input
stringlengths
33
5k
output
stringlengths
32
5k
"""txtai reader.""" from typing import Any, Dict, List import numpy as np from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document class TxtaiReader(BaseReader): """ txtai reader. Retrieves documents through an existing in-memory txtai index. These documents can then be used in a downstream LlamaIndex data structure. If you wish use txtai itself as an index to to organize documents, insert documents, and perform queries on them, please use VectorStoreIndex with TxtaiVectorStore. Args: txtai_index (txtai.ann.ANN): A txtai Index object (required) """ def __init__(self, index: Any): """Initialize with parameters.""" import_err_msg = """ `txtai` package not found. For instructions on how to install `txtai` please visit https://neuml.github.io/txtai/install/ """ try: import txtai # noqa except ImportError: raise ImportError(import_err_msg) self._index = index def load_data( self, query: np.ndarray, id_to_text_map: Dict[str, str], k: int = 4, separate_documents: bool = True, ) -> List[Document]: """ Load data from txtai index. Args: query (np.ndarray): A 2D numpy array of query vectors. id_to_text_map (Dict[str, str]): A map from ID's to text. k (int): Number of nearest neighbors to retrieve. Defaults to 4. separate_documents (Optional[bool]): Whether to return separate documents. Defaults to True. Returns: List[Document]: A list of documents. """ search_result = self._index.search(query, k) documents = [] for query_result in search_result: for doc_id, _ in query_result: doc_id = str(doc_id) if doc_id not in id_to_text_map: raise ValueError( f"Document ID {doc_id} not found in id_to_text_map." ) text = id_to_text_map[doc_id] documents.append(Document(text=text)) if not separate_documents: # join all documents into one text_list = [doc.get_content() for doc in documents] text = "\n\n".join(text_list) documents = [Document(text=text)] return documents
"""txtai reader.""" from typing import Any, Dict, List import numpy as np from llama_index.core.readers.base import BaseReader from llama_index.core.schema import Document class TxtaiReader(BaseReader): """txtai reader. Retrieves documents through an existing in-memory txtai index. These documents can then be used in a downstream LlamaIndex data structure. If you wish use txtai itself as an index to to organize documents, insert documents, and perform queries on them, please use VectorStoreIndex with TxtaiVectorStore. Args: txtai_index (txtai.ann.ANN): A txtai Index object (required) """ def __init__(self, index: Any): """Initialize with parameters.""" import_err_msg = """ `txtai` package not found. For instructions on how to install `txtai` please visit https://neuml.github.io/txtai/install/ """ try: import txtai # noqa except ImportError: raise ImportError(import_err_msg) self._index = index def load_data( self, query: np.ndarray, id_to_text_map: Dict[str, str], k: int = 4, separate_documents: bool = True, ) -> List[Document]: """Load data from txtai index. Args: query (np.ndarray): A 2D numpy array of query vectors. id_to_text_map (Dict[str, str]): A map from ID's to text. k (int): Number of nearest neighbors to retrieve. Defaults to 4. separate_documents (Optional[bool]): Whether to return separate documents. Defaults to True. Returns: List[Document]: A list of documents. """ search_result = self._index.search(query, k) documents = [] for query_result in search_result: for doc_id, _ in query_result: doc_id = str(doc_id) if doc_id not in id_to_text_map: raise ValueError( f"Document ID {doc_id} not found in id_to_text_map." ) text = id_to_text_map[doc_id] documents.append(Document(text=text)) if not separate_documents: # join all documents into one text_list = [doc.get_content() for doc in documents] text = "\n\n".join(text_list) documents = [Document(text=text)] return documents
from typing import TYPE_CHECKING, Type if TYPE_CHECKING: # pragma: no cover from pandas import DataFrame from docarray.typing import T class DataframeIOMixin: """Save/load from :class:`pandas.dataframe` .. note:: These functions require you to install `pandas` """ def to_dataframe(self, **kwargs) -> 'DataFrame': """Export itself to a :class:`pandas.DataFrame` object. :param kwargs: the extra kwargs will be passed to :meth:`pandas.DataFrame.from_dict`. :return: a :class:`pandas.DataFrame` object """ from pandas import DataFrame return DataFrame.from_dict(self.to_list(), **kwargs) @classmethod def from_dataframe(cls: Type['T'], df: 'DataFrame', *args, **kwargs) -> 'T': """Import a :class:`DocumentArray` from a :class:`pandas.DataFrame` object. :param df: a :class:`pandas.DataFrame` object. :return: a :class:`DocumentArray` object """ da = cls(**kwargs) from docarray import Document for m in df.to_dict(orient='records'): # drop nan da.append( Document( {k: v for k, v in m.items() if (not isinstance(v, float) or v == v)} ) ) return da
from typing import TYPE_CHECKING, Type if TYPE_CHECKING: from pandas import DataFrame from docarray.typing import T class DataframeIOMixin: """Save/load from :class:`pandas.dataframe` .. note:: These functions require you to install `pandas` """ def to_dataframe(self, **kwargs) -> 'DataFrame': """Export itself to a :class:`pandas.DataFrame` object. :param kwargs: the extra kwargs will be passed to :meth:`pandas.DataFrame.from_dict`. :return: a :class:`pandas.DataFrame` object """ from pandas import DataFrame return DataFrame.from_dict(self.to_list(), **kwargs) @classmethod def from_dataframe(cls: Type['T'], df: 'DataFrame', *args, **kwargs) -> 'T': """Import a :class:`DocumentArray` from a :class:`pandas.DataFrame` object. :param df: a :class:`pandas.DataFrame` object. :return: a :class:`DocumentArray` object """ da = cls(**kwargs) from docarray import Document for m in df.to_dict(orient='records'): # drop nan da.append( Document( {k: v for k, v in m.items() if (not isinstance(v, float) or v == v)} ) ) return da
import torch from torchaudio_unittest.common_utils import PytorchTestCase, skipIfNoCuda from torchaudio_unittest.models.conformer.conformer_test_impl import ConformerTestImpl @skipIfNoCuda class ConformerFloat32GPUTest(ConformerTestImpl, PytorchTestCase): dtype = torch.float32 device = torch.device("cuda") @skipIfNoCuda class ConformerFloat64GPUTest(ConformerTestImpl, PytorchTestCase): dtype = torch.float64 device = torch.device("cuda")
import torch from torchaudio_unittest.common_utils import skipIfNoCuda, PytorchTestCase from torchaudio_unittest.models.conformer.conformer_test_impl import ConformerTestImpl @skipIfNoCuda class ConformerFloat32GPUTest(ConformerTestImpl, PytorchTestCase): dtype = torch.float32 device = torch.device("cuda") @skipIfNoCuda class ConformerFloat64GPUTest(ConformerTestImpl, PytorchTestCase): dtype = torch.float64 device = torch.device("cuda")
import contextlib import json import re from typing import Any, List with contextlib.suppress(ImportError): import yaml from llama_index.core.output_parsers.base import OutputParserException def _marshal_llm_to_json(output: str) -> str: """ Extract a substring containing valid JSON or array from a string. Args: output: A string that may contain a valid JSON object or array surrounded by extraneous characters or information. Returns: A string containing a valid JSON object or array. """ output = output.strip() left_square = output.find("[") left_brace = output.find("{") if left_square < left_brace and left_square != -1: left = left_square right = output.rfind("]") else: left = left_brace right = output.rfind("}") return output[left : right + 1] def parse_json_markdown(text: str) -> Any: if "```json" in text: text = text.split("```json")[1].strip().strip("```").strip() json_string = _marshal_llm_to_json(text) try: json_obj = json.loads(json_string) except json.JSONDecodeError as e_json: try: # NOTE: parsing again with pyyaml # pyyaml is less strict, and allows for trailing commas # right now we rely on this since guidance program generates # trailing commas json_obj = yaml.safe_load(json_string) except yaml.YAMLError as e_yaml: raise OutputParserException( f"Got invalid JSON object. Error: {e_json} {e_yaml}. " f"Got JSON string: {json_string}" ) except NameError as exc: raise ImportError("Please pip install PyYAML.") from exc return json_obj def parse_code_markdown(text: str, only_last: bool) -> List[str]: # Regular expression pattern to match code within triple-backticks pattern = r"```(.*?)```" # Regular expression pattern to match code within triple backticks with # a Python marker. Like: ```python df.columns``` python_str_pattern = re.compile(r"^```python", re.IGNORECASE) text = python_str_pattern.sub("```", text) # Find all matches of the pattern in the text matches = re.findall(pattern, text, re.DOTALL) # Return the last matched group if requested code = matches[-1] if matches and only_last else matches # If empty we optimistically assume the output is the code if not code: # we want to handle cases where the code may start or end with triple # backticks # we also want to handle cases where the code is surrounded by regular # quotes # we can't just remove all backticks due to JS template strings candidate = text.strip() if candidate.startswith('"') and candidate.endswith('"'): candidate = candidate[1:-1] if candidate.startswith("'") and candidate.endswith("'"): candidate = candidate[1:-1] if candidate.startswith("`") and candidate.endswith("`"): candidate = candidate[1:-1] # For triple backticks we split the handling of the start and end # partly because there can be cases where only one and not the other # is present, and partly because we don't need to be so worried # about it being a string in a programming language if candidate.startswith("```"): candidate = re.sub(r"^```[a-zA-Z]*", "", candidate) if candidate.endswith("```"): candidate = candidate[:-3] code = [candidate.strip()] return code def extract_json_str(text: str) -> str: """Extract JSON string from text.""" # NOTE: this regex parsing is taken from langchain.output_parsers.pydantic match = re.search(r"\{.*\}", text.strip(), re.MULTILINE | re.IGNORECASE | re.DOTALL) if not match: raise ValueError(f"Could not extract json string from output: {text}") return match.group()
import contextlib import json import re from typing import Any, List with contextlib.suppress(ImportError): import yaml from llama_index.core.output_parsers.base import OutputParserException def _marshal_llm_to_json(output: str) -> str: """ Extract a substring containing valid JSON or array from a string. Args: output: A string that may contain a valid JSON object or array surrounded by extraneous characters or information. Returns: A string containing a valid JSON object or array. """ output = output.strip() left_square = output.find("[") left_brace = output.find("{") if left_square < left_brace and left_square != -1: left = left_square right = output.rfind("]") else: left = left_brace right = output.rfind("}") return output[left : right + 1] def parse_json_markdown(text: str) -> Any: if "```json" in text: text = text.split("```json")[1].strip().strip("```").strip() json_string = _marshal_llm_to_json(text) try: json_obj = json.loads(json_string) except json.JSONDecodeError as e_json: try: # NOTE: parsing again with pyyaml # pyyaml is less strict, and allows for trailing commas # right now we rely on this since guidance program generates # trailing commas json_obj = yaml.safe_load(json_string) except yaml.YAMLError as e_yaml: raise OutputParserException( f"Got invalid JSON object. Error: {e_json} {e_yaml}. " f"Got JSON string: {json_string}" ) except NameError as exc: raise ImportError("Please pip install PyYAML.") from exc return json_obj def parse_code_markdown(text: str, only_last: bool) -> List[str]: # Regular expression pattern to match code within triple-backticks pattern = r"```(.*?)```" # Regular expression pattern to match code within triple backticks with # a Python marker. Like: ```python df.columns``` python_str_pattern = re.compile(r"^```python", re.IGNORECASE) text = python_str_pattern.sub("```", text) # Find all matches of the pattern in the text matches = re.findall(pattern, text, re.DOTALL) # Return the last matched group if requested code = matches[-1] if matches and only_last else matches # If empty we optimistically assume the output is the code if not code: # we want to handle cases where the code may start or end with triple # backticks # we also want to handle cases where the code is surrounded by regular # quotes # we can't just remove all backticks due to JS template strings candidate = text.strip() if candidate.startswith('"') and candidate.endswith('"'): candidate = candidate[1:-1] if candidate.startswith("'") and candidate.endswith("'"): candidate = candidate[1:-1] if candidate.startswith("`") and candidate.endswith("`"): candidate = candidate[1:-1] # For triple backticks we split the handling of the start and end # partly because there can be cases where only one and not the other # is present, and partly because we don't need to be so worried # about it being a string in a programming language if candidate.startswith("```"): candidate = re.sub(r"^```[a-zA-Z]*", "", candidate) if candidate.endswith("```"): candidate = candidate[:-3] code = [candidate.strip()] return code def extract_json_str(text: str) -> str: """Extract JSON string from text.""" # NOTE: this regex parsing is taken from langchain.output_parsers.pydantic match = re.search(r"\{.*\}", text.strip(), re.MULTILINE | re.IGNORECASE | re.DOTALL) if not match: raise ValueError(f"Could not extract json string from output: {text}") return match.group()
from pathlib import Path import pytest from jina import Document, DocumentArray, Executor from jina.excepts import BadDocType def test_load(): segmenter = Executor.load_config(str(Path(__file__).parents[2] / 'config.yml')) assert type(segmenter).__name__ == 'VADSpeechSegmenter' @pytest.mark.parametrize('_type', ['wav', 'mp3', 'blob', '', None]) def test_segment(build_da, segmenter, _type): if _type == '': with pytest.raises( BadDocType, match='doc needs to have either a blob or a wav/mp3 uri' ): segmenter.segment(DocumentArray(Document())) return elif _type is None: segmenter.segment(DocumentArray()) return docs = build_da(_type) segmenter.segment(docs) # assert doc has 4 chunks for doc in docs: assert len(doc.chunks) == 4 file_paths = [ f'doc_{_type}_original.wav', f'chunk_{_type}_0_56500.wav', f'chunk_{_type}_69500_92000.wav', f'chunk_{_type}_94500_213000.wav', f'chunk_{_type}_223500_270500.wav', ] # assert dumped files exist for file_path in file_paths: assert (Path(segmenter.workspace) / f'audio/{file_path}').is_file() # assert exception is raised when doc blob is provided by sample rate is not if _type == 'blob': docs[0].tags.pop('sample_rate') with pytest.raises( BadDocType, match='data is blob but sample rate is not provided' ): segmenter.segment(docs) docs[0].tags['sample_rate'] = 0 with pytest.raises(BadDocType, match='sample rate cannot be 0'): segmenter.segment(docs)
from pathlib import Path import pytest from jina import Document, DocumentArray, Executor from jina.excepts import BadDocType from ...vad_speech_segmenter import VADSpeechSegmenter def test_load(): segmenter = Executor.load_config(str(Path(__file__).parents[2] / 'config.yml')) assert type(segmenter).__name__ == 'VADSpeechSegmenter' @pytest.mark.parametrize('_type', ['wav', 'mp3', 'blob', '', None]) def test_segment(build_da, segmenter, _type): if _type == '': with pytest.raises( BadDocType, match='doc needs to have either a blob or a wav/mp3 uri' ): segmenter.segment(DocumentArray(Document())) return elif _type is None: segmenter.segment(DocumentArray()) return docs = build_da(_type) segmenter.segment(docs) # assert doc has 4 chunks for doc in docs: assert len(doc.chunks) == 4 file_paths = [ f'doc_{_type}_original.wav', f'chunk_{_type}_0_56500.wav', f'chunk_{_type}_69500_92000.wav', f'chunk_{_type}_94500_213000.wav', f'chunk_{_type}_223500_270500.wav', ] # assert dumped files exist for file_path in file_paths: assert (Path(segmenter.workspace) / f'audio/{file_path}').is_file() # assert exception is raised when doc blob is provided by sample rate is not if _type == 'blob': docs[0].tags.pop('sample_rate') with pytest.raises( BadDocType, match='data is blob but sample rate is not provided' ): segmenter.segment(docs) docs[0].tags['sample_rate'] = 0 with pytest.raises(BadDocType, match='sample rate cannot be 0'): segmenter.segment(docs)
# Copyright (c) OpenMMLab. All rights reserved. """Get image metas on a specific dataset. Here is an example to run this script. Example: python tools/misc/get_image_metas.py ${CONFIG} \ --out ${OUTPUT FILE NAME} """ import argparse import csv import os.path as osp from multiprocessing import Pool import mmcv from mmengine.config import Config from mmengine.fileio import dump, get def parse_args(): parser = argparse.ArgumentParser(description='Collect image metas') parser.add_argument('config', help='Config file path') parser.add_argument( '--dataset', default='val', choices=['train', 'val', 'test'], help='Collect image metas from which dataset') parser.add_argument( '--out', default='validation-image-metas.pkl', help='The output image metas file name. The save dir is in the ' 'same directory as `dataset.ann_file` path') parser.add_argument( '--nproc', default=4, type=int, help='Processes used for get image metas') args = parser.parse_args() return args def get_metas_from_csv_style_ann_file(ann_file): data_infos = [] cp_filename = None with open(ann_file, 'r') as f: reader = csv.reader(f) for i, line in enumerate(reader): if i == 0: continue img_id = line[0] filename = f'{img_id}.jpg' if filename != cp_filename: data_infos.append(dict(filename=filename)) cp_filename = filename return data_infos def get_metas_from_txt_style_ann_file(ann_file): with open(ann_file) as f: lines = f.readlines() i = 0 data_infos = [] while i < len(lines): filename = lines[i].rstrip() data_infos.append(dict(filename=filename)) skip_lines = int(lines[i + 2]) + 3 i += skip_lines return data_infos def get_image_metas(data_info, img_prefix): filename = data_info.get('filename', None) if filename is not None: if img_prefix is not None: filename = osp.join(img_prefix, filename) img_bytes = get(filename) img = mmcv.imfrombytes(img_bytes, flag='color') shape = img.shape meta = dict(filename=filename, ori_shape=shape) else: raise NotImplementedError('Missing `filename` in data_info') return meta def main(): args = parse_args() assert args.out.endswith('pkl'), 'The output file name must be pkl suffix' # load config files cfg = Config.fromfile(args.config) dataloader_cfg = cfg.get(f'{args.dataset}_dataloader') ann_file = osp.join(dataloader_cfg.dataset.data_root, dataloader_cfg.dataset.ann_file) img_prefix = osp.join(dataloader_cfg.dataset.data_root, dataloader_cfg.dataset.data_prefix['img']) print(f'{"-" * 5} Start Processing {"-" * 5}') if ann_file.endswith('csv'): data_infos = get_metas_from_csv_style_ann_file(ann_file) elif ann_file.endswith('txt'): data_infos = get_metas_from_txt_style_ann_file(ann_file) else: shuffix = ann_file.split('.')[-1] raise NotImplementedError('File name must be csv or txt suffix but ' f'get {shuffix}') print(f'Successfully load annotation file from {ann_file}') print(f'Processing {len(data_infos)} images...') pool = Pool(args.nproc) # get image metas with multiple processes image_metas = pool.starmap( get_image_metas, zip(data_infos, [img_prefix for _ in range(len(data_infos))]), ) pool.close() # save image metas root_path = dataloader_cfg.dataset.ann_file.rsplit('/', 1)[0] save_path = osp.join(root_path, args.out) dump(image_metas, save_path, protocol=4) print(f'Image meta file save to: {save_path}') if __name__ == '__main__': main()
# Copyright (c) OpenMMLab. All rights reserved. """Get image metas on a specific dataset. Here is an example to run this script. Example: python tools/misc/get_image_metas.py ${CONFIG} \ --out ${OUTPUT FILE NAME} """ import argparse import csv import os.path as osp from multiprocessing import Pool import mmcv from mmengine.config import Config from mmengine.fileio import FileClient, dump def parse_args(): parser = argparse.ArgumentParser(description='Collect image metas') parser.add_argument('config', help='Config file path') parser.add_argument( '--dataset', default='val', choices=['train', 'val', 'test'], help='Collect image metas from which dataset') parser.add_argument( '--out', default='validation-image-metas.pkl', help='The output image metas file name. The save dir is in the ' 'same directory as `dataset.ann_file` path') parser.add_argument( '--nproc', default=4, type=int, help='Processes used for get image metas') args = parser.parse_args() return args def get_metas_from_csv_style_ann_file(ann_file): data_infos = [] cp_filename = None with open(ann_file, 'r') as f: reader = csv.reader(f) for i, line in enumerate(reader): if i == 0: continue img_id = line[0] filename = f'{img_id}.jpg' if filename != cp_filename: data_infos.append(dict(filename=filename)) cp_filename = filename return data_infos def get_metas_from_txt_style_ann_file(ann_file): with open(ann_file) as f: lines = f.readlines() i = 0 data_infos = [] while i < len(lines): filename = lines[i].rstrip() data_infos.append(dict(filename=filename)) skip_lines = int(lines[i + 2]) + 3 i += skip_lines return data_infos def get_image_metas(data_info, img_prefix): file_client = FileClient(backend='disk') filename = data_info.get('filename', None) if filename is not None: if img_prefix is not None: filename = osp.join(img_prefix, filename) img_bytes = file_client.get(filename) img = mmcv.imfrombytes(img_bytes, flag='color') shape = img.shape meta = dict(filename=filename, ori_shape=shape) else: raise NotImplementedError('Missing `filename` in data_info') return meta def main(): args = parse_args() assert args.out.endswith('pkl'), 'The output file name must be pkl suffix' # load config files cfg = Config.fromfile(args.config) dataloader_cfg = cfg.get(f'{args.dataset}_dataloader') ann_file = osp.join(dataloader_cfg.dataset.data_root, dataloader_cfg.dataset.ann_file) img_prefix = osp.join(dataloader_cfg.dataset.data_root, dataloader_cfg.dataset.data_prefix['img']) print(f'{"-" * 5} Start Processing {"-" * 5}') if ann_file.endswith('csv'): data_infos = get_metas_from_csv_style_ann_file(ann_file) elif ann_file.endswith('txt'): data_infos = get_metas_from_txt_style_ann_file(ann_file) else: shuffix = ann_file.split('.')[-1] raise NotImplementedError('File name must be csv or txt suffix but ' f'get {shuffix}') print(f'Successfully load annotation file from {ann_file}') print(f'Processing {len(data_infos)} images...') pool = Pool(args.nproc) # get image metas with multiple processes image_metas = pool.starmap( get_image_metas, zip(data_infos, [img_prefix for _ in range(len(data_infos))]), ) pool.close() # save image metas root_path = dataloader_cfg.dataset.ann_file.rsplit('/', 1)[0] save_path = osp.join(root_path, args.out) dump(image_metas, save_path, protocol=4) print(f'Image meta file save to: {save_path}') if __name__ == '__main__': main()
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import os from pathlib import Path import cv2 import pytest from jina import Executor, Document, DocumentArray from ...yolov5_segmenter import YoloV5Segmenter cur_dir = os.path.dirname(os.path.abspath(__file__)) def test_load(): segmenter = Executor.load_config(str(Path(__file__).parents[2] / 'config.yml')) assert segmenter.model_name_or_path == 'yolov5s' @pytest.mark.parametrize( 'model_path', [ os.path.join(cur_dir, '../data/models/yolov5s.pt'), os.path.join(cur_dir, '../data/models/yolov5m.pt'), 'yolov5s', 'yolov5m' ] ) def test_model_name_or_path(build_da, model_path): da = build_da() segmenter = YoloV5Segmenter(model_name_or_path=model_path) segmenter.segment(da, parameters={}) for doc in da: assert len(doc.chunks) > 0 for chunk in doc.chunks: assert chunk.blob.ndim == 3 assert chunk.tags.get('label') assert chunk.tags.get('conf') @pytest.mark.parametrize( 'model_path, expected_detections', [ (os.path.join(cur_dir, '../data/models/yolov5s.pt'), {'bus.jpg': 5, 'zidane.jpg': 3, 'man.jpg': 3}), (os.path.join(cur_dir, '../data/models/yolov5m.pt'), {'bus.jpg': 6, 'zidane.jpg': 3, 'man.jpg': 3}), ] ) def test_n_detections(build_da, model_path, expected_detections): da = build_da() segmenter = YoloV5Segmenter(model_name_or_path=model_path) segmenter.segment(da, parameters={}) for doc in da: assert len(doc.chunks) == expected_detections[doc.tags['filename']] @pytest.mark.parametrize( 'confidence_threshold, expected_detections', [ (0.3, {'bus.jpg': 6, 'zidane.jpg': 3, 'man.jpg': 3}), (0.5, {'bus.jpg': 5, 'zidane.jpg': 3, 'man.jpg': 3}), (0.8, {'bus.jpg': 3, 'zidane.jpg': 2, 'man.jpg': 0}), ] ) def test_confidence_threshold(build_da, confidence_threshold, expected_detections): da = build_da() segmenter = YoloV5Segmenter(model_name_or_path=os.path.join(cur_dir, '../data/models/yolov5m.pt'), default_confidence_threshold=confidence_threshold) segmenter.segment(da, parameters={}) for doc in da: assert len(doc.chunks) == expected_detections[doc.tags['filename']] assert all(chunk.tags['conf'] >= confidence_threshold for chunk in doc.chunks) def test_traversal_paths(): da = DocumentArray([ Document( id='root', blob=cv2.imread(os.path.join(cur_dir, '../data/img/man.jpg')), ), ]) segmenter = YoloV5Segmenter(model_name_or_path=os.path.join(cur_dir, '../data/models/yolov5m.pt')) segmenter.segment(da, parameters={}) # detects 2 persons and 1 cell phone assert len(da[0].chunks) == 3 assert da[0].chunks[0].tags['label'] == 'person' assert da[0].chunks[1].tags['label'] == 'person' assert da[0].chunks[2].tags['label'] == 'cell phone' segmenter.segment(da, parameters={'traversal_paths': ['c']}) # the first detected person spans the whole image, so segmenting the chunk produces 3 detections person_chunk = da[0].chunks[0] assert len(person_chunk.chunks) == 3 assert person_chunk.chunks[0].tags['label'] == 'person' assert person_chunk.chunks[1].tags['label'] == 'person' assert person_chunk.chunks[2].tags['label'] == 'cell phone'
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import os from operator import itemgetter import pytest from jina import Executor, Document, DocumentArray import cv2 from ...yolov5_segmenter import YoloV5Segmenter cur_dir = os.path.dirname(os.path.abspath(__file__)) def test_load(): segmenter = Executor.load_config('config.yml') assert segmenter.model_name_or_path == 'yolov5s' @pytest.mark.parametrize( 'model_path', [ os.path.join(cur_dir, '../data/models/yolov5s.pt'), os.path.join(cur_dir, '../data/models/yolov5m.pt'), 'yolov5s', 'yolov5m' ] ) def test_model_name_or_path(build_da, model_path): da = build_da() segmenter = YoloV5Segmenter(model_name_or_path=model_path) segmenter.segment(da, parameters={}) for doc in da: assert len(doc.chunks) > 0 for chunk in doc.chunks: assert chunk.blob.ndim == 3 assert chunk.tags.get('label') assert chunk.tags.get('conf') @pytest.mark.parametrize( 'model_path, expected_detections', [ (os.path.join(cur_dir, '../data/models/yolov5s.pt'), {'bus.jpg': 5, 'zidane.jpg': 3, 'man.jpg': 3}), (os.path.join(cur_dir, '../data/models/yolov5m.pt'), {'bus.jpg': 6, 'zidane.jpg': 3, 'man.jpg': 3}), ] ) def test_n_detections(build_da, model_path, expected_detections): da = build_da() segmenter = YoloV5Segmenter(model_name_or_path=model_path) segmenter.segment(da, parameters={}) for doc in da: assert len(doc.chunks) == expected_detections[doc.tags['filename']] @pytest.mark.parametrize( 'confidence_threshold, expected_detections', [ (0.3, {'bus.jpg': 6, 'zidane.jpg': 3, 'man.jpg': 3}), (0.5, {'bus.jpg': 5, 'zidane.jpg': 3, 'man.jpg': 3}), (0.8, {'bus.jpg': 3, 'zidane.jpg': 2, 'man.jpg': 0}), ] ) def test_confidence_threshold(build_da, confidence_threshold, expected_detections): da = build_da() segmenter = YoloV5Segmenter(model_name_or_path=os.path.join(cur_dir, '../data/models/yolov5m.pt'), default_confidence_threshold=confidence_threshold) segmenter.segment(da, parameters={}) for doc in da: assert len(doc.chunks) == expected_detections[doc.tags['filename']] assert all(chunk.tags['conf'] >= confidence_threshold for chunk in doc.chunks) def test_traversal_paths(): da = DocumentArray([ Document( id='root', blob=cv2.imread(os.path.join(cur_dir, '../data/img/man.jpg')), ), ]) segmenter = YoloV5Segmenter(model_name_or_path=os.path.join(cur_dir, '../data/models/yolov5m.pt')) segmenter.segment(da, parameters={}) # detects 2 persons and 1 cell phone assert len(da[0].chunks) == 3 assert da[0].chunks[0].tags['label'] == 'person' assert da[0].chunks[1].tags['label'] == 'person' assert da[0].chunks[2].tags['label'] == 'cell phone' segmenter.segment(da, parameters={'traversal_paths': ['c']}) # the first detected person spans the whole image, so segmenting the chunk produces 3 detections person_chunk = da[0].chunks[0] assert len(person_chunk.chunks) == 3 assert person_chunk.chunks[0].tags['label'] == 'person' assert person_chunk.chunks[1].tags['label'] == 'person' assert person_chunk.chunks[2].tags['label'] == 'cell phone'
from typing import Any, Dict, List, Optional from llama_index.core.base.base_retriever import BaseRetriever from llama_index.core.callbacks.base import CallbackManager from llama_index.core.constants import DEFAULT_SIMILARITY_TOP_K from llama_index.core.schema import NodeWithScore, QueryBundle from llama_index.core.settings import Settings from llama_index.core.vector_stores.types import MetadataFilters from llama_index.indices.managed.bge_m3.base import BGEM3Index class BGEM3Retriever(BaseRetriever): """ Vector index retriever. Args: index (BGEM3Index): BGEM3 index. similarity_top_k (int): number of top k results to return. filters (Optional[MetadataFilters]): metadata filters, defaults to None doc_ids (Optional[List[str]]): list of documents to constrain search. bge_m3_kwargs (dict): Additional bge_m3 specific kwargs to pass through to the bge_m3 index at query time. """ def __init__( self, index: BGEM3Index, similarity_top_k: int = DEFAULT_SIMILARITY_TOP_K, filters: Optional[MetadataFilters] = None, node_ids: Optional[List[str]] = None, doc_ids: Optional[List[str]] = None, callback_manager: Optional[CallbackManager] = None, object_map: Optional[dict] = None, verbose: bool = False, **kwargs: Any, ) -> None: """Initialize params.""" self._index = index self._docstore = self._index.docstore self._similarity_top_k = similarity_top_k self._node_ids = node_ids self._doc_ids = doc_ids self._filters = filters self._kwargs: Dict[str, Any] = kwargs.get("bge_m3_kwargs", {}) self._model = self._index.model self._batch_size = self._index.batch_size self._query_maxlen = self._index.query_maxlen self._weights_for_different_modes = self._index.weights_for_different_modes super().__init__( callback_manager=callback_manager or Settings.callback_manager, object_map=object_map, verbose=verbose, ) def _retrieve( self, query_bundle: QueryBundle, ) -> List[NodeWithScore]: return self._index.query( query_str=query_bundle.query_str, top_k=self._similarity_top_k, **self._kwargs, )
from typing import Any, Dict, List, Optional from llama_index.core.base.base_retriever import BaseRetriever from llama_index.core.callbacks.base import CallbackManager from llama_index.core.constants import DEFAULT_SIMILARITY_TOP_K from llama_index.core.schema import NodeWithScore, QueryBundle from llama_index.core.settings import Settings from llama_index.core.vector_stores.types import MetadataFilters from llama_index.indices.managed.bge_m3.base import BGEM3Index class BGEM3Retriever(BaseRetriever): """Vector index retriever. Args: index (BGEM3Index): BGEM3 index. similarity_top_k (int): number of top k results to return. filters (Optional[MetadataFilters]): metadata filters, defaults to None doc_ids (Optional[List[str]]): list of documents to constrain search. bge_m3_kwargs (dict): Additional bge_m3 specific kwargs to pass through to the bge_m3 index at query time. """ def __init__( self, index: BGEM3Index, similarity_top_k: int = DEFAULT_SIMILARITY_TOP_K, filters: Optional[MetadataFilters] = None, node_ids: Optional[List[str]] = None, doc_ids: Optional[List[str]] = None, callback_manager: Optional[CallbackManager] = None, object_map: Optional[dict] = None, verbose: bool = False, **kwargs: Any, ) -> None: """Initialize params.""" self._index = index self._docstore = self._index.docstore self._similarity_top_k = similarity_top_k self._node_ids = node_ids self._doc_ids = doc_ids self._filters = filters self._kwargs: Dict[str, Any] = kwargs.get("bge_m3_kwargs", {}) self._model = self._index.model self._batch_size = self._index.batch_size self._query_maxlen = self._index.query_maxlen self._weights_for_different_modes = self._index.weights_for_different_modes super().__init__( callback_manager=callback_manager or Settings.callback_manager, object_map=object_map, verbose=verbose, ) def _retrieve( self, query_bundle: QueryBundle, ) -> List[NodeWithScore]: return self._index.query( query_str=query_bundle.query_str, top_k=self._similarity_top_k, **self._kwargs, )
_base_ = '../ssd/ssd300_coco.py' model = dict( bbox_head=dict(type='PISASSDHead'), train_cfg=dict(isr=dict(k=2., bias=0.), carl=dict(k=1., bias=0.2))) default_hooks = dict( optimizer=dict( _delete_=True, type='OptimizerHook', grad_clip=dict(max_norm=35, norm_type=2)))
_base_ = '../ssd/ssd300_coco.py' model = dict( bbox_head=dict(type='PISASSDHead'), train_cfg=dict(isr=dict(k=2., bias=0.), carl=dict(k=1., bias=0.2))) optimizer_config = dict( _delete_=True, grad_clip=dict(max_norm=35, norm_type=2))
import io import PIL.Image import torch from torchvision import tv_tensors from torchvision.io import decode_jpeg, encode_jpeg from torchvision.transforms.functional import pil_to_tensor, to_pil_image from torchvision.utils import _log_api_usage_once from ._utils import _get_kernel, _register_kernel_internal def erase( inpt: torch.Tensor, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False, ) -> torch.Tensor: """See :class:`~torchvision.transforms.v2.RandomErase` for details.""" if torch.jit.is_scripting(): return erase_image(inpt, i=i, j=j, h=h, w=w, v=v, inplace=inplace) _log_api_usage_once(erase) kernel = _get_kernel(erase, type(inpt)) return kernel(inpt, i=i, j=j, h=h, w=w, v=v, inplace=inplace) @_register_kernel_internal(erase, torch.Tensor) @_register_kernel_internal(erase, tv_tensors.Image) def erase_image( image: torch.Tensor, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False ) -> torch.Tensor: if not inplace: image = image.clone() image[..., i : i + h, j : j + w] = v return image @_register_kernel_internal(erase, PIL.Image.Image) def _erase_image_pil( image: PIL.Image.Image, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False ) -> PIL.Image.Image: t_img = pil_to_tensor(image) output = erase_image(t_img, i=i, j=j, h=h, w=w, v=v, inplace=inplace) return to_pil_image(output, mode=image.mode) @_register_kernel_internal(erase, tv_tensors.Video) def erase_video( video: torch.Tensor, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False ) -> torch.Tensor: return erase_image(video, i=i, j=j, h=h, w=w, v=v, inplace=inplace) def jpeg(image: torch.Tensor, quality: int) -> torch.Tensor: """See :class:`~torchvision.transforms.v2.JPEG` for details.""" if torch.jit.is_scripting(): return jpeg_image(image, quality=quality) _log_api_usage_once(jpeg) kernel = _get_kernel(jpeg, type(image)) return kernel(image, quality=quality) @_register_kernel_internal(jpeg, torch.Tensor) @_register_kernel_internal(jpeg, tv_tensors.Image) def jpeg_image(image: torch.Tensor, quality: int) -> torch.Tensor: original_shape = image.shape image = image.view((-1,) + image.shape[-3:]) if image.shape[0] == 0: # degenerate return image.reshape(original_shape).clone() image = [decode_jpeg(encode_jpeg(image[i], quality=quality)) for i in range(image.shape[0])] image = torch.stack(image, dim=0).view(original_shape) return image @_register_kernel_internal(jpeg, tv_tensors.Video) def jpeg_video(video: torch.Tensor, quality: int) -> torch.Tensor: return jpeg_image(video, quality=quality) @_register_kernel_internal(jpeg, PIL.Image.Image) def _jpeg_image_pil(image: PIL.Image.Image, quality: int) -> PIL.Image.Image: raw_jpeg = io.BytesIO() image.save(raw_jpeg, format="JPEG", quality=quality) # we need to copy since PIL.Image.open() will return PIL.JpegImagePlugin.JpegImageFile # which is a sub-class of PIL.Image.Image. this will fail check_transform() test. return PIL.Image.open(raw_jpeg).copy()
import PIL.Image import torch from torchvision import tv_tensors from torchvision.transforms.functional import pil_to_tensor, to_pil_image from torchvision.utils import _log_api_usage_once from ._utils import _get_kernel, _register_kernel_internal def erase( inpt: torch.Tensor, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False, ) -> torch.Tensor: """See :class:`~torchvision.transforms.v2.RandomErase` for details.""" if torch.jit.is_scripting(): return erase_image(inpt, i=i, j=j, h=h, w=w, v=v, inplace=inplace) _log_api_usage_once(erase) kernel = _get_kernel(erase, type(inpt)) return kernel(inpt, i=i, j=j, h=h, w=w, v=v, inplace=inplace) @_register_kernel_internal(erase, torch.Tensor) @_register_kernel_internal(erase, tv_tensors.Image) def erase_image( image: torch.Tensor, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False ) -> torch.Tensor: if not inplace: image = image.clone() image[..., i : i + h, j : j + w] = v return image @_register_kernel_internal(erase, PIL.Image.Image) def _erase_image_pil( image: PIL.Image.Image, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False ) -> PIL.Image.Image: t_img = pil_to_tensor(image) output = erase_image(t_img, i=i, j=j, h=h, w=w, v=v, inplace=inplace) return to_pil_image(output, mode=image.mode) @_register_kernel_internal(erase, tv_tensors.Video) def erase_video( video: torch.Tensor, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False ) -> torch.Tensor: return erase_image(video, i=i, j=j, h=h, w=w, v=v, inplace=inplace)
import aiohttp import pytest from jina import Executor, Flow, requests from jina.clients.base.helper import HTTPClientlet, WebsocketClientlet from jina.clients.request.helper import _new_data_request from jina.excepts import BadServer from jina.logging.logger import JinaLogger from jina.types.request.data import DataRequest logger = JinaLogger('clientlet') class ClientTestExecutor(Executor): @requests def error(self, **kwargs): raise NotImplementedError @pytest.fixture def flow_with_exception_request(): return Flow().add(uses=ClientTestExecutor).add() @pytest.mark.asyncio async def test_http_clientlet(): from jina.helper import random_port port = random_port() with Flow(port=port, protocol='http').add(): async with HTTPClientlet( url=f'http://localhost:{port}/post', logger=logger ) as iolet: request = _new_data_request('/', None, {'a': 'b'}) r = await iolet.send_message(request) response = DataRequest(await r.json()) assert response.header.exec_endpoint == '/' assert response.parameters == {'a': 'b'} @pytest.mark.asyncio async def test_websocket_clientlet(): with pytest.raises(aiohttp.ClientError): async with WebsocketClientlet(url='ws://localhost:12345', logger=logger): pass def test_client_behaviour(flow_with_exception_request, mocker): on_done_mock = mocker.Mock() on_always_mock = mocker.Mock() on_error_mock = None with pytest.raises(BadServer): with flow_with_exception_request as f: f.post( '', on_done=on_done_mock, on_error=on_error_mock, on_always=on_always_mock, ) on_always_mock.assert_called_once() on_done_mock.assert_not_called()
import aiohttp import pytest from jina import Executor, Flow, requests from jina.clients.base.helper import HTTPClientlet, WebsocketClientlet from jina.clients.request.helper import _new_data_request from jina.excepts import BadServer from jina.logging.logger import JinaLogger from jina.types.request.data import DataRequest logger = JinaLogger('clientlet') class ClientTestExecutor(Executor): @requests def error(self, **kwargs): raise NotImplementedError @pytest.fixture def flow_with_exception_request(): return Flow().add(uses=ClientTestExecutor).add() @pytest.mark.asyncio async def test_http_clientlet(): from jina.helper import random_port port = random_port() with Flow(port=port, protocol='http').add(): async with HTTPClientlet( url=f'http://localhost:{port}/post', logger=logger ) as iolet: request = _new_data_request('/', None, {'a': 'b'}) r = await iolet.send_message(request) response = DataRequest(await r.json()) assert response.header.exec_endpoint == '/' assert response.parameters == {'a': 'b'} @pytest.mark.asyncio async def test_websocket_clientlet(): with pytest.raises(aiohttp.ClientError): async with WebsocketClientlet( url='ws://localhost:12345', logger=logger ) as iolet: pass def test_client_behaviour(flow_with_exception_request, mocker): on_done_mock = mocker.Mock() on_always_mock = mocker.Mock() on_error_mock = None with pytest.raises(BadServer): with flow_with_exception_request as f: f.post( '', on_done=on_done_mock, on_error=on_error_mock, on_always=on_always_mock, ) on_always_mock.assert_called_once() on_done_mock.assert_not_called() on_error_mock = mocker.Mock() on_done_mock = mocker.Mock() on_always_mock = mocker.Mock() with flow_with_exception_request as f: f.post( '', on_done=on_done_mock, on_error=on_error_mock, on_always=on_always_mock ) on_always_mock.assert_called_once() on_done_mock.assert_not_called() on_error_mock.assert_called_once()
from docarray import Document, DocumentArray import numpy as np def test_success_find_with_added_kwargs(start_storage, monkeypatch): nrof_docs = 1000 num_candidates = 100 elastic_doc = DocumentArray( storage='elasticsearch', config={ 'n_dim': 3, 'distance': 'l2_norm', 'index_name': 'test_success_find_with_added_kwargs', }, ) with elastic_doc: elastic_doc.extend( [ Document(id=f'r{i}', embedding=np.ones((3,)) * i) for i in range(nrof_docs) ], ) def _mock_knn_search(**kwargs): assert kwargs['knn']['num_candidates'] == num_candidates return {'hits': {'hits': []}} monkeypatch.setattr(elastic_doc._client, 'knn_search', _mock_knn_search) np_query = np.array([2, 1, 3]) elastic_doc.find(np_query, limit=10, num_candidates=num_candidates) def test_filter(start_storage): import random import string elastic_da = DocumentArray( storage='elasticsearch', config={ 'n_dim': 2, 'columns': { 'A': 'str', 'B': 'str', 'V': 'str', 'D': 'str', 'E': 'str', 'F': 'str', 'G': 'str', }, }, ) def ran(): return ''.join(random.choices(string.ascii_uppercase + string.digits, k=10)) def ran_size(): sizes = ['S', 'M', 'L', 'XL'] return sizes[random.randint(0, len(sizes) - 1)] def ran_type(): types = ['A', 'B', 'C', 'D'] return types[random.randint(0, len(types) - 1)] def ran_stype(): stypes = ['SA', 'SB', 'SC', 'SD'] return stypes[random.randint(0, len(stypes) - 1)] docs = DocumentArray( [ Document( id=f'r{i}', embedding=np.random.rand(2), tags={ 'A': ran(), 'B': ran_stype(), 'C': ran_size(), 'D': ran_type(), 'E': ran(), 'F': ran_type(), 'G': f'G{i}', }, ) for i in range(50) ] ) with elastic_da: elastic_da.extend(docs) res = elastic_da.find(query=Document(embedding=docs[0].embedding)) assert len(res) > 0 assert res[0][0].tags['G'] == 'G0' filter_ = {'match': {'G': 'G3'}} res = elastic_da.find(filter=filter_) assert len(res) > 0 assert res[0].tags['G'] == 'G3' res = elastic_da.find(query=Document(embedding=docs[0].embedding), filter=filter_) assert len(res) > 0 assert res[0][0].tags['G'] == 'G3'
from docarray import Document, DocumentArray import numpy as np def test_success_find_with_added_kwargs(start_storage, monkeypatch): nrof_docs = 1000 num_candidates = 100 elastic_doc = DocumentArray( storage='elasticsearch', config={ 'n_dim': 3, 'distance': 'l2_norm', 'index_name': 'test_success_find_with_added_kwargs', }, ) with elastic_doc: elastic_doc.extend( [ Document(id=f'r{i}', embedding=np.ones((3,)) * i) for i in range(nrof_docs) ], ) def _mock_knn_search(**kwargs): assert kwargs['knn']['num_candidates'] == num_candidates return {'hits': {'hits': []}} monkeypatch.setattr(elastic_doc._client, 'knn_search', _mock_knn_search) np_query = np.array([2, 1, 3]) elastic_doc.find(np_query, limit=10, num_candidates=num_candidates)
