Unnamed: 0
int64
0
2.34M
title
stringlengths
5
21.5M
abst
stringlengths
1
21.5M
2,335,700
Lymphocyte sparing normal tissue effects in the clinic (LymphoTEC): A systematic review of dose constraint considerations to mitigate radiation-related lymphopenia in the era of immunotherapy.
Radiation-related lymphopenia has been associated with suboptimal tumor control rates leading to inferior survival outcomes. To date, no standardized dose constraints are available to limit radiation dose to resident and circulating lymphocyte populations. We undertook this systemic review of the literature to provide a synopsis of the dosimetric predictors of radiation-related lymphopenia in solid malignancies.</AbstractText>A systematic literature review of PubMed (National Institutes of Health), Cochrane Central (Cochrane collaboration), and Google Scholar was conducted with the following keywords: "radiation", "lymphopenia", "cancer", "dosimetric predictors" with an inclusion deadline of May 31, 2022. Studies that met prespecified inclusion criteria were designated either Good, Fair, or Poor Quality based on the Newcastle-Ottawa quality assessment. The dosimetric parameters derived from Good Quality studies were tabulated as LymphoTEC dose constraints. Dosimetric parameters derived from Fair and Poor-quality studies were grouped as optional.</AbstractText>An initial systematic search of the literature yielded 1,632 articles. After screening, a total of 48 studies met inclusion criteria and were divided into the following categories: central nervous system (CNS, 6), thoracic (11), gastrointestinal (26), gynecologic (2), head and neck, breast, and genitourinary (one each) cancers. Lung mean dose, heart mean dose, brain V25, spleen mean dose, estimated dose to immune cells, and bone marrow V10 were among the strongest predictors for severe lymphopenia related to radiotherapy.</AbstractText>Optimizing the delivery of radiation therapy to limit dose to lymphocyte-rich structures may curb the negative oncologic impact of lymphocyte depletion. The dose constraints described herein may be considered for prospective validation and future use in clinical trials to limit risk of radiation-related lymphopenia and possibly improve cancer-associated outcomes.</AbstractText>Copyright &#xa9; 2022 Elsevier B.V. All rights reserved.</CopyrightInformation>
2,335,701
Mixture 2D Convolutions for 3D Medical Image Segmentation.
Three-dimensional (3D) medical image segmentation plays a crucial role in medical care applications. Although various two-dimensional (2D) and 3D neural network models have been applied to 3D medical image segmentation and achieved impressive results, a trade-off remains between efficiency and accuracy. To address this issue, a novel mixture convolutional network (MixConvNet) is proposed, in which traditional 2D/3D convolutional blocks are replaced with novel MixConv blocks. In the MixConv block, 3D convolution is decomposed into a mixture of 2D convolutions from different views. Therefore, the MixConv block fully utilizes the advantages of 2D convolution and maintains the learning ability of 3D convolution. It acts as 3D convolutions and thus can process volumetric input directly and learn intra-slice features, which are absent in the traditional 2D convolutional block. By contrast, the proposed MixConv block only contains 2D convolutions; hence, it has significantly fewer trainable parameters and less computation budget than a block containing 3D convolutions. Furthermore, the proposed MixConvNet is pre-trained with small input patches and fine-tuned with large input patches to improve segmentation performance further. In experiments on the Decathlon Heart dataset and Sliver07 dataset, the proposed MixConvNet outperformed the state-of-the-art methods such as UNet3D, VNet, and nnUnet.
2,335,702
Biophysical characterization of the first ultra-cyclist in the world to break the 1,000 km barrier in 24-h non-stop road cycling: A case report.
A plethora of factors determine elite cycling performance. Those include training characteristics, pacing strategy, aerodynamics, nutritional habits, psychological traits, physical fitness level, body mass composition, and contextual features; even the slightest changes in any of these factors can be associated with performance improvement or deterioration. The aim of the present case report is to compare the performances of the same ultra-cyclist in achieving two world records (WR) in 24 h cycling. We have analyzed and compared the distance covered and speed for each WR. The 24 h period was split into four-time intervals (0-6 h; &gt; 6-12 h; &gt; 12-18 h; &gt; 18-24 h), and we compared the differences in the distance covered and speed between the two WRs. For both WRs, a strong negative correlation between distance and speed was confirmed (<i>r</i> = -0.85; <i>r</i> = -0.89, for old and new WR, respectively). Differences in speed (km/h) were shown between the two WRs, with the most significant differences in 12-18 h (&#x394; = 6.50 km/h). For the covered distance in each block, the most significant differences were observed in the last part of the cycling (&#x394; = 38.54 km). The cyclist effective surface area (ACd) was 0.25 m<sup>2</sup> less and 20% more drag in the new WR. Additionally, the mechanical power was 8%, the power to overcome drag was 31%, and the power-weight ratio was 8% higher in the new WR. The mechanical efficiency of the cyclist was 1% higher in the new WR. Finally, the heart rate (HR) presented significant differences for the first 6 h (Old WR: 145.80 &#xb1; 5.88 bpm; New WR: 139.45 &#xb1; 5.82 bpm) and between the 12 and 18 h time interval (Old WR: 133.19 &#xb1; 3.53 bpm; New WR: 137.63 &#xb1; 2.80 bpm). The marginal gains concept can explain the performance improvement in the new WR, given that the athlete made some improvements in technical specifications after the old WR.
2,335,703
Application of Preoperative Adductor Canal Block Coupled with General Anaesthesia in Elderly Patients Undergoing Total Knee Arthroplasty.
To investigate the clinical application of preoperative adductor canal block combined with general anaesthesia in elderly patients with total knee arthroplasty.</AbstractText>Seventy-four patients scheduled for elective TKA in Shaanxi Nuclear Industry Hospital No. 215 were selected and were assigned into group A (continuous ACB prior to the induction of anaesthesia) and group B (continuous ACB after extraction of the tracheal catheter post-operatively) according to the random number table method. Pre and postoperative plasma adrenaline and noradrenaline levels were measured; mean arterial pressure (MAP) and heart rate (HR) were recorded at the admission and the surgical skin incision; intraoperative sufentanil dosage, number of analgesic pump presses at 48&#x2009;h postoperatively; postoperative adverse effects and length of stay were recorded; resting and active VAS pain scores were assessed at 4, 8, 12, 24, and 48&#x2009;h postoperatively.</AbstractText>Group B experienced a substantial increase in MAP and HR at the time of surgical skin incision, while group A registered a smaller change and a stable haemodynamic profile (P</i> &lt; 0.05). The plasma adrenaline and norepinephrine concentrations in group B were elevated compared to the preoperative period, differentially with group A. Group A received less intraoperative sufentanil than Group B (P</i> &lt; 0.05).</AbstractText>Collectively, postoperative resting VAS scores and active VAS scores remained lower in TKA patients who were subjected to preoperative and postoperative ACB, while preoperative ACB in conjunction with general anaesthesia decreased intraoperative sufentanil dosage, contained the surgical stress response, and maintained a stable intraoperative haemodynamic state, in what is probably a preferable option for elderly patients undergoing TKA. This study has served as a reference for postoperative patients to reduce their medication and for clinicians in the treatment going forward.</AbstractText>Copyright &#xa9; 2022 Haiyan Huang et al.</CopyrightInformation>
2,335,704
Effects of Combined Spinal Epidural Anesthesia in Orthopaedic Surgery of Elderly Patients.
Combined spinal epidural anesthesia (CSEA) is applied to lower limb orthopaedic surgery in the elderly. This study is aimed at exploring the effect of CSEA in orthopaedic surgery of elderly patients.</AbstractText>A total of 40 elderly patients with femoral fracture needing hip replacement or femoral head replacement in our hospital from June 2021 to June 2022 were selected as the research objects. The subjects were divided into observation group (n</i> = 20) and control group (n</i> = 20) by random number table method. The control group was given epidural anesthesia, while the observation group was given CSEA. Hemodynamic indexes (heart rate (HR) and mean arterial pressure (MAP)), visual analogue scale (VAS) pain score changes, anesthetic effects, and postoperative complications were compared between the two groups.</AbstractText>After operation, the observation group had lower HR and MAP values than the control group (P</i> &lt; 0.05). The dosage of local anesthetics in the observation group was significantly less than that in the control group (P</i> &lt; 0.05). The onset time and improvement time of sensory block in the observation group were significantly faster than those in the control group (P</i> &lt; 0.05). The observation group had a lower VAS score than the control group (P</i> &lt; 0.05). There was no significant difference in Bromage score or incidence of complications between the two groups (P</i> &gt; 0.05).</AbstractText>The use of CSEA has good anesthetic effect. It has the disadvantage of no headache after traditional spinal anesthesia, is not limited by time, and can be used for postoperative analgesia, which is more suitable for the anesthesia of lower limb orthopaedic surgery in the elderly.</AbstractText>Copyright &#xa9; 2022 Wei Li et al.</CopyrightInformation>
2,335,705
Novel use of erector spinae plane block in laparoscopic surgery.
Thoracic epidural and paravertebral blocks are gold standard analgesic techniques but they are associated with complications. Erector spinae plane (ESP) block is safer with comparable pain relief. ESP block is an established technique for postoperative pain relief. Its intraoperative use as an adjuvant to general anaesthesia (GA) is not yet known. The aim of this study was to assess the efficacy of ESP as an adjuvant to GA during laparoscopic surgery.</AbstractText>This was a randomised controlled trial. Using a computer generated random number table, 50 patients were randomly allocated into two groups. Group G (n = 25) received GA and group GE (n = 25) received bilateral ESP (ultrasonography guided) block using 20 ml of 0.25% bupivacaine at the level of the transverse process of T6 before the induction of GA.</AbstractText>Group GE showed reduced requirement of fentanyl (P</i> &lt; 0.0001) and inhalational agents (P &lt; 0.0001) with significant reduction in systolic blood pressure (P &lt; 0.0001), diastolic blood pressure (P &lt; 0.0001) and mean heart rate as compared to group G.</AbstractText>ESP block is an easy, safe, excellent adjuvant to GA which reduces the requirement of analgesics and inhalational agents.</AbstractText>Copyright: &#xa9; 2022 Indian Journal of Anaesthesia.</CopyrightInformation>
2,335,706
Assessment of the changes in cardiac sympathetic nervous activity using the pupil size changes measured in seated patients whose stellate ganglion is blocked by interscalene brachial plexus block.
As a side effect of interscalene brachial plexus block (ISBPB), stellate ganglion block (SGB) causes reductions in pupil size (Horner's syndrome) and cardiac sympathetic nervous activity (CSNA). Reduced CSNA is associated with hemodynamic instability when patients are seated. Therefore, instantaneous measurements of CSNA are important in seated patients presenting with Horner's syndrome. However, there are no effective tools to measure real-time CSNA intraoperatively. To evaluate the usefulness of pupillometry in measuring CSNA, we investigated the relationship between pupil size and CSNA.</AbstractText>Forty-two patients undergoing right arthroscopic shoulder surgery under ISBPB were analyzed. Pupil diameters were measured at 30 Hz for 2 s using a portable pupillometer. Bilateral pupil diameters and CSNA (natural-log-transformed low-frequency power [0.04-0.15 Hz] of heart rate variability [lnLF]) were measured before ISBPB (pre-ISBPB) and 15 min after transition to the sitting position following ISBPB (post-sitting). Changes in the pupil diameter ([right pupil diameter for post-sitting - left pupil diameter for post-sitting] - [right pupil diameter for pre-ISBPB - left pupil diameter for pre-ISBPB]) and CSNA (lnLF for post-sitting - lnLF for pre-ISBPB) were calculated.</AbstractText>Forty-one patients (97.6%) developed Horner's syndrome. Right pupil diameter and lnLF significantly decreased upon transition to sitting after ISBPB. In the linear regression model (R2 =0.242, P=0.001), a one-unit decrease (1 mm) in the extent of changes in the pupil diameter reduced the extent of changes in lnLF by 0.659 ln(ms2/Hz) (95% CI [0.090, 1.228]).</AbstractText>Pupillometry is a useful tool to measure changes in CSNA after the transition to sitting following ISBPB.</AbstractText>
2,335,707
Catheter Ablation for Paroxysmal Atrial Fibrillation With Sick Sinus Syndrome: Insights From the Kansai Plus Atrial Fibrillation Registry.<Pagination><StartPage>205</StartPage><EndPage>214</EndPage><MedlinePgn>205-214</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/j.hlc.2022.09.007</ELocationID><ELocationID EIdType="pii" ValidYN="Y">S1443-9506(22)01100-3</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Coexisting sick sinus syndrome (SSS) is associated with both electrical and structural atrial remodelling in patients with atrial fibrillation (AF). Limited data are available concerning catheter ablation (CA) for AF in this condition. This study investigated the efficacy of CA as a curative therapy for AF and SSS in a large-scale prospective multicentre registry.</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">The Kansai Plus Atrial Fibrillation (KPAF) registry enrolled 5,010 consecutive patients who underwent CA for AF; this included 3,133 patients with paroxysmal AF (mean age, 66 years; male, 69.3%; mean CHA<sub>2</sub>DS<sub>2</sub>-VASc score, 2.05&#xb1;1.50; SSS, n=315 [tachy-brady syndrome, n=285]). The endpoints included the recurrence of AF with a blanking period of 90 days after CA, and de novo pacemaker implantation during the follow-up period (median duration, 2.93 years).</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">The AF-free survival did not significantly differ between patients with and those without SSS (n=2,818) after the initial (log-rank p=0.864) and final sessions (log-rank p=0.268). Pacemakers were implanted in 48 patients with SSS, and implantation in this group was significantly associated with AF recurrence, including early recurrence (adjusted odds ratio, 3.57; 95% confidence interval, 1.67-7.64; p=0.002). The remaining 85.3% of patients with SSS did not require pacemaker implantation at 3 years after CA.</AbstractText><AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Coexisting SSS did not adversely affect recurrence-free survival after CA for paroxysmal AF. Pacemaker implantation was not required in most patients with SSS, with AF recurrence serving as a strong predictor for this.</AbstractText><CopyrightInformation>Copyright &#xa9; 2022 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Morishima</LastName><ForeName>Itsuro</ForeName><Initials>I</Initials><AffiliationInfo><Affiliation>Department of Cardiology, Ogaki Municipal Hospital, Ogaki, Japan. Electronic address: [email protected].</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kanzaki</LastName><ForeName>Yasunori</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of Cardiology, Ogaki Municipal Hospital, Ogaki, Japan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Morita</LastName><ForeName>Yasuhiro</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of Cardiology, Ogaki Municipal Hospital, Ogaki, Japan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Inoue</LastName><ForeName>Koichi</ForeName><Initials>K</Initials><AffiliationInfo><Affiliation>Cardiovascular Center, Sakurabashi-Watanabe Hospital, Osaka, Japan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kobori</LastName><ForeName>Atsushi</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Division of Cardiology, Kobe City Medical Center General Hospital, Kobe, Japan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kaitani</LastName><ForeName>Kazuaki</ForeName><Initials>K</Initials><AffiliationInfo><Affiliation>Division of Cardiology, Otsu Red Cross Hospital, Otsu, Japan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kurotobi</LastName><ForeName>Toshiya</ForeName><Initials>T</Initials><AffiliationInfo><Affiliation>Cardiovascular Center, Nanba Kurotobi Heart Clinic, Osaka, Japan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Yamaji</LastName><ForeName>Hirosuke</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Heart Rhythm Center, Okayama Heart Clinic, Okayama, Japan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Matsui</LastName><ForeName>Yumie</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of Cardiology, Saiseikai Izuo Hospital, Osaka, Japan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Nakazawa</LastName><ForeName>Yuko</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of Cardiovascular Medicine, Heart Rhythm Center, Shiga University of Medical Science, Shiga, Japan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kusano</LastName><ForeName>Kengo</ForeName><Initials>K</Initials><AffiliationInfo><Affiliation>Division of Arrhythmia and Electrophysiology, Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Tomomatsu</LastName><ForeName>Toshiro</ForeName><Initials>T</Initials><AffiliationInfo><Affiliation>Department of Cardiology, Ogaki Municipal Hospital, Ogaki, Japan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ikai</LastName><ForeName>Yoshihiro</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of Cardiology, Ogaki Municipal Hospital, Ogaki, Japan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Furui</LastName><ForeName>Koichi</ForeName><Initials>K</Initials><AffiliationInfo><Affiliation>Department of Cardiology, Ogaki Municipal Hospital, Ogaki, Japan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Yamauchi</LastName><ForeName>Ryota</ForeName><Initials>R</Initials><AffiliationInfo><Affiliation>Department of Cardiology, Ogaki Municipal Hospital, Ogaki, Japan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Miyazawa</LastName><ForeName>Hiroyuki</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Department of Cardiology, Ogaki Municipal Hospital, Ogaki, Japan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Tanaka</LastName><ForeName>Nobuaki</ForeName><Initials>N</Initials><AffiliationInfo><Affiliation>Cardiovascular Center, Sakurabashi-Watanabe Hospital, Osaka, Japan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Morimoto</LastName><ForeName>Takeshi</ForeName><Initials>T</Initials><AffiliationInfo><Affiliation>Department of Clinical Epidemiology, Hyogo College of Medicine, Nishinomiya, Japan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kimura</LastName><ForeName>Takeshi</ForeName><Initials>T</Initials><AffiliationInfo><Affiliation>Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Shizuta</LastName><ForeName>Satoshi</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><CollectiveName>KPAF Registry investigators</CollectiveName></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2022</Year><Month>10</Month><Day>20</Day></ArticleDate></Article><MedlineJournalInfo><Country>Australia</Country><MedlineTA>Heart Lung Circ</MedlineTA><NlmUniqueID>100963739</NlmUniqueID><ISSNLinking>1443-9506</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D001281" MajorTopicYN="Y">Atrial Fibrillation</DescriptorName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName><QualifierName UI="Q000601" MajorTopicYN="N">surgery</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D012804" MajorTopicYN="N">Sick Sinus Syndrome</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D011446" MajorTopicYN="N">Prospective Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D017115" MajorTopicYN="Y">Catheter Ablation</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012042" MajorTopicYN="N">Registries</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D016896" MajorTopicYN="N">Treatment Outcome</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Atrial fibrillation</Keyword><Keyword MajorTopicYN="N">Catheter ablation</Keyword><Keyword MajorTopicYN="N">Multicentre registry</Keyword><Keyword MajorTopicYN="N">Pacemaker</Keyword><Keyword MajorTopicYN="N">Sick sinus syndrome</Keyword><Keyword MajorTopicYN="N">Tachy-brady syndrome</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2022</Year><Month>6</Month><Day>11</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2022</Year><Month>8</Month><Day>13</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2022</Year><Month>9</Month><Day>3</Day></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2022</Year><Month>10</Month><Day>24</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2023</Year><Month>3</Month><Day>7</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2022</Year><Month>10</Month><Day>23</Day><Hour>22</Hour><Minute>6</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">36274004</ArticleId><ArticleId IdType="doi">10.1016/j.hlc.2022.09.007</ArticleId><ArticleId IdType="pii">S1443-9506(22)01100-3</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="Publisher" Owner="NLM"><PMID Version="1">36273248</PMID><DateRevised><Year>2022</Year><Month>11</Month><Day>03</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">2042-3306</ISSN><JournalIssue CitedMedium="Internet"><PubDate><Year>2022</Year><Month>Oct</Month><Day>22</Day></PubDate></JournalIssue><Title>Equine veterinary journal</Title><ISOAbbreviation>Equine Vet J</ISOAbbreviation></Journal>Frequency of cardiac arrhythmias in horses during straight and untethered swimming.
Coexisting sick sinus syndrome (SSS) is associated with both electrical and structural atrial remodelling in patients with atrial fibrillation (AF). Limited data are available concerning catheter ablation (CA) for AF in this condition. This study investigated the efficacy of CA as a curative therapy for AF and SSS in a large-scale prospective multicentre registry.</AbstractText>The Kansai Plus Atrial Fibrillation (KPAF) registry enrolled 5,010 consecutive patients who underwent CA for AF; this included 3,133 patients with paroxysmal AF (mean age, 66 years; male, 69.3%; mean CHA2</sub>DS2</sub>-VASc score, 2.05&#xb1;1.50; SSS, n=315 [tachy-brady syndrome, n=285]). The endpoints included the recurrence of AF with a blanking period of 90 days after CA, and de novo pacemaker implantation during the follow-up period (median duration, 2.93 years).</AbstractText>The AF-free survival did not significantly differ between patients with and those without SSS (n=2,818) after the initial (log-rank p=0.864) and final sessions (log-rank p=0.268). Pacemakers were implanted in 48 patients with SSS, and implantation in this group was significantly associated with AF recurrence, including early recurrence (adjusted odds ratio, 3.57; 95% confidence interval, 1.67-7.64; p=0.002). The remaining 85.3% of patients with SSS did not require pacemaker implantation at 3 years after CA.</AbstractText>Coexisting SSS did not adversely affect recurrence-free survival after CA for paroxysmal AF. Pacemaker implantation was not required in most patients with SSS, with AF recurrence serving as a strong predictor for this.</AbstractText>Copyright &#xa9; 2022 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.</CopyrightInformation>
2,335,708
Exosomes as Potential Functional Nanomaterials for Tissue Engineering.
Exosomes are cell-derived extracellular vesicles of 40-160&#xa0;nm diameter, which carry numerous biomolecules and transmit information between cells. They are used as functional nanomaterials with great potential in biomedical areas, such as active agents and delivery systems for advanced drug delivery and disease therapy. In recent years, potential applications of exosomes in tissue engineering have attracted significant attention, and some critical progress has been made. This review gives a complete picture of exosomes and their applications in the regeneration of various tissues, such as the central nervous systems, kidney, bone, cartilage, heart, and endodontium. Approaches employed for modifying exosomes to equip them with excellent targeting capacity are summarized. Furthermore, current concerns and future outlook of exosomes in tissue engineering are discussed.
2,335,709
Ventricular arrhythmias in Kearns-Sayre syndrome: A cohort study using the National Inpatient Sample database 2016-2019.<Pagination><StartPage>1357</StartPage><EndPage>1363</EndPage><MedlinePgn>1357-1363</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1111/pace.14607</ELocationID><Abstract><AbstractText Label="BACKGROUND">Degeneration of the cardiac conduction system resulting in complete heart block (CHB), ventricular arrhythmias (VA), and sudden cardiac death (SCD) is recognized in patients with Kearns-Sayre syndrome (KSS) and is potentially preventable with permanent pacemaker (PPM) implantation. However, other mechanisms for SCD have been proposed, and the efficacy of implanting a defibrillator instead of PPM remains to be investigated.</AbstractText><AbstractText Label="METHODS">We utilized the National Inpatient Sample (NIS) database 2016-2019 to investigate the risk of VA or dysrhythmic cardiac arrest (dCA) in KSS patients. We compared the outcomes of KSS to myotonic dystrophy (MD), a more common genetic disorder with similar clinical cardiac features and course.</AbstractText><AbstractText Label="RESULTS">We identified 640 admissions for KSS. VA or dCA were lower in admissions for KSS than MD patients (2.3%&#xa0;vs. 4.5%, p&#xa0;=&#xa0;.009). Device implantation differed between study groups. Approximately, 70% of cases with KSS and conduction abnormalities had pacemaker&#xa0;(&#xb1;&#xa0;defibrillator) on hospital discharge, compared to 35% in MD. Conduction abnormalities were associated with higher rates of VA or dCA in both study groups. None of the admissions for KSS patients who developed VA or dCA had a pacemaker, and all of them had conduction abnormalities. One-third of admissions for MD patients who developed VA or dCA had a device already implanted prior to the event.</AbstractText><AbstractText Label="CONCLUSION">Despite its effectiveness in preventing VA, PPM remains underutilized in patients with KSS or MD who have conduction abnormalities. PPM alone do not fully prevent VA in MD patients; therefore, addition of defibrillator capacity might be necessary.</AbstractText><CopyrightInformation>&#xa9; 2022 Wiley Periodicals LLC.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Wiseman</LastName><ForeName>Kyle</ForeName><Initials>K</Initials><AffiliationInfo><Affiliation>Department of Medicine, Hackensack Meridian Jersey Shore University Medical Center, Neptune, New Jersey, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Gor</LastName><ForeName>Dhairya</ForeName><Initials>D</Initials><AffiliationInfo><Affiliation>Department of Medicine, Hackensack Meridian Jersey Shore University Medical Center, Neptune, New Jersey, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Udongwo</LastName><ForeName>Ndausung</ForeName><Initials>N</Initials><AffiliationInfo><Affiliation>Department of Medicine, Hackensack Meridian Jersey Shore University Medical Center, Neptune, New Jersey, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Alshami</LastName><ForeName>Abbas</ForeName><Initials>A</Initials><Identifier Source="ORCID">0000-0003-0726-3498</Identifier><AffiliationInfo><Affiliation>Division of Cardiology, Hackensack Meridian Jersey Shore University Medical Center, Neptune, New Jersey, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Upadhaya</LastName><ForeName>Vandan</ForeName><Initials>V</Initials><AffiliationInfo><Affiliation>Division of Cardiology, Hackensack Meridian Jersey Shore University Medical Center, Neptune, New Jersey, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Daniels</LastName><ForeName>Steven J</ForeName><Initials>SJ</Initials><AffiliationInfo><Affiliation>Division of Cardiology, Hackensack Meridian Jersey Shore University Medical Center, Neptune, New Jersey, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Chung</LastName><ForeName>Wendy K</ForeName><Initials>WK</Initials><AffiliationInfo><Affiliation>Department of Medicine, Columbia University Irving Medical Center, New York, USA.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Pediatrics, Columbia University Irving Medical Center, New York, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Koo</LastName><ForeName>Charles H</ForeName><Initials>CH</Initials><AffiliationInfo><Affiliation>Division of Cardiology, Hackensack Meridian Jersey Shore University Medical Center, Neptune, New Jersey, USA.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2022</Year><Month>10</Month><Day>27</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Pacing Clin Electrophysiol</MedlineTA><NlmUniqueID>7803944</NlmUniqueID><ISSNLinking>0147-8389</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015331" MajorTopicYN="N">Cohort Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007625" MajorTopicYN="Y">Kearns-Sayre Syndrome</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Kearns-Sayre syndrome</Keyword><Keyword MajorTopicYN="N">conduction defects</Keyword><Keyword MajorTopicYN="N">implantable cardioverter-defibrillator</Keyword><Keyword MajorTopicYN="N">myotonic dystrophy</Keyword><Keyword MajorTopicYN="N">pacemaker</Keyword><Keyword MajorTopicYN="N">ventricular tachycardia</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="revised"><Year>2022</Year><Month>9</Month><Day>5</Day></PubMedPubDate><PubMedPubDate PubStatus="received"><Year>2022</Year><Month>4</Month><Day>6</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2022</Year><Month>10</Month><Day>2</Day></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2022</Year><Month>10</Month><Day>9</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2022</Year><Month>12</Month><Day>15</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2022</Year><Month>10</Month><Day>8</Day><Hour>3</Hour><Minute>42</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">36208035</ArticleId><ArticleId IdType="doi">10.1111/pace.14607</ArticleId></ArticleIdList><ReferenceList><Title>REFERENCES</Title><Reference><Citation>Berardo A, DiMauro S, Hirano M. A diagnostic algorithm for metabolic myopathies. Curr Neurol Neurosci Rep. 2010;10:118-126. http://www.ncbi.nlm.nih.gov/pubmed/20425236</Citation></Reference><Reference><Citation>Kabunga P, Lau AK, Phan K, et&#xa0;al. Systematic review of cardiac electrical disease in Kearns-Sayre syndrome and mitochondrial cytopathy. Int J Cardiol. 2015;181:303-310. http://www.ncbi.nlm.nih.gov/pubmed/25540845</Citation></Reference><Reference><Citation>Agrawal H, Ekhomu O, Choi HW, Naheed Z. Natural history of conduction abnormalities in a patient with Kearns-Sayre syndrome. Pediatr Cardiol. 2013;34:1044-1047. http://www.ncbi.nlm.nih.gov/pubmed/22614904</Citation></Reference><Reference><Citation>van Beynum I, Morava E, Taher M, et&#xa0;al. Cardiac arrest in Kearns-Sayre syndrome. JIMD Rep. 2012;2:7-10. http://www.ncbi.nlm.nih.gov/pubmed/23430846</Citation></Reference><Reference><Citation>Young TJ, Shah AK, Lee MH, Hayes DL. Kearns-Sayre syndrome: a case report and review of cardiovascular complications. Pacing Clin Electrophysiol. 2005;28:454-457. http://www.ncbi.nlm.nih.gov/pubmed/15869681</Citation></Reference><Reference><Citation>Puri A, Pradhan A, Chaudhary G, Singh V, Sethi R, Narain VS. Symptomatic complete heart block leading to a diagnosis of Kearns-Sayre syndrome. Indian Heart J;64:515-517. http://www.ncbi.nlm.nih.gov/pubmed/23102393</Citation></Reference><Reference><Citation>Pelargonio G, Dello Russo A, Sanna T, De Martino G, Bellocci F. Myotonic dystrophy and the heart. Heart. 2002;88:665-670. http://www.ncbi.nlm.nih.gov/pubmed/12433913</Citation></Reference><Reference><Citation>Kusumoto FM, Schoenfeld MH, Barrett C, et&#xa0;al. 2018 ACC/AHA/HRS guideline on the evaluation and management of patients with bradycardia and cardiac conduction delay: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2019;74:9320-9387. http://www.ncbi.nlm.nih.gov/pubmed/30412710</Citation></Reference><Reference><Citation>Members WritingCommittee, MJ Silka, Shah MJ, et&#xa0;al. 2021 PACES expert consensus statement on the indications and management of cardiovascular implantable electronic devices in pediatric patients: executive summary. Hear Rhythm. 2021;18:1925-1950. http://www.ncbi.nlm.nih.gov/pubmed/34363987</Citation></Reference><Reference><Citation>Al-Khatib SM, Stevenson WG, Ackerman MJ, et&#xa0;al. 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Gui. Hear Rhythm. 2018;15:e190-252. http://www.ncbi.nlm.nih.gov/pubmed/29097320</Citation></Reference><Reference><Citation>Imamura T, Sumitomo N, Muraji S, et&#xa0;al. The necessity of implantable cardioverter defibrillators in patients with Kearns-Sayre syndrome - systematic review of the articles. Int J Cardiol. 2019;279:105-111. http://www.ncbi.nlm.nih.gov/pubmed/30642644</Citation></Reference><Reference><Citation>Krishna MR. Kearns Sayre Syndrome: looking beyond A-V conduction. Indian Pacing Electrophysiol J. 2017;17:78-80. http://www.ncbi.nlm.nih.gov/pubmed/29073001</Citation></Reference><Reference><Citation>Subbiah RN, Kuchar D, Baron D. Torsades de pointes in a patient with Kearns-Sayre syndrome: a fortunate finding. Pacing Clin Electrophysiol. 2007;30:137-139. http://www.ncbi.nlm.nih.gov/pubmed/17241330</Citation></Reference><Reference><Citation>Houchens RL, Ross DEA. Using the HCUP National Inpatient Sample to Estimate Trends. [Internet]. 2015. Available from: https://www.hcup-us.ahrq.gov/reports/methods/2006_05_NISTrendsReport_1988-2004A.pdf</Citation></Reference><Reference><Citation>Dong Y, Peng C-YJ. Principled missing data methods for researchers. Springerplus. 2013;2:222. http://www.ncbi.nlm.nih.gov/pubmed/23853744</Citation></Reference><Reference><Citation>Khambatta S, Nguyen DL, Beckman TJ, Wittich CM. Kearns-Sayre syndrome: a case series of 35 adults and children. Int J Gen Med. 2014;7:325-332. http://www.ncbi.nlm.nih.gov/pubmed/25061332</Citation></Reference><Reference><Citation>Hayes DL, Hyberger LKHDO. Incidence of conduction system disease and need for permanent pacemaker in patients with Kearns Sayre syndrome. PACE. 2001;24(4 part II):576.</Citation></Reference><Reference><Citation>Di Mambro C, Tamborrino PP, Silvetti MS, et&#xa0;al. Progressive involvement of cardiac conduction system in paediatric patients with Kearns-Sayre syndrome: how to predict occurrence of complete heart block and sudden cardiac death. Europace. 2021;23:948-957. http://www.ncbi.nlm.nih.gov/pubmed/33336258</Citation></Reference><Reference><Citation>Wahbi K, Meune C, Porcher R, et&#xa0;al. Electrophysiological study with prophylactic pacing and survival in adults with myotonic dystrophy and conduction system disease. JAMA. 2012;307:1292-1301. http://www.ncbi.nlm.nih.gov/pubmed/22453570</Citation></Reference><Reference><Citation>Oginosawa Y, Abe H, Nagatomo T, Mizuki T, Nakashima Y. Sustained polymorphic ventricular tachycardia unassociated with QT prolongation or bradycardia in the Kearns-Sayre syndrome. Pacing Clin Electrophysiol. 2003;26:1911-1912. http://www.ncbi.nlm.nih.gov/pubmed/12930512</Citation></Reference><Reference><Citation>Finsterer J. Cardiac disease in Kearns-Sayre syndrome requires comprehensive management. Cardiol Young. 2019;29:1118-1119. http://www.ncbi.nlm.nih.gov/pubmed/31270000</Citation></Reference><Reference><Citation>Wilmin S, De Bels D, Knecht S, Gottignies P, Gazagnes M-D, Devriendt J. Torsade de pointes in Kearns-Sayre syndrome. Pract Neurol. 2012;12:199-201. http://www.ncbi.nlm.nih.gov/pubmed/22661355</Citation></Reference><Reference><Citation>Shah MJ, Silka MJ, Silva JNA, et&#xa0;al. 2021 PACES expert consensus statement on the indications and management of cardiovascular implantable electronic devices in pediatric patients. Cardiol Young. 2021;31:1738-1769. http://www.ncbi.nlm.nih.gov/pubmed/34338183</Citation></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="Publisher" Owner="NLM"><PMID Version="1">36206449</PMID><DateRevised><Year>2022</Year><Month>10</Month><Day>07</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1536-3686</ISSN><JournalIssue CitedMedium="Internet"><PubDate><Year>2022</Year><Month>Oct</Month><Day>07</Day></PubDate></JournalIssue><Title>American journal of therapeutics</Title><ISOAbbreviation>Am J Ther</ISOAbbreviation></Journal>Complete Heart Block in a Patient Treated With Metoprolol, Diltiazem, Omeprazole, and Escitalopram.
Degeneration of the cardiac conduction system resulting in complete heart block (CHB), ventricular arrhythmias (VA), and sudden cardiac death (SCD) is recognized in patients with Kearns-Sayre syndrome (KSS) and is potentially preventable with permanent pacemaker (PPM) implantation. However, other mechanisms for SCD have been proposed, and the efficacy of implanting a defibrillator instead of PPM remains to be investigated.</AbstractText>We utilized the National Inpatient Sample (NIS) database 2016-2019 to investigate the risk of VA or dysrhythmic cardiac arrest (dCA) in KSS patients. We compared the outcomes of KSS to myotonic dystrophy (MD), a more common genetic disorder with similar clinical cardiac features and course.</AbstractText>We identified 640 admissions for KSS. VA or dCA were lower in admissions for KSS than MD patients (2.3%&#xa0;vs. 4.5%, p&#xa0;=&#xa0;.009). Device implantation differed between study groups. Approximately, 70% of cases with KSS and conduction abnormalities had pacemaker&#xa0;(&#xb1;&#xa0;defibrillator) on hospital discharge, compared to 35% in MD. Conduction abnormalities were associated with higher rates of VA or dCA in both study groups. None of the admissions for KSS patients who developed VA or dCA had a pacemaker, and all of them had conduction abnormalities. One-third of admissions for MD patients who developed VA or dCA had a device already implanted prior to the event.</AbstractText>Despite its effectiveness in preventing VA, PPM remains underutilized in patients with KSS or MD who have conduction abnormalities. PPM alone do not fully prevent VA in MD patients; therefore, addition of defibrillator capacity might be necessary.</AbstractText>&#xa9; 2022 Wiley Periodicals LLC.</CopyrightInformation>
2,335,710
Replacement of dietary corn with corn bran plus condensed distillers solubles effects on feedlot growth performance and carcass trait responses of beef steers.
Dry-corn milling biorefineries have the opportunity to install technology to fractionate corn prior to fermentation, which creates a product stream of fibrous bran that can be fed to cattle. The objective of this study was to determine the effects of replacing dietary corn with corn bran and condensed distillers solubles (CBCDS) or wet-corn gluten feed (WCGF) on growth performance, efficiency of dietary net energy (NE) utilization, and carcass characteristics in finishing steers. British &#xd7; Continental steers (<i>n</i> = 240; initial body weight [BW] = 401 &#xb1; 43.2 kg) were assigned to the following dietary treatments in a randomized complete block design (RCBD): 1) a control finishing diet with no corn milling coproducts; 2) a finishing diet that contained CBCDS at 20% replacement of dietary corn; and 3) a finishing diet that contained WCGF at 20% replacement of dietary corn. Dietary corn (50:50 of dry-rolled corn and high-moisture corn) was included at 81.5% for control diet-fed steers and 61.5% for steers-fed CBCDS and WCGF. Steers were fed for 145.5 d until visually appraised to have 1.27 cm of rib fat (RF) and were harvested at a commercial abattoir where carcass data were collected. Data were analyzed as an RCBD with pen as the experimental unit, treatment as a fixed effect and block as a random effect. There were no significant differences (<i>P</i> &#x2265; 0.28) between treatments for final BW, average daily gain, dry matter intake, feed conversion efficiency, observed dietary NE for maintenance (NE<sub>m</sub>), and NE for gain (NE<sub>g</sub>), or observed-to-expected NE<sub>m</sub> and NE<sub>g</sub>. Additionally, no differences (<i>P</i> &#x2265; 0.16) were noted between treatments for hot carcass weight, ribeye area, RF, marbling score, kidney-pelvic-heart fat, estimated empty body fat (EBF), BW at 28% EBF (AFBW), and distribution of USDA Quality and Yield grades. Control steers tended (<i>P</i> = 0.10) to have the highest calculated yield grade followed by WCGF and CBCDS. Furthermore, WCGF steers tended (<i>P</i> = 0.08) to have the highest calculated retail yield followed by CBCDS and control steers. Replacement NE<sub>m</sub> and NE<sub>g</sub> values of corn coproducts were determined to be 2.14 and 1.42 for CBCDS and 2.09 and 1.37 for WCGF, respectively. Thus, CBCDS can be included in finishing steer diets at 20% replacement of corn without detriment to growth performance or carcass characteristics.
