Dataset Viewer
Auto-converted to Parquet
message_type
stringclasses
2 values
message
stringlengths
2
232
message_id
int64
0
1
conversation_id
int64
0
2.38k
instruction
Concatenate elements of a list 'x' of multiple integers to a single integer
0
0
output
sum(d * 10 ** i for i, d in enumerate(x[::-1]))
1
0
instruction
convert a list of integers into a single integer
0
1
output
r = int(''.join(map(str, x)))
1
1
instruction
convert a DateTime string back to a DateTime object of format '%Y-%m-%d %H:%M:%S.%f'
0
2
output
datetime.strptime('2010-11-13 10:33:54.227806', '%Y-%m-%d %H:%M:%S.%f')
1
2
instruction
get the average of a list values for each key in dictionary `d`)
0
3
output
[(i, sum(j) / len(j)) for i, j in list(d.items())]
1
3
instruction
zip two lists `[1, 2]` and `[3, 4]` into a list of two tuples containing elements at the same index in each list
0
4
output
zip([1, 2], [3, 4])
1
4
instruction
prepend string 'hello' to all items in list 'a'
0
5
output
['hello{0}'.format(i) for i in a]
1
5
instruction
regex for repeating words in a string `s`
0
6
output
re.sub('(?<!\\S)((\\S+)(?:\\s+\\2))(?:\\s+\\2)+(?!\\S)', '\\1', s)
1
6
instruction
normalize a pandas dataframe `df` by row
0
7
output
df.div(df.sum(axis=1), axis=0)
1
7
instruction
swap values in a tuple/list inside a list `mylist`
0
8
output
map(lambda t: (t[1], t[0]), mylist)
1
8
instruction
Swap values in a tuple/list in list `mylist`
0
9
output
[(t[1], t[0]) for t in mylist]
1
9
instruction
null
0
10
output
driver.find_element_by_xpath("//p[@id, 'one']/following-sibling::p")
1
10
instruction
find all occurrences of the pattern '\\[[^\\]]*\\]|\\([^\\)]*\\)|"[^"]*"|\\S+' within `strs`
0
11
output
re.findall('\\[[^\\]]*\\]|\\([^\\)]*\\)|"[^"]*"|\\S+', strs)
1
11
instruction
generate the combinations of 3 from a set `{1, 2, 3, 4}`
0
12
output
print(list(itertools.combinations({1, 2, 3, 4}, 3)))
1
12
instruction
add multiple columns `hour`, `weekday`, `weeknum` to pandas data frame `df` from lambda function `lambdafunc`
0
13
output
df[['hour', 'weekday', 'weeknum']] = df.apply(lambdafunc, axis=1)
1
13
instruction
BeautifulSoup search string 'Elsie' inside tag 'a'
0
14
output
soup.find_all('a', string='Elsie')
1
14
instruction
Convert a datetime object `my_datetime` into readable format `%B %d, %Y`
0
15
output
my_datetime.strftime('%B %d, %Y')
1
15
instruction
parse string `s` to int when string contains a number
0
16
output
int(''.join(c for c in s if c.isdigit()))
1
16
instruction
add dictionary `{'class': {'section': 5}}` to key 'Test' of dictionary `dic`
0
17
output
dic['Test'].update({'class': {'section': 5}})
1
17
instruction
transforming the string `s` into dictionary
0
18
output
dict(map(int, x.split(':')) for x in s.split(','))
1
18
instruction
null
0
19
output
driver.find_element_by_xpath("//div[@id='a']//a[@class='click']")
1
19
instruction
find rows matching `(0,1)` in a 2 dimensional numpy array `vals`
0
20
output
np.where((vals == (0, 1)).all(axis=1))
1
20
instruction
null
0
21
output
SomeModel.objects.filter(id=id).delete()
1
21
instruction
build a dictionary containing the conversion of each list in list `[['two', 2], ['one', 1]]` to a key/value pair as its items
0
22
output
dict([['two', 2], ['one', 1]])
1
22
instruction
convert list `l` to dictionary having each two adjacent elements as key/value pair
0
23
output
dict(zip(l[::2], l[1::2]))
1
23
instruction
assign float 9.8 to variable `GRAVITY`
