text
stringlengths 0
4.99k
|
---|
resnet = ResNet()
|
dataset = ...
|
resnet.fit(dataset, epochs=10)
|
resnet.save(filepath)
|
Putting it all together: an end-to-end example
|
Here's what you've learned so far:
|
A Layer encapsulate a state (created in __init__() or build()) and some computation (defined in call()).
|
Layers can be recursively nested to create new, bigger computation blocks.
|
Layers can create and track losses (typically regularization losses) as well as metrics, via add_loss() and add_metric()
|
The outer container, the thing you want to train, is a Model. A Model is just like a Layer, but with added training and serialization utilities.
|
Let's put all of these things together into an end-to-end example: we're going to implement a Variational AutoEncoder (VAE). We'll train it on MNIST digits.
|
Our VAE will be a subclass of Model, built as a nested composition of layers that subclass Layer. It will feature a regularization loss (KL divergence).
|
from tensorflow.keras import layers
|
class Sampling(layers.Layer):
|
"""Uses (z_mean, z_log_var) to sample z, the vector encoding a digit."""
|
def call(self, inputs):
|
z_mean, z_log_var = inputs
|
batch = tf.shape(z_mean)[0]
|
dim = tf.shape(z_mean)[1]
|
epsilon = tf.keras.backend.random_normal(shape=(batch, dim))
|
return z_mean + tf.exp(0.5 * z_log_var) * epsilon
|
class Encoder(layers.Layer):
|
"""Maps MNIST digits to a triplet (z_mean, z_log_var, z)."""
|
def __init__(self, latent_dim=32, intermediate_dim=64, name="encoder", **kwargs):
|
super(Encoder, self).__init__(name=name, **kwargs)
|
self.dense_proj = layers.Dense(intermediate_dim, activation="relu")
|
self.dense_mean = layers.Dense(latent_dim)
|
self.dense_log_var = layers.Dense(latent_dim)
|
self.sampling = Sampling()
|
def call(self, inputs):
|
x = self.dense_proj(inputs)
|
z_mean = self.dense_mean(x)
|
z_log_var = self.dense_log_var(x)
|
z = self.sampling((z_mean, z_log_var))
|
return z_mean, z_log_var, z
|
class Decoder(layers.Layer):
|
"""Converts z, the encoded digit vector, back into a readable digit."""
|
def __init__(self, original_dim, intermediate_dim=64, name="decoder", **kwargs):
|
super(Decoder, self).__init__(name=name, **kwargs)
|
self.dense_proj = layers.Dense(intermediate_dim, activation="relu")
|
self.dense_output = layers.Dense(original_dim, activation="sigmoid")
|
def call(self, inputs):
|
x = self.dense_proj(inputs)
|
return self.dense_output(x)
|
class VariationalAutoEncoder(keras.Model):
|
"""Combines the encoder and decoder into an end-to-end model for training."""
|
def __init__(
|
self,
|
original_dim,
|
intermediate_dim=64,
|
latent_dim=32,
|
name="autoencoder",
|
**kwargs
|
):
|
super(VariationalAutoEncoder, self).__init__(name=name, **kwargs)
|
self.original_dim = original_dim
|
self.encoder = Encoder(latent_dim=latent_dim, intermediate_dim=intermediate_dim)
|
self.decoder = Decoder(original_dim, intermediate_dim=intermediate_dim)
|
def call(self, inputs):
|
z_mean, z_log_var, z = self.encoder(inputs)
|
reconstructed = self.decoder(z)
|
# Add KL divergence regularization loss.
|
kl_loss = -0.5 * tf.reduce_mean(
|
z_log_var - tf.square(z_mean) - tf.exp(z_log_var) + 1
|
)
|
self.add_loss(kl_loss)
|
return reconstructed
|
Let's write a simple training loop on MNIST:
|
original_dim = 784
|
vae = VariationalAutoEncoder(original_dim, 64, 32)
|
optimizer = tf.keras.optimizers.Adam(learning_rate=1e-3)
|
mse_loss_fn = tf.keras.losses.MeanSquaredError()
|
loss_metric = tf.keras.metrics.Mean()
|
(x_train, _), _ = tf.keras.datasets.mnist.load_data()
|
x_train = x_train.reshape(60000, 784).astype("float32") / 255
|
train_dataset = tf.data.Dataset.from_tensor_slices(x_train)
|
train_dataset = train_dataset.shuffle(buffer_size=1024).batch(64)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.