2,335,711
Role of Strauss ECG criteria as predictor of response in patients undergoing cardiac resynchronization therapy.<Pagination><StartPage>69</StartPage><MedlinePgn>69</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">69</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1186/s43044-022-00308-3</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Cardiac resynchronization therapy (CRT) is a standard treatment in patients with heart failure; however, approximately 20-40% of recipients of (CRT) do not respond to it based on the current patients' selection criteria. The purpose of this study was to identify the baseline parameters that predict the CRT response and how the ECG morphology can affect the outcome. The study aimed to evaluate the Strauss ECG criteria as a predictor of response in patients undergoing cardiac resynchronization therapy.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">Out of 70 patients, 3 patients missed the 6-month follow-up after CRT implantation, so the study enrolled 67 patients that have been classified according to ECG morphology of LBBB to 37 patients with non-Strauss ECG criteria-one of whom died after 4&#xa0;months-and 30 patients with Strauss ECG criteria. The number of responders in the study was 50 patients with percentage 75.8%; 52% of CRT responder (26 patients) had non-Strauss ECG criteria, while 48% of CRT responders (24 patients) had Strauss ECG criteria with P value&#x2009;=&#x2009;0.463. While there was no statistical significance of overall CRT response nor 6-month hospitalization and mortality between patients of Strauss and non-Strauss ECG criteria, there was a significant improvement in NYHA class, EF assessed by biplane Simpson's, end-systolic volume, global longitudinal strain and global circumferential strain by speckle tracking echocardiography in patients with Strauss ECG criteria of LBBB.</AbstractText><AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">There is no statistical significance in overall CRT response nor the 6-month hospitalization and mortality after 6&#xa0;months of follow-up between patients with Strauss and non-Strauss ECG criteria of LBBB; however, patients with Strauss ECG criteria have better improvement in NYHA class, echocardiographic parameters such as EF and ESV and speckle tracking parameters (GLS and GCS).</AbstractText><CopyrightInformation>&#xa9; 2022. The Author(s).</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Shoman</LastName><ForeName>Khaled Ashraf</ForeName><Initials>KA</Initials><Identifier Source="ORCID">0000-0001-9279-8395</Identifier><AffiliationInfo><Affiliation>Cardiology Department, Ain Shams University, B6 - Madinaty-New Cairo, Abbassya, Cairo, 19519, Egypt. [email protected].</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Eldamanhory</LastName><ForeName>Hayam Mohammed</ForeName><Initials>HM</Initials><AffiliationInfo><Affiliation>Cardiology Department, Ain Shams University, B6 - Madinaty-New Cairo, Abbassya, Cairo, 19519, Egypt.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Fakhry</LastName><ForeName>Emad Effat</ForeName><Initials>EE</Initials><AffiliationInfo><Affiliation>Cardiology Department, Ain Shams University, B6 - Madinaty-New Cairo, Abbassya, Cairo, 19519, Egypt.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Badran</LastName><ForeName>Haitham Abdelfatah</ForeName><Initials>HA</Initials><AffiliationInfo><Affiliation>Cardiology Department, Ain Shams University, B6 - Madinaty-New Cairo, Abbassya, Cairo, 19519, Egypt.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2022</Year><Month>09</Month><Day>30</Day></ArticleDate></Article><MedlineJournalInfo><Country>Germany</Country><MedlineTA>Egypt Heart J</MedlineTA><NlmUniqueID>9106952</NlmUniqueID><ISSNLinking>1110-2608</ISSNLinking></MedlineJournalInfo><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Cardiac resynchronization therapy</Keyword><Keyword MajorTopicYN="N">Ejection fraction</Keyword><Keyword MajorTopicYN="N">Electrocardiogram</Keyword><Keyword MajorTopicYN="N">End-systolic volume</Keyword><Keyword MajorTopicYN="N">Global circumferential strain</Keyword><Keyword MajorTopicYN="N">Global longitudinal strain</Keyword><Keyword MajorTopicYN="N">Left bundle branch block</Keyword><Keyword MajorTopicYN="N">New York heart association</Keyword></KeywordList><CoiStatement>The authors declare that they have no competing interests.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2022</Year><Month>6</Month><Day>6</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2022</Year><Month>9</Month><Day>21</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2022</Year><Month>9</Month><Day>30</Day><Hour>11</Hour><Minute>19</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2022</Year><Month>10</Month><Day>1</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2022</Year><Month>10</Month><Day>1</Day><Hour>6</Hour><Minute>1</Minute></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">36178602</ArticleId><ArticleId IdType="pmc">PMC9525510</ArticleId><ArticleId IdType="doi">10.1186/s43044-022-00308-3</ArticleId><ArticleId IdType="pii">10.1186/s43044-022-00308-3</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Linde C, Mealing S, Hawkins N, Eaton J, Brown B, Daubert JC. Cost-effectiveness of cardiac resynchronization therapy in patients with asymptomatic to mild heart failure: Insights from the European cohort of the REVERSE (resynchronization reverses remodeling in systolic left ventricular dysfunction) Eur Heart J. 2011;32(13):1631&#x2013;1639. doi: 10.1093/eurheartj/ehq408.</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/eurheartj/ehq408</ArticleId><ArticleId IdType="pubmed">21112898</ArticleId></ArticleIdList></Reference><Reference><Citation>Ojo A, Tariq S, Harikrishnan P, Iwai S, Jacobson JT. Cardiac resynchronization therapy for heart failure. Interv Cardiol Clin. 2017;6(3):417&#x2013;426. doi: 10.1016/j.iccl.2017.03.010.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.iccl.2017.03.010</ArticleId><ArticleId IdType="pubmed">28600094</ArticleId></ArticleIdList></Reference><Reference><Citation>Moss AJ, Hall WJ, Cannom DS, et al. Cardiac-resynchronization therapy for the prevention of heart-failure events. N Engl J Med. 2009;361(14):1329&#x2013;1338. doi: 10.1056/NEJMoa0906431.</Citation><ArticleIdList><ArticleId IdType="doi">10.1056/NEJMoa0906431</ArticleId><ArticleId IdType="pubmed">19723701</ArticleId></ArticleIdList></Reference><Reference><Citation>Kronborg MB, Nielsen JC, Mortensen PT. Electrocardiographic patterns and long-term clinical outcome in cardiac resynchronization therapy. Europace. 2010;12(2):216&#x2013;222. doi: 10.1093/europace/eup364.</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/europace/eup364</ArticleId><ArticleId IdType="pubmed">19915182</ArticleId></ArticleIdList></Reference><Reference><Citation>Leeters IPM, Davis A, Zusterzeel R, et al. Left ventricular regional contraction abnormalities by echocardiographic speckle tracking in combined right bundle branch with left anterior fascicular block compared to left bundle branch block. J Electrocardiol. 2016;49(3):353&#x2013;361. doi: 10.1016/j.jelectrocard.2016.02.002.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jelectrocard.2016.02.002</ArticleId><ArticleId IdType="pubmed">26931516</ArticleId></ArticleIdList></Reference><Reference><Citation>Strauss DG, Selvester RH, Wagner GS. Defining left bundle branch block in the era of cardiac resynchronization therapy. Am J Cardiol. 2011;107(6):927&#x2013;934. doi: 10.1016/j.amjcard.2010.11.010.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.amjcard.2010.11.010</ArticleId><ArticleId IdType="pubmed">21376930</ArticleId></ArticleIdList></Reference><Reference><Citation>Auricchio A, Lumens J, Prinzen FW. Response to Kenneth C. Bilchick, MD, MS. Circ Arrhythmia Electrophysiol. 2014;7(3):552. doi: 10.1161/CIRCEP.113.000747.</Citation><ArticleIdList><ArticleId IdType="doi">10.1161/CIRCEP.113.000747</ArticleId><ArticleId IdType="pubmed">24951571</ArticleId></ArticleIdList></Reference><Reference><Citation>Sweeney MO, Van Bommel RJ, Schalij MJ, Borleffs CJW, Hellkamp AS, Bax JJ. Analysis of ventricular activation using surface electrocardiography to predict left ventricular reverse volumetric remodeling during cardiac resynchronization therapy. Circulation. 2010;121(5):626&#x2013;634. doi: 10.1161/CIRCULATIONAHA.109.894774.</Citation><ArticleIdList><ArticleId IdType="doi">10.1161/CIRCULATIONAHA.109.894774</ArticleId><ArticleId IdType="pubmed">20100970</ArticleId></ArticleIdList></Reference><Reference><Citation>Poposka L, Boskov V, Risteski D, et al. Electrocardiographic parameters as predictors of response to cardiac resynchronization therapy. Open Access Maced J Med Sci. 2018;6(2):297&#x2013;302. doi: 10.3889/OAMJMS.2018.092.</Citation><ArticleIdList><ArticleId IdType="doi">10.3889/OAMJMS.2018.092</ArticleId><ArticleId IdType="pmc">PMC5839436</ArticleId><ArticleId IdType="pubmed">29531592</ArticleId></ArticleIdList></Reference><Reference><Citation>Seo Y, Ito H, Nakatani S, et al. The role of echocardiography in predicting responders to cardiac resynchronization therapy - results from the Japan cardiac resynchronization therapy registry trial (J-CRT) Circ J. 2011;75(5):1156&#x2013;1163. doi: 10.1253/circj.CJ-10-0861.</Citation><ArticleIdList><ArticleId IdType="doi">10.1253/circj.CJ-10-0861</ArticleId><ArticleId IdType="pubmed">21383516</ArticleId></ArticleIdList></Reference><Reference><Citation>Rickard J, Bassiouny M, Cronin EM, et al. Predictors of response to cardiac resynchronization therapy in patients with a non-left bundle branch block morphology. Am J Cardiol. 2011;108(11):1576&#x2013;1580. doi: 10.1016/j.amjcard.2011.07.017.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.amjcard.2011.07.017</ArticleId><ArticleId IdType="pubmed">21890086</ArticleId></ArticleIdList></Reference><Reference><Citation>Steffel J, Robertson M, Singh JP, et al. The effect of QRS duration on cardiac resynchronization therapy in patients with a narrow QRS complex: a subgroup analysis of the EchoCRT trial. Eur Heart J. 2015;36(30):1983&#x2013;1989. doi: 10.1093/eurheartj/ehv242.</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/eurheartj/ehv242</ArticleId><ArticleId IdType="pubmed">26009595</ArticleId></ArticleIdList></Reference><Reference><Citation>Takaya Y, Noda T, Nakajima I, et al. Electrocardiographic predictors of response to cardiac resynchronization therapy in patients with intraventricular conduction delay. Circ J. 2014;78(1):71&#x2013;77. doi: 10.1253/circj.CJ-12-1569.</Citation><ArticleIdList><ArticleId IdType="doi">10.1253/circj.CJ-12-1569</ArticleId><ArticleId IdType="pubmed">24162927</ArticleId></ArticleIdList></Reference><Reference><Citation>Heart failure/transplant ventricular asynchrony predicts a better outcome (2005) N Engl J Med 352:1539&#x2013;49.</Citation><ArticleIdList><ArticleId IdType="pubmed">15753115</ArticleId></ArticleIdList></Reference><Reference><Citation>Salukhe TV, Francis DP, Sutton R. Comparison of medical therapy, pacing and defibrillation in heart failure (COMPANION) trial terminated early; combined biventricular pacemaker-defibrillators reduce all-cause mortality and hospitalization. Int J Cardiol. 2003;87(2&#x2013;3):119&#x2013;120. doi: 10.1016/s0167-5273(02)00585-5.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/s0167-5273(02)00585-5</ArticleId><ArticleId IdType="pubmed">12559527</ArticleId></ArticleIdList></Reference><Reference><Citation>Zusterzeel R, Curtis JP, Ca&#xf1;os DA, et al. Sex-specific mortality risk by QRS morphology and duration in patients receiving CRT: results from the NCDR. J Am Coll Cardiol. 2014;64(9):887&#x2013;894. doi: 10.1016/j.jacc.2014.06.1162.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jacc.2014.06.1162</ArticleId><ArticleId IdType="pubmed">25169173</ArticleId></ArticleIdList></Reference><Reference><Citation>Perrin MJ, Green MS, Redpath CJ, et al. Greater response to cardiac resynchronization therapy in patients with true complete left bundle branch block: a PREDICT substudy. Europace. 2012;14(5):690&#x2013;695. doi: 10.1093/europace/eur381.</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/europace/eur381</ArticleId><ArticleId IdType="pubmed">22170897</ArticleId></ArticleIdList></Reference><Reference><Citation>Ponikowski P, Voors AA, Anker SD, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European society of cardiology (ESC). Developed with the special contribution. Eur J Heart Fail. 2016;18(8):891&#x2013;975. doi: 10.1002/ejhf.592.</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/ejhf.592</ArticleId><ArticleId IdType="pubmed">27207191</ArticleId></ArticleIdList></Reference><Reference><Citation>Mar&#xe9;chaux S, Guiot A, Castel AL, et al. Relationship between two-dimensional speckle-tracking septal strain and response to cardiac resynchronization therapy in patients with left ventricular dysfunction and left bundle branch block: a prospective pilot study. J Am Soc Echocardiogr. 2014;27(5):501&#x2013;511. doi: 10.1016/j.echo.2014.01.004.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.echo.2014.01.004</ArticleId><ArticleId IdType="pubmed">24513239</ArticleId></ArticleIdList></Reference><Reference><Citation>Park MY, Altman RK, Orencole M, et al. Characteristics of responders to cardiac resynchronization therapy: the impact of echocardiographic left ventricular volume. Clin Cardiol. 2012;35(12):779&#x2013;780. doi: 10.1002/clc.22043.</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/clc.22043</ArticleId><ArticleId IdType="pmc">PMC3498521</ArticleId><ArticleId IdType="pubmed">22886700</ArticleId></ArticleIdList></Reference><Reference><Citation>Jiang Z, Qiu Y, Qian Z, et al. An S wave in ECG lead V6 predicts poor response to cardiac resynchronization therapy and long-term outcome. Hear Rhythm. 2020;17(2):265&#x2013;272. doi: 10.1016/j.hrthm.2019.09.007.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.hrthm.2019.09.007</ArticleId><ArticleId IdType="pubmed">31513944</ArticleId></ArticleIdList></Reference><Reference><Citation>Bertaglia E, Migliore F, Baritussio A, et al. Stricter criteria for left bundle branch block diagnosis do not improve response to CRT. PACE - Pacing Clin Electrophysiol. 2017;40(7):850&#x2013;856. doi: 10.1111/pace.13104.</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/pace.13104</ArticleId><ArticleId IdType="pubmed">28543265</ArticleId></ArticleIdList></Reference><Reference><Citation>van der Bijl P, Khidir M, Leung M, et al. Impact of QRS complex duration and morphology on left ventricular reverse remodelling and left ventricular function improvement after cardiac resynchronization therapy. Eur J Heart Fail. 2017;19(9):1145&#x2013;1151. doi: 10.1002/ejhf.769.</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/ejhf.769</ArticleId><ArticleId IdType="pubmed">28176418</ArticleId></ArticleIdList></Reference><Reference><Citation>Storsten P, Aalen JM, Boe E, et al. Mechanical effects on right ventricular function from left bundle branch block and cardiac resynchronization therapy. JACC Cardiovasc Imaging. 2020;13(7):1475&#x2013;1484. doi: 10.1016/j.jcmg.2019.11.016.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jcmg.2019.11.016</ArticleId><ArticleId IdType="pubmed">31954643</ArticleId></ArticleIdList></Reference><Reference><Citation>Fulati Z, Liu Y, Sun N, et al. Speckle tracking echocardiography analyses of myocardial contraction efficiency predict response for cardiac resynchronization therapy. Cardiovasc Ultrasound. 2018;16(1):1&#x2013;12. doi: 10.1186/s12947-018-0148-5.</Citation><ArticleIdList><ArticleId IdType="doi">10.1186/s12947-018-0148-5</ArticleId><ArticleId IdType="pmc">PMC6245808</ArticleId><ArticleId IdType="pubmed">30453975</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="Publisher" Owner="NLM"><PMID Version="1">36177972</PMID><DateRevised><Year>2022</Year><Month>11</Month><Day>25</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">2376-9130</ISSN><JournalIssue CitedMedium="Internet"><PubDate><Year>2022</Year><Month>Nov</Month><Day>24</Day></PubDate></JournalIssue><Title>International journal of occupational safety and ergonomics : JOSE</Title><ISOAbbreviation>Int J Occup Saf Ergon</ISOAbbreviation></Journal>Effect of temperature reduction of the prefrontal area on accuracy of visual sustained attention.
<i>Objectives.</i> Detection of sensitive signs in many work environments with automated systems (aviation industry, flight safety tower, maritime industry, monitoring in the military industry, etc.) is essential and requires constant visual attention. Therefore, the aim of this study was to investigate the effect of forehead cooling on the accuracy of stable visual attention. <i>Methods.</i> This interventional study was performed on 34 male students. The sampling method was a randomized block design. Subjects were assessed by demographic questionnaire, Snellen chart, Spielberger state-trait anxiety inventory (STAI) and physiological and cognitive measurements. <i>Results</i>. Prefrontal cortex (PFC) cooling caused significant changes in sublingual temperature during four measurements in the intervention group. There were no significant changes in heart rate, diastolic blood pressure and saturation of peripheral oxygen (%SpO<sub>2</sub>) between the two groups. The critical flicker frequency (CFF) as an indicator of cognitive fatigue showed that cognitive improvement after PFC cooling occurred following a reduction in cognitive fatigue. <i>Conclusions.</i> Considering the importance of choosing non-invasive methods to improve the operator's cognitive skills while performing cognitive tasks in the field of neuroergonomics, it can be concluded that PFC cooling is an effective and safe way to improve some cognitive skills such as visual attention.
2,335,712
Effect of caudally administered clonidine on sevoflurane induced emergence agitation-A randomized trial.
Emergence agitation (EA) is an unpleasant problem encountered in children following anesthesia with Sevoflurane. We studied the effectiveness of caudal epidural block (CEB) with ropivacaine 0.2% and clonidine two microgram per kilogram (mcg/kg) on the incidence of EA, with respiratory depression and hemodynamic variables as secondary end points.</AbstractText>Ninety children aged one to eight years undergoing infra umbilical surgeries were randomly allocated into two groups. Group RS: Ropivacaine 0.2% one ml/kg + . Saline one ml and Group RC: Ropivacaine 0.2% one ml/kg + Clonidine two mcg/kg made to one ml. They were then administered general anesthesia with endotracheal intubation followed by CEB using test drugs. Post surgery, EA was evaluated by Modified Richmond Agitation Scale at 15-minute intervals for one hour. The results were then analyzed using mean and standard deviation (SD), Chi square test, and Independent t test.</AbstractText>EA was significantly lower in group RC when compared to group RS (P &lt; 0.0001). Group RC had 12 (28.5%) children with EA at 15 minutes compared to 35 (83.3%) children in Group RS. At 30 minutes, it was seen in five (11.3%) and 27 (64.2%) children in group RC and RS, respectively. No significant respiratory depression was noted in both groups. A significant decrease in heart rate was seen in Group RC (P &lt; 0.001) but was not significant clinically. No adverse events were recorded in both the groups.</AbstractText>Addition of clonidine (2mcg/kg) to ropivacaine 0.2% offers an advantage over 0.2% ropivacaine alone in decreasing the incidence of sevoflurane induced EA in children undergoing lower abdominal surgery without any adverse effects.</AbstractText>Copyright: &#xa9; 2022 Journal of Anaesthesiology Clinical Pharmacology.</CopyrightInformation>
2,335,713
Cardiopulmonary and muscular effects of different doses of high-intensity physical training in substance use disorder patients: study protocol for a block allocated controlled endurance and strength training trial in an inpatient setting.
Patients with substance use disorder (SUD) have high prevalence of lifestyle-related comorbidities. Physical exercise is known to yield substantial prophylactic impact on disease and premature mortality, and there seems to be an inverse association between physical fitness and adverse health outcomes. High-intensity training is regarded as most effective for improving physical fitness, but less is known concerning the ideal training dose necessary to achieve clinically relevant effects in these patients. The aim of this study is to compare the effect of low-dose and high-dose, high-intensity training, on physical fitness in patients diagnosed with SUD.</AbstractText>This study will recruit 40 in-patients of mixed genders, aged 18-70 years. Participants will be block allocated to low-dose or high-dose training, encompassing 24 high-intensity interval and maximal strength training sessions (3/week &#xd7; 8 weeks). After a 10&#x2009;min warm-up, the low-dose group will perform 1&#xd7;4&#x2009;min intervals at &#x2053;90% of maximal heart rate and 2&#xd7;4 repetitions strength training at &#x2053;90% of 1 repetition maximum. The high-dose group will perform 4&#xd7;4&#x2009;min intervals at &#x2053;90% of maximal heart rate and 4&#xd7;4 repetitions strength training at &#x2053;90% of 1 repetition maximum. Clinical measurements and physical tests will be conducted at baseline, midway and on completion and a questionnaire on physical activity will be administered at baseline.</AbstractText>This protocol is in accordance with the Standard Protocol Items: Recommendations for Interventional Trials statement. All participants will sign a written informed consent. The Regional Committee of Medical Research Ethics, Norway has approved the study. A study of this kind is warranted, and the results will be published in an open access journal to ensure public access, and presented at national and international conferences.</AbstractText>NCT04065334.</AbstractText>&#xa9; Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.</CopyrightInformation>
2,335,714
Effects of sequential aeromedical evacuations following traumatic brain injury in swine.
Traumatic brain injuries (TBI) represent a significant percentage of critical injuries in military conflicts. Following injury, wounded warfighters are often subjected to multiple aeromedical evacuations (AE) and associated hypobaria, yet the impact in TBI patients remains to be characterized. This study evaluated the impact of two consecutive simulated AEs in a fluid-percussion TBI model in swine to characterize these effects.</AbstractText>Following instrumentation, anesthetized Yorkshire swine underwent a frontal TBI via fluid-percussion. A hypobaric chamber was then used to simulate AE at simulated cabin pressure equivalent to 8000ft (hypobaria) in a 6&#xa0;h initial flight on day 3, followed by a 9&#xa0;h flight on day 6, and were monitored for 14 days. Animals in the normobaria group were subjected to the same steps at sea level while Sham animals in both groups were instrumented but not injured. Parameters measured included physiologic response, intracranial pressure (ICP), hematology, chemistry, and serum cytokines. Histopathology of brain, lung, intestine, and kidney was performed, as well as fluorojade staining to evaluate neurodegeneration. All animals were divided into sub-groups by block randomization utilizing a 2-way ANOVA to analyze independent variables.</AbstractText>Survival was 100% in all groups. Physiologic parameters were largely similar across groups as well during both 6 and 9&#xa0;h AE. Animals exposed to hypobaria in both the TBI and Sham groups had elevated heart rate (HR) during the 6&#xa0;h flight (p&lt;0.05). Three animals in the TBI hypo group demonstrated leukocytosis with histologic evidence of meningeal inflammatory response. Expression of serum cytokines was low across all groups. No significant neuronal degeneration was identified in areas away from the site of injury.</AbstractText>Aeromedical evacuation in swine was not associated with significant differences in physiologic measures, cytokine expression or levels of neuronal degeneration. Histological examination revealed higher risk of meningeal inflammatory response and leucocytosis in swine exposed to hypobaria.</AbstractText>Copyright &#xa9; 2022. Published by Elsevier Ltd.</CopyrightInformation>
2,335,715
Aspirin Cessation Before Interventional Procedures: Not Blindly Following Guidelines but Making Test-based Decisions.
Deciding whether to continue or discontinue aspirin prior to interventional procedures is a major concern for pain physicians. Many guidelines have been published on the discontinuation of aspirin before invasive procedures; however, the recommendations are inconsistent and do not consider individual platelet function. Furthermore, many studies have shown a high prevalence of aspirin resistance&#xa0; in patients taking this medication.</AbstractText>To determine the necessity of discontinuing aspirin prior to interventional pain procedures in relation to individual platelet function.</AbstractText>Multicenter, cross-sectional study.</AbstractText>University-affiliated hospitals.</AbstractText>We examined platelet function among patients scheduled for an interventional pain procedure by measuring their closure time using collagen/epinephrine cartridges in a commercial platelet-function analyzer. The patients were categorized into either an aspirin-taking or nonaspirin-taking group (Group A or Group N, respectively). The proportion of patients who showed normal/abnormal platelet function was calculated and compared between the groups.</AbstractText>A total of 1,111 patients were included in this study. In Group A, 56.4% (102/181) showed normal platelet function, whereas 43.6% (79/181) showed abnormal platelet function. In Group N, 85.8% (798/930) and 14.2% (132/930) showed normal and abnormal platelet function, respectively.</AbstractText>The proportion of laboratory, not clinical aspirin resistance was evaluated. Factors affecting platelet function were not investigated exhaustively.</AbstractText>The high prevalence of normal platelet function in patients taking aspirin suggests no necessity of discontinuation before procedures in such patients. Abnormal platelet function can occur even in patients who are not taking aspirin. Therefore, platelet function should be measured and considered on a case-by-case basis prior to interventional procedures, and discontinuation of aspirin should be decided based on these factors.</AbstractText>
2,335,716
Integrated fan cooling of the lower back for wheelchair users.
A large proportion of a wheelchair user's body is in contact with their wheelchair. Integrated fan cooling systems fitted to a wheelchair's backrest aim to alleviate the build-up of heat at the skin-chair interface. The aim of this pilot study was to evaluate the effectiveness of an integrated fan cooling system at cooling the user during daily pushing activity.</AbstractText>Eight male able-bodied participants completed two conditions, with (FAN) and without (CON) fan cooling, pushing for four 15&#xa0;min blocks. The fan was turned on (highest setting) at the end of block 1 (FAN), whilst in CON the fan remained off. Skin temperature was measured over the back and chest throughout alongside heart rate and perceptual responses (rating of perceived exertion, thermal sensation, thermal comfort, wetness sensation) at the end of each 15&#xa0;min block.</AbstractText>Wetness sensation and lower back skin temperature were lower in FAN (both p</i> &lt; 0.02), with the difference in lower back skin temperature between the two conditions being 2.20&#xb0;C at the end of block 4.</AbstractText>The integrated fan cooling system provided significant cooling to the lower back without affecting any other physiological or perceptual response, besides wetness sensation.</AbstractText>&#xa9; The Author(s) 2022.</CopyrightInformation>
2,335,717
Cardiac Manifestations of Lyme Disease.<Pagination><StartPage>553</StartPage><EndPage>561</EndPage><MedlinePgn>553-561</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/j.idc.2022.03.001</ELocationID><ELocationID EIdType="pii" ValidYN="Y">S0891-5520(22)00031-9</ELocationID><Abstract><AbstractText>Lyme carditis is an uncommon manifestation of Lyme disease. Most cases present with heart block of varying degrees, but the spectrum of disease includes other transient arrhythmias and structural manifestations, such as myopericarditis or cardiomyopathy. Antibiotics hasten the resolution of Lyme carditis, and cardiac pacing can be an adjunctive therapy. Outcomes are generally good, but there are rare fatalities associated with Lyme carditis. The latter underscores the continued need for improved modes of prevention of Lyme disease and the importance of its early recognition and treatment.</AbstractText><CopyrightInformation>Copyright &#xa9; 2022 Elsevier Inc. All rights reserved.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Shen</LastName><ForeName>Richard V</ForeName><Initials>RV</Initials><AffiliationInfo><Affiliation>Division of Infectious Diseases, Southcoast Physicians Group, 363 Highland Avenue, Fall River, MA 02720, USA. Electronic address: [email protected].</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>McCarthy</LastName><ForeName>Carol A</ForeName><Initials>CA</Initials><AffiliationInfo><Affiliation>Division of Pediatric Infectious Diseases, Department of Pediatrics, Barbara Bush Children's Hospital at Maine Medical Center, 887 Congress Street, Suite 310, Portland, ME 04102, USA.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016454">Review</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Infect Dis Clin North Am</MedlineTA><NlmUniqueID>8804508</NlmUniqueID><ISSNLinking>0891-5520</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000900">Anti-Bacterial Agents</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D000900" MajorTopicYN="N">Anti-Bacterial Agents</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006327" MajorTopicYN="N">Heart Block</DescriptorName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008193" MajorTopicYN="Y">Lyme Disease</DescriptorName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName><QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D009205" MajorTopicYN="Y">Myocarditis</DescriptorName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName><QualifierName UI="Q000628" MajorTopicYN="N">therapy</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Atrioventricular block</Keyword><Keyword MajorTopicYN="N">Cardiac</Keyword><Keyword MajorTopicYN="N">Carditis</Keyword><Keyword MajorTopicYN="N">Heart block</Keyword><Keyword MajorTopicYN="N">Lyme</Keyword></KeywordList><CoiStatement>Disclosure None of the authors of this article have any relevant commercial or financial conflicts of interest. The authors did not receive funding for this article.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="entrez"><Year>2022</Year><Month>9</Month><Day>18</Day><Hour>21</Hour><Minute>5</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2022</Year><Month>9</Month><Day>19</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2022</Year><Month>9</Month><Day>21</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">36116834</ArticleId><ArticleId IdType="doi">10.1016/j.idc.2022.03.001</ArticleId><ArticleId IdType="pii">S0891-5520(22)00031-9</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="Publisher" Owner="NLM"><PMID Version="1">36116092</PMID><DateRevised><Year>2022</Year><Month>09</Month><Day>18</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1861-0692</ISSN><JournalIssue CitedMedium="Internet"><PubDate><Year>2022</Year><Month>Sep</Month><Day>18</Day></PubDate></JournalIssue><Title>Clinical research in cardiology : official journal of the German Cardiac Society</Title><ISOAbbreviation>Clin Res Cardiol</ISOAbbreviation></Journal>The prognostic significance of bundle branch block in acute heart failure: a systematic review and meta-analysis.
Lyme carditis is an uncommon manifestation of Lyme disease. Most cases present with heart block of varying degrees, but the spectrum of disease includes other transient arrhythmias and structural manifestations, such as myopericarditis or cardiomyopathy. Antibiotics hasten the resolution of Lyme carditis, and cardiac pacing can be an adjunctive therapy. Outcomes are generally good, but there are rare fatalities associated with Lyme carditis. The latter underscores the continued need for improved modes of prevention of Lyme disease and the importance of its early recognition and treatment.<CopyrightInformation>Copyright &#xa9; 2022 Elsevier Inc. All rights reserved.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Shen</LastName><ForeName>Richard V</ForeName><Initials>RV</Initials><AffiliationInfo><Affiliation>Division of Infectious Diseases, Southcoast Physicians Group, 363 Highland Avenue, Fall River, MA 02720, USA. Electronic address: [email protected].</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>McCarthy</LastName><ForeName>Carol A</ForeName><Initials>CA</Initials><AffiliationInfo><Affiliation>Division of Pediatric Infectious Diseases, Department of Pediatrics, Barbara Bush Children's Hospital at Maine Medical Center, 887 Congress Street, Suite 310, Portland, ME 04102, USA.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016454">Review</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Infect Dis Clin North Am</MedlineTA><NlmUniqueID>8804508</NlmUniqueID><ISSNLinking>0891-5520</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000900">Anti-Bacterial Agents</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D000900" MajorTopicYN="N">Anti-Bacterial Agents</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006327" MajorTopicYN="N">Heart Block</DescriptorName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008193" MajorTopicYN="Y">Lyme Disease</DescriptorName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName><QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D009205" MajorTopicYN="Y">Myocarditis</DescriptorName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName><QualifierName UI="Q000628" MajorTopicYN="N">therapy</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Atrioventricular block</Keyword><Keyword MajorTopicYN="N">Cardiac</Keyword><Keyword MajorTopicYN="N">Carditis</Keyword><Keyword MajorTopicYN="N">Heart block</Keyword><Keyword MajorTopicYN="N">Lyme</Keyword></KeywordList><CoiStatement>Disclosure None of the authors of this article have any relevant commercial or financial conflicts of interest. The authors did not receive funding for this article.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="entrez"><Year>2022</Year><Month>9</Month><Day>18</Day><Hour>21</Hour><Minute>5</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2022</Year><Month>9</Month><Day>19</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2022</Year><Month>9</Month><Day>21</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">36116834</ArticleId><ArticleId IdType="doi">10.1016/j.idc.2022.03.001</ArticleId><ArticleId IdType="pii">S0891-5520(22)00031-9</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="Publisher" Owner="NLM"><PMID Version="1">36116092</PMID><DateRevised><Year>2022</Year><Month>09</Month><Day>18</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1861-0692</ISSN><JournalIssue CitedMedium="Internet"><PubDate><Year>2022</Year><Month>Sep</Month><Day>18</Day></PubDate></JournalIssue><Title>Clinical research in cardiology : official journal of the German Cardiac Society</Title><ISOAbbreviation>Clin Res Cardiol</ISOAbbreviation></Journal><ArticleTitle>The prognostic significance of bundle branch block in acute heart failure: a systematic review and meta-analysis.</ArticleTitle><ELocationID EIdType="doi" ValidYN="Y">10.1007/s00392-022-02105-z</ELocationID><Abstract><AbstractText Label="AIMS" NlmCategory="OBJECTIVE">The aim of this study was to conduct a meta-analysis of prospective studies assessing the relationship between bundle branch block (BBB) or wide QRS and risk of all-cause mortality in patients with acute heart failure (AHF).<AbstractText Label="METHODS AND RESULTS" NlmCategory="RESULTS">We searched the PubMed, Scopus and Web of Science database from inception to February 2022 to identify single centre or multicentre studies including a minimum of 400 patients and assessing the association between BBB or wide QRS and mortality in patients with AHF. Study-specific hazard ratio (HR) estimates were combined using a random-effects meta-analysis. Two meta-analyses were performed: (1) grouping by conduction disturbance and follow-up length and, (2) using the results from the longest follow-up for each study and grouping by the type of BBB. The meta-analysis included 21 publications with a total of 116,928 patients. Wide QRS (considering right (RBBB) and left (LBBB) altogether) was associated with a significant increment in the risk of all-cause mortality (pooled adjusted HR 1.112, 95% CI 1.065-1.160). The increased risk of death was also present when LBBB (HR 1.121, 95% CI 1.042-1.207) and RBBB (HR 1.187, 95% CI 1.045-1.348) were considered individually. There was no difference in risk between LBBB and RBBB (P for interaction&#x2009;=&#x2009;0.533). Other outcomes including sudden death, rehospitalization and a combination of cardiovascular death or rehospitalization were also increased in patients with BBB or wide QRS.<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">This meta-analysis suggests a modest increase in the risk of all-cause mortality among patients with AHF and BBB or wide QRS, irrespective of the type of BBB.
2,335,718
Permanent Left Bundle Branch Area Pacing for High-Degree Atrioventricular Block in a 6-Year-Old Child with 2-Year Follow-Up.<Pagination><StartPage>957</StartPage><EndPage>962</EndPage><MedlinePgn>957-962</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1536/ihj.22-103</ELocationID><Abstract><AbstractText>The feasibility and safety of left bundle branch area pacing (LBBAP) used in pediatric patients with atrioventricular block (AVB) have not been well demonstrated. Currently, only several case reports for pediatric patients have been published since the advent of LBBAP, with 3 months to 1 year follow-up. Here, we present a case of LBBAP in a 6-year-old child with a high-degree AVB secondary to the transcatheter device closure of congenital ventricular septal defect. No procedure-related complications were observed, and the electrical parameters were stable at 2-year follow-up. Additionally, we performed a systematic literature review on pediatric patients with LBBAP. Fifteen cases were retrieved after systematically searching PubMed and Embase databases. No complications have been reported among these published cases. In conclusion, consistent with previous cases, our case with 2-year follow-up has demonstrated that LBBAP may be an alternative pacing modality from a very early age. However, given the limited evidence, the long-term outcomes of LBBAP in pediatric patients should be further investigated.</AbstractText></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Hua</LastName><ForeName>Juan</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of Cardiology, The Second Affiliated Hospital of Nanchang University.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Xiong</LastName><ForeName>Qinmei</ForeName><Initials>Q</Initials><AffiliationInfo><Affiliation>Department of Cardiology, The Second Affiliated Hospital of Nanchang University.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Xia</LastName><ForeName>Zhen</ForeName><Initials>Z</Initials><AffiliationInfo><Affiliation>Department of Cardiology, The Second Affiliated Hospital of Nanchang University.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Huang</LastName><ForeName>Qianghui</ForeName><Initials>Q</Initials><AffiliationInfo><Affiliation>Department of Cardiology, The Second Affiliated Hospital of Nanchang University.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Huang</LastName><ForeName>Lin</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>Department of Cardiology, The Second Affiliated Hospital of Nanchang University.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Xia</LastName><ForeName>Zirong</ForeName><Initials>Z</Initials><AffiliationInfo><Affiliation>Department of Cardiology, The Second Affiliated Hospital of Nanchang University.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Hu</LastName><ForeName>Jianxin</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of Cardiology, The Second Affiliated Hospital of Nanchang University.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Li</LastName><ForeName>Juxiang</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of Cardiology, The Second Affiliated Hospital of Nanchang University.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Hu</LastName><ForeName>Jinzhu</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of Cardiology, The Second Affiliated Hospital of Nanchang University.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Chen</LastName><ForeName>Qi</ForeName><Initials>Q</Initials><AffiliationInfo><Affiliation>Department of Cardiology, The Second Affiliated Hospital of Nanchang University.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Hong</LastName><ForeName>Kui</ForeName><Initials>K</Initials><AffiliationInfo><Affiliation>Department of Cardiology, The Second Affiliated Hospital of Nanchang University.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Jiangxi Key Laboratory of Molecular Medicine, Nanchang University.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D002363">Case Reports</PublicationType><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D000078182">Systematic Review</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2022</Year><Month>09</Month><Day>14</Day></ArticleDate></Article><MedlineJournalInfo><Country>Japan</Country><MedlineTA>Int Heart J</MedlineTA><NlmUniqueID>101244240</NlmUniqueID><ISSNLinking>1349-2365</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D054537" MajorTopicYN="Y">Atrioventricular Block</DescriptorName><QualifierName UI="Q000209" MajorTopicYN="N">etiology</QualifierName><QualifierName UI="Q000628" MajorTopicYN="N">therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D002304" MajorTopicYN="N">Cardiac Pacing, Artificial</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D002648" MajorTopicYN="N">Child</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D004562" MajorTopicYN="N">Electrocardiography</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005500" MajorTopicYN="N">Follow-Up Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006329" MajorTopicYN="N">Heart Conduction System</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D016896" MajorTopicYN="N">Treatment Outcome</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Pediatric patients</Keyword><Keyword MajorTopicYN="N">Physiological pacing</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2022</Year><Month>9</Month><Day>15</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2022</Year><Month>10</Month><Day>5</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2022</Year><Month>9</Month><Day>14</Day><Hour>21</Hour><Minute>44</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">36104231</ArticleId><ArticleId IdType="doi">10.1536/ihj.22-103</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="Publisher" Owner="NLM"><PMID Version="1">36102125</PMID><DateRevised><Year>2022</Year><Month>09</Month><Day>14</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1467-1107</ISSN><JournalIssue CitedMedium="Internet"><PubDate><Year>2022</Year><Month>Sep</Month><Day>14</Day></PubDate></JournalIssue><Title>Cardiology in the young</Title><ISOAbbreviation>Cardiol Young</ISOAbbreviation></Journal>Pulmonary artery banding: still a role for staged bi-ventricular repair of intracardiac shunts?
The feasibility and safety of left bundle branch area pacing (LBBAP) used in pediatric patients with atrioventricular block (AVB) have not been well demonstrated. Currently, only several case reports for pediatric patients have been published since the advent of LBBAP, with 3 months to 1 year follow-up. Here, we present a case of LBBAP in a 6-year-old child with a high-degree AVB secondary to the transcatheter device closure of congenital ventricular septal defect. No procedure-related complications were observed, and the electrical parameters were stable at 2-year follow-up. Additionally, we performed a systematic literature review on pediatric patients with LBBAP. Fifteen cases were retrieved after systematically searching PubMed and Embase databases. No complications have been reported among these published cases. In conclusion, consistent with previous cases, our case with 2-year follow-up has demonstrated that LBBAP may be an alternative pacing modality from a very early age. However, given the limited evidence, the long-term outcomes of LBBAP in pediatric patients should be further investigated.</Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Hua</LastName><ForeName>Juan</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of Cardiology, The Second Affiliated Hospital of Nanchang University.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Xiong</LastName><ForeName>Qinmei</ForeName><Initials>Q</Initials><AffiliationInfo><Affiliation>Department of Cardiology, The Second Affiliated Hospital of Nanchang University.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Xia</LastName><ForeName>Zhen</ForeName><Initials>Z</Initials><AffiliationInfo><Affiliation>Department of Cardiology, The Second Affiliated Hospital of Nanchang University.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Huang</LastName><ForeName>Qianghui</ForeName><Initials>Q</Initials><AffiliationInfo><Affiliation>Department of Cardiology, The Second Affiliated Hospital of Nanchang University.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Huang</LastName><ForeName>Lin</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>Department of Cardiology, The Second Affiliated Hospital of Nanchang University.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Xia</LastName><ForeName>Zirong</ForeName><Initials>Z</Initials><AffiliationInfo><Affiliation>Department of Cardiology, The Second Affiliated Hospital of Nanchang University.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Hu</LastName><ForeName>Jianxin</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of Cardiology, The Second Affiliated Hospital of Nanchang University.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Li</LastName><ForeName>Juxiang</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of Cardiology, The Second Affiliated Hospital of Nanchang University.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Hu</LastName><ForeName>Jinzhu</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of Cardiology, The Second Affiliated Hospital of Nanchang University.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Chen</LastName><ForeName>Qi</ForeName><Initials>Q</Initials><AffiliationInfo><Affiliation>Department of Cardiology, The Second Affiliated Hospital of Nanchang University.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Hong</LastName><ForeName>Kui</ForeName><Initials>K</Initials><AffiliationInfo><Affiliation>Department of Cardiology, The Second Affiliated Hospital of Nanchang University.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Jiangxi Key Laboratory of Molecular Medicine, Nanchang University.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D002363">Case Reports</PublicationType><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D000078182">Systematic Review</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2022</Year><Month>09</Month><Day>14</Day></ArticleDate></Article><MedlineJournalInfo><Country>Japan</Country><MedlineTA>Int Heart J</MedlineTA><NlmUniqueID>101244240</NlmUniqueID><ISSNLinking>1349-2365</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D054537" MajorTopicYN="Y">Atrioventricular Block</DescriptorName><QualifierName UI="Q000209" MajorTopicYN="N">etiology</QualifierName><QualifierName UI="Q000628" MajorTopicYN="N">therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D002304" MajorTopicYN="N">Cardiac Pacing, Artificial</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D002648" MajorTopicYN="N">Child</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D004562" MajorTopicYN="N">Electrocardiography</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005500" MajorTopicYN="N">Follow-Up Studies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006329" MajorTopicYN="N">Heart Conduction System</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D016896" MajorTopicYN="N">Treatment Outcome</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Pediatric patients</Keyword><Keyword MajorTopicYN="N">Physiological pacing</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="pubmed"><Year>2022</Year><Month>9</Month><Day>15</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2022</Year><Month>10</Month><Day>5</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2022</Year><Month>9</Month><Day>14</Day><Hour>21</Hour><Minute>44</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">36104231</ArticleId><ArticleId IdType="doi">10.1536/ihj.22-103</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="Publisher" Owner="NLM"><PMID Version="1">36102125</PMID><DateRevised><Year>2022</Year><Month>09</Month><Day>14</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1467-1107</ISSN><JournalIssue CitedMedium="Internet"><PubDate><Year>2022</Year><Month>Sep</Month><Day>14</Day></PubDate></JournalIssue><Title>Cardiology in the young</Title><ISOAbbreviation>Cardiol Young</ISOAbbreviation></Journal><ArticleTitle>Pulmonary artery banding: still a role for staged bi-ventricular repair of intracardiac shunts?</ArticleTitle><Pagination><StartPage>1</StartPage><EndPage>7</EndPage><MedlinePgn>1-7</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1017/S1047951122002918</ELocationID><Abstract><AbstractText Label="OBJECTIVES" NlmCategory="OBJECTIVE">Although pulmonary artery banding remains a useful palliation in bi-ventricular shunting lesions, single-stage repair holds several advantages. We investigate outcomes of the former approach in high-risk patients.<AbstractText Label="METHODS" NlmCategory="METHODS">Retrospective cohort study including all pulmonary artery banding procedures over 9 years, excluding single ventricle physiology and left ventricular training.<AbstractText Label="RESULTS" NlmCategory="RESULTS">Banding was performed in 125 patients at a median age of 41 days (2-294) and weight of 3.4 kg (1.8-7.32). Staged repair was undertaken for significant co-morbidity in 81 (64.8%) and anatomical complexity in 44 (35.2%). The median hospital stay was 14 days (interquartile range 8-33.5) and 14 patients (11.2%) required anatomical repair before discharge. Nine patients died during the initial admission (hospital mortality 7.2 %) and five following discharge (inter-stage mortality 4.8%). Of 105 banded patients who survived, 19 (18.1%) needed inter-stage re-admission and 18 (14.4%) required unplanned re-intervention. Full repair was performed in 93 (74.4%) at a median age of 13 months (3.1-49.9) and weight of 8.5 kg (3.08-16.8). Prior banding, 54% were below the 0.4th weight centile, but only 28% remained so at repair. Post-repair, 5/93 (5.4%) developed heart block requiring permanent pacemaker, and 11/93 (11.8%) required unplanned re-intervention. The post-repair mortality (including repairs during the initial admission) was 6/93 (6.5%), with overall mortality of the staged approach 13.6% (17/125).<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">In a cohort with a high incidence of co-morbidity, pulmonary artery banding is associated with a significant risk of re-intervention and mortality. Weight gain improves after banding, but heart block, re-intervention, and mortality remain frequent following repair.
