text
stringlengths 0
4.99k
|
---|
headers: Dictionary; optional custom HTTP headers.
|
send_as_json: Boolean; whether the request should be sent as "application/json".
|
Base Callback class
|
Callback class
|
tf.keras.callbacks.Callback()
|
Abstract base class used to build new callbacks.
|
Callbacks can be passed to keras methods such as fit, evaluate, and predict in order to hook into the various stages of the model training and inference lifecycle.
|
To create a custom callback, subclass keras.callbacks.Callback and override the method associated with the stage of interest. See https://www.tensorflow.org/guide/keras/custom_callback for more information.
|
Example
|
>>> training_finished = False
|
>>> class MyCallback(tf.keras.callbacks.Callback):
|
... def on_train_end(self, logs=None):
|
... global training_finished
|
... training_finished = True
|
>>> model = tf.keras.Sequential([tf.keras.layers.Dense(1, input_shape=(1,))])
|
>>> model.compile(loss='mean_squared_error')
|
>>> model.fit(tf.constant([[1.0]]), tf.constant([[1.0]]),
|
... callbacks=[MyCallback()])
|
>>> assert training_finished == True
|
Attributes
|
params: Dict. Training parameters (eg. verbosity, batch size, number of epochs...).
|
model: Instance of keras.models.Model. Reference of the model being trained.
|
The logs dictionary that callback methods take as argument will contain keys for quantities relevant to the current batch or epoch (see method-specific docstrings).Regression losses
|
MeanSquaredError class
|
tf.keras.losses.MeanSquaredError(reduction="auto", name="mean_squared_error")
|
Computes the mean of squares of errors between labels and predictions.
|
loss = square(y_true - y_pred)
|
Standalone usage:
|
>>> y_true = [[0., 1.], [0., 0.]]
|
>>> y_pred = [[1., 1.], [1., 0.]]
|
>>> # Using 'auto'/'sum_over_batch_size' reduction type.
|
>>> mse = tf.keras.losses.MeanSquaredError()
|
>>> mse(y_true, y_pred).numpy()
|
0.5
|
>>> # Calling with 'sample_weight'.
|
>>> mse(y_true, y_pred, sample_weight=[0.7, 0.3]).numpy()
|
0.25
|
>>> # Using 'sum' reduction type.
|
>>> mse = tf.keras.losses.MeanSquaredError(
|
... reduction=tf.keras.losses.Reduction.SUM)
|
>>> mse(y_true, y_pred).numpy()
|
1.0
|
>>> # Using 'none' reduction type.
|
>>> mse = tf.keras.losses.MeanSquaredError(
|
... reduction=tf.keras.losses.Reduction.NONE)
|
>>> mse(y_true, y_pred).numpy()
|
array([0.5, 0.5], dtype=float32)
|
Usage with the compile() API:
|
model.compile(optimizer='sgd', loss=tf.keras.losses.MeanSquaredError())
|
MeanAbsoluteError class
|
tf.keras.losses.MeanAbsoluteError(
|
reduction="auto", name="mean_absolute_error"
|
)
|
Computes the mean of absolute difference between labels and predictions.
|
loss = abs(y_true - y_pred)
|
Standalone usage:
|
>>> y_true = [[0., 1.], [0., 0.]]
|
>>> y_pred = [[1., 1.], [1., 0.]]
|
>>> # Using 'auto'/'sum_over_batch_size' reduction type.
|
>>> mae = tf.keras.losses.MeanAbsoluteError()
|
>>> mae(y_true, y_pred).numpy()
|
0.5
|
>>> # Calling with 'sample_weight'.
|
>>> mae(y_true, y_pred, sample_weight=[0.7, 0.3]).numpy()
|
0.25
|
>>> # Using 'sum' reduction type.
|
>>> mae = tf.keras.losses.MeanAbsoluteError(
|
... reduction=tf.keras.losses.Reduction.SUM)
|
>>> mae(y_true, y_pred).numpy()
|
1.0
|
>>> # Using 'none' reduction type.
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.