from unittest.mock import patch, MagicMock import pytest from llama_index.utils.workflow import ( draw_all_possible_flows, draw_most_recent_execution, ) @pytest.mark.asyncio async def test_workflow_draw_methods(workflow): with patch("pyvis.network.Network") as mock_network: draw_all_possible_flows(workflow, filename="test_all_flows.html") mock_network.assert_called_once() mock_network.return_value.show.assert_called_once_with( "test_all_flows.html", notebook=False ) await workflow.run() with patch("pyvis.network.Network") as mock_network: draw_most_recent_execution(workflow, filename="test_recent_execution.html") mock_network.assert_called_once() mock_network.return_value.show.assert_called_once_with( "test_recent_execution.html", notebook=False ) @pytest.mark.asyncio async def test_draw_all_possible_flows_with_max_label_length(workflow): """Test the max_label_length parameter.""" with patch("pyvis.network.Network") as mock_network: mock_net_instance = MagicMock() mock_network.return_value = mock_net_instance # Test with max_label_length=10 draw_all_possible_flows( workflow, filename="test_truncated.html", max_label_length=10 ) # Extract actual label mappings from add_node calls label_mappings = {} for call in mock_net_instance.add_node.call_args_list: _, kwargs = call label = kwargs.get("label") title = kwargs.get("title") # For items with titles (truncated), map title->label if title: label_mappings[title] = label # For items without titles (not truncated), map label->label elif label: label_mappings[label] = label # Test cases using actual events from DummyWorkflow fixture test_cases = [ ("OneTestEvent", "OneTestEv*"), # 12 chars -> truncated to 10 ("LastEvent", "LastEvent"), # 9 chars -> no truncation ( "StartEvent", "StartEvent", ), # 10 chars -> no truncation (exactly at limit) ("StopEvent", "StopEvent"), # 9 chars -> no truncation ] # Verify actual results match expected for available test cases for original, expected_label in test_cases: if original in label_mappings: actual_label = label_mappings[original] assert actual_label == expected_label, ( f"Expected '{original}' to become '{expected_label}', but got '{actual_label}'" ) assert len(actual_label) <= 10, ( f"Label '{actual_label}' exceeds max_label_length=10" )
from unittest.mock import patch import pytest from llama_index.utils.workflow import ( draw_all_possible_flows, draw_most_recent_execution, ) @pytest.mark.asyncio async def test_workflow_draw_methods(workflow): with patch("pyvis.network.Network") as mock_network: draw_all_possible_flows(workflow, filename="test_all_flows.html") mock_network.assert_called_once() mock_network.return_value.show.assert_called_once_with( "test_all_flows.html", notebook=False ) await workflow.run() with patch("pyvis.network.Network") as mock_network: draw_most_recent_execution(workflow, filename="test_recent_execution.html") mock_network.assert_called_once() mock_network.return_value.show.assert_called_once_with( "test_recent_execution.html", notebook=False )
from torchaudio import ( # noqa: F401 _extension, compliance, datasets, functional, io, kaldi_io, models, pipelines, sox_effects, transforms, utils, ) from torchaudio.backend import get_audio_backend, list_audio_backends, set_audio_backend try: from .version import __version__, git_version # noqa: F401 except ImportError: pass __all__ = [ "io", "compliance", "datasets", "functional", "models", "pipelines", "kaldi_io", "utils", "sox_effects", "transforms", "list_audio_backends", "get_audio_backend", "set_audio_backend", ]
from torchaudio import ( # noqa: F401 _extension, compliance, datasets, functional, io, kaldi_io, models, pipelines, sox_effects, transforms, utils, ) from torchaudio.backend import get_audio_backend, list_audio_backends, set_audio_backend try: from .version import __version__, git_version # noqa: F401 except ImportError: pass __all__ = [ "io", "compliance", "datasets", "functional", "models", "pipelines", "kaldi_io", "utils", "sox_effects", "transforms", "list_audio_backends", "get_audio_backend", "set_audio_backend", ]
# Copyright (c) OpenMMLab. All rights reserved. import mmcv import torch from mmcv.cnn import ConvModule, DepthwiseSeparableConvModule from mmdet.models.dense_heads import YOLOXHead def test_yolox_head_loss(): """Tests yolox head loss when truth is empty and non-empty.""" s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'scale_factor': 1, 'pad_shape': (s, s, 3) }] train_cfg = mmcv.Config( dict( assigner=dict( type='SimOTAAssigner', center_radius=2.5, candidate_topk=10, iou_weight=3.0, cls_weight=1.0))) self = YOLOXHead( num_classes=4, in_channels=1, use_depthwise=False, train_cfg=train_cfg) assert not self.use_l1 assert isinstance(self.multi_level_cls_convs[0][0], ConvModule) feat = [ torch.rand(1, 1, s // feat_size, s // feat_size) for feat_size in [4, 8, 16] ] cls_scores, bbox_preds, objectnesses = self.forward(feat) # Test that empty ground truth encourages the network to predict background gt_bboxes = [torch.empty((0, 4))] gt_labels = [torch.LongTensor([])] empty_gt_losses = self.loss(cls_scores, bbox_preds, objectnesses, gt_bboxes, gt_labels, img_metas) # When there is no truth, the cls loss should be nonzero but there should # be no box loss. empty_cls_loss = empty_gt_losses['loss_cls'].sum() empty_box_loss = empty_gt_losses['loss_bbox'].sum() empty_obj_loss = empty_gt_losses['loss_obj'].sum() assert empty_cls_loss.item() == 0, ( 'there should be no cls loss when there are no true boxes') assert empty_box_loss.item() == 0, ( 'there should be no box loss when there are no true boxes') assert empty_obj_loss.item() > 0, 'objectness loss should be non-zero' # When truth is non-empty then both cls and box loss should be nonzero for # random inputs self = YOLOXHead( num_classes=4, in_channels=1, use_depthwise=True, train_cfg=train_cfg) assert isinstance(self.multi_level_cls_convs[0][0], DepthwiseSeparableConvModule) self.use_l1 = True gt_bboxes = [ torch.Tensor([[23.6667, 23.8757, 238.6326, 151.8874]]), ] gt_labels = [torch.LongTensor([2])] one_gt_losses = self.loss(cls_scores, bbox_preds, objectnesses, gt_bboxes, gt_labels, img_metas) onegt_cls_loss = one_gt_losses['loss_cls'].sum() onegt_box_loss = one_gt_losses['loss_bbox'].sum() onegt_obj_loss = one_gt_losses['loss_obj'].sum() onegt_l1_loss = one_gt_losses['loss_l1'].sum() assert onegt_cls_loss.item() > 0, 'cls loss should be non-zero' assert onegt_box_loss.item() > 0, 'box loss should be non-zero' assert onegt_obj_loss.item() > 0, 'obj loss should be non-zero' assert onegt_l1_loss.item() > 0, 'l1 loss should be non-zero'
import mmcv import torch from mmcv.cnn import ConvModule, DepthwiseSeparableConvModule from mmdet.models.dense_heads import YOLOXHead def test_yolox_head_loss(): """Tests yolox head loss when truth is empty and non-empty.""" s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'scale_factor': 1, 'pad_shape': (s, s, 3) }] train_cfg = mmcv.Config( dict( assigner=dict( type='SimOTAAssigner', center_radius=2.5, candidate_topk=10, iou_weight=3.0, cls_weight=1.0))) self = YOLOXHead( num_classes=4, in_channels=1, use_depthwise=False, train_cfg=train_cfg) assert not self.use_l1 assert isinstance(self.multi_level_cls_convs[0][0], ConvModule) feat = [ torch.rand(1, 1, s // feat_size, s // feat_size) for feat_size in [4, 8, 16] ] cls_scores, bbox_preds, objectnesses = self.forward(feat) # Test that empty ground truth encourages the network to predict background gt_bboxes = [torch.empty((0, 4))] gt_labels = [torch.LongTensor([])] empty_gt_losses = self.loss(cls_scores, bbox_preds, objectnesses, gt_bboxes, gt_labels, img_metas) # When there is no truth, the cls loss should be nonzero but there should # be no box loss. empty_cls_loss = empty_gt_losses['loss_cls'].sum() empty_box_loss = empty_gt_losses['loss_bbox'].sum() empty_obj_loss = empty_gt_losses['loss_obj'].sum() assert empty_cls_loss.item() == 0, ( 'there should be no cls loss when there are no true boxes') assert empty_box_loss.item() == 0, ( 'there should be no box loss when there are no true boxes') assert empty_obj_loss.item() > 0, 'objectness loss should be non-zero' # When truth is non-empty then both cls and box loss should be nonzero for # random inputs self = YOLOXHead( num_classes=4, in_channels=1, use_depthwise=True, train_cfg=train_cfg) assert isinstance(self.multi_level_cls_convs[0][0], DepthwiseSeparableConvModule) self.use_l1 = True gt_bboxes = [ torch.Tensor([[23.6667, 23.8757, 238.6326, 151.8874]]), ] gt_labels = [torch.LongTensor([2])] one_gt_losses = self.loss(cls_scores, bbox_preds, objectnesses, gt_bboxes, gt_labels, img_metas) onegt_cls_loss = one_gt_losses['loss_cls'].sum() onegt_box_loss = one_gt_losses['loss_bbox'].sum() onegt_obj_loss = one_gt_losses['loss_obj'].sum() onegt_l1_loss = one_gt_losses['loss_l1'].sum() assert onegt_cls_loss.item() > 0, 'cls loss should be non-zero' assert onegt_box_loss.item() > 0, 'box loss should be non-zero' assert onegt_obj_loss.item() > 0, 'obj loss should be non-zero' assert onegt_l1_loss.item() > 0, 'l1 loss should be non-zero'
from functools import wraps from typing import Any, Callable, Concatenate, Coroutine, ParamSpec, TypeVar, cast from backend.data.credit import get_user_credit_model from backend.data.execution import ( ExecutionResult, create_graph_execution, get_execution_results, get_incomplete_executions, get_latest_execution, update_execution_status, update_graph_execution_stats, update_node_execution_stats, upsert_execution_input, upsert_execution_output, ) from backend.data.graph import get_graph, get_node from backend.data.queue import RedisExecutionEventBus from backend.data.user import get_user_metadata, update_user_metadata from backend.util.service import AppService, expose from backend.util.settings import Config P = ParamSpec("P") R = TypeVar("R") class DatabaseManager(AppService): def __init__(self): super().__init__() self.use_db = True self.use_redis = True self.event_queue = RedisExecutionEventBus() @classmethod def get_port(cls) -> int: return Config().database_api_port @expose def send_execution_update(self, execution_result_dict: dict[Any, Any]): self.event_queue.publish(ExecutionResult(**execution_result_dict)) @staticmethod def exposed_run_and_wait( f: Callable[P, Coroutine[None, None, R]] ) -> Callable[Concatenate[object, P], R]: @expose @wraps(f) def wrapper(self, *args: P.args, **kwargs: P.kwargs) -> R: coroutine = f(*args, **kwargs) res = self.run_and_wait(coroutine) return res return wrapper # Executions create_graph_execution = exposed_run_and_wait(create_graph_execution) get_execution_results = exposed_run_and_wait(get_execution_results) get_incomplete_executions = exposed_run_and_wait(get_incomplete_executions) get_latest_execution = exposed_run_and_wait(get_latest_execution) update_execution_status = exposed_run_and_wait(update_execution_status) update_graph_execution_stats = exposed_run_and_wait(update_graph_execution_stats) update_node_execution_stats = exposed_run_and_wait(update_node_execution_stats) upsert_execution_input = exposed_run_and_wait(upsert_execution_input) upsert_execution_output = exposed_run_and_wait(upsert_execution_output) # Graphs get_node = exposed_run_and_wait(get_node) get_graph = exposed_run_and_wait(get_graph) # Credits user_credit_model = get_user_credit_model() get_or_refill_credit = cast( Callable[[Any, str], int], exposed_run_and_wait(user_credit_model.get_or_refill_credit), ) spend_credits = cast( Callable[[Any, str, int, str, dict[str, str], float, float], int], exposed_run_and_wait(user_credit_model.spend_credits), ) # User + User Metadata get_user_metadata = exposed_run_and_wait(get_user_metadata) update_user_metadata = exposed_run_and_wait(update_user_metadata)
from functools import wraps from typing import Any, Callable, Concatenate, Coroutine, ParamSpec, TypeVar, cast from backend.data.credit import get_user_credit_model from backend.data.execution import ( ExecutionResult, create_graph_execution, get_execution_results, get_incomplete_executions, get_latest_execution, update_execution_status, update_graph_execution_stats, update_node_execution_stats, upsert_execution_input, upsert_execution_output, ) from backend.data.graph import get_graph, get_node from backend.data.queue import RedisEventQueue from backend.data.user import get_user_metadata, update_user_metadata from backend.util.service import AppService, expose from backend.util.settings import Config P = ParamSpec("P") R = TypeVar("R") class DatabaseManager(AppService): def __init__(self): super().__init__() self.use_db = True self.use_redis = True self.event_queue = RedisEventQueue() @classmethod def get_port(cls) -> int: return Config().database_api_port @expose def send_execution_update(self, execution_result_dict: dict[Any, Any]): self.event_queue.put(ExecutionResult(**execution_result_dict)) @staticmethod def exposed_run_and_wait( f: Callable[P, Coroutine[None, None, R]] ) -> Callable[Concatenate[object, P], R]: @expose @wraps(f) def wrapper(self, *args: P.args, **kwargs: P.kwargs) -> R: coroutine = f(*args, **kwargs) res = self.run_and_wait(coroutine) return res return wrapper # Executions create_graph_execution = exposed_run_and_wait(create_graph_execution) get_execution_results = exposed_run_and_wait(get_execution_results) get_incomplete_executions = exposed_run_and_wait(get_incomplete_executions) get_latest_execution = exposed_run_and_wait(get_latest_execution) update_execution_status = exposed_run_and_wait(update_execution_status) update_graph_execution_stats = exposed_run_and_wait(update_graph_execution_stats) update_node_execution_stats = exposed_run_and_wait(update_node_execution_stats) upsert_execution_input = exposed_run_and_wait(upsert_execution_input) upsert_execution_output = exposed_run_and_wait(upsert_execution_output) # Graphs get_node = exposed_run_and_wait(get_node) get_graph = exposed_run_and_wait(get_graph) # Credits user_credit_model = get_user_credit_model() get_or_refill_credit = cast( Callable[[Any, str], int], exposed_run_and_wait(user_credit_model.get_or_refill_credit), ) spend_credits = cast( Callable[[Any, str, int, str, dict[str, str], float, float], int], exposed_run_and_wait(user_credit_model.spend_credits), ) # User + User Metadata get_user_metadata = exposed_run_and_wait(get_user_metadata) update_user_metadata = exposed_run_and_wait(update_user_metadata)
# Copyright (c) OpenMMLab. All rights reserved. import argparse import os.path as osp import mmcv import numpy as np from mmcv import Config, DictAction from mmdet.core.utils import mask2ndarray from mmdet.datasets.builder import build_dataset from mmdet.registry import VISUALIZERS from mmdet.utils import register_all_modules def parse_args(): parser = argparse.ArgumentParser(description='Browse a dataset') parser.add_argument('config', help='train config file path') parser.add_argument( '--output-dir', default=None, type=str, help='If there is no display interface, you can save it') parser.add_argument('--not-show', default=False, action='store_true') parser.add_argument( '--show-interval', type=float, default=2, help='the interval of show (s)') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') args = parser.parse_args() return args def main(): args = parse_args() cfg = Config.fromfile(args.config) if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) # register all modules in mmdet into the registries register_all_modules() dataset = build_dataset(cfg.train_dataloader.dataset) visualizer = VISUALIZERS.build(cfg.visualizer) visualizer.dataset_meta = dataset.metainfo progress_bar = mmcv.ProgressBar(len(dataset)) for item in dataset: img = item['inputs'].permute(1, 2, 0).numpy() data_sample = item['data_sample'].numpy() gt_instances = data_sample.gt_instances img_path = osp.basename(item['data_sample'].img_path) out_file = osp.join( args.output_dir, osp.basename(img_path)) if args.output_dir is not None else None img = img[..., [2, 1, 0]] # bgr to rgb gt_masks = gt_instances.get('masks', None) if gt_masks is not None: masks = mask2ndarray(gt_masks) gt_instances.masks = masks.astype(np.bool) data_sample.gt_instances = gt_instances visualizer.add_datasample( osp.basename(img_path), img, data_sample, show=not args.not_show, wait_time=args.show_interval, out_file=out_file) progress_bar.update() if __name__ == '__main__': main()
# Copyright (c) OpenMMLab. All rights reserved. import argparse import os.path as osp import mmcv import numpy as np from mmcv import Config, DictAction from mmdet.core.utils import mask2ndarray from mmdet.datasets.builder import build_dataset from mmdet.registry import VISUALIZERS from mmdet.utils import register_all_modules def parse_args(): parser = argparse.ArgumentParser(description='Browse a dataset') parser.add_argument('config', help='train config file path') parser.add_argument( '--output-dir', default=None, type=str, help='If there is no display interface, you can save it') parser.add_argument('--not-show', default=False, action='store_true') parser.add_argument( '--show-interval', type=float, default=2, help='the interval of show (s)') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') args = parser.parse_args() return args def main(): args = parse_args() cfg = Config.fromfile(args.config) if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) # register all modules in mmdet into the registries register_all_modules() dataset = build_dataset(cfg.train_dataloader.dataset) visualizer = VISUALIZERS.build(cfg.visualizer) visualizer.dataset_meta = dataset.METAINFO progress_bar = mmcv.ProgressBar(len(dataset)) for item in dataset: img = item['inputs'].permute(1, 2, 0).numpy() data_sample = item['data_sample'].numpy() gt_instances = data_sample.gt_instances img_path = osp.basename(item['data_sample'].img_path) out_file = osp.join( args.output_dir, osp.basename(img_path)) if args.output_dir is not None else None img = img[..., [2, 1, 0]] # bgr to rgb gt_masks = gt_instances.get('masks', None) if gt_masks is not None: masks = mask2ndarray(gt_masks) gt_instances.masks = masks.astype(np.bool) data_sample.gt_instances = gt_instances visualizer.add_datasample( osp.basename(img_path), img, data_sample, show=not args.not_show, wait_time=args.show_interval, out_file=out_file) progress_bar.update() if __name__ == '__main__': main()
from .filtering import ( allpass_biquad, band_biquad, bandpass_biquad, bandreject_biquad, bass_biquad, biquad, contrast, dcshift, deemph_biquad, dither, equalizer_biquad, filtfilt, flanger, gain, highpass_biquad, lfilter, lowpass_biquad, overdrive, phaser, riaa_biquad, treble_biquad, vad, ) from .functional import ( add_noise, amplitude_to_DB, apply_beamforming, apply_codec, compute_deltas, convolve, create_dct, DB_to_amplitude, deemphasis, detect_pitch_frequency, edit_distance, fftconvolve, forced_align, griffinlim, inverse_spectrogram, linear_fbanks, loudness, mask_along_axis, mask_along_axis_iid, melscale_fbanks, merge_tokens, mu_law_decoding, mu_law_encoding, mvdr_weights_rtf, mvdr_weights_souden, phase_vocoder, pitch_shift, preemphasis, psd, resample, rnnt_loss, rtf_evd, rtf_power, sliding_window_cmn, spectral_centroid, spectrogram, speed, TokenSpan, ) __all__ = [ "amplitude_to_DB", "compute_deltas", "create_dct", "melscale_fbanks", "linear_fbanks", "DB_to_amplitude", "loudness", "detect_pitch_frequency", "griffinlim", "mask_along_axis", "mask_along_axis_iid", "mu_law_encoding", "mu_law_decoding", "phase_vocoder", "sliding_window_cmn", "spectrogram", "inverse_spectrogram", "spectral_centroid", "allpass_biquad", "band_biquad", "bandpass_biquad", "bandreject_biquad", "bass_biquad", "biquad", "contrast", "dither", "dcshift", "deemph_biquad", "equalizer_biquad", "filtfilt", "flanger", "forced_align", "merge_tokens", "TokenSpan", "gain", "highpass_biquad", "lfilter", "lowpass_biquad", "overdrive", "phaser", "riaa_biquad", "treble_biquad", "vad", "apply_codec", "resample", "edit_distance", "pitch_shift", "rnnt_loss", "psd", "mvdr_weights_souden", "mvdr_weights_rtf", "rtf_evd", "rtf_power", "apply_beamforming", "fftconvolve", "convolve", "add_noise", "speed", "preemphasis", "deemphasis", ]
from .filtering import ( allpass_biquad, band_biquad, bandpass_biquad, bandreject_biquad, bass_biquad, biquad, contrast, dcshift, deemph_biquad, dither, equalizer_biquad, filtfilt, flanger, gain, highpass_biquad, lfilter, lowpass_biquad, overdrive, phaser, riaa_biquad, treble_biquad, vad, ) from .functional import ( add_noise, amplitude_to_DB, apply_beamforming, apply_codec, compute_deltas, convolve, create_dct, DB_to_amplitude, deemphasis, detect_pitch_frequency, edit_distance, fftconvolve, forced_align, griffinlim, inverse_spectrogram, linear_fbanks, loudness, mask_along_axis, mask_along_axis_iid, melscale_fbanks, mu_law_decoding, mu_law_encoding, mvdr_weights_rtf, mvdr_weights_souden, phase_vocoder, pitch_shift, preemphasis, psd, resample, rnnt_loss, rtf_evd, rtf_power, sliding_window_cmn, spectral_centroid, spectrogram, speed, ) __all__ = [ "amplitude_to_DB", "compute_deltas", "create_dct", "melscale_fbanks", "linear_fbanks", "DB_to_amplitude", "loudness", "detect_pitch_frequency", "griffinlim", "mask_along_axis", "mask_along_axis_iid", "mu_law_encoding", "mu_law_decoding", "phase_vocoder", "sliding_window_cmn", "spectrogram", "inverse_spectrogram", "spectral_centroid", "allpass_biquad", "band_biquad", "bandpass_biquad", "bandreject_biquad", "bass_biquad", "biquad", "contrast", "dither", "dcshift", "deemph_biquad", "equalizer_biquad", "filtfilt", "flanger", "forced_align", "gain", "highpass_biquad", "lfilter", "lowpass_biquad", "overdrive", "phaser", "riaa_biquad", "treble_biquad", "vad", "apply_codec", "resample", "edit_distance", "pitch_shift", "rnnt_loss", "psd", "mvdr_weights_souden", "mvdr_weights_rtf", "rtf_evd", "rtf_power", "apply_beamforming", "fftconvolve", "convolve", "add_noise", "speed", "preemphasis", "deemphasis", ]
# Copyright (c) OpenMMLab. All rights reserved. from ..builder import DETECTORS from .single_stage import SingleStageDetector @DETECTORS.register_module() class NASFCOS(SingleStageDetector): """NAS-FCOS: Fast Neural Architecture Search for Object Detection. https://arxiv.org/abs/1906.0442 """ def __init__(self, backbone, neck, bbox_head, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None): super(NASFCOS, self).__init__(backbone, neck, bbox_head, train_cfg, test_cfg, pretrained, init_cfg)
from ..builder import DETECTORS from .single_stage import SingleStageDetector @DETECTORS.register_module() class NASFCOS(SingleStageDetector): """NAS-FCOS: Fast Neural Architecture Search for Object Detection. https://arxiv.org/abs/1906.0442 """ def __init__(self, backbone, neck, bbox_head, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None): super(NASFCOS, self).__init__(backbone, neck, bbox_head, train_cfg, test_cfg, pretrained, init_cfg)
_base_ = './mask-rcnn_r50_fpn_seesaw-loss_sample1e-3-ms-2x_lvis-v1.py' model = dict( backbone=dict( depth=101, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')))
_base_ = './mask_rcnn_r50_fpn_sample1e-3_seesaw_loss_mstrain_2x_lvis_v1.py' model = dict( backbone=dict( depth=101, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')))
# Copyright (c) OpenMMLab. All rights reserved. from .approx_max_iou_assigner import ApproxMaxIoUAssigner from .assign_result import AssignResult from .atss_assigner import ATSSAssigner from .base_assigner import BaseAssigner from .center_region_assigner import CenterRegionAssigner from .dynamic_soft_label_assigner import DynamicSoftLabelAssigner from .grid_assigner import GridAssigner from .hungarian_assigner import HungarianAssigner from .iou2d_calculator import BboxOverlaps2D from .match_cost import (BBoxL1Cost, ClassificationCost, CrossEntropyLossCost, DiceCost, FocalLossCost, IoUCost) from .max_iou_assigner import MaxIoUAssigner from .multi_instance_assigner import MultiInstanceAssigner from .point_assigner import PointAssigner from .region_assigner import RegionAssigner from .sim_ota_assigner import SimOTAAssigner from .task_aligned_assigner import TaskAlignedAssigner from .topk_hungarian_assigner import TopkHungarianAssigner from .uniform_assigner import UniformAssigner __all__ = [ 'BaseAssigner', 'MaxIoUAssigner', 'ApproxMaxIoUAssigner', 'AssignResult', 'PointAssigner', 'ATSSAssigner', 'CenterRegionAssigner', 'GridAssigner', 'HungarianAssigner', 'RegionAssigner', 'UniformAssigner', 'SimOTAAssigner', 'TaskAlignedAssigner', 'TopkHungarianAssigner', 'BBoxL1Cost', 'ClassificationCost', 'CrossEntropyLossCost', 'DiceCost', 'FocalLossCost', 'IoUCost', 'BboxOverlaps2D', 'DynamicSoftLabelAssigner', 'MultiInstanceAssigner' ]
# Copyright (c) OpenMMLab. All rights reserved. from .approx_max_iou_assigner import ApproxMaxIoUAssigner from .assign_result import AssignResult from .atss_assigner import ATSSAssigner from .base_assigner import BaseAssigner from .center_region_assigner import CenterRegionAssigner from .dynamic_soft_label_assigner import DynamicSoftLabelAssigner from .grid_assigner import GridAssigner from .hungarian_assigner import HungarianAssigner from .iou2d_calculator import BboxOverlaps2D from .match_cost import (BBoxL1Cost, ClassificationCost, CrossEntropyLossCost, DiceCost, FocalLossCost, IoUCost) from .max_iou_assigner import MaxIoUAssigner from .multi_instance_assigner import MultiInstanceAssigner from .point_assigner import PointAssigner from .region_assigner import RegionAssigner from .sim_ota_assigner import SimOTAAssigner from .task_aligned_assigner import TaskAlignedAssigner from .uniform_assigner import UniformAssigner __all__ = [ 'BaseAssigner', 'MaxIoUAssigner', 'ApproxMaxIoUAssigner', 'AssignResult', 'PointAssigner', 'ATSSAssigner', 'CenterRegionAssigner', 'GridAssigner', 'HungarianAssigner', 'RegionAssigner', 'UniformAssigner', 'SimOTAAssigner', 'TaskAlignedAssigner', 'BBoxL1Cost', 'ClassificationCost', 'CrossEntropyLossCost', 'DiceCost', 'FocalLossCost', 'IoUCost', 'BboxOverlaps2D', 'DynamicSoftLabelAssigner', 'MultiInstanceAssigner' ]
_base_ = [ '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] model = dict( type='ATSS', data_preprocessor=dict( type='DetDataPreprocessor', mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], bgr_to_rgb=False, pad_size_divisor=128), backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=False), norm_eval=True, style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')), neck=[ dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_output', num_outs=5), dict( type='DyHead', in_channels=256, out_channels=256, num_blocks=6, # disable zero_init_offset to follow official implementation zero_init_offset=False) ], bbox_head=dict( type='ATSSHead', num_classes=80, in_channels=256, pred_kernel_size=1, # follow DyHead official implementation stacked_convs=0, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], octave_base_scale=8, scales_per_octave=1, strides=[8, 16, 32, 64, 128], center_offset=0.5), # follow DyHead official implementation bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[0.1, 0.1, 0.2, 0.2]), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=2.0), loss_centerness=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)), # training and testing settings train_cfg=dict( assigner=dict(type='ATSSAssigner', topk=9), allowed_border=-1, pos_weight=-1, debug=False), test_cfg=dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, nms=dict(type='nms', iou_threshold=0.6), max_per_img=100)) # optimizer optim_wrapper = dict(optimizer=dict(lr=0.01)) train_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', scale=(1333, 800), keep_ratio=True, backend='pillow'), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='Resize', scale=(1333, 800), keep_ratio=True, backend='pillow'), dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader
_base_ = [ '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] model = dict( type='ATSS', data_preprocessor=dict( type='DetDataPreprocessor', mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], bgr_to_rgb=False, pad_size_divisor=128), backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=False), norm_eval=True, style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe')), neck=[ dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_output', num_outs=5), dict( type='DyHead', in_channels=256, out_channels=256, num_blocks=6, # disable zero_init_offset to follow official implementation zero_init_offset=False) ], bbox_head=dict( type='ATSSHead', num_classes=80, in_channels=256, pred_kernel_size=1, # follow DyHead official implementation stacked_convs=0, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], octave_base_scale=8, scales_per_octave=1, strides=[8, 16, 32, 64, 128], center_offset=0.5), # follow DyHead official implementation bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[0.1, 0.1, 0.2, 0.2]), loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=2.0), loss_centerness=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)), # training and testing settings train_cfg=dict( assigner=dict(type='ATSSAssigner', topk=9), allowed_border=-1, pos_weight=-1, debug=False), test_cfg=dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, nms=dict(type='nms', iou_threshold=0.6), max_per_img=100)) # optimizer optim_wrapper = dict(optimizer=dict(lr=0.01)) train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', scale=(1333, 800), keep_ratio=True, backend='pillow'), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='Resize', scale=(1333, 800), keep_ratio=True, backend='pillow'), dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.api import _tf_keras from keras.api import activations from keras.api import applications from keras.api import backend from keras.api import callbacks from keras.api import config from keras.api import constraints from keras.api import datasets from keras.api import distribution from keras.api import dtype_policies from keras.api import export from keras.api import initializers from keras.api import layers from keras.api import legacy from keras.api import losses from keras.api import metrics from keras.api import mixed_precision from keras.api import models from keras.api import ops from keras.api import optimizers from keras.api import preprocessing from keras.api import quantizers from keras.api import random from keras.api import regularizers from keras.api import saving from keras.api import tree from keras.api import utils from keras.api import visualization from keras.src.backend import Variable from keras.src.backend import device from keras.src.backend import name_scope from keras.src.backend.common.keras_tensor import KerasTensor from keras.src.backend.common.stateless_scope import StatelessScope from keras.src.backend.common.symbolic_scope import SymbolicScope from keras.src.dtype_policies.dtype_policy import DTypePolicy from keras.src.dtype_policies.dtype_policy import FloatDTypePolicy from keras.src.initializers.initializer import Initializer from keras.src.layers.core.input_layer import Input from keras.src.layers.input_spec import InputSpec from keras.src.layers.layer import Layer from keras.src.losses.loss import Loss from keras.src.metrics.metric import Metric from keras.src.models.model import Model from keras.src.models.sequential import Sequential from keras.src.ops.function import Function from keras.src.ops.operation import Operation from keras.src.optimizers.optimizer import Optimizer from keras.src.quantizers.quantizers import Quantizer from keras.src.regularizers.regularizers import Regularizer from keras.src.version import __version__ from keras.src.version import version
"""DO NOT EDIT. This file was autogenerated. Do not edit it by hand, since your modifications would be overwritten. """ from keras.api import _tf_keras from keras.api import activations from keras.api import applications from keras.api import backend from keras.api import callbacks from keras.api import config from keras.api import constraints from keras.api import datasets from keras.api import distribution from keras.api import dtype_policies from keras.api import export from keras.api import initializers from keras.api import layers from keras.api import legacy from keras.api import losses from keras.api import metrics from keras.api import mixed_precision from keras.api import models from keras.api import ops from keras.api import optimizers from keras.api import preprocessing from keras.api import quantizers from keras.api import random from keras.api import regularizers from keras.api import saving from keras.api import tree from keras.api import utils from keras.src.backend import Variable from keras.src.backend import device from keras.src.backend import name_scope from keras.src.backend.common.keras_tensor import KerasTensor from keras.src.backend.common.stateless_scope import StatelessScope from keras.src.backend.common.symbolic_scope import SymbolicScope from keras.src.dtype_policies.dtype_policy import DTypePolicy from keras.src.dtype_policies.dtype_policy import FloatDTypePolicy from keras.src.initializers.initializer import Initializer from keras.src.layers.core.input_layer import Input from keras.src.layers.input_spec import InputSpec from keras.src.layers.layer import Layer from keras.src.losses.loss import Loss from keras.src.metrics.metric import Metric from keras.src.models.model import Model from keras.src.models.sequential import Sequential from keras.src.ops.function import Function from keras.src.ops.operation import Operation from keras.src.optimizers.optimizer import Optimizer from keras.src.quantizers.quantizers import Quantizer from keras.src.regularizers.regularizers import Regularizer from keras.src.version import __version__ from keras.src.version import version
# Copyright (c) OpenMMLab. All rights reserved. import argparse import os.path as osp import numpy as np from mmengine.fileio import dump, load from mmengine.utils import mkdir_or_exist, track_parallel_progress prog_description = '''K-Fold coco split. To split coco data for semi-supervised object detection: python tools/misc/split_coco.py ''' def parse_args(): parser = argparse.ArgumentParser() parser.add_argument( '--data-root', type=str, help='The data root of coco dataset.', default='./data/coco/') parser.add_argument( '--out-dir', type=str, help='The output directory of coco semi-supervised annotations.', default='./data/coco_semi_annos/') parser.add_argument( '--labeled-percent', type=float, nargs='+', help='The percentage of labeled data in the training set.', default=[1, 2, 5, 10]) parser.add_argument( '--fold', type=int, help='K-fold cross validation for semi-supervised object detection.', default=5) args = parser.parse_args() return args def split_coco(data_root, out_dir, percent, fold): """Split COCO data for Semi-supervised object detection. Args: data_root (str): The data root of coco dataset. out_dir (str): The output directory of coco semi-supervised annotations. percent (float): The percentage of labeled data in the training set. fold (int): The fold of dataset and set as random seed for data split. """ def save_anns(name, images, annotations): sub_anns = dict() sub_anns['images'] = images sub_anns['annotations'] = annotations sub_anns['licenses'] = anns['licenses'] sub_anns['categories'] = anns['categories'] sub_anns['info'] = anns['info'] mkdir_or_exist(out_dir) dump(sub_anns, f'{out_dir}/{name}.json') # set random seed with the fold np.random.seed(fold) ann_file = osp.join(data_root, 'annotations/instances_train2017.json') anns = load(ann_file) image_list = anns['images'] labeled_total = int(percent / 100. * len(image_list)) labeled_inds = set( np.random.choice(range(len(image_list)), size=labeled_total)) labeled_ids, labeled_images, unlabeled_images = [], [], [] for i in range(len(image_list)): if i in labeled_inds: labeled_images.append(image_list[i]) labeled_ids.append(image_list[i]['id']) else: unlabeled_images.append(image_list[i]) # get all annotations of labeled images labeled_ids = set(labeled_ids) labeled_annotations, unlabeled_annotations = [], [] for ann in anns['annotations']: if ann['image_id'] in labeled_ids: labeled_annotations.append(ann) else: unlabeled_annotations.append(ann) # save labeled and unlabeled labeled_name = f'instances_train2017.{fold}@{percent}' unlabeled_name = f'instances_train2017.{fold}@{percent}-unlabeled' save_anns(labeled_name, labeled_images, labeled_annotations) save_anns(unlabeled_name, unlabeled_images, unlabeled_annotations) def multi_wrapper(args): return split_coco(*args) if __name__ == '__main__': args = parse_args() arguments_list = [(args.data_root, args.out_dir, p, f) for f in range(1, args.fold + 1) for p in args.labeled_percent] track_parallel_progress(multi_wrapper, arguments_list, args.fold)
# Copyright (c) OpenMMLab. All rights reserved. import argparse import os.path as osp import mmcv import numpy as np prog_description = '''K-Fold coco split. To split coco data for semi-supervised object detection: python tools/misc/split_coco.py ''' def parse_args(): parser = argparse.ArgumentParser() parser.add_argument( '--data-root', type=str, help='The data root of coco dataset.', default='./data/coco/') parser.add_argument( '--out-dir', type=str, help='The output directory of coco semi-supervised annotations.', default='./data/coco_semi_annos/') parser.add_argument( '--labeled-percent', type=float, nargs='+', help='The percentage of labeled data in the training set.', default=[1, 2, 5, 10]) parser.add_argument( '--fold', type=int, help='K-fold cross validation for semi-supervised object detection.', default=5) args = parser.parse_args() return args def split_coco(data_root, out_dir, percent, fold): """Split COCO data for Semi-supervised object detection. Args: data_root (str): The data root of coco dataset. out_dir (str): The output directory of coco semi-supervised annotations. percent (float): The percentage of labeled data in the training set. fold (int): The fold of dataset and set as random seed for data split. """ def save_anns(name, images, annotations): sub_anns = dict() sub_anns['images'] = images sub_anns['annotations'] = annotations sub_anns['licenses'] = anns['licenses'] sub_anns['categories'] = anns['categories'] sub_anns['info'] = anns['info'] mmcv.mkdir_or_exist(out_dir) mmcv.dump(sub_anns, f'{out_dir}/{name}.json') # set random seed with the fold np.random.seed(fold) ann_file = osp.join(data_root, 'annotations/instances_train2017.json') anns = mmcv.load(ann_file) image_list = anns['images'] labeled_total = int(percent / 100. * len(image_list)) labeled_inds = set( np.random.choice(range(len(image_list)), size=labeled_total)) labeled_ids, labeled_images, unlabeled_images = [], [], [] for i in range(len(image_list)): if i in labeled_inds: labeled_images.append(image_list[i]) labeled_ids.append(image_list[i]['id']) else: unlabeled_images.append(image_list[i]) # get all annotations of labeled images labeled_ids = set(labeled_ids) labeled_annotations, unlabeled_annotations = [], [] for ann in anns['annotations']: if ann['image_id'] in labeled_ids: labeled_annotations.append(ann) else: unlabeled_annotations.append(ann) # save labeled and unlabeled labeled_name = f'instances_train2017.{fold}@{percent}' unlabeled_name = f'instances_train2017.{fold}@{percent}-unlabeled' save_anns(labeled_name, labeled_images, labeled_annotations) save_anns(unlabeled_name, unlabeled_images, unlabeled_annotations) def multi_wrapper(args): return split_coco(*args) if __name__ == '__main__': args = parse_args() arguments_list = [(args.data_root, args.out_dir, p, f) for f in range(1, args.fold + 1) for p in args.labeled_percent] mmcv.track_parallel_progress(multi_wrapper, arguments_list, args.fold)
from __future__ import annotations from typing import Any, Callable, List, Tuple, Type, Union import PIL.Image from torchvision import datapoints from torchvision._utils import sequence_to_str from torchvision.transforms.v2.functional import get_dimensions, get_size, is_pure_tensor def get_bounding_boxes(flat_inputs: List[Any]) -> datapoints.BoundingBoxes: # This assumes there is only one bbox per sample as per the general convention try: return next(inpt for inpt in flat_inputs if isinstance(inpt, datapoints.BoundingBoxes)) except StopIteration: raise ValueError("No bounding boxes were found in the sample") def query_chw(flat_inputs: List[Any]) -> Tuple[int, int, int]: chws = { tuple(get_dimensions(inpt)) for inpt in flat_inputs if check_type(inpt, (is_pure_tensor, datapoints.Image, PIL.Image.Image, datapoints.Video)) } if not chws: raise TypeError("No image or video was found in the sample") elif len(chws) > 1: raise ValueError(f"Found multiple CxHxW dimensions in the sample: {sequence_to_str(sorted(chws))}") c, h, w = chws.pop() return c, h, w def query_size(flat_inputs: List[Any]) -> Tuple[int, int]: sizes = { tuple(get_size(inpt)) for inpt in flat_inputs if check_type( inpt, ( is_pure_tensor, datapoints.Image, PIL.Image.Image, datapoints.Video, datapoints.Mask, datapoints.BoundingBoxes, ), ) } if not sizes: raise TypeError("No image, video, mask or bounding box was found in the sample") elif len(sizes) > 1: raise ValueError(f"Found multiple HxW dimensions in the sample: {sequence_to_str(sorted(sizes))}") h, w = sizes.pop() return h, w def check_type(obj: Any, types_or_checks: Tuple[Union[Type, Callable[[Any], bool]], ...]) -> bool: for type_or_check in types_or_checks: if isinstance(obj, type_or_check) if isinstance(type_or_check, type) else type_or_check(obj): return True return False def has_any(flat_inputs: List[Any], *types_or_checks: Union[Type, Callable[[Any], bool]]) -> bool: for inpt in flat_inputs: if check_type(inpt, types_or_checks): return True return False def has_all(flat_inputs: List[Any], *types_or_checks: Union[Type, Callable[[Any], bool]]) -> bool: for type_or_check in types_or_checks: for inpt in flat_inputs: if isinstance(inpt, type_or_check) if isinstance(type_or_check, type) else type_or_check(inpt): break else: return False return True
from __future__ import annotations from typing import Any, Callable, List, Tuple, Type, Union import PIL.Image from torchvision import datapoints from torchvision._utils import sequence_to_str from torchvision.transforms.v2.functional import get_dimensions, get_size, is_simple_tensor def get_bounding_boxes(flat_inputs: List[Any]) -> datapoints.BoundingBoxes: # This assumes there is only one bbox per sample as per the general convention try: return next(inpt for inpt in flat_inputs if isinstance(inpt, datapoints.BoundingBoxes)) except StopIteration: raise ValueError("No bounding boxes were found in the sample") def query_chw(flat_inputs: List[Any]) -> Tuple[int, int, int]: chws = { tuple(get_dimensions(inpt)) for inpt in flat_inputs if check_type(inpt, (is_simple_tensor, datapoints.Image, PIL.Image.Image, datapoints.Video)) } if not chws: raise TypeError("No image or video was found in the sample") elif len(chws) > 1: raise ValueError(f"Found multiple CxHxW dimensions in the sample: {sequence_to_str(sorted(chws))}") c, h, w = chws.pop() return c, h, w def query_size(flat_inputs: List[Any]) -> Tuple[int, int]: sizes = { tuple(get_size(inpt)) for inpt in flat_inputs if check_type( inpt, ( is_simple_tensor, datapoints.Image, PIL.Image.Image, datapoints.Video, datapoints.Mask, datapoints.BoundingBoxes, ), ) } if not sizes: raise TypeError("No image, video, mask or bounding box was found in the sample") elif len(sizes) > 1: raise ValueError(f"Found multiple HxW dimensions in the sample: {sequence_to_str(sorted(sizes))}") h, w = sizes.pop() return h, w def check_type(obj: Any, types_or_checks: Tuple[Union[Type, Callable[[Any], bool]], ...]) -> bool: for type_or_check in types_or_checks: if isinstance(obj, type_or_check) if isinstance(type_or_check, type) else type_or_check(obj): return True return False def has_any(flat_inputs: List[Any], *types_or_checks: Union[Type, Callable[[Any], bool]]) -> bool: for inpt in flat_inputs: if check_type(inpt, types_or_checks): return True return False def has_all(flat_inputs: List[Any], *types_or_checks: Union[Type, Callable[[Any], bool]]) -> bool: for type_or_check in types_or_checks: for inpt in flat_inputs: if isinstance(inpt, type_or_check) if isinstance(type_or_check, type) else type_or_check(inpt): break else: return False return True
import numpy as np import pytest from absl.testing import parameterized from keras.src import layers from keras.src import ops from keras.src import random from keras.src import testing class SolarizationTest(testing.TestCase): def _test_input_output(self, layer, input_value, expected_value, dtype): input = np.ones(shape=(2, 224, 224, 3), dtype=dtype) * input_value expected_output = ops.clip( ( np.ones(shape=(2, 224, 224, 3), dtype=layer.compute_dtype) * expected_value ), 0, 255, ) output = layer(input) self.assertAllClose(output, expected_output) @pytest.mark.requires_trainable_backend def test_layer(self): self.run_layer_test( layers.Solarization, init_kwargs={ "addition_factor": 0.75, "value_range": (20, 200), "threshold_factor": (0, 1), "seed": 1, }, input_shape=(8, 3, 4, 3), supports_masking=False, expected_output_shape=(8, 3, 4, 3), ) @parameterized.named_parameters( ("0_255", 0, 255), ("64_191", 64, 191), ("127_128", 127, 128), ("191_64", 191, 64), ("255_0", 255, 0), ) def test_output_values(self, input_value, expected_value): solarization = layers.Solarization(value_range=(0, 255)) self._test_input_output( layer=solarization, input_value=input_value, expected_value=expected_value, dtype="uint8", ) @parameterized.named_parameters( ("0_0", 0, 0), ("191_64", 191, 64), ("255_0", 255, 0), ) def test_only_values_above_threshold_are_solarized( self, input_value, output_value ): solarization = layers.Solarization( threshold_factor=(128.0 / 255.0, 128.0 / 255.0), value_range=(0, 255), ) self._test_input_output( layer=solarization, input_value=input_value, expected_value=output_value, dtype="uint8", ) def test_random_augmentation_applied_per_sample(self): image = random.uniform((16, 16, 3), minval=0, maxval=255) images = ops.stack([image, image]) layer = layers.Solarization( value_range=(0, 255), threshold_factor=0.5, addition_factor=0.5 ) outputs = layer(images) self.assertNotAllClose(outputs[0], outputs[1])
