text
stringlengths 0
4.99k
|
---|
decoder_input = keras.Input(shape=(16,), name="encoded_img")
|
x = layers.Reshape((4, 4, 1))(decoder_input)
|
x = layers.Conv2DTranspose(16, 3, activation="relu")(x)
|
x = layers.Conv2DTranspose(32, 3, activation="relu")(x)
|
x = layers.UpSampling2D(3)(x)
|
x = layers.Conv2DTranspose(16, 3, activation="relu")(x)
|
decoder_output = layers.Conv2DTranspose(1, 3, activation="relu")(x)
|
decoder = keras.Model(decoder_input, decoder_output, name="decoder")
|
decoder.summary()
|
autoencoder_input = keras.Input(shape=(28, 28, 1), name="img")
|
encoded_img = encoder(autoencoder_input)
|
decoded_img = decoder(encoded_img)
|
autoencoder = keras.Model(autoencoder_input, decoded_img, name="autoencoder")
|
autoencoder.summary()
|
Model: "encoder"
|
_________________________________________________________________
|
Layer (type) Output Shape Param #
|
=================================================================
|
original_img (InputLayer) [(None, 28, 28, 1)] 0
|
_________________________________________________________________
|
conv2d_4 (Conv2D) (None, 26, 26, 16) 160
|
_________________________________________________________________
|
conv2d_5 (Conv2D) (None, 24, 24, 32) 4640
|
_________________________________________________________________
|
max_pooling2d_1 (MaxPooling2 (None, 8, 8, 32) 0
|
_________________________________________________________________
|
conv2d_6 (Conv2D) (None, 6, 6, 32) 9248
|
_________________________________________________________________
|
conv2d_7 (Conv2D) (None, 4, 4, 16) 4624
|
_________________________________________________________________
|
global_max_pooling2d_1 (Glob (None, 16) 0
|
=================================================================
|
Total params: 18,672
|
Trainable params: 18,672
|
Non-trainable params: 0
|
_________________________________________________________________
|
Model: "decoder"
|
_________________________________________________________________
|
Layer (type) Output Shape Param #
|
=================================================================
|
encoded_img (InputLayer) [(None, 16)] 0
|
_________________________________________________________________
|
reshape_1 (Reshape) (None, 4, 4, 1) 0
|
_________________________________________________________________
|
conv2d_transpose_4 (Conv2DTr (None, 6, 6, 16) 160
|
_________________________________________________________________
|
conv2d_transpose_5 (Conv2DTr (None, 8, 8, 32) 4640
|
_________________________________________________________________
|
up_sampling2d_1 (UpSampling2 (None, 24, 24, 32) 0
|
_________________________________________________________________
|
conv2d_transpose_6 (Conv2DTr (None, 26, 26, 16) 4624
|
_________________________________________________________________
|
conv2d_transpose_7 (Conv2DTr (None, 28, 28, 1) 145
|
=================================================================
|
Total params: 9,569
|
Trainable params: 9,569
|
Non-trainable params: 0
|
_________________________________________________________________
|
Model: "autoencoder"
|
_________________________________________________________________
|
Layer (type) Output Shape Param #
|
=================================================================
|
img (InputLayer) [(None, 28, 28, 1)] 0
|
_________________________________________________________________
|
encoder (Functional) (None, 16) 18672
|
_________________________________________________________________
|
decoder (Functional) (None, 28, 28, 1) 9569
|
=================================================================
|
Total params: 28,241
|
Trainable params: 28,241
|
Non-trainable params: 0
|
_________________________________________________________________
|
As you can see, the model can be nested: a model can contain sub-models (since a model is just like a layer). A common use case for model nesting is ensembling. For example, here's how to ensemble a set of models into a single model that averages their predictions:
|
def get_model():
|
inputs = keras.Input(shape=(128,))
|
outputs = layers.Dense(1)(inputs)
|
return keras.Model(inputs, outputs)
|
model1 = get_model()
|
model2 = get_model()
|
model3 = get_model()
|
inputs = keras.Input(shape=(128,))
|
y1 = model1(inputs)
|
y2 = model2(inputs)
|
y3 = model3(inputs)
|
outputs = layers.average([y1, y2, y3])
|
ensemble_model = keras.Model(inputs=inputs, outputs=outputs)
|
Manipulate complex graph topologies
|
Models with multiple inputs and outputs
|
The functional API makes it easy to manipulate multiple inputs and outputs. This cannot be handled with the Sequential API.
|
For example, if you're building a system for ranking customer issue tickets by priority and routing them to the correct department, then the model will have three inputs:
|
the title of the ticket (text input),
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.