2,335,719
Emergencies in obstetric anaesthesia: a narrative review.<Pagination><StartPage>1416</StartPage><EndPage>1429</EndPage><MedlinePgn>1416-1429</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1111/anae.15839</ELocationID><Abstract><AbstractText>We conducted a narrative review in six areas of obstetric emergencies: category-1 caesarean section; difficult and failed airway; massive obstetric haemorrhage; hypertensive crisis; emergencies related to neuraxial anaesthesia; and maternal cardiac arrest. These areas represent significant research published within the last five&#x2009;years, with emphasis on large multicentre randomised trials, national or international practice guidelines and recommendations from major professional societies. Key topics discussed: prevention and management of failed neuraxial technique; role of high-flow nasal oxygenation and choice of neuromuscular drug in obstetric patients; prevention of accidental awareness during general anaesthesia; management of the difficult and failed obstetric airway; current perspectives on the use of tranexamic acid, fibrinogen concentrate and cell salvage; guidance on neuraxial placement in a thrombocytopenic obstetric patient; management of neuraxial drug errors, local anaesthetic systemic toxicity and unusually prolonged neuraxial block regression; and extracorporeal membrane oxygenation use in maternal cardiac arrest.</AbstractText><CopyrightInformation>&#xa9; 2022 Association of Anaesthetists.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Prior</LastName><ForeName>C H</ForeName><Initials>CH</Initials><Identifier Source="ORCID">0000-0001-9147-2326</Identifier><AffiliationInfo><Affiliation>Department of Anaesthesia, West Middlesex University Hospital, London, UK.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Burlinson</LastName><ForeName>C E G</ForeName><Initials>CEG</Initials><Identifier Source="ORCID">0000-0001-8190-0438</Identifier><AffiliationInfo><Affiliation>Department of Anesthesia, BC Women's Hospital, Vancouver, BC, Canada.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Chau</LastName><ForeName>A</ForeName><Initials>A</Initials><Identifier Source="ORCID">0000-0001-9484-2863</Identifier><AffiliationInfo><Affiliation>Department of Anesthesia, BC Women's Hospital, Vancouver, BC, Canada.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Anesthesia, St. Paul's Hospital, Vancouver, BC, Canada.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016454">Review</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2022</Year><Month>09</Month><Day>12</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>Anaesthesia</MedlineTA><NlmUniqueID>0370524</NlmUniqueID><ISSNLinking>0003-2409</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D011247" MajorTopicYN="N">Pregnancy</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000773" MajorTopicYN="Y">Anesthesia, Obstetrical</DescriptorName><QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName><QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D002585" MajorTopicYN="N">Cesarean Section</DescriptorName><QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D004630" MajorTopicYN="N">Emergencies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000768" MajorTopicYN="N">Anesthesia, General</DescriptorName><QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006323" MajorTopicYN="Y">Heart Arrest</DescriptorName><QualifierName UI="Q000139" MajorTopicYN="N">chemically induced</QualifierName><QualifierName UI="Q000628" MajorTopicYN="N">therapy</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">difficult airway</Keyword><Keyword MajorTopicYN="N">drug error</Keyword><Keyword MajorTopicYN="N">emergency caesarean delivery</Keyword><Keyword MajorTopicYN="N">failed airway</Keyword><Keyword MajorTopicYN="N">hypertensive emergencies</Keyword><Keyword MajorTopicYN="N">massive obstetric haemorrhage</Keyword><Keyword MajorTopicYN="N">maternal cardiac arrest</Keyword><Keyword MajorTopicYN="N">obstetric anaesthesia</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="accepted"><Year>2022</Year><Month>7</Month><Day>18</Day></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2022</Year><Month>9</Month><Day>13</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2022</Year><Month>11</Month><Day>11</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2022</Year><Month>9</Month><Day>12</Day><Hour>3</Hour><Minute>14</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">36089883</ArticleId><ArticleId IdType="doi">10.1111/anae.15839</ArticleId></ArticleIdList><ReferenceList><Title>References</Title><Reference><Citation>National Institute for Health and Care Excellence. Caesarean birth. [CG192]. March 2021. https://www.nice.org.uk/guidance/ng192 (accessed 01/05/2022).</Citation></Reference><Reference><Citation>May RL, Clayton MA, Richardson AL, Kinsella SM, Khalil A, Lucas DN. Defining the decision-to-delivery interval at caesarean section: narrative literature review and proposal for standardisation. Anaesthesia 2022; 77: 96-104.</Citation></Reference><Reference><Citation>Odor PM, Bampoe S, Moonesinghe SR, Andrade J, Pandit JJ, Lucas DN. General anaesthetic and airway management practice for obstetric surgery in England: a prospective, multicentre observational study. Anaesthesia 2021; 76: 460-71.</Citation></Reference><Reference><Citation>Patel R, Kua J, Sharawi N, Bauer ME, Blake L, Moonesinghe SR, Sultan P. Inadequate neuraxial anaesthesia in patients undergoing elective caesarean section: a systematic review. Anaesthesia 2022; 77: 598-604.</Citation></Reference><Reference><Citation>Bauer ME, Mhyre JM. Active management of labor epidural analgesia is the key to successful conversion of epidural analgesia to cesarean delivery anesthesia. Anesthesia and Analgesia 2016; 123: 1074-6.</Citation></Reference><Reference><Citation>Plaat F, Stanford SER, Lucas DN, et&#x2009;al. Prevention and management of intra-operative pain during caesarean section under neuraxial anaesthesia: a technical and interpersonal approach. Anaesthesia 2022; 77: 588-97.</Citation></Reference><Reference><Citation>Stanford SE, Bogod DG. Failure of communication: a patient's story. International Journal of Obstetric Anesthesia 2016; 28: 70-5.</Citation></Reference><Reference><Citation>Shippam W, Preston R, Douglas J, Taylor J, Albert A, Chau A. High-flow nasal oxygen vs. standard flow-rate facemask pre-oxygenation in pregnant patients: a randomised physiological study. Anaesthesia 2019; 74: 450-6.</Citation></Reference><Reference><Citation>Tan PCF, Millay OJ, Leeton L, Dennis AT. High-flow humidified nasal preoxygenation in pregnant women: a prospective observational study. British Journal of Anaesthesia 2019; 122: 86-91.</Citation></Reference><Reference><Citation>Au K, Shippam W, Taylor J, Albert A, Chau A. Determining the effective pre-oxygenation interval in obstetric patients using high-flow nasal oxygen and standard flow rate facemask: a biased-coin up-down sequential allocation trial. Anaesthesia 2020; 75: 609-16.</Citation></Reference><Reference><Citation>Al-Sulttan S, Bampoe S, Howle R, et&#x2009;al. A prospective, up-down sequential allocation study investigating the effectiveness of vital capacity breaths using high-flow nasal oxygenation versus a tight-fitting face mask to pre-oxygenate term pregnant women. International Journal of Obstetric Anesthesia 2021; 45: 28-33.</Citation></Reference><Reference><Citation>Tan PCF, Peyton PJ, Unterscheider J, Deane A, Leeton L, Dennis AT. O.3 high-flow humidified nasal oxygen versus facemask oxygen for preoxygenation of pregnant women: a prospective randomised controlled crossover study. International Journal of Obstetric Anesthesia 2021; 46(Suppl 1): 102991. https://doi.org/10.1016/j.ijoa.2021.102991.</Citation></Reference><Reference><Citation>Stolady D, Laviola M, Pillai A, Hardman JG. Effect of variable pre-oxygenation endpoints on safe apnoea time using high flow nasal oxygen for women in labour: a modelling investigation. British Journal of Anaesthesia 2021; 126: 889-95.</Citation></Reference><Reference><Citation>Solt&#xe9;sz S, Alm P, Mathes A, Hellmich M, Hinkelbein J. The effect of neuromuscular blockade on the efficiency of facemask ventilation in patients difficult to facemask ventilate: a prospective trial. Anaesthesia 2017; 72: 1484-90.</Citation></Reference><Reference><Citation>Law JA, Duggan LV, Asselin M, et&#x2009;al. Canadian airway focus group updated consensus-based recommendations for management of the difficult airway: part 1. Difficult airway management encountered in an unconscious patient. Canadian Journal of Anesthesia 2021; 68: 1373-404.</Citation></Reference><Reference><Citation>White LD, Hodsdon A, An GH, Thang C, Melhuish TM, Vlok R. Induction opioids for caesarean section under general anaesthesia: a systematic review and meta-analysis of randomised controlled trials. International Journal of Obstetric Anesthesia 2019; 40: 4-13.</Citation></Reference><Reference><Citation>Odor PM, Bampoe S, Lucas DN, Moonesinghe SR, Andrade J, Pandit JJ. Incidence of accidental awareness during general anaesthesia in obstetrics: a multicentre, prospective cohort study. Anaesthesia 2021; 76: 759-76.</Citation></Reference><Reference><Citation>Palanisamy A, Paech MJ. From Hypnos to Ephialtes: waking up to the consequences of accidental awareness during obstetric general anaesthesia. Anaesthesia 2021; 76: 736-9.</Citation></Reference><Reference><Citation>Reale SC, Bauer ME, Klumpner TT, et&#x2009;al. Frequency and risk factors for difficult intubation in women undergoing general anesthesia for cesarean delivery: a multicenter retrospective cohort analysis. Anesthesiology 2022; 136: 697-708.</Citation></Reference><Reference><Citation>Kinsella S, Winton A, Mushambi M, et&#x2009;al. Failed tracheal intubation during obstetric general anaesthesia: a literature review. International Journal of Obstetric Anesthesia 2015; 24: 356-74.</Citation></Reference><Reference><Citation>Baker PA, Behringer EC, Feinleib J, et&#x2009;al. Formation of an airway Lead network: an essential patient safety initiative. British Journal of Anaesthesia 2022; 128: 225-9.</Citation></Reference><Reference><Citation>Mushambi MC, Kinsella SM, Popat M, et&#x2009;al. Obstetric Anaesthetists' Association and difficult airway society guidelines for the management of difficult and failed tracheal intubation in obstetrics. Anaesthesia 2015; 70: 1286-306.</Citation></Reference><Reference><Citation>Kovacheva VP, Brovman EY, Greenberg P, Song E, Palanisamy A, Urman RD. A contemporary analysis of medicolegal issues in obstetric anesthesia between 2005 and 2015. Anesthesia and Analgesia 2019; 128: 1199-207.</Citation></Reference><Reference><Citation>Howle R, Onwochei D, Harrison SL, Desai N. Comparison of videolaryngoscopy and direct laryngoscopy for tracheal intubation in obstetrics: a mixed-methods systematic review and meta-analysis. Canadian Journal of Anesthesia 2021; 68: 546-65.</Citation></Reference><Reference><Citation>Lucas DN, Vaughan DJA. Videolaryngoscopy and obstetric anaesthesia. British Journal of Anaesthesia 2017; 119: 549.</Citation></Reference><Reference><Citation>Hansel J, Rogers AM, Lewis SR, Cook TM, Smith AF. Videolaryngoscopy versus direct laryngoscopy for adults undergoing tracheal intubation. Cochrane Database of Systematic Reviews 2022; 4: CD011136.</Citation></Reference><Reference><Citation>Fennessy P, Aslani A, Campbell M, Husarova V, Duggan M, McCaul CL. Theoretical optimal cricothyroidotomy incision length in female subjects, following identification of the cricothyroid membrane by digital palpation. International Journal of Obstetric Anesthesia 2018; 36: 42-8.</Citation></Reference><Reference><Citation>Wong P, Sng BL, Lim WY. Rescue supraglottic airway devices at caesarean delivery: what are the options to consider? International Journal of Obstetric Anesthesia 2020; 42: 65-75.</Citation></Reference><Reference><Citation>Greene RA, McKernan J, Manning E, et&#x2009;al. Major obstetric haemorrhage: incidence, management and quality of care in Irish maternity units. European Journal of Obstetrics and Gynecology and Reproductive Biology 2021; 257: 114-20.</Citation></Reference><Reference><Citation>Reale SC, Easter SR, Xu X, Bateman BT, Farber MK. Trends in postpartum hemorrhage in the United States from 2010 to 2014. Anesthesia and Analgesia 2020; 130: e119-e122.</Citation></Reference><Reference><Citation>Balki M, Wong CA. Refractory uterine atony: still a problem after all these years. International Journal of Obstetric Anesthesia 2021; 48: 103207.</Citation></Reference><Reference><Citation>Chau A, Farber MK. Do quantitative blood loss measurements and postpartum hemorrhage protocols actually make a difference? Yes, no, and maybe. International Journal of Obstetric Anesthesia 2020; 42: 1-3.</Citation></Reference><Reference><Citation>Katz D, Wang R, O'Neil L, et&#x2009;al. The association between the introduction of quantitative assessment of postpartum blood loss and institutional changes in clinical practice: an observational study. International Journal of Obstetric Anesthesia 2020; 42: 4-10.</Citation></Reference><Reference><Citation>Powell E, James D, Collis R, Collins PW, Pallmann P, Bell S. Introduction of standardized, cumulative quantitative measurement of blood loss into routine maternity care. Journal of Maternal-Fetal and Neonatal Medicine 2022; 35: 1491-7.</Citation></Reference><Reference><Citation>Quantitative blood loss in obstetric hemorrhage: ACOG COMMITTEE OPINION, Number 794. Obstetrics and Gynecology 2019; 134: e150-6.</Citation></Reference><Reference><Citation>Natrella M, Di Naro E, Loverro M, et&#x2009;al. The more you lose the more you miss: accuracy of postpartum blood loss visual estimation. A systematic review of the literature. Journal of Maternal-Fetal and Neonatal Medicine 2018; 31: 106-15.</Citation></Reference><Reference><Citation>Waters JH, Bonnet MP. When and how should I transfuse during obstetric hemorrhage? International Journal of Obstetric Anesthesia 2021; 46: 102973.</Citation></Reference><Reference><Citation>Collis RE, Kenyon C, Roberts TCD, McNamara H. When does obstetric coagulopathy occur and how do I manage it? International Journal of Obstetric Anesthesia 2021; 46: 102979.</Citation></Reference><Reference><Citation>Butwick A, Lyell D, Goodnough L. How do I manage severe postpartum hemorrhage? Transfusion 2020; 60: 897-907.</Citation></Reference><Reference><Citation>Nelson DB, Ogunkua O, Cunningham FG. Point-of-care viscoelastic tests in the management of obstetric hemorrhage. Obstetrics and Gynecology 2022; 139: 463-72.</Citation></Reference><Reference><Citation>Dias JD, Butwick AJ, Hartmann J, Waters JH. Viscoelastic haemostatic point-of-care assays in the management of postpartum haemorrhage: a narrative review. Anaesthesia 2022; 77: 700-11.</Citation></Reference><Reference><Citation>Woman Trial Collaborators. Effect of early tranexamic acid administration on mortality, hysterectomy, and other morbidities in women with post-partum haemorrhage (WOMAN): an international, randomised, double-blind, placebo-controlled trial. Lancet 2017; 389: 2105-16.</Citation></Reference><Reference><Citation>Howard DC, Jones AE, Skeith A, Lai J, D'Souza R, Caughey AB. Tranexamic acid for the treatment of postpartum hemorrhage: a cost-effectiveness analysis. American Journal of Obstetrics and Gynecology - Maternal Fetal Medicine 2022; 4: 100588.</Citation></Reference><Reference><Citation>Sentilhes L, Winer N, Azria E, et&#x2009;al. Tranexamic acid for the prevention of blood loss after vaginal delivery. New England Journal of Medicine 2018; 379: 731-42.</Citation></Reference><Reference><Citation>Sentilhes L, Senat MV, Le Lous M, et&#x2009;al. Tranexamic acid for the prevention of blood loss after cesarean delivery. New England Journal of Medicine 2021; 384: 1623-34.</Citation></Reference><Reference><Citation>Gungorduk K, Yildirim G, Asicioglu O, Gungorduk OC, Sudolmus S, Ark C. Efficacy of intravenous tranexamic acid in reducing blood loss after elective cesarean section: a prospective, randomized, double-blind, placebo-controlled study. American Journal of Perinatology 2011; 28: 233-40.</Citation></Reference><Reference><Citation>Ducloy-Bouthors AS, Jude B, Duhamel A, et&#x2009;al. High-dose tranexamic acid reduces blood loss in postpartum haemorrhage. Critical Care Medicine 2011; 15: R117.</Citation></Reference><Reference><Citation>Shander A, Javidroozi M, Sentilhes L. Tranexamic acid and obstetric hemorrhage: give empirically or selectively? International Journal of Obstetric Anesthesia 2021; 48: 103206.</Citation></Reference><Reference><Citation>Ker K, Roberts I, Chaudhri R, et&#x2009;al. Tranexamic acid for the prevention of postpartum bleeding in women with anaemia: study protocol for an international, randomised, double-blind, placebo-controlled trial. Trials 2018; 19: 712.</Citation></Reference><Reference><Citation>Arribas M, Roberts I, Chaudhri R, et&#x2009;al. WOMAN-PharmacoTXA trial: study protocol for a randomised controlled trial to assess the pharmacokinetics and pharmacodynamics of intramuscular, intravenous and oral administration of tranexamic acid in women giving birth by caesarean section. Wellcome Open Research 2021; 6: 157.</Citation></Reference><Reference><Citation>Charbit B, Mandelbrot L, Samain E, et&#x2009;al. The decrease of fibrinogen is an early predictor of the severity of postpartum hemorrhage. Journal of Thrombosis and Haemostasis 2007; 5: 266-73.</Citation></Reference><Reference><Citation>Green L, Knight M, Seeney FM, et&#x2009;al. The epidemiology and outcomes of women with postpartum haemorrhage requiring massive transfusion with eight or more units of red cells: a national cross-sectional study. British Journal of Obstetrics and Gynaecology 2016; 123: 2164-70.</Citation></Reference><Reference><Citation>Collins PW, Lilley G, Bruynseels D, et&#x2009;al. Fibrin-based clot formation as an early and rapid biomarker for progression of postpartum hemorrhage: a prospective study. Blood 2014; 124: 1727-36.</Citation></Reference><Reference><Citation>McNamara H, Kenyon C, Smith R, Mallaiah S, Barclay P. Four years' experience of a ROTEM((R)) -guided algorithm for treatment of coagulopathy in obstetric haemorrhage. Anaesthesia 2019; 74: 984-91.</Citation></Reference><Reference><Citation>Lasica M, Sparrow RL, Tacey M, Pollock WE, Wood EM, McQuilten ZK, the members of the Australian&#x2009;and New Zealand Massive Transfusion Registry Steering Committee. Haematological features, transfusion management and outcomes of massive obstetric haemorrhage: findings from the Australian and New Zealand massive transfusion registry. British Journal of Haematology 2020; 190: 618-28.</Citation></Reference><Reference><Citation>Collins PW, Cannings-John R, Bruynseels D, et&#x2009;al. Viscoelastometric-guided early fibrinogen concentrate replacement during postpartum haemorrhage: OBS2, a double-blind randomized controlled trial. British Journal of Anaesthesia 2017; 119: 411-21.</Citation></Reference><Reference><Citation>Wikkelso AJ, Edwards HM, Afshari A, et&#x2009;al. Pre-emptive treatment with fibrinogen concentrate for postpartum haemorrhage: randomized controlled trial. British Journal of Anaesthesia 2015; 114: 623-33.</Citation></Reference><Reference><Citation>Ducloy-Bouthors AS, Mercier FJ, Grouin JM, et&#x2009;al. Early and systematic administration of fibrinogen concentrate in postpartum haemorrhage following vaginal delivery: the FIDEL randomised controlled trial. British Journal of Obstetrics and Gynaecology 2021; 128: 1814-23.</Citation></Reference><Reference><Citation>Khan KS, Moore PAS, Wilson MJ, et&#x2009;al. Cell salvage and donor blood transfusion during cesarean section: a pragmatic, multicentre randomised controlled trial (SALVO). PLoS Medicine 2017; 14: e1002471.</Citation></Reference><Reference><Citation>Sullivan IJ, Ralph CJ. Obstetric intra-operative cell salvage: a review of an established cell salvage service with 1170 re-infused cases. Anaesthesia 2019; 74: 976-83.</Citation></Reference><Reference><Citation>Klein AA, Bailey CR, Charlton AJ, et&#x2009;al. Association of Anaesthetists guidelines: cell salvage for peri-operative blood conservation 2018. Anaesthesia 2018; 73: 1141-50.</Citation></Reference><Reference><Citation>Lim G, Melnyk V, Facco FL, Waters JH, Smith KJ. Cost-effectiveness analysis of intraoperative cell salvage for obstetric hemorrhage. Anesthesiology 2018; 128: 328-37.</Citation></Reference><Reference><Citation>Fujioka I, Ichikawa Y, Nakajima Y, Kasahara M, Hattori M, Nemoto T. Efficiency of leukocyte depletion filters and micro-aggregate filters following intra-operative cell salvage during cesarean delivery. International Journal of Obstetric Anesthesia 2020; 41: 59-64.</Citation></Reference><Reference><Citation>Phillips JM, Tamura T, Waters JH, Larkin J, Sakamoto S. Autotransfusion of vaginally shed blood as a novel therapy in obstetric hemorrhage: a case series. Transfusion 2022; 62: 613-20.</Citation></Reference><Reference><Citation>Jauniaux E, Chantraine F, Silver RM, Langhoff-Roos J, for the FIGO Placenta Accreta Diagnosis and Management Expert Consensus Panel. FIGO consensus guidelines on placenta accreta spectrum disorders: Epidemiology. International Journal of Gynecology and Obstetrics 2018; 140: 265-73.</Citation></Reference><Reference><Citation>Einerson BD, Weiniger CF. Placenta accreta spectrum disorder: updates on anesthetic and surgical management strategies. International Journal of Obstetric Anesthesia 2021; 46: 102975.</Citation></Reference><Reference><Citation>Warrick CM, Markley JC, Farber MK, et&#x2009;al. Placenta accreta spectrum disorders: knowledge gaps in anesthesia care. Anesthesia and Analgesia 2022; 135: 191-7.</Citation></Reference><Reference><Citation>Jauniaux E, Bunce C, Gr&#xf8;nbeck L, Langhoff-Roos J. Prevalence and main outcomes of placenta accreta spectrum: a systematic review and meta-analysis. American Journal of Obstetrics and Gynecology 2019; 221: 208-18.</Citation></Reference><Reference><Citation>Nieto-Calvache AJ, L&#xf3;pez-Gir&#xf3;n MC, Burgos-Luna JM, et&#x2009;al. Maternal hemodynamics during aortic occlusion with REBOA in patients with placenta accreta spectrum disorder. Journal of Maternal-Fetal and Neonatal Medicine 2021; 1-7.</Citation></Reference><Reference><Citation>Whittington JR, Pagan ME, Nevil BD, Kalkwarf KJ, Sharawi NE, Hughes DS, Sandlin AT. Risk of vascular complications in prophylactic compared to emergent resuscitative endovascular balloon occlusion of the aorta (REBOA) in the management of placenta accreta spectrum. Journal of Maternal-Fetal and Neonatal Medicine 2022; 35: 3049-52.</Citation></Reference><Reference><Citation>Feng S, Liao Z, Huang H. Effect of prophylactic placement of internal iliac artery balloon catheters on outcomes of women with placenta accreta: an impact study. Anaesthesia 2017; 72: 853-8.</Citation></Reference><Reference><Citation>Li Z, Chen Y, Zeng X, et&#x2009;al. Clinical and hemodynamic insights into the use of internal iliac artery balloon occlusion as a prophylactic technique for treating postpartum hemorrhage. Journal of Biomechanics 2021; 129: 110827.</Citation></Reference><Reference><Citation>Siddiqui MM, Banayan JM, Hofer JE. Pre-eclampsia through the eyes of the obstetrician and anesthesiologist. International Journal of Obstetric Anesthesia 2019; 40: 140-8.</Citation></Reference><Reference><Citation>Gestational Hypertension and Preeclampsia: ACOG practice bulletin, number 222. Obstetrics and Gynecology 2020; 135: e237-e260.</Citation></Reference><Reference><Citation>Judy AE, McCain CL, Lawton ES, Morton CH, Main EK, Druzin ML. Systolic hypertension, preeclampsia-related mortality, and stroke in California. Obstetrics and Gynecology 2019; 133: 1151-9.</Citation></Reference><Reference><Citation>Masini G, Foo LF, Tay J, Wilkinson IB, Valensise H, Gyselaers W, Lees CC. Preeclampsia has two phenotypes which require different treatment strategies. American Journal of Obstetrics and Gynecology 2022; 226: S1006-S1018.</Citation></Reference><Reference><Citation>Dennis AT. Transthoracic echocardiography in women with preeclampsia. Current Opinion in Anesthesiology 2015; 28: 254-60.</Citation></Reference><Reference><Citation>Bauer ME, Arendt K, Beilin Y, et&#x2009;al. The Society for Obstetric Anesthesia and Perinatology interdisciplinary consensus statement on neuraxial procedures in obstetric patients with thrombocytopenia. Anesthesia and Analgesia 2021; 132: 1531-44.</Citation></Reference><Reference><Citation>Harrop-Griffiths W, Cook T, Gill H, et&#x2009;al. Regional anaesthesia and patients with abnormalities of coagulation. Anaesthesia 2013; 68: 966-72.</Citation></Reference><Reference><Citation>Shah AK, Rajamani K, Whitty JE. Eclampsia: a neurological perspective. Journal of the Neurological Sciences 2008; 271: 158-67.</Citation></Reference><Reference><Citation>Sibai BM. Diagnosis, prevention, and management of eclampsia. Obstetrics and Gynecology 2005; 105: 402-10.</Citation></Reference><Reference><Citation>Magee LA, Brown MA, Hall DR, et&#x2009;al. The 2021 International Society for the Study of hypertension in pregnancy classification, diagnosis and management recommendations for international practice. Pregnancy Hypertension 2022; 27: 148-69.</Citation></Reference><Reference><Citation>Okonkwo M, Nash CM. Duration of postpartum magnesium sulphate for the prevention of eclampsia: a systematic review and meta-analysis. Obstetrics and Gynecology 2022; 139: 521-8.</Citation></Reference><Reference><Citation>Miller EC, Leffert L. Stroke in pregnancy: a focused update. Anesthesia and Analgesia 2020; 130: 1085-96.</Citation></Reference><Reference><Citation>Jain C. ACOG Committee opinion no. 723: guidelines for diagnostic imaging during pregnancy and lactation. Obstetrics and Gynecology 2019; 133: 186.</Citation></Reference><Reference><Citation>Patel S, Loveridge R. Obstetric neuraxial drug administration errors: a quantitative and qualitative analytical review. Anesthesia and Analgesia 2015; 121: 1570-7.</Citation></Reference><Reference><Citation>Liu H, Tariq R, Liu GL, Yan H, Kaye AD. Inadvertent intrathecal injections and best practice management. Acta Anaesthesiologica Scandinavica 2017; 61: 11-22.</Citation></Reference><Reference><Citation>Palanisamy A, Kinsella SM. Spinal tranexamic acid - a new killer in town. Anaesthesia 2019; 74: 831-3.</Citation></Reference><Reference><Citation>Cook TM, Wilkes A, Bickford Smith P, et&#x2009;al. Multicentre clinical simulation evaluation of the ISO 80369-6 neuraxial non-Luer connector. Anaesthesia 2019; 74: 619-29.</Citation></Reference><Reference><Citation>Ting HY, Tsui BC. Reversal of high spinal anesthesia with cerebrospinal lavage after inadvertent intrathecal injection of local anesthetic in an obstetric patient. Canadian Journal of Anesthesia 2014; 61: 1004-7.</Citation></Reference><Reference><Citation>El-Boghdadly K, Pawa A, Chin KJ. Local anesthetic systemic toxicity: current perspectives. Local and Regional Anesthesia 2018; 11: 35-44.</Citation></Reference><Reference><Citation>Neal JM, Neal EJ, Weinberg GL. American Society of Regional Anesthesia and Pain Medicine local anesthetic systemic toxicity checklist: 2020 version. Regional Anesthesia and Pain Medicine 2021; 46: 81-2.</Citation></Reference><Reference><Citation>Neal JM, Barrington MJ, Fettiplace MR, et&#x2009;al. The third American Society of Regional Anesthesia and Pain Medicine practice advisory on local anesthetic systemic toxicity. Regional Anesthesia and Pain Medicine 2018; 43: 113-23.</Citation></Reference><Reference><Citation>Yentis SM, Lucas DN, Brigante L, et&#x2009;al. Safety guideline: neurological monitoring associated with obstetric neuraxial block 2020. Anaesthesia 2020; 75: 913-9.</Citation></Reference><Reference><Citation>Panchal AR, Bartos JA, Cabanas JG, et&#x2009;al. Part 3: adult basic and advanced life support: 2020 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 2020; 142: S366-S468.</Citation></Reference><Reference><Citation>Beckett V, Knight M, Sharpe P. The CAPS study: incidence, management and outcomes of cardiac arrest in pregnancy in the UK: a prospective, descriptive study. British Journal of Obstetrics and Gynaecology 2017; 124: 1374-81.</Citation></Reference><Reference><Citation>Ong J, Zhang JJY, Lorusso R, MacLaren G, Ramanathan K. Extracorporeal membrane oxygenation in pregnancy and the postpartum period: a systematic review of case reports. International Journal of Obstetric Anesthesia 2020; 43: 106-13.</Citation></Reference><Reference><Citation>Ockenden DC. Final Findings, Conclusions and Essential Actions from the Ockenden Review of Maternity Services at Shrewsbury and Telford Hospital NHS Trust. London: Department of Health and Social Care. 2022. https://www.gov.uk/government/publications/final-report-of-the-ockenden-review (accessed 10/05/2022).</Citation></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="Publisher" Owner="NLM"><PMID Version="1">36089119</PMID><DateRevised><Year>2022</Year><Month>10</Month><Day>06</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1532-9488</ISSN><JournalIssue CitedMedium="Internet"><PubDate><Year>2022</Year><Month>Sep</Month><Day>08</Day></PubDate></JournalIssue><Title>Seminars in thoracic and cardiovascular surgery</Title><ISOAbbreviation>Semin Thorac Cardiovasc Surg</ISOAbbreviation></Journal>Staged Ventricular Septation in Double-Inlet Ventricle - A Strategy to Avoid Fontan?<ELocationID EIdType="pii" ValidYN="Y">S1043-0679(22)00214-3</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1053/j.semtcvs.2022.08.014</ELocationID><Abstract><AbstractText>Single-stage ventricular septation for double-inlet left or right ventricle (DILV or DIRV) has historically been associated with poor outcomes. We hypothesize that staged ventricular septation may demonstrate favorable clinical outcomes to be an alternative to Fontan palliation. This single-center retrospective study reviewed patients with DILV or DIRV who underwent staged ventricular septation between 2015-2021. The strategy involves pulmonary artery banding or Norwood procedure during infancy (stage 1), followed by partial ventricular septation to anchor the septum, while maintaining systemic RV pressure to avoid septal shift (stage 2). Residual septal defects are closed with pulmonary artery band removal at stage 3. Results are reported as median (interquartile range). Twelve patients underwent partial ventricular septation. At a median follow-up time of 17 months (8-30) after stage 2, there were no interstage deaths or cardiac transplants; LV dysfunction was observed in one patient. Hemodynamic evaluation after stage 2 demonstrated median left atrial pressure of 9.5 mm Hg (8.9-11.5), cardiac index of 3.4 L/min/m<sup>2</sup> (3.2-3.6), and RV and LV indexed end-diastolic volumes of 52 ml/m<sup>2</sup> (41-67) and 105 ml/m<sup>2</sup> (81-115), respectively. Five patients have progressed to stage 3; one required pacemaker for complete heart block. Unplanned reintervention was required in 4 patients after stage 1, 2 patients after stage 2, and 3 patients after stage 3. Staged ventricular septation is an alternative to single-ventricle palliation in a subset of double-inlet ventricle patients and is associated with acceptable early outcomes. Further studies are necessary to determine long-term outcomes.</AbstractText><CopyrightInformation>Copyright &#xa9; 2022 Elsevier Inc. All rights reserved.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Prasanna</LastName><ForeName>Anagha</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Beroukhim</LastName><ForeName>Rebecca S</ForeName><Initials>RS</Initials><AffiliationInfo><Affiliation>Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ghelani</LastName><ForeName>Sunil</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Feins</LastName><ForeName>Eric N</ForeName><Initials>EN</Initials><AffiliationInfo><Affiliation>Department of Cardiovascular Surgery, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Del Nido</LastName><ForeName>Pedro J</ForeName><Initials>PJ</Initials><AffiliationInfo><Affiliation>Department of Cardiovascular Surgery, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Emani</LastName><ForeName>Sitaram M</ForeName><Initials>SM</Initials><AffiliationInfo><Affiliation>Department of Cardiovascular Surgery, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115. Electronic address: [email protected].</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2022</Year><Month>09</Month><Day>08</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Semin Thorac Cardiovasc Surg</MedlineTA><NlmUniqueID>8917640</NlmUniqueID><ISSNLinking>1043-0679</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Congenital</Keyword><Keyword MajorTopicYN="N">Double-inlet ventricle</Keyword><Keyword MajorTopicYN="N">Single-ventricle management</Keyword><Keyword MajorTopicYN="N">Ventricular septation</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2022</Year><Month>8</Month><Day>13</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2022</Year><Month>8</Month><Day>16</Day></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2022</Year><Month>9</Month><Day>12</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2022</Year><Month>9</Month><Day>12</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2022</Year><Month>9</Month><Day>11</Day><Hour>19</Hour><Minute>35</Minute></PubMedPubDate></History><PublicationStatus>aheadofprint</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">36089119</ArticleId><ArticleId IdType="doi">10.1053/j.semtcvs.2022.08.014</ArticleId><ArticleId IdType="pii">S1043-0679(22)00214-3</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedBookArticle><BookDocument><PMID Version="1">30725755</PMID><ArticleIdList><ArticleId IdType="bookaccession">NBK537070</ArticleId></ArticleIdList><Book><Publisher><PublisherName>StatPearls Publishing</PublisherName><PublisherLocation>Treasure Island (FL)</PublisherLocation></Publisher><BookTitle book="statpearls">StatPearls</BookTitle><PubDate><Year>2023</Year><Month>01</Month></PubDate><BeginningDate><Year>2023</Year><Month>01</Month></BeginningDate><Medium>Internet</Medium></Book><ArticleTitle book="statpearls" part="article-17204">Adenosine SPECT Thallium Imaging
We conducted a narrative review in six areas of obstetric emergencies: category-1 caesarean section; difficult and failed airway; massive obstetric haemorrhage; hypertensive crisis; emergencies related to neuraxial anaesthesia; and maternal cardiac arrest. These areas represent significant research published within the last five&#x2009;years, with emphasis on large multicentre randomised trials, national or international practice guidelines and recommendations from major professional societies. Key topics discussed: prevention and management of failed neuraxial technique; role of high-flow nasal oxygenation and choice of neuromuscular drug in obstetric patients; prevention of accidental awareness during general anaesthesia; management of the difficult and failed obstetric airway; current perspectives on the use of tranexamic acid, fibrinogen concentrate and cell salvage; guidance on neuraxial placement in a thrombocytopenic obstetric patient; management of neuraxial drug errors, local anaesthetic systemic toxicity and unusually prolonged neuraxial block regression; and extracorporeal membrane oxygenation use in maternal cardiac arrest.<CopyrightInformation>&#xa9; 2022 Association of Anaesthetists.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Prior</LastName><ForeName>C H</ForeName><Initials>CH</Initials><Identifier Source="ORCID">0000-0001-9147-2326</Identifier><AffiliationInfo><Affiliation>Department of Anaesthesia, West Middlesex University Hospital, London, UK.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Burlinson</LastName><ForeName>C E G</ForeName><Initials>CEG</Initials><Identifier Source="ORCID">0000-0001-8190-0438</Identifier><AffiliationInfo><Affiliation>Department of Anesthesia, BC Women's Hospital, Vancouver, BC, Canada.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Chau</LastName><ForeName>A</ForeName><Initials>A</Initials><Identifier Source="ORCID">0000-0001-9484-2863</Identifier><AffiliationInfo><Affiliation>Department of Anesthesia, BC Women's Hospital, Vancouver, BC, Canada.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Anesthesia, St. Paul's Hospital, Vancouver, BC, Canada.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016454">Review</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2022</Year><Month>09</Month><Day>12</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>Anaesthesia</MedlineTA><NlmUniqueID>0370524</NlmUniqueID><ISSNLinking>0003-2409</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D011247" MajorTopicYN="N">Pregnancy</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000773" MajorTopicYN="Y">Anesthesia, Obstetrical</DescriptorName><QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName><QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D002585" MajorTopicYN="N">Cesarean Section</DescriptorName><QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D004630" MajorTopicYN="N">Emergencies</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000768" MajorTopicYN="N">Anesthesia, General</DescriptorName><QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006323" MajorTopicYN="Y">Heart Arrest</DescriptorName><QualifierName UI="Q000139" MajorTopicYN="N">chemically induced</QualifierName><QualifierName UI="Q000628" MajorTopicYN="N">therapy</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">difficult airway</Keyword><Keyword MajorTopicYN="N">drug error</Keyword><Keyword MajorTopicYN="N">emergency caesarean delivery</Keyword><Keyword MajorTopicYN="N">failed airway</Keyword><Keyword MajorTopicYN="N">hypertensive emergencies</Keyword><Keyword MajorTopicYN="N">massive obstetric haemorrhage</Keyword><Keyword MajorTopicYN="N">maternal cardiac arrest</Keyword><Keyword MajorTopicYN="N">obstetric anaesthesia</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="accepted"><Year>2022</Year><Month>7</Month><Day>18</Day></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2022</Year><Month>9</Month><Day>13</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2022</Year><Month>11</Month><Day>11</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2022</Year><Month>9</Month><Day>12</Day><Hour>3</Hour><Minute>14</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">36089883</ArticleId><ArticleId IdType="doi">10.1111/anae.15839</ArticleId></ArticleIdList><ReferenceList><Title>References</Title><Reference><Citation>National Institute for Health and Care Excellence. Caesarean birth. [CG192]. March 2021. https://www.nice.org.uk/guidance/ng192 (accessed 01/05/2022).</Citation></Reference><Reference><Citation>May RL, Clayton MA, Richardson AL, Kinsella SM, Khalil A, Lucas DN. Defining the decision-to-delivery interval at caesarean section: narrative literature review and proposal for standardisation. Anaesthesia 2022; 77: 96-104.</Citation></Reference><Reference><Citation>Odor PM, Bampoe S, Moonesinghe SR, Andrade J, Pandit JJ, Lucas DN. General anaesthetic and airway management practice for obstetric surgery in England: a prospective, multicentre observational study. Anaesthesia 2021; 76: 460-71.</Citation></Reference><Reference><Citation>Patel R, Kua J, Sharawi N, Bauer ME, Blake L, Moonesinghe SR, Sultan P. Inadequate neuraxial anaesthesia in patients undergoing elective caesarean section: a systematic review. Anaesthesia 2022; 77: 598-604.</Citation></Reference><Reference><Citation>Bauer ME, Mhyre JM. Active management of labor epidural analgesia is the key to successful conversion of epidural analgesia to cesarean delivery anesthesia. Anesthesia and Analgesia 2016; 123: 1074-6.</Citation></Reference><Reference><Citation>Plaat F, Stanford SER, Lucas DN, et&#x2009;al. Prevention and management of intra-operative pain during caesarean section under neuraxial anaesthesia: a technical and interpersonal approach. Anaesthesia 2022; 77: 588-97.</Citation></Reference><Reference><Citation>Stanford SE, Bogod DG. Failure of communication: a patient's story. International Journal of Obstetric Anesthesia 2016; 28: 70-5.</Citation></Reference><Reference><Citation>Shippam W, Preston R, Douglas J, Taylor J, Albert A, Chau A. High-flow nasal oxygen vs. standard flow-rate facemask pre-oxygenation in pregnant patients: a randomised physiological study. Anaesthesia 2019; 74: 450-6.</Citation></Reference><Reference><Citation>Tan PCF, Millay OJ, Leeton L, Dennis AT. High-flow humidified nasal preoxygenation in pregnant women: a prospective observational study. British Journal of Anaesthesia 2019; 122: 86-91.</Citation></Reference><Reference><Citation>Au K, Shippam W, Taylor J, Albert A, Chau A. Determining the effective pre-oxygenation interval in obstetric patients using high-flow nasal oxygen and standard flow rate facemask: a biased-coin up-down sequential allocation trial. Anaesthesia 2020; 75: 609-16.</Citation></Reference><Reference><Citation>Al-Sulttan S, Bampoe S, Howle R, et&#x2009;al. A prospective, up-down sequential allocation study investigating the effectiveness of vital capacity breaths using high-flow nasal oxygenation versus a tight-fitting face mask to pre-oxygenate term pregnant women. International Journal of Obstetric Anesthesia 2021; 45: 28-33.</Citation></Reference><Reference><Citation>Tan PCF, Peyton PJ, Unterscheider J, Deane A, Leeton L, Dennis AT. O.3 high-flow humidified nasal oxygen versus facemask oxygen for preoxygenation of pregnant women: a prospective randomised controlled crossover study. International Journal of Obstetric Anesthesia 2021; 46(Suppl 1): 102991. https://doi.org/10.1016/j.ijoa.2021.102991.