import numpy as np import pytest from absl.testing import parameterized from keras.src import layers from keras.src import ops from keras.src import random from keras.src import testing class SolarizationTest(testing.TestCase, parameterized.TestCase): def _test_input_output(self, layer, input_value, expected_value, dtype): input = np.ones(shape=(2, 224, 224, 3), dtype=dtype) * input_value expected_output = ops.clip( ( np.ones(shape=(2, 224, 224, 3), dtype=layer.compute_dtype) * expected_value ), 0, 255, ) output = layer(input) self.assertAllClose(output, expected_output) @pytest.mark.requires_trainable_backend def test_layer(self): self.run_layer_test( layers.Solarization, init_kwargs={ "addition_factor": 0.75, "value_range": (20, 200), "threshold_factor": (0, 1), "seed": 1, }, input_shape=(8, 3, 4, 3), supports_masking=False, expected_output_shape=(8, 3, 4, 3), ) @parameterized.named_parameters( ("0_255", 0, 255), ("64_191", 64, 191), ("127_128", 127, 128), ("191_64", 191, 64), ("255_0", 255, 0), ) def test_output_values(self, input_value, expected_value): solarization = layers.Solarization(value_range=(0, 255)) self._test_input_output( layer=solarization, input_value=input_value, expected_value=expected_value, dtype="uint8", ) @parameterized.named_parameters( ("0_0", 0, 0), ("191_64", 191, 64), ("255_0", 255, 0), ) def test_only_values_above_threshold_are_solarized( self, input_value, output_value ): solarization = layers.Solarization( threshold_factor=(128.0 / 255.0, 128.0 / 255.0), value_range=(0, 255), ) self._test_input_output( layer=solarization, input_value=input_value, expected_value=output_value, dtype="uint8", ) def test_random_augmentation_applied_per_sample(self): image = random.uniform((16, 16, 3), minval=0, maxval=255) images = ops.stack([image, image]) layer = layers.Solarization( value_range=(0, 255), threshold_factor=0.5, addition_factor=0.5 ) outputs = layer(images) self.assertNotAllClose(outputs[0], outputs[1])
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path DATASETS_ON_HF_GCP = [ {"dataset": "wikipedia", "config_name": "20220301.de"}, {"dataset": "wikipedia", "config_name": "20220301.en"}, {"dataset": "wikipedia", "config_name": "20220301.fr"}, {"dataset": "wikipedia", "config_name": "20220301.frr"}, {"dataset": "wikipedia", "config_name": "20220301.it"}, {"dataset": "wikipedia", "config_name": "20220301.simple"}, {"dataset": "snli", "config_name": "plain_text"}, {"dataset": "eli5", "config_name": "LFQA_reddit"}, {"dataset": "wiki40b", "config_name": "en"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.compressed"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.no_index"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.multiset.no_index"}, {"dataset": "natural_questions", "config_name": "default"}, ] def list_datasets_on_hf_gcp_parameters(with_config=True): if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=True)) class TestDatasetOnHfGcp(TestCase): dataset = None config_name = None def test_dataset_info_available(self, dataset, config_name): with TemporaryDirectory() as tmp_dir: dataset_module = dataset_module_factory(dataset, cache_dir=tmp_dir) builder_cls = import_main_class(dataset_module.module_path, dataset=True) builder_instance: DatasetBuilder = builder_cls( cache_dir=tmp_dir, config_name=config_name, hash=dataset_module.hash, ) dataset_info_url = os.path.join( HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=False), config.DATASET_INFO_FILENAME ).replace(os.sep, "/") datset_info_path = cached_path(dataset_info_url, cache_dir=tmp_dir) self.assertTrue(os.path.exists(datset_info_path)) @pytest.mark.integration def test_wikipedia_frr(tmp_path_factory): tmp_dir = tmp_path_factory.mktemp("test_hf_gcp") / "test_wikipedia_simple" dataset_module = dataset_module_factory("wikipedia", cache_dir=tmp_dir) builder_cls = import_main_class(dataset_module.module_path, dataset=True) builder_instance: DatasetBuilder = builder_cls( cache_dir=tmp_dir, config_name="20220301.frr", hash=dataset_module.hash, ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam builder_instance._download_and_prepare = None builder_instance.download_and_prepare() ds = builder_instance.as_dataset() assert ds is not None
import os from tempfile import TemporaryDirectory from unittest import TestCase from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path DATASETS_ON_HF_GCP = [ {"dataset": "wikipedia", "config_name": "20220301.de"}, {"dataset": "wikipedia", "config_name": "20220301.en"}, {"dataset": "wikipedia", "config_name": "20220301.fr"}, {"dataset": "wikipedia", "config_name": "20220301.frr"}, {"dataset": "wikipedia", "config_name": "20220301.it"}, {"dataset": "wikipedia", "config_name": "20220301.simple"}, {"dataset": "snli", "config_name": "plain_text"}, {"dataset": "eli5", "config_name": "LFQA_reddit"}, {"dataset": "wiki40b", "config_name": "en"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.compressed"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.no_index"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.multiset.no_index"}, {"dataset": "natural_questions", "config_name": "default"}, ] def list_datasets_on_hf_gcp_parameters(with_config=True): if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=True)) class TestDatasetOnHfGcp(TestCase): dataset = None config_name = None def test_dataset_info_available(self, dataset, config_name): with TemporaryDirectory() as tmp_dir: dataset_module = dataset_module_factory(dataset, cache_dir=tmp_dir) builder_cls = import_main_class(dataset_module.module_path, dataset=True) builder_instance: DatasetBuilder = builder_cls( cache_dir=tmp_dir, config_name=config_name, hash=dataset_module.hash, ) dataset_info_url = os.path.join( HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=False), config.DATASET_INFO_FILENAME ).replace(os.sep, "/") datset_info_path = cached_path(dataset_info_url, cache_dir=tmp_dir) self.assertTrue(os.path.exists(datset_info_path))
from __future__ import annotations from collections.abc import Sequence from copy import deepcopy from typing import Any, Optional, Union from langchain_core._api.deprecation import deprecated from langchain_core.callbacks import Callbacks from langchain_core.documents import BaseDocumentCompressor, Document from langchain_core.utils import get_from_dict_or_env from pydantic import ConfigDict, model_validator @deprecated( since="0.0.30", removal="1.0", alternative_import="langchain_cohere.CohereRerank" ) class CohereRerank(BaseDocumentCompressor): """Document compressor that uses `Cohere Rerank API`.""" client: Any = None """Cohere client to use for compressing documents.""" top_n: Optional[int] = 3 """Number of documents to return.""" model: str = "rerank-english-v2.0" """Model to use for reranking.""" cohere_api_key: Optional[str] = None """Cohere API key. Must be specified directly or via environment variable COHERE_API_KEY.""" user_agent: str = "langchain" """Identifier for the application making the request.""" model_config = ConfigDict( arbitrary_types_allowed=True, extra="forbid", ) @model_validator(mode="before") @classmethod def validate_environment(cls, values: dict) -> Any: """Validate that api key and python package exists in environment.""" if not values.get("client"): try: import cohere except ImportError: raise ImportError( "Could not import cohere python package. " "Please install it with `pip install cohere`." ) cohere_api_key = get_from_dict_or_env( values, "cohere_api_key", "COHERE_API_KEY" ) client_name = values.get("user_agent", "langchain") values["client"] = cohere.Client(cohere_api_key, client_name=client_name) return values def rerank( self, documents: Sequence[Union[str, Document, dict]], query: str, *, model: Optional[str] = None, top_n: Optional[int] = -1, max_chunks_per_doc: Optional[int] = None, ) -> list[dict[str, Any]]: """Returns an ordered list of documents ordered by their relevance to the provided query. Args: query: The query to use for reranking. documents: A sequence of documents to rerank. model: The model to use for re-ranking. Default to self.model. top_n : The number of results to return. If None returns all results. Defaults to self.top_n. max_chunks_per_doc : The maximum number of chunks derived from a document. """ # noqa: E501 if len(documents) == 0: # to avoid empty api call return [] docs = [ doc.page_content if isinstance(doc, Document) else doc for doc in documents ] model = model or self.model top_n = top_n if (top_n is None or top_n > 0) else self.top_n results = self.client.rerank( query=query, documents=docs, model=model, top_n=top_n, max_chunks_per_doc=max_chunks_per_doc, ) if hasattr(results, "results"): results = getattr(results, "results") result_dicts = [] for res in results: result_dicts.append( { "index": res.index, "relevance_score": res.relevance_score, } ) return result_dicts def compress_documents( self, documents: Sequence[Document], query: str, callbacks: Optional[Callbacks] = None, ) -> Sequence[Document]: """ Compress documents using Cohere's rerank API. Args: documents: A sequence of documents to compress. query: The query to use for compressing the documents. callbacks: Callbacks to run during the compression process. Returns: A sequence of compressed documents. """ compressed = [] for res in self.rerank(documents, query): doc = documents[res["index"]] doc_copy = Document(doc.page_content, metadata=deepcopy(doc.metadata)) doc_copy.metadata["relevance_score"] = res["relevance_score"] compressed.append(doc_copy) return compressed
from __future__ import annotations from collections.abc import Sequence from copy import deepcopy from typing import Any, Optional, Union from langchain_core._api.deprecation import deprecated from langchain_core.callbacks import Callbacks from langchain_core.documents import BaseDocumentCompressor, Document from langchain_core.utils import get_from_dict_or_env from pydantic import ConfigDict, model_validator @deprecated( since="0.0.30", removal="1.0", alternative_import="langchain_cohere.CohereRerank" ) class CohereRerank(BaseDocumentCompressor): """Document compressor that uses `Cohere Rerank API`.""" client: Any = None """Cohere client to use for compressing documents.""" top_n: Optional[int] = 3 """Number of documents to return.""" model: str = "rerank-english-v2.0" """Model to use for reranking.""" cohere_api_key: Optional[str] = None """Cohere API key. Must be specified directly or via environment variable COHERE_API_KEY.""" user_agent: str = "langchain" """Identifier for the application making the request.""" model_config = ConfigDict( arbitrary_types_allowed=True, extra="forbid", ) @model_validator(mode="before") @classmethod def validate_environment(cls, values: dict) -> Any: """Validate that api key and python package exists in environment.""" if not values.get("client"): try: import cohere except ImportError: raise ImportError( "Could not import cohere python package. " "Please install it with `pip install cohere`." ) cohere_api_key = get_from_dict_or_env( values, "cohere_api_key", "COHERE_API_KEY" ) client_name = values.get("user_agent", "langchain") values["client"] = cohere.Client(cohere_api_key, client_name=client_name) return values def rerank( self, documents: Sequence[Union[str, Document, dict]], query: str, *, model: Optional[str] = None, top_n: Optional[int] = -1, max_chunks_per_doc: Optional[int] = None, ) -> list[dict[str, Any]]: """Returns an ordered list of documents ordered by their relevance to the provided query. Args: query: The query to use for reranking. documents: A sequence of documents to rerank. model: The model to use for re-ranking. Default to self.model. top_n : The number of results to return. If None returns all results. Defaults to self.top_n. max_chunks_per_doc : The maximum number of chunks derived from a document. """ # noqa: E501 if len(documents) == 0: # to avoid empty api call return [] docs = [ doc.page_content if isinstance(doc, Document) else doc for doc in documents ] model = model or self.model top_n = top_n if (top_n is None or top_n > 0) else self.top_n results = self.client.rerank( query=query, documents=docs, model=model, top_n=top_n, max_chunks_per_doc=max_chunks_per_doc, ) if hasattr(results, "results"): results = getattr(results, "results") result_dicts = [] for res in results: result_dicts.append( { "index": res.index, "relevance_score": res.relevance_score, } ) return result_dicts def compress_documents( self, documents: Sequence[Document], query: str, callbacks: Optional[Callbacks] = None, ) -> Sequence[Document]: """ Compress documents using Cohere's rerank API. Args: documents: A sequence of documents to compress. query: The query to use for compressing the documents. callbacks: Callbacks to run during the compression process. Returns: A sequence of compressed documents. """ compressed = [] for res in self.rerank(documents, query): doc = documents[res["index"]] doc_copy = Document(doc.page_content, metadata=deepcopy(doc.metadata)) doc_copy.metadata["relevance_score"] = res["relevance_score"] compressed.append(doc_copy) return compressed
"""**Messages** are objects used in prompts and chat conversations. **Class hierarchy:** .. code-block:: BaseMessage --> SystemMessage, AIMessage, HumanMessage, ChatMessage, FunctionMessage, ToolMessage --> BaseMessageChunk --> SystemMessageChunk, AIMessageChunk, HumanMessageChunk, ChatMessageChunk, FunctionMessageChunk, ToolMessageChunk **Main helpers:** .. code-block:: ChatPromptTemplate """ # noqa: E501 from importlib import import_module from typing import TYPE_CHECKING if TYPE_CHECKING: from langchain_core.messages.ai import ( AIMessage, AIMessageChunk, ) from langchain_core.messages.base import ( BaseMessage, BaseMessageChunk, merge_content, message_to_dict, messages_to_dict, ) from langchain_core.messages.chat import ChatMessage, ChatMessageChunk from langchain_core.messages.function import FunctionMessage, FunctionMessageChunk from langchain_core.messages.human import HumanMessage, HumanMessageChunk from langchain_core.messages.modifier import RemoveMessage from langchain_core.messages.system import SystemMessage, SystemMessageChunk from langchain_core.messages.tool import ( InvalidToolCall, ToolCall, ToolCallChunk, ToolMessage, ToolMessageChunk, ) from langchain_core.messages.utils import ( AnyMessage, MessageLikeRepresentation, _message_from_dict, convert_to_messages, convert_to_openai_messages, filter_messages, get_buffer_string, merge_message_runs, message_chunk_to_message, messages_from_dict, trim_messages, ) __all__ = [ "AIMessage", "AIMessageChunk", "AnyMessage", "BaseMessage", "BaseMessageChunk", "ChatMessage", "ChatMessageChunk", "FunctionMessage", "FunctionMessageChunk", "HumanMessage", "HumanMessageChunk", "InvalidToolCall", "MessageLikeRepresentation", "SystemMessage", "SystemMessageChunk", "ToolCall", "ToolCallChunk", "ToolMessage", "ToolMessageChunk", "RemoveMessage", "_message_from_dict", "convert_to_messages", "get_buffer_string", "merge_content", "message_chunk_to_message", "message_to_dict", "messages_from_dict", "messages_to_dict", "filter_messages", "merge_message_runs", "trim_messages", "convert_to_openai_messages", ] _dynamic_imports = { "AIMessage": "ai", "AIMessageChunk": "ai", "BaseMessage": "base", "BaseMessageChunk": "base", "merge_content": "base", "message_to_dict": "base", "messages_to_dict": "base", "ChatMessage": "chat", "ChatMessageChunk": "chat", "FunctionMessage": "function", "FunctionMessageChunk": "function", "HumanMessage": "human", "HumanMessageChunk": "human", "RemoveMessage": "modifier", "SystemMessage": "system", "SystemMessageChunk": "system", "InvalidToolCall": "tool", "ToolCall": "tool", "ToolCallChunk": "tool", "ToolMessage": "tool", "ToolMessageChunk": "tool", "AnyMessage": "utils", "MessageLikeRepresentation": "utils", "_message_from_dict": "utils", "convert_to_messages": "utils", "convert_to_openai_messages": "utils", "filter_messages": "utils", "get_buffer_string": "utils", "merge_message_runs": "utils", "message_chunk_to_message": "utils", "messages_from_dict": "utils", "trim_messages": "utils", } def __getattr__(attr_name: str) -> object: module_name = _dynamic_imports.get(attr_name) package = __spec__.parent # type: ignore[name-defined] if module_name == "__module__" or module_name is None: result = import_module(f".{attr_name}", package=package) else: module = import_module(f".{module_name}", package=package) result = getattr(module, attr_name) globals()[attr_name] = result return result def __dir__() -> list[str]: return list(__all__)
"""**Messages** are objects used in prompts and chat conversations. **Class hierarchy:** .. code-block:: BaseMessage --> SystemMessage, AIMessage, HumanMessage, ChatMessage, FunctionMessage, ToolMessage --> BaseMessageChunk --> SystemMessageChunk, AIMessageChunk, HumanMessageChunk, ChatMessageChunk, FunctionMessageChunk, ToolMessageChunk **Main helpers:** .. code-block:: ChatPromptTemplate """ # noqa: E501 from langchain_core.messages.ai import ( AIMessage, AIMessageChunk, ) from langchain_core.messages.base import ( BaseMessage, BaseMessageChunk, merge_content, message_to_dict, messages_to_dict, ) from langchain_core.messages.chat import ChatMessage, ChatMessageChunk from langchain_core.messages.function import FunctionMessage, FunctionMessageChunk from langchain_core.messages.human import HumanMessage, HumanMessageChunk from langchain_core.messages.modifier import RemoveMessage from langchain_core.messages.system import SystemMessage, SystemMessageChunk from langchain_core.messages.tool import ( InvalidToolCall, ToolCall, ToolCallChunk, ToolMessage, ToolMessageChunk, ) from langchain_core.messages.utils import ( AnyMessage, MessageLikeRepresentation, _message_from_dict, convert_to_messages, convert_to_openai_messages, filter_messages, get_buffer_string, merge_message_runs, message_chunk_to_message, messages_from_dict, trim_messages, ) __all__ = [ "AIMessage", "AIMessageChunk", "AnyMessage", "BaseMessage", "BaseMessageChunk", "ChatMessage", "ChatMessageChunk", "FunctionMessage", "FunctionMessageChunk", "HumanMessage", "HumanMessageChunk", "InvalidToolCall", "MessageLikeRepresentation", "SystemMessage", "SystemMessageChunk", "ToolCall", "ToolCallChunk", "ToolMessage", "ToolMessageChunk", "RemoveMessage", "_message_from_dict", "convert_to_messages", "get_buffer_string", "merge_content", "message_chunk_to_message", "message_to_dict", "messages_from_dict", "messages_to_dict", "filter_messages", "merge_message_runs", "trim_messages", "convert_to_openai_messages", ]
"""Embedding adapter model.""" import logging from typing import Any, List, Optional, Type, cast from llama_index.core.base.embeddings.base import BaseEmbedding from llama_index.core.bridge.pydantic import PrivateAttr from llama_index.core.callbacks import CallbackManager from llama_index.core.constants import DEFAULT_EMBED_BATCH_SIZE from llama_index.core.utils import infer_torch_device logger = logging.getLogger(__name__) class AdapterEmbeddingModel(BaseEmbedding): """ Adapter for any embedding model. This is a wrapper around any embedding model that adds an adapter layer \ on top of it. This is useful for finetuning an embedding model on a downstream task. The embedding model can be any model - it does not need to expose gradients. Args: base_embed_model (BaseEmbedding): Base embedding model. adapter_path (str): Path to adapter. adapter_cls (Optional[Type[Any]]): Adapter class. Defaults to None, in which \ case a linear adapter is used. transform_query (bool): Whether to transform query embeddings. Defaults to True. device (Optional[str]): Device to use. Defaults to None. embed_batch_size (int): Batch size for embedding. Defaults to 10. callback_manager (Optional[CallbackManager]): Callback manager. \ Defaults to None. """ _base_embed_model: BaseEmbedding = PrivateAttr() _adapter: Any = PrivateAttr() _transform_query: bool = PrivateAttr() _device: Optional[str] = PrivateAttr() _target_device: Any = PrivateAttr() def __init__( self, base_embed_model: BaseEmbedding, adapter_path: str, adapter_cls: Optional[Type[Any]] = None, transform_query: bool = True, device: Optional[str] = None, embed_batch_size: int = DEFAULT_EMBED_BATCH_SIZE, callback_manager: Optional[CallbackManager] = None, ) -> None: """Init params.""" import torch from llama_index.embeddings.adapter.utils import BaseAdapter, LinearLayer super().__init__( embed_batch_size=embed_batch_size, callback_manager=callback_manager, model_name=f"Adapter for {base_embed_model.model_name}", ) if device is None: device = infer_torch_device() logger.info(f"Use pytorch device: {device}") self._target_device = torch.device(device) self._base_embed_model = base_embed_model if adapter_cls is None: adapter_cls = LinearLayer else: adapter_cls = cast(Type[BaseAdapter], adapter_cls) adapter = adapter_cls.load(adapter_path) self._adapter = cast(BaseAdapter, adapter) self._adapter.to(self._target_device) self._transform_query = transform_query @classmethod def class_name(cls) -> str: return "AdapterEmbeddingModel" def _get_query_embedding(self, query: str) -> List[float]: """Get query embedding.""" import torch query_embedding = self._base_embed_model._get_query_embedding(query) if self._transform_query: query_embedding_t = torch.tensor(query_embedding).to(self._target_device) query_embedding_t = self._adapter.forward(query_embedding_t) query_embedding = query_embedding_t.tolist() return query_embedding async def _aget_query_embedding(self, query: str) -> List[float]: """Get query embedding.""" import torch query_embedding = await self._base_embed_model._aget_query_embedding(query) if self._transform_query: query_embedding_t = torch.tensor(query_embedding).to(self._target_device) query_embedding_t = self._adapter.forward(query_embedding_t) query_embedding = query_embedding_t.tolist() return query_embedding def _get_text_embedding(self, text: str) -> List[float]: return self._base_embed_model._get_text_embedding(text) async def _aget_text_embedding(self, text: str) -> List[float]: return await self._base_embed_model._aget_text_embedding(text) # Maintain for backwards compatibility LinearAdapterEmbeddingModel = AdapterEmbeddingModel
"""Embedding adapter model.""" import logging from typing import Any, List, Optional, Type, cast from llama_index.core.base.embeddings.base import BaseEmbedding from llama_index.core.bridge.pydantic import PrivateAttr from llama_index.core.callbacks import CallbackManager from llama_index.core.constants import DEFAULT_EMBED_BATCH_SIZE from llama_index.core.utils import infer_torch_device logger = logging.getLogger(__name__) class AdapterEmbeddingModel(BaseEmbedding): """Adapter for any embedding model. This is a wrapper around any embedding model that adds an adapter layer \ on top of it. This is useful for finetuning an embedding model on a downstream task. The embedding model can be any model - it does not need to expose gradients. Args: base_embed_model (BaseEmbedding): Base embedding model. adapter_path (str): Path to adapter. adapter_cls (Optional[Type[Any]]): Adapter class. Defaults to None, in which \ case a linear adapter is used. transform_query (bool): Whether to transform query embeddings. Defaults to True. device (Optional[str]): Device to use. Defaults to None. embed_batch_size (int): Batch size for embedding. Defaults to 10. callback_manager (Optional[CallbackManager]): Callback manager. \ Defaults to None. """ _base_embed_model: BaseEmbedding = PrivateAttr() _adapter: Any = PrivateAttr() _transform_query: bool = PrivateAttr() _device: Optional[str] = PrivateAttr() _target_device: Any = PrivateAttr() def __init__( self, base_embed_model: BaseEmbedding, adapter_path: str, adapter_cls: Optional[Type[Any]] = None, transform_query: bool = True, device: Optional[str] = None, embed_batch_size: int = DEFAULT_EMBED_BATCH_SIZE, callback_manager: Optional[CallbackManager] = None, ) -> None: """Init params.""" import torch from llama_index.embeddings.adapter.utils import BaseAdapter, LinearLayer super().__init__( embed_batch_size=embed_batch_size, callback_manager=callback_manager, model_name=f"Adapter for {base_embed_model.model_name}", ) if device is None: device = infer_torch_device() logger.info(f"Use pytorch device: {device}") self._target_device = torch.device(device) self._base_embed_model = base_embed_model if adapter_cls is None: adapter_cls = LinearLayer else: adapter_cls = cast(Type[BaseAdapter], adapter_cls) adapter = adapter_cls.load(adapter_path) self._adapter = cast(BaseAdapter, adapter) self._adapter.to(self._target_device) self._transform_query = transform_query @classmethod def class_name(cls) -> str: return "AdapterEmbeddingModel" def _get_query_embedding(self, query: str) -> List[float]: """Get query embedding.""" import torch query_embedding = self._base_embed_model._get_query_embedding(query) if self._transform_query: query_embedding_t = torch.tensor(query_embedding).to(self._target_device) query_embedding_t = self._adapter.forward(query_embedding_t) query_embedding = query_embedding_t.tolist() return query_embedding async def _aget_query_embedding(self, query: str) -> List[float]: """Get query embedding.""" import torch query_embedding = await self._base_embed_model._aget_query_embedding(query) if self._transform_query: query_embedding_t = torch.tensor(query_embedding).to(self._target_device) query_embedding_t = self._adapter.forward(query_embedding_t) query_embedding = query_embedding_t.tolist() return query_embedding def _get_text_embedding(self, text: str) -> List[float]: return self._base_embed_model._get_text_embedding(text) async def _aget_text_embedding(self, text: str) -> List[float]: return await self._base_embed_model._aget_text_embedding(text) # Maintain for backwards compatibility LinearAdapterEmbeddingModel = AdapterEmbeddingModel
from typing import Dict, Type from llama_index.core.llms.llm import LLM from llama_index.core.llms.mock import MockLLM RECOGNIZED_LLMS: Dict[str, Type[LLM]] = { MockLLM.class_name(): MockLLM, } # Conditionals for llama-cloud support try: from llama_index.llms.openai import OpenAI # pants: no-infer-dep RECOGNIZED_LLMS[OpenAI.class_name()] = OpenAI # pants: no-infer-dep except ImportError: pass try: from llama_index.llms.azure_openai import AzureOpenAI # pants: no-infer-dep RECOGNIZED_LLMS[AzureOpenAI.class_name()] = AzureOpenAI # pants: no-infer-dep except ImportError: pass try: from llama_index.llms.huggingface_api import ( HuggingFaceInferenceAPI, ) # pants: no-infer-dep RECOGNIZED_LLMS[HuggingFaceInferenceAPI.class_name()] = HuggingFaceInferenceAPI except ImportError: pass def load_llm(data: dict) -> LLM: """Load LLM by name.""" if isinstance(data, LLM): return data llm_name = data.get("class_name") if llm_name is None: raise ValueError("LLM loading requires a class_name") if llm_name not in RECOGNIZED_LLMS: raise ValueError(f"Invalid LLM name: {llm_name}") return RECOGNIZED_LLMS[llm_name].from_dict(data)
from typing import Dict, Type from llama_index.core.llms.llm import LLM from llama_index.core.llms.mock import MockLLM RECOGNIZED_LLMS: Dict[str, Type[LLM]] = { MockLLM.class_name(): MockLLM, } # Conditionals for llama-cloud support try: from llama_index.llms.openai import OpenAI # pants: no-infer-dep RECOGNIZED_LLMS[OpenAI.class_name()] = OpenAI # pants: no-infer-dep except ImportError: pass try: from llama_index.llms.azure_openai import AzureOpenAI # pants: no-infer-dep RECOGNIZED_LLMS[AzureOpenAI.class_name()] = AzureOpenAI # pants: no-infer-dep except ImportError: pass try: from llama_index.llms.huggingface_api import ( HuggingFaceInferenceAPI, ) # pants: no-infer-dep RECOGNIZED_LLMS[HuggingFaceInferenceAPI.class_name()] = HuggingFaceInferenceAPI except ImportError: pass def load_llm(data: dict) -> LLM: """Load LLM by name.""" if isinstance(data, LLM): return data llm_name = data.get("class_name", None) if llm_name is None: raise ValueError("LLM loading requires a class_name") if llm_name not in RECOGNIZED_LLMS: raise ValueError(f"Invalid LLM name: {llm_name}") return RECOGNIZED_LLMS[llm_name].from_dict(data)
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import pytest from simpleranker import SimpleRanker @pytest.mark.parametrize('default_traversal_paths', [['r'], ['c']]) @pytest.mark.parametrize('ranking', ['min', 'max']) def test_ranking( documents_chunk, documents_chunk_chunk, default_traversal_paths, ranking ): ranker = SimpleRanker( metric='cosine', ranking=ranking, default_traversal_paths=default_traversal_paths, ) if default_traversal_paths == ['r']: ranking_docs = documents_chunk else: ranking_docs = documents_chunk_chunk ranker.rank(ranking_docs, parameters={}) assert ranking_docs for doc in ranking_docs.traverse_flat(default_traversal_paths): assert doc.matches for i in range(len(doc.matches) - 1): match = doc.matches[i] assert match.tags if ranking == 'min': assert ( match.scores['cosine'].value <= doc.matches[i + 1].scores['cosine'].value ) else: assert ( match.scores['cosine'].value >= doc.matches[i + 1].scores['cosine'].value ) @pytest.mark.parametrize('ranking', ['mean_min', 'mean_max']) def test_mean_ranking(documents_chunk, ranking): default_traversal_paths = ['r'] ranker = SimpleRanker( metric='cosine', ranking=ranking, default_traversal_paths=default_traversal_paths, ) ranking_docs = documents_chunk mean_scores = [] for doc in ranking_docs[0].chunks: scores = [] for match in doc.matches: scores.append(match.scores['cosine'].value) mean_scores.append(sum(scores) / 10) mean_scores.sort(reverse=ranking == 'mean_max') ranker.rank(ranking_docs, parameters={}) assert ranking_docs for doc in ranking_docs.traverse_flat(default_traversal_paths): assert doc.matches for i in range(len(doc.matches) - 1): match = doc.matches[i] assert match.tags assert match.scores['cosine'].value == pytest.approx(mean_scores[i], 1e-5)
__copyright__ = "Copyright (c) 2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import pytest from ...simpleranker import SimpleRanker @pytest.mark.parametrize('default_traversal_paths', [['r'], ['c']]) @pytest.mark.parametrize('ranking', ['min', 'max']) def test_ranking( documents_chunk, documents_chunk_chunk, default_traversal_paths, ranking ): ranker = SimpleRanker( metric='cosine', ranking=ranking, default_traversal_paths=default_traversal_paths, ) if default_traversal_paths == ['r']: ranking_docs = documents_chunk else: ranking_docs = documents_chunk_chunk ranker.rank(ranking_docs, parameters={}) assert ranking_docs for doc in ranking_docs.traverse_flat(default_traversal_paths): assert doc.matches for i in range(len(doc.matches) - 1): match = doc.matches[i] assert match.tags if ranking == 'min': assert ( match.scores['cosine'].value <= doc.matches[i + 1].scores['cosine'].value ) else: assert ( match.scores['cosine'].value >= doc.matches[i + 1].scores['cosine'].value ) @pytest.mark.parametrize('ranking', ['mean_min', 'mean_max']) def test_mean_ranking(documents_chunk, ranking): default_traversal_paths = ['r'] ranker = SimpleRanker( metric='cosine', ranking=ranking, default_traversal_paths=default_traversal_paths, ) ranking_docs = documents_chunk mean_scores = [] for doc in ranking_docs[0].chunks: scores = [] for match in doc.matches: scores.append(match.scores['cosine'].value) mean_scores.append(sum(scores) / 10) mean_scores.sort(reverse=ranking == 'mean_max') ranker.rank(ranking_docs, parameters={}) assert ranking_docs for doc in ranking_docs.traverse_flat(default_traversal_paths): assert doc.matches for i in range(len(doc.matches) - 1): match = doc.matches[i] assert match.tags assert match.scores['cosine'].value == pytest.approx(mean_scores[i], 1e-5)
_base_ = ['./yolov3_mobilenetv2_mstrain-416_300e_coco.py'] # yapf:disable model = dict( bbox_head=dict( anchor_generator=dict( base_sizes=[[(220, 125), (128, 222), (264, 266)], [(35, 87), (102, 96), (60, 170)], [(10, 15), (24, 36), (72, 42)]]))) # yapf:enable # file_client_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) file_client_args = dict(backend='disk') input_size = (320, 320) train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='LoadAnnotations', with_bbox=True), # `mean` and `to_rgb` should be the same with the `preprocess_cfg` dict( type='Expand', mean=[123.675, 116.28, 103.53], to_rgb=True, ratio_range=(1, 2)), dict( type='MinIoURandomCrop', min_ious=(0.4, 0.5, 0.6, 0.7, 0.8, 0.9), min_crop_size=0.3), dict(type='Resize', scale=input_size, keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='Resize', scale=input_size, keep_ratio=True), dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict(dataset=dict(dataset=dict(pipeline=train_pipeline))) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader
_base_ = ['./yolov3_mobilenetv2_mstrain-416_300e_coco.py'] # yapf:disable model = dict( bbox_head=dict( anchor_generator=dict( base_sizes=[[(220, 125), (128, 222), (264, 266)], [(35, 87), (102, 96), (60, 170)], [(10, 15), (24, 36), (72, 42)]]))) # yapf:enable # file_client_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) file_client_args = dict(backend='disk') input_size = (320, 320) train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='LoadAnnotations', with_bbox=True), # `mean` and `to_rgb` should be the same with the `preprocess_cfg` dict( type='Expand', mean=[123.675, 116.28, 103.53], to_rgb=True, ratio_range=(1, 2)), dict( type='MinIoURandomCrop', min_ious=(0.4, 0.5, 0.6, 0.7, 0.8, 0.9), min_crop_size=0.3), dict(type='Resize', scale=input_size, keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='Resize', scale=input_size, keep_ratio=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict(dataset=dict(dataset=dict(pipeline=train_pipeline))) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader
from docarray import Document, DocumentArray import numpy as np import pytest @pytest.mark.filterwarnings('ignore::UserWarning') @pytest.mark.parametrize('columns', [[('price', 'int')], {'price': 'int'}]) def test_add_ignore_existing_doc_id(start_storage, columns): elastic_doc = DocumentArray( storage='elasticsearch', config={ 'n_dim': 3, 'columns': columns, 'distance': 'l2_norm', 'index_name': 'test_add_ignore_existing_doc_id', }, ) with elastic_doc: elastic_doc.extend( [ Document(id='r0', embedding=[0, 0, 0]), Document(id='r1', embedding=[1, 1, 1]), Document(id='r2', embedding=[2, 2, 2]), Document(id='r3', embedding=[3, 3, 3]), Document(id='r4', embedding=[4, 4, 4]), ] ) with elastic_doc: elastic_doc.extend( [ Document(id='r0', embedding=[0, 0, 0]), Document(id='r2', embedding=[2, 2, 2]), Document(id='r4', embedding=[4, 4, 4]), Document(id='r5', embedding=[2, 2, 2]), Document(id='r6', embedding=[4, 4, 4]), ] ) indexed_offset_count = elastic_doc._client.count( index=elastic_doc._index_name_offset2id )['count'] assert len(elastic_doc) == len(elastic_doc[:, 'embedding']) assert len(elastic_doc) == indexed_offset_count assert len(elastic_doc[:, 'embedding']) == 7 @pytest.mark.filterwarnings('ignore::UserWarning') @pytest.mark.parametrize('columns', [[('price', 'int')], {'price': 'int'}]) def test_add_skip_wrong_data_type_and_fix_offset(start_storage, columns): elastic_doc = DocumentArray( storage='elasticsearch', config={ 'n_dim': 3, 'columns': columns, 'index_name': 'test_add_skip_wrong_data_type_and_fix_offset', }, ) with elastic_doc: elastic_doc.extend( [ Document(id='0', price=1000), Document(id='1', price=20000), Document(id='2', price=103000), ] ) with pytest.raises(IndexError): with elastic_doc: elastic_doc.extend( [ Document(id='0', price=10000), Document(id='1', price=20000), Document(id='3', price=30000), Document(id='4', price=100000000000), # overflow int32 Document(id='5', price=2000), Document(id='6', price=100000000000), # overflow int32 Document(id='7', price=30000), ] ) expected_ids = ['0', '1', '2', '3', '5', '7'] assert len(elastic_doc) == 6 assert len(elastic_doc[:, 'id']) == 6 assert elastic_doc[:, 'id'] == expected_ids assert elastic_doc._offset2ids.ids == expected_ids @pytest.mark.filterwarnings('ignore::UserWarning') @pytest.mark.parametrize("assert_customization_propagation", [True, False]) @pytest.mark.parametrize( 'columns', [ [ ('is_true', 'bool'), ('test_long', 'long'), ('test_double', 'double'), ], {'is_true': 'bool', 'test_long': 'long', 'test_double': 'double'}, ], ) def test_succes_add_bulk_custom_params( monkeypatch, start_storage, assert_customization_propagation, columns ): bulk_custom_params = { 'thread_count': 4, 'chunk_size': 100, 'max_chunk_bytes': 104857600, 'queue_size': 4, } nrof_docs = 100 def _mock_send_requests(requests, **kwargs): # Currently only self._send_requests from extend method which # receive customization if ( not requests[0]['_index'].startswith('offset2id__') and requests[0]['_op_type'] == 'index' ): assert kwargs == bulk_custom_params return [{'index': {'_id': f'r{i}'}} for i in range(nrof_docs)] elastic_doc = DocumentArray( storage='elasticsearch', config={ 'n_dim': 3, 'columns': columns, 'distance': 'l2_norm', 'index_name': 'test_succes_add_bulk_custom_params', }, ) if assert_customization_propagation: monkeypatch.setattr(elastic_doc, '_send_requests', _mock_send_requests) with elastic_doc: elastic_doc.extend( [ Document(id=f'r{i}', embedding=np.ones((3,)) * i) for i in range(nrof_docs) ], **bulk_custom_params, )
from docarray import Document, DocumentArray import numpy as np import pytest @pytest.mark.filterwarnings('ignore::UserWarning') def test_add_ignore_existing_doc_id(start_storage): elastic_doc = DocumentArray( storage='elasticsearch', config={ 'n_dim': 3, 'columns': [('price', 'int')], 'distance': 'l2_norm', 'index_name': 'test_add_ignore_existing_doc_id', }, ) with elastic_doc: elastic_doc.extend( [ Document(id='r0', embedding=[0, 0, 0]), Document(id='r1', embedding=[1, 1, 1]), Document(id='r2', embedding=[2, 2, 2]), Document(id='r3', embedding=[3, 3, 3]), Document(id='r4', embedding=[4, 4, 4]), ] ) with elastic_doc: elastic_doc.extend( [ Document(id='r0', embedding=[0, 0, 0]), Document(id='r2', embedding=[2, 2, 2]), Document(id='r4', embedding=[4, 4, 4]), Document(id='r5', embedding=[2, 2, 2]), Document(id='r6', embedding=[4, 4, 4]), ] ) indexed_offset_count = elastic_doc._client.count( index=elastic_doc._index_name_offset2id )['count'] assert len(elastic_doc) == len(elastic_doc[:, 'embedding']) assert len(elastic_doc) == indexed_offset_count assert len(elastic_doc[:, 'embedding']) == 7 @pytest.mark.filterwarnings('ignore::UserWarning') def test_add_skip_wrong_data_type_and_fix_offset(start_storage): elastic_doc = DocumentArray( storage='elasticsearch', config={ 'n_dim': 3, 'columns': [('price', 'int')], 'index_name': 'test_add_skip_wrong_data_type_and_fix_offset', }, ) with elastic_doc: elastic_doc.extend( [ Document(id='0', price=1000), Document(id='1', price=20000), Document(id='2', price=103000), ] ) with pytest.raises(IndexError): with elastic_doc: elastic_doc.extend( [ Document(id='0', price=10000), Document(id='1', price=20000), Document(id='3', price=30000), Document(id='4', price=100000000000), # overflow int32 Document(id='5', price=2000), Document(id='6', price=100000000000), # overflow int32 Document(id='7', price=30000), ] ) expected_ids = ['0', '1', '2', '3', '5', '7'] assert len(elastic_doc) == 6 assert len(elastic_doc[:, 'id']) == 6 assert elastic_doc[:, 'id'] == expected_ids assert elastic_doc._offset2ids.ids == expected_ids @pytest.mark.filterwarnings('ignore::UserWarning') @pytest.mark.parametrize("assert_customization_propagation", [True, False]) def test_succes_add_bulk_custom_params( monkeypatch, start_storage, assert_customization_propagation ): bulk_custom_params = { 'thread_count': 4, 'chunk_size': 100, 'max_chunk_bytes': 104857600, 'queue_size': 4, } nrof_docs = 100 def _mock_send_requests(requests, **kwargs): # Currently only self._send_requests from extend method which # receive customization if ( not requests[0]['_index'].startswith('offset2id__') and requests[0]['_op_type'] == 'index' ): assert kwargs == bulk_custom_params return [{'index': {'_id': f'r{i}'}} for i in range(nrof_docs)] elastic_doc = DocumentArray( storage='elasticsearch', config={ 'n_dim': 3, 'columns': [ ('is_true', 'bool'), ('test_long', 'long'), ('test_double', 'double'), ], 'distance': 'l2_norm', 'index_name': 'test_succes_add_bulk_custom_params', }, ) if assert_customization_propagation: monkeypatch.setattr(elastic_doc, '_send_requests', _mock_send_requests) with elastic_doc: elastic_doc.extend( [ Document(id=f'r{i}', embedding=np.ones((3,)) * i) for i in range(nrof_docs) ], **bulk_custom_params, )
from typing import Optional, List from docarray.base_document.document import BaseDocument def test_base_document_init(): doc = BaseDocument() assert doc.id is not None def test_update(): class MyDocument(BaseDocument): content: str title: Optional[str] = None tags_: List doc1 = MyDocument( content='Core content of the document', title='Title', tags_=['python', 'AI'] ) doc2 = MyDocument(content='Core content updated', tags_=['docarray']) doc1.update(doc2) assert doc1.content == 'Core content updated' assert doc1.title == 'Title' assert doc1.tags_ == ['python', 'AI', 'docarray']
from docarray.base_document.document import BaseDocument def test_base_document_init(): doc = BaseDocument() assert doc.id is not None
import os from typing import Any, Callable, List, Optional, Tuple import torch.utils.data as data from ..utils import _log_api_usage_once class VisionDataset(data.Dataset): """ Base Class For making datasets which are compatible with torchvision. It is necessary to override the ``__getitem__`` and ``__len__`` method. Args: root (string): Root directory of dataset. transforms (callable, optional): A function/transforms that takes in an image and a label and returns the transformed versions of both. transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. .. note:: :attr:`transforms` and the combination of :attr:`transform` and :attr:`target_transform` are mutually exclusive. """ _repr_indent = 4 def __init__( self, root: str, transforms: Optional[Callable] = None, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, ) -> None: _log_api_usage_once(self) if isinstance(root, str): root = os.path.expanduser(root) self.root = root has_transforms = transforms is not None has_separate_transform = transform is not None or target_transform is not None if has_transforms and has_separate_transform: raise ValueError("Only transforms or transform/target_transform can be passed as argument") # for backwards-compatibility self.transform = transform self.target_transform = target_transform if has_separate_transform: transforms = StandardTransform(transform, target_transform) self.transforms = transforms def __getitem__(self, index: int) -> Any: """ Args: index (int): Index Returns: (Any): Sample and meta data, optionally transformed by the respective transforms. """ raise NotImplementedError def __len__(self) -> int: raise NotImplementedError def __repr__(self) -> str: head = "Dataset " + self.__class__.__name__ body = [f"Number of datapoints: {self.__len__()}"] if self.root is not None: body.append(f"Root location: {self.root}") body += self.extra_repr().splitlines() if hasattr(self, "transforms") and self.transforms is not None: body += [repr(self.transforms)] lines = [head] + [" " * self._repr_indent + line for line in body] return "\n".join(lines) def _format_transform_repr(self, transform: Callable, head: str) -> List[str]: lines = transform.__repr__().splitlines() return [f"{head}{lines[0]}"] + ["{}{}".format(" " * len(head), line) for line in lines[1:]] def extra_repr(self) -> str: return "" class StandardTransform: def __init__(self, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None) -> None: self.transform = transform self.target_transform = target_transform def __call__(self, input: Any, target: Any) -> Tuple[Any, Any]: if self.transform is not None: input = self.transform(input) if self.target_transform is not None: target = self.target_transform(target) return input, target def _format_transform_repr(self, transform: Callable, head: str) -> List[str]: lines = transform.__repr__().splitlines() return [f"{head}{lines[0]}"] + ["{}{}".format(" " * len(head), line) for line in lines[1:]] def __repr__(self) -> str: body = [self.__class__.__name__] if self.transform is not None: body += self._format_transform_repr(self.transform, "Transform: ") if self.target_transform is not None: body += self._format_transform_repr(self.target_transform, "Target transform: ") return "\n".join(body)
