text
stringlengths 0
4.99k
|
---|
tf.keras.losses.Hinge(reduction="auto", name="hinge")
|
Computes the hinge loss between y_true and y_pred.
|
loss = maximum(1 - y_true * y_pred, 0)
|
y_true values are expected to be -1 or 1. If binary (0 or 1) labels are provided we will convert them to -1 or 1.
|
Standalone usage:
|
>>> y_true = [[0., 1.], [0., 0.]]
|
>>> y_pred = [[0.6, 0.4], [0.4, 0.6]]
|
>>> # Using 'auto'/'sum_over_batch_size' reduction type.
|
>>> h = tf.keras.losses.Hinge()
|
>>> h(y_true, y_pred).numpy()
|
1.3
|
>>> # Calling with 'sample_weight'.
|
>>> h(y_true, y_pred, sample_weight=[1, 0]).numpy()
|
0.55
|
>>> # Using 'sum' reduction type.
|
>>> h = tf.keras.losses.Hinge(
|
... reduction=tf.keras.losses.Reduction.SUM)
|
>>> h(y_true, y_pred).numpy()
|
2.6
|
>>> # Using 'none' reduction type.
|
>>> h = tf.keras.losses.Hinge(
|
... reduction=tf.keras.losses.Reduction.NONE)
|
>>> h(y_true, y_pred).numpy()
|
array([1.1, 1.5], dtype=float32)
|
Usage with the compile() API:
|
model.compile(optimizer='sgd', loss=tf.keras.losses.Hinge())
|
SquaredHinge class
|
tf.keras.losses.SquaredHinge(reduction="auto", name="squared_hinge")
|
Computes the squared hinge loss between y_true and y_pred.
|
loss = square(maximum(1 - y_true * y_pred, 0))
|
y_true values are expected to be -1 or 1. If binary (0 or 1) labels are provided we will convert them to -1 or 1.
|
Standalone usage:
|
>>> y_true = [[0., 1.], [0., 0.]]
|
>>> y_pred = [[0.6, 0.4], [0.4, 0.6]]
|
>>> # Using 'auto'/'sum_over_batch_size' reduction type.
|
>>> h = tf.keras.losses.SquaredHinge()
|
>>> h(y_true, y_pred).numpy()
|
1.86
|
>>> # Calling with 'sample_weight'.
|
>>> h(y_true, y_pred, sample_weight=[1, 0]).numpy()
|
0.73
|
>>> # Using 'sum' reduction type.
|
>>> h = tf.keras.losses.SquaredHinge(
|
... reduction=tf.keras.losses.Reduction.SUM)
|
>>> h(y_true, y_pred).numpy()
|
3.72
|
>>> # Using 'none' reduction type.
|
>>> h = tf.keras.losses.SquaredHinge(
|
... reduction=tf.keras.losses.Reduction.NONE)
|
>>> h(y_true, y_pred).numpy()
|
array([1.46, 2.26], dtype=float32)
|
Usage with the compile() API:
|
model.compile(optimizer='sgd', loss=tf.keras.losses.SquaredHinge())
|
CategoricalHinge class
|
tf.keras.losses.CategoricalHinge(reduction="auto", name="categorical_hinge")
|
Computes the categorical hinge loss between y_true and y_pred.
|
loss = maximum(neg - pos + 1, 0) where neg=maximum((1-y_true)*y_pred) and pos=sum(y_true*y_pred)
|
Standalone usage:
|
>>> y_true = [[0, 1], [0, 0]]
|
>>> y_pred = [[0.6, 0.4], [0.4, 0.6]]
|
>>> # Using 'auto'/'sum_over_batch_size' reduction type.
|
>>> h = tf.keras.losses.CategoricalHinge()
|
>>> h(y_true, y_pred).numpy()
|
1.4
|
>>> # Calling with 'sample_weight'.
|
>>> h(y_true, y_pred, sample_weight=[1, 0]).numpy()
|
0.6
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.