</Citation></Reference><Reference><Citation>Stolady D, Laviola M, Pillai A, Hardman JG. Effect of variable pre-oxygenation endpoints on safe apnoea time using high flow nasal oxygen for women in labour: a modelling investigation. British Journal of Anaesthesia 2021; 126: 889-95.</Citation></Reference><Reference><Citation>Solt&#xe9;sz S, Alm P, Mathes A, Hellmich M, Hinkelbein J. The effect of neuromuscular blockade on the efficiency of facemask ventilation in patients difficult to facemask ventilate: a prospective trial. Anaesthesia 2017; 72: 1484-90.</Citation></Reference><Reference><Citation>Law JA, Duggan LV, Asselin M, et&#x2009;al. Canadian airway focus group updated consensus-based recommendations for management of the difficult airway: part 1. Difficult airway management encountered in an unconscious patient. Canadian Journal of Anesthesia 2021; 68: 1373-404.</Citation></Reference><Reference><Citation>White LD, Hodsdon A, An GH, Thang C, Melhuish TM, Vlok R. Induction opioids for caesarean section under general anaesthesia: a systematic review and meta-analysis of randomised controlled trials. International Journal of Obstetric Anesthesia 2019; 40: 4-13.</Citation></Reference><Reference><Citation>Odor PM, Bampoe S, Lucas DN, Moonesinghe SR, Andrade J, Pandit JJ. Incidence of accidental awareness during general anaesthesia in obstetrics: a multicentre, prospective cohort study. Anaesthesia 2021; 76: 759-76.</Citation></Reference><Reference><Citation>Palanisamy A, Paech MJ. From Hypnos to Ephialtes: waking up to the consequences of accidental awareness during obstetric general anaesthesia. Anaesthesia 2021; 76: 736-9.</Citation></Reference><Reference><Citation>Reale SC, Bauer ME, Klumpner TT, et&#x2009;al. Frequency and risk factors for difficult intubation in women undergoing general anesthesia for cesarean delivery: a multicenter retrospective cohort analysis. Anesthesiology 2022; 136: 697-708.</Citation></Reference><Reference><Citation>Kinsella S, Winton A, Mushambi M, et&#x2009;al. Failed tracheal intubation during obstetric general anaesthesia: a literature review. International Journal of Obstetric Anesthesia 2015; 24: 356-74.</Citation></Reference><Reference><Citation>Baker PA, Behringer EC, Feinleib J, et&#x2009;al. Formation of an airway Lead network: an essential patient safety initiative. British Journal of Anaesthesia 2022; 128: 225-9.</Citation></Reference><Reference><Citation>Mushambi MC, Kinsella SM, Popat M, et&#x2009;al. Obstetric Anaesthetists' Association and difficult airway society guidelines for the management of difficult and failed tracheal intubation in obstetrics. Anaesthesia 2015; 70: 1286-306.</Citation></Reference><Reference><Citation>Kovacheva VP, Brovman EY, Greenberg P, Song E, Palanisamy A, Urman RD. A contemporary analysis of medicolegal issues in obstetric anesthesia between 2005 and 2015. Anesthesia and Analgesia 2019; 128: 1199-207.</Citation></Reference><Reference><Citation>Howle R, Onwochei D, Harrison SL, Desai N. Comparison of videolaryngoscopy and direct laryngoscopy for tracheal intubation in obstetrics: a mixed-methods systematic review and meta-analysis. Canadian Journal of Anesthesia 2021; 68: 546-65.</Citation></Reference><Reference><Citation>Lucas DN, Vaughan DJA. Videolaryngoscopy and obstetric anaesthesia. British Journal of Anaesthesia 2017; 119: 549.</Citation></Reference><Reference><Citation>Hansel J, Rogers AM, Lewis SR, Cook TM, Smith AF. Videolaryngoscopy versus direct laryngoscopy for adults undergoing tracheal intubation. Cochrane Database of Systematic Reviews 2022; 4: CD011136.</Citation></Reference><Reference><Citation>Fennessy P, Aslani A, Campbell M, Husarova V, Duggan M, McCaul CL. Theoretical optimal cricothyroidotomy incision length in female subjects, following identification of the cricothyroid membrane by digital palpation. International Journal of Obstetric Anesthesia 2018; 36: 42-8.</Citation></Reference><Reference><Citation>Wong P, Sng BL, Lim WY. Rescue supraglottic airway devices at caesarean delivery: what are the options to consider? International Journal of Obstetric Anesthesia 2020; 42: 65-75.</Citation></Reference><Reference><Citation>Greene RA, McKernan J, Manning E, et&#x2009;al. Major obstetric haemorrhage: incidence, management and quality of care in Irish maternity units. European Journal of Obstetrics and Gynecology and Reproductive Biology 2021; 257: 114-20.</Citation></Reference><Reference><Citation>Reale SC, Easter SR, Xu X, Bateman BT, Farber MK. Trends in postpartum hemorrhage in the United States from 2010 to 2014. Anesthesia and Analgesia 2020; 130: e119-e122.</Citation></Reference><Reference><Citation>Balki M, Wong CA. Refractory uterine atony: still a problem after all these years. International Journal of Obstetric Anesthesia 2021; 48: 103207.</Citation></Reference><Reference><Citation>Chau A, Farber MK. Do quantitative blood loss measurements and postpartum hemorrhage protocols actually make a difference? Yes, no, and maybe. International Journal of Obstetric Anesthesia 2020; 42: 1-3.</Citation></Reference><Reference><Citation>Katz D, Wang R, O'Neil L, et&#x2009;al. The association between the introduction of quantitative assessment of postpartum blood loss and institutional changes in clinical practice: an observational study. International Journal of Obstetric Anesthesia 2020; 42: 4-10.</Citation></Reference><Reference><Citation>Powell E, James D, Collis R, Collins PW, Pallmann P, Bell S. Introduction of standardized, cumulative quantitative measurement of blood loss into routine maternity care. Journal of Maternal-Fetal and Neonatal Medicine 2022; 35: 1491-7.</Citation></Reference><Reference><Citation>Quantitative blood loss in obstetric hemorrhage: ACOG COMMITTEE OPINION, Number 794. Obstetrics and Gynecology 2019; 134: e150-6.</Citation></Reference><Reference><Citation>Natrella M, Di Naro E, Loverro M, et&#x2009;al. The more you lose the more you miss: accuracy of postpartum blood loss visual estimation. A systematic review of the literature. Journal of Maternal-Fetal and Neonatal Medicine 2018; 31: 106-15.</Citation></Reference><Reference><Citation>Waters JH, Bonnet MP. When and how should I transfuse during obstetric hemorrhage? International Journal of Obstetric Anesthesia 2021; 46: 102973.</Citation></Reference><Reference><Citation>Collis RE, Kenyon C, Roberts TCD, McNamara H. When does obstetric coagulopathy occur and how do I manage it? International Journal of Obstetric Anesthesia 2021; 46: 102979.</Citation></Reference><Reference><Citation>Butwick A, Lyell D, Goodnough L. How do I manage severe postpartum hemorrhage? Transfusion 2020; 60: 897-907.</Citation></Reference><Reference><Citation>Nelson DB, Ogunkua O, Cunningham FG. Point-of-care viscoelastic tests in the management of obstetric hemorrhage. Obstetrics and Gynecology 2022; 139: 463-72.</Citation></Reference><Reference><Citation>Dias JD, Butwick AJ, Hartmann J, Waters JH. Viscoelastic haemostatic point-of-care assays in the management of postpartum haemorrhage: a narrative review. Anaesthesia 2022; 77: 700-11.</Citation></Reference><Reference><Citation>Woman Trial Collaborators. Effect of early tranexamic acid administration on mortality, hysterectomy, and other morbidities in women with post-partum haemorrhage (WOMAN): an international, randomised, double-blind, placebo-controlled trial. Lancet 2017; 389: 2105-16.</Citation></Reference><Reference><Citation>Howard DC, Jones AE, Skeith A, Lai J, D'Souza R, Caughey AB. Tranexamic acid for the treatment of postpartum hemorrhage: a cost-effectiveness analysis. American Journal of Obstetrics and Gynecology - Maternal Fetal Medicine 2022; 4: 100588.</Citation></Reference><Reference><Citation>Sentilhes L, Winer N, Azria E, et&#x2009;al. Tranexamic acid for the prevention of blood loss after vaginal delivery. New England Journal of Medicine 2018; 379: 731-42.</Citation></Reference><Reference><Citation>Sentilhes L, Senat MV, Le Lous M, et&#x2009;al. Tranexamic acid for the prevention of blood loss after cesarean delivery. New England Journal of Medicine 2021; 384: 1623-34.</Citation></Reference><Reference><Citation>Gungorduk K, Yildirim G, Asicioglu O, Gungorduk OC, Sudolmus S, Ark C. Efficacy of intravenous tranexamic acid in reducing blood loss after elective cesarean section: a prospective, randomized, double-blind, placebo-controlled study. American Journal of Perinatology 2011; 28: 233-40.</Citation></Reference><Reference><Citation>Ducloy-Bouthors AS, Jude B, Duhamel A, et&#x2009;al. High-dose tranexamic acid reduces blood loss in postpartum haemorrhage. Critical Care Medicine 2011; 15: R117.</Citation></Reference><Reference><Citation>Shander A, Javidroozi M, Sentilhes L. Tranexamic acid and obstetric hemorrhage: give empirically or selectively? International Journal of Obstetric Anesthesia 2021; 48: 103206.</Citation></Reference><Reference><Citation>Ker K, Roberts I, Chaudhri R, et&#x2009;al. Tranexamic acid for the prevention of postpartum bleeding in women with anaemia: study protocol for an international, randomised, double-blind, placebo-controlled trial. Trials 2018; 19: 712.</Citation></Reference><Reference><Citation>Arribas M, Roberts I, Chaudhri R, et&#x2009;al. WOMAN-PharmacoTXA trial: study protocol for a randomised controlled trial to assess the pharmacokinetics and pharmacodynamics of intramuscular, intravenous and oral administration of tranexamic acid in women giving birth by caesarean section. Wellcome Open Research 2021; 6: 157.</Citation></Reference><Reference><Citation>Charbit B, Mandelbrot L, Samain E, et&#x2009;al. The decrease of fibrinogen is an early predictor of the severity of postpartum hemorrhage. Journal of Thrombosis and Haemostasis 2007; 5: 266-73.</Citation></Reference><Reference><Citation>Green L, Knight M, Seeney FM, et&#x2009;al. The epidemiology and outcomes of women with postpartum haemorrhage requiring massive transfusion with eight or more units of red cells: a national cross-sectional study. British Journal of Obstetrics and Gynaecology 2016; 123: 2164-70.</Citation></Reference><Reference><Citation>Collins PW, Lilley G, Bruynseels D, et&#x2009;al. Fibrin-based clot formation as an early and rapid biomarker for progression of postpartum hemorrhage: a prospective study. Blood 2014; 124: 1727-36.</Citation></Reference><Reference><Citation>McNamara H, Kenyon C, Smith R, Mallaiah S, Barclay P. Four years' experience of a ROTEM((R)) -guided algorithm for treatment of coagulopathy in obstetric haemorrhage. Anaesthesia 2019; 74: 984-91.</Citation></Reference><Reference><Citation>Lasica M, Sparrow RL, Tacey M, Pollock WE, Wood EM, McQuilten ZK, the members of the Australian&#x2009;and New Zealand Massive Transfusion Registry Steering Committee. Haematological features, transfusion management and outcomes of massive obstetric haemorrhage: findings from the Australian and New Zealand massive transfusion registry. British Journal of Haematology 2020; 190: 618-28.</Citation></Reference><Reference><Citation>Collins PW, Cannings-John R, Bruynseels D, et&#x2009;al. Viscoelastometric-guided early fibrinogen concentrate replacement during postpartum haemorrhage: OBS2, a double-blind randomized controlled trial. British Journal of Anaesthesia 2017; 119: 411-21.</Citation></Reference><Reference><Citation>Wikkelso AJ, Edwards HM, Afshari A, et&#x2009;al. Pre-emptive treatment with fibrinogen concentrate for postpartum haemorrhage: randomized controlled trial. British Journal of Anaesthesia 2015; 114: 623-33.</Citation></Reference><Reference><Citation>Ducloy-Bouthors AS, Mercier FJ, Grouin JM, et&#x2009;al. Early and systematic administration of fibrinogen concentrate in postpartum haemorrhage following vaginal delivery: the FIDEL randomised controlled trial. British Journal of Obstetrics and Gynaecology 2021; 128: 1814-23.</Citation></Reference><Reference><Citation>Khan KS, Moore PAS, Wilson MJ, et&#x2009;al. Cell salvage and donor blood transfusion during cesarean section: a pragmatic, multicentre randomised controlled trial (SALVO). PLoS Medicine 2017; 14: e1002471.</Citation></Reference><Reference><Citation>Sullivan IJ, Ralph CJ. Obstetric intra-operative cell salvage: a review of an established cell salvage service with 1170 re-infused cases. Anaesthesia 2019; 74: 976-83.</Citation></Reference><Reference><Citation>Klein AA, Bailey CR, Charlton AJ, et&#x2009;al. Association of Anaesthetists guidelines: cell salvage for peri-operative blood conservation 2018. Anaesthesia 2018; 73: 1141-50.</Citation></Reference><Reference><Citation>Lim G, Melnyk V, Facco FL, Waters JH, Smith KJ. Cost-effectiveness analysis of intraoperative cell salvage for obstetric hemorrhage. Anesthesiology 2018; 128: 328-37.</Citation></Reference><Reference><Citation>Fujioka I, Ichikawa Y, Nakajima Y, Kasahara M, Hattori M, Nemoto T. Efficiency of leukocyte depletion filters and micro-aggregate filters following intra-operative cell salvage during cesarean delivery. International Journal of Obstetric Anesthesia 2020; 41: 59-64.</Citation></Reference><Reference><Citation>Phillips JM, Tamura T, Waters JH, Larkin J, Sakamoto S. Autotransfusion of vaginally shed blood as a novel therapy in obstetric hemorrhage: a case series. Transfusion 2022; 62: 613-20.</Citation></Reference><Reference><Citation>Jauniaux E, Chantraine F, Silver RM, Langhoff-Roos J, for the FIGO Placenta Accreta Diagnosis and Management Expert Consensus Panel. FIGO consensus guidelines on placenta accreta spectrum disorders: Epidemiology. International Journal of Gynecology and Obstetrics 2018; 140: 265-73.</Citation></Reference><Reference><Citation>Einerson BD, Weiniger CF. Placenta accreta spectrum disorder: updates on anesthetic and surgical management strategies. International Journal of Obstetric Anesthesia 2021; 46: 102975.</Citation></Reference><Reference><Citation>Warrick CM, Markley JC, Farber MK, et&#x2009;al. Placenta accreta spectrum disorders: knowledge gaps in anesthesia care. Anesthesia and Analgesia 2022; 135: 191-7.</Citation></Reference><Reference><Citation>Jauniaux E, Bunce C, Gr&#xf8;nbeck L, Langhoff-Roos J. Prevalence and main outcomes of placenta accreta spectrum: a systematic review and meta-analysis. American Journal of Obstetrics and Gynecology 2019; 221: 208-18.</Citation></Reference><Reference><Citation>Nieto-Calvache AJ, L&#xf3;pez-Gir&#xf3;n MC, Burgos-Luna JM, et&#x2009;al. Maternal hemodynamics during aortic occlusion with REBOA in patients with placenta accreta spectrum disorder. Journal of Maternal-Fetal and Neonatal Medicine 2021; 1-7.</Citation></Reference><Reference><Citation>Whittington JR, Pagan ME, Nevil BD, Kalkwarf KJ, Sharawi NE, Hughes DS, Sandlin AT. Risk of vascular complications in prophylactic compared to emergent resuscitative endovascular balloon occlusion of the aorta (REBOA) in the management of placenta accreta spectrum. Journal of Maternal-Fetal and Neonatal Medicine 2022; 35: 3049-52.</Citation></Reference><Reference><Citation>Feng S, Liao Z, Huang H. Effect of prophylactic placement of internal iliac artery balloon catheters on outcomes of women with placenta accreta: an impact study. Anaesthesia 2017; 72: 853-8.</Citation></Reference><Reference><Citation>Li Z, Chen Y, Zeng X, et&#x2009;al. Clinical and hemodynamic insights into the use of internal iliac artery balloon occlusion as a prophylactic technique for treating postpartum hemorrhage. Journal of Biomechanics 2021; 129: 110827.</Citation></Reference><Reference><Citation>Siddiqui MM, Banayan JM, Hofer JE. Pre-eclampsia through the eyes of the obstetrician and anesthesiologist. International Journal of Obstetric Anesthesia 2019; 40: 140-8.</Citation></Reference><Reference><Citation>Gestational Hypertension and Preeclampsia: ACOG practice bulletin, number 222. Obstetrics and Gynecology 2020; 135: e237-e260.</Citation></Reference><Reference><Citation>Judy AE, McCain CL, Lawton ES, Morton CH, Main EK, Druzin ML. Systolic hypertension, preeclampsia-related mortality, and stroke in California. Obstetrics and Gynecology 2019; 133: 1151-9.</Citation></Reference><Reference><Citation>Masini G, Foo LF, Tay J, Wilkinson IB, Valensise H, Gyselaers W, Lees CC. Preeclampsia has two phenotypes which require different treatment strategies. American Journal of Obstetrics and Gynecology 2022; 226: S1006-S1018.</Citation></Reference><Reference><Citation>Dennis AT. Transthoracic echocardiography in women with preeclampsia. Current Opinion in Anesthesiology 2015; 28: 254-60.</Citation></Reference><Reference><Citation>Bauer ME, Arendt K, Beilin Y, et&#x2009;al. The Society for Obstetric Anesthesia and Perinatology interdisciplinary consensus statement on neuraxial procedures in obstetric patients with thrombocytopenia. Anesthesia and Analgesia 2021; 132: 1531-44.</Citation></Reference><Reference><Citation>Harrop-Griffiths W, Cook T, Gill H, et&#x2009;al. Regional anaesthesia and patients with abnormalities of coagulation. Anaesthesia 2013; 68: 966-72.</Citation></Reference><Reference><Citation>Shah AK, Rajamani K, Whitty JE. Eclampsia: a neurological perspective. Journal of the Neurological Sciences 2008; 271: 158-67.</Citation></Reference><Reference><Citation>Sibai BM. Diagnosis, prevention, and management of eclampsia. Obstetrics and Gynecology 2005; 105: 402-10.</Citation></Reference><Reference><Citation>Magee LA, Brown MA, Hall DR, et&#x2009;al. The 2021 International Society for the Study of hypertension in pregnancy classification, diagnosis and management recommendations for international practice. Pregnancy Hypertension 2022; 27: 148-69.</Citation></Reference><Reference><Citation>Okonkwo M, Nash CM. Duration of postpartum magnesium sulphate for the prevention of eclampsia: a systematic review and meta-analysis. Obstetrics and Gynecology 2022; 139: 521-8.</Citation></Reference><Reference><Citation>Miller EC, Leffert L. Stroke in pregnancy: a focused update. Anesthesia and Analgesia 2020; 130: 1085-96.</Citation></Reference><Reference><Citation>Jain C. ACOG Committee opinion no. 723: guidelines for diagnostic imaging during pregnancy and lactation. Obstetrics and Gynecology 2019; 133: 186.</Citation></Reference><Reference><Citation>Patel S, Loveridge R. Obstetric neuraxial drug administration errors: a quantitative and qualitative analytical review. Anesthesia and Analgesia 2015; 121: 1570-7.</Citation></Reference><Reference><Citation>Liu H, Tariq R, Liu GL, Yan H, Kaye AD. Inadvertent intrathecal injections and best practice management. Acta Anaesthesiologica Scandinavica 2017; 61: 11-22.</Citation></Reference><Reference><Citation>Palanisamy A, Kinsella SM. Spinal tranexamic acid - a new killer in town. Anaesthesia 2019; 74: 831-3.</Citation></Reference><Reference><Citation>Cook TM, Wilkes A, Bickford Smith P, et&#x2009;al. Multicentre clinical simulation evaluation of the ISO 80369-6 neuraxial non-Luer connector. Anaesthesia 2019; 74: 619-29.</Citation></Reference><Reference><Citation>Ting HY, Tsui BC. Reversal of high spinal anesthesia with cerebrospinal lavage after inadvertent intrathecal injection of local anesthetic in an obstetric patient. Canadian Journal of Anesthesia 2014; 61: 1004-7.</Citation></Reference><Reference><Citation>El-Boghdadly K, Pawa A, Chin KJ. Local anesthetic systemic toxicity: current perspectives. Local and Regional Anesthesia 2018; 11: 35-44.</Citation></Reference><Reference><Citation>Neal JM, Neal EJ, Weinberg GL. American Society of Regional Anesthesia and Pain Medicine local anesthetic systemic toxicity checklist: 2020 version. Regional Anesthesia and Pain Medicine 2021; 46: 81-2.</Citation></Reference><Reference><Citation>Neal JM, Barrington MJ, Fettiplace MR, et&#x2009;al. The third American Society of Regional Anesthesia and Pain Medicine practice advisory on local anesthetic systemic toxicity. Regional Anesthesia and Pain Medicine 2018; 43: 113-23.</Citation></Reference><Reference><Citation>Yentis SM, Lucas DN, Brigante L, et&#x2009;al. Safety guideline: neurological monitoring associated with obstetric neuraxial block 2020. Anaesthesia 2020; 75: 913-9.</Citation></Reference><Reference><Citation>Panchal AR, Bartos JA, Cabanas JG, et&#x2009;al. Part 3: adult basic and advanced life support: 2020 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 2020; 142: S366-S468.</Citation></Reference><Reference><Citation>Beckett V, Knight M, Sharpe P. The CAPS study: incidence, management and outcomes of cardiac arrest in pregnancy in the UK: a prospective, descriptive study. British Journal of Obstetrics and Gynaecology 2017; 124: 1374-81.</Citation></Reference><Reference><Citation>Ong J, Zhang JJY, Lorusso R, MacLaren G, Ramanathan K. Extracorporeal membrane oxygenation in pregnancy and the postpartum period: a systematic review of case reports. International Journal of Obstetric Anesthesia 2020; 43: 106-13.</Citation></Reference><Reference><Citation>Ockenden DC. Final Findings, Conclusions and Essential Actions from the Ockenden Review of Maternity Services at Shrewsbury and Telford Hospital NHS Trust. London: Department of Health and Social Care. 2022. https://www.gov.uk/government/publications/final-report-of-the-ockenden-review (accessed 10/05/2022).</Citation></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="Publisher" Owner="NLM"><PMID Version="1">36089119</PMID><DateRevised><Year>2022</Year><Month>10</Month><Day>06</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1532-9488</ISSN><JournalIssue CitedMedium="Internet"><PubDate><Year>2022</Year><Month>Sep</Month><Day>08</Day></PubDate></JournalIssue><Title>Seminars in thoracic and cardiovascular surgery</Title><ISOAbbreviation>Semin Thorac Cardiovasc Surg</ISOAbbreviation></Journal><ArticleTitle>Staged Ventricular Septation in Double-Inlet Ventricle - A Strategy to Avoid Fontan?</ArticleTitle><ELocationID EIdType="pii" ValidYN="Y">S1043-0679(22)00214-3</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1053/j.semtcvs.2022.08.014</ELocationID><Abstract>Single-stage ventricular septation for double-inlet left or right ventricle (DILV or DIRV) has historically been associated with poor outcomes. We hypothesize that staged ventricular septation may demonstrate favorable clinical outcomes to be an alternative to Fontan palliation. This single-center retrospective study reviewed patients with DILV or DIRV who underwent staged ventricular septation between 2015-2021. The strategy involves pulmonary artery banding or Norwood procedure during infancy (stage 1), followed by partial ventricular septation to anchor the septum, while maintaining systemic RV pressure to avoid septal shift (stage 2). Residual septal defects are closed with pulmonary artery band removal at stage 3. Results are reported as median (interquartile range). Twelve patients underwent partial ventricular septation. At a median follow-up time of 17 months (8-30) after stage 2, there were no interstage deaths or cardiac transplants; LV dysfunction was observed in one patient. Hemodynamic evaluation after stage 2 demonstrated median left atrial pressure of 9.5 mm Hg (8.9-11.5), cardiac index of 3.4 L/min/m<sup>2</sup> (3.2-3.6), and RV and LV indexed end-diastolic volumes of 52 ml/m<sup>2</sup> (41-67) and 105 ml/m<sup>2</sup> (81-115), respectively. Five patients have progressed to stage 3; one required pacemaker for complete heart block. Unplanned reintervention was required in 4 patients after stage 1, 2 patients after stage 2, and 3 patients after stage 3. Staged ventricular septation is an alternative to single-ventricle palliation in a subset of double-inlet ventricle patients and is associated with acceptable early outcomes. Further studies are necessary to determine long-term outcomes.<CopyrightInformation>Copyright &#xa9; 2022 Elsevier Inc. All rights reserved.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Prasanna</LastName><ForeName>Anagha</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Beroukhim</LastName><ForeName>Rebecca S</ForeName><Initials>RS</Initials><AffiliationInfo><Affiliation>Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ghelani</LastName><ForeName>Sunil</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Feins</LastName><ForeName>Eric N</ForeName><Initials>EN</Initials><AffiliationInfo><Affiliation>Department of Cardiovascular Surgery, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Del Nido</LastName><ForeName>Pedro J</ForeName><Initials>PJ</Initials><AffiliationInfo><Affiliation>Department of Cardiovascular Surgery, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Emani</LastName><ForeName>Sitaram M</ForeName><Initials>SM</Initials><AffiliationInfo><Affiliation>Department of Cardiovascular Surgery, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115. Electronic address: [email protected].</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2022</Year><Month>09</Month><Day>08</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Semin Thorac Cardiovasc Surg</MedlineTA><NlmUniqueID>8917640</NlmUniqueID><ISSNLinking>1043-0679</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Congenital</Keyword><Keyword MajorTopicYN="N">Double-inlet ventricle</Keyword><Keyword MajorTopicYN="N">Single-ventricle management</Keyword><Keyword MajorTopicYN="N">Ventricular septation</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2022</Year><Month>8</Month><Day>13</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2022</Year><Month>8</Month><Day>16</Day></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2022</Year><Month>9</Month><Day>12</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2022</Year><Month>9</Month><Day>12</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2022</Year><Month>9</Month><Day>11</Day><Hour>19</Hour><Minute>35</Minute></PubMedPubDate></History><PublicationStatus>aheadofprint</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">36089119</ArticleId><ArticleId IdType="doi">10.1053/j.semtcvs.2022.08.014</ArticleId><ArticleId IdType="pii">S1043-0679(22)00214-3</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedBookArticle><BookDocument><PMID Version="1">30725755</PMID><ArticleIdList><ArticleId IdType="bookaccession">NBK537070</ArticleId></ArticleIdList><Book><Publisher><PublisherName>StatPearls Publishing</PublisherName><PublisherLocation>Treasure Island (FL)</PublisherLocation></Publisher><BookTitle book="statpearls">StatPearls</BookTitle><PubDate><Year>2023</Year><Month>01</Month></PubDate><BeginningDate><Year>2023</Year><Month>01</Month></BeginningDate><Medium>Internet</Medium></Book><ArticleTitle book="statpearls" part="article-17204">Adenosine SPECT Thallium Imaging</ArticleTitle><Language>eng</Language><AuthorList Type="authors" CompleteYN="Y"><Author ValidYN="Y"><LastName>Alzahrani</LastName><ForeName>Talal</ForeName><Initials>T</Initials><AffiliationInfo><Affiliation>Taibah University</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Khiyani</LastName><ForeName>Neeraj</ForeName><Initials>N</Initials><AffiliationInfo><Affiliation>Thomas Jefferson University Hospital</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zeltser</LastName><ForeName>Roman</ForeName><Initials>R</Initials><AffiliationInfo><Affiliation>Hofstra Northwell School of Medicine</Affiliation></AffiliationInfo></Author></AuthorList><PublicationType UI="D000072643">Study Guide</PublicationType><Abstract>Adenosine single-photon emission computed tomography (SPECT) thallium (Tl-201) imaging is a non-invasive myocardial perfusion imaging (MPI) test. The underlying principle of the test is that when the myocardium is under stress, the diseased ventricle receives less blood flow than the normal heart muscle. SPECT scan performed after the stress event will reveal the distribution of thallium and therefore the relative blood flow to the different parts of the ventricle. Images are also obtained at rest and compared. The thallium is injected and taken up by the myocardial cells so that the initial distribution of the tracer reflects viable myocardium. Images are then taken during stress (induced by adenosine) and at rest reflect myocardial perfusion and viability. Currently, SPECT Tl-201 is used mainly for myocardial viability assessment when positron emission tomography (PET) or magnetic resonance imaging viability assessment is not feasible. American Society of Nuclear Cardiology (ASNC) recommend against using adenosine SPECT Tl-201/technetium 99m, dual-isotope (rest-stress), imaging for detecting myocardial ischemia because this protocol has high radiation exposure (up to 23 mSv) compared to other isotopes. Tl-201 is a potassium analog, a radioactive isotope of thallium with a half-life of 73 hours, which is up-taken by myocardial cells and detects an area with hypo-perfusion and myocardial infarction as a cold spot. It has many other medical applications such as renal medullary imaging and tumor detection. In clinical practice, technetium 99m agents (Tc-99m sestamibi and Tc-99m tetrofosmin) are more commonly used with SPECT imaging to detect myocardial ischemia because of low radiation exposure (4.2&#x2013;6.3 mSv) compared to Tl-201. Adenosine is a nucleoside that is composed of adenine and d-ribose, a potent coronary vasodilator through activation of A2A receptors in smooth muscles and endothelium. It is used as a continuous infusion in pharmacological SPECT stress test for patients who can not exercise to increase coronary blood flow and radioisotopes uptake by myocardial cells with normal coronary perfusion. Adenosine has several side effects that correlate with the activation of other receptors such as A1AR, A2B, and A3AR. These sides effects are hypotension, tachycardia, atrioventricular block, bronchospasm, peripheral vasodilatation, and gastrointestinal symptoms. Other vasodilator agents that are also usable for pharmacological SPECT stress test are dipyridamole and regadenoson. Regadenoson is an adenosine derivative and selective A2A receptor agonist. Compared to adenosine, regadenoson dosing is as one injection because of long half-life, and it has a more favorable side effect profile because of its selectivity to the A2A receptor. Therefore, regadenoson is the most common pharmacologic vasodilator that is currently used in pharmacological SPECT stress test (83%).
2,335,720
Transversus Abdominis Plane Block Reduces Intraoperative Opioid Consumption in Patients Undergoing Periacetabular Osteotomy.
Administering intraoperative analgesia in patients undergoing periacetabular osteotomy (PAO) is challenging due to both the relevant surgical approach and osteotomies, which are associated with pain. The aim of this study was to assess the effect of the transversus abdominis plane block (TAPb) on intraoperative opioid consumption and circulation parameters in PAO patients.</AbstractText>We conducted a two-group randomized-controlled trial involving 42 consecutive patients undergoing PAO for symptomatic developmental dysplasia of the hip (DDH) in our department. Patients assigned to the study group received an ultrasound-guided TAPb with 0.75% ropivacaine before the beginning of the surgery and after general anesthesia induction. Patients assigned to the control group did not receive a TAPb. General anesthesia was conducted according to a defined study protocol. The primary endpoint of the study was the intraoperative opioid consumption, measured in morphine equivalent dose (MED). Secondary endpoints were the assessment of intraoperative heart rate, mean arterial pressure (MAP), need for hypotension treatment, and length of hospital stay (LOHS). A total of 41 patients (n</i> = 21 TAPb group, n</i> = 20 control group) completed the study; of these, 33 were women (88.5%) and 8 were men (19.5%). The mean age at the time of surgery was 28 years (18-43, SD &#xb1; 7.4). All operations were performed by a single high-volume surgeon and all TAPb procedures were performed by a single experienced senior anesthesiologist.</AbstractText>We observed a significantly lower intraoperative opioid consumption in the TAPb group compared to the control group (930 vs. 1186 MED per kg bodyweight; p</i> = 0.016). No significant differences were observed in the secondary outcome parameters. We observed no perioperative complications.</AbstractText>Ultrasound-guided TAPb significantly reduces intraoperative opioid consumption in patients undergoing PAO.</AbstractText>
2,335,721
Plasmatic catecholamines after neuraxial labour analgesia: A randomised controlled trial comparing epidural versus combined spinal-epidural.
Combined spinal-epidural technique (CSE) for labour analgesia has been associated with fetal bradycardia and uterine hypertonia when compared with epidural analgesia (EA), possibly due to a decrease in epinephrine levels following neuraxial anaesthesia. However, there are no recent studies comparing plasmatic catecholamines levels between those two techniques. This study aimed to compare CSE versus EA regarding pre- and post-analgesia catecholamines levels, uterine tone and fetal heart rate.</AbstractText>Randomised clinical trial with 47 labouring patients divided in two groups (CSE and EA). Primary outcome was plasmatic catecholamine measurements before and after neuraxial block. Secondary outcomes were fetal heart rate changes, uterine hypertonia, hypotension episodes, pain relief and fetal outcomes.</AbstractText>For CSE group, the median decrease of plasmatic epinephrine was 0&#x2009;pg/mL [(-) 480-(+) 41] and for norepinephrine was -21&#x2009;pg/mL [(-) 2507-(+) 94]. For EA group, the median decrease for epinephrine was 0&#x2009;pg/mL [(-) 326-(+) 15] and for norepinephrine was -5&#x2009;pg/mL [(-) 190-(+76)]. There were no differences between groups (p = 0.96 and p = 0.63 for epinephrine and norepinephrine, respectively). There were no differences for secondary outcomes.</AbstractText>There was no evidence of a more significant decrease of catecholamines with CSE when compared with EA. Catecholamines decrease theory may not be valid for modern labour analgesia techniques.</AbstractText>Copyright &#xa9; 2022 Soci&#xe9;t&#xe9; fran&#xe7;aise d'anesth&#xe9;sie et de r&#xe9;animation (Sfar). Published by Elsevier Masson SAS. All rights reserved.</CopyrightInformation>
2,335,722
Automatic localization of target point for subthalamic nucleus-deep brain stimulation via hierarchical attention-UNet based MRI segmentation.
Deep brain stimulation of the subthalamic nucleus (STN-DBS) is an effective treatment for patients with advanced Parkinson's disease, the outcome of this surgery is highly dependent on the accurate placement of the electrode in the optimal target of STN.</AbstractText>In this study, we aim to develop a target localization pipeline for DBS surgery, considering that the heart of this matter is to achieve the STN and red nucleus segmentation, a deep learning-based automatic segmentation approach is proposed to tackle this issue.</AbstractText>To address the problems of ambiguous boundaries and variable shape of the segmentation targets, the hierarchical attention mechanism with two different attention strategies is integrated into an encoder-decoder network for mining both semantics and fine-grained details for segmentation. The hierarchical attention mechanism is utilized to suppress irrelevant regions in magnetic resonance (MR) images while build long-range dependency among segmentation targets. Specifically, the attention gate (AG) is integrated into low-level features to suppress irrelevant regions in an input image while highlighting the salient features useful for segmentation. Besides, the self-attention involved in the transformer block is integrated into high-level features to model the global context. Ninety-nine brain magnetic resonance imaging (MRI) studies were collected from 99 patients with Parkinson's disease undergoing STN-DBS surgery, among which 80 samples were randomly selected as the training datasets for deep learning training, and ground truths (segmentation masks) were manually generated by radiologists.</AbstractText>We applied five-fold cross-validation on these data to train our model, the mean results on 19 test samples are used to conduct the comparison experiments, the Dice similarity coefficient (DSC), Jaccard (JA), sensitivity (SEN), and HD95 of the segmentation for STN are 88.20%, 80.32%, 90.13%, and 1.14&#xa0;mm, respectively, outperforming the state-of-the-art STN segmentation method with 2.82%, 4.52%, 2.56%, and 0.02&#xa0;mm respectively. The source code and trained models of this work have been released in the URL below: https://github.com/liuruiqiang/HAUNet/tree/master.</AbstractText>In this study, we demonstrate the effectiveness of the hierarchical attention mechanism for building global dependency on high-level semantic features and enhancing the fine-grained details on low-level features, the experimental results show that our method has considerable superiority for STN and red nucleus segmentation, which can provide accurate target localization for STN-DBS.</AbstractText>&#xa9; 2022 American Association of Physicists in Medicine.</CopyrightInformation>
2,335,723
Paragastric Autonomic Neural Blockade to Prevent Early Visceral Pain and Associated Symptoms After Laparoscopic Sleeve Gastrectomy: a Randomized Clinical Trial.
Visceral pain (VP) following laparoscopic sleeve gastrectomy remains a substantial problem. VP is associated with autonomic symptoms, especially nausea and vomiting, and is unresponsive to traditional pain management algorithms aimed at alleviating somatic (incisional) pain. The present study was performed to evaluate the safety and effectiveness of laparoscopic paragastric autonomic neural blockade (PG-ANB) in managing the symptoms associated with VP following sleeve gastrectomy.</AbstractText>This prospective, double-blinded, randomized clinical trial involved patients undergoing laparoscopic sleeve gastrectomy at two high-volume institutions. The patients were randomized to laparoscopic transversus abdominis plane block with or without PG-ANB. The primary outcome was patient-reported pain scores assessed at 1, 8, and 24&#xa0;h postoperatively. The secondary outcome measures were analgesic requirements, nausea, vomiting, hiccups, and hemodynamic changes immediately after PG-ANB and postoperatively.</AbstractText>In total, 145 patients (block group, n&#x2009;=&#x2009;72; control group, n&#x2009;=&#x2009;73) were included in the study. The heart rate and mean arterial pressure significantly decreased 10&#xa0;min after PG-ANB. The visual analog scale score for pain was significantly lower in the PG-ANB than in the control group at 1&#xa0;h postoperatively (p&#x2009;&lt;&#x2009;0.001) and 8&#xa0;h postoperatively (p&#x2009;&lt;&#x2009;0.001). Vomiting, nausea, sialorrhea, and hiccups were significantly less prevalent in the PG-ANB group. Patients in the PG-ANB group received fewer cumulative doses of analgesics at 1&#xa0;h postoperatively (p&#x2009;=&#x2009;0.003) and 8&#xa0;h postoperatively (p&#x2009;&lt;&#x2009;0.001). No differences between the groups were detected at 24&#xa0;h (p&#x2009;=&#x2009;0.298). No complications related to PG-ANB occurred.</AbstractText>PG-ANB safely and effectively reduces early VP, associated autonomic symptoms, and analgesic requirements after laparoscopic sleeve gastrectomy.</AbstractText>&#xa9; 2022. The Author(s).</CopyrightInformation>
2,335,724
Six- to eight-year-olds' performance in the Heart and Flower task: Emerging proactive cognitive control.
The Heart and Flower task is used worldwide to measure age-dependent and individual differences in executive functions and/or cognitive control. The task reliably maps age and individual differences and these have consistently been found to be predictive for different aspects of school readiness and academic achievement. The idea has been put forward that there is a developmental shift in how children approach such a task. While 6-year-olds' tend to adapt their task strategy <i>ad hoc</i> and reactively, older children increasingly engage in proactive cognitive control. Proactive cognitive control entails finding the right response speed without risking errors, always dependent on the cognitive conflict. The main goal of the present contribution was to examine children's adjustments of response speed as a function of age and cognitive conflict by addressing RTs surrounding errors (i.e., errors and post-error trials). Data from a large sample with three age groups was used (<i>N</i> = 106 6-year-olds' with a mean age of 6 years; 3 months; <i>N</i> = 108 7-year-olds' with a mean age of 7 years; 4 months; <i>N</i> = 78 8-year-olds' with a mean age of 8 years; 1 month). Response speed adjustments and the development thereof were targeted both across the Flower and Mixed block, respectively, and within these blocks focusing on errors and post-error slowing. Results revealed evidence for a developmental shift toward more efficient proactive cognitive control between 6 and 8 years of age, with the older but not the younger children strategically slowing down in the Mixed block and smoother post-error slowing. At the same time, we found that even the youngest age group has emerging proactive cognitive control skills at their disposal when addressing post-error slowing in the Flower block. The present study thus tracks the early roots of later efficient executive functions and cognitive control, contributes to a better understanding of how developmental progression in cognitive control is achieved, and highlights new avenues for research in this domain.
2,335,725
Optimal Dose of Dexmedetomidine for Preemptive Analgesia Combined with Transversus Abdominis Plane Block after Colon Cancer Surgery.