0
24
output
GRAVITY = 9.8
1
24
instruction
separate numbers from characters in string "30m1000n20m"
0
25
output
re.findall('(([0-9]+)([A-Z]))', '20M10000N80M')
1
25
instruction
separate numbers and characters in string '20M10000N80M'
0
26
output
re.findall('([0-9]+|[A-Z])', '20M10000N80M')
1
26
instruction
separate numbers and characters in string '20M10000N80M'
0
27
output
re.findall('([0-9]+)([A-Z])', '20M10000N80M')
1
27
instruction
Get a list of words from a string `Hello world, my name is...James the 2nd!` removing punctuation
0
28
output
re.compile('\\w+').findall('Hello world, my name is...James the 2nd!')
1
28
instruction
Convert string '03:55' into datetime.time object
0
29
output
datetime.datetime.strptime('03:55', '%H:%M').time()
1
29
instruction
request url 'https://www.reporo.com/' without verifying SSL certificates
0
30
output
requests.get('https://www.reporo.com/', verify=False)
1
30
instruction
Extract values not equal to 0 from numpy array `a`
0
31
output
a[a != 0]
1
31
instruction
map two lists `keys` and `values` into a dictionary
0
32
output
new_dict = {k: v for k, v in zip(keys, values)}
1
32
instruction
map two lists `keys` and `values` into a dictionary
0
33
output
dict((k, v) for k, v in zip(keys, values))
1
33
instruction
map two lists `keys` and `values` into a dictionary
0
34
output
dict([(k, v) for k, v in zip(keys, values)])
1
34
instruction
find the string matches within parenthesis from a string `s` using regex
0
35
output
m = re.search('\\[(\\w+)\\]', s)
1
35
instruction
Enable the SO_REUSEADDR socket option in socket object `s` to fix the error `only one usage of each socket address is normally permitted`
0
36
output
s.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1)
1
36
instruction
append the sum of each tuple pair in the grouped list `list1` and list `list2` elements to list `list3`
0
37
output
list3 = [(a + b) for a, b in zip(list1, list2)]
1
37
instruction
converting hex string `s` to its integer representations
0
38
output
[ord(c) for c in s.decode('hex')]
1
38
instruction
sort list `student_tuples` by second element of each tuple in ascending and third element of each tuple in descending
0
39
output
print(sorted(student_tuples, key=lambda t: (-t[2], t[0])))
1
39
instruction
get list of duplicated elements in range of 3
0
40
output
[y for x in range(3) for y in [x, x]]
1
40
instruction
read the contents of the file 'file.txt' into `txt`
0
41
output
txt = open('file.txt').read()
1
41
instruction
divide each element in list `myList` by integer `myInt`
0
42
output
myList[:] = [(x / myInt) for x in myList]
1
42
instruction
null
0
43
output
"""Name: {0[person.name]}""".format({'person.name': 'Joe'})
1
43
instruction
replace white spaces in dataframe `df` with '_'
0
44
output
df.replace(' ', '_', regex=True)
1
44
instruction
convert date `my_date` to datetime
0
45
output
datetime.datetime.combine(my_date, datetime.time.min)
1
45
instruction
convert tuple `tst` to string `tst2`
0
46
output
tst2 = str(tst)
1
46
instruction
get modified time of file `file`
0
47
output
time.ctime(os.path.getmtime(file))
1
47
instruction
get creation time of file `file`
0
48
output
time.ctime(os.path.getctime(file))
1
48
instruction
get modification time of file `filename`
0
49
output
t = os.path.getmtime(filename)
1
49
End of preview. Expand in Data Studio

Dataset Card for "conala_standardized"

More Information needed

Downloads last month
4