import os from typing import Any, Callable, List, Optional, Tuple import torch import torch.utils.data as data from ..utils import _log_api_usage_once class VisionDataset(data.Dataset): """ Base Class For making datasets which are compatible with torchvision. It is necessary to override the ``__getitem__`` and ``__len__`` method. Args: root (string): Root directory of dataset. transforms (callable, optional): A function/transforms that takes in an image and a label and returns the transformed versions of both. transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. .. note:: :attr:`transforms` and the combination of :attr:`transform` and :attr:`target_transform` are mutually exclusive. """ _repr_indent = 4 def __init__( self, root: str, transforms: Optional[Callable] = None, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, ) -> None: _log_api_usage_once(self) if isinstance(root, str): root = os.path.expanduser(root) self.root = root has_transforms = transforms is not None has_separate_transform = transform is not None or target_transform is not None if has_transforms and has_separate_transform: raise ValueError("Only transforms or transform/target_transform can be passed as argument") # for backwards-compatibility self.transform = transform self.target_transform = target_transform if has_separate_transform: transforms = StandardTransform(transform, target_transform) self.transforms = transforms def __getitem__(self, index: int) -> Any: """ Args: index (int): Index Returns: (Any): Sample and meta data, optionally transformed by the respective transforms. """ raise NotImplementedError def __len__(self) -> int: raise NotImplementedError def __repr__(self) -> str: head = "Dataset " + self.__class__.__name__ body = [f"Number of datapoints: {self.__len__()}"] if self.root is not None: body.append(f"Root location: {self.root}") body += self.extra_repr().splitlines() if hasattr(self, "transforms") and self.transforms is not None: body += [repr(self.transforms)] lines = [head] + [" " * self._repr_indent + line for line in body] return "\n".join(lines) def _format_transform_repr(self, transform: Callable, head: str) -> List[str]: lines = transform.__repr__().splitlines() return [f"{head}{lines[0]}"] + ["{}{}".format(" " * len(head), line) for line in lines[1:]] def extra_repr(self) -> str: return "" class StandardTransform: def __init__(self, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None) -> None: self.transform = transform self.target_transform = target_transform def __call__(self, input: Any, target: Any) -> Tuple[Any, Any]: if self.transform is not None: input = self.transform(input) if self.target_transform is not None: target = self.target_transform(target) return input, target def _format_transform_repr(self, transform: Callable, head: str) -> List[str]: lines = transform.__repr__().splitlines() return [f"{head}{lines[0]}"] + ["{}{}".format(" " * len(head), line) for line in lines[1:]] def __repr__(self) -> str: body = [self.__class__.__name__] if self.transform is not None: body += self._format_transform_repr(self.transform, "Transform: ") if self.target_transform is not None: body += self._format_transform_repr(self.target_transform, "Target transform: ") return "\n".join(body)
from typing import Dict, TYPE_CHECKING, Optional if TYPE_CHECKING: # pragma: no cover from docarray import Document from docarray.array.queryset.lookup import Q, LookupNode, LookupLeaf LOGICAL_OPERATORS = {'$and': 'and', '$or': 'or', '$not': True} COMPARISON_OPERATORS = { '$lt': 'lt', '$gt': 'gt', '$lte': 'lte', '$gte': 'gte', '$eq': 'exact', '$neq': 'neq', '$exists': 'exists', } REGEX_OPERATORS = {'$regex': 'regex'} ARRAY_OPERATORS = {'$size': 'size'} MEMBERSHIP_OPERATORS = {'$in': 'in', '$nin': 'nin'} SUPPORTED_OPERATORS = { **COMPARISON_OPERATORS, **ARRAY_OPERATORS, **REGEX_OPERATORS, **MEMBERSHIP_OPERATORS, } def _parse_lookups(data: Dict = {}, root_node: Optional[LookupNode] = None): if isinstance(data, dict): for key, value in data.items(): if isinstance(root_node, LookupLeaf): root = LookupNode() root.add_child(root_node) root_node = root if key in LOGICAL_OPERATORS: if key == '$not': node = LookupNode(negate=LOGICAL_OPERATORS[key]) else: node = LookupNode(op=LOGICAL_OPERATORS[key]) node = _parse_lookups(value, root_node=node) elif key.startswith('$'): raise ValueError( f'The operator {key} is not supported yet, please double check the given filters!' ) else: if not value or not isinstance(value, dict): raise ValueError( '''Not a valid query. It should follow the format: { <field1>: { <operator1>: <value1> }, ... } ''' ) items = list(value.items()) if len(items) == 1: op, val = items[0] if op in LOGICAL_OPERATORS: if op == '$not': node = LookupNode(negate=LOGICAL_OPERATORS[op]) else: node = LookupNode(op=LOGICAL_OPERATORS[op]) node = _parse_lookups(val, root_node=node) elif op in SUPPORTED_OPERATORS: node = Q(**{f'{key}__{SUPPORTED_OPERATORS[op]}': val}) else: raise ValueError( f'The operator {op} is not supported yet, please double check the given filters!' ) else: node = LookupNode() for op, val in items: _node = _parse_lookups({key: {op: val}}) node.add_child(_node) if root_node and node: root_node.add_child(node) elif node: root_node = node elif isinstance(data, list): for d in data: node = _parse_lookups(d) if root_node and node: root_node.add_child(node) elif node: root_node = node else: raise ValueError(f'The query is illegal: `{data}`') return root_node class QueryParser: """A class to parse dict condition to lookup query.""" def __init__(self, conditions: Dict = {}): self.conditions = conditions self.lookup_groups = _parse_lookups(self.conditions) def evaluate(self, doc: 'Document'): return self.lookup_groups.evaluate(doc) if self.lookup_groups else True def __call__(self, doc: 'Document'): return self.evaluate(doc)
from typing import Dict, TYPE_CHECKING, Optional if TYPE_CHECKING: from docarray import Document from docarray.array.queryset.lookup import Q, LookupNode, LookupLeaf LOGICAL_OPERATORS = {'$and': 'and', '$or': 'or', '$not': True} COMPARISON_OPERATORS = { '$lt': 'lt', '$gt': 'gt', '$lte': 'lte', '$gte': 'gte', '$eq': 'exact', '$neq': 'neq', '$exists': 'exists', } REGEX_OPERATORS = {'$regex': 'regex'} ARRAY_OPERATORS = {'$size': 'size'} MEMBERSHIP_OPERATORS = {'$in': 'in', '$nin': 'nin'} SUPPORTED_OPERATORS = { **COMPARISON_OPERATORS, **ARRAY_OPERATORS, **REGEX_OPERATORS, **MEMBERSHIP_OPERATORS, } def _parse_lookups(data: Dict = {}, root_node: Optional[LookupNode] = None): if isinstance(data, dict): for key, value in data.items(): if isinstance(root_node, LookupLeaf): root = LookupNode() root.add_child(root_node) root_node = root if key in LOGICAL_OPERATORS: if key == '$not': node = LookupNode(negate=LOGICAL_OPERATORS[key]) else: node = LookupNode(op=LOGICAL_OPERATORS[key]) node = _parse_lookups(value, root_node=node) elif key.startswith('$'): raise ValueError( f'The operator {key} is not supported yet, please double check the given filters!' ) else: if not value or not isinstance(value, dict): raise ValueError( '''Not a valid query. It should follow the format: { <field1>: { <operator1>: <value1> }, ... } ''' ) items = list(value.items()) if len(items) == 1: op, val = items[0] if op in LOGICAL_OPERATORS: if op == '$not': node = LookupNode(negate=LOGICAL_OPERATORS[op]) else: node = LookupNode(op=LOGICAL_OPERATORS[op]) node = _parse_lookups(val, root_node=node) elif op in SUPPORTED_OPERATORS: node = Q(**{f'{key}__{SUPPORTED_OPERATORS[op]}': val}) else: raise ValueError( f'The operator {op} is not supported yet, please double check the given filters!' ) else: node = LookupNode() for op, val in items: _node = _parse_lookups({key: {op: val}}) node.add_child(_node) if root_node and node: root_node.add_child(node) elif node: root_node = node elif isinstance(data, list): for d in data: node = _parse_lookups(d) if root_node and node: root_node.add_child(node) elif node: root_node = node else: raise ValueError(f'The query is illegal: `{data}`') return root_node class QueryParser: """A class to parse dict condition to lookup query.""" def __init__(self, conditions: Dict = {}): self.conditions = conditions self.lookup_groups = _parse_lookups(self.conditions) def evaluate(self, doc: 'Document'): return self.lookup_groups.evaluate(doc) if self.lookup_groups else True def __call__(self, doc: 'Document'): return self.evaluate(doc)
from collections.abc import Sequence as ABCSequence from typing import Any BASE_TYPES = (int, str, bool, bytes, float) def _is_otel_supported_type(obj: Any) -> bool: # If it's one of the base types if isinstance(obj, BASE_TYPES): return True # If it's a sequence (but not a string or bytes, which are sequences too) if isinstance(obj, ABCSequence) and not isinstance(obj, (str, bytes)): return all(isinstance(item, BASE_TYPES) for item in obj) return False def filter_model_fields(model_dict: dict) -> dict: newdict = {} for field in model_dict: if _is_otel_supported_type(model_dict[field]): newdict.update({field: model_dict[field]}) return newdict
from collections.abc import Sequence as ABCSequence from typing import Any BASE_TYPES = (int, str, bool, bytes, float) def _is_otel_supported_type(obj: Any) -> bool: # If it's one of the base types if isinstance(obj, BASE_TYPES): return True # If it's a sequence (but not a string or bytes, which are sequences too) if isinstance(obj, ABCSequence) and not isinstance(obj, (str, bytes)): return all(isinstance(item, BASE_TYPES) for item in obj) return False def filter_model_fields(model_dict: dict) -> dict: newdict = {} for field in model_dict: if _is_otel_supported_type(model_dict[field]): newdict.update({field: model_dict[field]}) return newdict
from typing import TYPE_CHECKING from ...utils import ( DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_torch_available, is_transformers_available, ) _dummy_objects = {} _import_structure = {} try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils import dummy_torch_and_transformers_objects # noqa F403 _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) else: _import_structure["pipeline_sana"] = ["SanaPipeline"] _import_structure["pipeline_sana_sprint"] = ["SanaSprintPipeline"] if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * else: from .pipeline_sana import SanaPipeline from .pipeline_sana_sprint import SanaSprintPipeline else: import sys sys.modules[__name__] = _LazyModule( __name__, globals()["__file__"], _import_structure, module_spec=__spec__, ) for name, value in _dummy_objects.items(): setattr(sys.modules[__name__], name, value)
from typing import TYPE_CHECKING from ...utils import ( DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_torch_available, is_transformers_available, ) _dummy_objects = {} _import_structure = {} try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils import dummy_torch_and_transformers_objects # noqa F403 _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) else: _import_structure["pipeline_sana"] = ["SanaPipeline"] if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * else: from .pipeline_sana import SanaPipeline else: import sys sys.modules[__name__] = _LazyModule( __name__, globals()["__file__"], _import_structure, module_spec=__spec__, ) for name, value in _dummy_objects.items(): setattr(sys.modules[__name__], name, value)
from backend.app import run_processes from backend.executor import DatabaseManager, ExecutionScheduler from backend.server.rest_api import AgentServer def main(): """ Run all the processes required for the AutoGPT-server REST API. """ run_processes( DatabaseManager(), ExecutionScheduler(), AgentServer(), ) if __name__ == "__main__": main()
from backend.app import run_processes from backend.executor import ExecutionScheduler from backend.server.rest_api import AgentServer def main(): """ Run all the processes required for the AutoGPT-server REST API. """ run_processes( ExecutionScheduler(), AgentServer(), ) if __name__ == "__main__": main()
import asyncio import logging import os from jina import __default_host__ from jina.importer import ImportExtensions from jina.serve.runtimes.gateway import GatewayRuntime from jina.serve.runtimes.gateway.websocket.app import get_fastapi_app __all__ = ['WebSocketGatewayRuntime'] class WebSocketGatewayRuntime(GatewayRuntime): """Runtime for Websocket interface.""" async def async_setup(self): """ The async method setup the runtime. Setup the uvicorn server. """ with ImportExtensions(required=True): from uvicorn import Config, Server class UviServer(Server): """The uvicorn server.""" async def setup(self, sockets=None): """ Setup uvicorn server. :param sockets: sockets of server. """ config = self.config if not config.loaded: config.load() self.lifespan = config.lifespan_class(config) self.install_signal_handlers() await self.startup(sockets=sockets) if self.should_exit: return async def serve(self, **kwargs): """ Start the server. :param kwargs: keyword arguments """ await self.main_loop() if 'JINA_DISABLE_HEALTHCHECK_LOGS' in os.environ: class _EndpointFilter(logging.Filter): def filter(self, record: logging.LogRecord) -> bool: # NOTE: space is important after `GET /`, else all logs will be disabled. return record.getMessage().find("GET / ") == -1 # Filter out healthcheck endpoint `GET /` logging.getLogger("uvicorn.access").addFilter(_EndpointFilter()) from jina.helper import extend_rest_interface uvicorn_kwargs = self.args.uvicorn_kwargs or {} for ssl_file in ['ssl_keyfile', 'ssl_certfile']: if getattr(self.args, ssl_file): if ssl_file not in uvicorn_kwargs.keys(): uvicorn_kwargs[ssl_file] = getattr(self.args, ssl_file) self._server = UviServer( config=Config( app=extend_rest_interface( get_fastapi_app( args=self.args, logger=self.logger, timeout_send=self.timeout_send, metrics_registry=self.metrics_registry, ) ), host=__default_host__, port=self.args.port, ws_max_size=1024 * 1024 * 1024, log_level=os.getenv('JINA_LOG_LEVEL', 'error').lower(), **uvicorn_kwargs ) ) await self._server.setup() async def async_run_forever(self): """Running method of ther server.""" await self._server.serve() async def _wait_for_cancel(self): """Do NOT override this method when inheriting from :class:`GatewayPod`""" # handle terminate signals while not self.is_cancel.is_set() and not self._server.should_exit: await asyncio.sleep(0.1) await self.async_cancel() async def async_teardown(self): """Shutdown the server.""" await self._server.shutdown() async def async_cancel(self): """Stop the server.""" self._server.should_exit = True
import asyncio import logging import os from jina import __default_host__ from jina.importer import ImportExtensions from jina.serve.runtimes.gateway import GatewayRuntime from jina.serve.runtimes.gateway.websocket.app import get_fastapi_app __all__ = ['WebSocketGatewayRuntime'] class WebSocketGatewayRuntime(GatewayRuntime): """Runtime for Websocket interface.""" async def async_setup(self): """ The async method setup the runtime. Setup the uvicorn server. """ with ImportExtensions(required=True): from uvicorn import Config, Server class UviServer(Server): """The uvicorn server.""" async def setup(self, sockets=None): """ Setup uvicorn server. :param sockets: sockets of server. """ config = self.config if not config.loaded: config.load() self.lifespan = config.lifespan_class(config) self.install_signal_handlers() await self.startup(sockets=sockets) if self.should_exit: return async def serve(self, **kwargs): """ Start the server. :param kwargs: keyword arguments """ await self.main_loop() if 'JINA_DISABLE_HEALTHCHECK_LOGS' in os.environ: class _EndpointFilter(logging.Filter): def filter(self, record: logging.LogRecord) -> bool: # NOTE: space is important after `GET /`, else all logs will be disabled. return record.getMessage().find("GET / ") == -1 # Filter out healthcheck endpoint `GET /` logging.getLogger("uvicorn.access").addFilter(_EndpointFilter()) from jina.helper import extend_rest_interface uvicorn_kwargs = self.args.uvicorn_kwargs or {} for ssl_file in ['ssl_keyfile', 'ssl_certfile']: if getattr(self.args, ssl_file): if ssl_file not in uvicorn_kwargs.keys(): uvicorn_kwargs[ssl_file] = getattr(self.args, ssl_file) self._set_topology_graph() self._set_connection_pool() self._server = UviServer( config=Config( app=extend_rest_interface( get_fastapi_app( self.args, topology_graph=self._topology_graph, connection_pool=self._connection_pool, logger=self.logger, metrics_registry=self.metrics_registry, ) ), host=__default_host__, port=self.args.port, ws_max_size=1024 * 1024 * 1024, log_level=os.getenv('JINA_LOG_LEVEL', 'error').lower(), **uvicorn_kwargs ) ) await self._server.setup() async def async_run_forever(self): """Running method of ther server.""" await self._server.serve() async def _wait_for_cancel(self): """Do NOT override this method when inheriting from :class:`GatewayPod`""" # handle terminate signals while not self.is_cancel.is_set() and not self._server.should_exit: await asyncio.sleep(0.1) await self.async_cancel() async def async_teardown(self): """Shutdown the server.""" await self._server.shutdown() await self._connection_pool.close() async def async_cancel(self): """Stop the server.""" self._server.should_exit = True
# Copyright (c) OpenMMLab. All rights reserved. from .checkpoint_hook import CheckpointHook from .early_stopping_hook import EarlyStoppingHook from .ema_hook import EMAHook from .empty_cache_hook import EmptyCacheHook from .hook import Hook from .iter_timer_hook import IterTimerHook from .logger_hook import LoggerHook from .naive_visualization_hook import NaiveVisualizationHook from .param_scheduler_hook import ParamSchedulerHook from .profiler_hook import NPUProfilerHook, ProfilerHook from .runtime_info_hook import RuntimeInfoHook from .sampler_seed_hook import DistSamplerSeedHook from .sync_buffer_hook import SyncBuffersHook from .test_time_aug_hook import PrepareTTAHook __all__ = [ 'Hook', 'IterTimerHook', 'DistSamplerSeedHook', 'ParamSchedulerHook', 'SyncBuffersHook', 'EmptyCacheHook', 'CheckpointHook', 'LoggerHook', 'NaiveVisualizationHook', 'EMAHook', 'RuntimeInfoHook', 'ProfilerHook', 'PrepareTTAHook', 'NPUProfilerHook', 'EarlyStoppingHook' ]
# Copyright (c) OpenMMLab. All rights reserved. from .checkpoint_hook import CheckpointHook from .ema_hook import EMAHook from .empty_cache_hook import EmptyCacheHook from .hook import Hook from .iter_timer_hook import IterTimerHook from .logger_hook import LoggerHook from .naive_visualization_hook import NaiveVisualizationHook from .param_scheduler_hook import ParamSchedulerHook from .profiler_hook import NPUProfilerHook, ProfilerHook from .runtime_info_hook import RuntimeInfoHook from .sampler_seed_hook import DistSamplerSeedHook from .sync_buffer_hook import SyncBuffersHook from .test_time_aug_hook import PrepareTTAHook __all__ = [ 'Hook', 'IterTimerHook', 'DistSamplerSeedHook', 'ParamSchedulerHook', 'SyncBuffersHook', 'EmptyCacheHook', 'CheckpointHook', 'LoggerHook', 'NaiveVisualizationHook', 'EMAHook', 'RuntimeInfoHook', 'ProfilerHook', 'NPUProfilerHook', 'PrepareTTAHook' ]
# dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'data_sample']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'data_sample']), ]) ] data = dict( samples_per_gpu=2, workers_per_gpu=2, train=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_train2017.json', img_prefix=data_root + 'train2017/', pipeline=train_pipeline), val=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=test_pipeline), test=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=test_pipeline)) evaluation = dict(metric=['bbox', 'segm'])
# dataset settings dataset_type = 'CocoDataset' data_root = 'data/coco/' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=2, workers_per_gpu=2, train=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_train2017.json', img_prefix=data_root + 'train2017/', pipeline=train_pipeline), val=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=test_pipeline), test=dict( type=dataset_type, ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=test_pipeline)) evaluation = dict(metric=['bbox', 'segm'])
# Copyright (c) OpenMMLab. All rights reserved. import os import pytest import torch import torch.nn as nn from torch.distributed import destroy_process_group, init_process_group from torch.nn.parallel import DataParallel, DistributedDataParallel from mmengine.model import (MMDistributedDataParallel, MMSeparateDistributedDataParallel, convert_sync_batchnorm, is_model_wrapper, revert_sync_batchnorm) from mmengine.registry import MODEL_WRAPPERS, Registry from mmengine.utils import is_installed @pytest.mark.skipif( torch.__version__ == 'parrots', reason='not supported in parrots now') def test_revert_syncbn(): # conv = ConvModule(3, 8, 2, norm_cfg=dict(type='SyncBN')) conv = nn.Sequential(nn.Conv2d(3, 8, 2), nn.SyncBatchNorm(8)) x = torch.randn(1, 3, 10, 10) # Expect a ValueError prompting that SyncBN is not supported on CPU with pytest.raises(ValueError): y = conv(x) conv = revert_sync_batchnorm(conv) y = conv(x) assert y.shape == (1, 8, 9, 9) @pytest.mark.skipif( torch.__version__ == 'parrots', reason='not supported in parrots now') def test_convert_syncbn(): # conv = ConvModule(3, 8, 2, norm_cfg=dict(type='SyncBN')) conv = nn.Sequential(nn.Conv2d(3, 8, 2), nn.BatchNorm2d(8)) x = torch.randn(1, 3, 10, 10) y = conv(x) assert y.shape == (1, 8, 9, 9) # Test convert to mmcv SyncBatchNorm if is_installed('mmcv'): # MMCV SyncBatchNorm is only supported on distributed training. with pytest.raises((RuntimeError, AssertionError)): convert_sync_batchnorm(conv, implementation='mmcv') # Test convert to Pytorch SyncBatchNorm # Expect a ValueError prompting that SyncBN is not supported on CPU converted_conv = convert_sync_batchnorm(conv) assert isinstance(converted_conv[1], torch.nn.SyncBatchNorm) with pytest.raises(ValueError): converted_conv(x) def test_is_model_wrapper(): # Test basic module wrapper. os.environ['MASTER_ADDR'] = '127.0.0.1' os.environ['MASTER_PORT'] = '29510' os.environ['RANK'] = str(0) init_process_group(backend='gloo', rank=0, world_size=1) model = nn.Linear(1, 1) for wrapper in [ DistributedDataParallel, MMDistributedDataParallel, MMSeparateDistributedDataParallel, DataParallel ]: wrapper_model = wrapper(model) assert is_model_wrapper(wrapper_model) # Test `is_model_wrapper` can check model wrapper registered in custom # registry. CHILD_REGISTRY = Registry('test_is_model_wrapper', parent=MODEL_WRAPPERS) class CustomModelWrapper(nn.Module): def __init__(self, model): super().__init__() self.module = model pass CHILD_REGISTRY.register_module(module=CustomModelWrapper, force=True) for wrapper in [ DistributedDataParallel, MMDistributedDataParallel, MMSeparateDistributedDataParallel, DataParallel, CustomModelWrapper ]: wrapper_model = wrapper(model) assert is_model_wrapper(wrapper_model) # Test `is_model_wrapper` will not check model wrapper in parent # registry from a child registry. for wrapper in [ DistributedDataParallel, MMDistributedDataParallel, MMSeparateDistributedDataParallel, DataParallel ]: wrapper_model = wrapper(model) assert not is_model_wrapper(wrapper_model, registry=CHILD_REGISTRY) wrapper_model = CustomModelWrapper(model) assert is_model_wrapper(wrapper_model, registry=CHILD_REGISTRY) destroy_process_group()
# Copyright (c) OpenMMLab. All rights reserved. import os import pytest import torch import torch.nn as nn from torch.distributed import destroy_process_group, init_process_group from torch.nn.parallel import DataParallel, DistributedDataParallel from mmengine.model import (MMDistributedDataParallel, MMSeparateDistributedDataParallel, convert_sync_batchnorm, is_model_wrapper, revert_sync_batchnorm) from mmengine.registry import MODEL_WRAPPERS, Registry from mmengine.utils import is_installed @pytest.mark.skipif( torch.__version__ == 'parrots', reason='not supported in parrots now') def test_revert_syncbn(): # conv = ConvModule(3, 8, 2, norm_cfg=dict(type='SyncBN')) conv = nn.Sequential(nn.Conv2d(3, 8, 2), nn.SyncBatchNorm(8)) x = torch.randn(1, 3, 10, 10) # Expect a ValueError prompting that SyncBN is not supported on CPU with pytest.raises(ValueError): y = conv(x) conv = revert_sync_batchnorm(conv) y = conv(x) assert y.shape == (1, 8, 9, 9) @pytest.mark.skipif( torch.__version__ == 'parrots', reason='not supported in parrots now') def test_convert_syncbn(): # conv = ConvModule(3, 8, 2, norm_cfg=dict(type='SyncBN')) conv = nn.Sequential(nn.Conv2d(3, 8, 2), nn.BatchNorm2d(8)) x = torch.randn(1, 3, 10, 10) y = conv(x) assert y.shape == (1, 8, 9, 9) # Test convert to mmcv SyncBatchNorm if is_installed('mmcv'): # MMCV SyncBatchNorm is only supported on distributed training. with pytest.raises((RuntimeError, AssertionError)): convert_sync_batchnorm(conv, implementation='mmcv') # Test convert to Pytorch SyncBatchNorm # Expect a ValueError prompting that SyncBN is not supported on CPU converted_conv = convert_sync_batchnorm(conv) assert isinstance(converted_conv[1], torch.nn.SyncBatchNorm) with pytest.raises(ValueError): converted_conv(x) def test_is_model_wrapper(): # Test basic module wrapper. os.environ['MASTER_ADDR'] = '127.0.0.1' os.environ['MASTER_PORT'] = '29510' os.environ['RANK'] = str(0) init_process_group(backend='gloo', rank=0, world_size=1) model = nn.Linear(1, 1) for wrapper in [ DistributedDataParallel, MMDistributedDataParallel, MMSeparateDistributedDataParallel, DataParallel ]: wrapper_model = wrapper(model) assert is_model_wrapper(wrapper_model) # Test `is_model_wrapper` can check model wrapper registered in custom # registry. CHILD_REGISTRY = Registry('test_is_model_wrapper', parent=MODEL_WRAPPERS) class CustomModelWrapper(nn.Module): def __init__(self, model): super().__init__() self.module = model pass CHILD_REGISTRY.register_module(module=CustomModelWrapper) for wrapper in [ DistributedDataParallel, MMDistributedDataParallel, MMSeparateDistributedDataParallel, DataParallel, CustomModelWrapper ]: wrapper_model = wrapper(model) assert is_model_wrapper(wrapper_model) # Test `is_model_wrapper` will not check model wrapper in parent # registry from a child registry. for wrapper in [ DistributedDataParallel, MMDistributedDataParallel, MMSeparateDistributedDataParallel, DataParallel ]: wrapper_model = wrapper(model) assert not is_model_wrapper(wrapper_model, registry=CHILD_REGISTRY) wrapper_model = CustomModelWrapper(model) assert is_model_wrapper(wrapper_model, registry=CHILD_REGISTRY) destroy_process_group()
# Copyright 2024 The OpenXLA Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Boilerplate utilities for kernel testing.""" from typing import Optional import numpy as np from xla.codegen.testlib import _extension from xla.python import xla_extension def create_scalar_literal(value, dtype: np.dtype) -> xla_extension.Literal: shape = xla_extension.Shape.scalar_shape(dtype) literal = xla_extension.Literal(shape) np.copyto(np.asarray(literal), value) return literal def create_literal_from_np( array: np.ndarray, layout: Optional[list[int]] = None ) -> xla_extension.Literal: if np.ndim(array) == 0: return create_scalar_literal(array.item(), array.dtype) shape = xla_extension.Shape.array_shape(array.dtype, array.shape, layout) literal = xla_extension.Literal(shape) np.copyto(np.asarray(literal), array) return literal # Intentionally rexport-ed to be avalable in the public API. opcode_arity = _extension.opcode_arity
# Copyright 2024 The OpenXLA Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Boilerplate utilities for kernel testing.""" import numpy as np from xla.codegen.testlib import _extension from xla.python import xla_extension def create_scalar_literal(value, dtype: np.dtype) -> xla_extension.Literal: shape = xla_extension.Shape.scalar_shape(dtype) literal = xla_extension.Literal(shape) np.copyto(np.asarray(literal), value) return literal def create_literal_from_np(array: np.ndarray) -> xla_extension.Literal: if np.ndim(array) == 0: return create_scalar_literal(array.item(), array.dtype) shape = xla_extension.Shape.array_shape(array.dtype, array.shape) literal = xla_extension.Literal(shape) np.copyto(np.asarray(literal), array) return literal # Intentionally rexport-ed to be avalable in the public API. opcode_arity = _extension.opcode_arity
import os import torch import torchaudio.prototype.transforms as T import torchaudio.transforms as transforms from torchaudio_unittest.common_utils import TorchaudioTestCase class BatchConsistencyTest(TorchaudioTestCase): def assert_batch_consistency(self, transform, batch, *args, atol=1e-8, rtol=1e-5, seed=42, **kwargs): n = batch.size(0) # Compute items separately, then batch the result torch.random.manual_seed(seed) items_input = batch.clone() items_result = torch.stack([transform(items_input[i], *args, **kwargs) for i in range(n)]) # Batch the input and run torch.random.manual_seed(seed) batch_input = batch.clone() batch_result = transform(batch_input, *args, **kwargs) self.assertEqual(items_input, batch_input, rtol=rtol, atol=atol) self.assertEqual(items_result, batch_result, rtol=rtol, atol=atol) def test_batch_BarkScale(self): specgram = torch.randn(3, 2, 201, 256) atol = 1e-6 if os.name == "nt" else 1e-8 transform = T.BarkScale() self.assert_batch_consistency(transform, specgram, atol=atol) def test_batch_InverseBarkScale(self): n_barks = 32 n_stft = 5 bark_spec = torch.randn(3, 2, n_barks, 32) ** 2 transform = T.InverseBarkScale(n_stft, n_barks) # Because InverseBarkScale runs SGD on randomly initialized values so they do not yield # exactly same result. For this reason, tolerance is very relaxed here. self.assert_batch_consistency(transform, bark_spec, atol=1.0, rtol=1e-5)
import os import torch import torchaudio.prototype.transforms as T import torchaudio.transforms as transforms from torchaudio_unittest.common_utils import TorchaudioTestCase class BatchConsistencyTest(TorchaudioTestCase): def assert_batch_consistency(self, transform, batch, *args, atol=1e-8, rtol=1e-5, seed=42, **kwargs): n = batch.size(0) # Compute items separately, then batch the result torch.random.manual_seed(seed) items_input = batch.clone() items_result = torch.stack([transform(items_input[i], *args, **kwargs) for i in range(n)]) # Batch the input and run torch.random.manual_seed(seed) batch_input = batch.clone() batch_result = transform(batch_input, *args, **kwargs) self.assertEqual(items_input, batch_input, rtol=rtol, atol=atol) self.assertEqual(items_result, batch_result, rtol=rtol, atol=atol) def test_batch_BarkScale(self): specgram = torch.randn(3, 2, 201, 256) atol = 1e-6 if os.name == "nt" else 1e-8 transform = T.BarkScale() self.assert_batch_consistency(transform, specgram, atol=atol) def test_batch_InverseBarkScale(self): n_barks = 32 n_stft = 5 bark_spec = torch.randn(3, 2, n_barks, 32) ** 2 transform = transforms.InverseMelScale(n_stft, n_barks) # Because InverseBarkScale runs SGD on randomly initialized values so they do not yield # exactly same result. For this reason, tolerance is very relaxed here. self.assert_batch_consistency(transform, bark_spec, atol=1.0, rtol=1e-5)
import logging from datasets import load_dataset from sentence_transformers.sparse_encoder import ( SparseEncoder, SparseRerankingEvaluator, ) logging.basicConfig(format="%(message)s", level=logging.INFO) # Load a model model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # Load a dataset with queries, positives, and negatives eval_dataset = load_dataset("microsoft/ms_marco", "v1.1", split="validation").select(range(1000)) samples = [ { "query": sample["query"], "positive": [ text for is_selected, text in zip(sample["passages"]["is_selected"], sample["passages"]["passage_text"]) if is_selected ], "negative": [ text for is_selected, text in zip(sample["passages"]["is_selected"], sample["passages"]["passage_text"]) if not is_selected ], } for sample in eval_dataset ] # Now evaluate using only the documents from the 1000 samples reranking_evaluator = SparseRerankingEvaluator( samples=samples, name="ms-marco-dev-small", show_progress_bar=True, batch_size=32, ) results = reranking_evaluator(model) """ RerankingEvaluator: Evaluating the model on the ms-marco-dev-small dataset: Queries: 967 Positives: Min 1.0, Mean 1.1, Max 3.0 Negatives: Min 1.0, Mean 7.1, Max 9.0 MAP: 53.46 MRR@10: 54.18 NDCG@10: 65.10 """ # Print the results print(f"Primary metric: {reranking_evaluator.primary_metric}") # => Primary metric: ms-marco-dev-small_ndcg@10 print(f"Primary metric value: {results[reranking_evaluator.primary_metric]:.4f}") # => Primary metric value: 0.6510
import logging from datasets import load_dataset from sentence_transformers.sparse_encoder import ( MLMTransformer, SparseEncoder, SparseRerankingEvaluator, SpladePooling, ) logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO) # Initialize the SPLADE model model_name = "naver/splade-cocondenser-ensembledistil" model = SparseEncoder( modules=[ MLMTransformer(model_name), SpladePooling(pooling_strategy="max"), # You can also use 'sum' ], device="cuda:0", ) # Load a dataset with queries, positives, and negatives eval_dataset = load_dataset("microsoft/ms_marco", "v1.1", split="validation").select(range(1000)) samples = [ { "query": sample["query"], "positive": [ text for is_selected, text in zip(sample["passages"]["is_selected"], sample["passages"]["passage_text"]) if is_selected ], "negative": [ text for is_selected, text in zip(sample["passages"]["is_selected"], sample["passages"]["passage_text"]) if not is_selected ], } for sample in eval_dataset ] # Now evaluate using only the documents from the 1000 samples reranking_evaluator = SparseRerankingEvaluator( samples=samples, name="ms-marco-dev-small", show_progress_bar=True, batch_size=32, ) results = reranking_evaluator(model) # Print the results print(f"Primary metric: {reranking_evaluator.primary_metric}") print(f"Primary metric value: {results[reranking_evaluator.primary_metric]:.4f}")
from pathlib import Path from typing import Union, Optional, Callable, TYPE_CHECKING, Generator if TYPE_CHECKING: # pragma: no cover from docarray import DocumentArray from docarray.typing import T from multiprocessing.pool import ThreadPool, Pool class DataLoaderMixin: @classmethod def dataloader( cls, path: Union[str, Path], func: Callable[['DocumentArray'], 'T'], batch_size: int, protocol: str = 'protobuf', compress: Optional[str] = None, backend: str = 'thread', num_worker: Optional[int] = None, pool: Optional[Union['Pool', 'ThreadPool']] = None, show_progress: bool = False, ) -> Generator['DocumentArray', None, None]: """Load array elements, batches and maps them with a function in parallel, finally yield the batch in DocumentArray :param path: Path or filename where the data is stored. :param func: a function that takes :class:`DocumentArray` as input and outputs anything. You can either modify elements in-place (only with `thread` backend) or work later on return elements. :param batch_size: Size of each generated batch (except the last one, which might be smaller) :param protocol: protocol to use :param compress: compress algorithm to use :param backend: if to use multi-`process` or multi-`thread` as the parallelization backend. In general, if your ``func`` is IO-bound then perhaps `thread` is good enough. If your ``func`` is CPU-bound then you may use `process`. In practice, you should try yourselves to figure out the best value. However, if you wish to modify the elements in-place, regardless of IO/CPU-bound, you should always use `thread` backend. .. warning:: When using `process` backend, you should not expect ``func`` modify elements in-place. This is because the multiprocessing backing pass the variable via pickle and work in another process. The passed object and the original object do **not** share the same memory. :param num_worker: the number of parallel workers. If not given, then the number of CPUs in the system will be used. :param pool: use an existing/external pool. If given, `backend` is ignored and you will be responsible for closing the pool. :param show_progress: if set, show a progressbar :return: """ from docarray.array.mixins.dataloader.helper import DocumentArrayLoader for da in DocumentArrayLoader( path, protocol=protocol, compress=compress, show_progress=False ).map_batch( func, batch_size=batch_size, backend=backend, num_worker=num_worker, pool=pool, show_progress=show_progress, ): yield da
from pathlib import Path from typing import Union, Optional, Callable, TYPE_CHECKING, Generator if TYPE_CHECKING: from docarray import DocumentArray from docarray.typing import T from multiprocessing.pool import ThreadPool, Pool class DataLoaderMixin: @classmethod def dataloader( cls, path: Union[str, Path], func: Callable[['DocumentArray'], 'T'], batch_size: int, protocol: str = 'protobuf', compress: Optional[str] = None, backend: str = 'thread', num_worker: Optional[int] = None, pool: Optional[Union['Pool', 'ThreadPool']] = None, show_progress: bool = False, ) -> Generator['DocumentArray', None, None]: """Load array elements, batches and maps them with a function in parallel, finally yield the batch in DocumentArray :param path: Path or filename where the data is stored. :param func: a function that takes :class:`DocumentArray` as input and outputs anything. You can either modify elements in-place (only with `thread` backend) or work later on return elements. :param batch_size: Size of each generated batch (except the last one, which might be smaller) :param protocol: protocol to use :param compress: compress algorithm to use :param backend: if to use multi-`process` or multi-`thread` as the parallelization backend. In general, if your ``func`` is IO-bound then perhaps `thread` is good enough. If your ``func`` is CPU-bound then you may use `process`. In practice, you should try yourselves to figure out the best value. However, if you wish to modify the elements in-place, regardless of IO/CPU-bound, you should always use `thread` backend. .. warning:: When using `process` backend, you should not expect ``func`` modify elements in-place. This is because the multiprocessing backing pass the variable via pickle and work in another process. The passed object and the original object do **not** share the same memory. :param num_worker: the number of parallel workers. If not given, then the number of CPUs in the system will be used. :param pool: use an existing/external pool. If given, `backend` is ignored and you will be responsible for closing the pool. :param show_progress: if set, show a progressbar :return: """ from docarray.array.mixins.dataloader.helper import DocumentArrayLoader for da in DocumentArrayLoader( path, protocol=protocol, compress=compress, show_progress=False ).map_batch( func, batch_size=batch_size, backend=backend, num_worker=num_worker, pool=pool, show_progress=show_progress, ): yield da
# Copyright (c) OpenMMLab. All rights reserved. from .inference import (async_inference_detector, inference_detector, init_detector) __all__ = [ 'init_detector', 'async_inference_detector', 'inference_detector', ]
# Copyright (c) OpenMMLab. All rights reserved. from .inference import (async_inference_detector, inference_detector, init_detector, show_result_pyplot) from .test import multi_gpu_test, single_gpu_test from .train import (get_root_logger, init_random_seed, set_random_seed, train_detector) __all__ = [ 'get_root_logger', 'set_random_seed', 'train_detector', 'init_detector', 'async_inference_detector', 'inference_detector', 'show_result_pyplot', 'multi_gpu_test', 'single_gpu_test', 'init_random_seed' ]
_base_ = [ 'mmcls::_base_/datasets/imagenet_bs256_rsb_a12.py', 'mmcls::_base_/schedules/imagenet_bs2048_rsb.py', 'mmcls::_base_/default_runtime.py' ] model = dict( type='ImageClassifier', backbone=dict( type='mmdet.CSPNeXt', arch='P5', out_indices=(4, ), expand_ratio=0.5, deepen_factor=0.33, widen_factor=0.5, channel_attention=True, norm_cfg=dict(type='BN'), act_cfg=dict(type='mmdet.SiLU')), neck=dict(type='GlobalAveragePooling'), head=dict( type='LinearClsHead', num_classes=1000, in_channels=512, loss=dict( type='LabelSmoothLoss', label_smooth_val=0.1, mode='original', loss_weight=1.0), topk=(1, 5)), train_cfg=dict(augments=[ dict(type='Mixup', alpha=0.2), dict(type='CutMix', alpha=1.0) ])) # dataset settings train_dataloader = dict(sampler=dict(type='RepeatAugSampler', shuffle=True)) # schedule settings optim_wrapper = dict( optimizer=dict(weight_decay=0.01), paramwise_cfg=dict(bias_decay_mult=0., norm_decay_mult=0.), ) param_scheduler = [ # warm up learning rate scheduler dict( type='LinearLR', start_factor=0.0001, by_epoch=True, begin=0, end=5, # update by iter convert_to_iter_based=True), # main learning rate scheduler dict( type='CosineAnnealingLR', T_max=595, eta_min=1.0e-6, by_epoch=True, begin=5, end=600) ] train_cfg = dict(by_epoch=True, max_epochs=600)
_base_ = [ 'mmcls::_base_/datasets/imagenet_bs256_rsb_a12.py', 'mmcls::_base_/schedules/imagenet_bs2048_rsb.py', 'mmcls::_base_/default_runtime.py' ] custom_imports = dict(imports=['mmdet.models'], allow_failed_imports=False) model = dict( type='ImageClassifier', backbone=dict( type='mmdet.CSPNeXt', arch='P5', out_indices=(4, ), expand_ratio=0.5, deepen_factor=0.33, widen_factor=0.5, channel_attention=True, norm_cfg=dict(type='BN'), act_cfg=dict(type='mmdet.SiLU')), neck=dict(type='GlobalAveragePooling'), head=dict( type='LinearClsHead', num_classes=1000, in_channels=512, loss=dict( type='LabelSmoothLoss', label_smooth_val=0.1, mode='original', loss_weight=1.0), topk=(1, 5)), train_cfg=dict(augments=[ dict(type='Mixup', alpha=0.2), dict(type='CutMix', alpha=1.0) ])) # dataset settings train_dataloader = dict(sampler=dict(type='RepeatAugSampler', shuffle=True)) # schedule settings optim_wrapper = dict( optimizer=dict(weight_decay=0.01), paramwise_cfg=dict(bias_decay_mult=0., norm_decay_mult=0.), ) param_scheduler = [ # warm up learning rate scheduler dict( type='LinearLR', start_factor=0.0001, by_epoch=True, begin=0, end=5, # update by iter convert_to_iter_based=True), # main learning rate scheduler dict( type='CosineAnnealingLR', T_max=595, eta_min=1.0e-6, by_epoch=True, begin=5, end=600) ] train_cfg = dict(by_epoch=True, max_epochs=600)
"""Test Aleph Alpha API wrapper.""" from langchain_community.llms.aleph_alpha import AlephAlpha def test_aleph_alpha_call() -> None: """Test valid call to cohere.""" llm = AlephAlpha(maximum_tokens=10) output = llm.invoke("Say foo:") assert isinstance(output, str)
"""Test Aleph Alpha API wrapper.""" from langchain_community.llms.aleph_alpha import AlephAlpha def test_aleph_alpha_call() -> None: """Test valid call to cohere.""" llm = AlephAlpha(maximum_tokens=10) # type: ignore[call-arg] output = llm.invoke("Say foo:") assert isinstance(output, str)
from collections import namedtuple from typing import TYPE_CHECKING, Dict, NamedTuple, Optional from urllib.parse import urlparse if TYPE_CHECKING: from ... import DocumentArray _ParsedHost = namedtuple('ParsedHost', 'on host port version scheme') def _parse_host(host: str) -> NamedTuple: """Parse a host string into namedtuple object. A parsed host's components are `on`, `host`, `port`, `version`, `scheme`. :param host: a host string. Can be one of the following: - `grpc://192.168.0.123:8080/endpoint` - `ws://192.168.0.123:8080/endpoint` - `http://192.168.0.123:8080/endpoint` - `jinahub://Hello/endpoint` - `jinahub+docker://Hello/endpoint` - `jinahub+docker://Hello/v0.0.1/endpoint` - `jinahub+docker://Hello/latest/endpoint` - `jinahub+sandbox://Hello/endpoint` """ r = urlparse(host) on = r.path or '/' host = ( r._replace(netloc=r.netloc.replace(f':{r.port}', ''))._replace(path='').geturl() ) port = r.port or None version = None scheme = r.scheme splited_path = list(filter(None, r.path.split('/'))) if len(splited_path) == 2: # path includes version and endpoint version = splited_path[0] host = host + '/' + version on = '/' + splited_path[1] return _ParsedHost(on=on, host=host, port=port, version=version, scheme=scheme) class PostMixin: """Helper functions for posting DocumentArray to Jina Flow.""" def post( self, host: str, show_progress: bool = False, batch_size: Optional[int] = None, parameters: Optional[Dict] = None, **kwargs, ) -> 'DocumentArray': """Posting itself to a remote Flow/Sandbox and get the modified DocumentArray back :param host: a host string. Can be one of the following: - `grpc://192.168.0.123:8080/endpoint` - `ws://192.168.0.123:8080/endpoint` - `http://192.168.0.123:8080/endpoint` - `jinahub://Hello/endpoint` - `jinahub+docker://Hello/endpoint` - `jinahub+docker://Hello/v0.0.1/endpoint` - `jinahub+docker://Hello/latest/endpoint` - `jinahub+sandbox://Hello/endpoint` :param show_progress: if to show a progressbar :param batch_size: number of Document on each request :param parameters: parameters to send in the request :return: the new DocumentArray returned from remote """ if not self: return parsed_host = _parse_host(host) batch_size = batch_size or len(self) scheme = parsed_host.scheme host = parsed_host.host if scheme in ('grpcs', 'https', 'wss'): scheme = scheme[:-1] if scheme == 'ws': scheme = 'websocket' # temp fix for the core if scheme.startswith('jinahub'): from jina import Flow f = Flow(quiet=True, prefetch=1).add(uses=host, **kwargs) with f: return f.post( parsed_host.on, inputs=self, show_progress=show_progress, request_size=batch_size, parameters=parameters, **kwargs, ) elif scheme in ('grpc', 'http', 'ws', 'websocket'): from jina import Client if parsed_host.port: host += f':{parsed_host.port}' c = Client(host=host) return c.post( parsed_host.on, inputs=self, show_progress=show_progress, request_size=batch_size, parameters=parameters, **kwargs, ) else: raise ValueError(f'unsupported scheme: {scheme}')