Pain after colon cancer surgery can be effectively relieved by transversus abdominis plane (TAP) block. We aimed to determine the optimal dose of dexmedetomidine for preemptive analgesia when combined with TAP block after colon cancer surgery.</AbstractText>A total of 120 patients undergoing laparoscopic resection for colon cancer from March 2018 to October 2019 were randomly assigned to control (group C), low-dose (group L, 0.5 &#x3bc;g/kg), moderate-dose (group M, 1 &#x3bc;g/kg), and high-dose groups (group H, 1.5 &#x3bc;g/kg) (n=30 each). After puncture under ultrasound guidance, the designated dexmedetomidine dose and 0.25% ropivacaine were injected on both sides (20 mL each side). Mean arterial pressure (MAP), heart rate (HR), numeric rating scale (NRS) score, and Ramsay score were compared at 2 h (T0), 4 h (T1), 8 h (T2), 12 h (T3), 24 h (T4), and 48 h (T5) after surgery. The area sensitive to mechanical stimulation-induced pain at the incision was measured at T4, T5, and 72 h after surgery (T6). Adverse reactions were compared.</AbstractText>MAP and HR were lower in the dexmedetomidine groups, especially groups M and H, than in group C (P&lt;0.05). NRS scores at T0-T5 and pain-sensitive areas at T4-T6 were lower in the dexmedetomidine groups than in group C (P&lt;0.05), but Ramsay scores were similar (P&gt;0.05). Compared with group L, groups M and H had lower NRS scores and pain-sensitive areas (P&lt;0.05). The incidence rates of adverse reactions were lower in the dexmedetomidine groups than in group C (P&lt;0.05).</AbstractText>Dexmedetomidine 1 or 1.5 &#x3bc;g/kg is effective and did not increase adverse reactions. A dose of 1 &#x3bc;g/kg is recommended as an adjuvant to ropivacaine for TAP block.</AbstractText>
2,335,726
A Prospective Randomized Study Comparing the Bolus Doses of Norepinephrine and Phenylephrine for the Treatment of Spinal Induced Hypotension in Cesarean Section.
Spinal anesthetic-induced hypotension is the most worrisome complication for patients undergoing cesarean section under spinal anesthesia. The present study compares norepinephrine and phenylephrine bolus for the treatment of hypotension during spinal anesthesia for cesarean section.</AbstractText>One hundred twenty- six women aged between 22 and 40 years with singleton pregnancy classified to the American Society of Anesthesiologists (ASA) physical class I and II posted for elective cesarean&#xa0;section under spinal anesthesia&#xa0;were randomly divided into two groups of 63 each. Group I patients received phenylephrine 50 mcg (microgram) as an intravenous bolus, and Group II received 4 mcg of norepinephrine as an intravenous bolus to treat spinal hypotension.</AbstractText>On comparing the demographic data of the patients in terms of age, weight, height, ASA Grade, level of block and surgery time no significant differences were found between the groups. Similarly, the fetal parameters were found to be not significantly different between the groups. However, the number of bolus doses of vasopressors required for the treatment of spinal-induced hypotension was significantly reduced in Group II (p=0.02). The frequency of bradycardia was found to be higher in patients who were given phenylephrine as compared to patients administered noradrenaline boluses (p=0.03). Five (7.93%) patients had shivering in Group I, while similar episodes were observed in 10 (15.87%) patients (p=0.05). Moreover, no significant difference was observed in comparing the heart rate and mean arterial pressure between the groups.</AbstractText>Intermittent boluses of norepinephrine are found to be effective in the management of spinal&#x2011;induced hypotension during caesarean section.</AbstractText>Copyright &#xa9; 2022, Tiwari et al.</CopyrightInformation>
2,335,727
Right lung transplantation with a left-to-right inverted anastomosis in a rat model.<Pagination><StartPage>429</StartPage><EndPage>439</EndPage><MedlinePgn>429-439</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/j.xjon.2022.01.020</ELocationID><Abstract><AbstractText Label="OBJECTIVE" NlmCategory="UNASSIGNED">Right lung transplantation in rats has been attempted occasionally, but the technical complexity makes it challenging to apply routinely. Additionally, basic research on inverted lobar lung transplantation is scarce because of the lack of a cost-effective experimental model. We first reported right lung transplantation in a rat model using left-to-right inverted anastomosis to imitate the principle of clinically inverted lung transplantation.</AbstractText><AbstractText Label="METHODS" NlmCategory="UNASSIGNED">Right lung transplantation was performed in 10 consecutive rats. By using a 3-cuff technique, the left lung of the donor rat was implanted into the right thoracic cavity of the recipient rat. The rat lung graft was rotated 180&#xb0; along the vertical axis to achieve anatomic matching of right hilar structures. Another 10 consecutive rats had received orthotopic left lung transplantation as a control.</AbstractText><AbstractText Label="RESULTS" NlmCategory="UNASSIGNED">All lung transplantation procedures were technically successful without intraoperative failure. One rat (10%) died of full pulmonary atelectasis after right lung transplantation, whereas all rats survived after left lung transplantation. No significant difference was observed in heart-lung block retrieval (8.6&#xa0;&#xb1;&#xa0;0.8 vs 8.4&#xa0;&#xb1;&#xa0;0.9&#xa0;minutes), cuff preparation (8.3&#xa0;&#xb1;&#xa0;0.9 vs 8.7&#xa0;&#xb1;&#xa0;0.9&#xa0;minutes), or total procedure time (58.2&#xa0;&#xb1;&#xa0;2.6 vs 56.6&#xa0;&#xb1;&#xa0;2.1&#xa0;minutes) between the right lung transplantation and standard left lung transplantation groups (<i>P</i>&#xa0;&gt;&#xa0;.05), although the cold ischemia time (14.2&#xa0;&#xb1;&#xa0;0.9 vs 25.5&#xa0;&#xb1;&#xa0;1.7&#xa0;minutes) and warm ischemia time (19.8&#xa0;&#xb1;&#xa0;1.5 vs 13.7&#xa0;&#xb1;&#xa0;1.8&#xa0;minutes) were different (<i>P</i>&#xa0;&lt;&#xa0;.001).</AbstractText><AbstractText Label="CONCLUSIONS" NlmCategory="UNASSIGNED">Right lung transplantation with a left-to-right inverted anastomosis in a rat model is technically easy to master, expeditious, and reproducible. It can potentially imitate the principle of clinically inverted lung transplantation and become an alternative to standard left lung transplantation.</AbstractText><CopyrightInformation>&#xa9; 2022 The Author(s).</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Huang</LastName><ForeName>Heng</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Heart and Lung Transplant Research Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Yan</LastName><ForeName>Hao-Ji</ForeName><Initials>HJ</Initials><AffiliationInfo><Affiliation>Heart and Lung Transplant Research Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zheng</LastName><ForeName>Xiang-Yun</ForeName><Initials>XY</Initials><AffiliationInfo><Affiliation>Heart and Lung Transplant Research Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Wang</LastName><ForeName>Jun-Jie</ForeName><Initials>JJ</Initials><AffiliationInfo><Affiliation>Heart and Lung Transplant Research Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Tang</LastName><ForeName>Hong-Tao</ForeName><Initials>HT</Initials><AffiliationInfo><Affiliation>Heart and Lung Transplant Research Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Li</LastName><ForeName>Cai-Han</ForeName><Initials>CH</Initials><AffiliationInfo><Affiliation>Heart and Lung Transplant Research Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Tian</LastName><ForeName>Dong</ForeName><Initials>D</Initials><AffiliationInfo><Affiliation>Heart and Lung Transplant Research Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Academician (Expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2022</Year><Month>02</Month><Day>09</Day></ArticleDate></Article><MedlineJournalInfo><Country>Netherlands</Country><MedlineTA>JTCVS Open</MedlineTA><NlmUniqueID>101768541</NlmUniqueID><ISSNLinking>2666-2736</ISSNLinking></MedlineJournalInfo><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">AR, acute rejection</Keyword><Keyword MajorTopicYN="N">CR, chronic rejection</Keyword><Keyword MajorTopicYN="N">IRI, ischemia&#x2013;reperfusion injury</Keyword><Keyword MajorTopicYN="N">LDLLTx, living-donor lobar lung transplantation</Keyword><Keyword MajorTopicYN="N">LTx, lung transplantation</Keyword><Keyword MajorTopicYN="N">PA, pulmonary artery</Keyword><Keyword MajorTopicYN="N">PV, pulmonary vein</Keyword><Keyword MajorTopicYN="N">cuff technique</Keyword><Keyword MajorTopicYN="N">inverted anastomosis</Keyword><Keyword MajorTopicYN="N">rat</Keyword><Keyword MajorTopicYN="N">right lung transplantation</Keyword><Keyword MajorTopicYN="N">situs inversus</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2021</Year><Month>11</Month><Day>1</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2022</Year><Month>1</Month><Day>13</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2022</Year><Month>8</Month><Day>25</Day><Hour>2</Hour><Minute>32</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2022</Year><Month>8</Month><Day>26</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2022</Year><Month>8</Month><Day>26</Day><Hour>6</Hour><Minute>1</Minute></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">36004231</ArticleId><ArticleId IdType="pmc">PMC9390618</ArticleId><ArticleId IdType="doi">10.1016/j.xjon.2022.01.020</ArticleId><ArticleId IdType="pii">S2666-2736(22)00037-7</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Mariscal A., Caldarone L., Tikkanen J., Nakajima D., Chen M., Yeung J., et al. Pig lung transplant survival model. Nat Protoc. 2018;13:1814&#x2013;1828.</Citation><ArticleIdList><ArticleId IdType="pubmed">30072720</ArticleId></ArticleIdList></Reference><Reference><Citation>Saito M., Chen-Yoshikawa T.F., Suetsugu K., Okabe R., Takahagi A., Masuda S., et al. Pirfenidone alleviates lung ischemia-reperfusion injury in a rat model. J Thorac Cardiovasc Surg. 2019;158:289&#x2013;296.</Citation><ArticleIdList><ArticleId IdType="pubmed">30385019</ArticleId></ArticleIdList></Reference><Reference><Citation>Evers A., Atanasova S., Fuchs-Moll G., Petri K., Wilker S., Zakrzewicz A., et al. Adaptive and innate immune responses in a rat orthotopic lung transplant model of chronic lung allograft dysfunction. Transpl Int. 2015;28:95&#x2013;107.</Citation><ArticleIdList><ArticleId IdType="pubmed">25179205</ArticleId></ArticleIdList></Reference><Reference><Citation>Mizuta T., Kawaguchi A., Nakahara K., Kawashima Y. Simplified rat lung transplantation using a cuff technique. J Thorac Cardiovasc Surg. 1989;97:578&#x2013;581.</Citation><ArticleIdList><ArticleId IdType="pubmed">2648080</ArticleId></ArticleIdList></Reference><Reference><Citation>Bribriesco A.C., Li W., Nava R.G., Spahn J.H., Kreisel D. Experimental models of lung transplantation. Front Biosci (Elite Ed) 2013;5:266&#x2013;272.</Citation><ArticleIdList><ArticleId IdType="pubmed">23276988</ArticleId></ArticleIdList></Reference><Reference><Citation>Li W., Sugimoto S., Lai J., Patterson G.A., Gelman A.E., Krupnick A.S., et al. Orthotopic vascularized right lung transplantation in the mouse. J Thorac Cardiovasc Surg. 2010;139:1637&#x2013;1643.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5667941</ArticleId><ArticleId IdType="pubmed">20219214</ArticleId></ArticleIdList></Reference><Reference><Citation>Okazaki M., Gelman A.E., Tietjens J.R., Ibricevic A., Kornfeld C.G., Huang H.J., et al. Maintenance of airway epithelium in acutely rejected orthotopic vascularized mouse lung transplants. Am J Respir Cell Mol Biol. 2007;37:625&#x2013;630.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2219553</ArticleId><ArticleId IdType="pubmed">17717320</ArticleId></ArticleIdList></Reference><Reference><Citation>Kawaguchi A.T., Mizuta T., Shirai M., Ishibashi-Ueda H., Machida H., Kawashima Y. Right lung transplantation followed by left pneumonectomy in the rat. Eur J Cardiothorac Surg. 1996;10:1011&#x2013;1014.</Citation><ArticleIdList><ArticleId IdType="pubmed">8971515</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen-Yoshikawa T.F., Tanaka S., Yamada Y., Yutaka Y., Nakajima D., Ohsumi A., et al. Intermediate outcomes of right-to-left inverted living-donor lobar lung transplantation. Eur J Cardiothorac Surg. 2019;56:1046&#x2013;1053.</Citation><ArticleIdList><ArticleId IdType="pubmed">31722008</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen F., Miyamoto E., Takemoto M., Minakata K., Yamada T., Sato M., et al. Right and left inverted lobar lung transplantation. Am J Transplant. 2015;15:1716&#x2013;1721.</Citation><ArticleIdList><ArticleId IdType="pubmed">25846520</ArticleId></ArticleIdList></Reference><Reference><Citation>Date H., Aoyama A., Hijiya K., Motoyama H., Handa T., Kinoshita H., et al. Outcomes of various transplant procedures (single, sparing, inverted) in living-donor lobar lung transplantation. J Thorac Cardiovasc Surg. 2017;153:479&#x2013;486.</Citation><ArticleIdList><ArticleId IdType="pubmed">27847159</ArticleId></ArticleIdList></Reference><Reference><Citation>Chida M., Araki O., Karube Y., Maeda S. Right-to-left inverted single lung transplantation. J Thorac Cardiovasc Surg Tech. 2020;4:395&#x2013;397.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8307873</ArticleId><ArticleId IdType="pubmed">34318084</ArticleId></ArticleIdList></Reference><Reference><Citation>Okutani D., Date H., Hayama M., Inokawa H., Okazaki M., Nagahiro I., et al. The technique of unilateral double lobar lung transplantation in a canine model. J Thorac Cardiovasc Surg. 2004;127:563&#x2013;567.</Citation><ArticleIdList><ArticleId IdType="pubmed">14762369</ArticleId></ArticleIdList></Reference><Reference><Citation>Tian D., Shiiya H., Sato M., Nakajima J. Rat lung transplantation model: modifications of the cuff technique. Ann Transl Med. 2020;8:407.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7186686</ArticleId><ArticleId IdType="pubmed">32355851</ArticleId></ArticleIdList></Reference><Reference><Citation>Rajab T.K. Techniques for lung transplantation in the rat. Exp Lung Res. 2019;45:267&#x2013;274.</Citation><ArticleIdList><ArticleId IdType="pubmed">31608698</ArticleId></ArticleIdList></Reference><Reference><Citation>Ren X., Moser P.T., Gilpin S.E., Okamoto T., Wu T., Tapias L.F., et al. Engineering pulmonary vasculature in decellularized rat and human lungs. Nat Biotechnol. 2015;33:1097&#x2013;1102.</Citation><ArticleIdList><ArticleId IdType="pubmed">26368048</ArticleId></ArticleIdList></Reference><Reference><Citation>Couetil J.P., Tolan M.J., Loulmet D.F., Guinvarch A., Chevalier P.G., Achkar A., et al. Pulmonary bipartitioning and lobar transplantation: a new approach to donor organ shortage. J Thorac Cardiovasc Surg. 1997;113:529&#x2013;537.</Citation><ArticleIdList><ArticleId IdType="pubmed">9081098</ArticleId></ArticleIdList></Reference><Reference><Citation>Couetil J.P., Argyriadis P.G., Tolan M.J., Achkar A., Carpentier A.F. Contralateral lung transplantation: a left lung implanted in the right thorax. Ann Thorac Surg. 2001;72:933&#x2013;935.</Citation><ArticleIdList><ArticleId IdType="pubmed">11565693</ArticleId></ArticleIdList></Reference><Reference><Citation>Guo H., Nie J., Fan K., Zheng Z., Qiao X., Li J., et al. Improvements of surgical techniques in a rat model of an orthotopic single lung transplant. Eur J Med Res. 2013;18:1.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3608166</ArticleId><ArticleId IdType="pubmed">23295132</ArticleId></ArticleIdList></Reference><Reference><Citation>Habertheuer A., Kocher A., Laufer G., Petzelbauer P., Andreas M., Aharinejad S., et al. Innovative, simplified orthotopic lung transplantation in rats. J Surg Res. 2013;185:419&#x2013;425.</Citation><ArticleIdList><ArticleId IdType="pubmed">23731688</ArticleId></ArticleIdList></Reference><Reference><Citation>Marck K.W., Wildevuur C.R. Lung transplantation in the rat: I. Technique and survival. Ann Thorac Surg. 1982;34:74&#x2013;80.</Citation><ArticleIdList><ArticleId IdType="pubmed">7046662</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen F., Date H. Update on ischemia-reperfusion injury in lung transplantation. Curr Opin Organ Transplant. 2015;20:515&#x2013;520.</Citation><ArticleIdList><ArticleId IdType="pubmed">26348570</ArticleId></ArticleIdList></Reference><Reference><Citation>Kubisa B., Schmid R.A., Grodzki T. Model of single left rat lung transplantation. Relation between surgical experience and outcomes. Rocz Akad Med Bialymst. 2003;48:70&#x2013;73.</Citation><ArticleIdList><ArticleId IdType="pubmed">14737945</ArticleId></ArticleIdList></Reference><Reference><Citation>Sugimoto R., Nakao A., Nagahiro I., Kohmoto J., Sugimoto S., Okazaki M., et al. Experimental orthotopic lung transplantation model in rats with cold storage. Surg Today. 2009;39:641&#x2013;645.</Citation><ArticleIdList><ArticleId IdType="pubmed">19562458</ArticleId></ArticleIdList></Reference><Reference><Citation>Gelman A.E., Okazaki M., Lai J., Kornfeld C.G., Kreisel F.H., Richardson S.B., et al. CD4+ T lymphocytes are not necessary for the acute rejection of vascularized mouse lung transplants. J Immunol. 2008;180:4754&#x2013;4762.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4048809</ArticleId><ArticleId IdType="pubmed">18354199</ArticleId></ArticleIdList></Reference><Reference><Citation>Lunardi F., Zampieri D., Vadori M., Bernardini D., Vuljan S.E., Nannini N., et al. Overexpression of hypoxia-inducible factor-1alpha in primary graft dysfunction developing in an orthotopic lung transplantation rat model. Transplant Proc. 2017;49:722&#x2013;725.</Citation><ArticleIdList><ArticleId IdType="pubmed">28457380</ArticleId></ArticleIdList></Reference><Reference><Citation>Pierre A.F., DeCampos K.N., Liu M., Edwards V., Cutz E., Slutsky A.S., et al. Rapid reperfusion causes stress failure in ischemic rat lungs. J Thorac Cardiovasc Surg. 1998;116:932&#x2013;942.</Citation><ArticleIdList><ArticleId IdType="pubmed">9832683</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedBookArticle><BookDocument><PMID Version="1">20301690</PMID><ArticleIdList><ArticleId IdType="bookaccession">NBK1517</ArticleId></ArticleIdList><Book><Publisher><PublisherName>University of Washington, Seattle</PublisherName><PublisherLocation>Seattle (WA)</PublisherLocation></Publisher><BookTitle book="gene">GeneReviews<sup>&#xae;</sup></BookTitle><PubDate><Year>1993</Year></PubDate><BeginningDate><Year>1993</Year></BeginningDate><EndingDate><Year>2023</Year></EndingDate><AuthorList Type="editors" CompleteYN="Y"><Author ValidYN="Y"><LastName>Adam</LastName><ForeName>Margaret P</ForeName><Initials>MP</Initials></Author><Author ValidYN="Y"><LastName>Mirzaa</LastName><ForeName>Ghayda M</ForeName><Initials>GM</Initials></Author><Author ValidYN="Y"><LastName>Pagon</LastName><ForeName>Roberta A</ForeName><Initials>RA</Initials></Author><Author ValidYN="Y"><LastName>Wallace</LastName><ForeName>Stephanie E</ForeName><Initials>SE</Initials></Author><Author ValidYN="Y"><LastName>Bean</LastName><ForeName>Lora JH</ForeName><Initials>LJH</Initials></Author><Author ValidYN="Y"><LastName>Gripp</LastName><ForeName>Karen W</ForeName><Initials>KW</Initials></Author><Author ValidYN="Y"><LastName>Amemiya</LastName><ForeName>Anne</ForeName><Initials>A</Initials></Author></AuthorList><Medium>Internet</Medium></Book><ArticleTitle book="gene" part="brugada">Brugada Syndrome
Right lung transplantation in rats has been attempted occasionally, but the technical complexity makes it challenging to apply routinely. Additionally, basic research on inverted lobar lung transplantation is scarce because of the lack of a cost-effective experimental model. We first reported right lung transplantation in a rat model using left-to-right inverted anastomosis to imitate the principle of clinically inverted lung transplantation.</AbstractText>Right lung transplantation was performed in 10 consecutive rats. By using a 3-cuff technique, the left lung of the donor rat was implanted into the right thoracic cavity of the recipient rat. The rat lung graft was rotated 180&#xb0; along the vertical axis to achieve anatomic matching of right hilar structures. Another 10 consecutive rats had received orthotopic left lung transplantation as a control.</AbstractText>All lung transplantation procedures were technically successful without intraoperative failure. One rat (10%) died of full pulmonary atelectasis after right lung transplantation, whereas all rats survived after left lung transplantation. No significant difference was observed in heart-lung block retrieval (8.6&#xa0;&#xb1;&#xa0;0.8 vs 8.4&#xa0;&#xb1;&#xa0;0.9&#xa0;minutes), cuff preparation (8.3&#xa0;&#xb1;&#xa0;0.9 vs 8.7&#xa0;&#xb1;&#xa0;0.9&#xa0;minutes), or total procedure time (58.2&#xa0;&#xb1;&#xa0;2.6 vs 56.6&#xa0;&#xb1;&#xa0;2.1&#xa0;minutes) between the right lung transplantation and standard left lung transplantation groups (P</i>&#xa0;&gt;&#xa0;.05), although the cold ischemia time (14.2&#xa0;&#xb1;&#xa0;0.9 vs 25.5&#xa0;&#xb1;&#xa0;1.7&#xa0;minutes) and warm ischemia time (19.8&#xa0;&#xb1;&#xa0;1.5 vs 13.7&#xa0;&#xb1;&#xa0;1.8&#xa0;minutes) were different (P</i>&#xa0;&lt;&#xa0;.001).</AbstractText>Right lung transplantation with a left-to-right inverted anastomosis in a rat model is technically easy to master, expeditious, and reproducible. It can potentially imitate the principle of clinically inverted lung transplantation and become an alternative to standard left lung transplantation.</AbstractText>&#xa9; 2022 The Author(s).</CopyrightInformation>
2,335,728
Analgesic Effects of a Novel Combination of Regional Anesthesia After Pediatric Cardiac Surgery: A Retrospective Cohort Study.<Pagination><StartPage>4054</StartPage><EndPage>4061</EndPage><MedlinePgn>4054-4061</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1053/j.jvca.2022.07.014</ELocationID><ELocationID EIdType="pii" ValidYN="Y">S1053-0770(22)00528-6</ELocationID><Abstract><AbstractText Label="OBJECTIVE">The objective of this study was to determine whether the use of regional anesthesia in children undergoing congenital heart surgery was associated with differences in outcomes when compared to surgeon-delivered local anesthetic wound infiltration.</AbstractText><AbstractText Label="DESIGN">A retrospective cohort study.</AbstractText><AbstractText Label="SETTING">At a single pediatric tertiary care center.</AbstractText><AbstractText Label="PARTICIPANTS">Pediatric patients who underwent primary repair of septal defects between January 1, 2018, and March 31, 2022.</AbstractText><AbstractText Label="INTERVENTIONS">The patients were grouped by whether they received surgeon-delivered local anesthetic wound infiltration or bilateral pectointercostal fascial blocks (PIFBs) and a unilateral rectus sheath block (RSB) on the side ipsilateral to the chest tube.</AbstractText><AbstractText Label="MEASUREMENTS AND MAIN RESULTS">Using overlap propensity score-weighted models, the authors examined postoperative opioid requirements (morphine milliequivalents per kilogram), pain scores, length of stay, and time under general anesthesia (GA). Eighty-nine patients were eligible for inclusion and underwent analysis. In the first 12 hours postoperatively, the block group used fewer morphine equivalents per kilogram versus the infiltration group, 0.27 &#xb1; 0.2 v 0.64 &#xb1; 0.42, with a weighted estimated decrease of 0.39 morphine equivalents per kilogram (95% CI -0.52 to -0.25; p &lt; 0.001), and had lower pain scores, 3.2 v 1.6, with a weighted estimated decrease of 1.7 (95% CI -2.3 to -1.1; p &lt; 0.001). The length of stay and time under GA also were shorter in the block group with weighted estimated decreases of 22 hours (95% CI -33 to -11; p&#xa0;=&#xa0;0.001) and 18 minutes (95% CI -34 to -2; p&#xa0;=&#xa0;0.03), respectively.</AbstractText><AbstractText Label="CONCLUSIONS">Bilateral PIFBs and a unilateral RSB on the side ipsilateral to the chest tube is a novel analgesic technique for sternotomy in pediatric patients. In this retrospective study, these interventions were associated with decreases in postoperative opioid use, pain scores, and hospital length of stay without prolonging time under GA.</AbstractText><CopyrightInformation>Copyright &#xa9; 2022 Elsevier Inc. All rights reserved.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Einhorn</LastName><ForeName>Lisa M</ForeName><Initials>LM</Initials><AffiliationInfo><Affiliation>Department of Anesthesiology, Duke University Medical Center, Durham, NC. Electronic address: [email protected].</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Andrew</LastName><ForeName>Benjamin Y</ForeName><Initials>BY</Initials><AffiliationInfo><Affiliation>Department of Anesthesiology, Duke University Medical Center, Durham, NC.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Nelsen</LastName><ForeName>Derek A</ForeName><Initials>DA</Initials><AffiliationInfo><Affiliation>Department of Anesthesiology, Duke University Medical Center, Durham, NC.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ames</LastName><ForeName>Warwick A</ForeName><Initials>WA</Initials><AffiliationInfo><Affiliation>Department of Anesthesiology, Duke University Medical Center, Durham, NC.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2022</Year><Month>07</Month><Day>14</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Cardiothorac Vasc Anesth</MedlineTA><NlmUniqueID>9110208</NlmUniqueID><ISSNLinking>1053-0770</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000700">Analgesics</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000701">Analgesics, Opioid</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D000779">Anesthetics, Local</NameOfSubstance></Chemical><Chemical><RegistryNumber>76I7G6D29C</RegistryNumber><NameOfSubstance UI="D009020">Morphine</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D000700" MajorTopicYN="N">Analgesics</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000701" MajorTopicYN="N">Analgesics, Opioid</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000765" MajorTopicYN="Y">Anesthesia, Conduction</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000779" MajorTopicYN="N">Anesthetics, Local</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006348" MajorTopicYN="Y">Cardiac Surgical Procedures</DescriptorName><QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D002648" MajorTopicYN="N">Child</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D009020" MajorTopicYN="N">Morphine</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D010147" MajorTopicYN="N">Pain Measurement</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D010149" MajorTopicYN="N">Pain, Postoperative</DescriptorName><QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName><QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName><QualifierName UI="Q000517" MajorTopicYN="N">prevention &amp; control</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D012189" MajorTopicYN="N">Retrospective Studies</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">analgesia</Keyword><Keyword MajorTopicYN="N">opioids</Keyword><Keyword MajorTopicYN="N">pain scores</Keyword><Keyword MajorTopicYN="N">pediatric cardiac surgery</Keyword><Keyword MajorTopicYN="N">regional anesthesia</Keyword><Keyword MajorTopicYN="N">sternotomy</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2022</Year><Month>5</Month><Day>10</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2022</Year><Month>7</Month><Day>8</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2022</Year><Month>7</Month><Day>11</Day></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2022</Year><Month>8</Month><Day>23</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2022</Year><Month>10</Month><Day>12</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2022</Year><Month>8</Month><Day>22</Day><Hour>22</Hour><Minute>4</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">35995635</ArticleId><ArticleId IdType="doi">10.1053/j.jvca.2022.07.014</ArticleId><ArticleId IdType="pii">S1053-0770(22)00528-6</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="MEDLINE" Owner="NLM" IndexingMethod="Curated"><PMID Version="1">35993760</PMID><DateCompleted><Year>2022</Year><Month>08</Month><Day>24</Day></DateCompleted><DateRevised><Year>2022</Year><Month>09</Month><Day>17</Day></DateRevised><Article PubModel="Electronic"><Journal><ISSN IssnType="Electronic">1940-087X</ISSN><JournalIssue CitedMedium="Internet"><Issue>186</Issue><PubDate><Year>2022</Year><Month>Aug</Month><Day>04</Day></PubDate></JournalIssue><Title>Journal of visualized experiments : JoVE</Title><ISOAbbreviation>J Vis Exp</ISOAbbreviation></Journal>Drug Treatment by Central Venous Catheter in a Mouse Model of Angiotensin II Induced Abdominal Aortic Aneurysm and Monitoring by 3D Ultrasound.
Since pharmaceutical treatment options are lacking in the clinical management of abdominal aortic aneurysm (AAA), animal models, in particular mouse models, are applied to advance the understanding of the disease pathogenesis and to identify potential therapeutic targets. Testing novel drug candidates to block AAA growth in these models generally requires repeated drug administration during the time course of the experiment. Here, we describe a compiled protocol for AAA induction, insertion of an intravenous catheter to facilitate prolonged therapy, and serial AAA monitoring by 3D ultrasound. Aneurysms are induced in apolipoprotein E (ApoE) deficient mice by angiotensin II release over 28 days from osmotic mini-pumps implanted subcutaneously into the mouse back. Subsequently, the surgical procedure for external jugular vein catheterization is conducted to allow for daily intravenous drug treatment or repeated blood sampling via a subcutaneous vascular access button. Despite the two dorsal implants, the monitoring of AAA development is readily facilitated by sequential semi-automated 3D ultrasound analysis, which yields comprehensive information on the expansion of aortic diameter and volume and on aneurysm morphology, as illustrated by experimental examples.
2,335,729
Addition of 2 mg dexamethasone to improve the anesthetic efficacy of 2% lidocaine with 1:80,000 epinephrine administered for inferior alveolar nerve block to patients with symptomatic irreversible pulpitis in the mandibular molars: a randomized double-blind clinical trial.
This clinical trial aimed to evaluate the anesthetic effect of the addition of 2 mg (4 mg/ml) of dexamethasone to 2% lidocaine (plain or with 1:80,000 epinephrine). The solutions were injected for a primary inferior alveolar nerve block (IANB) to provide mandibular anesthesia for the endodontic treatment of mandibular molars with symptomatic irreversible pulpitis.</AbstractText>In a double-blinded setup, 124 patients randomly received either of the following injections: 2% lidocaine with 1:80,000 epinephrine, 2% lidocaine with 1:80,000 epinephrine mixed with 2 mg dexamethasone, or plain 2% lidocaine mixed with 2 mg dexamethasone, which were injected as a primary IANB. Ten minutes after injection, patients with profound lip numbness underwent electric and thermal pulp sensibility tests. Patients who responded positively to the tests were categorized as "failed" anesthesia and received supplemental anesthesia. The remaining patients underwent endodontic treatment using a rubber dam. Anesthetic success was defined as "no pain or faint/weak/mild pain" during endodontic access preparation and instrumentation (HP visual analog scale score &lt; 55 mm). The effect of the anesthetic solutions on the maximum change in heart rate was also evaluated. The Pearson chi-square test at 5% and 1% significance was used to analyze anesthetic success rates.</AbstractText>The 2% lidocaine with 1:80,000 epinephrine, 2% lidocaine with 1:80,000 epinephrine mixed with 2 mg dexamethasone, and plain 2% lidocaine mixed with 2 mg dexamethasone groups had anesthetic success rates of 34%, 59%, and 29%, respectively. The addition of dexamethasone resulted in significantly better results (P &lt; 0.001, &#x3c7;2</sup> = 9.07, df = 2).</AbstractText>The addition of dexamethasone to 2% lidocaine with epinephrine, administered as an IANB, can improve the anesthetic success rates during the endodontic management of symptomatic mandibular molars with irreversible pulpitis.</AbstractText>Copyright &#xa9; 2022 Journal of Dental Anesthesia and Pain Medicine.</CopyrightInformation>
2,335,730
Retrospective analysis of remifentanil combined with dexmedetomidine intravenous anesthesia combined with brachial plexus block on shoulder arthroscopic surgery in elderly patients.
