == 200 docs = DocArray[ImageDoc].from_json(response.content.decode()) assert len(docs) == 2 assert docs[0].tensor.shape == (3, 224, 224)
import numpy as np import pytest from fastapi import FastAPI from httpx import AsyncClient from docarray import BaseDoc from docarray.base_doc import DocResponse from docarray.documents import ImageDoc, TextDoc from docarray.typing import NdArray @pytest.mark.asyncio async def test_fast_api(): class Mmdoc(BaseDoc): img: ImageDoc text: TextDoc title: str input_doc = Mmdoc( img=ImageDoc(tensor=np.zeros((3, 224, 224))), text=TextDoc(), title='hello' ) app = FastAPI() @app.post("/doc/", response_model=Mmdoc, response_class=DocResponse) async def create_item(doc: Mmdoc): return doc async with AsyncClient(app=app, base_url="http://test") as ac: response = await ac.post("/doc/", data=input_doc.json()) resp_doc = await ac.get("/docs") resp_redoc = await ac.get("/redoc") assert response.status_code == 200 assert resp_doc.status_code == 200 assert resp_redoc.status_code == 200 @pytest.mark.asyncio async def test_image(): class InputDoc(BaseDoc): img: ImageDoc class OutputDoc(BaseDoc): embedding_clip: NdArray embedding_bert: NdArray input_doc = InputDoc(img=ImageDoc(tensor=np.zeros((3, 224, 224)))) app = FastAPI() @app.post("/doc/", response_model=OutputDoc, response_class=DocResponse) async def create_item(doc: InputDoc) -> OutputDoc: ## call my fancy model to generate the embeddings doc = OutputDoc( embedding_clip=np.zeros((100, 1)), embedding_bert=np.zeros((100, 1)) ) return doc async with AsyncClient(app=app, base_url="http://test") as ac: response = await ac.post("/doc/", data=input_doc.json()) resp_doc = await ac.get("/docs") resp_redoc = await ac.get("/redoc") assert response.status_code == 200 assert resp_doc.status_code == 200 assert resp_redoc.status_code == 200 doc = OutputDoc.parse_raw(response.content.decode()) assert isinstance(doc, OutputDoc) assert doc.embedding_clip.shape == (100, 1) assert doc.embedding_bert.shape == (100, 1) @pytest.mark.asyncio async def test_sentence_to_embeddings(): class InputDoc(BaseDoc): text: str class OutputDoc(BaseDoc): embedding_clip: NdArray embedding_bert: NdArray input_doc = InputDoc(text='hello') app = FastAPI() @app.post("/doc/", response_model=OutputDoc, response_class=DocResponse) async def create_item(doc: InputDoc) -> OutputDoc: ## call my fancy model to generate the embeddings return OutputDoc( embedding_clip=np.zeros((100, 1)), embedding_bert=np.zeros((100, 1)) ) async with AsyncClient(app=app, base_url="http://test") as ac: response = await ac.post("/doc/", data=input_doc.json()) resp_doc = await ac.get("/docs") resp_redoc = await ac.get("/redoc") assert response.status_code == 200 assert resp_doc.status_code == 200 assert resp_redoc.status_code == 200 doc = OutputDoc.parse_raw(response.content.decode()) assert isinstance(doc, OutputDoc) assert doc.embedding_clip.shape == (100, 1) assert doc.embedding_bert.shape == (100, 1)