from typing import TYPE_CHECKING, Optional, Dict if TYPE_CHECKING: from ... import DocumentArray class PostMixin: """Helper functions for posting DocumentArray to Jina Flow.""" def post( self, host: str, show_progress: bool = False, batch_size: Optional[int] = None, parameters: Optional[Dict] = None, **kwargs, ) -> 'DocumentArray': """Posting itself to a remote Flow/Sandbox and get the modified DocumentArray back :param host: a host string. Can be one of the following: - `grpc://192.168.0.123:8080/endpoint` - `ws://192.168.0.123:8080/endpoint` - `http://192.168.0.123:8080/endpoint` - `jinahub://Hello/endpoint` - `jinahub+docker://Hello/endpoint` - `jinahub+sandbox://Hello/endpoint` :param show_progress: if to show a progressbar :param batch_size: number of Document on each request :param parameters: parameters to send in the request :return: the new DocumentArray returned from remote """ if not self: return from urllib.parse import urlparse r = urlparse(host) _on = r.path or '/' _port = r.port or None standardized_host = ( r._replace(netloc=r.netloc.replace(f':{r.port}', '')) ._replace(path='') .geturl() ) batch_size = batch_size or len(self) _scheme = r.scheme _tls = False if _scheme in ('grpcs', 'https', 'wss'): _scheme = _scheme[:-1] _tls = True if _scheme == 'ws': _scheme = 'websocket' # temp fix for the core if _scheme.startswith('jinahub'): from jina import Flow f = Flow(quiet=True, prefetch=1).add(uses=standardized_host) with f: return f.post( _on, inputs=self, show_progress=show_progress, request_size=batch_size, parameters=parameters, **kwargs, ) elif _scheme in ('grpc', 'http', 'ws', 'websocket'): from jina import Client if _port: standardized_host += f':{_port}' c = Client(host=standardized_host) return c.post( _on, inputs=self, show_progress=show_progress, request_size=batch_size, parameters=parameters, **kwargs, ) else: raise ValueError(f'unsupported scheme: {r.scheme}')
import logging import os import zlib from contextlib import asynccontextmanager from urllib.parse import parse_qsl, urlencode, urlparse, urlunparse from uuid import uuid4 from dotenv import load_dotenv from prisma import Prisma from pydantic import BaseModel, Field, field_validator from backend.util.retry import conn_retry load_dotenv() PRISMA_SCHEMA = os.getenv("PRISMA_SCHEMA", "schema.prisma") os.environ["PRISMA_SCHEMA_PATH"] = PRISMA_SCHEMA def add_param(url: str, key: str, value: str) -> str: p = urlparse(url) qs = dict(parse_qsl(p.query)) qs[key] = value return urlunparse(p._replace(query=urlencode(qs))) DATABASE_URL = os.getenv("DATABASE_URL", "postgresql://localhost:5432") CONN_LIMIT = os.getenv("DB_CONNECTION_LIMIT") if CONN_LIMIT: DATABASE_URL = add_param(DATABASE_URL, "connection_limit", CONN_LIMIT) CONN_TIMEOUT = os.getenv("DB_CONNECT_TIMEOUT") if CONN_TIMEOUT: DATABASE_URL = add_param(DATABASE_URL, "connect_timeout", CONN_TIMEOUT) POOL_TIMEOUT = os.getenv("DB_POOL_TIMEOUT") if POOL_TIMEOUT: DATABASE_URL = add_param(DATABASE_URL, "pool_timeout", POOL_TIMEOUT) HTTP_TIMEOUT = int(POOL_TIMEOUT) if POOL_TIMEOUT else None prisma = Prisma( auto_register=True, http={"timeout": HTTP_TIMEOUT}, datasource={"url": DATABASE_URL}, ) logger = logging.getLogger(__name__) @conn_retry("Prisma", "Acquiring connection") async def connect(): if prisma.is_connected(): return await prisma.connect() if not prisma.is_connected(): raise ConnectionError("Failed to connect to Prisma.") # Connection acquired from a pool like Supabase somehow still possibly allows # the db client obtains a connection but still reject query connection afterward. try: await prisma.execute_raw("SELECT 1") except Exception as e: raise ConnectionError("Failed to connect to Prisma.") from e @conn_retry("Prisma", "Releasing connection") async def disconnect(): if not prisma.is_connected(): return await prisma.disconnect() if prisma.is_connected(): raise ConnectionError("Failed to disconnect from Prisma.") @asynccontextmanager async def transaction(): async with prisma.tx() as tx: yield tx @asynccontextmanager async def locked_transaction(key: str): lock_key = zlib.crc32(key.encode("utf-8")) async with transaction() as tx: await tx.execute_raw(f"SELECT pg_advisory_xact_lock({lock_key})") yield tx class BaseDbModel(BaseModel): id: str = Field(default_factory=lambda: str(uuid4())) @field_validator("id", mode="before") def set_model_id(cls, id: str) -> str: # In case an empty ID is submitted return id or str(uuid4())
import logging import os import zlib from contextlib import asynccontextmanager from urllib.parse import parse_qsl, urlencode, urlparse, urlunparse from uuid import uuid4 from dotenv import load_dotenv from prisma import Prisma from pydantic import BaseModel, Field, field_validator from backend.util.retry import conn_retry load_dotenv() PRISMA_SCHEMA = os.getenv("PRISMA_SCHEMA", "schema.prisma") os.environ["PRISMA_SCHEMA_PATH"] = PRISMA_SCHEMA def add_param(url: str, key: str, value: str) -> str: p = urlparse(url) qs = dict(parse_qsl(p.query)) qs[key] = value return urlunparse(p._replace(query=urlencode(qs))) DATABASE_URL = os.getenv("DATABASE_URL") if not DATABASE_URL: raise ValueError("DATABASE_URL is not set.") CONN_LIMIT = os.getenv("DB_CONNECTION_LIMIT") if CONN_LIMIT: DATABASE_URL = add_param(DATABASE_URL, "connection_limit", CONN_LIMIT) CONN_TIMEOUT = os.getenv("DB_CONNECT_TIMEOUT") if CONN_TIMEOUT: DATABASE_URL = add_param(DATABASE_URL, "connect_timeout", CONN_TIMEOUT) POOL_TIMEOUT = os.getenv("DB_POOL_TIMEOUT") if POOL_TIMEOUT: DATABASE_URL = add_param(DATABASE_URL, "pool_timeout", POOL_TIMEOUT) HTTP_TIMEOUT = int(POOL_TIMEOUT) if POOL_TIMEOUT else None prisma = Prisma( auto_register=True, http={"timeout": HTTP_TIMEOUT}, datasource={"url": DATABASE_URL}, ) logger = logging.getLogger(__name__) @conn_retry("Prisma", "Acquiring connection") async def connect(): if prisma.is_connected(): return await prisma.connect() if not prisma.is_connected(): raise ConnectionError("Failed to connect to Prisma.") # Connection acquired from a pool like Supabase somehow still possibly allows # the db client obtains a connection but still reject query connection afterward. try: await prisma.execute_raw("SELECT 1") except Exception as e: raise ConnectionError("Failed to connect to Prisma.") from e @conn_retry("Prisma", "Releasing connection") async def disconnect(): if not prisma.is_connected(): return await prisma.disconnect() if prisma.is_connected(): raise ConnectionError("Failed to disconnect from Prisma.") @asynccontextmanager async def transaction(): async with prisma.tx() as tx: yield tx @asynccontextmanager async def locked_transaction(key: str): lock_key = zlib.crc32(key.encode("utf-8")) async with transaction() as tx: await tx.execute_raw(f"SELECT pg_advisory_xact_lock({lock_key})") yield tx class BaseDbModel(BaseModel): id: str = Field(default_factory=lambda: str(uuid4())) @field_validator("id", mode="before") def set_model_id(cls, id: str) -> str: # In case an empty ID is submitted return id or str(uuid4())
from .rnnt_pipeline import EMFORMER_RNNT_BASE_MUSTC, EMFORMER_RNNT_BASE_TEDLIUM3 from .source_separation_pipeline import ( CONVTASNET_BASE_LIBRI2MIX, HDEMUCS_HIGH_MUSDB, HDEMUCS_HIGH_MUSDB_PLUS, SourceSeparationBundle, ) __all__ = [ "CONVTASNET_BASE_LIBRI2MIX", "EMFORMER_RNNT_BASE_MUSTC", "EMFORMER_RNNT_BASE_TEDLIUM3", "SourceSeparationBundle", "HDEMUCS_HIGH_MUSDB_PLUS", "HDEMUCS_HIGH_MUSDB", ]
from .rnnt_pipeline import EMFORMER_RNNT_BASE_MUSTC, EMFORMER_RNNT_BASE_TEDLIUM3 from .source_separation_pipeline import CONVTASNET_BASE_LIBRI2MIX, HDEMUCS_HIGH_MUSDB_PLUS, SourceSeparationBundle __all__ = [ "CONVTASNET_BASE_LIBRI2MIX", "EMFORMER_RNNT_BASE_MUSTC", "EMFORMER_RNNT_BASE_TEDLIUM3", "SourceSeparationBundle", "HDEMUCS_HIGH_MUSDB_PLUS", ]
from unittest import TestCase, mock import boto3 from llama_index.core.postprocessor.types import ( BaseNodePostprocessor, NodeWithScore, QueryBundle, ) from llama_index.core.schema import TextNode from llama_index.postprocessor.bedrock_rerank import BedrockRerank class TestBedrockRerank(TestCase): def test_class(self): names_of_base_classes = [b.__name__ for b in BedrockRerank.__mro__] self.assertIn(BaseNodePostprocessor.__name__, names_of_base_classes) def test_bedrock_rerank(self): exp_rerank_response = { "results": [ { "index": 2, "relevanceScore": 0.9, }, { "index": 3, "relevanceScore": 0.8, }, ] } input_nodes = [ NodeWithScore(node=TextNode(id_="1", text="first 1")), NodeWithScore(node=TextNode(id_="2", text="first 2")), NodeWithScore(node=TextNode(id_="3", text="last 1")), NodeWithScore(node=TextNode(id_="4", text="last 2")), ] expected_nodes = [ NodeWithScore(node=TextNode(id_="3", text="last 1"), score=0.9), NodeWithScore(node=TextNode(id_="4", text="last 2"), score=0.8), ] bedrock_client = boto3.client("bedrock-agent-runtime", region_name="us-west-2") reranker = BedrockRerank(client=bedrock_client, num_results=2) with mock.patch.object( bedrock_client, "rerank", return_value=exp_rerank_response ): query_bundle = QueryBundle(query_str="last") actual_nodes = reranker.postprocess_nodes( input_nodes, query_bundle=query_bundle ) self.assertEqual(len(actual_nodes), len(expected_nodes)) for actual_node_with_score, expected_node_with_score in zip( actual_nodes, expected_nodes ): self.assertEqual( actual_node_with_score.node.get_content(), expected_node_with_score.node.get_content(), ) self.assertAlmostEqual( actual_node_with_score.score, expected_node_with_score.score )
from unittest import TestCase, mock import boto3 from llama_index.core.postprocessor.types import ( BaseNodePostprocessor, NodeWithScore, QueryBundle, ) from llama_index.core.schema import TextNode from llama_index.postprocessor.bedrock_rerank import AWSBedrockRerank class TestAWSBedrockRerank(TestCase): def test_class(self): names_of_base_classes = [b.__name__ for b in AWSBedrockRerank.__mro__] self.assertIn(BaseNodePostprocessor.__name__, names_of_base_classes) def test_bedrock_rerank(self): exp_rerank_response = { "results": [ { "index": 2, "relevanceScore": 0.9, }, { "index": 3, "relevanceScore": 0.8, }, ] } input_nodes = [ NodeWithScore(node=TextNode(id_="1", text="first 1")), NodeWithScore(node=TextNode(id_="2", text="first 2")), NodeWithScore(node=TextNode(id_="3", text="last 1")), NodeWithScore(node=TextNode(id_="4", text="last 2")), ] expected_nodes = [ NodeWithScore(node=TextNode(id_="3", text="last 1"), score=0.9), NodeWithScore(node=TextNode(id_="4", text="last 2"), score=0.8), ] bedrock_client = boto3.client("bedrock-agent-runtime", region_name="us-west-2") reranker = AWSBedrockRerank(client=bedrock_client, num_results=2) with mock.patch.object( bedrock_client, "rerank", return_value=exp_rerank_response ): query_bundle = QueryBundle(query_str="last") actual_nodes = reranker.postprocess_nodes( input_nodes, query_bundle=query_bundle ) self.assertEqual(len(actual_nodes), len(expected_nodes)) for actual_node_with_score, expected_node_with_score in zip( actual_nodes, expected_nodes ): self.assertEqual( actual_node_with_score.node.get_content(), expected_node_with_score.node.get_content(), ) self.assertAlmostEqual( actual_node_with_score.score, expected_node_with_score.score )
_base_ = './yolov3_d53_8xb8-ms-608-273e_coco.py' input_size = (320, 320) train_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='LoadAnnotations', with_bbox=True), # `mean` and `to_rgb` should be the same with the `preprocess_cfg` dict(type='Expand', mean=[0, 0, 0], to_rgb=True, ratio_range=(1, 2)), dict( type='MinIoURandomCrop', min_ious=(0.4, 0.5, 0.6, 0.7, 0.8, 0.9), min_crop_size=0.3), dict(type='Resize', scale=input_size, keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='Resize', scale=input_size, keep_ratio=True), dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader
_base_ = './yolov3_d53_8xb8-ms-608-273e_coco.py' # dataset settings # file_client_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection/', # 'data/': 's3://openmmlab/datasets/detection/' # })) file_client_args = dict(backend='disk') input_size = (320, 320) train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='LoadAnnotations', with_bbox=True), # `mean` and `to_rgb` should be the same with the `preprocess_cfg` dict(type='Expand', mean=[0, 0, 0], to_rgb=True, ratio_range=(1, 2)), dict( type='MinIoURandomCrop', min_ious=(0.4, 0.5, 0.6, 0.7, 0.8, 0.9), min_crop_size=0.3), dict(type='Resize', scale=input_size, keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='Resize', scale=input_size, keep_ratio=True), dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader
# coding=utf-8 # Copyright 2025 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import sys import tempfile import safetensors sys.path.append("..") from test_examples_utils import ExamplesTestsAccelerate, run_command # noqa: E402 logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger() stream_handler = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class TextToImageLCM(ExamplesTestsAccelerate): def test_text_to_image_lcm_lora_sdxl(self): with tempfile.TemporaryDirectory() as tmpdir: test_args = f""" examples/consistency_distillation/train_lcm_distill_lora_sdxl.py --pretrained_teacher_model hf-internal-testing/tiny-stable-diffusion-xl-pipe --dataset_name hf-internal-testing/dummy_image_text_data --resolution 64 --lora_rank 4 --train_batch_size 1 --gradient_accumulation_steps 1 --max_train_steps 2 --learning_rate 5.0e-04 --scale_lr --lr_scheduler constant --lr_warmup_steps 0 --output_dir {tmpdir} """.split() run_command(self._launch_args + test_args) # save_pretrained smoke test self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))) # make sure the state_dict has the correct naming in the parameters. lora_state_dict = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")) is_lora = all("lora" in k for k in lora_state_dict.keys()) self.assertTrue(is_lora) def test_text_to_image_lcm_lora_sdxl_checkpointing(self): with tempfile.TemporaryDirectory() as tmpdir: test_args = f""" examples/consistency_distillation/train_lcm_distill_lora_sdxl.py --pretrained_teacher_model hf-internal-testing/tiny-stable-diffusion-xl-pipe --dataset_name hf-internal-testing/dummy_image_text_data --resolution 64 --lora_rank 4 --train_batch_size 1 --gradient_accumulation_steps 1 --max_train_steps 7 --checkpointing_steps 2 --learning_rate 5.0e-04 --scale_lr --lr_scheduler constant --lr_warmup_steps 0 --output_dir {tmpdir} """.split() run_command(self._launch_args + test_args) self.assertEqual( {x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-2", "checkpoint-4", "checkpoint-6"}, ) test_args = f""" examples/consistency_distillation/train_lcm_distill_lora_sdxl.py --pretrained_teacher_model hf-internal-testing/tiny-stable-diffusion-xl-pipe --dataset_name hf-internal-testing/dummy_image_text_data --resolution 64 --lora_rank 4 --train_batch_size 1 --gradient_accumulation_steps 1 --max_train_steps 9 --checkpointing_steps 2 --resume_from_checkpoint latest --learning_rate 5.0e-04 --scale_lr --lr_scheduler constant --lr_warmup_steps 0 --output_dir {tmpdir} """.split() run_command(self._launch_args + test_args) self.assertEqual( {x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-2", "checkpoint-4", "checkpoint-6", "checkpoint-8"}, )
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import sys import tempfile import safetensors sys.path.append("..") from test_examples_utils import ExamplesTestsAccelerate, run_command # noqa: E402 logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger() stream_handler = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class TextToImageLCM(ExamplesTestsAccelerate): def test_text_to_image_lcm_lora_sdxl(self): with tempfile.TemporaryDirectory() as tmpdir: test_args = f""" examples/consistency_distillation/train_lcm_distill_lora_sdxl.py --pretrained_teacher_model hf-internal-testing/tiny-stable-diffusion-xl-pipe --dataset_name hf-internal-testing/dummy_image_text_data --resolution 64 --lora_rank 4 --train_batch_size 1 --gradient_accumulation_steps 1 --max_train_steps 2 --learning_rate 5.0e-04 --scale_lr --lr_scheduler constant --lr_warmup_steps 0 --output_dir {tmpdir} """.split() run_command(self._launch_args + test_args) # save_pretrained smoke test self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))) # make sure the state_dict has the correct naming in the parameters. lora_state_dict = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")) is_lora = all("lora" in k for k in lora_state_dict.keys()) self.assertTrue(is_lora) def test_text_to_image_lcm_lora_sdxl_checkpointing(self): with tempfile.TemporaryDirectory() as tmpdir: test_args = f""" examples/consistency_distillation/train_lcm_distill_lora_sdxl.py --pretrained_teacher_model hf-internal-testing/tiny-stable-diffusion-xl-pipe --dataset_name hf-internal-testing/dummy_image_text_data --resolution 64 --lora_rank 4 --train_batch_size 1 --gradient_accumulation_steps 1 --max_train_steps 7 --checkpointing_steps 2 --learning_rate 5.0e-04 --scale_lr --lr_scheduler constant --lr_warmup_steps 0 --output_dir {tmpdir} """.split() run_command(self._launch_args + test_args) self.assertEqual( {x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-2", "checkpoint-4", "checkpoint-6"}, ) test_args = f""" examples/consistency_distillation/train_lcm_distill_lora_sdxl.py --pretrained_teacher_model hf-internal-testing/tiny-stable-diffusion-xl-pipe --dataset_name hf-internal-testing/dummy_image_text_data --resolution 64 --lora_rank 4 --train_batch_size 1 --gradient_accumulation_steps 1 --max_train_steps 9 --checkpointing_steps 2 --resume_from_checkpoint latest --learning_rate 5.0e-04 --scale_lr --lr_scheduler constant --lr_warmup_steps 0 --output_dir {tmpdir} """.split() run_command(self._launch_args + test_args) self.assertEqual( {x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-2", "checkpoint-4", "checkpoint-6", "checkpoint-8"}, )
_base_ = './retinanet_r50_caffe_fpn_1x_coco.py' train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomResize', scale=[(1333, 640), (1333, 672), (1333, 704), (1333, 736), (1333, 768), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
_base_ = './retinanet_r50_caffe_fpn_1x_coco.py' train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomResize', scale=[(1333, 640), (1333, 672), (1333, 704), (1333, 736), (1333, 768), (1333, 800)]), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
import time import pytest from typing import List from llama_index.core.schema import Document, TextNode from llama_index.core.node_parser import SentenceSplitter from redis import Redis import docker docker_client = docker.from_env() docker_client.ping() container = docker_client.containers.run( "redis/redis-stack:latest", detach=True, name="redis", ports={"6379/tcp": 6379, "8001/tcp": 8001}, ) # wait for redis to be ready time.sleep(2) @pytest.fixture(scope="session", autouse=True) def docker_setup(): yield container container.stop() container.remove() @pytest.fixture() def dummy_embedding() -> List: return [0] * 1536 @pytest.fixture() def turtle_test() -> dict: return { "text": "something about turtles", "metadata": {"animal": "turtle"}, "question": "turtle stuff", "doc_id": "1234", } @pytest.fixture() def documents(turtle_test, dummy_embedding) -> List[Document]: """ List of documents represents data to be embedded in the datastore. Minimum requirements for Documents in the /upsert endpoint's UpsertRequest. """ return [ Document( text=turtle_test["text"], metadata=turtle_test["metadata"], doc_id=turtle_test["doc_id"], embedding=dummy_embedding, ), Document( text="something about whales", metadata={"animal": "whale"}, doc_id="5678", embedding=dummy_embedding, ), ] @pytest.fixture() def test_nodes(documents) -> TextNode: parser = SentenceSplitter() return parser.get_nodes_from_documents(documents) @pytest.fixture() def redis_client() -> Redis: return Redis.from_url("redis://localhost:6379/0")
import time import pytest from typing import List from llama_index.core.schema import Document, TextNode from llama_index.core.node_parser import SentenceSplitter from redis import Redis import docker docker_client = docker.from_env() docker_client.ping() container = docker_client.containers.run( "redis/redis-stack:latest", detach=True, name="redis", ports={"6379/tcp": 6379, "8001/tcp": 8001}, ) # wait for redis to be ready time.sleep(2) @pytest.fixture(scope="session", autouse=True) def docker_setup(): yield container container.stop() container.remove() @pytest.fixture() def dummy_embedding() -> List: return [0] * 1536 @pytest.fixture() def turtle_test() -> dict: return { "text": "something about turtles", "metadata": {"animal": "turtle"}, "question": "turtle stuff", "doc_id": "1234", } @pytest.fixture() def documents(turtle_test, dummy_embedding) -> List[Document]: """List of documents represents data to be embedded in the datastore. Minimum requirements for Documents in the /upsert endpoint's UpsertRequest. """ return [ Document( text=turtle_test["text"], metadata=turtle_test["metadata"], doc_id=turtle_test["doc_id"], embedding=dummy_embedding, ), Document( text="something about whales", metadata={"animal": "whale"}, doc_id="5678", embedding=dummy_embedding, ), ] @pytest.fixture() def test_nodes(documents) -> TextNode: parser = SentenceSplitter() return parser.get_nodes_from_documents(documents) @pytest.fixture() def redis_client() -> Redis: return Redis.from_url("redis://localhost:6379/0")
"""Select and order examples based on ngram overlap score (sentence_bleu score). https://www.nltk.org/_modules/nltk/translate/bleu_score.html https://aclanthology.org/P02-1040.pdf """ from typing import Any, Dict, List import numpy as np from langchain_core.example_selectors import BaseExampleSelector from langchain_core.prompts import PromptTemplate from pydantic import BaseModel, model_validator def ngram_overlap_score(source: List[str], example: List[str]) -> float: """Compute ngram overlap score of source and example as sentence_bleu score from NLTK package. Use sentence_bleu with method1 smoothing function and auto reweighting. Return float value between 0.0 and 1.0 inclusive. https://www.nltk.org/_modules/nltk/translate/bleu_score.html https://aclanthology.org/P02-1040.pdf """ from nltk.translate.bleu_score import ( SmoothingFunction, sentence_bleu, ) hypotheses = source[0].split() references = [s.split() for s in example] return float( sentence_bleu( references, hypotheses, smoothing_function=SmoothingFunction().method1, auto_reweigh=True, ) ) class NGramOverlapExampleSelector(BaseExampleSelector, BaseModel): """Select and order examples based on ngram overlap score (sentence_bleu score from NLTK package). https://www.nltk.org/_modules/nltk/translate/bleu_score.html https://aclanthology.org/P02-1040.pdf """ examples: List[dict] """A list of the examples that the prompt template expects.""" example_prompt: PromptTemplate """Prompt template used to format the examples.""" threshold: float = -1.0 """Threshold at which algorithm stops. Set to -1.0 by default. For negative threshold: select_examples sorts examples by ngram_overlap_score, but excludes none. For threshold greater than 1.0: select_examples excludes all examples, and returns an empty list. For threshold equal to 0.0: select_examples sorts examples by ngram_overlap_score, and excludes examples with no ngram overlap with input. """ @model_validator(mode="before") @classmethod def check_dependencies(cls, values: Dict) -> Any: """Check that valid dependencies exist.""" try: from nltk.translate.bleu_score import ( # noqa: F401 SmoothingFunction, sentence_bleu, ) except ImportError as e: raise ImportError( "Not all the correct dependencies for this ExampleSelect exist." "Please install nltk with `pip install nltk`." ) from e return values def add_example(self, example: Dict[str, str]) -> None: """Add new example to list.""" self.examples.append(example) def select_examples(self, input_variables: Dict[str, str]) -> List[dict]: """Return list of examples sorted by ngram_overlap_score with input. Descending order. Excludes any examples with ngram_overlap_score less than or equal to threshold. """ inputs = list(input_variables.values()) examples = [] k = len(self.examples) score = [0.0] * k first_prompt_template_key = self.example_prompt.input_variables[0] for i in range(k): score[i] = ngram_overlap_score( inputs, [self.examples[i][first_prompt_template_key]] ) while True: arg_max = np.argmax(score) if (score[arg_max] < self.threshold) or abs( score[arg_max] - self.threshold ) < 1e-9: break examples.append(self.examples[arg_max]) score[arg_max] = self.threshold - 1.0 return examples
"""Select and order examples based on ngram overlap score (sentence_bleu score). https://www.nltk.org/_modules/nltk/translate/bleu_score.html https://aclanthology.org/P02-1040.pdf """ from typing import Any, Dict, List import numpy as np from langchain_core.example_selectors import BaseExampleSelector from langchain_core.prompts import PromptTemplate from pydantic import BaseModel, model_validator def ngram_overlap_score(source: List[str], example: List[str]) -> float: """Compute ngram overlap score of source and example as sentence_bleu score from NLTK package. Use sentence_bleu with method1 smoothing function and auto reweighting. Return float value between 0.0 and 1.0 inclusive. https://www.nltk.org/_modules/nltk/translate/bleu_score.html https://aclanthology.org/P02-1040.pdf """ from nltk.translate.bleu_score import ( SmoothingFunction, # type: ignore sentence_bleu, ) hypotheses = source[0].split() references = [s.split() for s in example] return float( sentence_bleu( references, hypotheses, smoothing_function=SmoothingFunction().method1, auto_reweigh=True, ) ) class NGramOverlapExampleSelector(BaseExampleSelector, BaseModel): """Select and order examples based on ngram overlap score (sentence_bleu score from NLTK package). https://www.nltk.org/_modules/nltk/translate/bleu_score.html https://aclanthology.org/P02-1040.pdf """ examples: List[dict] """A list of the examples that the prompt template expects.""" example_prompt: PromptTemplate """Prompt template used to format the examples.""" threshold: float = -1.0 """Threshold at which algorithm stops. Set to -1.0 by default. For negative threshold: select_examples sorts examples by ngram_overlap_score, but excludes none. For threshold greater than 1.0: select_examples excludes all examples, and returns an empty list. For threshold equal to 0.0: select_examples sorts examples by ngram_overlap_score, and excludes examples with no ngram overlap with input. """ @model_validator(mode="before") @classmethod def check_dependencies(cls, values: Dict) -> Any: """Check that valid dependencies exist.""" try: from nltk.translate.bleu_score import ( # noqa: F401 SmoothingFunction, sentence_bleu, ) except ImportError as e: raise ImportError( "Not all the correct dependencies for this ExampleSelect exist." "Please install nltk with `pip install nltk`." ) from e return values def add_example(self, example: Dict[str, str]) -> None: """Add new example to list.""" self.examples.append(example) def select_examples(self, input_variables: Dict[str, str]) -> List[dict]: """Return list of examples sorted by ngram_overlap_score with input. Descending order. Excludes any examples with ngram_overlap_score less than or equal to threshold. """ inputs = list(input_variables.values()) examples = [] k = len(self.examples) score = [0.0] * k first_prompt_template_key = self.example_prompt.input_variables[0] for i in range(k): score[i] = ngram_overlap_score( inputs, [self.examples[i][first_prompt_template_key]] ) while True: arg_max = np.argmax(score) if (score[arg_max] < self.threshold) or abs( score[arg_max] - self.threshold ) < 1e-9: break examples.append(self.examples[arg_max]) score[arg_max] = self.threshold - 1.0 return examples
# Copyright (c) OpenMMLab. All rights reserved. import datetime import os.path as osp import warnings from typing import Optional from mmengine.fileio import dump from mmengine.logging import print_log from . import root from .default_scope import DefaultScope from .registry import Registry def traverse_registry_tree(registry: Registry, verbose: bool = True) -> list: """Traverse the whole registry tree from any given node, and collect information of all registered modules in this registry tree. Args: registry (Registry): a registry node in the registry tree. verbose (bool): Whether to print log. Default: True Returns: list: Statistic results of all modules in each node of the registry tree. """ root_registry = registry.root modules_info = [] def _dfs_registry(_registry): if isinstance(_registry, Registry): num_modules = len(_registry.module_dict) scope = _registry.scope registry_info = dict(num_modules=num_modules, scope=scope) for name, registered_class in _registry.module_dict.items(): folder = '/'.join(registered_class.__module__.split('.')[:-1]) if folder in registry_info: registry_info[folder].append(name) else: registry_info[folder] = [name] if verbose: print_log( f"Find {num_modules} modules in {scope}'s " f"'{_registry.name}' registry ", logger='current') modules_info.append(registry_info) else: return for _, child in _registry.children.items(): _dfs_registry(child) _dfs_registry(root_registry) return modules_info def count_registered_modules(save_path: Optional[str] = None, verbose: bool = True) -> dict: """Scan all modules in MMEngine's root and child registries and dump to json. Args: save_path (str, optional): Path to save the json file. verbose (bool): Whether to print log. Defaults to True. Returns: dict: Statistic results of all registered modules. """ # import modules to trigger registering import mmengine.dataset import mmengine.evaluator import mmengine.hooks import mmengine.model import mmengine.optim import mmengine.runner import mmengine.visualization # noqa: F401 registries_info = {} # traverse all registries in MMEngine for item in dir(root): if not item.startswith('__'): registry = getattr(root, item) if isinstance(registry, Registry): registries_info[item] = traverse_registry_tree( registry, verbose) scan_data = dict( scan_date=datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'), registries=registries_info) if verbose: print_log( f'Finish registry analysis, got: {scan_data}', logger='current') if save_path is not None: json_path = osp.join(save_path, 'modules_statistic_results.json') dump(scan_data, json_path, indent=2) print_log(f'Result has been saved to {json_path}', logger='current') return scan_data def init_default_scope(scope: str) -> None: """Initialize the given default scope. Args: scope (str): The name of the default scope. """ never_created = DefaultScope.get_current_instance( ) is None or not DefaultScope.check_instance_created(scope) if never_created: DefaultScope.get_instance(scope, scope_name=scope) return current_scope = DefaultScope.get_current_instance() # type: ignore if current_scope.scope_name != scope: # type: ignore warnings.warn('The current default scope ' # type: ignore f'"{current_scope.scope_name}" is not "{scope}", ' '`init_default_scope` will force set the current' f'default scope to "{scope}".') # avoid name conflict new_instance_name = f'{scope}-{datetime.datetime.now()}' DefaultScope.get_instance(new_instance_name, scope_name=scope)
# Copyright (c) OpenMMLab. All rights reserved. import datetime import os.path as osp from typing import Optional from mmengine.fileio import dump from mmengine.logging import print_log from . import root from .registry import Registry def traverse_registry_tree(registry: Registry, verbose: bool = True) -> list: """Traverse the whole registry tree from any given node, and collect information of all registered modules in this registry tree. Args: registry (Registry): a registry node in the registry tree. verbose (bool): Whether to print log. Default: True Returns: list: Statistic results of all modules in each node of the registry tree. """ root_registry = registry.root modules_info = [] def _dfs_registry(_registry): if isinstance(_registry, Registry): num_modules = len(_registry.module_dict) scope = _registry.scope registry_info = dict(num_modules=num_modules, scope=scope) for name, registered_class in _registry.module_dict.items(): folder = '/'.join(registered_class.__module__.split('.')[:-1]) if folder in registry_info: registry_info[folder].append(name) else: registry_info[folder] = [name] if verbose: print_log( f"Find {num_modules} modules in {scope}'s " f"'{_registry.name}' registry ", logger='current') modules_info.append(registry_info) else: return for _, child in _registry.children.items(): _dfs_registry(child) _dfs_registry(root_registry) return modules_info def count_registered_modules(save_path: Optional[str] = None, verbose: bool = True) -> dict: """Scan all modules in MMEngine's root and child registries and dump to json. Args: save_path (str, optional): Path to save the json file. verbose (bool): Whether to print log. Defaults to True. Returns: dict: Statistic results of all registered modules. """ # import modules to trigger registering import mmengine.dataset import mmengine.evaluator import mmengine.hooks import mmengine.model import mmengine.optim import mmengine.runner import mmengine.visualization # noqa: F401 registries_info = {} # traverse all registries in MMEngine for item in dir(root): if not item.startswith('__'): registry = getattr(root, item) if isinstance(registry, Registry): registries_info[item] = traverse_registry_tree( registry, verbose) scan_data = dict( scan_date=datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'), registries=registries_info) if verbose: print_log( f'Finish registry analysis, got: {scan_data}', logger='current') if save_path is not None: json_path = osp.join(save_path, 'modules_statistic_results.json') dump(scan_data, json_path, indent=2) print_log(f'Result has been saved to {json_path}', logger='current') return scan_data
# Copyright (c) OpenMMLab. All rights reserved. __version__ = '0.3.2' def parse_version_info(version_str): """Parse the version information. Args: version_str (str): version string like '0.1.0'. Returns: tuple: version information contains major, minor, micro version. """ version_info = [] for x in version_str.split('.'): if x.isdigit(): version_info.append(int(x)) elif x.find('rc') != -1: patch_version = x.split('rc') version_info.append(int(patch_version[0])) version_info.append(f'rc{patch_version[1]}') return tuple(version_info) version_info = parse_version_info(__version__)
# Copyright (c) OpenMMLab. All rights reserved. __version__ = '0.3.1' def parse_version_info(version_str): """Parse the version information. Args: version_str (str): version string like '0.1.0'. Returns: tuple: version information contains major, minor, micro version. """ version_info = [] for x in version_str.split('.'): if x.isdigit(): version_info.append(int(x)) elif x.find('rc') != -1: patch_version = x.split('rc') version_info.append(int(patch_version[0])) version_info.append(f'rc{patch_version[1]}') return tuple(version_info) version_info = parse_version_info(__version__)
from typing import Optional from docarray.document import BaseDocument from docarray.typing import AnyTensor, Embedding, PointCloud3DUrl class PointCloud3D(BaseDocument): """ Document for handling point clouds for 3D data representation. Point cloud is a representation of a 3D mesh. It is made by repeatedly and uniformly sampling points within the surface of the 3D body. Compared to the mesh representation, the point cloud is a fixed size ndarray (shape=(n_samples, 3)) and hence easier for deep learning algorithms to handle. A PointCloud3D Document can contain an PointCloud3DUrl (`PointCloud3D.url`), an AnyTensor (`PointCloud3D.tensor`), and an Embedding (`PointCloud3D.embedding`). EXAMPLE USAGE: You can use this Document directly: .. code-block:: python from docarray import PointCloud3D # use it directly pc = PointCloud3D(url='https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj') pc.tensor = pc.url.load(samples=100) model = MyEmbeddingModel() pc.embedding = model(pc.tensor) You can extend this Document: .. code-block:: python from docarray import PointCloud3D from docarray.typing import Embedding from typing import Optional # extend it class MyPointCloud3D(PointCloud3D): second_embedding: Optional[Embedding] pc = MyPointCloud3D(url='https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj') pc.tensor = pc.url.load(samples=100) model = MyEmbeddingModel() pc.embedding = model(pc.tensor) pc.second_embedding = model(pc.tensor) You can use this Document for composition: .. code-block:: python from docarray import Document, PointCloud3D, Text # compose it class MultiModalDoc(Document): point_cloud: PointCloud3D text: Text mmdoc = MultiModalDoc( point_cloud=PointCloud3D( url='https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj' ), text=Text(text='hello world, how are you doing?'), ) mmdoc.point_cloud.tensor = mmdoc.point_cloud.url.load(samples=100) """ url: Optional[PointCloud3DUrl] tensor: Optional[AnyTensor] embedding: Optional[Embedding]
from typing import Optional from docarray.document import BaseDocument from docarray.typing import Embedding, PointCloud3DUrl, Tensor class PointCloud3D(BaseDocument): """ Document for handling point clouds for 3D data representation. Point cloud is a representation of a 3D mesh. It is made by repeatedly and uniformly sampling points within the surface of the 3D body. Compared to the mesh representation, the point cloud is a fixed size ndarray (shape=(n_samples, 3)) and hence easier for deep learning algorithms to handle. A PointCloud3D Document can contain an PointCloud3DUrl (`PointCloud3D.url`), a Tensor (`PointCloud3D.tensor`), and an Embedding (`PointCloud3D.embedding`). EXAMPLE USAGE: You can use this Document directly: .. code-block:: python from docarray import PointCloud3D # use it directly pc = PointCloud3D(url='https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj') pc.tensor = pc.url.load(samples=100) model = MyEmbeddingModel() pc.embedding = model(pc.tensor) You can extend this Document: .. code-block:: python from docarray import PointCloud3D from docarray.typing import Embedding from typing import Optional # extend it class MyPointCloud3D(PointCloud3D): second_embedding: Optional[Embedding] pc = MyPointCloud3D(url='https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj') pc.tensor = pc.url.load(samples=100) model = MyEmbeddingModel() pc.embedding = model(pc.tensor) pc.second_embedding = model(pc.tensor) You can use this Document for composition: .. code-block:: python from docarray import Document, PointCloud3D, Text # compose it class MultiModalDoc(Document): point_cloud: PointCloud3D text: Text mmdoc = MultiModalDoc( point_cloud=PointCloud3D( url='https://people.sc.fsu.edu/~jburkardt/data/obj/al.obj' ), text=Text(text='hello world, how are you doing?'), ) mmdoc.point_cloud.tensor = mmdoc.point_cloud.url.load(samples=100) """ url: Optional[PointCloud3DUrl] tensor: Optional[Tensor] embedding: Optional[Embedding]
# Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import unittest import torch from transformers import AutoTokenizer, T5EncoderModel from diffusers import ( AutoencoderKLWan, FlowMatchEulerDiscreteScheduler, WanPipeline, WanTransformer3DModel, ) from diffusers.utils.testing_utils import floats_tensor, require_peft_backend, skip_mps sys.path.append(".") from utils import PeftLoraLoaderMixinTests # noqa: E402 @require_peft_backend @skip_mps class WanLoRATests(unittest.TestCase, PeftLoraLoaderMixinTests): pipeline_class = WanPipeline scheduler_cls = FlowMatchEulerDiscreteScheduler scheduler_classes = [FlowMatchEulerDiscreteScheduler] scheduler_kwargs = {} transformer_kwargs = { "patch_size": (1, 2, 2), "num_attention_heads": 2, "attention_head_dim": 12, "in_channels": 16, "out_channels": 16, "text_dim": 32, "freq_dim": 256, "ffn_dim": 32, "num_layers": 2, "cross_attn_norm": True, "qk_norm": "rms_norm_across_heads", "rope_max_seq_len": 32, } transformer_cls = WanTransformer3DModel vae_kwargs = { "base_dim": 3, "z_dim": 16, "dim_mult": [1, 1, 1, 1], "num_res_blocks": 1, "temperal_downsample": [False, True, True], } vae_cls = AutoencoderKLWan has_two_text_encoders = True tokenizer_cls, tokenizer_id = AutoTokenizer, "hf-internal-testing/tiny-random-t5" text_encoder_cls, text_encoder_id = T5EncoderModel, "hf-internal-testing/tiny-random-t5" text_encoder_target_modules = ["q", "k", "v", "o"] @property def output_shape(self): return (1, 9, 32, 32, 3) def get_dummy_inputs(self, with_generator=True): batch_size = 1 sequence_length = 16 num_channels = 4 num_frames = 9 num_latent_frames = 3 # (num_frames - 1) // temporal_compression_ratio + 1 sizes = (4, 4) generator = torch.manual_seed(0) noise = floats_tensor((batch_size, num_latent_frames, num_channels) + sizes) input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator) pipeline_inputs = { "prompt": "", "num_frames": num_frames, "num_inference_steps": 1, "guidance_scale": 6.0, "height": 32, "width": 32, "max_sequence_length": sequence_length, "output_type": "np", } if with_generator: pipeline_inputs.update({"generator": generator}) return noise, input_ids, pipeline_inputs def test_simple_inference_with_text_lora_denoiser_fused_multi(self): super().test_simple_inference_with_text_lora_denoiser_fused_multi(expected_atol=9e-3) def test_simple_inference_with_text_denoiser_lora_unfused(self): super().test_simple_inference_with_text_denoiser_lora_unfused(expected_atol=9e-3) @unittest.skip("Not supported in Wan.") def test_simple_inference_with_text_denoiser_block_scale(self): pass @unittest.skip("Not supported in Wan.") def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self): pass @unittest.skip("Not supported in Wan.") def test_modify_padding_mode(self): pass @unittest.skip("Text encoder LoRA is not supported in Wan.") def test_simple_inference_with_partial_text_lora(self): pass @unittest.skip("Text encoder LoRA is not supported in Wan.") def test_simple_inference_with_text_lora(self): pass @unittest.skip("Text encoder LoRA is not supported in Wan.") def test_simple_inference_with_text_lora_and_scale(self): pass @unittest.skip("Text encoder LoRA is not supported in Wan.") def test_simple_inference_with_text_lora_fused(self): pass @unittest.skip("Text encoder LoRA is not supported in Wan.") def test_simple_inference_with_text_lora_save_load(self): pass
# Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import unittest import torch from transformers import AutoTokenizer, T5EncoderModel from diffusers import ( AutoencoderKLWan, FlowMatchEulerDiscreteScheduler, WanPipeline, WanTransformer3DModel, ) from diffusers.utils.testing_utils import ( floats_tensor, require_peft_backend, skip_mps, ) sys.path.append(".") from utils import PeftLoraLoaderMixinTests # noqa: E402 @require_peft_backend @skip_mps class WanLoRATests(unittest.TestCase, PeftLoraLoaderMixinTests): pipeline_class = WanPipeline scheduler_cls = FlowMatchEulerDiscreteScheduler scheduler_classes = [FlowMatchEulerDiscreteScheduler] scheduler_kwargs = {} transformer_kwargs = { "patch_size": (1, 2, 2), "num_attention_heads": 2, "attention_head_dim": 12, "in_channels": 16, "out_channels": 16, "text_dim": 32, "freq_dim": 256, "ffn_dim": 32, "num_layers": 2, "cross_attn_norm": True, "qk_norm": "rms_norm_across_heads", "rope_max_seq_len": 32, } transformer_cls = WanTransformer3DModel vae_kwargs = { "base_dim": 3, "z_dim": 16, "dim_mult": [1, 1, 1, 1], "num_res_blocks": 1, "temperal_downsample": [False, True, True], } vae_cls = AutoencoderKLWan has_two_text_encoders = True tokenizer_cls, tokenizer_id = AutoTokenizer, "hf-internal-testing/tiny-random-t5" text_encoder_cls, text_encoder_id = T5EncoderModel, "hf-internal-testing/tiny-random-t5" text_encoder_target_modules = ["q", "k", "v", "o"] @property def output_shape(self): return (1, 9, 32, 32, 3) def get_dummy_inputs(self, with_generator=True): batch_size = 1 sequence_length = 16 num_channels = 4 num_frames = 9 num_latent_frames = 3 # (num_frames - 1) // temporal_compression_ratio + 1 sizes = (4, 4) generator = torch.manual_seed(0) noise = floats_tensor((batch_size, num_latent_frames, num_channels) + sizes) input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator) pipeline_inputs = { "prompt": "", "num_frames": num_frames, "num_inference_steps": 1, "guidance_scale": 6.0, "height": 32, "width": 32, "max_sequence_length": sequence_length, "output_type": "np", } if with_generator: pipeline_inputs.update({"generator": generator}) return noise, input_ids, pipeline_inputs def test_simple_inference_with_text_lora_denoiser_fused_multi(self): super().test_simple_inference_with_text_lora_denoiser_fused_multi(expected_atol=9e-3) def test_simple_inference_with_text_denoiser_lora_unfused(self): super().test_simple_inference_with_text_denoiser_lora_unfused(expected_atol=9e-3) @unittest.skip("Not supported in Wan.") def test_simple_inference_with_text_denoiser_block_scale(self): pass @unittest.skip("Not supported in Wan.") def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self): pass @unittest.skip("Not supported in Wan.") def test_modify_padding_mode(self): pass @unittest.skip("Text encoder LoRA is not supported in Wan.") def test_simple_inference_with_partial_text_lora(self): pass @unittest.skip("Text encoder LoRA is not supported in Wan.") def test_simple_inference_with_text_lora(self): pass @unittest.skip("Text encoder LoRA is not supported in Wan.") def test_simple_inference_with_text_lora_and_scale(self): pass @unittest.skip("Text encoder LoRA is not supported in Wan.") def test_simple_inference_with_text_lora_fused(self): pass @unittest.skip("Text encoder LoRA is not supported in Wan.") def test_simple_inference_with_text_lora_save_load(self): pass