To analyze the effect of remifentanil combined with dexmedetomidine intravenous anesthesia combined with brachial plexus block on shoulder arthroscopic surgery in elderly patients.</AbstractText>This retrospective study conducted at Jiading Branch of Shanghai General Hospital, investigated clinical data from elderly patients receiving shoulder arthroscopy between January 2020 and June 2021. Based on the treatment, patients were retrospectively divided into Group-I (remifentanil combined with dexmedetomidine) and Group-II (remifentanil continuous pump injection). Hemodynamic indices, such as mean arterial pressure (MAP) and heart rate (HR), degree of pain (VAS score), and stress response marker levels were examined prior to the operation and at various time points post-operation. Operation time and adverse reaction incidences were also evaluated.</AbstractText>There was no significant differences in MAP and HR between the two groups prior to the operation. However, MAP and HR levels were lower in Group-I patients at three time points post-operation. Similarly, VAS scores were not different between the two groups prior to the operation but were much lower in Group-I at multiple time points post-operation. The same trend was observed for the stress-induced angiotensin-II, cortisol, and aldosterone. Additionally, patients in Group-I had lower incidence of adverse reactions and shorter operation time.</AbstractText>Remifentanil combined with dexmedetomidine intravenous anesthesia for shoulder arthroscopic surgery under general anesthesia combined with brachial plexus block in elderly patients can maintain hemodynamic stability, shorten operation time, reduce the degree of stress reaction, pain caused by invasive operation, and reduce the incidence of adverse reactions.</AbstractText>Copyright: &#xa9; Pakistan Journal of Medical Sciences.</CopyrightInformation>
2,335,731
Detection of Cardiac Functions of Fetus with Diabetic Metabolic Disease through PEG-PCLNano Micelle and Ultrasound Technique.<Pagination><StartPage>24</StartPage><EndPage>33</EndPage><MedlinePgn>24-33</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.14715/cmb/2022.68.3.4</ELocationID><Abstract><AbstractText Label="UNLABELLED">The study was to probe into the application of ultrasound technique in gestational diabetes mellitus (GDM) and research the progress of PEG-PCL nano micelle and ultrasound technique.</AbstractText><AbstractText Label="METHOD" NlmCategory="METHODS">210 patients with a singleton pregnancy fetus, who received the fetal echocardiography in Yuhang District First People's Hospital from March 2019 to March 2020, were selected as the subjects, including 101 fetuses who were confirmed as gestational diabetes mellitus(GDM), and 109 normal fetuses (control group). The ultrasound cardiogram technique was employed to detect the thickness of the fetus ventricle septum, mitral/tricuspid annular displacement, left/right TEI indexes, and so on. The mean value of three cardiac cycles was taken as the test results. Finally, SPSS17.0 software was applied to the analysis of data. The nano micelle was made from the amphiphilic block copolymers (PEG-PCL) using the dialysis method/solvent evaporation method. The nanoscale ultrasound contrast agent was prepared from Decafluoropentane which was imaging gas. The characterizations were studied using the optical microscope, and transmission electron microscopy (TEM). The temperature sensitivity and ultrasound sensitivity of the nano-ultrasound contrast agent were analyzed with the particle size as the evaluation index. The in-vitro ultrasound contrast experiment was conducted to study the contrast-enhanced effect.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">The fetal Tei index of the case group was higher than that of the control group, of which P&lt;0.05 had statistical significance. However, the thickness of the fetus ventricle septum, Em, Am, and Em/Am of mitral/tricuspid annular were not significantly different from those of the control group (P&gt;0.05). The nano ultrasonic contrast agent prepared through the ultrasonic injection method had a uniform particle size and a hollow shell-core structure under an electron projection microscope. The particle size of the nano-ultrasound contrast agent varied with temperature, and its microbubbles were generated under ultrasonic conditions. As compared with the blank degassed water group, a real linear echo appeared inside the contrast agent group, with small and even echo spots. The back echo remained with no obvious attenuation and lasted for a longer period. However, the blank degassed group had no distinct echo intensity and spot.</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">PEG-PCL nano-ultrasound contrast agent achieved an excellent imaging effect; there was no obvious change to heart function and structure of the fetus, when gestational diabetes pregnant had blood sugar perfectly controlled, however, the fetus's heart function may change in the last trimester.</AbstractText></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Ran</LastName><ForeName>Hongmei</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Department of Ultrasound, Linping District First People's Hospital, Hangzhou, 311100, China. [email protected].</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhang</LastName><ForeName>Yunlong</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Department of Ultrasound, Linping District First People's Hospital, Hangzhou, 311100, China. [email protected].</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Yu</LastName><ForeName>Dingding</ForeName><Initials>D</Initials><AffiliationInfo><Affiliation>Department of Obstetrics, Linping District First People's Hospital, Hangzhou, 311100, China. [email protected].</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhou</LastName><ForeName>Guoli</ForeName><Initials>G</Initials><AffiliationInfo><Affiliation>Department of Laboratory, Linping District First People's Hospital, Hangzhou, 311100, China. [email protected].</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2022</Year><Month>03</Month><Day>31</Day></ArticleDate></Article><MedlineJournalInfo><Country>France</Country><MedlineTA>Cell Mol Biol (Noisy-le-grand)</MedlineTA><NlmUniqueID>9216789</NlmUniqueID><ISSNLinking>0145-5680</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D003287">Contrast Media</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D008823">Micelles</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D003287" MajorTopicYN="N">Contrast Media</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D016640" MajorTopicYN="Y">Diabetes, Gestational</DescriptorName><QualifierName UI="Q000000981" MajorTopicYN="N">diagnostic imaging</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005333" MajorTopicYN="N">Fetus</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008823" MajorTopicYN="N">Micelles</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D011247" MajorTopicYN="N">Pregnancy</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D016216" MajorTopicYN="N">Ultrasonography, Prenatal</DescriptorName><QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2022</Year><Month>4</Month><Day>24</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2022</Year><Month>8</Month><Day>21</Day><Hour>14</Hour><Minute>36</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2022</Year><Month>8</Month><Day>22</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2022</Year><Month>8</Month><Day>24</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">35988192</ArticleId><ArticleId IdType="doi">10.14715/cmb/2022.68.3.4</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedBookArticle><BookDocument><PMID Version="1">29939600</PMID><ArticleIdList><ArticleId IdType="bookaccession">NBK507823</ArticleId></ArticleIdList><Book><Publisher><PublisherName>StatPearls Publishing</PublisherName><PublisherLocation>Treasure Island (FL)</PublisherLocation></Publisher><BookTitle book="statpearls">StatPearls</BookTitle><PubDate><Year>2023</Year><Month>01</Month></PubDate><BeginningDate><Year>2023</Year><Month>01</Month></BeginningDate><Medium>Internet</Medium></Book><ArticleTitle book="statpearls" part="article-158">Pacemaker Indications<Language>eng</Language><AuthorList Type="authors" CompleteYN="Y"><Author ValidYN="Y"><LastName>Dalia</LastName><ForeName>Tarun</ForeName><Initials>T</Initials><AffiliationInfo><Affiliation>Kansas University Medical Center</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Amr</LastName><ForeName>Bashar S.</ForeName><Initials>BS</Initials><AffiliationInfo><Affiliation>University of Kansas Medical Center</Affiliation></AffiliationInfo></Author></AuthorList><PublicationType UI="D000072643">Study Guide</PublicationType><Abstract><AbstractText>Pacemakers are electronic devices that stimulate the heart with electrical impulses to maintain or restore a normal heartbeat. In 1952, Zoll described an effective means of supporting the patients with intrinsic cardiac pacemaker activity and/or conducting tissue by an artificial, electric, external pacemaker. The pacing of the heart was accomplished by subcutaneous electrodes but could be maintained only for a short period. In 1957, complete heart block was treated using electrodes directly attached to the heart. These early observations instilled the idea that cardiac electrical failure can be controlled. It ultimately led to the development of totally implantable pacemaker by Chardack, Gage, and Greatbatch. Since then, there have been several advancements in the pacemakers, and the modern-day permanent pacemaker is subcutaneously placed device.There are 3 types of artificial pacemakers: 1. Implantable pulse generators with endocardial or myocardial electrodes. 2. External, miniaturized, patient portable, battery-powered, pulse generators with exteriorized electrodes for temporary transvenous endocardial or transthoracic myocardial pacing. 3. Console battery or AC-powered cardioverters or monitors with high-current external transcutaneous or low-current endocardial or myocardial circuits for temporary pacing in asynchronous or demand modes, with manual or triggered initiation of pacing. All cardiac pacemakers consist of 2 components: a pulse generator which provides the electrical impulse for myocardial stimulation and 1 or more electrodes or leads which deliver the electrical impulse from the generator to the myocardium. This discussion focuses on the indications of pacemaker placement.</AbstractText><CopyrightInformation>Copyright &#xa9; 2023, StatPearls Publishing LLC.</CopyrightInformation></Abstract><Sections><Section><SectionTitle book="statpearls" part="article-158" sec="article-158.s1">Continuing Education Activity</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-158" sec="article-158.s2">Introduction</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-158" sec="article-158.s3">Indications</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-158" sec="article-158.s4">Contraindications</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-158" sec="article-158.s5">Complications</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-158" sec="article-158.s6">Clinical Significance</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-158" sec="article-158.s7">Enhancing Healthcare Team Outcomes</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-158" sec="article-158.s8">Review Questions</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-158" sec="article-158.s12">References</SectionTitle></Section></Sections><ContributionDate><Year>2022</Year><Month>8</Month><Day>22</Day></ContributionDate><ReferenceList><Reference><Citation>Carri&#xf3;n-Camacho MR, Mar&#xed;n-Le&#xf3;n I, Molina-Do&#xf1;oro JM, Gonz&#xe1;lez-L&#xf3;pez JR. Safety of Permanent Pacemaker Implantation: A Prospective Study. J Clin Med. 2019 Jan 01;8(1)</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6352172</ArticleId><ArticleId IdType="pubmed">30609668</ArticleId></ArticleIdList></Reference><Reference><Citation>Parkash R, Sapp J, Gardner M, Gray C, Abdelwahab A, Cox J. Use of Administrative Data to Monitor Cardiac Implantable Electronic Device Complications. Can J Cardiol. 2019 Jan;35(1):100-103.</Citation><ArticleIdList><ArticleId IdType="pubmed">30595171</ArticleId></ArticleIdList></Reference><Reference><Citation>Polimenakos AC, Mathis L, Shafer B, Kamath MV. Selective Use of Temporary Epicardial Pacing Leads in Early Infancy Following Cardiac Surgery: Feasibility and Determinants of Clinical Application. Pediatr Cardiol. 2019 Mar;40(3):630-637.</Citation><ArticleIdList><ArticleId IdType="pubmed">30564866</ArticleId></ArticleIdList></Reference><Reference><Citation>Bob-Manuel T, Nanda A, Latham S, Pour-Ghaz I, Skelton WP, Khouzam RN. Permanent pacemaker insertion in patients with conduction abnormalities post transcatheter aortic valve replacement: a review and proposed guidelines. Ann Transl Med. 2018 Jan;6(1):11.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5787712</ArticleId><ArticleId IdType="pubmed">29404357</ArticleId></ArticleIdList></Reference><Reference><Citation>Kosztin A, Boros AM, Geller L, Merkely B. Cardiac resynchronisation therapy: current benefits and pitfalls. Kardiol Pol. 2018;76(10):1420-1425.</Citation><ArticleIdList><ArticleId IdType="pubmed">30091132</ArticleId></ArticleIdList></Reference><Reference><Citation>Proclemer A, Zecchin M, D'Onofrio A, Boriani G, Facchin D, Rebellato L, Ghidina M, Bianco G, Bernardelli E, Pucher E, Gregori D. [The Pacemaker and Implantable Cardioverter-Defibrillator Registry of the Italian Association of Arrhythmology and Cardiac Pacing - Annual report 2016]. G Ital Cardiol (Rome) 2018 Feb;19(2):119-131.</Citation><ArticleIdList><ArticleId IdType="pubmed">29531385</ArticleId></ArticleIdList></Reference><Reference><Citation>Proclemer A, Zecchin M, D'Onofrio A, Botto GL, Facchin D, Rebellato L, Ghidina M, Bianco G, Bernardelli E, Pucher E, Gregori D. [The Pacemaker and Implantable Cardioverter-Defibrillator Registry of the Italian Association of Arrhythmology and Cardiac Pacing--Annual report 2014]. G Ital Cardiol (Rome) 2016 Feb;17(2):95-107.</Citation><ArticleIdList><ArticleId IdType="pubmed">27029759</ArticleId></ArticleIdList></Reference><Reference><Citation>Samii SM. Indications for pacemakers, implantable cardioverter-defibrillator and cardiac resynchronization devices. Med Clin North Am. 2015 Jul;99(4):795-804.</Citation><ArticleIdList><ArticleId IdType="pubmed">26042883</ArticleId></ArticleIdList></Reference><Reference><Citation>Zartner P. [Antibradycardia therapy : Indication and implementation]. Herzschrittmacherther Elektrophysiol. 2016 Jun;27(2):88-94.</Citation><ArticleIdList><ArticleId IdType="pubmed">27221084</ArticleId></ArticleIdList></Reference><Reference><Citation>Poh PG, Liew C, Yeo C, Chong LR, Tan A, Poh A. Cardiovascular implantable electronic devices: a review of the dangers and difficulties in MR scanning and attempts to improve safety. Insights Imaging. 2017 Aug;8(4):405-418.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5519496</ArticleId><ArticleId IdType="pubmed">28624970</ArticleId></ArticleIdList></Reference></ReferenceList></BookDocument><PubmedBookData><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">29939600</ArticleId></ArticleIdList></PubmedBookData></PubmedBookArticle><PubmedBookArticle><BookDocument><PMID Version="1">29493981</PMID><ArticleIdList><ArticleId IdType="bookaccession">NBK482359</ArticleId></ArticleIdList><Book><Publisher><PublisherName>StatPearls Publishing</PublisherName><PublisherLocation>Treasure Island (FL)</PublisherLocation></Publisher><BookTitle book="statpearls">StatPearls</BookTitle><PubDate><Year>2023</Year><Month>01</Month></PubDate><BeginningDate><Year>2023</Year><Month>01</Month></BeginningDate><Medium>Internet</Medium></Book><ArticleTitle book="statpearls" part="article-17970">Second-Degree Atrioventricular Block
Pacemakers are electronic devices that stimulate the heart with electrical impulses to maintain or restore a normal heartbeat. In 1952, Zoll described an effective means of supporting the patients with intrinsic cardiac pacemaker activity and/or conducting tissue by an artificial, electric, external pacemaker. The pacing of the heart was accomplished by subcutaneous electrodes but could be maintained only for a short period. In 1957, complete heart block was treated using electrodes directly attached to the heart. These early observations instilled the idea that cardiac electrical failure can be controlled. It ultimately led to the development of totally implantable pacemaker by Chardack, Gage, and Greatbatch. Since then, there have been several advancements in the pacemakers, and the modern-day permanent pacemaker is subcutaneously placed device.There are 3 types of artificial pacemakers: 1. Implantable pulse generators with endocardial or myocardial electrodes. 2. External, miniaturized, patient portable, battery-powered, pulse generators with exteriorized electrodes for temporary transvenous endocardial or transthoracic myocardial pacing. 3. Console battery or AC-powered cardioverters or monitors with high-current external transcutaneous or low-current endocardial or myocardial circuits for temporary pacing in asynchronous or demand modes, with manual or triggered initiation of pacing. All cardiac pacemakers consist of 2 components: a pulse generator which provides the electrical impulse for myocardial stimulation and 1 or more electrodes or leads which deliver the electrical impulse from the generator to the myocardium. This discussion focuses on the indications of pacemaker placement.<CopyrightInformation>Copyright &#xa9; 2023, StatPearls Publishing LLC.</CopyrightInformation></Abstract><Sections><Section><SectionTitle book="statpearls" part="article-158" sec="article-158.s1">Continuing Education Activity</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-158" sec="article-158.s2">Introduction</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-158" sec="article-158.s3">Indications</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-158" sec="article-158.s4">Contraindications</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-158" sec="article-158.s5">Complications</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-158" sec="article-158.s6">Clinical Significance</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-158" sec="article-158.s7">Enhancing Healthcare Team Outcomes</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-158" sec="article-158.s8">Review Questions</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-158" sec="article-158.s12">References</SectionTitle></Section></Sections><ContributionDate><Year>2022</Year><Month>8</Month><Day>22</Day></ContributionDate><ReferenceList><Reference><Citation>Carri&#xf3;n-Camacho MR, Mar&#xed;n-Le&#xf3;n I, Molina-Do&#xf1;oro JM, Gonz&#xe1;lez-L&#xf3;pez JR. Safety of Permanent Pacemaker Implantation: A Prospective Study. J Clin Med. 2019 Jan 01;8(1)</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6352172</ArticleId><ArticleId IdType="pubmed">30609668</ArticleId></ArticleIdList></Reference><Reference><Citation>Parkash R, Sapp J, Gardner M, Gray C, Abdelwahab A, Cox J. Use of Administrative Data to Monitor Cardiac Implantable Electronic Device Complications. Can J Cardiol. 2019 Jan;35(1):100-103.</Citation><ArticleIdList><ArticleId IdType="pubmed">30595171</ArticleId></ArticleIdList></Reference><Reference><Citation>Polimenakos AC, Mathis L, Shafer B, Kamath MV. Selective Use of Temporary Epicardial Pacing Leads in Early Infancy Following Cardiac Surgery: Feasibility and Determinants of Clinical Application. Pediatr Cardiol. 2019 Mar;40(3):630-637.</Citation><ArticleIdList><ArticleId IdType="pubmed">30564866</ArticleId></ArticleIdList></Reference><Reference><Citation>Bob-Manuel T, Nanda A, Latham S, Pour-Ghaz I, Skelton WP, Khouzam RN. Permanent pacemaker insertion in patients with conduction abnormalities post transcatheter aortic valve replacement: a review and proposed guidelines. Ann Transl Med. 2018 Jan;6(1):11.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5787712</ArticleId><ArticleId IdType="pubmed">29404357</ArticleId></ArticleIdList></Reference><Reference><Citation>Kosztin A, Boros AM, Geller L, Merkely B. Cardiac resynchronisation therapy: current benefits and pitfalls. Kardiol Pol. 2018;76(10):1420-1425.</Citation><ArticleIdList><ArticleId IdType="pubmed">30091132</ArticleId></ArticleIdList></Reference><Reference><Citation>Proclemer A, Zecchin M, D'Onofrio A, Boriani G, Facchin D, Rebellato L, Ghidina M, Bianco G, Bernardelli E, Pucher E, Gregori D. [The Pacemaker and Implantable Cardioverter-Defibrillator Registry of the Italian Association of Arrhythmology and Cardiac Pacing - Annual report 2016]. G Ital Cardiol (Rome) 2018 Feb;19(2):119-131.</Citation><ArticleIdList><ArticleId IdType="pubmed">29531385</ArticleId></ArticleIdList></Reference><Reference><Citation>Proclemer A, Zecchin M, D'Onofrio A, Botto GL, Facchin D, Rebellato L, Ghidina M, Bianco G, Bernardelli E, Pucher E, Gregori D. [The Pacemaker and Implantable Cardioverter-Defibrillator Registry of the Italian Association of Arrhythmology and Cardiac Pacing--Annual report 2014]. G Ital Cardiol (Rome) 2016 Feb;17(2):95-107.</Citation><ArticleIdList><ArticleId IdType="pubmed">27029759</ArticleId></ArticleIdList></Reference><Reference><Citation>Samii SM. Indications for pacemakers, implantable cardioverter-defibrillator and cardiac resynchronization devices. Med Clin North Am. 2015 Jul;99(4):795-804.</Citation><ArticleIdList><ArticleId IdType="pubmed">26042883</ArticleId></ArticleIdList></Reference><Reference><Citation>Zartner P. [Antibradycardia therapy : Indication and implementation]. Herzschrittmacherther Elektrophysiol. 2016 Jun;27(2):88-94.</Citation><ArticleIdList><ArticleId IdType="pubmed">27221084</ArticleId></ArticleIdList></Reference><Reference><Citation>Poh PG, Liew C, Yeo C, Chong LR, Tan A, Poh A. Cardiovascular implantable electronic devices: a review of the dangers and difficulties in MR scanning and attempts to improve safety. Insights Imaging. 2017 Aug;8(4):405-418.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5519496</ArticleId><ArticleId IdType="pubmed">28624970</ArticleId></ArticleIdList></Reference></ReferenceList></BookDocument><PubmedBookData><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">29939600</ArticleId></ArticleIdList></PubmedBookData></PubmedBookArticle><PubmedBookArticle><BookDocument><PMID Version="1">29493981</PMID><ArticleIdList><ArticleId IdType="bookaccession">NBK482359</ArticleId></ArticleIdList><Book><Publisher><PublisherName>StatPearls Publishing</PublisherName><PublisherLocation>Treasure Island (FL)</PublisherLocation></Publisher><BookTitle book="statpearls">StatPearls</BookTitle><PubDate><Year>2023</Year><Month>01</Month></PubDate><BeginningDate><Year>2023</Year><Month>01</Month></BeginningDate><Medium>Internet</Medium></Book><ArticleTitle book="statpearls" part="article-17970">Second-Degree Atrioventricular Block</ArticleTitle><Language>eng</Language><AuthorList Type="authors" CompleteYN="Y"><Author ValidYN="Y"><LastName>Mangi</LastName><ForeName>Muhammad Asif</ForeName><Initials>MA</Initials><AffiliationInfo><Affiliation>University of Toledo</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Jones</LastName><ForeName>Wesley M.</ForeName><Initials>WM</Initials><AffiliationInfo><Affiliation>Advocate Christ Medical Center</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Mansour</LastName><ForeName>Mohamed K.</ForeName><Initials>MK</Initials><AffiliationInfo><Affiliation>Sheikh Shakhbout Medical City (in partnership with Mayoclinic), Abu-Dhabi, United Arab Emirates</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Napier</LastName><ForeName>Laura</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>Advocate Christ Medical Center</Affiliation></AffiliationInfo></Author></AuthorList><PublicationType UI="D000072643">Study Guide</PublicationType><Abstract>An electrical impulse from the sinoatrial node has to travel through the atria, to the atrioventricular node, and down the His-Purkinje system to reach the ventricles and create a ventricular contraction. This process is reflected on ECG as the PR interval which leads to a QRS complex. A delay in conduction in this system results in an atrioventricular conduction block or a prolongation of the PR interval on ECG. Conduction blocks are classified as either first-degree block, second-degree block, or third-degree block. The second-degree atrioventricular block is the focus of this activity. There are two types of second-degree atrioventricular blocks: Mobitz type I, also known as, Wenckebach and Mobitz type II. In general, patients with second degree AV block may have no symptoms or may experience symptoms like syncope and lightheadedness.The second degree heart block may be temporary or permanent, depending on the impairment of the conduction system. The mobitz type ll block does have the potential to progress to a complete heart block and if unrecognized, can lead to death.
2,335,732
Global Transformer and Dual Local Attention Network via Deep-Shallow Hierarchical Feature Fusion for Retinal Vessel Segmentation.
Clinically, retinal vessel segmentation is a significant step in the diagnosis of fundus diseases. However, recent methods generally neglect the difference of semantic information between deep and shallow features, which fail to capture the global and local characterizations in fundus images simultaneously, resulting in the limited segmentation performance for fine vessels. In this article, a global transformer (GT) and dual local attention (DLA) network via deep-shallow hierarchical feature fusion (GT-DLA-dsHFF) are investigated to solve the above limitations. First, the GT is developed to integrate the global information in the retinal image, which effectively captures the long-distance dependence between pixels, alleviating the discontinuity of blood vessels in the segmentation results. Second, DLA, which is constructed using dilated convolutions with varied dilation rates, unsupervised edge detection, and squeeze-excitation block, is proposed to extract local vessel information, consolidating the edge details in the segmentation result. Finally, a novel deep-shallow hierarchical feature fusion (dsHFF) algorithm is studied to fuse the features in different scales in the deep learning framework, respectively, which can mitigate the attenuation of valid information in the process of feature fusion. We verified the GT-DLA-dsHFF on four typical fundus image datasets. The experimental results demonstrate our GT-DLA-dsHFF achieves superior performance against the current methods and detailed discussions verify the efficacy of the proposed three modules. Segmentation results of diseased images show the robustness of our proposed GT-DLA-dsHFF. Implementation codes will be available on https://github.com/YangLibuaa/GT-DLA-dsHFF.
2,335,733
Glibenclamide Directly Prevents Neuroinflammation by Targeting SUR1-TRPM4-Mediated NLRP3 Inflammasome Activation In Microglia.
Glibenclamide (GLB) reduces brain edema and improves neurological outcome in animal experiments and preliminary clinical studies. Recent studies also suggested a strong anti-inflammatory effect of GLB, via inhibiting nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome activation. However, it remains unknown whether the anti-inflammatory effect of GLB is independent of its role in preventing brain edema, and how GLB inhibits the NLRP3 inflammasome is not fully understood. Sprague-Dawley male rats underwent 10-min asphyxial cardiac arrest and cardiopulmonary resuscitation or sham-operation. The Trpm4 siRNA and GLB were injected to block sulfonylurea receptor 1-transient receptor potential M4 (SUR1-TRPM4) channel in rats. Western blotting, quantitative real-time polymerase chain reaction, behavioral analysis, and histological examination were used to evaluate the role of GLB in preventing NLRP3-mediated neuroinflammation through inhibiting SUR1-TRPM4, and corresponding neuroprotective effect. To further explore the underlying mechanism, BV2 cells were subjected to lipopolysaccharides, or oxygen-glucose deprivation/reperfusion. Here, in rat model of cardiac arrest with brain edema combined with neuroinflammation, GLB significantly alleviated neurocognitive deficit and neuropathological damage, via the inhibition of microglial NLRP3 inflammasome activation by blocking SUR1-TRPM4. Of note, the above effects of GLB could be achieved by knockdown of Trpm4. In vitro under circumstance of eliminating distractions from brain edema, SUR1-TRPM4 and NLRP3 inflammasome were also activated in BV2 cells subjected to lipopolysaccharides, or oxygen-glucose deprivation/reperfusion, which could be blocked by GLB or 9-phenanthrol, a TRPM4 inhibitor. Importantly, activation of SUR1-TRPM4 in BV2 cells required the P2X7 receptor-mediated Ca<sup>2+</sup> influx, which in turn magnified the K<sup>+</sup> efflux via the Na<sup>+</sup> influx-driven opening of K<sup>+</sup> channels, leading to the NLRP3 inflammasome activation. These findings suggest that GLB has a direct anti-inflammatory neuroprotective effect independent of its role in preventing brain edema, through inhibition of SUR1-TRPM4 which amplifies K<sup>+</sup> efflux and promotes NLRP3 inflammasome activation.
2,335,734
Transcatheter closure of secundum atrial septal defect using Cocoon septal occluder: immediate and long-term results.<Pagination><StartPage>59</StartPage><MedlinePgn>59</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">59</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1186/s43044-022-00298-2</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Atrial septal defect (ASD) is one of the common congenital heart defects. Its management has transformed dramatically in the last 4 decades with the transition from surgical to percutaneous transcatheter closure for most secundum-type ASDs. Various devices are available for transcatheter closure of ASD with Amplatzer atrial septal occluder being most commonly used worldwide. Cocoon septal occlude has a nanocoating of platinum using nano-fusion technology over nitinol framework that imparts better radiopacity and excellent biocompatibility and prevents leaching of nickel into circulation, and by smoothening nitinol wire makes this device very soft and smooth. The aim of this study was to evaluate feasibility, effectiveness, safety, and long-term outcome of transcatheter closure of ASD using Cocoon septal occluder (Vascular Innovation, Thailand).</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">All patients undergoing transcatheter closure of hemodynamically significant ASD between September 2012 and July 2019 in our institute were included into this single-center, prospective study. Exclusion criteria were defect&#x2009;&gt;&#x2009;40&#xa0;mm, unsuitable anatomy, Eisenmenger syndrome, and anomalous pulmonary venous return. Three hundred and twenty patients underwent device closure, of which 238 (74%) were female. The mean age was 14.6&#xa0;years (range 6-29), and the median weight was 30.2&#xa0;kg (range 10-53&#xa0;kg). Procedure was performed under fluoroscopy using transthoracic and transesophageal echocardiography in 298 (93.1%) and 22(6.9%) patients, respectively. Balloon-assisted technique was used, when septal defect was&#x2009;&#x2265;&#x2009;34&#xa0;mm, in 9 (2.8%) patients. The mean diameter of defect and device was 21.4&#xa0;mm (range 12-36&#xa0;mm) and 26.9&#xa0;mm (range 14-40&#xa0;mm), respectively. Aortic rim was absent in 11 (3.4%) patients. Primary success was achieved in 312 (97.5%) patients. Early embolization to right ventricle was noted in 2 (0.6%) patients. In both cases, 40-mm device was attempted for defect of 36&#xa0;mm with inadequate aortic rim using balloon-assisted technique. One (0.3%) patient developed perforation of right atrium. All were surgically repaired. Three (0.9%) patients developed complete heart block following device deployment requiring device retrieval. Two patients had had moderate residual shunt at 6&#xa0;months of follow-up. After mean follow-up of 50.92&#xa0;months (range 12.5-89&#xa0;months), no erosion, allergic reactions to nickel, or other major complications were reported.</AbstractText><AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Percutaneous transcatheter closure of ASD by Cocoon septal occluder (up to 36&#xa0;mm) is safe and feasible with high success rate and without any significant device-related major complications over long-term follow-up. With unique device design and excellent long-term safety, it could be preferred dual-disk occluder for transcatheter closure of atrial septal defect. In most of the patients, ASD device can be safely deployed under transthoracic echocardiographic guidance.</AbstractText><CopyrightInformation>&#xa9; 2022. The Author(s).</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Sinha</LastName><ForeName>Santosh Kumar</ForeName><Initials>SK</Initials><AffiliationInfo><Affiliation>Department of Cardiology, LPS Institute of Cardiology, GSVM, GT Road, Swaroop Nagar, Kanpur, UP, 208002, India.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Razi</LastName><ForeName>Mahmodullah M</ForeName><Initials>MM</Initials><AffiliationInfo><Affiliation>Department of Cardiology, LPS Institute of Cardiology, GSVM, GT Road, Swaroop Nagar, Kanpur, UP, 208002, India.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Sofi</LastName><ForeName>Najeeb Ullah</ForeName><Initials>NU</Initials><Identifier Source="ORCID">0000-0002-0497-7367</Identifier><AffiliationInfo><Affiliation>Department of Cardiology, LPS Institute of Cardiology, GSVM, GT Road, Swaroop Nagar, Kanpur, UP, 208002, India. [email protected].</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Rohit</LastName><ForeName>Manoj Kumar</ForeName><Initials>MK</Initials><AffiliationInfo><Affiliation>Department of Cardiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Pandey</LastName><ForeName>Umeshwar</ForeName><Initials>U</Initials><AffiliationInfo><Affiliation>Department of Cardiology, LPS Institute of Cardiology, GSVM, GT Road, Swaroop Nagar, Kanpur, UP, 208002, India.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Sharma</LastName><ForeName>Awadhesh Kumar</ForeName><Initials>AK</Initials><AffiliationInfo><Affiliation>Department of Cardiology, LPS Institute of Cardiology, GSVM, GT Road, Swaroop Nagar, Kanpur, UP, 208002, India.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Sachan</LastName><ForeName>Mohit</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Department of Cardiology, LPS Institute of Cardiology, GSVM, GT Road, Swaroop Nagar, Kanpur, UP, 208002, India.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Aggarwal</LastName><ForeName>Puneet</ForeName><Initials>P</Initials><AffiliationInfo><Affiliation>Department of Cardiology, Atal Bihari Vajpayee Institute of Medical Sciences (ABVIMS) and Dr. Ram Manohar Lohia Hospital, New Delhi, India.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Jha</LastName><ForeName>Mukesh</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Department of Cardiology, Sri Aurobindo Institute of Medical Sciences, Indore, India.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Shukla</LastName><ForeName>Praveen</ForeName><Initials>P</Initials><AffiliationInfo><Affiliation>Department of Cardiology, LPS Institute of Cardiology, GSVM, GT Road, Swaroop Nagar, Kanpur, UP, 208002, India.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Thakur</LastName><ForeName>Ramesh</ForeName><Initials>R</Initials><AffiliationInfo><Affiliation>Department of Cardiology, LPS Institute of Cardiology, GSVM, GT Road, Swaroop Nagar, Kanpur, UP, 208002, India.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Krishna</LastName><ForeName>Vinay</ForeName><Initials>V</Initials><AffiliationInfo><Affiliation>Department of CVTS, LPS Institute of Cardiology, GSVM, Kanpur, India.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Verma</LastName><ForeName>Rakesh Kumar</ForeName><Initials>RK</Initials><AffiliationInfo><Affiliation>Department of CVTS, LPS Institute of Cardiology, GSVM, Kanpur, India.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2022</Year><Month>08</Month><Day>13</Day></ArticleDate></Article><MedlineJournalInfo><Country>Germany</Country><MedlineTA>Egypt Heart J</MedlineTA><NlmUniqueID>9106952</NlmUniqueID><ISSNLinking>1110-2608</ISSNLinking></MedlineJournalInfo><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Amplatzer septal occluder</Keyword><Keyword MajorTopicYN="N">Atrial septal defect</Keyword><Keyword MajorTopicYN="N">Cocoon septal occluder</Keyword><Keyword MajorTopicYN="N">Embolization</Keyword><Keyword MajorTopicYN="N">Transcatheter closure</Keyword><Keyword MajorTopicYN="N">Transesophageal echo</Keyword></KeywordList><CoiStatement>The authors declare that they have no competing interests.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2022</Year><Month>6</Month><Day>12</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2022</Year><Month>8</Month><Day>4</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2022</Year><Month>8</Month><Day>13</Day><Hour>11</Hour><Minute>18</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2022</Year><Month>8</Month><Day>14</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2022</Year><Month>8</Month><Day>14</Day><Hour>6</Hour><Minute>1</Minute></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">35962873</ArticleId><ArticleId IdType="pmc">PMC9375781</ArticleId><ArticleId IdType="doi">10.1186/s43044-022-00298-2</ArticleId><ArticleId IdType="pii">10.1186/s43044-022-00298-2</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>McMahon CJ, Feltes TF, Fraley JK, Bricker JT, Grifka RG, Tortoriello TA, Blake R, Bezold L. Natural history of growth of secundum atrial septal defects and implications for transcatheter closure. Heart. 2002;87:256&#x2013;259. doi: 10.1136/heart.87.3.256.</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/heart.87.3.256</ArticleId><ArticleId IdType="pmc">PMC1767041</ArticleId><ArticleId IdType="pubmed">11847166</ArticleId></ArticleIdList></Reference><Reference><Citation>Patel A, Lopez K, Banerjee A, Joseph A, Cao QL, Hijazi ZM. Transcatheter closure of atrial septal defects in adults &gt;= 40 years of age: Immediate and follow-up results. J Interv Cardiol. 2007;20:82&#x2013;88. doi: 10.1111/j.1540-8183.2007.00216.x.</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/j.1540-8183.2007.00216.x</ArticleId><ArticleId IdType="pubmed">17300410</ArticleId></ArticleIdList></Reference><Reference><Citation>Villablanca PA, Briston DA, Rodes-Cabau J, Briceno DF, Rao G, Aljoudi M, et al. Treatment options for the closure of secundum atrial septal defects: a systematic review andmeta-analysis. Int J Cardiol. 2017;241:149&#x2013;155. doi: 10.1016/j.ijcard.2017.03.073.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.ijcard.2017.03.073</ArticleId><ArticleId IdType="pubmed">28390741</ArticleId></ArticleIdList></Reference><Reference><Citation>Jalal Z, Hascoet S, Baruteau AE, Iriart X, Kreitmann B, Boudjemline Y, et al. Long-term complications after transcatheter atrial septal defect closure: a review of the medical literature. Can J Cardiol. 2016;32(11):1315.e11&#x2013;8. doi: 10.1016/j.cjca.2016.02.068.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.cjca.2016.02.068</ArticleId><ArticleId IdType="pubmed">27179546</ArticleId></ArticleIdList></Reference><Reference><Citation>Thanopoulos BD, Biasco L, Dardas P, et al. Catheter closure of atrial septal defects using the Cocoon septal occluder: preliminary results of a European multicenter study. Int J Cardiol. 2014;177:418&#x2013;422. doi: 10.1016/j.ijcard.2014.09.006.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.ijcard.2014.09.006</ArticleId><ArticleId IdType="pubmed">25305675</ArticleId></ArticleIdList></Reference><Reference><Citation>Lairakdomrong K, Srimahachota S, Lertsapcharoen P, Chaipromrasit J, Boonyyarataveij S, Kaewsukkho P, et al. Clinical results of large secundum atrial septal defects in adult using percutaneous Cocoon atrial septal occluder. J Med Assoc Thai. 2013;96:1127&#x2013;1134.</Citation><ArticleIdList><ArticleId IdType="pubmed">24163987</ArticleId></ArticleIdList></Reference><Reference><Citation>Carlson KM, Justino H, O&#x2019;Brien RE, et al. Transcatheter atrial septal defect closure: Modified balloon sizing technique to avoid overstretching the defect and oversizing the amplatzer septal occluder. Catheter Cardiovasc Interv. 2005;66:390&#x2013;396. doi: 10.1002/ccd.20443.</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/ccd.20443</ArticleId><ArticleId IdType="pubmed">16142805</ArticleId></ArticleIdList></Reference><Reference><Citation>Qbandi MA, Cao QL, Hijari ZA. Atrial septal defect: Amplatzer- type ASD occluders. Interventions in Structural, Valvular, and Congenital Heart Disease 2nd edn New York: CRC Press, Taylor &amp; Francis Group; 2015;436&#x2013;47</Citation></Reference><Reference><Citation>Dalvi BV, Pinto RJ, Gupta A. New technique for device closure of large atrial septal defects. Catheter Cardiovasc Interv. 2005;64:102&#x2013;107. doi: 10.1002/ccd.20248.</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/ccd.20248</ArticleId><ArticleId IdType="pubmed">15619315</ArticleId></ArticleIdList></Reference><Reference><Citation>Bjornstad PC, Masura J, Thaulow E, et al. Interventional closure of atrial septal defect with Amplatzer device: first clinical experience. Cardiol Young. 1997;7(3):277&#x2013;283. doi: 10.1017/S1047951100004169.</Citation><ArticleIdList><ArticleId IdType="doi">10.1017/S1047951100004169</ArticleId></ArticleIdList></Reference><Reference><Citation>Fukahara K, Minami K, Reiss N, Fassbender D, Koerfer R. Systemic allergic reaction to the percutaneous patent foramen ovale occluder. J Thorac Cardiovasc Surg. 2003;125(1):213&#x2013;214. doi: 10.1067/mtc.2003.125.</Citation><ArticleIdList><ArticleId IdType="doi">10.1067/mtc.2003.125</ArticleId><ArticleId IdType="pubmed">12539013</ArticleId></ArticleIdList></Reference><Reference><Citation>Ansari HZ, Sadanandan S. Allergic reaction to percutaneously placed Amplatzer device for symptomatic patent foramen ovale. J Clin Case Rep. 2013;3:324&#x2013;326.</Citation></Reference><Reference><Citation>Freixa X, Ibrahim R, Chan J, et al. Initial clinical experience with the GORE septal occluder for the treatment of atrial septal defects and patent foramen ovale. EurIntervention. 2013;9(5):629&#x2013;635. doi: 10.4244/EIJV9I5A100.</Citation><ArticleIdList><ArticleId IdType="doi">10.4244/EIJV9I5A100</ArticleId><ArticleId IdType="pubmed">24058079</ArticleId></ArticleIdList></Reference><Reference><Citation>Bissessor N. Current perspectives in percutaneous atrial septal defect closure devices. Med Devices Evid Res. 2015;8:297&#x2013;303. doi: 10.2147/MDER.S49368.</Citation><ArticleIdList><ArticleId IdType="doi">10.2147/MDER.S49368</ArticleId><ArticleId IdType="pmc">PMC4508077</ArticleId><ArticleId IdType="pubmed">26203289</ArticleId></ArticleIdList></Reference><Reference><Citation>Pan XB, Ou-Yang WB, Pang KJ, Zhang FW, Wang SZ, Liu Y, Zhang DW, Guo GL, Tian PS, Hu SS. Percutaneous closure of atrial septal defects under transthoracic echocardiography guidance without fluoroscopy or intubation in children. J Interv Cardiol. 2015;28(4):390&#x2013;395. doi: 10.1111/joic.12214.</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/joic.12214</ArticleId><ArticleId IdType="pubmed">26077469</ArticleId></ArticleIdList></Reference><Reference><Citation>Li GS, Li HD, Yang J, Zhang WQ, Hou ZS, Li QC, Zhang Y. Feasibility and safety of transthoracic echocardiography-guided transcatheter closure of atrial septal defects with deficient superior-anterior rims. PLoS ONE. 2012;7(12):e511&#x2013;e517.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3524244</ArticleId><ArticleId IdType="pubmed">23284660</ArticleId></ArticleIdList></Reference><Reference><Citation>Thanopoulos BD, Dardas P, Ninios V, et al. Transcatheter closure of large atrial septal defects with deficient aortic or posterior rims using the &#x201c;Greek maneuver&#x201d;. A multicenter study. Int J Cardiol. 2013;168:3643&#x2013;3646. doi: 10.1016/j.ijcard.2013.05.011.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.ijcard.2013.05.011</ArticleId><ArticleId IdType="pubmed">23714593</ArticleId></ArticleIdList></Reference><Reference><Citation>Jung SY, Choi JY. Transcatheter closure of atrial septal defect: principles and available devices. J Thorac Dis. 2018;10:S2909&#x2013;S2922. doi: 10.21037/jtd.2018.02.19.</Citation><ArticleIdList><ArticleId IdType="doi">10.21037/jtd.2018.02.19</ArticleId><ArticleId IdType="pmc">PMC6174149</ArticleId><ArticleId IdType="pubmed">30305951</ArticleId></ArticleIdList></Reference><Reference><Citation>Pillai AA, Rangaswamy Balasubramanian V, et al. Utility of balloon assisted technique in trans catheter closure of very large (&gt;35 mm) atrial septal defects. Cardiovasc Diagn Ther. 2014;4:21&#x2013;27.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3943775</ArticleId><ArticleId IdType="pubmed">24649421</ArticleId></ArticleIdList></Reference><Reference><Citation>Du ZD, Hijazi ZM, Kleinman CS, Silverman NH, Larntz L. Comparison between transcatheter and surgical closure of secundum atrial septal defect in children and adults: results of a multicenter nonrandomized trial. J Am Coll Cardiol. 2002;39:1836&#x2013;1844. doi: 10.1016/S0735-1097(02)01862-4.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S0735-1097(02)01862-4</ArticleId><ArticleId IdType="pubmed">12039500</ArticleId></ArticleIdList></Reference><Reference><Citation>Mart&#xed;nez-Quintana E, Rodr&#xed;guez-Gonz&#xe1;lez F. Risks factors for atrial septal defect occlusion device migration. Int J Angiol. 2016;25:e63&#x2013;e65.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5186229</ArticleId><ArticleId IdType="pubmed">28031657</ArticleId></ArticleIdList></Reference><Reference><Citation>Lee WC, Fang CY, Huang CF, et al. Predictors of atrial septal defect occluder dislodgement. Int Heart J. 2015;56:428&#x2013;431. doi: 10.1536/ihj.15-065.</Citation><ArticleIdList><ArticleId IdType="doi">10.1536/ihj.15-065</ArticleId><ArticleId IdType="pubmed">26118595</ArticleId></ArticleIdList></Reference><Reference><Citation>Chessa M, Carminati M, Butera G, Bini RM, Drago M, Rosti L, Giamberti A, Pome G, Bossone E, Frigiola A. Early and late complications associated with transcatheter occlusion of secundum atrial septal defect. J Am Coll Cardiol. 2002;39:1061&#x2013;1065. doi: 10.1016/S0735-1097(02)01711-4.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S0735-1097(02)01711-4</ArticleId><ArticleId IdType="pubmed">11897451</ArticleId></ArticleIdList></Reference><Reference><Citation>Verma PK, Thingnam SK, Sharma A, Taneja JS, Varma JS, Grover A. Delayed embolization of Amplatzer septal occluder device: an unknown entity-a case report. Angiology. 2003;54:115&#x2013;118. doi: 10.1177/000331970305400115.</Citation><ArticleIdList><ArticleId IdType="doi">10.1177/000331970305400115</ArticleId><ArticleId IdType="pubmed">12593504</ArticleId></ArticleIdList></Reference><Reference><Citation>Rohit MK, Puri K, Vadivelu R. Reversible complete atrioventricular block after percutaneous ASD device closure in a child &lt;15 kg. Indian Heart J. 2014;66(3):366&#x2013;369. doi: 10.1016/j.ihj.2014.03.013.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.ihj.2014.03.013</ArticleId><ArticleId IdType="pmc">PMC4121754</ArticleId><ArticleId IdType="pubmed">24973847</ArticleId></ArticleIdList></Reference><Reference><Citation>Chan KC, Godman MJ, Walsh K, Wilson N, Redington A, Gibbs JL. Transcatheter closure of atrial septal defect and interatrial communications with a new self expanding nitinol double disc device (Amplatzer septal occluder): multicentre UK experience. Heart. 1999;82:300&#x2013;306. doi: 10.1136/hrt.82.3.300.</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/hrt.82.3.300</ArticleId><ArticleId IdType="pmc">PMC1729188</ArticleId><ArticleId IdType="pubmed">10455079</ArticleId></ArticleIdList></Reference><Reference><Citation>Faccini A, Butera G. Atrial septal defect (ASD) device trans-catheter closure: limitations. J Thorac Dis. 2018;10(Suppl 24):S2923&#x2013;S2930. doi: 10.21037/jtd.2018.07.128.</Citation><ArticleIdList><ArticleId IdType="doi">10.21037/jtd.2018.07.128</ArticleId><ArticleId IdType="pmc">PMC6174146</ArticleId><ArticleId IdType="pubmed">30305952</ArticleId></ArticleIdList></Reference><Reference><Citation>Suda K, Raboisson MJ, Piette E, Dahdah NS, Mir J. Reversible atrioventricular block associated with closure of atrial septal defects using the Amplatzer device. J Am Coll Cardiol. 2004;43:1677&#x2013;1682. doi: 10.1016/j.jacc.2003.12.042.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jacc.2003.12.042</ArticleId><ArticleId IdType="pubmed">15120830</ArticleId></ArticleIdList></Reference><Reference><Citation>Divekar A, Gaamangwe T, Shaikh N, Raabe M, Ducas J. Cardiac perforation after device closure of atrial septal defects with the Amplatzer septal occluder. J Am Coll Cardiol. 2005;45:1213&#x2013;1218. doi: 10.1016/j.jacc.2004.12.072.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jacc.2004.12.072</ArticleId><ArticleId IdType="pubmed">15837251</ArticleId></ArticleIdList></Reference><Reference><Citation>Thanopoulos BVD, Soendergaard L, Ngugen HL, Marasini M, Giannopoulos A, Bompotis GS, Thonghong T, Krishnamoorthy KM, Placid S, Deleanou D, Toutouzas KP. International experience with the use of Cocoon septal occluder for closure of atrial septal defects. Hell J Cardiol. 2021 doi: 10.1016/j.hjc.2020.12.009.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.hjc.2020.12.009</ArticleId><ArticleId IdType="pubmed">33484876</ArticleId></ArticleIdList></Reference><Reference><Citation>Ries MW, Kampmann C, Rupprecht HJ, et al. Nickel release after implantation of the Amplatzer occluder. Am Heart J. 2003;145:737&#x2013;741. doi: 10.1067/mhj.2003.7.</Citation><ArticleIdList><ArticleId IdType="doi">10.1067/mhj.2003.7</ArticleId><ArticleId IdType="pubmed">12679773</ArticleId></ArticleIdList></Reference><Reference><Citation>Burian M, Neumann T, Weber M, et al. Nickel release, a possible indicator for the duration of antiplatelet treatment, from a nickel cardiac device in vivo: a study in patients with atrial septal defects implanted with an Amplatzer occluder. Int J Clin Pharmacol Ther. 2006;44:107&#x2013;112. doi: 10.5414/CPP44107.</Citation><ArticleIdList><ArticleId IdType="doi">10.5414/CPP44107</ArticleId><ArticleId IdType="pubmed">16550732</ArticleId></ArticleIdList></Reference><Reference><Citation>Fukahara K, Kazutomo M, Riess N, et al. Systemic allergic reaction to the percutaneous patent foramen ovale occluder. J Thorac Cardiovasc Surg. 2003;125:213&#x2013;214. doi: 10.1067/mtc.2003.125.</Citation><ArticleIdList><ArticleId IdType="doi">10.1067/mtc.2003.125</ArticleId><ArticleId IdType="pubmed">12539013</ArticleId></ArticleIdList></Reference><Reference><Citation>Singh HR, Turner DR, Forbes TJ. Nickel allergy and the Amplatzer septal occluder. J Invasive Cardiol. 2004;16:681&#x2013;682.</Citation><ArticleIdList><ArticleId IdType="pubmed">15550748</ArticleId></ArticleIdList></Reference><Reference><Citation>Rodes-Cabau J, Mineau S, Marrero A, et al. Incidence, timing, and predictive factors of new-onset migraine headache attack after transcatheter closure of atrial septal defect or patent foramen ovale. Am J Cardiol. 2008;101:688&#x2013;692. doi: 10.1016/j.amjcard.2007.10.034.</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.amjcard.2007.10.034</ArticleId><ArticleId IdType="pubmed">18308022</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="Publisher" Owner="NLM"><PMID Version="1">35961492</PMID><DateRevised><Year>2022</Year><Month>09</Month><Day>24</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1556-3871</ISSN><JournalIssue CitedMedium="Internet"><PubDate><Year>2022</Year><Month>Aug</Month><Day>09</Day></PubDate></JournalIssue><Title>Heart rhythm</Title><ISOAbbreviation>Heart Rhythm</ISOAbbreviation></Journal>Confirmation of the achievement of linear lesions using "activation vectors" based on omnipolar technology.