""" This script contains an example how to perform semantic search with Seismic. For more information, please refer to the documentation: https://github.com/TusKANNy/seismic/blob/main/docs/Guidelines.md All you need is installing the `pyseismic-lsr` package: ``` pip install pyseismic-lsr ``` """ import time from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.search_engines import semantic_search_seismic # 1. Load the natural-questions dataset with 100K answers dataset = load_dataset("sentence-transformers/natural-questions", split="train") num_docs = 10_000 corpus = dataset["answer"][:num_docs] # 2. Come up with some queries queries = dataset["query"][:2] # 3. Load the model sparse_model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # 4. Encode the corpus print("Start encoding corpus...") start_time = time.time() corpus_embeddings = sparse_model.encode(corpus, convert_to_sparse_tensor=True, batch_size=16, show_progress_bar=True) corpus_embeddings_decoded = sparse_model.decode(corpus_embeddings) print(f"Corpus encoding time: {time.time() - start_time:.6f} seconds") corpus_index = None while True: # 5. Encode the queries using the full precision start_time = time.time() query_embeddings = sparse_model.encode(queries, convert_to_sparse_tensor=True) query_embeddings_decoded = sparse_model.decode(query_embeddings) print(f"Encoding time: {time.time() - start_time:.6f} seconds") # 6. Perform semantic search using Seismic results, search_time, corpus_index = semantic_search_seismic( query_embeddings_decoded, corpus_embeddings_decoded=corpus_embeddings_decoded if corpus_index is None else None, corpus_index=corpus_index, top_k=5, output_index=True, ) # 7. Output the results print(f"Search time: {search_time:.6f} seconds") for query, result in zip(queries, results): print(f"Query: {query}") for entry in result: print(f"(Score: {entry['score']:.4f}) {corpus[entry['corpus_id']]}, corpus_id: {entry['corpus_id']}") print("") # 8. Prompt for more queries queries = [input("Please enter a question: ")]
""" This script contains an example how to perform semantic search with Seismic. For more information, please refer to the documentation: https://github.com/TusKANNy/seismic/blob/main/docs/Guidelines.md All you need is installing the `pyseismic-lsr` package: ``` pip install pyseismic-lsr ``` """ import time from datasets import load_dataset from sentence_transformers import SparseEncoder from sentence_transformers.sparse_encoder.search_engines import semantic_search_seismic # 1. Load the natural-questions dataset with 100K answers dataset = load_dataset("sentence-transformers/natural-questions", split="train") num_docs = 10_000 corpus = dataset["answer"][:num_docs] # 2. Come up with some queries queries = dataset["query"][:2] # 3. Load the model sparse_model = SparseEncoder("naver/splade-cocondenser-ensembledistil") # 4. Encode the corpus corpus_embeddings = sparse_model.encode(corpus, convert_to_sparse_tensor=True, batch_size=32, show_progress_bar=True) corpus_index = None while True: # 5. Encode the queries using the full precision start_time = time.time() query_embeddings = sparse_model.encode(queries, convert_to_sparse_tensor=True) print(f"Encoding time: {time.time() - start_time:.6f} seconds") # 6. Perform semantic search using qdrant results, search_time, corpus_index = semantic_search_seismic( query_embeddings, corpus_index=corpus_index, corpus_embeddings=corpus_embeddings if corpus_index is None else None, top_k=5, output_index=True, ) # 7. Output the results print(f"Search time: {search_time:.6f} seconds") for query, result in zip(queries, results): print(f"Query: {query}") for entry in result: print(f"(Score: {entry['score']:.4f}) {corpus[entry['corpus_id']]}, corpus_id: {entry['corpus_id']}") print("") # 8. Prompt for more queries queries = [input("Please enter a question: ")]
# Copyright 2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Tuple, Union import torch from diffusers import SchedulerMixin, UNet2DModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput class CustomLocalPipeline(DiffusionPipeline): r""" This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Parameters: unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of [`DDPMScheduler`], or [`DDIMScheduler`]. """ def __init__(self, unet: UNet2DModel, scheduler: SchedulerMixin): super().__init__() self.register_modules(unet=unet, scheduler=scheduler) @torch.no_grad() def __call__( self, batch_size: int = 1, generator: Optional[torch.Generator] = None, num_inference_steps: int = 50, output_type: Optional[str] = "pil", return_dict: bool = True, **kwargs, ) -> Union[ImagePipelineOutput, Tuple]: r""" Args: batch_size (`int`, *optional*, defaults to 1): The number of images to generate. generator (`torch.Generator`, *optional*): A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. eta (`float`, *optional*, defaults to 0.0): The eta parameter which controls the scale of the variance (0 is DDIM and 1 is one type of DDPM). num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple. Returns: [`~pipeline_utils.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images. """ # Sample gaussian noise to begin loop image = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size), generator=generator, ) image = image.to(self.device) # set step values self.scheduler.set_timesteps(num_inference_steps) for t in self.progress_bar(self.scheduler.timesteps): # 1. predict noise model_output model_output = self.unet(image, t).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 image = self.scheduler.step(model_output, t, image).prev_sample image = (image / 2 + 0.5).clamp(0, 1) image = image.cpu().permute(0, 2, 3, 1).numpy() if output_type == "pil": image = self.numpy_to_pil(image) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=image), "This is a local test"
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Tuple, Union import torch from diffusers import SchedulerMixin, UNet2DModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput class CustomLocalPipeline(DiffusionPipeline): r""" This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Parameters: unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of [`DDPMScheduler`], or [`DDIMScheduler`]. """ def __init__(self, unet: UNet2DModel, scheduler: SchedulerMixin): super().__init__() self.register_modules(unet=unet, scheduler=scheduler) @torch.no_grad() def __call__( self, batch_size: int = 1, generator: Optional[torch.Generator] = None, num_inference_steps: int = 50, output_type: Optional[str] = "pil", return_dict: bool = True, **kwargs, ) -> Union[ImagePipelineOutput, Tuple]: r""" Args: batch_size (`int`, *optional*, defaults to 1): The number of images to generate. generator (`torch.Generator`, *optional*): A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. eta (`float`, *optional*, defaults to 0.0): The eta parameter which controls the scale of the variance (0 is DDIM and 1 is one type of DDPM). num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple. Returns: [`~pipeline_utils.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images. """ # Sample gaussian noise to begin loop image = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size), generator=generator, ) image = image.to(self.device) # set step values self.scheduler.set_timesteps(num_inference_steps) for t in self.progress_bar(self.scheduler.timesteps): # 1. predict noise model_output model_output = self.unet(image, t).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 image = self.scheduler.step(model_output, t, image).prev_sample image = (image / 2 + 0.5).clamp(0, 1) image = image.cpu().permute(0, 2, 3, 1).numpy() if output_type == "pil": image = self.numpy_to_pil(image) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=image), "This is a local test"
import inspect import logging from typing import Any, Callable, Optional from fastapi import HTTPException, Request, Security from fastapi.security import APIKeyHeader, HTTPBearer from starlette.status import HTTP_401_UNAUTHORIZED from .config import settings from .jwt_utils import parse_jwt_token security = HTTPBearer() logger = logging.getLogger(__name__) async def auth_middleware(request: Request): if not settings.ENABLE_AUTH: # If authentication is disabled, allow the request to proceed logger.warning("Auth disabled") return {} security = HTTPBearer() credentials = await security(request) if not credentials: raise HTTPException(status_code=401, detail="Authorization header is missing") try: payload = parse_jwt_token(credentials.credentials) request.state.user = payload logger.debug("Token decoded successfully") except ValueError as e: raise HTTPException(status_code=401, detail=str(e)) return payload class APIKeyValidator: """ Configurable API key validator that supports custom validation functions for FastAPI applications. This class provides a flexible way to implement API key authentication with optional custom validation logic. It can be used for simple token matching or more complex validation scenarios like database lookups. Examples: Simple token validation: ```python validator = APIKeyValidator( header_name="X-API-Key", expected_token="your-secret-token" ) @app.get("/protected", dependencies=[Depends(validator.get_dependency())]) def protected_endpoint(): return {"message": "Access granted"} ``` Custom validation with database lookup: ```python async def validate_with_db(api_key: str): api_key_obj = await db.get_api_key(api_key) return api_key_obj if api_key_obj and api_key_obj.is_active else None validator = APIKeyValidator( header_name="X-API-Key", validate_fn=validate_with_db ) ``` Args: header_name (str): The name of the header containing the API key expected_token (Optional[str]): The expected API key value for simple token matching validate_fn (Optional[Callable]): Custom validation function that takes an API key string and returns a boolean or object. Can be async. error_status (int): HTTP status code to use for validation errors error_message (str): Error message to return when validation fails """ def __init__( self, header_name: str, expected_token: Optional[str] = None, validate_fn: Optional[Callable[[str], bool]] = None, error_status: int = HTTP_401_UNAUTHORIZED, error_message: str = "Invalid API key", ): # Create the APIKeyHeader as a class property self.security_scheme = APIKeyHeader(name=header_name) self.expected_token = expected_token self.custom_validate_fn = validate_fn self.error_status = error_status self.error_message = error_message async def default_validator(self, api_key: str) -> bool: return api_key == self.expected_token async def __call__( self, request: Request, api_key: str = Security(APIKeyHeader) ) -> Any: if api_key is None: raise HTTPException(status_code=self.error_status, detail="Missing API key") # Use custom validation if provided, otherwise use default equality check validator = self.custom_validate_fn or self.default_validator result = ( await validator(api_key) if inspect.iscoroutinefunction(validator) else validator(api_key) ) if not result: raise HTTPException( status_code=self.error_status, detail=self.error_message ) # Store validation result in request state if it's not just a boolean if result is not True: request.state.api_key = result return result def get_dependency(self): """ Returns a callable dependency that FastAPI will recognize as a security scheme """ async def validate_api_key( request: Request, api_key: str = Security(self.security_scheme) ) -> Any: return await self(request, api_key) # This helps FastAPI recognize it as a security dependency validate_api_key.__name__ = f"validate_{self.security_scheme.model.name}" return validate_api_key
import inspect import logging from typing import Any, Callable, Optional from fastapi import HTTPException, Request, Security from fastapi.security import APIKeyHeader, HTTPBearer from starlette.status import HTTP_401_UNAUTHORIZED from .config import settings from .jwt_utils import parse_jwt_token security = HTTPBearer() logger = logging.getLogger(__name__) async def auth_middleware(request: Request): if not settings.ENABLE_AUTH: # If authentication is disabled, allow the request to proceed logger.warn("Auth disabled") return {} security = HTTPBearer() credentials = await security(request) if not credentials: raise HTTPException(status_code=401, detail="Authorization header is missing") try: payload = parse_jwt_token(credentials.credentials) request.state.user = payload logger.debug("Token decoded successfully") except ValueError as e: raise HTTPException(status_code=401, detail=str(e)) return payload class APIKeyValidator: """ Configurable API key validator that supports custom validation functions for FastAPI applications. This class provides a flexible way to implement API key authentication with optional custom validation logic. It can be used for simple token matching or more complex validation scenarios like database lookups. Examples: Simple token validation: ```python validator = APIKeyValidator( header_name="X-API-Key", expected_token="your-secret-token" ) @app.get("/protected", dependencies=[Depends(validator.get_dependency())]) def protected_endpoint(): return {"message": "Access granted"} ``` Custom validation with database lookup: ```python async def validate_with_db(api_key: str): api_key_obj = await db.get_api_key(api_key) return api_key_obj if api_key_obj and api_key_obj.is_active else None validator = APIKeyValidator( header_name="X-API-Key", validate_fn=validate_with_db ) ``` Args: header_name (str): The name of the header containing the API key expected_token (Optional[str]): The expected API key value for simple token matching validate_fn (Optional[Callable]): Custom validation function that takes an API key string and returns a boolean or object. Can be async. error_status (int): HTTP status code to use for validation errors error_message (str): Error message to return when validation fails """ def __init__( self, header_name: str, expected_token: Optional[str] = None, validate_fn: Optional[Callable[[str], bool]] = None, error_status: int = HTTP_401_UNAUTHORIZED, error_message: str = "Invalid API key", ): # Create the APIKeyHeader as a class property self.security_scheme = APIKeyHeader(name=header_name) self.expected_token = expected_token self.custom_validate_fn = validate_fn self.error_status = error_status self.error_message = error_message async def default_validator(self, api_key: str) -> bool: return api_key == self.expected_token async def __call__( self, request: Request, api_key: str = Security(APIKeyHeader) ) -> Any: if api_key is None: raise HTTPException(status_code=self.error_status, detail="Missing API key") # Use custom validation if provided, otherwise use default equality check validator = self.custom_validate_fn or self.default_validator result = ( await validator(api_key) if inspect.iscoroutinefunction(validator) else validator(api_key) ) if not result: raise HTTPException( status_code=self.error_status, detail=self.error_message ) # Store validation result in request state if it's not just a boolean if result is not True: request.state.api_key = result return result def get_dependency(self): """ Returns a callable dependency that FastAPI will recognize as a security scheme """ async def validate_api_key( request: Request, api_key: str = Security(self.security_scheme) ) -> Any: return await self(request, api_key) # This helps FastAPI recognize it as a security dependency validate_api_key.__name__ = f"validate_{self.security_scheme.model.name}" return validate_api_key
from typing import TYPE_CHECKING from docarray.math.ndarray import get_array_type if TYPE_CHECKING: from docarray.typing import ArrayType import numpy as np def pdist( x_mat: 'ArrayType', metric: str, ) -> 'np.ndarray': """Computes Pairwise distances between observations in n-dimensional space. :param x_mat: Union['np.ndarray','scipy.sparse.csr_matrix', 'scipy.sparse.coo_matrix'] of ndim 2 :param metric: string describing the metric type :return: np.ndarray of ndim 2 """ return cdist(x_mat, x_mat, metric) def cdist( x_mat: 'ArrayType', y_mat: 'ArrayType', metric: str, device: str = 'cpu' ) -> 'np.ndarray': """Computes the pairwise distance between each row of X and each row on Y according to `metric`. - Let `n_x = x_mat.shape[0]` - Let `n_y = y_mat.shape[0]` - Returns a matrix `dist` of shape `(n_x, n_y)` with `dist[i,j] = metric(x_mat[i], y_mat[j])`. :param x_mat: numpy or scipy array of ndim 2 :param y_mat: numpy or scipy array of ndim 2 :param metric: string describing the metric type :param device: the computational device, can be either `cpu` or `cuda`. :return: np.ndarray of ndim 2 """ x_type = get_array_type(x_mat) y_type = get_array_type(y_mat) if x_type != y_type: raise ValueError( f'The type of your left-hand side is {x_type}, whereas your right-hand side is {y_type}. ' f'`.cdist()` requires left must be the same type as right.' ) framework, is_sparse = get_array_type(x_mat) dists = None if metric == 'cosine': if framework == 'scipy' and is_sparse: from docarray.math.distance.numpy import sparse_cosine dists = sparse_cosine(x_mat, y_mat) elif framework == 'numpy': from docarray.math.distance.numpy import cosine dists = cosine(x_mat, y_mat) elif framework == 'tensorflow': from docarray.math.distance.tensorflow import cosine dists = cosine(x_mat, y_mat, device=device) elif framework == 'torch': from docarray.math.distance.torch import cosine dists = cosine(x_mat, y_mat, device=device) elif framework == 'paddle': from docarray.math.distance.paddle import cosine dists = cosine(x_mat, y_mat, device=device) elif metric == 'sqeuclidean': if framework == 'scipy' and is_sparse: from docarray.math.distance.numpy import sparse_sqeuclidean dists = sparse_sqeuclidean(x_mat, y_mat) elif framework == 'numpy': from docarray.math.distance.numpy import sqeuclidean dists = sqeuclidean(x_mat, y_mat) elif framework == 'tensorflow': from docarray.math.distance.tensorflow import sqeuclidean dists = sqeuclidean(x_mat, y_mat, device=device) elif framework == 'torch': from docarray.math.distance.torch import sqeuclidean dists = sqeuclidean(x_mat, y_mat, device=device) elif framework == 'paddle': from docarray.math.distance.paddle import sqeuclidean dists = sqeuclidean(x_mat, y_mat, device=device) elif metric == 'euclidean': if framework == 'scipy' and is_sparse: from docarray.math.distance.numpy import sparse_euclidean dists = sparse_euclidean(x_mat, y_mat) elif framework == 'numpy': from docarray.math.distance.numpy import euclidean dists = euclidean(x_mat, y_mat) elif framework == 'tensorflow': from docarray.math.distance.tensorflow import euclidean dists = euclidean(x_mat, y_mat, device=device) elif framework == 'torch': from docarray.math.distance.torch import euclidean dists = euclidean(x_mat, y_mat, device=device) elif framework == 'paddle': from docarray.math.distance.paddle import euclidean dists = euclidean(x_mat, y_mat, device=device) else: raise NotImplementedError(f'Input metric={metric} is not supported') if dists is None: raise NotImplementedError( f'{framework} sparse={is_sparse} array is not supported' ) return dists
from typing import TYPE_CHECKING from ..ndarray import get_array_type if TYPE_CHECKING: from ...typing import ArrayType import numpy as np def pdist( x_mat: 'ArrayType', metric: str, ) -> 'np.ndarray': """Computes Pairwise distances between observations in n-dimensional space. :param x_mat: Union['np.ndarray','scipy.sparse.csr_matrix', 'scipy.sparse.coo_matrix'] of ndim 2 :param metric: string describing the metric type :return: np.ndarray of ndim 2 """ return cdist(x_mat, x_mat, metric) def cdist( x_mat: 'ArrayType', y_mat: 'ArrayType', metric: str, device: str = 'cpu' ) -> 'np.ndarray': """Computes the pairwise distance between each row of X and each row on Y according to `metric`. - Let `n_x = x_mat.shape[0]` - Let `n_y = y_mat.shape[0]` - Returns a matrix `dist` of shape `(n_x, n_y)` with `dist[i,j] = metric(x_mat[i], y_mat[j])`. :param x_mat: numpy or scipy array of ndim 2 :param y_mat: numpy or scipy array of ndim 2 :param metric: string describing the metric type :param device: the computational device, can be either `cpu` or `cuda`. :return: np.ndarray of ndim 2 """ x_type = get_array_type(x_mat) y_type = get_array_type(y_mat) if x_type != y_type: raise ValueError( f'The type of your left-hand side is {x_type}, whereas your right-hand side is {y_type}. ' f'`.cdist()` requires left must be the same type as right.' ) framework, is_sparse = get_array_type(x_mat) dists = None if metric == 'cosine': if framework == 'scipy' and is_sparse: from .numpy import sparse_cosine dists = sparse_cosine(x_mat, y_mat) elif framework == 'numpy': from .numpy import cosine dists = cosine(x_mat, y_mat) elif framework == 'tensorflow': from .tensorflow import cosine dists = cosine(x_mat, y_mat, device=device) elif framework == 'torch': from .torch import cosine dists = cosine(x_mat, y_mat, device=device) elif framework == 'paddle': from .paddle import cosine dists = cosine(x_mat, y_mat, device=device) elif metric == 'sqeuclidean': if framework == 'scipy' and is_sparse: from .numpy import sparse_sqeuclidean dists = sparse_sqeuclidean(x_mat, y_mat) elif framework == 'numpy': from .numpy import sqeuclidean dists = sqeuclidean(x_mat, y_mat) elif framework == 'tensorflow': from .tensorflow import sqeuclidean dists = sqeuclidean(x_mat, y_mat, device=device) elif framework == 'torch': from .torch import sqeuclidean dists = sqeuclidean(x_mat, y_mat, device=device) elif framework == 'paddle': from .paddle import sqeuclidean dists = sqeuclidean(x_mat, y_mat, device=device) elif metric == 'euclidean': if framework == 'scipy' and is_sparse: from .numpy import sparse_euclidean dists = sparse_euclidean(x_mat, y_mat) elif framework == 'numpy': from .numpy import euclidean dists = euclidean(x_mat, y_mat) elif framework == 'tensorflow': from .tensorflow import euclidean dists = euclidean(x_mat, y_mat, device=device) elif framework == 'torch': from .torch import euclidean dists = euclidean(x_mat, y_mat, device=device) elif framework == 'paddle': from .paddle import euclidean dists = euclidean(x_mat, y_mat, device=device) else: raise NotImplementedError(f'Input metric={metric} is not supported') if dists is None: raise NotImplementedError( f'{framework} sparse={is_sparse} array is not supported' ) return dists
import numpy as np from docarray import BaseDoc from docarray.typing import NdArray def test_set_tensor(): class MyDocument(BaseDoc): tensor: NdArray d = MyDocument(tensor=np.zeros((3, 224, 224))) assert isinstance(d.tensor, NdArray) assert isinstance(d.tensor, np.ndarray) assert (d.tensor == np.zeros((3, 224, 224))).all()
import numpy as np from docarray import BaseDocument from docarray.typing import NdArray def test_set_tensor(): class MyDocument(BaseDocument): tensor: NdArray d = MyDocument(tensor=np.zeros((3, 224, 224))) assert isinstance(d.tensor, NdArray) assert isinstance(d.tensor, np.ndarray) assert (d.tensor == np.zeros((3, 224, 224))).all()
_base_ = '../cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco.py' train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict( type='InstaBoost', action_candidate=('normal', 'horizontal', 'skip'), action_prob=(1, 0, 0), scale=(0.8, 1.2), dx=15, dy=15, theta=(-1, 1), color_prob=0.5, hflag=False, aug_ratio=0.5), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='Resize', scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) max_epochs = 48 param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[32, 44], gamma=0.1) ] train_cfg = dict(max_epochs=max_epochs) # only keep latest 3 checkpoints default_hooks = dict(checkpoint=dict(max_keep_ckpts=3))
_base_ = '../cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco.py' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) train_pipeline = [ dict(type='LoadImageFromFile'), dict( type='InstaBoost', action_candidate=('normal', 'horizontal', 'skip'), action_prob=(1, 0, 0), scale=(0.8, 1.2), dx=15, dy=15, theta=(-1, 1), color_prob=0.5, hflag=False, aug_ratio=0.5), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']), ] data = dict(train=dict(pipeline=train_pipeline)) # learning policy lr_config = dict(step=[32, 44]) runner = dict(type='EpochBasedRunner', max_epochs=48)
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.tools.google_trends.tool import GoogleTrendsQueryRun # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "GoogleTrendsQueryRun": "langchain_community.tools.google_trends.tool", } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "GoogleTrendsQueryRun", ]
from typing import TYPE_CHECKING, Any from langchain._api import create_importer if TYPE_CHECKING: from langchain_community.tools.google_trends.tool import GoogleTrendsQueryRun # Create a way to dynamically look up deprecated imports. # Used to consolidate logic for raising deprecation warnings and # handling optional imports. DEPRECATED_LOOKUP = { "GoogleTrendsQueryRun": "langchain_community.tools.google_trends.tool" } _import_attribute = create_importer(__package__, deprecated_lookups=DEPRECATED_LOOKUP) def __getattr__(name: str) -> Any: """Look up attributes dynamically.""" return _import_attribute(name) __all__ = [ "GoogleTrendsQueryRun", ]
from __future__ import annotations from typing import Any, Union from langchain_core.retrievers import ( BaseRetriever, RetrieverOutput, ) from langchain_core.runnables import Runnable, RunnablePassthrough def create_retrieval_chain( retriever: Union[BaseRetriever, Runnable[dict, RetrieverOutput]], combine_docs_chain: Runnable[dict[str, Any], str], ) -> Runnable: """Create retrieval chain that retrieves documents and then passes them on. Args: retriever: Retriever-like object that returns list of documents. Should either be a subclass of BaseRetriever or a Runnable that returns a list of documents. If a subclass of BaseRetriever, then it is expected that an `input` key be passed in - this is what is will be used to pass into the retriever. If this is NOT a subclass of BaseRetriever, then all the inputs will be passed into this runnable, meaning that runnable should take a dictionary as input. combine_docs_chain: Runnable that takes inputs and produces a string output. The inputs to this will be any original inputs to this chain, a new context key with the retrieved documents, and chat_history (if not present in the inputs) with a value of `[]` (to easily enable conversational retrieval. Returns: An LCEL Runnable. The Runnable return is a dictionary containing at the very least a `context` and `answer` key. Example: .. code-block:: python # pip install -U langchain langchain-community from langchain_community.chat_models import ChatOpenAI from langchain.chains.combine_documents import create_stuff_documents_chain from langchain.chains import create_retrieval_chain from langchain import hub retrieval_qa_chat_prompt = hub.pull("langchain-ai/retrieval-qa-chat") llm = ChatOpenAI() retriever = ... combine_docs_chain = create_stuff_documents_chain( llm, retrieval_qa_chat_prompt ) retrieval_chain = create_retrieval_chain(retriever, combine_docs_chain) retrieval_chain.invoke({"input": "..."}) """ if not isinstance(retriever, BaseRetriever): retrieval_docs: Runnable[dict, RetrieverOutput] = retriever else: retrieval_docs = (lambda x: x["input"]) | retriever return ( RunnablePassthrough.assign( context=retrieval_docs.with_config(run_name="retrieve_documents"), ).assign(answer=combine_docs_chain) ).with_config(run_name="retrieval_chain")
from __future__ import annotations from typing import Any, Union from langchain_core.retrievers import ( BaseRetriever, RetrieverOutput, ) from langchain_core.runnables import Runnable, RunnablePassthrough def create_retrieval_chain( retriever: Union[BaseRetriever, Runnable[dict, RetrieverOutput]], combine_docs_chain: Runnable[dict[str, Any], str], ) -> Runnable: """Create retrieval chain that retrieves documents and then passes them on. Args: retriever: Retriever-like object that returns list of documents. Should either be a subclass of BaseRetriever or a Runnable that returns a list of documents. If a subclass of BaseRetriever, then it is expected that an `input` key be passed in - this is what is will be used to pass into the retriever. If this is NOT a subclass of BaseRetriever, then all the inputs will be passed into this runnable, meaning that runnable should take a dictionary as input. combine_docs_chain: Runnable that takes inputs and produces a string output. The inputs to this will be any original inputs to this chain, a new context key with the retrieved documents, and chat_history (if not present in the inputs) with a value of `[]` (to easily enable conversational retrieval. Returns: An LCEL Runnable. The Runnable return is a dictionary containing at the very least a `context` and `answer` key. Example: .. code-block:: python # pip install -U langchain langchain-community from langchain_community.chat_models import ChatOpenAI from langchain.chains.combine_documents import create_stuff_documents_chain from langchain.chains import create_retrieval_chain from langchain import hub retrieval_qa_chat_prompt = hub.pull("langchain-ai/retrieval-qa-chat") llm = ChatOpenAI() retriever = ... combine_docs_chain = create_stuff_documents_chain( llm, retrieval_qa_chat_prompt ) retrieval_chain = create_retrieval_chain(retriever, combine_docs_chain) retrieval_chain.invoke({"input": "..."}) """ if not isinstance(retriever, BaseRetriever): retrieval_docs: Runnable[dict, RetrieverOutput] = retriever else: retrieval_docs = (lambda x: x["input"]) | retriever retrieval_chain = ( RunnablePassthrough.assign( context=retrieval_docs.with_config(run_name="retrieve_documents"), ).assign(answer=combine_docs_chain) ).with_config(run_name="retrieval_chain") return retrieval_chain
_base_ = './htc_r50_fpn_20e_coco.py' model = dict( backbone=dict( depth=101, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')))
_base_ = './htc_r50_fpn_1x_coco.py' model = dict( backbone=dict( depth=101, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101'))) # learning policy lr_config = dict(step=[16, 19]) runner = dict(type='EpochBasedRunner', max_epochs=20)
"""Agent components.""" from typing import Any, Callable, Dict, Optional, Set from llama_index.core.base.query_pipeline.query import ( QueryComponent, ) from llama_index.core.bridge.pydantic import Field from llama_index.core.query_pipeline.components.function import ( FnComponent, get_parameters, ) # from llama_index.core.query_pipeline.components.input import InputComponent class BaseStatefulComponent(QueryComponent): """Takes in agent inputs and transforms it into desired outputs.""" state: Dict[str, Any] = Field( default_factory=dict, description="State of the pipeline." ) def reset_state(self) -> None: """Reset state.""" self.state = {} class StatefulFnComponent(BaseStatefulComponent, FnComponent): """ Query component that takes in an arbitrary function. Stateful version of `FnComponent`. Expects functions to have `state` as the first argument. """ def __init__( self, fn: Callable, req_params: Optional[Set[str]] = None, opt_params: Optional[Set[str]] = None, state: Optional[Dict[str, Any]] = None, **kwargs: Any ) -> None: """Init params.""" # determine parameters default_req_params, default_opt_params = get_parameters(fn) # make sure task and step are part of the list, and remove them from the list if "state" not in default_req_params: raise ValueError( "StatefulFnComponent must have 'state' as required parameters" ) default_req_params = default_req_params - {"state"} default_opt_params = default_opt_params - {"state"} if req_params is None: req_params = default_req_params if opt_params is None: opt_params = default_opt_params super().__init__( fn=fn, req_params=req_params, opt_params=opt_params, state=state or {}, **kwargs ) def _run_component(self, **kwargs: Any) -> Dict: """Run component.""" kwargs.update({"state": self.state}) return super()._run_component(**kwargs) async def _arun_component(self, **kwargs: Any) -> Any: """Async run component.""" kwargs.update({"state": self.state}) return await super()._arun_component(**kwargs)
"""Agent components.""" from typing import Any, Callable, Dict, Optional, Set from llama_index.core.base.query_pipeline.query import ( QueryComponent, ) from llama_index.core.bridge.pydantic import Field from llama_index.core.query_pipeline.components.function import ( FnComponent, get_parameters, ) # from llama_index.core.query_pipeline.components.input import InputComponent class BaseStatefulComponent(QueryComponent): """Takes in agent inputs and transforms it into desired outputs.""" state: Dict[str, Any] = Field( default_factory=dict, description="State of the pipeline." ) def reset_state(self) -> None: """Reset state.""" self.state = {} class StatefulFnComponent(BaseStatefulComponent, FnComponent): """Query component that takes in an arbitrary function. Stateful version of `FnComponent`. Expects functions to have `state` as the first argument. """ def __init__( self, fn: Callable, req_params: Optional[Set[str]] = None, opt_params: Optional[Set[str]] = None, state: Optional[Dict[str, Any]] = None, **kwargs: Any ) -> None: """Init params.""" # determine parameters default_req_params, default_opt_params = get_parameters(fn) # make sure task and step are part of the list, and remove them from the list if "state" not in default_req_params: raise ValueError( "StatefulFnComponent must have 'state' as required parameters" ) default_req_params = default_req_params - {"state"} default_opt_params = default_opt_params - {"state"} if req_params is None: req_params = default_req_params if opt_params is None: opt_params = default_opt_params super().__init__( fn=fn, req_params=req_params, opt_params=opt_params, state=state or {}, **kwargs ) def _run_component(self, **kwargs: Any) -> Dict: """Run component.""" kwargs.update({"state": self.state}) return super()._run_component(**kwargs) async def _arun_component(self, **kwargs: Any) -> Any: """Async run component.""" kwargs.update({"state": self.state}) return await super()._arun_component(**kwargs)
from langchain_core.utils.function_calling import convert_pydantic_to_openai_function from pydantic import BaseModel, Field def test_convert_pydantic_to_openai_function() -> None: class Data(BaseModel): """The data to return.""" key: str = Field(..., description="API key") days: int = Field(default=0, description="Number of days to forecast") actual = convert_pydantic_to_openai_function(Data) expected = { "name": "Data", "description": "The data to return.", "parameters": { "type": "object", "properties": { "key": {"description": "API key", "type": "string"}, "days": { "description": "Number of days to forecast", "default": 0, "type": "integer", }, }, "required": ["key"], }, } assert actual == expected def test_convert_pydantic_to_openai_function_nested() -> None: class Data(BaseModel): """The data to return.""" key: str = Field(..., description="API key") days: int = Field(default=0, description="Number of days to forecast") class Model(BaseModel): """The model to return.""" data: Data actual = convert_pydantic_to_openai_function(Model) expected = { "name": "Model", "description": "The model to return.", "parameters": { "type": "object", "properties": { "data": { "description": "The data to return.", "type": "object", "properties": { "key": { "description": "API key", "type": "string", }, "days": { "description": "Number of days to forecast", "default": 0, "type": "integer", }, }, "required": ["key"], }, }, "required": ["data"], }, } assert actual == expected
from langchain_core.utils.function_calling import convert_pydantic_to_openai_function from pydantic import BaseModel, Field def test_convert_pydantic_to_openai_function() -> None: class Data(BaseModel): """The data to return.""" key: str = Field(..., description="API key") days: int = Field(default=0, description="Number of days to forecast") actual = convert_pydantic_to_openai_function(Data) expected = { "name": "Data", "description": "The data to return.", "parameters": { "type": "object", "properties": { "key": {"description": "API key", "type": "string"}, "days": { "description": "Number of days to forecast", "default": 0, "type": "integer", }, }, "required": ["key"], }, } assert actual == expected def test_convert_pydantic_to_openai_function_nested() -> None: class Data(BaseModel): """The data to return.""" key: str = Field(..., description="API key") days: int = Field(default=0, description="Number of days to forecast") class Model(BaseModel): """The model to return.""" data: Data actual = convert_pydantic_to_openai_function(Model) expected = { "name": "Model", "description": "The model to return.", "parameters": { "type": "object", "properties": { "data": { "description": "The data to return.", "type": "object", "properties": { "key": { "description": "API key", "type": "string", }, "days": { "description": "Number of days to forecast", "default": 0, "type": "integer", }, }, "required": ["key"], } }, "required": ["data"], }, } assert actual == expected
from typing import TYPE_CHECKING, Type, Optional if TYPE_CHECKING: from docarray.typing import T from docarray.proto.docarray_pb2 import DocumentProto class ProtobufMixin: @classmethod def from_protobuf(cls: Type['T'], pb_msg: 'DocumentProto') -> 'T': from docarray.proto.io import parse_proto return parse_proto(pb_msg) def to_protobuf(self, ndarray_type: Optional[str] = None) -> 'DocumentProto': """Convert Document into a Protobuf message. :param ndarray_type: can be ``list`` or ``numpy``, if set it will force all ndarray-like object to be ``List`` or ``numpy.ndarray``. :return: the protobuf message """ from docarray.proto.io import flush_proto return flush_proto(self, ndarray_type)
from typing import TYPE_CHECKING, Type, Optional if TYPE_CHECKING: from ...typing import T from ...proto.docarray_pb2 import DocumentProto class ProtobufMixin: @classmethod def from_protobuf(cls: Type['T'], pb_msg: 'DocumentProto') -> 'T': from ...proto.io import parse_proto return parse_proto(pb_msg) def to_protobuf(self, ndarray_type: Optional[str] = None) -> 'DocumentProto': """Convert Document into a Protobuf message. :param ndarray_type: can be ``list`` or ``numpy``, if set it will force all ndarray-like object to be ``List`` or ``numpy.ndarray``. :return: the protobuf message """ from ...proto.io import flush_proto return flush_proto(self, ndarray_type)
from typing import Sequence, cast import prisma.enums import prisma.types AGENT_NODE_INCLUDE: prisma.types.AgentNodeInclude = { "Input": True, "Output": True, "Webhook": True, "AgentBlock": True, } AGENT_GRAPH_INCLUDE: prisma.types.AgentGraphInclude = { "Nodes": {"include": AGENT_NODE_INCLUDE} } EXECUTION_RESULT_ORDER: list[prisma.types.AgentNodeExecutionOrderByInput] = [ {"queuedTime": "desc"}, # Fallback: Incomplete execs has no queuedTime. {"addedTime": "desc"}, ] EXECUTION_RESULT_INCLUDE: prisma.types.AgentNodeExecutionInclude = { "Input": {"order_by": {"time": "asc"}}, "Output": {"order_by": {"time": "asc"}}, "Node": True, "GraphExecution": True, } MAX_NODE_EXECUTIONS_FETCH = 1000 GRAPH_EXECUTION_INCLUDE_WITH_NODES: prisma.types.AgentGraphExecutionInclude = { "NodeExecutions": { "include": EXECUTION_RESULT_INCLUDE, "order_by": EXECUTION_RESULT_ORDER, "take": MAX_NODE_EXECUTIONS_FETCH, # Avoid loading excessive node executions. } } def graph_execution_include( include_block_ids: Sequence[str], ) -> prisma.types.AgentGraphExecutionInclude: return { "NodeExecutions": { **cast( prisma.types.FindManyAgentNodeExecutionArgsFromAgentGraphExecution, GRAPH_EXECUTION_INCLUDE_WITH_NODES["NodeExecutions"], # type: ignore ), "where": { "Node": { "is": {"AgentBlock": {"is": {"id": {"in": include_block_ids}}}} }, "NOT": [ {"executionStatus": prisma.enums.AgentExecutionStatus.INCOMPLETE} ], }, } } INTEGRATION_WEBHOOK_INCLUDE: prisma.types.IntegrationWebhookInclude = { "AgentNodes": {"include": AGENT_NODE_INCLUDE} } def library_agent_include(user_id: str) -> prisma.types.LibraryAgentInclude: return { "AgentGraph": { "include": { **AGENT_GRAPH_INCLUDE, "Executions": {"where": {"userId": user_id}}, } }, "Creator": True, }
from typing import Sequence, cast import prisma.enums import prisma.types AGENT_NODE_INCLUDE: prisma.types.AgentNodeInclude = { "Input": True, "Output": True, "Webhook": True, "AgentBlock": True, } AGENT_GRAPH_INCLUDE: prisma.types.AgentGraphInclude = { "Nodes": {"include": AGENT_NODE_INCLUDE} } EXECUTION_RESULT_INCLUDE: prisma.types.AgentNodeExecutionInclude = { "Input": True, "Output": True, "Node": True, "GraphExecution": True, } MAX_NODE_EXECUTIONS_FETCH = 1000 GRAPH_EXECUTION_INCLUDE_WITH_NODES: prisma.types.AgentGraphExecutionInclude = { "NodeExecutions": { "include": { "Input": True, "Output": True, "Node": True, "GraphExecution": True, }, "order_by": [ {"queuedTime": "desc"}, # Fallback: Incomplete execs has no queuedTime. {"addedTime": "desc"}, ], "take": MAX_NODE_EXECUTIONS_FETCH, # Avoid loading excessive node executions. } } def graph_execution_include( include_block_ids: Sequence[str], ) -> prisma.types.AgentGraphExecutionInclude: return { "NodeExecutions": { **cast( prisma.types.FindManyAgentNodeExecutionArgsFromAgentGraphExecution, GRAPH_EXECUTION_INCLUDE_WITH_NODES["NodeExecutions"], # type: ignore ), "where": { "Node": { "is": {"AgentBlock": {"is": {"id": {"in": include_block_ids}}}} }, "NOT": [ {"executionStatus": prisma.enums.AgentExecutionStatus.INCOMPLETE} ], }, } } INTEGRATION_WEBHOOK_INCLUDE: prisma.types.IntegrationWebhookInclude = { "AgentNodes": {"include": AGENT_NODE_INCLUDE} } def library_agent_include(user_id: str) -> prisma.types.LibraryAgentInclude: return { "AgentGraph": { "include": { **AGENT_GRAPH_INCLUDE, "Executions": {"where": {"userId": user_id}}, } }, "Creator": True, }
import importlib class LazyModule: def __init__(self, name, pip_name=None, import_error_msg=None): self.name = name self.pip_name = pip_name or name self.import_error_msg = import_error_msg or ( f"This requires the {self.name} module. " f"You can install it via `pip install {self.pip_name}`" ) self.module = None self._available = None @property def available(self): if self._available is None: try: self.initialize() self._available = True except ImportError: self._available = False return self._available def initialize(self): try: self.module = importlib.import_module(self.name) except ImportError: raise ImportError(self.import_error_msg) def __getattr__(self, name): if name == "_api_export_path": raise AttributeError if self.module is None: self.initialize() return getattr(self.module, name) def __repr__(self): return f"LazyModule({self.name})" tensorflow = LazyModule("tensorflow") gfile = LazyModule("tensorflow.io.gfile", pip_name="tensorflow") tensorflow_io = LazyModule("tensorflow_io") scipy = LazyModule("scipy") jax = LazyModule("jax") torchvision = LazyModule("torchvision") torch_xla = LazyModule( "torch_xla", import_error_msg=( "This requires the torch_xla module. You can install it via " "`pip install torch-xla`. Additionally, you may need to update " "LD_LIBRARY_PATH if necessary. Torch XLA builds a shared library, " "_XLAC.so, which needs to link to the version of Python it was built " "with. Use the following command to update LD_LIBRARY_PATH: " "`export LD_LIBRARY_PATH=<path to Python>/lib:$LD_LIBRARY_PATH`" ), ) optree = LazyModule("optree") dmtree = LazyModule("tree")