Atrial septal defect (ASD) is one of the common congenital heart defects. Its management has transformed dramatically in the last 4 decades with the transition from surgical to percutaneous transcatheter closure for most secundum-type ASDs. Various devices are available for transcatheter closure of ASD with Amplatzer atrial septal occluder being most commonly used worldwide. Cocoon septal occlude has a nanocoating of platinum using nano-fusion technology over nitinol framework that imparts better radiopacity and excellent biocompatibility and prevents leaching of nickel into circulation, and by smoothening nitinol wire makes this device very soft and smooth. The aim of this study was to evaluate feasibility, effectiveness, safety, and long-term outcome of transcatheter closure of ASD using Cocoon septal occluder (Vascular Innovation, Thailand).</AbstractText>All patients undergoing transcatheter closure of hemodynamically significant ASD between September 2012 and July 2019 in our institute were included into this single-center, prospective study. Exclusion criteria were defect&#x2009;&gt;&#x2009;40&#xa0;mm, unsuitable anatomy, Eisenmenger syndrome, and anomalous pulmonary venous return. Three hundred and twenty patients underwent device closure, of which 238 (74%) were female. The mean age was 14.6&#xa0;years (range 6-29), and the median weight was 30.2&#xa0;kg (range 10-53&#xa0;kg). Procedure was performed under fluoroscopy using transthoracic and transesophageal echocardiography in 298 (93.1%) and 22(6.9%) patients, respectively. Balloon-assisted technique was used, when septal defect was&#x2009;&#x2265;&#x2009;34&#xa0;mm, in 9 (2.8%) patients. The mean diameter of defect and device was 21.4&#xa0;mm (range 12-36&#xa0;mm) and 26.9&#xa0;mm (range 14-40&#xa0;mm), respectively. Aortic rim was absent in 11 (3.4%) patients. Primary success was achieved in 312 (97.5%) patients. Early embolization to right ventricle was noted in 2 (0.6%) patients. In both cases, 40-mm device was attempted for defect of 36&#xa0;mm with inadequate aortic rim using balloon-assisted technique. One (0.3%) patient developed perforation of right atrium. All were surgically repaired. Three (0.9%) patients developed complete heart block following device deployment requiring device retrieval. Two patients had had moderate residual shunt at 6&#xa0;months of follow-up. After mean follow-up of 50.92&#xa0;months (range 12.5-89&#xa0;months), no erosion, allergic reactions to nickel, or other major complications were reported.</AbstractText>Percutaneous transcatheter closure of ASD by Cocoon septal occluder (up to 36&#xa0;mm) is safe and feasible with high success rate and without any significant device-related major complications over long-term follow-up. With unique device design and excellent long-term safety, it could be preferred dual-disk occluder for transcatheter closure of atrial septal defect. In most of the patients, ASD device can be safely deployed under transthoracic echocardiographic guidance.</AbstractText>&#xa9; 2022. The Author(s).</CopyrightInformation>
2,335,735
Graph-based homogenisation for modelling cardiac fibrosis.
Fibrosis, the excess of extracellular matrix, can affect, and even block, propagation of action potential in cardiac tissue. This can result in deleterious effects on heart function, but the nature and severity of these effects depend strongly on the localisation of fibrosis and its by-products in cardiac tissue, such as collagen scar formation. Computer simulation is an important means of understanding the complex effects of fibrosis on activation patterns in the heart, but concerns of computational cost place restrictions on the spatial resolution of these simulations. In this work, we present a novel numerical homogenisation technique that uses both Eikonal and graph approaches to allow fine-scale heterogeneities in conductivity to be incorporated into a coarser mesh. Homogenisation achieves this by deriving effective conductivity tensors so that a coarser mesh can then be used for numerical simulation. By taking a graph-based approach, our homogenisation technique functions naturally on irregular grids and does not rely upon any assumptions of periodicity, even implicitly. We present results of action potential propagation through fibrotic tissue in two dimensions that show the graph-based homogenisation technique is an accurate and effective way to capture fine-scale domain information on coarser meshes in the context of sharp-fronted travelling waves of activation. As test problems, we consider excitation propagation in tissue with diffuse fibrosis and through a tunnel-like structure designed to test homogenisation, interaction of an excitation wave with a scar region, and functional re-entry.
2,335,736
Pro-Apoptotic and Pro-Autophagic Properties of Cardenolides from Aerial Parts of Pergularia tomentosa.
<i>Pergularia tomentosa</i> L., a milkweed tropical plant belonging to the family Asclepiadaceae, is a rich source of unusual cardiac glycosides, characterised by transfused A/B rings and a sugar moiety linked by a double link, generating a dioxanoid structure. In the present report, five cardenolides isolated from the aerial parts of the plant (calactin, calotropin, 12&#x3b2;-hydroxycalactin, 12&#x3b2;,6'-dihydroxycalotropin, and 16&#x3b1;-hydroxycalotropin) were investigated for their biological effects on a human hepatocarcinoma cell line. Cell viability was monitored by an MTT assay. The occurrence of apoptosis was evaluated by detecting caspase-3 activation and chromatin fragmentation. The ability of these compounds to induce autophagy was analysed by monitoring two markers of the autophagic process, LC3 and p62. Our results indicated that all cardenolides had cytotoxic effects, with IC<sub>50</sub> ranging from 0.127 to 6.285 &#x3bc;M. All compounds were able to induce apoptosis and autophagy, calactin being the most active one. Some of them also caused a reduction in cell migration and a partial block of the cell cycle into the S-phase. The present study suggests that selected cardenolides from aerial parts of <i>P. tomentosa</i>, particularly calactin, possess potentially desirable properties for further investigation as anticancer agents.
2,335,737
Peripheral Nerve and Plexus Blocks for Hip Surgery in a Nonagenarian with Severe Cardiac Disease.
The hemodynamic alterations and stress response associated with anesthesia and surgery are often poorly tolerated by elderly patients. Regional anesthesia techniques are useful in the elderly as they provide excellent perioperative analgesia with minimal hemodynamic perturbations. We report the case of a 90-year-old man with valvular heart disease and severe left ventricular systolic dysfunction, who underwent dynamic hip screw fixation of fractured femur neck under combined pericapsular nerve group block, lumbar plexus block, and para-sacral sciatic nerve block. We are not aware of any previous report of the combination of these blocks used for surgical anesthesia in hip fracture surgery. Keywords: Geriatric; hip fracture; pericapsular nerve group block; regional anesthesia.
2,335,738
Acute kidney injury following multisystem inflammatory syndrome associated with SARS-CoV-2 infection in children: a systematic review and meta-analysis.
Multisystem inflammatory syndrome (MIS-C) is a rare paediatric hyper-inflammatory disorder that occurs following SARS-CoV-2 infection. Acute kidney injury (AKI) occurs in approximately one-quarter to one-third of the patients with MIS-C and is associated with poor prognosis in critically ill children. This systematic review is aimed to evaluate the incidence of AKI, mortality, and the need for kidney replacement therapy (KRT) in patients with MIS-C.</AbstractText>We searched databases from Medline, EMBASE, Cochrane Register, and Google Scholar from December 2019 to December 2021 with our search strategy. Studies meeting the following criteria were included in this systematic review: (1) articles on AKI in MIS-C; (2) studies providing AKI in MIS-C and COVID-19 infection separately; (3) studies reporting outcomes such as mortality, KRT, serum creatinine; length of hospital/ICU stay.</AbstractText>The quality of the included studies was independently assessed by using the National Heart Lung and Blood Institute (NHLBI) quality assessment tool for cohort studies and case series.</AbstractText>Outcomes and their 95% confidence intervals (CI) were reported if a meta-analysis of these outcomes was conducted. Heterogeneity was reported using I2</sup> statistics, and heterogeneity &#x2265;&#xa0;50% was considered high. We used Baujat's plot for the contribution of each study toward overall heterogeneity. In sensitivity analysis, the summary estimates were assessed by repeating meta-analysis after omitting one study at a time. Forest plots were used for reporting outcomes in each study and with their 95% CI. All statistical tests were performed using R software version 4.0.3.</AbstractText>A total of&#xa0;24 studies were included in this systematic review and of these, 11 were included in the&#xa0;meta-analysis.&#xa0;The pooled proportion of patients with MIS-C developing AKI was 20% (95% CI: 14-28%, I2</sup> = 80%). Pooled proportion of death in children with MIS-C was 4% (95% CI: 1-14%; I2</sup> = 93%). The odds of death in patients with AKI were 4.68 times higher than in patients without AKI (95% CI: 1.06-20.7%; I2</sup> = 17%). The overall pooled proportion of MIS-C-induced AKI patients requiring KRT was 15% (95% CI: 4-42%; I2</sup> = 91%).</AbstractText>Approximately one-fifth of children with MIS-C develop AKI which is associated with higher odds of death. PROSPERO registration: CRD42022306170 A higher resolution version of the Graphical abstract is available as Supplementary information.</AbstractText>&#xa9; 2022. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.</CopyrightInformation>
2,335,739
Late Giant Aortic Root Aneurysm Following Aortic Valve Replacement.<Pagination><StartPage>59</StartPage><EndPage>61</EndPage><MedlinePgn>59-61</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.14797/mdcvj.1118</ELocationID><Abstract><AbstractText>A 74-year-old female with previous permanent pacemaker insertion for complete heart block and no history of connective tissue disease presented to our regional cardiothoracic center with progressive exertional shortness of breath. Nine years later, when the patient was 83 years old, a computed tomography scan of the thoracic aorta revealed an isolated aneurysm of the aortic root measuring 7.6 &#xd7; 5.1 cm at the sinus of Valsalva.</AbstractText><CopyrightInformation>Copyright: &#xa9; 2022 The Author(s).</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Azam</LastName><ForeName>Rabia</ForeName><Initials>R</Initials><AffiliationInfo><Affiliation>Glenfield Hospital, Leicester, UK.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Acharya</LastName><ForeName>Metesh</ForeName><Initials>M</Initials><Identifier Source="ORCID">0000-0003-1744-7717</Identifier><AffiliationInfo><Affiliation>Glenfield Hospital, Leicester, UK.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Vadera</LastName><ForeName>Sonam</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Glenfield Hospital, Leicester, UK.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Adair</LastName><ForeName>William</ForeName><Initials>W</Initials><AffiliationInfo><Affiliation>Glenfield Hospital, Leicester, UK.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Mariscalco</LastName><ForeName>Giovanni</ForeName><Initials>G</Initials><Identifier Source="ORCID">0000-0001-8200-2269</Identifier><AffiliationInfo><Affiliation>Glenfield Hospital, Leicester, UK.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D002363">Case Reports</PublicationType><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2022</Year><Month>07</Month><Day>20</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Methodist Debakey Cardiovasc J</MedlineTA><NlmUniqueID>101508600</NlmUniqueID><ISSNLinking>1947-6108</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000369" MajorTopicYN="N">Aged, 80 and over</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D001014" MajorTopicYN="Y">Aortic Aneurysm</DescriptorName><QualifierName UI="Q000000981" MajorTopicYN="N">diagnostic imaging</QualifierName><QualifierName UI="Q000209" MajorTopicYN="N">etiology</QualifierName><QualifierName UI="Q000601" MajorTopicYN="N">surgery</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D017545" MajorTopicYN="Y">Aortic Aneurysm, Thoracic</DescriptorName><QualifierName UI="Q000000981" MajorTopicYN="N">diagnostic imaging</QualifierName><QualifierName UI="Q000209" MajorTopicYN="N">etiology</QualifierName><QualifierName UI="Q000601" MajorTopicYN="N">surgery</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D001021" MajorTopicYN="N">Aortic Valve</DescriptorName><QualifierName UI="Q000000981" MajorTopicYN="N">diagnostic imaging</QualifierName><QualifierName UI="Q000601" MajorTopicYN="N">surgery</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D001022" MajorTopicYN="Y">Aortic Valve Insufficiency</DescriptorName><QualifierName UI="Q000601" MajorTopicYN="N">surgery</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006350" MajorTopicYN="Y">Heart Valve Prosthesis</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012850" MajorTopicYN="Y">Sinus of Valsalva</DescriptorName><QualifierName UI="Q000000981" MajorTopicYN="N">diagnostic imaging</QualifierName><QualifierName UI="Q000601" MajorTopicYN="N">surgery</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">aortic root aneurysm</Keyword><Keyword MajorTopicYN="N">aortic root expansion</Keyword><Keyword MajorTopicYN="N">aortic valve replacement</Keyword></KeywordList><CoiStatement>The authors have no competing interests to declare.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2022</Year><Month>4</Month><Day>17</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2022</Year><Month>4</Month><Day>22</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2022</Year><Month>8</Month><Day>8</Day><Hour>3</Hour><Minute>26</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2022</Year><Month>8</Month><Day>9</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2022</Year><Month>8</Month><Day>10</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">35935098</ArticleId><ArticleId IdType="pmc">PMC9306668</ArticleId><ArticleId IdType="doi">10.14797/mdcvj.1118</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedBookArticle><BookDocument><PMID Version="1">33760518</PMID><ArticleIdList><ArticleId IdType="bookaccession">NBK568759</ArticleId></ArticleIdList><Book><Publisher><PublisherName>StatPearls Publishing</PublisherName><PublisherLocation>Treasure Island (FL)</PublisherLocation></Publisher><BookTitle book="statpearls">StatPearls</BookTitle><PubDate><Year>2023</Year><Month>01</Month></PubDate><BeginningDate><Year>2023</Year><Month>01</Month></BeginningDate><Medium>Internet</Medium></Book><ArticleTitle book="statpearls" part="nurse-article-17160">Acute Myocardial Infarction (Nursing)<Language>eng</Language><AuthorList Type="authors" CompleteYN="Y"><Author ValidYN="Y"><LastName>Mechanic</LastName><ForeName>Oren J.</ForeName><Initials>OJ</Initials><AffiliationInfo><Affiliation>Harvard Medical School/BIDMC</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Gavin</LastName><ForeName>Michael</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Harvard Medical School</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Grossman</LastName><ForeName>Shamai A.</ForeName><Initials>SA</Initials><AffiliationInfo><Affiliation>HVD Med Sch</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ziegler</LastName><ForeName>Kim</ForeName><Initials>K</Initials><AffiliationInfo><Affiliation>St. John Fisher College</Affiliation></AffiliationInfo></Author></AuthorList><PublicationType UI="D000072643">Study Guide</PublicationType><Abstract><AbstractText>Acute myocardial infarction is one of the leading causes of death in the developed world. The prevalence of the disease approaches three million people worldwide, with more than one million deaths in the United States annually. Acute myocardial infarction can be divided into two categories, non-ST-segment elevation MI (NSTEMI) and ST-segment elevation MI (STEMI). Unstable angina is similar to NSTEMI. However, cardiac markers are not elevated. An MI results in irreversible damage to the heart muscle due to a lack of oxygen. An MI may lead to impairment in diastolic and systolic function and make the patient prone to arrhythmias. In addition, an MI can lead to a number of serious complications. The key is to reperfuse the heart and restore blood flow. The earlier the treatment (less than 6 hours from symptom onset), the better the prognosis. An MI is diagnosed when two of the following criteria are met: 1. Symptoms of ischemia. 2. New ST-segment changes or a left bundle branch block (LBBB). 3. Presence of pathological Q waves on the ECG. 4. Imaging study showing new regional wall motion abnormality. 5. Presence of an intracoronary thrombus at autopsy or angiography.</AbstractText><CopyrightInformation>Copyright &#xa9; 2023, StatPearls Publishing LLC.</CopyrightInformation></Abstract><Sections><Section><SectionTitle book="statpearls" part="nurse-article-17160" sec="nurse-article-17160.s1">Learning Outcome</SectionTitle></Section><Section><SectionTitle book="statpearls" part="nurse-article-17160" sec="nurse-article-17160.s2">Introduction</SectionTitle></Section><Section><SectionTitle book="statpearls" part="nurse-article-17160" sec="nurse-article-17160.s3">Nursing Diagnosis</SectionTitle></Section><Section><SectionTitle book="statpearls" part="nurse-article-17160" sec="nurse-article-17160.s4">Causes</SectionTitle></Section><Section><SectionTitle book="statpearls" part="nurse-article-17160" sec="nurse-article-17160.s5">Risk Factors</SectionTitle></Section><Section><SectionTitle book="statpearls" part="nurse-article-17160" sec="nurse-article-17160.s6">Assessment</SectionTitle></Section><Section><SectionTitle book="statpearls" part="nurse-article-17160" sec="nurse-article-17160.s7">Evaluation</SectionTitle></Section><Section><SectionTitle book="statpearls" part="nurse-article-17160" sec="nurse-article-17160.s8">Medical Management</SectionTitle></Section><Section><SectionTitle book="statpearls" part="nurse-article-17160" sec="nurse-article-17160.s9">Nursing Management</SectionTitle></Section><Section><SectionTitle book="statpearls" part="nurse-article-17160" sec="nurse-article-17160.s10">When To Seek Help</SectionTitle></Section><Section><SectionTitle book="statpearls" part="nurse-article-17160" sec="nurse-article-17160.s11">Outcome Identification</SectionTitle></Section><Section><SectionTitle book="statpearls" part="nurse-article-17160" sec="nurse-article-17160.s12">Monitoring</SectionTitle></Section><Section><SectionTitle book="statpearls" part="nurse-article-17160" sec="nurse-article-17160.s13">Coordination of Care</SectionTitle></Section><Section><SectionTitle book="statpearls" part="nurse-article-17160" sec="nurse-article-17160.s14">Health Teaching and Health Promotion</SectionTitle></Section><Section><SectionTitle book="statpearls" part="nurse-article-17160" sec="nurse-article-17160.s15">Risk Management</SectionTitle></Section><Section><SectionTitle book="statpearls" part="nurse-article-17160" sec="nurse-article-17160.s16">Discharge Planning</SectionTitle></Section><Section><SectionTitle book="statpearls" part="nurse-article-17160" sec="nurse-article-17160.s17">Evidence-Based Issues</SectionTitle></Section><Section><SectionTitle book="statpearls" part="nurse-article-17160" sec="nurse-article-17160.s18">Review Questions</SectionTitle></Section><Section><SectionTitle book="statpearls" part="nurse-article-17160" sec="nurse-article-17160.s23">References</SectionTitle></Section></Sections><ContributionDate><Year>2022</Year><Month>8</Month><Day>8</Day></ContributionDate><ReferenceList><Reference><Citation>Nascimento BR, Brant LCC, Marino BCA, Passaglia LG, Ribeiro ALP. Implementing myocardial infarction systems of care in low/middle-income countries. Heart. 2019 Jan;105(1):20-26.</Citation><ArticleIdList><ArticleId IdType="pubmed">30269080</ArticleId></ArticleIdList></Reference><Reference><Citation>Barberi C, van den Hondel KE. The use of cardiac troponin T (cTnT) in the postmortem diagnosis of acute myocardial infarction and sudden cardiac death: A systematic review. Forensic Sci Int. 2018 Nov;292:27-38.</Citation><ArticleIdList><ArticleId IdType="pubmed">30269044</ArticleId></ArticleIdList></Reference><Reference><Citation>Alaour B, Liew F, Kaier TE. Cardiac Troponin - diagnostic problems and impact on cardiovascular disease. Ann Med. 2018 Dec;50(8):655-665.</Citation><ArticleIdList><ArticleId IdType="pubmed">30265127</ArticleId></ArticleIdList></Reference><Reference><Citation>Massberg S, Polzin A. [Update ESC-Guideline 2017: Dual Antiplatelet Therapy]. Dtsch Med Wochenschr. 2018 Aug;143(15):1090-1093.</Citation><ArticleIdList><ArticleId IdType="pubmed">30060279</ArticleId></ArticleIdList></Reference><Reference><Citation>Scheen AJ. [From atherosclerosis to atherothrombosis : from a silent chronic pathology to an acute critical event]. Rev Med Liege. 2018 May;73(5-6):224-228.</Citation><ArticleIdList><ArticleId IdType="pubmed">29926559</ArticleId></ArticleIdList></Reference><Reference><Citation>Berg DD, Wiviott SD, Braunwald E, Guo J, Im K, Kashani A, Gibson CM, Cannon CP, Morrow DA, Bhatt DL, Mega JL, O'Donoghue ML, Antman EM, Newby LK, Sabatine MS, Giugliano RP. Modes and timing of death in 66&#x2009;252 patients with non-ST-segment elevation acute coronary syndromes enrolled in 14 TIMI trials. Eur Heart J. 2018 Nov 07;39(42):3810-3820.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6220126</ArticleId><ArticleId IdType="pubmed">30239711</ArticleId></ArticleIdList></Reference><Reference><Citation>Deng D, Liu L, Xu G, Gan J, Shen Y, Shi Y, Zhu R, Lin Y. Epidemiology and Serum Metabolic Characteristics of Acute Myocardial Infarction Patients in Chest Pain Centers. Iran J Public Health. 2018 Jul;47(7):1017-1029.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6119561</ArticleId><ArticleId IdType="pubmed">30182001</ArticleId></ArticleIdList></Reference><Reference><Citation>Haig C, Carrick D, Carberry J, Mangion K, Maznyczka A, Wetherall K, McEntegart M, Petrie MC, Eteiba H, Lindsay M, Hood S, Watkins S, Davie A, Mahrous A, Mordi I, Ahmed N, Teng Yue May V, Ford I, Radjenovic A, Welsh P, Sattar N, Oldroyd KG, Berry C. Current Smoking and Prognosis After&#xa0;Acute ST-Segment Elevation Myocardial&#xa0;Infarction: New Pathophysiological Insights. JACC Cardiovasc Imaging. 2019 Jun;12(6):993-1003.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6547246</ArticleId><ArticleId IdType="pubmed">30031700</ArticleId></ArticleIdList></Reference><Reference><Citation>Alqu&#xe9;zar-Arb&#xe9; A, Sanch&#xed;s J, Guill&#xe9;n E, Bardaj&#xed; A, Mir&#xf3; &#xd2;, Ord&#xf3;&#xf1;ez-Llanos J. Cardiac troponin measurement and interpretation in the diagnosis of acute myocardial infarction in the emergency department: a consensus statement. Emergencias. 2018 Oct;30(5):336-349.</Citation><ArticleIdList><ArticleId IdType="pubmed">30260119</ArticleId></ArticleIdList></Reference><Reference><Citation>Perera M, Aggarwal L, Scott IA, Logan B. Received care compared to ADP-guided care of patients admitted to hospital with chest pain of possible cardiac origin. Int J Gen Med. 2018;11:345-351.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6128279</ArticleId><ArticleId IdType="pubmed">30214268</ArticleId></ArticleIdList></Reference><Reference><Citation>Riley RF, Miller CD, Russell GB, Soliman EZ, Hiestand BC, Herrington DM, Mahler SA. Usefulness of Serial 12-Lead Electrocardiograms in Predicting 30-Day Outcomes in Patients With Undifferentiated Chest Pain (the ASAP CATH Study). Am J Cardiol. 2018 Aug 01;122(3):374-380.</Citation><ArticleIdList><ArticleId IdType="pubmed">30196932</ArticleId></ArticleIdList></Reference><Reference><Citation>Larson EA, German DM, Shatzel J, DeLoughery TG. Anticoagulation in the cardiac patient: A concise review. Eur J Haematol. 2019 Jan;102(1):3-19.</Citation><ArticleIdList><ArticleId IdType="pubmed">30203452</ArticleId></ArticleIdList></Reference><Reference><Citation>Bath PM, Woodhouse LJ, Appleton JP, Beridze M, Christensen H, Dineen RA, Flaherty K, Duley L, England TJ, Havard D, Heptinstall S, James M, Kasonde C, Krishnan K, Markus HS, Montgomery AA, Pocock S, Randall M, Ranta A, Robinson TG, Scutt P, Venables GS, Sprigg N. Triple versus guideline antiplatelet therapy to prevent recurrence after acute ischaemic stroke or transient ischaemic attack: the TARDIS RCT. Health Technol Assess. 2018 Aug;22(48):1-76.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6139477</ArticleId><ArticleId IdType="pubmed">30179153</ArticleId></ArticleIdList></Reference><Reference><Citation>Adamski P, Adamska U, Ostrowska M, Navarese EP, Kubica J. Evaluating current and emerging antithrombotic therapy currently available for the treatment of acute coronary syndrome in geriatric populations. Expert Opin Pharmacother. 2018 Sep;19(13):1415-1425.</Citation><ArticleIdList><ArticleId IdType="pubmed">30132731</ArticleId></ArticleIdList></Reference><Reference><Citation>Aeyels D, Seys D, Sinnaeve PR, Claeys MJ, Gevaert S, Schoors D, Sermeus W, Panella M, Bruyneel L, Vanhaecht K. Managing in-hospital quality improvement: An importance-performance analysis to set priorities for ST-elevation myocardial infarction care. Eur J Cardiovasc Nurs. 2018 Aug;17(6):535-542.</Citation><ArticleIdList><ArticleId IdType="pubmed">29448818</ArticleId></ArticleIdList></Reference><Reference><Citation>Schwaab B. [Cardiac Rehabilitation]. Rehabilitation (Stuttg) 2018 Apr;57(2):117-126.</Citation><ArticleIdList><ArticleId IdType="pubmed">29216666</ArticleId></ArticleIdList></Reference><Reference><Citation>El Hajj MS, Jaam MJ, Awaisu A. Effect of pharmacist care on medication adherence and cardiovascular outcomes among patients post-acute coronary syndrome: A&#xa0;systematic review. Res Social Adm Pharm. 2018 Jun;14(6):507-520.</Citation><ArticleIdList><ArticleId IdType="pubmed">28641999</ArticleId></ArticleIdList></Reference><Reference><Citation>Stone GW, Ellis SG, Gori T, Metzger DC, Stein B, Erickson M, Torzewski J, Williams J, Lawson W, Broderick TM, Kabour A, Piegari G, Cavendish J, Bertolet B, Choi JW, Marx SO, G&#xe9;n&#xe9;reux P, Kereiakes DJ, ABSORB IV Investigators Blinded outcomes and angina assessment of coronary bioresorbable scaffolds: 30-day and 1-year results from the ABSORB IV randomised trial. Lancet. 2018 Oct 27;392(10157):1530-1540.</Citation><ArticleIdList><ArticleId IdType="pubmed">30266412</ArticleId></ArticleIdList></Reference><Reference><Citation>Lopes RD, de Barros E Silva PGM, de Andrade Jesu&#xed;no I, Santucci EV, Barbosa LM, Damiani LP, Nakagawa Santos RH, Laranjeira LN, Dall Orto FTC, Beraldo de Andrade P, de Castro Bienert IR, Alexander JH, Granger CB, Berwanger O. Timing of Loading Dose of Atorvastatin in Patients Undergoing Percutaneous Coronary Intervention for Acute Coronary Syndromes: Insights From the SECURE-PCI Randomized Clinical Trial. JAMA Cardiol. 2018 Nov 01;3(11):1113-1118.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6583055</ArticleId><ArticleId IdType="pubmed">30264159</ArticleId></ArticleIdList></Reference><Reference><Citation>Choi AR, Jeong MH, Hong YJ, Sohn SJ, Kook HY, Sim DS, Ahn YK, Lee KH, Cho JY, Kim YJ, Cho MC, Kim CJ, other Korea Acute Myocardial Infarction Registry Investigators Clinical characteristics and outcomes in acute myocardial infarction patients with versus without any cardiovascular risk factors. Korean J Intern Med. 2019 Sep;34(5):1040-1049.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6718753</ArticleId><ArticleId IdType="pubmed">30257551</ArticleId></ArticleIdList></Reference><Reference><Citation>Piotrowicz R, Wolszakiewicz J. Cardiac rehabilitation following myocardial infarction. Cardiol J. 2008;15(5):481-7.</Citation><ArticleIdList><ArticleId IdType="pubmed">18810728</ArticleId></ArticleIdList></Reference><Reference><Citation>Ruano-Ravina A, Pena-Gil C, Abu-Assi E, Raposeiras S, van 't Hof A, Meindersma E, Bossano Prescott EI, Gonz&#xe1;lez-Juanatey JR. Participation and adherence to cardiac rehabilitation programs. A systematic review. Int J Cardiol. 2016 Nov 15;223:436-443.</Citation><ArticleIdList><ArticleId IdType="pubmed">27557484</ArticleId></ArticleIdList></Reference><Reference><Citation>Sj&#xf6;lin I, B&#xe4;ck M, Nilsson L, Schiopu A, Leosdottir M. Association between attending exercise-based cardiac rehabilitation and cardiovascular risk factors at one-year post myocardial infarction. PLoS One. 2020;15(5):e0232772.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7213725</ArticleId><ArticleId IdType="pubmed">32392231</ArticleId></ArticleIdList></Reference><Reference><Citation>Contractor AS. Cardiac rehabilitation after myocardial infarction. J Assoc Physicians India. 2011 Dec;59 Suppl:51-5.</Citation><ArticleIdList><ArticleId IdType="pubmed">22624283</ArticleId></ArticleIdList></Reference></ReferenceList></BookDocument><PubmedBookData><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">33760518</ArticleId></ArticleIdList></PubmedBookData></PubmedBookArticle><PubmedBookArticle><BookDocument><PMID Version="1">31536197</PMID><ArticleIdList><ArticleId IdType="bookaccession">NBK546589</ArticleId></ArticleIdList><Book><Publisher><PublisherName>StatPearls Publishing</PublisherName><PublisherLocation>Treasure Island (FL)</PublisherLocation></Publisher><BookTitle book="statpearls">StatPearls</BookTitle><PubDate><Year>2023</Year><Month>01</Month></PubDate><BeginningDate><Year>2023</Year><Month>01</Month></BeginningDate><Medium>Internet</Medium></Book><ArticleTitle book="statpearls" part="article-17683">Physiology, Anticholinergic Reaction<Language>eng</Language><AuthorList Type="authors" CompleteYN="Y"><Author ValidYN="Y"><LastName>Migirov</LastName><ForeName>Allan</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Cleveland Clinic Foundation</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Datta</LastName><ForeName>Anita R.</ForeName><Initials>AR</Initials><AffiliationInfo><Affiliation>HCA Houston healthcare Kingwood</Affiliation></AffiliationInfo></Author></AuthorList><PublicationType UI="D000072643">Study Guide</PublicationType><Abstract><AbstractText>Acetylcholine (ACh) is a neurotransmitter that acts on the central nervous system (CNS), the autonomic nervous system (ANS), and at the neuromuscular junction (NMJ). Generally, ACh receptors at the NMJ are nicotinic type while in the CNS and ANS they are usually muscarinic type. As a reminder, these receptors are functionally and structurally different; nicotinic ACh receptors are ligand-gated ion channels, whereas muscarinic ACh receptors are G-protein coupled receptors. Processes that enhance ACh function are termed &#x201c;cholinergic&#x201d; while processes that inhibit the action of ACh at its receptors are termed &#x201c;anticholinergic.&#x201d; Anticholinergic effects are most commonly the result of medication. These medications should be more appropriately termed "antimuscarinics," as they usually block muscarinic but not nicotinic receptors. At least 600 drugs/medicinal products are recognized to have anticholinergic activity, and the most common of these are responsible for a significant amount of poisoning admissions. Many also contribute to the development of an anticholinergic reaction: a constellation of symptoms resulting from the antagonism of muscarinic receptors throughout the body. The features of the anticholinergic reaction are deducible from an understanding of the normal function of muscarinic receptors at various organs, and the following mnemonic summarizes these effects: Mad as a hatter (delirium). Blind as a bat (ocular symptoms). Dry as a bone (anhidrosis/dry mouth/dry skin). Hot as a hare (fever). Bloated as a toad (constipation). The heart runs alone (tachycardia). Full as a flask (urinary retention). Red as a beet (cutaneous vasodilation). Clinically the most significant feature is delirium, particularly in the elderly, who are most likely to be affected by the anticholinergic reaction.</AbstractText><CopyrightInformation>Copyright &#xa9; 2023, StatPearls Publishing LLC.</CopyrightInformation></Abstract><Sections><Section><SectionTitle book="statpearls" part="article-17683" sec="article-17683.s1">Introduction</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-17683" sec="article-17683.s2">Cellular Level</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-17683" sec="article-17683.s3">Organ Systems Involved</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-17683" sec="article-17683.s4">Mechanism</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-17683" sec="article-17683.s5">Related Testing</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-17683" sec="article-17683.s6">Clinical Significance</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-17683" sec="article-17683.s7">Review Questions</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-17683" sec="article-17683.s8">References</SectionTitle></Section></Sections><ContributionDate><Year>2022</Year><Month>8</Month><Day>8</Day></ContributionDate><ReferenceList><Reference><Citation>Ferreira-Vieira TH, Guimaraes IM, Silva FR, Ribeiro FM. Alzheimer's disease: Targeting the Cholinergic System. Curr Neuropharmacol. 2016;14(1):101-15.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4787279</ArticleId><ArticleId IdType="pubmed">26813123</ArticleId></ArticleIdList></Reference><Reference><Citation>Dawson AH, Buckley NA. Pharmacological management of anticholinergic delirium - theory, evidence and practice. Br J Clin Pharmacol. 2016 Mar;81(3):516-24.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4767198</ArticleId><ArticleId IdType="pubmed">26589572</ArticleId></ArticleIdList></Reference><Reference><Citation>Dur&#xe1;n CE, Azermai M, Vander Stichele RH. Systematic review of anticholinergic risk scales in older adults. Eur J Clin Pharmacol. 2013 Jul;69(7):1485-96.</Citation><ArticleIdList><ArticleId IdType="pubmed">23529548</ArticleId></ArticleIdList></Reference><Reference><Citation>Abrams P, Andersson KE, Buccafusco JJ, Chapple C, de Groat WC, Fryer AD, Kay G, Laties A, Nathanson NM, Pasricha PJ, Wein AJ. Muscarinic receptors: their distribution and function in body systems, and the implications for treating overactive bladder. Br J Pharmacol. 2006 Jul;148(5):565-78.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC1751864</ArticleId><ArticleId IdType="pubmed">16751797</ArticleId></ArticleIdList></Reference><Reference><Citation>Gerretsen P, Pollock BG. Rediscovering adverse anticholinergic effects. J Clin Psychiatry. 2011 Jun;72(6):869-70.</Citation><ArticleIdList><ArticleId IdType="pubmed">21733482</ArticleId></ArticleIdList></Reference><Reference><Citation>Price D, Fromer L, Kaplan A, van der Molen T, Rom&#xe1;n-Rodr&#xed;guez M. Is there a rationale and role for long-acting anticholinergic bronchodilators in asthma? NPJ Prim Care Respir Med. 2014 Jul 17;24:14023.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4373380</ArticleId><ArticleId IdType="pubmed">25030457</ArticleId></ArticleIdList></Reference><Reference><Citation>Lampela P, Paajanen T, Hartikainen S, Huupponen R. Central Anticholinergic Adverse Effects and Their Measurement. Drugs Aging. 2015 Dec;32(12):963-74.</Citation><ArticleIdList><ArticleId IdType="pubmed">26518014</ArticleId></ArticleIdList></Reference><Reference><Citation>Tune LE. Anticholinergic effects of medication in elderly patients. J Clin Psychiatry. 2001;62 Suppl 21:11-4.</Citation><ArticleIdList><ArticleId IdType="pubmed">11584981</ArticleId></ArticleIdList></Reference><Reference><Citation>Ueki T, Nakashima M. Relationship Between Constipation and Medication. J UOEH. 2019;41(2):145-151.</Citation><ArticleIdList><ArticleId IdType="pubmed">31292358</ArticleId></ArticleIdList></Reference><Reference><Citation>Torres NE, Zollman PJ, Low PA. Characterization of muscarinic receptor subtype of rat eccrine sweat gland by autoradiography. Brain Res. 1991 May 31;550(1):129-32.</Citation><ArticleIdList><ArticleId IdType="pubmed">1888990</ArticleId></ArticleIdList></Reference><Reference><Citation>Golding JF, Wesnes KA, Leaker BR. The effects of the selective muscarinic M3 receptor antagonist darifenacin, and of hyoscine (scopolamine), on motion sickness, skin conductance &amp; cognitive function. Br J Clin Pharmacol. 2018 Jul;84(7):1535-1543.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6005615</ArticleId><ArticleId IdType="pubmed">29522648</ArticleId></ArticleIdList></Reference><Reference><Citation>Black CE, Huang N, Neligan PC, Levine RH, Lipa JE, Lintlop S, Forrest CR, Pang CY. Effect of nicotine on vasoconstrictor and vasodilator responses in human skin vasculature. Am J Physiol Regul Integr Comp Physiol. 2001 Oct;281(4):R1097-104.</Citation><ArticleIdList><ArticleId IdType="pubmed">11557615</ArticleId></ArticleIdList></Reference><Reference><Citation>Cooke JP, Ghebremariam YT. Endothelial nicotinic acetylcholine receptors and angiogenesis. Trends Cardiovasc Med. 2008 Oct;18(7):247-53.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2673464</ArticleId><ArticleId IdType="pubmed">19232953</ArticleId></ArticleIdList></Reference><Reference><Citation>Fujii N, Louie JC, McNeely BD, Zhang SY, Tran MA, Kenny GP. Nicotinic receptor activation augments muscarinic receptor-mediated eccrine sweating but not cutaneous vasodilatation in young males. Exp Physiol. 2017 Feb 01;102(2):245-254.</Citation><ArticleIdList><ArticleId IdType="pubmed">27859779</ArticleId></ArticleIdList></Reference><Reference><Citation>Yates C, Manini AF. Utility of the electrocardiogram in drug overdose and poisoning: theoretical considerations and clinical implications. Curr Cardiol Rev. 2012 May;8(2):137-51.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3406273</ArticleId><ArticleId IdType="pubmed">22708912</ArticleId></ArticleIdList></Reference><Reference><Citation>Shi S, Klotz U. Age-related changes in pharmacokinetics. Curr Drug Metab. 2011 Sep;12(7):601-10.</Citation><ArticleIdList><ArticleId IdType="pubmed">21495970</ArticleId></ArticleIdList></Reference><Reference><Citation>Stegemann S, Ecker F, Maio M, Kraahs P, Wohlfart R, Breitkreutz J, Zimmer A, Bar-Shalom D, Hettrich P, Broegmann B. Geriatric drug therapy: neglecting the inevitable majority. Ageing Res Rev. 2010 Oct;9(4):384-98.</Citation><ArticleIdList><ArticleId IdType="pubmed">20478411</ArticleId></ArticleIdList></Reference><Reference><Citation>de Leon J. Paying attention to pharmacokinetic and pharmacodynamic mechanisms to progress in the area of anticholinergic use in geriatric patients. Curr Drug Metab. 2011 Sep;12(7):635-46.</Citation><ArticleIdList><ArticleId IdType="pubmed">21495973</ArticleId></ArticleIdList></Reference><Reference><Citation>Patel T, Slonim K, Lee L. Use of potentially inappropriate medications among ambulatory home-dwelling elderly patients with dementia: A review of the literature. Can Pharm J (Ott) 2017 May-Jun;150(3):169-183.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5415067</ArticleId><ArticleId IdType="pubmed">28507653</ArticleId></ArticleIdList></Reference><Reference><Citation>Sheu JJ, Tsai MT, Erickson SR, Wu CH. Association between Anticholinergic Medication Use and Risk of Dementia among Patients with Parkinson's Disease. Pharmacotherapy. 2019 Aug;39(8):798-808.</Citation><ArticleIdList><ArticleId IdType="pubmed">31251824</ArticleId></ArticleIdList></Reference><Reference><Citation>Hafdi M, Hoevenaar-Blom MP, Beishuizen CRL, Moll van Charante EP, Richard E, van Gool WA. Association of Benzodiazepine and Anticholinergic Drug Usage With Incident Dementia: A Prospective Cohort Study of Community-Dwelling Older Adults. J Am Med Dir Assoc. 2020 Feb;21(2):188-193.e3.</Citation><ArticleIdList><ArticleId IdType="pubmed">31300339</ArticleId></ArticleIdList></Reference><Reference><Citation>Andrade C. Anticholinergic Drug Exposure and the Risk of Dementia: There Is Modest Evidence for an Association but Not for Causality. J Clin Psychiatry. 2019 Aug 06;80(4)</Citation><ArticleIdList><ArticleId IdType="pubmed">31390497</ArticleId></ArticleIdList></Reference><Reference><Citation>O&#x2bc;Neil CA, Krauss MJ, Bettale J, Kessels A, Costantinou E, Dunagan WC, Fraser VJ. Medications and Patient Characteristics Associated With Falling in the Hospital. J Patient Saf. 2018 Mar;14(1):27-33.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4573384</ArticleId><ArticleId IdType="pubmed">25782559</ArticleId></ArticleIdList></Reference><Reference><Citation>Mirrakhimov AE, Ayach T, Barbaryan A, Talari G, Chadha R, Gray A. The Role of Sodium Bicarbonate in the Management of Some Toxic Ingestions. Int J Nephrol. 2017;2017:7831358.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5591930</ArticleId><ArticleId IdType="pubmed">28932601</ArticleId></ArticleIdList></Reference></ReferenceList></BookDocument><PubmedBookData><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">31536197</ArticleId></ArticleIdList></PubmedBookData></PubmedBookArticle><PubmedBookArticle><BookDocument><PMID Version="1">30969594</PMID><ArticleIdList><ArticleId IdType="bookaccession">NBK539772</ArticleId></ArticleIdList><Book><Publisher><PublisherName>StatPearls Publishing</PublisherName><PublisherLocation>Treasure Island (FL)</PublisherLocation></Publisher><BookTitle book="statpearls">StatPearls</BookTitle><PubDate><Year>2023</Year><Month>01</Month></PubDate><BeginningDate><Year>2023</Year><Month>01</Month></BeginningDate><Medium>Internet</Medium></Book><ArticleTitle book="statpearls" part="article-25465">Myocardial Perfusion Scan<Language>eng</Language><AuthorList Type="authors" CompleteYN="Y"><Author ValidYN="Y"><LastName>Patel</LastName><ForeName>Jigar J.