import importlib class LazyModule: def __init__(self, name, pip_name=None): self.name = name pip_name = pip_name or name self.pip_name = pip_name self.module = None self._available = None @property def available(self): if self._available is None: try: self.initialize() self._available = True except ImportError: self._available = False return self._available def initialize(self): try: self.module = importlib.import_module(self.name) except ImportError: raise ImportError( f"This requires the {self.name} module. " f"You can install it via `pip install {self.pip_name}`" ) def __getattr__(self, name): if name == "_api_export_path": raise AttributeError if self.module is None: self.initialize() return getattr(self.module, name) def __repr__(self): return f"LazyModule({self.name})" tensorflow = LazyModule("tensorflow") gfile = LazyModule("tensorflow.io.gfile", pip_name="tensorflow") tensorflow_io = LazyModule("tensorflow_io") scipy = LazyModule("scipy") jax = LazyModule("jax") torchvision = LazyModule("torchvision") optree = LazyModule("optree") dmtree = LazyModule("tree")
import pytest import torch from docarray.computation.torch_backend import TorchCompBackend def test_to_device(): t = torch.rand(10, 3) assert t.device == torch.device('cpu') t = TorchCompBackend.to_device(t, 'meta') assert t.device == torch.device('meta') @pytest.mark.parametrize( 'array,result', [ (torch.zeros((5)), 1), (torch.zeros((1, 5)), 2), (torch.zeros((5, 5)), 2), (torch.zeros(()), 0), ], ) def test_n_dim(array, result): assert TorchCompBackend.n_dim(array) == result @pytest.mark.parametrize( 'array,result', [ (torch.zeros((10,)), (10,)), (torch.zeros((5, 5)), (5, 5)), (torch.zeros(()), ()), ], ) def test_shape(array, result): shape = TorchCompBackend.shape(array) assert shape == result assert type(shape) == tuple def test_empty(): tensor = TorchCompBackend.empty((10, 3)) assert tensor.shape == (10, 3) def test_empty_dtype(): tensor = TorchCompBackend.empty((10, 3), dtype=torch.int32) assert tensor.shape == (10, 3) assert tensor.dtype == torch.int32 def test_empty_device(): tensor = TorchCompBackend.empty((10, 3), device='meta') assert tensor.shape == (10, 3) assert tensor.device == torch.device('meta')
import pytest import torch from docarray.computation.torch_backend import TorchCompBackend def test_to_device(): t = torch.rand(10, 3) assert t.device == torch.device('cpu') t = TorchCompBackend.to_device(t, 'meta') assert t.device == torch.device('meta') @pytest.mark.parametrize( 'array,result', [ (torch.zeros((5)), 1), (torch.zeros((1, 5)), 2), (torch.zeros((5, 5)), 2), (torch.zeros(()), 0), ], ) def test_n_dim(array, result): assert TorchCompBackend.n_dim(array) == result @pytest.mark.parametrize( 'array,result', [ (torch.zeros((10,)), (10,)), (torch.zeros((5, 5)), (5, 5)), (torch.zeros(()), ()), ], ) def test_shape(array, result): shape = TorchCompBackend.shape(array) assert shape == result assert type(shape) == tuple def test_empty(): tensor = TorchCompBackend.empty((10, 3)) assert tensor.shape == (10, 3)
from keras.src.backend.common.name_scope import name_scope from keras.src.backend.numpy import core from keras.src.backend.numpy import image from keras.src.backend.numpy import linalg from keras.src.backend.numpy import math from keras.src.backend.numpy import nn from keras.src.backend.numpy import numpy from keras.src.backend.numpy import random from keras.src.backend.numpy.core import SUPPORTS_SPARSE_TENSORS from keras.src.backend.numpy.core import Variable from keras.src.backend.numpy.core import cast from keras.src.backend.numpy.core import compute_output_spec from keras.src.backend.numpy.core import cond from keras.src.backend.numpy.core import convert_to_numpy from keras.src.backend.numpy.core import convert_to_tensor from keras.src.backend.numpy.core import device_scope from keras.src.backend.numpy.core import is_tensor from keras.src.backend.numpy.core import random_seed_dtype from keras.src.backend.numpy.core import shape from keras.src.backend.numpy.core import vectorized_map from keras.src.backend.numpy.rnn import cudnn_ok from keras.src.backend.numpy.rnn import gru from keras.src.backend.numpy.rnn import lstm from keras.src.backend.numpy.rnn import rnn
from keras.src.backend.numpy import core from keras.src.backend.numpy import image from keras.src.backend.numpy import linalg from keras.src.backend.numpy import math from keras.src.backend.numpy import nn from keras.src.backend.numpy import numpy from keras.src.backend.numpy import random from keras.src.backend.numpy.core import SUPPORTS_SPARSE_TENSORS from keras.src.backend.numpy.core import Variable from keras.src.backend.numpy.core import cast from keras.src.backend.numpy.core import compute_output_spec from keras.src.backend.numpy.core import cond from keras.src.backend.numpy.core import convert_to_numpy from keras.src.backend.numpy.core import convert_to_tensor from keras.src.backend.numpy.core import is_tensor from keras.src.backend.numpy.core import random_seed_dtype from keras.src.backend.numpy.core import shape from keras.src.backend.numpy.core import vectorized_map from keras.src.backend.numpy.rnn import cudnn_ok from keras.src.backend.numpy.rnn import gru from keras.src.backend.numpy.rnn import lstm from keras.src.backend.numpy.rnn import rnn
# Copyright (c) OpenMMLab. All rights reserved. import argparse import os from collections import Sequence from pathlib import Path import mmcv import numpy as np from mmcv import Config, DictAction from mmdet.core.utils import mask2ndarray from mmdet.core.visualization import imshow_det_bboxes from mmdet.datasets.builder import build_dataset from mmdet.utils import replace_cfg_vals, update_data_root def parse_args(): parser = argparse.ArgumentParser(description='Browse a dataset') parser.add_argument('config', help='train config file path') parser.add_argument( '--skip-type', type=str, nargs='+', default=['DefaultFormatBundle', 'Normalize', 'Collect'], help='skip some useless pipeline') parser.add_argument( '--output-dir', default=None, type=str, help='If there is no display interface, you can save it') parser.add_argument('--not-show', default=False, action='store_true') parser.add_argument( '--show-interval', type=float, default=2, help='the interval of show (s)') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') args = parser.parse_args() return args def retrieve_data_cfg(config_path, skip_type, cfg_options): def skip_pipeline_steps(config): config['pipeline'] = [ x for x in config.pipeline if x['type'] not in skip_type ] cfg = Config.fromfile(config_path) # replace the ${key} with the value of cfg.key cfg = replace_cfg_vals(cfg) # update data root according to MMDET_DATASETS update_data_root(cfg) if cfg_options is not None: cfg.merge_from_dict(cfg_options) train_data_cfg = cfg.data.train while 'dataset' in train_data_cfg and train_data_cfg[ 'type'] != 'MultiImageMixDataset': train_data_cfg = train_data_cfg['dataset'] if isinstance(train_data_cfg, Sequence): [skip_pipeline_steps(c) for c in train_data_cfg] else: skip_pipeline_steps(train_data_cfg) return cfg def main(): args = parse_args() cfg = retrieve_data_cfg(args.config, args.skip_type, args.cfg_options) if 'gt_semantic_seg' in cfg.train_pipeline[-1]['keys']: cfg.data.train.pipeline = [ p for p in cfg.data.train.pipeline if p['type'] != 'SegRescale' ] dataset = build_dataset(cfg.data.train) progress_bar = mmcv.ProgressBar(len(dataset)) for item in dataset: filename = os.path.join(args.output_dir, Path(item['filename']).name ) if args.output_dir is not None else None gt_bboxes = item['gt_bboxes'] gt_labels = item['gt_labels'] gt_masks = item.get('gt_masks', None) if gt_masks is not None: gt_masks = mask2ndarray(gt_masks) gt_seg = item.get('gt_semantic_seg', None) if gt_seg is not None: pad_value = 255 # the padding value of gt_seg sem_labels = np.unique(gt_seg) all_labels = np.concatenate((gt_labels, sem_labels), axis=0) all_labels, counts = np.unique(all_labels, return_counts=True) stuff_labels = all_labels[np.logical_and(counts < 2, all_labels != pad_value)] stuff_masks = gt_seg[None] == stuff_labels[:, None, None] gt_labels = np.concatenate((gt_labels, stuff_labels), axis=0) gt_masks = np.concatenate((gt_masks, stuff_masks.astype(np.uint8)), axis=0) # If you need to show the bounding boxes, # please comment the following line gt_bboxes = None imshow_det_bboxes( item['img'], gt_bboxes, gt_labels, gt_masks, class_names=dataset.CLASSES, show=not args.not_show, wait_time=args.show_interval, out_file=filename, bbox_color=dataset.PALETTE, text_color=(200, 200, 200), mask_color=dataset.PALETTE) progress_bar.update() if __name__ == '__main__': main()
# Copyright (c) OpenMMLab. All rights reserved. import argparse import os from collections import Sequence from pathlib import Path import mmcv import numpy as np from mmcv import Config, DictAction from mmdet.core.utils import mask2ndarray from mmdet.core.visualization import imshow_det_bboxes from mmdet.datasets.builder import build_dataset from mmdet.utils import update_data_root def parse_args(): parser = argparse.ArgumentParser(description='Browse a dataset') parser.add_argument('config', help='train config file path') parser.add_argument( '--skip-type', type=str, nargs='+', default=['DefaultFormatBundle', 'Normalize', 'Collect'], help='skip some useless pipeline') parser.add_argument( '--output-dir', default=None, type=str, help='If there is no display interface, you can save it') parser.add_argument('--not-show', default=False, action='store_true') parser.add_argument( '--show-interval', type=float, default=2, help='the interval of show (s)') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') args = parser.parse_args() return args def retrieve_data_cfg(config_path, skip_type, cfg_options): def skip_pipeline_steps(config): config['pipeline'] = [ x for x in config.pipeline if x['type'] not in skip_type ] cfg = Config.fromfile(config_path) # update data root according to MMDET_DATASETS update_data_root(cfg) if cfg_options is not None: cfg.merge_from_dict(cfg_options) train_data_cfg = cfg.data.train while 'dataset' in train_data_cfg and train_data_cfg[ 'type'] != 'MultiImageMixDataset': train_data_cfg = train_data_cfg['dataset'] if isinstance(train_data_cfg, Sequence): [skip_pipeline_steps(c) for c in train_data_cfg] else: skip_pipeline_steps(train_data_cfg) return cfg def main(): args = parse_args() cfg = retrieve_data_cfg(args.config, args.skip_type, args.cfg_options) if 'gt_semantic_seg' in cfg.train_pipeline[-1]['keys']: cfg.data.train.pipeline = [ p for p in cfg.data.train.pipeline if p['type'] != 'SegRescale' ] dataset = build_dataset(cfg.data.train) progress_bar = mmcv.ProgressBar(len(dataset)) for item in dataset: filename = os.path.join(args.output_dir, Path(item['filename']).name ) if args.output_dir is not None else None gt_bboxes = item['gt_bboxes'] gt_labels = item['gt_labels'] gt_masks = item.get('gt_masks', None) if gt_masks is not None: gt_masks = mask2ndarray(gt_masks) gt_seg = item.get('gt_semantic_seg', None) if gt_seg is not None: pad_value = 255 # the padding value of gt_seg sem_labels = np.unique(gt_seg) all_labels = np.concatenate((gt_labels, sem_labels), axis=0) all_labels, counts = np.unique(all_labels, return_counts=True) stuff_labels = all_labels[np.logical_and(counts < 2, all_labels != pad_value)] stuff_masks = gt_seg[None] == stuff_labels[:, None, None] gt_labels = np.concatenate((gt_labels, stuff_labels), axis=0) gt_masks = np.concatenate((gt_masks, stuff_masks.astype(np.uint8)), axis=0) # If you need to show the bounding boxes, # please comment the following line gt_bboxes = None imshow_det_bboxes( item['img'], gt_bboxes, gt_labels, gt_masks, class_names=dataset.CLASSES, show=not args.not_show, wait_time=args.show_interval, out_file=filename, bbox_color=dataset.PALETTE, text_color=(200, 200, 200), mask_color=dataset.PALETTE) progress_bar.update() if __name__ == '__main__': main()
from __future__ import annotations from collections.abc import Iterable import torch from torch import Tensor, nn from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class FlopsLoss(nn.Module): def __init__(self, model: SparseEncoder, threshold: float = None) -> None: """ FlopsLoss implements a regularization technique to promote sparsity in sparse encoder models. It calculates the squared L2 norm of the mean embedding vector, which helps reduce the number of floating-point operations (FLOPs) required during inference by encouraging more zero values in the embeddings. It can use a threshold to ignore embeddings with too few non-zero elements. This loss is used as a regularization component within other losses like :class:`SpladeLoss` rather than being used as a standalone loss function. Args: model: SparseEncoder model to be regularized threshold: Optional threshold for the number of non-zero elements in the embeddings. If specified, only embeddings with more than this number of non-zero elements will be considered. This can help to ignore embeddings that are too sparse and may not contribute meaningfully to the loss. References: - For further details, see: https://arxiv.org/pdf/2004.05665 for the general FLOPS loss and https://arxiv.org/pdf/2504.14839 for FLOPS with thresholds, a.k.a. FLOPS with l0 masking. Relations: - Used as a component within :class:`SpladeLoss` to regularize both query and document embeddings Example: - This loss is typically used within the :class:`SpladeLoss` class, which combines it with other loss components. """ super().__init__() self.model = model self.threshold = threshold def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor: raise NotImplementedError( "FlopsLoss is not intended to be used directly. Use it as a regulizer within the SpladeLoss class." ) def compute_loss_from_embeddings(self, embeddings: list[torch.Tensor]) -> torch.Tensor: if self.threshold is not None: l0_norm = (embeddings != 0).sum(dim=1) mask = (l0_norm > self.threshold).float() embeddings = embeddings * mask.unsqueeze(1) return torch.sum(torch.mean(embeddings, dim=0) ** 2) @property def citation(self) -> str: return """ @article{paria2020minimizing, title={Minimizing flops to learn efficient sparse representations}, author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{\'o}czos, Barnab{\'a}s}, journal={arXiv preprint arXiv:2004.05665}, year={2020} } """
from __future__ import annotations from collections.abc import Iterable import torch from torch import Tensor, nn from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class FlopsLoss(nn.Module): def __init__(self, model: SparseEncoder) -> None: super().__init__() self.model = model def forward(self, sentence_features: Iterable[dict[str, Tensor]], labels: Tensor) -> Tensor: # Compute the embeddings and distribute them to anchor and candidates (positive and optionally negatives) embeddings = [self.model(sentence_feature)["sentence_embedding"] for sentence_feature in sentence_features] return self.compute_loss_from_embeddings(embeddings) def compute_loss_from_embeddings(self, embeddings: list[torch.Tensor], embeddings_type: str) -> torch.Tensor: anchors = embeddings[0] # (batch_size, embedding_dim) candidates = torch.cat(embeddings[1:]) # (batch_size * (1 + num_negatives), embedding_dim) if embeddings_type == "query": return torch.sum(torch.mean(anchors, dim=0) ** 2) else: return torch.sum(torch.mean(candidates, dim=0) ** 2) @property def citation(self) -> str: return """ @article{paria2020minimizing, title={Minimizing flops to learn efficient sparse representations}, author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{\'o}czos, Barnab{\'a}s}, journal={arXiv preprint arXiv:2004.05665}, year={2020} } """
from typing import Any, Dict, List, Optional, Sequence, Type, Union import PIL.Image import torch from torchvision import datapoints from torchvision.prototype.datapoints import Label, OneHotLabel from torchvision.transforms.v2 import functional as F, Transform from torchvision.transforms.v2._utils import _get_fill, _setup_fill_arg, _setup_size from torchvision.transforms.v2.utils import get_bounding_boxes, has_any, is_simple_tensor, query_size class FixedSizeCrop(Transform): def __init__( self, size: Union[int, Sequence[int]], fill: Union[datapoints._FillType, Dict[Union[Type, str], datapoints._FillType]] = 0, padding_mode: str = "constant", ) -> None: super().__init__() size = tuple(_setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")) self.crop_height = size[0] self.crop_width = size[1] self.fill = fill self._fill = _setup_fill_arg(fill) self.padding_mode = padding_mode def _check_inputs(self, flat_inputs: List[Any]) -> None: if not has_any( flat_inputs, PIL.Image.Image, datapoints.Image, is_simple_tensor, datapoints.Video, ): raise TypeError( f"{type(self).__name__}() requires input sample to contain an tensor or PIL image or a Video." ) if has_any(flat_inputs, datapoints.BoundingBoxes) and not has_any(flat_inputs, Label, OneHotLabel): raise TypeError( f"If a BoundingBoxes is contained in the input sample, " f"{type(self).__name__}() also requires it to contain a Label or OneHotLabel." ) def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]: height, width = query_size(flat_inputs) new_height = min(height, self.crop_height) new_width = min(width, self.crop_width) needs_crop = new_height != height or new_width != width offset_height = max(height - self.crop_height, 0) offset_width = max(width - self.crop_width, 0) r = torch.rand(1) top = int(offset_height * r) left = int(offset_width * r) bounding_boxes: Optional[torch.Tensor] try: bounding_boxes = get_bounding_boxes(flat_inputs) except ValueError: bounding_boxes = None if needs_crop and bounding_boxes is not None: format = bounding_boxes.format bounding_boxes, canvas_size = F.crop_bounding_boxes( bounding_boxes.as_subclass(torch.Tensor), format=format, top=top, left=left, height=new_height, width=new_width, ) bounding_boxes = F.clamp_bounding_boxes(bounding_boxes, format=format, canvas_size=canvas_size) height_and_width = F.convert_format_bounding_boxes( bounding_boxes, old_format=format, new_format=datapoints.BoundingBoxFormat.XYWH )[..., 2:] is_valid = torch.all(height_and_width > 0, dim=-1) else: is_valid = None pad_bottom = max(self.crop_height - new_height, 0) pad_right = max(self.crop_width - new_width, 0) needs_pad = pad_bottom != 0 or pad_right != 0 return dict( needs_crop=needs_crop, top=top, left=left, height=new_height, width=new_width, is_valid=is_valid, padding=[0, 0, pad_right, pad_bottom], needs_pad=needs_pad, ) def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any: if params["needs_crop"]: inpt = F.crop( inpt, top=params["top"], left=params["left"], height=params["height"], width=params["width"], ) if params["is_valid"] is not None: if isinstance(inpt, (Label, OneHotLabel, datapoints.Mask)): inpt = inpt.wrap_like(inpt, inpt[params["is_valid"]]) # type: ignore[arg-type] elif isinstance(inpt, datapoints.BoundingBoxes): inpt = datapoints.BoundingBoxes.wrap_like( inpt, F.clamp_bounding_boxes(inpt[params["is_valid"]], format=inpt.format, canvas_size=inpt.canvas_size), ) if params["needs_pad"]: fill = _get_fill(self._fill, type(inpt)) inpt = F.pad(inpt, params["padding"], fill=fill, padding_mode=self.padding_mode) return inpt
from typing import Any, Dict, List, Optional, Sequence, Type, Union import PIL.Image import torch from torchvision import datapoints from torchvision.prototype.datapoints import Label, OneHotLabel from torchvision.transforms.v2 import functional as F, Transform from torchvision.transforms.v2._utils import _get_fill, _setup_fill_arg, _setup_size from torchvision.transforms.v2.utils import has_any, is_simple_tensor, query_bounding_boxes, query_size class FixedSizeCrop(Transform): def __init__( self, size: Union[int, Sequence[int]], fill: Union[datapoints._FillType, Dict[Union[Type, str], datapoints._FillType]] = 0, padding_mode: str = "constant", ) -> None: super().__init__() size = tuple(_setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")) self.crop_height = size[0] self.crop_width = size[1] self.fill = fill self._fill = _setup_fill_arg(fill) self.padding_mode = padding_mode def _check_inputs(self, flat_inputs: List[Any]) -> None: if not has_any( flat_inputs, PIL.Image.Image, datapoints.Image, is_simple_tensor, datapoints.Video, ): raise TypeError( f"{type(self).__name__}() requires input sample to contain an tensor or PIL image or a Video." ) if has_any(flat_inputs, datapoints.BoundingBoxes) and not has_any(flat_inputs, Label, OneHotLabel): raise TypeError( f"If a BoundingBoxes is contained in the input sample, " f"{type(self).__name__}() also requires it to contain a Label or OneHotLabel." ) def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]: height, width = query_size(flat_inputs) new_height = min(height, self.crop_height) new_width = min(width, self.crop_width) needs_crop = new_height != height or new_width != width offset_height = max(height - self.crop_height, 0) offset_width = max(width - self.crop_width, 0) r = torch.rand(1) top = int(offset_height * r) left = int(offset_width * r) bounding_boxes: Optional[torch.Tensor] try: bounding_boxes = query_bounding_boxes(flat_inputs) except ValueError: bounding_boxes = None if needs_crop and bounding_boxes is not None: format = bounding_boxes.format bounding_boxes, canvas_size = F.crop_bounding_boxes( bounding_boxes.as_subclass(torch.Tensor), format=format, top=top, left=left, height=new_height, width=new_width, ) bounding_boxes = F.clamp_bounding_boxes(bounding_boxes, format=format, canvas_size=canvas_size) height_and_width = F.convert_format_bounding_boxes( bounding_boxes, old_format=format, new_format=datapoints.BoundingBoxFormat.XYWH )[..., 2:] is_valid = torch.all(height_and_width > 0, dim=-1) else: is_valid = None pad_bottom = max(self.crop_height - new_height, 0) pad_right = max(self.crop_width - new_width, 0) needs_pad = pad_bottom != 0 or pad_right != 0 return dict( needs_crop=needs_crop, top=top, left=left, height=new_height, width=new_width, is_valid=is_valid, padding=[0, 0, pad_right, pad_bottom], needs_pad=needs_pad, ) def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any: if params["needs_crop"]: inpt = F.crop( inpt, top=params["top"], left=params["left"], height=params["height"], width=params["width"], ) if params["is_valid"] is not None: if isinstance(inpt, (Label, OneHotLabel, datapoints.Mask)): inpt = inpt.wrap_like(inpt, inpt[params["is_valid"]]) # type: ignore[arg-type] elif isinstance(inpt, datapoints.BoundingBoxes): inpt = datapoints.BoundingBoxes.wrap_like( inpt, F.clamp_bounding_boxes(inpt[params["is_valid"]], format=inpt.format, canvas_size=inpt.canvas_size), ) if params["needs_pad"]: fill = _get_fill(self._fill, type(inpt)) inpt = F.pad(inpt, params["padding"], fill=fill, padding_mode=self.padding_mode) return inpt
from __future__ import annotations from collections.abc import Iterable import torch import torch.nn as nn import torch.nn.functional as F from sentence_transformers.sparse_encoder import SparseEncoder def normalized_mean_squared_error(reconstruction: torch.Tensor, original_input: torch.Tensor) -> torch.Tensor: """ :param reconstruction: output of Autoencoder.decode (shape: [batch, n_inputs]) :param original_input: input of Autoencoder.encode (shape: [batch, n_inputs]) :return: normalized mean squared error (shape: [1]) """ return (((reconstruction - original_input) ** 2).mean(dim=1) / (original_input**2).mean(dim=1)).mean() class CSRReconstructionLoss(nn.Module): def __init__(self, model: SparseEncoder, beta: float = 1.0) -> None: """ CSRReconstructionLoss implements the reconstruction loss component for Contrastive Sparse Representation (CSR) models. This loss ensures that the sparse encoding can accurately reconstruct the original model embeddings through three components: 1. A primary reconstruction loss (L_k) that measures the error between the original embedding and its reconstruction using the top-k sparse components. 2. A secondary reconstruction loss (L_4k) that measures the error using the top-4k sparse components. 3. An auxiliary loss (L_aux) that helps to learn residual information. Args: model: SparseEncoder model with autoencoder components beta: Weight for the auxiliary loss component (L_aux) References: - For more details, see the paper "Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation" https://arxiv.org/abs/2503.01776 Requirements: 1. The model must be configured to output the necessary reconstruction components 2. Used with SparseEncoder models that implement compositional sparse autoencoding Relations: - Used as a component within :class:`CSRLoss` combined with a contrastive loss Example: :: - This loss is never used standalone, but instead used within the :class:`CSRLoss` class. See that loss for more details. """ super().__init__() self.model = model self.beta = beta def forward(self, sentence_features: Iterable[dict[str, torch.Tensor]]) -> dict[str, torch.Tensor]: # Compute embeddings using the model outputs = [self.model(sentence_feature) for sentence_feature in sentence_features] return self.compute_loss_from_embeddings(outputs) def compute_loss_from_embeddings(self, outputs: list[dict[str, torch.Tensor]]) -> dict[str, torch.Tensor]: """ Compute the CSRReconstruction loss from embeddings. Args: outputs: List of dictionaries containing sentence embeddings and their sparse representations Returns: total_loss: The total reconstruction loss value """ # Initialize loss components total_L_k = 0.0 total_L_4k = 0.0 total_L_aux = 0.0 # Process each sentence feature for features in outputs: x = features["sentence_embedding_backbone"] recons_k = features["decoded_embedding_k"] recons_4k = features["decoded_embedding_4k"] recons_aux = features["decoded_embedding_aux"] reconsk_pre_bias = features["decoded_embedding_k_pre_bias"] # L(k) = ||f(x) - f(dx)_k||₂² L_k = F.mse_loss(x, recons_k) # L(4k) = ||f(x) - f(dx)_4k||₂² L_4k = F.mse_loss(x, recons_4k) # L_aux = ||e - ê||₂² L_aux = normalized_mean_squared_error(recons_aux, x - reconsk_pre_bias) # Accumulate losses total_L_k += L_k total_L_4k += L_4k total_L_aux += L_aux # Average losses over batch batch_size = len(outputs) if batch_size > 0: total_L_k /= batch_size total_L_4k /= batch_size total_L_aux /= batch_size # Total loss: L_recon = L(k) + L(4k)/8 + β*L_aux total_loss = total_L_k + total_L_4k / 8 + self.beta * total_L_aux return total_loss def get_config_dict(self): """ Get the configuration dictionary. Returns: Dictionary containing the configuration parameters """ return {"beta": self.beta}
from __future__ import annotations from collections.abc import Iterable import torch import torch.nn as nn import torch.nn.functional as F from sentence_transformers.sparse_encoder import SparseEncoder def normalized_mean_squared_error(reconstruction: torch.Tensor, original_input: torch.Tensor) -> torch.Tensor: """ :param reconstruction: output of Autoencoder.decode (shape: [batch, n_inputs]) :param original_input: input of Autoencoder.encode (shape: [batch, n_inputs]) :return: normalized mean squared error (shape: [1]) """ return (((reconstruction - original_input) ** 2).mean(dim=1) / (original_input**2).mean(dim=1)).mean() class CSRReconstructionLoss(nn.Module): def __init__(self, model: SparseEncoder, beta: float = 1.0) -> None: """ CSRReconstructionLoss implements the reconstruction loss component for Contrastive Sparse Representation (CSR) models. This loss ensures that the sparse encoding can accurately reconstruct the original model embeddings through three components: 1. A primary reconstruction loss (L_k) that measures the error between the original embedding and its reconstruction using the top-k sparse components. 2. A secondary reconstruction loss (L_4k) that measures the error using the top-4k sparse components. 3. An auxiliary loss (L_aux) that helps to learn residual information. Args: model: SparseEncoder model with autoencoder components beta: Weight for the auxiliary loss component (L_aux) References: - For more details, see the paper "Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation" https://arxiv.org/abs/2503.01776 Requirements: 1. The model must be configured to output the necessary reconstruction components 2. Used with SparseEncoder models that implement compositional sparse autoencoding Relations: - Used as a component within :class:`CSRLoss` combined with a contrastive loss Example: :: This loss is typically used within the :class:`CSRLoss` class, which combines it with other loss components. """ super().__init__() self.model = model self.beta = beta def forward(self, sentence_features: Iterable[dict[str, torch.Tensor]]) -> dict[str, torch.Tensor]: """ Forward pass of the CSRReconstruction Loss module. This method is used when the loss is computed as part of the model's forward pass. Args: sentence_features: Iterable of dictionaries containing sentence embeddings and their sparse representations Returns: Dictionary containing the total loss and individual loss components """ # Compute embeddings using the model outputs = [self.model(sentence_feature) for sentence_feature in sentence_features] return self.compute_loss_from_embeddings(outputs) def compute_loss_from_embeddings(self, outputs: list[dict[str, torch.Tensor]]) -> dict[str, torch.Tensor]: """ Compute the CSRReconstruction loss from embeddings. Args: outputs: List of dictionaries containing sentence embeddings and their sparse representations Returns: Dictionary containing the total loss and individual loss components """ # Initialize loss components total_L_k = 0.0 total_L_4k = 0.0 total_L_aux = 0.0 # Process each sentence feature for features in outputs: x = features["sentence_embedding_backbone"] recons_k = features["decoded_embedding_k"] recons_4k = features["decoded_embedding_4k"] recons_aux = features["decoded_embedding_aux"] reconsk_pre_bias = features["decoded_embedding_k_pre_bias"] # L(k) = ||f(x) - f(dx)_k||₂² L_k = F.mse_loss(x, recons_k) # L(4k) = ||f(x) - f(dx)_4k||₂² L_4k = F.mse_loss(x, recons_4k) # L_aux = ||e - ê||₂² L_aux = normalized_mean_squared_error(recons_aux, x - reconsk_pre_bias) # Accumulate losses total_L_k += L_k total_L_4k += L_4k total_L_aux += L_aux # Average losses over batch batch_size = len(outputs) if batch_size > 0: total_L_k /= batch_size total_L_4k /= batch_size total_L_aux /= batch_size # Total loss: L_recon = L(k) + L(4k)/8 + β*L_aux total_loss = total_L_k + total_L_4k / 8 + self.beta * total_L_aux return total_loss def get_config_dict(self): """ Get the configuration dictionary. Returns: Dictionary containing the configuration parameters """ return {"beta": self.beta}
import PIL.Image import torch from torchvision import datapoints from torchvision.utils import _log_api_usage_once from ._utils import _get_kernel, _register_explicit_noop, _register_kernel_internal @_register_explicit_noop( PIL.Image.Image, datapoints.Image, datapoints.BoundingBoxes, datapoints.Mask, warn_passthrough=True ) def uniform_temporal_subsample(inpt: torch.Tensor, num_samples: int) -> torch.Tensor: if torch.jit.is_scripting(): return uniform_temporal_subsample_video(inpt, num_samples=num_samples) _log_api_usage_once(uniform_temporal_subsample) kernel = _get_kernel(uniform_temporal_subsample, type(inpt)) return kernel(inpt, num_samples=num_samples) @_register_kernel_internal(uniform_temporal_subsample, torch.Tensor) @_register_kernel_internal(uniform_temporal_subsample, datapoints.Video) def uniform_temporal_subsample_video(video: torch.Tensor, num_samples: int) -> torch.Tensor: # Reference: https://github.com/facebookresearch/pytorchvideo/blob/a0a131e/pytorchvideo/transforms/functional.py#L19 t_max = video.shape[-4] - 1 indices = torch.linspace(0, t_max, num_samples, device=video.device).long() return torch.index_select(video, -4, indices)
import PIL.Image import torch from torchvision import datapoints from torchvision.utils import _log_api_usage_once from ._utils import _get_kernel, _register_explicit_noop, _register_kernel_internal @_register_explicit_noop( PIL.Image.Image, datapoints.Image, datapoints.BoundingBoxes, datapoints.Mask, warn_passthrough=True ) def uniform_temporal_subsample(inpt: datapoints._VideoTypeJIT, num_samples: int) -> datapoints._VideoTypeJIT: if torch.jit.is_scripting(): return uniform_temporal_subsample_video(inpt, num_samples=num_samples) _log_api_usage_once(uniform_temporal_subsample) kernel = _get_kernel(uniform_temporal_subsample, type(inpt)) return kernel(inpt, num_samples=num_samples) @_register_kernel_internal(uniform_temporal_subsample, torch.Tensor) @_register_kernel_internal(uniform_temporal_subsample, datapoints.Video) def uniform_temporal_subsample_video(video: torch.Tensor, num_samples: int) -> torch.Tensor: # Reference: https://github.com/facebookresearch/pytorchvideo/blob/a0a131e/pytorchvideo/transforms/functional.py#L19 t_max = video.shape[-4] - 1 indices = torch.linspace(0, t_max, num_samples, device=video.device).long() return torch.index_select(video, -4, indices)
import os from pathlib import Path from typing import Any, Callable, Optional, Tuple, Union from PIL import Image from .utils import check_integrity, download_and_extract_archive, download_url from .vision import VisionDataset class SBU(VisionDataset): """`SBU Captioned Photo <http://www.cs.virginia.edu/~vicente/sbucaptions/>`_ Dataset. Args: root (str or ``pathlib.Path``): Root directory of dataset where tarball ``SBUCaptionedPhotoDataset.tar.gz`` exists. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If True, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. """ url = "https://www.cs.rice.edu/~vo9/sbucaptions/SBUCaptionedPhotoDataset.tar.gz" filename = "SBUCaptionedPhotoDataset.tar.gz" md5_checksum = "9aec147b3488753cf758b4d493422285" def __init__( self, root: Union[str, Path], transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = True, ) -> None: super().__init__(root, transform=transform, target_transform=target_transform) if download: self.download() if not self._check_integrity(): raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it") # Read the caption for each photo self.photos = [] self.captions = [] file1 = os.path.join(self.root, "dataset", "SBU_captioned_photo_dataset_urls.txt") file2 = os.path.join(self.root, "dataset", "SBU_captioned_photo_dataset_captions.txt") for line1, line2 in zip(open(file1), open(file2)): url = line1.rstrip() photo = os.path.basename(url) filename = os.path.join(self.root, "dataset", photo) if os.path.exists(filename): caption = line2.rstrip() self.photos.append(photo) self.captions.append(caption) def __getitem__(self, index: int) -> Tuple[Any, Any]: """ Args: index (int): Index Returns: tuple: (image, target) where target is a caption for the photo. """ filename = os.path.join(self.root, "dataset", self.photos[index]) img = Image.open(filename).convert("RGB") if self.transform is not None: img = self.transform(img) target = self.captions[index] if self.target_transform is not None: target = self.target_transform(target) return img, target def __len__(self) -> int: """The number of photos in the dataset.""" return len(self.photos) def _check_integrity(self) -> bool: """Check the md5 checksum of the downloaded tarball.""" root = self.root fpath = os.path.join(root, self.filename) if not check_integrity(fpath, self.md5_checksum): return False return True def download(self) -> None: """Download and extract the tarball, and download each individual photo.""" if self._check_integrity(): return download_and_extract_archive(self.url, self.root, self.root, self.filename, self.md5_checksum) # Download individual photos with open(os.path.join(self.root, "dataset", "SBU_captioned_photo_dataset_urls.txt")) as fh: for line in fh: url = line.rstrip() try: download_url(url, os.path.join(self.root, "dataset")) except OSError: # The images point to public images on Flickr. # Note: Images might be removed by users at anytime. pass
import os from pathlib import Path from typing import Any, Callable, Optional, Tuple, Union from PIL import Image from .utils import check_integrity, download_and_extract_archive, download_url from .vision import VisionDataset class SBU(VisionDataset): """`SBU Captioned Photo <http://www.cs.virginia.edu/~vicente/sbucaptions/>`_ Dataset. Args: root (str or ``pathlib.Path``): Root directory of dataset where tarball ``SBUCaptionedPhotoDataset.tar.gz`` exists. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If True, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. """ url = "https://www.cs.rice.edu/~vo9/sbucaptions/SBUCaptionedPhotoDataset.tar.gz" filename = "SBUCaptionedPhotoDataset.tar.gz" md5_checksum = "9aec147b3488753cf758b4d493422285" def __init__( self, root: Union[str, Path], transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = True, ) -> None: super().__init__(root, transform=transform, target_transform=target_transform) if download: self.download() if not self._check_integrity(): raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it") # Read the caption for each photo self.photos = [] self.captions = [] file1 = os.path.join(self.root, "dataset", "SBU_captioned_photo_dataset_urls.txt") file2 = os.path.join(self.root, "dataset", "SBU_captioned_photo_dataset_captions.txt") for line1, line2 in zip(open(file1), open(file2)): url = line1.rstrip() photo = os.path.basename(url) filename = os.path.join(self.root, "dataset", photo) if os.path.exists(filename): caption = line2.rstrip() self.photos.append(photo) self.captions.append(caption) def __getitem__(self, index: int) -> Tuple[Any, Any]: """ Args: index (int): Index Returns: tuple: (image, target) where target is a caption for the photo. """ filename = os.path.join(self.root, "dataset", self.photos[index]) img = Image.open(filename).convert("RGB") if self.transform is not None: img = self.transform(img) target = self.captions[index] if self.target_transform is not None: target = self.target_transform(target) return img, target def __len__(self) -> int: """The number of photos in the dataset.""" return len(self.photos) def _check_integrity(self) -> bool: """Check the md5 checksum of the downloaded tarball.""" root = self.root fpath = os.path.join(root, self.filename) if not check_integrity(fpath, self.md5_checksum): return False return True def download(self) -> None: """Download and extract the tarball, and download each individual photo.""" if self._check_integrity(): print("Files already downloaded and verified") return download_and_extract_archive(self.url, self.root, self.root, self.filename, self.md5_checksum) # Download individual photos with open(os.path.join(self.root, "dataset", "SBU_captioned_photo_dataset_urls.txt")) as fh: for line in fh: url = line.rstrip() try: download_url(url, os.path.join(self.root, "dataset")) except OSError: # The images point to public images on Flickr. # Note: Images might be removed by users at anytime. pass
from __future__ import annotations from typing import Optional, Type from langchain_core.callbacks import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from pydantic import BaseModel from langchain_community.tools.playwright.base import BaseBrowserTool from langchain_community.tools.playwright.utils import ( aget_current_page, get_current_page, ) class CurrentWebPageToolInput(BaseModel): """Explicit no-args input for CurrentWebPageTool.""" class CurrentWebPageTool(BaseBrowserTool): """Tool for getting the URL of the current webpage.""" name: str = "current_webpage" description: str = "Returns the URL of the current page" args_schema: Type[BaseModel] = CurrentWebPageToolInput def _run( self, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" if self.sync_browser is None: raise ValueError(f"Synchronous browser not provided to {self.name}") page = get_current_page(self.sync_browser) return str(page.url) async def _arun( self, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" if self.async_browser is None: raise ValueError(f"Asynchronous browser not provided to {self.name}") page = await aget_current_page(self.async_browser) return str(page.url)
from __future__ import annotations from typing import Optional, Type from langchain_core.callbacks import ( AsyncCallbackManagerForToolRun, CallbackManagerForToolRun, ) from pydantic import BaseModel from langchain_community.tools.playwright.base import BaseBrowserTool from langchain_community.tools.playwright.utils import ( aget_current_page, get_current_page, ) class CurrentWebPageToolInput(BaseModel): """Explicit no-args input for CurrentWebPageTool.""" class CurrentWebPageTool(BaseBrowserTool): # type: ignore[override, override] """Tool for getting the URL of the current webpage.""" name: str = "current_webpage" description: str = "Returns the URL of the current page" args_schema: Type[BaseModel] = CurrentWebPageToolInput def _run( self, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" if self.sync_browser is None: raise ValueError(f"Synchronous browser not provided to {self.name}") page = get_current_page(self.sync_browser) return str(page.url) async def _arun( self, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" if self.async_browser is None: raise ValueError(f"Asynchronous browser not provided to {self.name}") page = await aget_current_page(self.async_browser) return str(page.url)
"""Embeddings.""" from importlib import import_module from typing import TYPE_CHECKING if TYPE_CHECKING: from langchain_core.embeddings.embeddings import Embeddings from langchain_core.embeddings.fake import ( DeterministicFakeEmbedding, FakeEmbeddings, ) __all__ = ["DeterministicFakeEmbedding", "Embeddings", "FakeEmbeddings"] _dynamic_imports = { "Embeddings": "embeddings", "DeterministicFakeEmbedding": "fake", "FakeEmbeddings": "fake", } def __getattr__(attr_name: str) -> object: module_name = _dynamic_imports.get(attr_name) package = __spec__.parent if module_name == "__module__" or module_name is None: result = import_module(f".{attr_name}", package=package) else: module = import_module(f".{module_name}", package=package) result = getattr(module, attr_name) globals()[attr_name] = result return result def __dir__() -> list[str]: return list(__all__)
"""Embeddings.""" from importlib import import_module from typing import TYPE_CHECKING if TYPE_CHECKING: from langchain_core.embeddings.embeddings import Embeddings from langchain_core.embeddings.fake import ( DeterministicFakeEmbedding, FakeEmbeddings, ) __all__ = ["DeterministicFakeEmbedding", "Embeddings", "FakeEmbeddings"] _dynamic_imports = { "Embeddings": "embeddings", "DeterministicFakeEmbedding": "fake", "FakeEmbeddings": "fake", } def __getattr__(attr_name: str) -> object: module_name = _dynamic_imports.get(attr_name) package = __spec__.parent # type: ignore[name-defined] if module_name == "__module__" or module_name is None: result = import_module(f".{attr_name}", package=package) else: module = import_module(f".{module_name}", package=package) result = getattr(module, attr_name) globals()[attr_name] = result return result def __dir__() -> list[str]: return list(__all__)
#! /usr/bin/env python # -*- coding: utf-8 -*- # Copyright 2021 Imperial College London (Pingchuan Ma) # Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) import warnings import numpy as np from ibug.face_detection import RetinaFacePredictor warnings.filterwarnings("ignore") class LandmarksDetector: def __init__(self, device="cuda:0", model_name="resnet50"): self.face_detector = RetinaFacePredictor( device=device, threshold=0.8, model=RetinaFacePredictor.get_model(model_name) ) def __call__(self, video_frames): landmarks = [] for frame in video_frames: detected_faces = self.face_detector(frame, rgb=False) if len(detected_faces) >= 1: landmarks.append(np.reshape(detected_faces[0][:4], (2, 2))) else: landmarks.append(None) return landmarks
#! /usr/bin/env python # -*- coding: utf-8 -*- # Copyright 2021 Imperial College London (Pingchuan Ma) # Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) import warnings import numpy as np import torchvision from ibug.face_detection import RetinaFacePredictor warnings.filterwarnings("ignore") class LandmarksDetector: def __init__(self, device="cuda:0", model_name="resnet50"): self.face_detector = RetinaFacePredictor( device=device, threshold=0.8, model=RetinaFacePredictor.get_model(model_name) ) def __call__(self, filename): video_frames = torchvision.io.read_video(filename, pts_unit="sec")[0].numpy() landmarks = [] for frame in video_frames: detected_faces = self.face_detector(frame, rgb=False) if len(detected_faces) >= 1: landmarks.append(np.reshape(detected_faces[0][:4], (2, 2))) else: landmarks.append(None) return landmarks
import types from keras.src.activations.activations import celu from keras.src.activations.activations import elu from keras.src.activations.activations import exponential from keras.src.activations.activations import gelu from keras.src.activations.activations import glu from keras.src.activations.activations import hard_shrink from keras.src.activations.activations import hard_sigmoid from keras.src.activations.activations import hard_silu from keras.src.activations.activations import hard_tanh from keras.src.activations.activations import leaky_relu from keras.src.activations.activations import linear from keras.src.activations.activations import log_sigmoid from keras.src.activations.activations import log_softmax from keras.src.activations.activations import mish from keras.src.activations.activations import relu from keras.src.activations.activations import relu6 from keras.src.activations.activations import selu from keras.src.activations.activations import sigmoid from keras.src.activations.activations import silu from keras.src.activations.activations import soft_shrink from keras.src.activations.activations import softmax from keras.src.activations.activations import softplus from keras.src.activations.activations import softsign from keras.src.activations.activations import sparse_plus from keras.src.activations.activations import sparsemax from keras.src.activations.activations import squareplus from keras.src.activations.activations import tanh from keras.src.activations.activations import tanh_shrink from keras.src.activations.activations import threshold from keras.src.api_export import keras_export from keras.src.saving import object_registration from keras.src.saving import serialization_lib ALL_OBJECTS = { relu, leaky_relu, relu6, softmax, celu, elu, selu, softplus, softsign, squareplus, soft_shrink, sparse_plus, silu, gelu, glu, tanh, tanh_shrink, threshold, sigmoid, exponential, hard_sigmoid, hard_silu, hard_tanh, hard_shrink, linear, mish, log_softmax, log_sigmoid, sparsemax, } ALL_OBJECTS_DICT = {fn.__name__: fn for fn in ALL_OBJECTS} # Additional aliases ALL_OBJECTS_DICT["swish"] = silu ALL_OBJECTS_DICT["hard_swish"] = hard_silu @keras_export("keras.activations.serialize") def serialize(activation): fn_config = serialization_lib.serialize_keras_object(activation) if "config" not in fn_config: raise ValueError( f"Unknown activation function '{activation}' cannot be " "serialized due to invalid function name. Make sure to use " "an activation name that matches the references defined in " "activations.py or use " "`@keras.saving.register_keras_serializable()`" "to register any custom activations. " f"config={fn_config}" ) if not isinstance(activation, types.FunctionType): # Case for additional custom activations represented by objects return fn_config if ( isinstance(fn_config["config"], str) and fn_config["config"] not in globals() ): # Case for custom activation functions from external activations modules fn_config["config"] = object_registration.get_registered_name( activation ) return fn_config # Case for keras.activations builtins (simply return name) return fn_config["config"] @keras_export("keras.activations.deserialize") def deserialize(config, custom_objects=None): """Return a Keras activation function via its config.""" return serialization_lib.deserialize_keras_object( config, module_objects=ALL_OBJECTS_DICT, custom_objects=custom_objects, ) @keras_export("keras.activations.get") def get(identifier): """Retrieve a Keras activation function via an identifier.""" if identifier is None: return linear if isinstance(identifier, dict): obj = serialization_lib.deserialize_keras_object(identifier) elif isinstance(identifier, str): obj = ALL_OBJECTS_DICT.get(identifier, None) else: obj = identifier if callable(obj): return obj raise ValueError( f"Could not interpret activation function identifier: {identifier}" )
import types from keras.src.activations.activations import celu from keras.src.activations.activations import elu from keras.src.activations.activations import exponential from keras.src.activations.activations import gelu from keras.src.activations.activations import glu from keras.src.activations.activations import hard_shrink from keras.src.activations.activations import hard_sigmoid from keras.src.activations.activations import hard_silu from keras.src.activations.activations import hard_tanh from keras.src.activations.activations import leaky_relu from keras.src.activations.activations import linear from keras.src.activations.activations import log_sigmoid from keras.src.activations.activations import log_softmax from keras.src.activations.activations import mish from keras.src.activations.activations import relu from keras.src.activations.activations import relu6 from keras.src.activations.activations import selu from keras.src.activations.activations import sigmoid from keras.src.activations.activations import silu from keras.src.activations.activations import soft_shrink from keras.src.activations.activations import softmax from keras.src.activations.activations import softplus from keras.src.activations.activations import softsign from keras.src.activations.activations import sparse_plus from keras.src.activations.activations import sparsemax from keras.src.activations.activations import squareplus from keras.src.activations.activations import tanh from keras.src.activations.activations import tanh_shrink from keras.src.activations.activations import threshold from keras.src.api_export import keras_export from keras.src.saving import object_registration from keras.src.saving import serialization_lib ALL_OBJECTS = { relu, leaky_relu, relu6, softmax, celu, elu, selu, softplus, softsign, squareplus, soft_shrink, sparse_plus, silu, gelu, glu, tanh, tanh_shrink, threshold, sigmoid, exponential, hard_sigmoid, hard_silu, hard_tanh, hard_shrink, linear, mish, log_softmax, log_sigmoid, sparsemax, } ALL_OBJECTS_DICT = {fn.__name__: fn for fn in ALL_OBJECTS} # Additional aliases ALL_OBJECTS_DICT["swish"] = silu ALL_OBJECTS_DICT["hard_swish"] = hard_silu @keras_export("keras.activations.serialize") def serialize(activation): fn_config = serialization_lib.serialize_keras_object(activation) if "config" not in fn_config: raise ValueError( f"Unknown activation function '{activation}' cannot be " "serialized due to invalid function name. Make sure to use " "an activation name that matches the references defined in " "activations.py or use " "`@keras.saving.register_keras_serializable()`" "to register any custom activations. " f"config={fn_config}" ) if not isinstance(activation, types.FunctionType): # Case for additional custom activations represented by objects return fn_config if ( isinstance(fn_config["config"], str) and fn_config["config"] not in globals() ): # Case for custom activation functions from external activations modules fn_config["config"] = object_registration.get_registered_name( activation ) return fn_config # Case for keras.activations builtins (simply return name) return fn_config["config"] @keras_export("keras.activations.deserialize") def deserialize(config, custom_objects=None): """Return a Keras activation function via its config.""" return serialization_lib.deserialize_keras_object( config, module_objects=ALL_OBJECTS_DICT, custom_objects=custom_objects, ) @keras_export("keras.activations.get") def get(identifier): """Retrieve a Keras activation function via an identifier.""" if identifier is None: return linear if isinstance(identifier, dict): obj = deserialize(identifier) elif isinstance(identifier, str): obj = ALL_OBJECTS_DICT.get(identifier, None) else: obj = identifier if callable(obj): return obj raise ValueError( f"Could not interpret activation function identifier: {identifier}" )
import numpy as np import pytest from docarray import BaseDoc, DocList from docarray.typing import NdArray @pytest.mark.parametrize('shuffle', [False, True]) @pytest.mark.parametrize('stack', [False, True]) @pytest.mark.parametrize('batch_size,n_batches', [(16, 7), (10, 10)]) def test_batch(shuffle, stack, batch_size, n_batches): class MyDoc(BaseDoc): id: int tensor: NdArray t_shape = (32, 32) da = DocList[MyDoc]( [ MyDoc( id=i, tensor=np.zeros(t_shape), ) for i in range(100) ] ) if stack: da = da.to_doc_vec() batches = list(da._batch(batch_size=batch_size, shuffle=shuffle)) assert len(batches) == n_batches for i, batch in enumerate(batches): if i < n_batches - 1: assert len(batch) == batch_size if stack: assert batch.tensor.shape == (batch_size, *t_shape) else: assert len(batch) <= batch_size non_shuffled_ids = [ i for i in range(i * batch_size, min((i + 1) * batch_size, len(da))) ] if not shuffle: assert batch.id == non_shuffled_ids else: assert not (batch.id == non_shuffled_ids)
import numpy as np import pytest from docarray import BaseDoc, DocList from docarray.typing import NdArray @pytest.mark.parametrize('shuffle', [False, True]) @pytest.mark.parametrize('stack', [False, True]) @pytest.mark.parametrize('batch_size,n_batches', [(16, 7), (10, 10)]) def test_batch(shuffle, stack, batch_size, n_batches): class MyDoc(BaseDoc): id: int tensor: NdArray t_shape = (32, 32) da = DocList[MyDoc]( [ MyDoc( id=i, tensor=np.zeros(t_shape), ) for i in range(100) ] ) if stack: da = da.stack() batches = list(da._batch(batch_size=batch_size, shuffle=shuffle)) assert len(batches) == n_batches for i, batch in enumerate(batches): if i < n_batches - 1: assert len(batch) == batch_size if stack: assert batch.tensor.shape == (batch_size, *t_shape) else: assert len(batch) <= batch_size non_shuffled_ids = [ i for i in range(i * batch_size, min((i + 1) * batch_size, len(da))) ] if not shuffle: assert batch.id == non_shuffled_ids else: assert not (batch.id == non_shuffled_ids)
from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple, Type, TypeVar from pydantic import create_model, create_model_from_typeddict from pydantic.config import BaseConfig from typing_extensions import TypedDict from docarray import BaseDoc if TYPE_CHECKING: from pydantic.typing import AnyClassMethod T_doc = TypeVar('T_doc', bound=BaseDoc) def create_doc( __model_name: str, *, __config__: Optional[Type[BaseConfig]] = None, __base__: Type['T_doc'] = BaseDoc, # type: ignore __module__: str = __name__, __validators__: Dict[str, 'AnyClassMethod'] = None, # type: ignore __cls_kwargs__: Dict[str, Any] = None, # type: ignore __slots__: Optional[Tuple[str, ...]] = None, **field_definitions: Any, ) -> Type['T_doc']: """ Dynamically create a subclass of BaseDoc. This is a wrapper around pydantic's create_model. ```python from docarray.documents import Audio from docarray.documents.helper import create_doc from docarray.typing.tensor.audio import AudioNdArray MyAudio = create_doc( 'MyAudio', __base__=Audio, title=(str, ...), tensor=(AudioNdArray, ...), ) assert issubclass(MyAudio, BaseDoc) assert issubclass(MyAudio, Audio) ``` :param __model_name: name of the created model :param __config__: config class to use for the new model :param __base__: base class for the new model to inherit from, must be BaseDoc or its subclass :param __module__: module of the created model :param __validators__: a dict of method names and @validator class methods :param __cls_kwargs__: a dict for class creation :param __slots__: Deprecated, `__slots__` should not be passed to `create_model` :param field_definitions: fields of the model (or extra fields if a base is supplied) in the format `<name>=(<type>, <default default>)` or `<name>=<default value>` :return: the new Document class """ if not issubclass(__base__, BaseDoc): raise ValueError(f'{type(__base__)} is not a BaseDoc or its subclass') doc = create_model( __model_name, __config__=__config__, __base__=__base__, __module__=__module__, __validators__=__validators__, __cls_kwargs__=__cls_kwargs__, __slots__=__slots__, **field_definitions, ) return doc def create_doc_from_typeddict( typeddict_cls: Type['TypedDict'], # type: ignore **kwargs: Any, ): """ Create a subclass of BaseDoc based on the fields of a `TypedDict`. This is a wrapper around pydantic's create_model_from_typeddict. --- ```python from typing_extensions import TypedDict from docarray import BaseDoc from docarray.documents import Audio from docarray.documents.helper import create_doc_from_typeddict from docarray.typing.tensor.audio import AudioNdArray class MyAudio(TypedDict): title: str tensor: AudioNdArray Doc = create_doc_from_typeddict(MyAudio, __base__=Audio) assert issubclass(Doc, BaseDoc) assert issubclass(Doc, Audio) ``` --- :param typeddict_cls: TypedDict class to use for the new Document class :param kwargs: extra arguments to pass to `create_model_from_typeddict` :return: the new Document class """ if '__base__' in kwargs: if not issubclass(kwargs['__base__'], BaseDoc): raise ValueError(f'{kwargs["__base__"]} is not a BaseDoc or its subclass') else: kwargs['__base__'] = BaseDoc doc = create_model_from_typeddict(typeddict_cls, **kwargs) return doc def create_doc_from_dict(model_name: str, data_dict: Dict[str, Any]) -> Type['T_doc']: """ Create a subclass of BaseDoc based on example data given as a dictionary. In case the example contains None as a value, corresponding field will be viewed as the type Any. --- ```python import numpy as np from docarray.documents import ImageDoc from docarray.documents.helper import create_doc_from_dict data_dict = {'image': ImageDoc(tensor=np.random.rand(3, 224, 224)), 'author': 'me'} MyDoc = create_doc_from_dict(model_name='MyDoc', data_dict=data_dict) assert issubclass(MyDoc, BaseDoc) ``` --- :param model_name: Name of the new Document class :param data_dict: Dictionary of field types to their corresponding values. :return: the new Document class """ if not data_dict: raise ValueError('`data_dict` should contain at least one item') field_types = { field: (type(value) if value else Any, ...) for field, value in data_dict.items() } return create_doc(__model_name=model_name, **field_types) # type: ignore
from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple, Type, TypeVar from pydantic import create_model, create_model_from_typeddict from pydantic.config import BaseConfig from typing_extensions import TypedDict from docarray import BaseDoc if TYPE_CHECKING: from pydantic.typing import AnyClassMethod T_doc = TypeVar('T_doc', bound=BaseDoc) def create_doc( __model_name: str, *, __config__: Optional[Type[BaseConfig]] = None, __base__: Type['T_doc'] = BaseDoc, # type: ignore __module__: str = __name__, __validators__: Dict[str, 'AnyClassMethod'] = None, # type: ignore __cls_kwargs__: Dict[str, Any] = None, # type: ignore __slots__: Optional[Tuple[str, ...]] = None, **field_definitions: Any, ) -> Type['T_doc']: """ Dynamically create a subclass of BaseDoc. This is a wrapper around pydantic's create_model. :param __model_name: name of the created model :param __config__: config class to use for the new model :param __base__: base class for the new model to inherit from, must be BaseDoc or its subclass :param __module__: module of the created model :param __validators__: a dict of method names and @validator class methods :param __cls_kwargs__: a dict for class creation :param __slots__: Deprecated, `__slots__` should not be passed to `create_model` :param field_definitions: fields of the model (or extra fields if a base is supplied) in the format `<name>=(<type>, <default default>)` or `<name>=<default value>` :return: the new Document class ```python from docarray.documents import Audio from docarray.documents.helper import create_doc from docarray.typing.tensor.audio import AudioNdArray MyAudio = create_doc( 'MyAudio', __base__=Audio, title=(str, ...), tensor=(AudioNdArray, ...), ) assert issubclass(MyAudio, BaseDoc) assert issubclass(MyAudio, Audio) ``` """ if not issubclass(__base__, BaseDoc): raise ValueError(f'{type(__base__)} is not a BaseDoc or its subclass') doc = create_model( __model_name, __config__=__config__, __base__=__base__, __module__=__module__, __validators__=__validators__, __cls_kwargs__=__cls_kwargs__, __slots__=__slots__, **field_definitions, ) return doc def create_doc_from_typeddict( typeddict_cls: Type['TypedDict'], # type: ignore **kwargs: Any, ): """ Create a subclass of BaseDoc based on the fields of a `TypedDict`. This is a wrapper around pydantic's create_model_from_typeddict. :param typeddict_cls: TypedDict class to use for the new Document class :param kwargs: extra arguments to pass to `create_model_from_typeddict` :return: the new Document class EXAMPLE USAGE .. code-block:: python from typing_extensions import TypedDict from docarray import BaseDoc from docarray.documents import Audio from docarray.documents.helper import create_doc_from_typeddict from docarray.typing.tensor.audio import AudioNdArray class MyAudio(TypedDict): title: str tensor: AudioNdArray Doc = create_doc_from_typeddict(MyAudio, __base__=Audio) assert issubclass(Doc, BaseDoc) assert issubclass(Doc, Audio) """ if '__base__' in kwargs: if not issubclass(kwargs['__base__'], BaseDoc): raise ValueError(f'{kwargs["__base__"]} is not a BaseDoc or its subclass') else: kwargs['__base__'] = BaseDoc doc = create_model_from_typeddict(typeddict_cls, **kwargs) return doc def create_doc_from_dict(model_name: str, data_dict: Dict[str, Any]) -> Type['T_doc']: """ Create a subclass of BaseDoc based on example data given as a dictionary. In case the example contains None as a value, corresponding field will be viewed as the type Any. :param model_name: Name of the new Document class :param data_dict: Dictionary of field types to their corresponding values. :return: the new Document class EXAMPLE USAGE .. code-block:: python import numpy as np from docarray.documents import ImageDoc from docarray.documents.helper import create_doc_from_dict data_dict = {'image': ImageDoc(tensor=np.random.rand(3, 224, 224)), 'author': 'me'} MyDoc = create_doc_from_dict(model_name='MyDoc', data_dict=data_dict) assert issubclass(MyDoc, BaseDoc) """ if not data_dict: raise ValueError('`data_dict` should contain at least one item') field_types = { field: (type(value) if value else Any, ...) for field, value in data_dict.items() } return create_doc(__model_name=model_name, **field_types) # type: ignore
# Copyright (c) OpenMMLab. All rights reserved. import mmcv from .version import __version__, short_version def digit_version(version_str): digit_version = [] for x in version_str.split('.'): if x.isdigit(): digit_version.append(int(x)) elif x.find('rc') != -1: patch_version = x.split('rc') digit_version.append(int(patch_version[0]) - 1) digit_version.append(int(patch_version[1])) return digit_version mmcv_minimum_version = '1.3.17' mmcv_maximum_version = '1.6.0' mmcv_version = digit_version(mmcv.__version__) assert (mmcv_version >= digit_version(mmcv_minimum_version) and mmcv_version <= digit_version(mmcv_maximum_version)), \ f'MMCV=={mmcv.__version__} is used but incompatible. ' \ f'Please install mmcv>={mmcv_minimum_version}, <={mmcv_maximum_version}.' __all__ = ['__version__', 'short_version']
# Copyright (c) OpenMMLab. All rights reserved. import mmcv from .version import __version__, short_version def digit_version(version_str): digit_version = [] for x in version_str.split('.'): if x.isdigit(): digit_version.append(int(x)) elif x.find('rc') != -1: patch_version = x.split('rc') digit_version.append(int(patch_version[0]) - 1) digit_version.append(int(patch_version[1])) return digit_version mmcv_minimum_version = '1.3.17' mmcv_maximum_version = '1.5.0' mmcv_version = digit_version(mmcv.__version__) assert (mmcv_version >= digit_version(mmcv_minimum_version) and mmcv_version <= digit_version(mmcv_maximum_version)), \ f'MMCV=={mmcv.__version__} is used but incompatible. ' \ f'Please install mmcv>={mmcv_minimum_version}, <={mmcv_maximum_version}.' __all__ = ['__version__', 'short_version']
_base_ = [ '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py', './centernet_tta.py' ] dataset_type = 'CocoDataset' data_root = 'data/coco/' # model settings model = dict( type='CenterNet', data_preprocessor=dict( type='DetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True), backbone=dict( type='ResNet', depth=18, norm_eval=False, norm_cfg=dict(type='BN'), init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet18')), neck=dict( type='CTResNetNeck', in_channels=512, num_deconv_filters=(256, 128, 64), num_deconv_kernels=(4, 4, 4), use_dcn=True), bbox_head=dict( type='CenterNetHead', num_classes=80, in_channels=64, feat_channels=64, loss_center_heatmap=dict(type='GaussianFocalLoss', loss_weight=1.0), loss_wh=dict(type='L1Loss', loss_weight=0.1), loss_offset=dict(type='L1Loss', loss_weight=1.0)), train_cfg=None, test_cfg=dict(topk=100, local_maximum_kernel=3, max_per_img=100)) train_pipeline = [ dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='PhotoMetricDistortion', brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18), dict( type='RandomCenterCropPad', # The cropped images are padded into squares during training, # but may be less than crop_size. crop_size=(512, 512), ratios=(0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3), mean=[0, 0, 0], std=[1, 1, 1], to_rgb=True, test_pad_mode=None), # Make sure the output is always crop_size. dict(type='Resize', scale=(512, 512), keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict( type='LoadImageFromFile', backend_args={{_base_.backend_args}}, to_float32=True), # don't need Resize dict( type='RandomCenterCropPad', ratios=None, border=None, mean=[0, 0, 0], std=[1, 1, 1], to_rgb=True, test_mode=True, test_pad_mode=['logical_or', 31], test_pad_add_pix=1), dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'border')) ] # Use RepeatDataset to speed up training train_dataloader = dict( batch_size=16, num_workers=4, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), dataset=dict( _delete_=True, type='RepeatDataset', times=5, dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_train2017.json', data_prefix=dict(img='train2017/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline, backend_args={{_base_.backend_args}}, ))) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader # optimizer # Based on the default settings of modern detectors, the SGD effect is better # than the Adam in the source code, so we use SGD default settings and # if you use adam+lr5e-4, the map is 29.1. optim_wrapper = dict(clip_grad=dict(max_norm=35, norm_type=2)) max_epochs = 28 # learning policy # Based on the default settings of modern detectors, we added warmup settings. param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=1000), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[18, 24], # the real step is [18*5, 24*5] gamma=0.1) ] train_cfg = dict(max_epochs=max_epochs) # the real epoch is 28*5=140 # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (16 samples per GPU) auto_scale_lr = dict(base_batch_size=128)
_base_ = [ '../_base_/datasets/coco_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py', './centernet_tta.py' ] dataset_type = 'CocoDataset' data_root = 'data/coco/' # model settings model = dict( type='CenterNet', data_preprocessor=dict( type='DetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True), backbone=dict( type='ResNet', depth=18, norm_eval=False, norm_cfg=dict(type='BN'), init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet18')), neck=dict( type='CTResNetNeck', in_channels=512, num_deconv_filters=(256, 128, 64), num_deconv_kernels=(4, 4, 4), use_dcn=True), bbox_head=dict( type='CenterNetHead', num_classes=80, in_channels=64, feat_channels=64, loss_center_heatmap=dict(type='GaussianFocalLoss', loss_weight=1.0), loss_wh=dict(type='L1Loss', loss_weight=0.1), loss_offset=dict(type='L1Loss', loss_weight=1.0)), train_cfg=None, test_cfg=dict(topk=100, local_maximum_kernel=3, max_per_img=100)) train_pipeline = [ dict( type='LoadImageFromFile', file_client_args={{_base_.file_client_args}}), dict(type='LoadAnnotations', with_bbox=True), dict( type='PhotoMetricDistortion', brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18), dict( type='RandomCenterCropPad', # The cropped images are padded into squares during training, # but may be less than crop_size. crop_size=(512, 512), ratios=(0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3), mean=[0, 0, 0], std=[1, 1, 1], to_rgb=True, test_pad_mode=None), # Make sure the output is always crop_size. dict(type='Resize', scale=(512, 512), keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict( type='LoadImageFromFile', to_float32=True, file_client_args={{_base_.file_client_args}}), # don't need Resize dict( type='RandomCenterCropPad', ratios=None, border=None, mean=[0, 0, 0], std=[1, 1, 1], to_rgb=True, test_mode=True, test_pad_mode=['logical_or', 31], test_pad_add_pix=1), dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'border')) ] # Use RepeatDataset to speed up training train_dataloader = dict( batch_size=16, num_workers=4, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), dataset=dict( _delete_=True, type='RepeatDataset', times=5, dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_train2017.json', data_prefix=dict(img='train2017/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline))) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader # optimizer # Based on the default settings of modern detectors, the SGD effect is better # than the Adam in the source code, so we use SGD default settings and # if you use adam+lr5e-4, the map is 29.1. optim_wrapper = dict(clip_grad=dict(max_norm=35, norm_type=2)) max_epochs = 28 # learning policy # Based on the default settings of modern detectors, we added warmup settings. param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=1000), dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[18, 24], # the real step is [18*5, 24*5] gamma=0.1) ] train_cfg = dict(max_epochs=max_epochs) # the real epoch is 28*5=140 # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (16 samples per GPU) auto_scale_lr = dict(base_batch_size=128)
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning) # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method _set_start_method('fork') # do not change this line manually # this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.16.0' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.27' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
""" Top-level module of Jina. The primary function of this module is to import all of the public Jina interfaces into a single place. The interfaces themselves are located in sub-modules, as described below. """ import os as _os import platform as _platform import signal as _signal import sys as _sys import warnings as _warnings import docarray as _docarray if _sys.version_info < (3, 7, 0): raise OSError(f'Jina requires Python >= 3.7, but yours is {_sys.version_info}') def _warning_on_one_line(message, category, filename, lineno, *args, **kwargs): return '\033[1;33m%s: %s\033[0m \033[1;30m(raised from %s:%s)\033[0m\n' % ( category.__name__, message, filename, lineno, ) _warnings.formatwarning = _warning_on_one_line _warnings.simplefilter('always', DeprecationWarning) # fix fork error on MacOS but seems no effect? must do EXPORT manually before jina start _os.environ['OBJC_DISABLE_INITIALIZE_FORK_SAFETY'] = 'YES' # JINA_MP_START_METHOD has higher priority than os-patch _start_method = _os.environ.get('JINA_MP_START_METHOD', None) if _start_method and _start_method.lower() in {'fork', 'spawn', 'forkserver'}: from multiprocessing import set_start_method as _set_start_method try: _set_start_method(_start_method.lower()) _warnings.warn( f'multiprocessing start method is set to `{_start_method.lower()}`' ) except Exception as e: _warnings.warn( f'failed to set multiprocessing start_method to `{_start_method.lower()}`: {e!r}' ) elif _sys.version_info >= (3, 8, 0) and _platform.system() == 'Darwin': # DO SOME OS-WISE PATCHES # temporary fix for python 3.8 on macos where the default start is set to "spawn" # https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods from multiprocessing import set_start_method as _set_start_method _set_start_method('fork') # do not change this line manually # this is managed by git tag and updated on every release # NOTE: this represents the NEXT release version __version__ = '3.15.3' # do not change this line manually # this is managed by proto/build-proto.sh and updated on every execution __proto_version__ = '0.1.27' try: __docarray_version__ = _docarray.__version__ except AttributeError as e: raise RuntimeError( '`docarray` dependency is not installed correctly, please reinstall with `pip install -U --force-reinstall docarray`' ) try: _signal.signal(_signal.SIGINT, _signal.default_int_handler) except Exception as exc: _warnings.warn(f'failed to set default signal handler: {exc!r}`') def _set_nofile(nofile_atleast=4096): """ Set nofile soft limit to at least 4096, useful for running matlplotlib/seaborn on parallel executing plot generators vs. Ubuntu default ulimit -n 1024 or OS X El Captian 256 temporary setting extinguishing with Python session. :param nofile_atleast: nofile soft limit :return: nofile soft limit and nofile hard limit """ try: import resource as res except ImportError: # Windows res = None if res is None: return (None,) * 2 soft, ohard = res.getrlimit(res.RLIMIT_NOFILE) hard = ohard if soft < nofile_atleast: soft = nofile_atleast if hard < soft: hard = soft try: res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except (ValueError, res.error): try: hard = soft print(f'trouble with max limit, retrying with soft,hard {soft},{hard}') res.setrlimit(res.RLIMIT_NOFILE, (soft, hard)) except Exception: print('failed to set ulimit, giving up') soft, hard = res.getrlimit(res.RLIMIT_NOFILE) return soft, hard _set_nofile() # ONLY FIRST CLASS CITIZENS ARE ALLOWED HERE, namely Document, Executor Flow # Document from jina._docarray import Document, DocumentArray # Client from jina.clients import Client # Deployment from jina.orchestrate.deployments import Deployment from jina.orchestrate.flow.asyncio import AsyncFlow # Flow from jina.orchestrate.flow.base import Flow # Executor from jina.serve.executors import BaseExecutor as Executor from jina.serve.executors.decorators import dynamic_batching, monitor, requests # Custom Gateway from jina.serve.runtimes.gateway.gateway import Gateway
from __future__ import annotations from sentence_transformers import util from sentence_transformers.sparse_encoder.losses.SparseCoSENTLoss import SparseCoSENTLoss from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class SparseAnglELoss(SparseCoSENTLoss): def __init__(self, model: SparseEncoder, scale: float = 20.0) -> None: """ This class implements AnglE (Angle Optimized). This is a modification of :class:`SparseCoSENTLoss`, designed to address the following issue: The cosine function's gradient approaches 0 as the wave approaches the top or bottom of its form. This can hinder the optimization process, so AnglE proposes to instead optimize the angle difference in complex space in order to mitigate this effect. It expects that each of the InputExamples consists of a pair of texts and a float valued label, representing the expected similarity score between the pair. It computes the following loss function: ``loss = logsum(1+exp(s(k,l)-s(i,j))+exp...)``, where ``(i,j)`` and ``(k,l)`` are any of the input pairs in the batch such that the expected similarity of ``(i,j)`` is greater than ``(k,l)``. The summation is over all possible pairs of input pairs in the batch that match this condition. This is the same as CoSENTLoss, with a different similarity function. Args: model: SparseEncoder scale: Output of similarity function is multiplied by scale value. Represents the inverse temperature. References: - For further details, see: https://arxiv.org/abs/2309.12871v1 Requirements: - Sentence pairs with corresponding similarity scores in range of the similarity function. Default is [-1,1]. Inputs: +--------------------------------+------------------------+ | Texts | Labels | +================================+========================+ | (sentence_A, sentence_B) pairs | float similarity score | +--------------------------------+------------------------+ Relations: - :class:`SparseCoSENTLoss` is AnglELoss with ``pairwise_cos_sim`` as the metric, rather than ``pairwise_angle_sim``. - :class:`SparseCosineSimilarityLoss` seems to produce a weaker training signal than ``SparseCoSENTLoss`` or ``SparseAnglELoss``. Example: :: from datasets import Dataset from sentence_transformers.sparse_encoder import SparseEncoder, SparseEncoderTrainer, losses model = SparseEncoder("distilbert/distilbert-base-uncased") train_dataset = Dataset.from_dict( { "sentence1": ["It's nice weather outside today.", "He drove to work."], "sentence2": ["It's so sunny.", "She walked to the store."], "score": [1.0, 0.3], } ) loss = losses.SpladeLoss(model=model, loss=losses.SparseAnglELoss(model), lambda_corpus=5e-5, all_docs=True) trainer = SparseEncoderTrainer(model=model, train_dataset=train_dataset, loss=loss) trainer.train() """ return super().__init__(model, scale, similarity_fct=util.pairwise_angle_sim)
from __future__ import annotations from sentence_transformers import util from sentence_transformers.sparse_encoder.losses.SparseCoSENTLoss import SparseCoSENTLoss from sentence_transformers.sparse_encoder.SparseEncoder import SparseEncoder class SparseAnglELoss(SparseCoSENTLoss): def __init__(self, model: SparseEncoder, scale: float = 20.0) -> None: """ This class implements AnglE (Angle Optimized). This is a modification of :class:`SparseCoSENTLoss`, designed to address the following issue: The cosine function's gradient approaches 0 as the wave approaches the top or bottom of its form. This can hinder the optimization process, so AnglE proposes to instead optimize the angle difference in complex space in order to mitigate this effect. It expects that each of the InputExamples consists of a pair of texts and a float valued label, representing the expected similarity score between the pair. It computes the following loss function: ``loss = logsum(1+exp(s(k,l)-s(i,j))+exp...)``, where ``(i,j)`` and ``(k,l)`` are any of the input pairs in the batch such that the expected similarity of ``(i,j)`` is greater than ``(k,l)``. The summation is over all possible pairs of input pairs in the batch that match this condition. This is the same as CoSENTLoss, with a different similarity function. Args: model: SparseEncoder scale: Output of similarity function is multiplied by scale value. Represents the inverse temperature. References: - For further details, see: https://arxiv.org/abs/2309.12871v1 Requirements: - Sentence pairs with corresponding similarity scores in range of the similarity function. Default is [-1,1]. Inputs: +--------------------------------+------------------------+ | Texts | Labels | +================================+========================+ | (sentence_A, sentence_B) pairs | float similarity score | +--------------------------------+------------------------+ Relations: - :class:`SparseCoSENTLoss` is AnglELoss with ``pairwise_cos_sim`` as the metric, rather than ``pairwise_angle_sim``. - :class:`SparseCosineSimilarityLoss` seems to produce a weaker training signal than ``SparseCoSENTLoss`` or ``SparseAnglELoss``. Example: :: from datasets import Dataset from sentence_transformers.sparse_encoder import SparseEncoder, SparseEncoderTrainer, losses model = SparseEncoder("distilbert/distilbert-base-uncased") train_dataset = Dataset.from_dict( { "sentence1": ["It's nice weather outside today.", "He drove to work."], "sentence2": ["It's so sunny.", "She walked to the store."], "score": [1.0, 0.3], } ) loss = losses.SparseAnglELoss(model) trainer = SparseEncoderTrainer(model=model, train_dataset=train_dataset, loss=loss) trainer.train() """ return super().__init__(model, scale, similarity_fct=util.pairwise_angle_sim)
# Copyright (c) OpenMMLab. All rights reserved. import argparse import os from pathlib import Path import mmcv from mmcv import Config, DictAction from mmdet.core.utils import mask2ndarray from mmdet.core.visualization import imshow_det_bboxes from mmdet.datasets.builder import build_dataset def parse_args(): parser = argparse.ArgumentParser(description='Browse a dataset') parser.add_argument('config', help='train config file path') parser.add_argument( '--skip-type', type=str, nargs='+', default=['DefaultFormatBundle', 'Normalize', 'Collect'], help='skip some useless pipeline') parser.add_argument( '--output-dir', default=None, type=str, help='If there is no display interface, you can save it') parser.add_argument('--not-show', default=False, action='store_true') parser.add_argument( '--show-interval', type=float, default=2, help='the interval of show (s)') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') args = parser.parse_args() return args def retrieve_data_cfg(config_path, skip_type, cfg_options): cfg = Config.fromfile(config_path) if cfg_options is not None: cfg.merge_from_dict(cfg_options) # import modules from string list. if cfg.get('custom_imports', None): from mmcv.utils import import_modules_from_strings import_modules_from_strings(**cfg['custom_imports']) train_data_cfg = cfg.data.train while 'dataset' in train_data_cfg and train_data_cfg[ 'type'] != 'MultiImageMixDataset': train_data_cfg = train_data_cfg['dataset'] train_data_cfg['pipeline'] = [ x for x in train_data_cfg.pipeline if x['type'] not in skip_type ] return cfg def main(): args = parse_args() cfg = retrieve_data_cfg(args.config, args.skip_type, args.cfg_options) dataset = build_dataset(cfg.data.train) progress_bar = mmcv.ProgressBar(len(dataset)) for item in dataset: filename = os.path.join(args.output_dir, Path(item['filename']).name ) if args.output_dir is not None else None gt_masks = item.get('gt_masks', None) if gt_masks is not None: gt_masks = mask2ndarray(gt_masks) imshow_det_bboxes( item['img'], item['gt_bboxes'], item['gt_labels'], gt_masks, class_names=dataset.CLASSES, show=not args.not_show, wait_time=args.show_interval, out_file=filename, bbox_color=(255, 102, 61), text_color=(255, 102, 61)) progress_bar.update() if __name__ == '__main__': main()
import argparse import os from pathlib import Path import mmcv from mmcv import Config, DictAction from mmdet.core.utils import mask2ndarray from mmdet.core.visualization import imshow_det_bboxes from mmdet.datasets.builder import build_dataset def parse_args(): parser = argparse.ArgumentParser(description='Browse a dataset') parser.add_argument('config', help='train config file path') parser.add_argument( '--skip-type', type=str, nargs='+', default=['DefaultFormatBundle', 'Normalize', 'Collect'], help='skip some useless pipeline') parser.add_argument( '--output-dir', default=None, type=str, help='If there is no display interface, you can save it') parser.add_argument('--not-show', default=False, action='store_true') parser.add_argument( '--show-interval', type=float, default=2, help='the interval of show (s)') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') args = parser.parse_args() return args def retrieve_data_cfg(config_path, skip_type, cfg_options): cfg = Config.fromfile(config_path) if cfg_options is not None: cfg.merge_from_dict(cfg_options) # import modules from string list. if cfg.get('custom_imports', None): from mmcv.utils import import_modules_from_strings import_modules_from_strings(**cfg['custom_imports']) train_data_cfg = cfg.data.train while 'dataset' in train_data_cfg and train_data_cfg[ 'type'] != 'MultiImageMixDataset': train_data_cfg = train_data_cfg['dataset'] train_data_cfg['pipeline'] = [ x for x in train_data_cfg.pipeline if x['type'] not in skip_type ] return cfg def main(): args = parse_args() cfg = retrieve_data_cfg(args.config, args.skip_type, args.cfg_options) dataset = build_dataset(cfg.data.train) progress_bar = mmcv.ProgressBar(len(dataset)) for item in dataset: filename = os.path.join(args.output_dir, Path(item['filename']).name ) if args.output_dir is not None else None gt_masks = item.get('gt_masks', None) if gt_masks is not None: gt_masks = mask2ndarray(gt_masks) imshow_det_bboxes( item['img'], item['gt_bboxes'], item['gt_labels'], gt_masks, class_names=dataset.CLASSES, show=not args.not_show, wait_time=args.show_interval, out_file=filename, bbox_color=(255, 102, 61), text_color=(255, 102, 61)) progress_bar.update() if __name__ == '__main__': main()
from llama_index.core.graph_stores.types import GraphStore from llama_index.graph_stores.memgraph import MemgraphGraphStore def test_memgraph_graph_store(): names_of_bases = [b.__name__ for b in MemgraphGraphStore.__bases__] assert GraphStore.__name__ in names_of_bases
from unittest.mock import MagicMock, patch from llama_index.core.graph_stores.types import GraphStore from llama_index.graph_stores.memgraph import MemgraphGraphStore @patch("llama_index.graph_stores.memgraph.MemgraphGraphStore") def test_memgraph_graph_store(MockMemgraphGraphStore: MagicMock): instance: MemgraphGraphStore = MockMemgraphGraphStore.return_value() assert isinstance(instance, GraphStore)
# coding=utf-8 # Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Fast Tokenization classes for OpenAI GPT.""" from typing import Optional from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_openai import OpenAIGPTTokenizer logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} class OpenAIGPTTokenizerFast(PreTrainedTokenizerFast): """ Construct a "fast" GPT Tokenizer (backed by HuggingFace's *tokenizers* library). Based on Byte-Pair-Encoding with the following peculiarities: - lower case all inputs - uses BERT's BasicTokenizer for pre-BPE tokenization This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. merges_file (`str`): Path to the merges file. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. """ vocab_files_names = VOCAB_FILES_NAMES model_input_names = ["input_ids", "attention_mask"] slow_tokenizer_class = OpenAIGPTTokenizer def __init__(self, vocab_file=None, merges_file=None, tokenizer_file=None, unk_token="<unk>", **kwargs): super().__init__(vocab_file, merges_file, tokenizer_file=tokenizer_file, unk_token=unk_token, **kwargs) @property def do_lower_case(self): return True def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> tuple[str]: files = self._tokenizer.model.save(save_directory, name=filename_prefix) return tuple(files) __all__ = ["OpenAIGPTTokenizerFast"]
# coding=utf-8 # Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Fast Tokenization classes for OpenAI GPT.""" from typing import Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_openai import OpenAIGPTTokenizer logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} class OpenAIGPTTokenizerFast(PreTrainedTokenizerFast): """ Construct a "fast" GPT Tokenizer (backed by HuggingFace's *tokenizers* library). Based on Byte-Pair-Encoding with the following peculiarities: - lower case all inputs - uses BERT's BasicTokenizer for pre-BPE tokenization This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. merges_file (`str`): Path to the merges file. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. """ vocab_files_names = VOCAB_FILES_NAMES model_input_names = ["input_ids", "attention_mask"] slow_tokenizer_class = OpenAIGPTTokenizer def __init__(self, vocab_file=None, merges_file=None, tokenizer_file=None, unk_token="<unk>", **kwargs): super().__init__(vocab_file, merges_file, tokenizer_file=tokenizer_file, unk_token=unk_token, **kwargs) @property def do_lower_case(self): return True def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: files = self._tokenizer.model.save(save_directory, name=filename_prefix) return tuple(files) __all__ = ["OpenAIGPTTokenizerFast"]
# coding: utf-8 import pytest import lightgbm as lgb from .utils import pickle_obj, unpickle_obj @pytest.mark.parametrize('serializer', ["pickle", "joblib", "cloudpickle"]) def test_early_stopping_callback_is_picklable(serializer, tmp_path): rounds = 5 callback = lgb.early_stopping(stopping_rounds=rounds) tmp_file = tmp_path / "early_stopping.pkl" pickle_obj( obj=callback, filepath=tmp_file, serializer=serializer ) callback_from_disk = unpickle_obj( filepath=tmp_file, serializer=serializer ) assert callback.stopping_rounds == callback_from_disk.stopping_rounds assert callback.stopping_rounds == rounds @pytest.mark.parametrize('serializer', ["pickle", "joblib", "cloudpickle"]) def test_log_evaluation_callback_is_picklable(serializer, tmp_path): periods = 42 callback = lgb.log_evaluation(period=periods) tmp_file = tmp_path / "log_evaluation.pkl" pickle_obj( obj=callback, filepath=tmp_file, serializer=serializer ) callback_from_disk = unpickle_obj( filepath=tmp_file, serializer=serializer ) assert callback.period == callback_from_disk.period assert callback.period == periods
# coding: utf-8 import pytest import lightgbm as lgb from .utils import pickle_obj, unpickle_obj @pytest.mark.parametrize('serializer', ["pickle", "joblib", "cloudpickle"]) def test_early_stopping_callback_is_picklable(serializer, tmp_path): callback = lgb.early_stopping(stopping_rounds=5) tmp_file = tmp_path / "early_stopping.pkl" pickle_obj( obj=callback, filepath=tmp_file, serializer=serializer ) callback_from_disk = unpickle_obj( filepath=tmp_file, serializer=serializer ) assert callback.stopping_rounds == callback_from_disk.stopping_rounds