</ForeName><Initials>JJ</Initials><AffiliationInfo><Affiliation>George Washington University</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Alzahrani</LastName><ForeName>Talal</ForeName><Initials>T</Initials><AffiliationInfo><Affiliation>Taibah University</Affiliation></AffiliationInfo></Author></AuthorList><PublicationType UI="D000072643">Study Guide</PublicationType><Abstract><AbstractText>Myocardial perfusion scanning plays a significant role in diagnostic and therapeutic decision making in cardiac disease. These refer to a group of non-invasive imaging tests that can be performed to help clinicians assess blood flow to areas of myocardium. Obtaining information on perfusion and metabolite uptake from myocardium plays a vital role in determining the appropriate medical treatment or intervention for optimizing one's cardiac health. These tests are useful for diagnostic and prognostic purposes throughout a variety of clinical settings, including evaluating symptoms concerning for angina, to rule out acute coronary syndrome as a cause of chest pain, assessing therapeutic outcome after interventions, as well as for assessing for viable or scarred myocardium. With such information, clinicians can appropriately understand a patient's coronary health, perform risk stratification for future cardiovascular events, assess for therapeutic response to interventions correcting perfusion defects, and allow for prognostication. Perfusion scanning utilizes various radiotracers, which are administered to the patient and allowed to distribute to multiple tissues. These radiotracers emit photons, which are detectable with a gamma camera which typically contains a single sodium iodide crystal (Single photon emission computed tomography, or SPECT) or multiple crystals (typically used in positron emission tomography, or PET) to interact with captured photons. These cameras contain a collimator, which helps eliminate background, and a photomultiplier, which translate the interactions between the photon and crystals into electrical energy to produce images. In SPECT imaging techniques, common radiotracers used include thallium-201 or technetium-based radiotracers, including technetium-99m sestamibi or technetium-99m tetrofosmin. Thallium-201 is distributed actively into myocardial cells, whereas technetium-based products are distributed passively depending on blood flow and myocardial viability. These radiotracers are injected when the heart is stressed, either by exercise or pharmacologically. The uptake of radiotracer indicates areas of perfusion and viable tissue during stress and at rest. Areas of poor perfusion display improved perfusion during rest, termed reversible ischemia. SPECT, which is more commonly used and available in clinical practice today, uses planar images to reconstruct a three-dimensional representation of myocardial perfusion. Unlike planar imaging, SPECT can obtain sequential slices without overlap of normal and abnormal areas with improved resolution over planar imaging&#xa0;.&#xa0;&#xa0;SPECT imaging has undergone validation in multiple large scale studies for detection of coronary artery disease; however, there are some limitations to this imaging modality. These include artifacts such as those caused by motion, attenuation, or extracardiac activity affecting the quality of images and reader variability. Also, SPECT imaging typically uses technetium-99m tracers, which have low first-pass extraction, and thus leading to the underestimation of ischemic changes both in extent and severity. PET imaging, although less available than SPECT, can help overcome some of these limitations. PET images have better spatial resolution and allow for attenuation correction more accuracy than SPECT. With the high temporal resolution, PET scanning also allows for quantification of myocardial blood flow and myocardial flow reserve and can be of great utility in risk stratification in assessing cardiovascular mortality. Further, PET imaging has the advantages of protocols requiring less time, less radiation exposure compared to SPECT imaging techniques. In PET imaging, radiotracers such as ammonia N-13, rubidium-82, and flurpiridaz F-18 are radiotracers used in for myocardial perfusion imaging. Rubidium-82 is used commonly and can produce good quality images as it has a 65% myocardial extraction rate. In contrast, ammonia N-13 and fluripiridaz F-18 have a myocardial extraction rate of 80% and 95% respectively, therefore producing better quality images with higher resolution. The downside of the later radiotracers is the need for an on-site cyclotron. Rubidium-82 is usable for pharmacologic stress testing, whereas ammonia-N-13 and flurpiridaz F-18 can be used for both exercise and pharmacologic stress testing. To obtain stress images, exercise or pharmacologic testing can is an option. Common pharmacologic agents used include&#xa0;regadenoson,&#xa0;adenosine, and&#xa0;dipyridamole. All three medications work by causing coronary vasodilatation, with subsequent blood flow differences. Adenosine and dipyridamole are A-2A as well as&#xa0;A-1, A-2B, and A-3 receptor agonists, which can also cause bronchospasm, AV nodal block, chest tightness, and flushing. Regadenoson is a selective A-2A agonist which can be a choice in patients with known bronchospasms. Thus, regadenoson is the most common pharmacological agent used in clinical practice.&#xa0;</AbstractText><CopyrightInformation>Copyright &#xa9; 2023, StatPearls Publishing LLC.</CopyrightInformation></Abstract><Sections><Section><SectionTitle book="statpearls" part="article-25465" sec="article-25465.s1">Introduction</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-25465" sec="article-25465.s2">Procedures</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-25465" sec="article-25465.s3">Indications</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-25465" sec="article-25465.s4">Potential Diagnosis</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-25465" sec="article-25465.s5">Normal and Critical Findings</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-25465" sec="article-25465.s6">Interfering Factors</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-25465" sec="article-25465.s7">Patient Safety and Education</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-25465" sec="article-25465.s8">Clinical Significance</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-25465" sec="article-25465.s9">Review Questions</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-25465" sec="article-25465.s10">References</SectionTitle></Section></Sections><ContributionDate><Year>2022</Year><Month>8</Month><Day>8</Day></ContributionDate><ReferenceList><Reference><Citation>Delso G, Ter Voert E, Veit-Haibach P. How does PET/MR work? Basic physics for physicians. Abdom Imaging. 2015 Aug;40(6):1352-7.</Citation><ArticleIdList><ArticleId IdType="pubmed">25906344</ArticleId></ArticleIdList></Reference><Reference><Citation>Angelidis G, Giamouzis G, Karagiannis G, Butler J, Tsougos I, Valotassiou V, Giannakoulas G, Dimakopoulos N, Xanthopoulos A, Skoularigis J, Triposkiadis F, Georgoulias P. SPECT and PET in ischemic heart failure. Heart Fail Rev. 2017 Mar;22(2):243-261.</Citation><ArticleIdList><ArticleId IdType="pubmed">28150111</ArticleId></ArticleIdList></Reference><Reference><Citation>Verberne HJ, Acampa W, Anagnostopoulos C, Ballinger J, Bengel F, De Bondt P, Buechel RR, Cuocolo A, van Eck-Smit BL, Flotats A, Hacker M, Hindorf C, Kaufmann PA, Lindner O, Ljungberg M, Lonsdale M, Manrique A, Minarik D, Scholte AJ, Slart RH, Tr&#xe4;g&#xe5;rdh E, de Wit TC, Hesse B, European Association of Nuclear Medicine (EANM) EANM procedural guidelines for radionuclide myocardial perfusion imaging with SPECT and SPECT/CT: 2015 revision. Eur J Nucl Med Mol Imaging. 2015 Nov;42(12):1929-40.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4589547</ArticleId><ArticleId IdType="pubmed">26290421</ArticleId></ArticleIdList></Reference><Reference><Citation>Iskandrian AS. Single-photon emission computed tomographic thallium imaging with adenosine, dipyridamole, and exercise. Am Heart J. 1991 Jul;122(1 Pt 1):279-84; discussion 302-6.</Citation><ArticleIdList><ArticleId IdType="pubmed">2063758</ArticleId></ArticleIdList></Reference><Reference><Citation>Jaarsma C, Leiner T, Bekkers SC, Crijns HJ, Wildberger JE, Nagel E, Nelemans PJ, Schalla S. Diagnostic performance of noninvasive myocardial perfusion imaging using single-photon emission computed tomography, cardiac magnetic resonance, and positron emission tomography imaging for the detection of obstructive coronary artery disease: a meta-analysis. J Am Coll Cardiol. 2012 May 08;59(19):1719-28.</Citation><ArticleIdList><ArticleId IdType="pubmed">22554604</ArticleId></ArticleIdList></Reference><Reference><Citation>Pelletier-Galarneau M, Martineau P, El Fakhri G. Quantification of PET Myocardial Blood Flow. Curr Cardiol Rep. 2019 Feb 28;21(3):11.</Citation><ArticleIdList><ArticleId IdType="pubmed">30815744</ArticleId></ArticleIdList></Reference><Reference><Citation>Slomka P, Xu Y, Berman D, Germano G. Quantitative analysis of perfusion studies: strengths and pitfalls. J Nucl Cardiol. 2012 Apr;19(2):338-46.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3412547</ArticleId><ArticleId IdType="pubmed">22302181</ArticleId></ArticleIdList></Reference><Reference><Citation>Shanoudy H, Raggi P, Beller GA, Soliman A, Ammermann EG, Kastner RJ, Watson DD. Comparison of technetium-99m tetrofosmin and thallium-201 single-photon emission computed tomographic imaging for detection of myocardial perfusion defects in patients with coronary artery disease. J Am Coll Cardiol. 1998 Feb;31(2):331-7.</Citation><ArticleIdList><ArticleId IdType="pubmed">9462576</ArticleId></ArticleIdList></Reference><Reference><Citation>Hung GU, Wang YF, Su HY, Hsieh TC, Ko CL, Yen RF. New Trends in Radionuclide Myocardial Perfusion Imaging. Acta Cardiol Sin. 2016 Mar;32(2):156-66.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4816914</ArticleId><ArticleId IdType="pubmed">27122946</ArticleId></ArticleIdList></Reference><Reference><Citation>Murthy VL, Naya M, Foster CR, Hainer J, Gaber M, Di Carli G, Blankstein R, Dorbala S, Sitek A, Pencina MJ, Di Carli MF. Improved cardiac risk assessment with noninvasive measures of coronary flow reserve. Circulation. 2011 Nov 15;124(20):2215-24.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3495106</ArticleId><ArticleId IdType="pubmed">22007073</ArticleId></ArticleIdList></Reference><Reference><Citation>Driessen RS, Raijmakers PG, Stuijfzand WJ, Knaapen P. Myocardial perfusion imaging with PET. Int J Cardiovasc Imaging. 2017 Jul;33(7):1021-1031.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5489578</ArticleId><ArticleId IdType="pubmed">28188475</ArticleId></ArticleIdList></Reference><Reference><Citation>Henzlova MJ, Duvall WL, Einstein AJ, Travin MI, Verberne HJ. ASNC imaging guidelines for SPECT nuclear cardiology procedures: Stress, protocols, and tracers. J Nucl Cardiol. 2016 Jun;23(3):606-39.</Citation><ArticleIdList><ArticleId IdType="pubmed">26914678</ArticleId></ArticleIdList></Reference><Reference><Citation>Cullom SJ, Case JA, Courter SA, McGhie AI, Bateman TM. Regadenoson pharmacologic rubidium-82 PET: a comparison of quantitative perfusion and function to dipyridamole. J Nucl Cardiol. 2013 Feb;20(1):76-83.</Citation><ArticleIdList><ArticleId IdType="pubmed">23188625</ArticleId></ArticleIdList></Reference><Reference><Citation>Hendel RC, Berman DS, Di Carli MF, Heidenreich PA, Henkin RE, Pellikka PA, Pohost GM, Williams KA, American College of Cardiology Foundation Appropriate Use Criteria Task Force. American Society of Nuclear Cardiology. American College of Radiology. American Heart Association. American Society of Echocardiology. Society of Cardiovascular Computed Tomography. Society for Cardiovascular Magnetic Resonance. Society of Nuclear Medicine ACCF/ASNC/ACR/AHA/ASE/SCCT/SCMR/SNM 2009 Appropriate Use Criteria for Cardiac Radionuclide Imaging: A Report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the American Society of Nuclear Cardiology, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the Society of Cardiovascular Computed Tomography, the Society for Cardiovascular Magnetic Resonance, and the Society of Nuclear Medicine. J Am Coll Cardiol. 2009 Jun 09;53(23):2201-29.</Citation><ArticleIdList><ArticleId IdType="pubmed">19497454</ArticleId></ArticleIdList></Reference></ReferenceList></BookDocument><PubmedBookData><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">30969594</ArticleId></ArticleIdList></PubmedBookData></PubmedBookArticle><PubmedBookArticle><BookDocument><PMID Version="1">30422561</PMID><ArticleIdList><ArticleId IdType="bookaccession">NBK532966</ArticleId></ArticleIdList><Book><Publisher><PublisherName>StatPearls Publishing</PublisherName><PublisherLocation>Treasure Island (FL)</PublisherLocation></Publisher><BookTitle book="statpearls">StatPearls</BookTitle><PubDate><Year>2023</Year><Month>01</Month></PubDate><BeginningDate><Year>2023</Year><Month>01</Month></BeginningDate><Medium>Internet</Medium></Book><ArticleTitle book="statpearls" part="article-25462">Myocardial Infarction Serum Markers<Language>eng</Language><AuthorList Type="authors" CompleteYN="Y"><Author ValidYN="Y"><LastName>Basit</LastName><ForeName>Hajira</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Brookdale University</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Huecker</LastName><ForeName>Martin R.</ForeName><Initials>MR</Initials><AffiliationInfo><Affiliation>University of Louisville</Affiliation></AffiliationInfo></Author></AuthorList><PublicationType UI="D000072643">Study Guide</PublicationType><Abstract><AbstractText>According to the European Society of Cardiology, American College of Cardiology Foundation, American Heart Association, and World Health Federation Expert consensus document on the third universal definition of myocardial infarction, acute myocardial infarction can be diagnosed in several ways, one of which depends on cardiac enzymes.&#xa0;&#xa0;The pertinent definition is: "Detection of a rise and/or fall of cardiac biomarker values (preferably cardiac troponin) with at least one value above the 99 percentile upper reference limit and with at least&#xa0;one of the following:&#xa0;: Symptoms of ischemia. New or presumed new significant ST segment-T wave changes or new left bundle branch block. Development of pathological Q waves on ECG. Imaging evidence of a new loss of viable myocardium or new regional wall motion abnormality. Identification of an intracoronary thrombus by angiography or autopsy.". The morbidity and mortality associated with acute myocardial infarction are well understood and discussed elsewhere. Given the known morbidity and mortality associated with acute myocardial infarction and the importance of early diagnosis and management, the above definition places a heavy burden on cardiac enzymes as their elevation alone, along with symptoms of ischemia, is enough to make the diagnosis of acute myocardial infarction.&#xa0; The ideal cardiac enzyme or biomarker needs to be highly specific, highly sensitive, and easily detectable as early as possible in the disease process. Several biomarkers have been developed in the past and will be discussed in this article. "Cardiac enzymes" is a broad term encompassing several intracellular myocyte components that can be found in serum and measured under certain circumstances such as myocardial ischemia, trauma, myocarditis. In the proper clinical setting, elevation in the level of enzymes present in serum is key in the diagnosis of myocardial infarction. While troponin is the most commonly used cardiac enzyme for diagnosis of myocardial infarction, others exist and may be helpful in some situations.</AbstractText><CopyrightInformation>Copyright &#xa9; 2023, StatPearls Publishing LLC.</CopyrightInformation></Abstract><Sections><Section><SectionTitle book="statpearls" part="article-25462" sec="article-25462.s1">Introduction</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-25462" sec="article-25462.s2">Specimen Requirements and Procedure</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-25462" sec="article-25462.s3">Diagnostic Tests</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-25462" sec="article-25462.s4">Testing Procedures</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-25462" sec="article-25462.s5">Interfering Factors</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-25462" sec="article-25462.s6">Results, Reporting, and Critical Findings</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-25462" sec="article-25462.s7">Clinical Significance</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-25462" sec="article-25462.s8">Enhancing Healthcare Team Outcomes</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-25462" sec="article-25462.s9">Review Questions</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-25462" sec="article-25462.s10">References</SectionTitle></Section></Sections><ContributionDate><Year>2022</Year><Month>8</Month><Day>8</Day></ContributionDate><ReferenceList><Reference><Citation>Dugani SB, Ayala Melendez AP, Reka R, Hydoub YM, McCafferty SN, Murad MH, Alsheikh-Ali AA, Mora S. Risk factors associated with premature myocardial infarction: a systematic review protocol. BMJ Open. 2019 Feb 11;9(2):e023647.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6377544</ArticleId><ArticleId IdType="pubmed">30755446</ArticleId></ArticleIdList></Reference><Reference><Citation>Lin X, Zhang S, Huo Z. Serum Circulating miR-150 is a Predictor of Post-Acute Myocardial Infarction Heart Failure. Int Heart J. 2019 Mar 20;60(2):280-286.</Citation><ArticleIdList><ArticleId IdType="pubmed">30745540</ArticleId></ArticleIdList></Reference><Reference><Citation>Smolders VF, Zodda E, Quax PHA, Carini M, Barber&#xe0; JA, Thomson TM, Tura-Ceide O, Cascante M. Metabolic Alterations in Cardiopulmonary Vascular Dysfunction. Front Mol Biosci. 2018;5:120.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6349769</ArticleId><ArticleId IdType="pubmed">30723719</ArticleId></ArticleIdList></Reference><Reference><Citation>Pertiwi K, Kok DE, Wanders AJ, de Goede J, Zock PL, Geleijnse JM. Circulating n-3 fatty acids and linoleic acid as indicators of dietary fatty acid intake in post-myocardial infarction patients. Nutr Metab Cardiovasc Dis. 2019 Apr;29(4):343-350.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6431560</ArticleId><ArticleId IdType="pubmed">30718141</ArticleId></ArticleIdList></Reference><Reference><Citation>Dutka M, Bobi&#x144;ski R, Korbecki J. The relevance of microRNA in post-infarction left ventricular remodelling and heart failure. Heart Fail Rev. 2019 Jul;24(4):575-586.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6560007</ArticleId><ArticleId IdType="pubmed">30710255</ArticleId></ArticleIdList></Reference><Reference><Citation>Lam E, Higgins V, Zhang L, Chan MK, Bohn MK, Trajcevski K, Liu P, Adeli K, Nathan PC. Normative Values of High-Sensitivity Cardiac Troponin T and N-Terminal pro-B-Type Natriuretic Peptide in Children and Adolescents: A Study from the CALIPER Cohort. J Appl Lab Med. 2021 Mar 01;6(2):344-353.</Citation><ArticleIdList><ArticleId IdType="pubmed">32995884</ArticleId></ArticleIdList></Reference><Reference><Citation>Yang C, Liu F, Liu W, Cao G, Liu J, Huang S, Zhu M, Tu C, Wang J, Xiong B. Myocardial injury and risk factors for mortality in patients with COVID-19 pneumonia. Int J Cardiol. 2021 Mar 01;326:230-236.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7510443</ArticleId><ArticleId IdType="pubmed">32979425</ArticleId></ArticleIdList></Reference><Reference><Citation>Calvey GD, Katz AM, Zielinski KA, Dzikovski B, Pollack L. Characterizing Enzyme Reactions in Microcrystals for Effective Mix-and-Inject Experiments using X-ray Free-Electron Lasers. Anal Chem. 2020 Oct 20;92(20):13864-13870.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8367009</ArticleId><ArticleId IdType="pubmed">32955854</ArticleId></ArticleIdList></Reference><Reference><Citation>Aydin S, Ugur K, Aydin S, Sahin &#x130;, Yardim M. Biomarkers in acute myocardial infarction: current perspectives. Vasc Health Risk Manag. 2019;15:1-10.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6340361</ArticleId><ArticleId IdType="pubmed">30697054</ArticleId></ArticleIdList></Reference><Reference><Citation>Kim JY, Kim KH, Cho JY, Sim DS, Yoon HJ, Yoon NS, Hong YJ, Park HW, Kim JH, Ahn Y, Jeong MH, Cho JG, Park JC. D-dimer/troponin ratio in the differential diagnosis of acute pulmonary embolism from non-ST elevation myocardial infarction. Korean J Intern Med. 2019 Nov;34(6):1263-1271.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6823570</ArticleId><ArticleId IdType="pubmed">30685960</ArticleId></ArticleIdList></Reference><Reference><Citation>Blankenberg S, Wittlinger T, Nowak B, Rupprecht HJ. [Troponins as biomarkers for myocardial injury and myocardial infarction]. Herz. 2019 Feb;44(1):4-9.</Citation><ArticleIdList><ArticleId IdType="pubmed">30680412</ArticleId></ArticleIdList></Reference><Reference><Citation>Peres BU, Hirsch Allen AJ, Fox N, Laher I, Hanly P, Skomro R, Almeida F, Ayas NT, Canadian Sleep and Circadian Network Circulating biomarkers to identify cardiometabolic complications in patients with Obstructive Sleep Apnea: A systematic review. Sleep Med Rev. 2019 Apr;44:48-57.</Citation><ArticleIdList><ArticleId IdType="pubmed">30685729</ArticleId></ArticleIdList></Reference><Reference><Citation>Tevaearai Stahel HT, Do PD, Klaus JB, Gahl B, Locca D, G&#xf6;ber V, Carrel TP. Clinical Relevance of Troponin T Profile Following Cardiac Surgery. Front Cardiovasc Med. 2018;5:182.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6301188</ArticleId><ArticleId IdType="pubmed">30619889</ArticleId></ArticleIdList></Reference></ReferenceList></BookDocument><PubmedBookData><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">30422561</ArticleId></ArticleIdList></PubmedBookData></PubmedBookArticle><PubmedBookArticle><BookDocument><PMID Version="1">29939649</PMID><ArticleIdList><ArticleId IdType="bookaccession">NBK507872</ArticleId></ArticleIdList><Book><Publisher><PublisherName>StatPearls Publishing</PublisherName><PublisherLocation>Treasure Island (FL)</PublisherLocation></Publisher><BookTitle book="statpearls">StatPearls</BookTitle><PubDate><Year>2023</Year><Month>01</Month></PubDate><BeginningDate><Year>2023</Year><Month>01</Month></BeginningDate><Medium>Internet</Medium></Book><ArticleTitle book="statpearls" part="article-18701">Right Bundle Branch Block<Language>eng</Language><AuthorList Type="authors" CompleteYN="Y"><Author ValidYN="Y"><LastName>Harkness</LastName><ForeName>Weston T.</ForeName><Initials>WT</Initials><AffiliationInfo><Affiliation>Sky Ridge Medical Center</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Hicks</LastName><ForeName>Mary</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Rocky Vista University/Sky Ridge MC</Affiliation></AffiliationInfo></Author></AuthorList><PublicationType UI="D000072643">Study Guide</PublicationType><Abstract><AbstractText>Right bundle branch block (RBBB) is an electrocardiogram finding that occurs when the physiologic electrical conduction system of the heart, specifically in the His-Purkinje system, is altered or interrupted resulting in a widened QRS and electrocardiographic vector changes. The bundle of His divides in the interventricular septum into the right and left bundle branches. Initially, the right bundle branch off of the bundle of His travels down the interventricular septum near the endocardium. It then dives deeper into the muscular layer before re-emerging near the endocardium again. The right bundle branch receives most of its blood supply from the anterior descending coronary artery. It also receives collateral circulation from the right or left circumflex coronary arteries, depending on the dominance of the heart. Right bundle branch block is associated with structural changes from stretch or ischemia to the myocardium. It can also occur iatrogenically from certain common cardiac procedures, such as right heart catheterization. Although there is no significant association with cardiovascular risk factors, the presence of a right bundle branch block is a predictor of mortality in myocardial infarction, heart failure, and certain heart blocks. In asymptomatic patients, isolated right bundle branch block typically does not need further evaluation.</AbstractText><CopyrightInformation>Copyright &#xa9; 2023, StatPearls Publishing LLC.</CopyrightInformation></Abstract><Sections><Section><SectionTitle book="statpearls" part="article-18701" sec="article-18701.s1">Continuing Education Activity</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-18701" sec="article-18701.s2">Introduction</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-18701" sec="article-18701.s3">Etiology</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-18701" sec="article-18701.s4">Epidemiology</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-18701" sec="article-18701.s5">Pathophysiology</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-18701" sec="article-18701.s6">History and Physical</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-18701" sec="article-18701.s7">Evaluation</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-18701" sec="article-18701.s8">Treatment / Management</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-18701" sec="article-18701.s9">Differential Diagnosis</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-18701" sec="article-18701.s10">Prognosis</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-18701" sec="article-18701.s11">Pearls and Other Issues</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-18701" sec="article-18701.s12">Enhancing Healthcare Team Outcomes</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-18701" sec="article-18701.s13">Review Questions</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-18701" sec="article-18701.s16">References</SectionTitle></Section></Sections><ContributionDate><Year>2022</Year><Month>8</Month><Day>8</Day></ContributionDate><ReferenceList><Reference><Citation>Tusscher KH, Panfilov AV. Modelling of the ventricular conduction system. Prog Biophys Mol Biol. 2008 Jan-Apr;96(1-3):152-70.</Citation><ArticleIdList><ArticleId IdType="pubmed">17910889</ArticleId></ArticleIdList></Reference><Reference><Citation>Sarda L, Colin P, Boccara F, Daou D, Lebtahi R, Faraggi M, Nguyen C, Cohen A, Slama MS, Steg PG, Le Guludec D. Myocarditis in patients with clinical presentation of myocardial infarction and normal coronary angiograms. J Am Coll Cardiol. 2001 Mar 01;37(3):786-92.</Citation><ArticleIdList><ArticleId IdType="pubmed">11693753</ArticleId></ArticleIdList></Reference><Reference><Citation>Patil AR. Risk of right bundle-branch block and complete heart block during pulmonary artery catheterization. Crit Care Med. 1990 Jan;18(1):122-3.</Citation><ArticleIdList><ArticleId IdType="pubmed">2293963</ArticleId></ArticleIdList></Reference><Reference><Citation>Rotman M, Triebwasser JH. A clinical and follow-up study of right and left bundle branch block. Circulation. 1975 Mar;51(3):477-84.</Citation><ArticleIdList><ArticleId IdType="pubmed">1132086</ArticleId></ArticleIdList></Reference><Reference><Citation>Horowitz LN, Alexander JA, Edmunds LH. Postoperative right bundle branch block: identification of three levels of block. Circulation. 1980 Aug;62(2):319-28.</Citation><ArticleIdList><ArticleId IdType="pubmed">7397974</ArticleId></ArticleIdList></Reference><Reference><Citation>Ohmae M, Rabkin SW. Hyperkalemia-induced bundle branch block and complete heart block. Clin Cardiol. 1981 Jan;4(1):43-6.</Citation><ArticleIdList><ArticleId IdType="pubmed">7226590</ArticleId></ArticleIdList></Reference><Reference><Citation>Stein PD, Matta F, Sabra MJ, Treadaway B, Vijapura C, Warren R, Joshi P, Sadiq M, Kofoed JT, Hughes P, Chabala SD, Keyes DC, Kakish E, Hughes MJ. Relation of electrocardiographic changes in pulmonary embolism to right ventricular enlargement. Am J Cardiol. 2013 Dec 15;112(12):1958-61.</Citation><ArticleIdList><ArticleId IdType="pubmed">24075285</ArticleId></ArticleIdList></Reference><Reference><Citation>Agarwal S, Tuzcu EM, Desai MY, Smedira N, Lever HM, Lytle BW, Kapadia SR. Updated meta-analysis of septal alcohol ablation versus myectomy for hypertrophic cardiomyopathy. J Am Coll Cardiol. 2010 Feb 23;55(8):823-34.</Citation><ArticleIdList><ArticleId IdType="pubmed">20170823</ArticleId></ArticleIdList></Reference><Reference><Citation>LENEGRE J. ETIOLOGY AND PATHOLOGY OF BILATERAL BUNDLE BRANCH BLOCK IN RELATION TO COMPLETE HEART BLOCK. Prog Cardiovasc Dis. 1964 Mar;6:409-44.</Citation><ArticleIdList><ArticleId IdType="pubmed">14153648</ArticleId></ArticleIdList></Reference><Reference><Citation>LEV M. ANATOMIC BASIS FOR ATRIOVENTRICULAR BLOCK. Am J Med. 1964 Nov;37:742-8.</Citation><ArticleIdList><ArticleId IdType="pubmed">14237429</ArticleId></ArticleIdList></Reference><Reference><Citation>Denes P, Wu D, Dhingra RC, Amat-y-leon F, Wyndham C, Rosen KM. Eectrophysiological observations in pateints with rate dependent bundle branch block. Circulation. 1975 Feb;51(2):244-50.</Citation><ArticleIdList><ArticleId IdType="pubmed">1112004</ArticleId></ArticleIdList></Reference><Reference><Citation>Eriksson P, Hansson PO, Eriksson H, Dellborg M. Bundle-branch block in a general male population: the study of men born 1913. Circulation. 1998 Dec 01;98(22):2494-500.</Citation><ArticleIdList><ArticleId IdType="pubmed">9832497</ArticleId></ArticleIdList></Reference><Reference><Citation>Arnsdorf MF. The cellular basis of cardiac arrhythmias. A matrical perspective. Ann N Y Acad Sci. 1990;601:263-80.</Citation><ArticleIdList><ArticleId IdType="pubmed">2221691</ArticleId></ArticleIdList></Reference><Reference><Citation>LEATHAM A. Splitting of the first and second heart sounds. Lancet. 1954 Sep 25;267(6839):607-14.</Citation><ArticleIdList><ArticleId IdType="pubmed">13202450</ArticleId></ArticleIdList></Reference><Reference><Citation>Surawicz B, Childers R, Deal BJ, Gettes LS, Bailey JJ, Gorgels A, Hancock EW, Josephson M, Kligfield P, Kors JA, Macfarlane P, Mason JW, Mirvis DM, Okin P, Pahlm O, Rautaharju PM, van Herpen G, Wagner GS, Wellens H, American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology. American College of Cardiology Foundation. Heart Rhythm Society AHA/ACCF/HRS recommendations for the standardization and interpretation of the electrocardiogram: part III: intraventricular conduction disturbances: a scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society. Endorsed by the International Society for Computerized Electrocardiology. J Am Coll Cardiol. 2009 Mar 17;53(11):976-81.</Citation><ArticleIdList><ArticleId IdType="pubmed">19281930</ArticleId></ArticleIdList></Reference><Reference><Citation>Bilchick KC, Kamath S, DiMarco JP, Stukenborg GJ. Bundle-branch block morphology and other predictors of outcome after cardiac resynchronization therapy in Medicare patients. Circulation. 2010 Nov 16;122(20):2022-30.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3659803</ArticleId><ArticleId IdType="pubmed">21041691</ArticleId></ArticleIdList></Reference><Reference><Citation>Gussak I, Antzelevitch C, Bjerregaard P, Towbin JA, Chaitman BR. The Brugada syndrome: clinical, electrophysiologic and genetic aspects. J Am Coll Cardiol. 1999 Jan;33(1):5-15.</Citation><ArticleIdList><ArticleId IdType="pubmed">9935001</ArticleId></ArticleIdList></Reference><Reference><Citation>Okmen E, Erdinler I, Oguz E, Akyol A, Turek O, Cam N, Ulufer T. An electrocardiographic algorithm for determining the location of pacemaker electrode in patients with right bundle branch block configuration during permanent ventricular pacing. Angiology. 2006 Oct-Nov;57(5):623-30.</Citation><ArticleIdList><ArticleId IdType="pubmed">17067986</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang ZM, Rautaharju PM, Soliman EZ, Manson JE, Cain ME, Martin LW, Bavry AA, Mehta L, Vitolins M, Prineas RJ. Mortality risk associated with bundle branch blocks and related repolarization abnormalities (from the Women's Health Initiative [WHI]). Am J Cardiol. 2012 Nov 15;110(10):1489-95.</Citation><ArticleIdList><ArticleId IdType="pubmed">22858187</ArticleId></ArticleIdList></Reference><Reference><Citation>Wagner GS, Macfarlane P, Wellens H, Josephson M, Gorgels A, Mirvis DM, Pahlm O, Surawicz B, Kligfield P, Childers R, Gettes LS, Bailey JJ, Deal BJ, Gorgels A, Hancock EW, Kors JA, Mason JW, Okin P, Rautaharju PM, van Herpen G, American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology. American College of Cardiology Foundation. Heart Rhythm Society AHA/ACCF/HRS recommendations for the standardization and interpretation of the electrocardiogram: part VI: acute ischemia/infarction: a scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society. Endorsed by the International Society for Computerized Electrocardiology. J Am Coll Cardiol. 2009 Mar 17;53(11):1003-11.</Citation><ArticleIdList><ArticleId IdType="pubmed">19281933</ArticleId></ArticleIdList></Reference></ReferenceList></BookDocument><PubmedBookData><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">29939649</ArticleId></ArticleIdList></PubmedBookData></PubmedBookArticle><PubmedBookArticle><BookDocument><PMID Version="1">29083808</PMID><ArticleIdList><ArticleId IdType="bookaccession">NBK459269</ArticleId></ArticleIdList><Book><Publisher><PublisherName>StatPearls Publishing</PublisherName><PublisherLocation>Treasure Island (FL)</PublisherLocation></Publisher><BookTitle book="statpearls">StatPearls</BookTitle><PubDate><Year>2023</Year><Month>01</Month></PubDate><BeginningDate><Year>2023</Year><Month>01</Month></BeginningDate><Medium>Internet</Medium></Book><ArticleTitle book="statpearls" part="article-17160">Acute Myocardial Infarction
A 74-year-old female with previous permanent pacemaker insertion for complete heart block and no history of connective tissue disease presented to our regional cardiothoracic center with progressive exertional shortness of breath. Nine years later, when the patient was 83 years old, a computed tomography scan of the thoracic aorta revealed an isolated aneurysm of the aortic root measuring 7.6 &#xd7; 5.1 cm at the sinus of Valsalva.<CopyrightInformation>Copyright: &#xa9; 2022 The Author(s).</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Azam</LastName><ForeName>Rabia</ForeName><Initials>R</Initials><AffiliationInfo><Affiliation>Glenfield Hospital, Leicester, UK.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Acharya</LastName><ForeName>Metesh</ForeName><Initials>M</Initials><Identifier Source="ORCID">0000-0003-1744-7717</Identifier><AffiliationInfo><Affiliation>Glenfield Hospital, Leicester, UK.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Vadera</LastName><ForeName>Sonam</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Glenfield Hospital, Leicester, UK.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Adair</LastName><ForeName>William</ForeName><Initials>W</Initials><AffiliationInfo><Affiliation>Glenfield Hospital, Leicester, UK.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Mariscalco</LastName><ForeName>Giovanni</ForeName><Initials>G</Initials><Identifier Source="ORCID">0000-0001-8200-2269</Identifier><AffiliationInfo><Affiliation>Glenfield Hospital, Leicester, UK.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D002363">Case Reports</PublicationType><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2022</Year><Month>07</Month><Day>20</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Methodist Debakey Cardiovasc J</MedlineTA><NlmUniqueID>101508600</NlmUniqueID><ISSNLinking>1947-6108</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000369" MajorTopicYN="N">Aged, 80 and over</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D001014" MajorTopicYN="Y">Aortic Aneurysm</DescriptorName><QualifierName UI="Q000000981" MajorTopicYN="N">diagnostic imaging</QualifierName><QualifierName UI="Q000209" MajorTopicYN="N">etiology</QualifierName><QualifierName UI="Q000601" MajorTopicYN="N">surgery</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D017545" MajorTopicYN="Y">Aortic Aneurysm, Thoracic</DescriptorName><QualifierName UI="Q000000981" MajorTopicYN="N">diagnostic imaging</QualifierName><QualifierName UI="Q000209" MajorTopicYN="N">etiology</QualifierName><QualifierName UI="Q000601" MajorTopicYN="N">surgery</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D001021" MajorTopicYN="N">Aortic Valve</DescriptorName><QualifierName UI="Q000000981" MajorTopicYN="N">diagnostic imaging</QualifierName><QualifierName UI="Q000601" MajorTopicYN="N">surgery</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D001022" MajorTopicYN="Y">Aortic Valve Insufficiency</DescriptorName><QualifierName UI="Q000601" MajorTopicYN="N">surgery</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006350" MajorTopicYN="Y">Heart Valve Prosthesis</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012850" MajorTopicYN="Y">Sinus of Valsalva</DescriptorName><QualifierName UI="Q000000981" MajorTopicYN="N">diagnostic imaging</QualifierName><QualifierName UI="Q000601" MajorTopicYN="N">surgery</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">aortic root aneurysm</Keyword><Keyword MajorTopicYN="N">aortic root expansion</Keyword><Keyword MajorTopicYN="N">aortic valve replacement</Keyword></KeywordList><CoiStatement>The authors have no competing interests to declare.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2022</Year><Month>4</Month><Day>17</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2022</Year><Month>4</Month><Day>22</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2022</Year><Month>8</Month><Day>8</Day><Hour>3</Hour><Minute>26</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2022</Year><Month>8</Month><Day>9</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2022</Year><Month>8</Month><Day>10</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">35935098</ArticleId><ArticleId IdType="pmc">PMC9306668</ArticleId><ArticleId IdType="doi">10.14797/mdcvj.1118</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedBookArticle><BookDocument><PMID Version="1">33760518</PMID><ArticleIdList><ArticleId IdType="bookaccession">NBK568759</ArticleId></ArticleIdList><Book><Publisher><PublisherName>StatPearls Publishing</PublisherName><PublisherLocation>Treasure Island (FL)</PublisherLocation></Publisher><BookTitle book="statpearls">StatPearls</BookTitle><PubDate><Year>2023</Year><Month>01</Month></PubDate><BeginningDate><Year>2023</Year><Month>01</Month></BeginningDate><Medium>Internet</Medium></Book><ArticleTitle book="statpearls" part="nurse-article-17160">Acute Myocardial Infarction (Nursing)</ArticleTitle><Language>eng</Language><AuthorList Type="authors" CompleteYN="Y"><Author ValidYN="Y"><LastName>Mechanic</LastName><ForeName>Oren J.</ForeName><Initials>OJ</Initials><AffiliationInfo><Affiliation>Harvard Medical School/BIDMC</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Gavin</LastName><ForeName>Michael</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Harvard Medical School</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Grossman</LastName><ForeName>Shamai A.</ForeName><Initials>SA</Initials><AffiliationInfo><Affiliation>HVD Med Sch</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ziegler</LastName><ForeName>Kim</ForeName><Initials>K</Initials><AffiliationInfo><Affiliation>St. John Fisher College</Affiliation></AffiliationInfo></Author></AuthorList><PublicationType UI="D000072643">Study Guide</PublicationType><Abstract>Acute myocardial infarction is one of the leading causes of death in the developed world. The prevalence of the disease approaches three million people worldwide, with more than one million deaths in the United States annually. Acute myocardial infarction can be divided into two categories, non-ST-segment elevation MI (NSTEMI) and ST-segment elevation MI (STEMI). Unstable angina is similar to NSTEMI. However, cardiac markers are not elevated. An MI results in irreversible damage to the heart muscle due to a lack of oxygen. An MI may lead to impairment in diastolic and systolic function and make the patient prone to arrhythmias. In addition, an MI can lead to a number of serious complications. The key is to reperfuse the heart and restore blood flow. The earlier the treatment (less than 6 hours from symptom onset), the better the prognosis. An MI is diagnosed when two of the following criteria are met: 1. Symptoms of ischemia. 2. New ST-segment changes or a left bundle branch block (LBBB). 3. Presence of pathological Q waves on the ECG. 4. Imaging study showing new regional wall motion abnormality. 5. Presence of an intracoronary thrombus at autopsy or angiography.<CopyrightInformation>Copyright &#xa9; 2023, StatPearls Publishing LLC.</CopyrightInformation></Abstract><Sections><Section><SectionTitle book="statpearls" part="nurse-article-17160" sec="nurse-article-17160.s1">Learning Outcome</SectionTitle></Section><Section><SectionTitle book="statpearls" part="nurse-article-17160" sec="nurse-article-17160.s2">Introduction</SectionTitle></Section><Section><SectionTitle book="statpearls" part="nurse-article-17160" sec="nurse-article-17160.s3">Nursing Diagnosis</SectionTitle></Section><Section><SectionTitle book="statpearls" part="nurse-article-17160" sec="nurse-article-17160.s4">Causes</SectionTitle></Section><Section><SectionTitle book="statpearls" part="nurse-article-17160" sec="nurse-article-17160.s5">Risk Factors</SectionTitle></Section><Section><SectionTitle book="statpearls" part="nurse-article-17160" sec="nurse-article-17160.s6">Assessment</SectionTitle></Section><Section><SectionTitle book="statpearls" part="nurse-article-17160" sec="nurse-article-17160.s7">Evaluation</SectionTitle></Section><Section><SectionTitle book="statpearls" part="nurse-article-17160" sec="nurse-article-17160.s8">Medical Management</SectionTitle></Section><Section><SectionTitle book="statpearls" part="nurse-article-17160" sec="nurse-article-17160.s9">Nursing Management</SectionTitle></Section><Section><SectionTitle book="statpearls" part="nurse-article-17160" sec="nurse-article-17160.s10">When To Seek Help</SectionTitle></Section><Section><SectionTitle book="statpearls" part="nurse-article-17160" sec="nurse-article-17160.s11">Outcome Identification</SectionTitle></Section><Section><SectionTitle book="statpearls" part="nurse-article-17160" sec="nurse-article-17160.s12">Monitoring</SectionTitle></Section><Section><SectionTitle book="statpearls" part="nurse-article-17160" sec="nurse-article-17160.s13">Coordination of Care</SectionTitle></Section><Section><SectionTitle book="statpearls" part="nurse-article-17160" sec="nurse-article-17160.s14">Health Teaching and Health Promotion</SectionTitle></Section><Section><SectionTitle book="statpearls" part="nurse-article-17160" sec="nurse-article-17160.s15">Risk Management</SectionTitle></Section><Section><SectionTitle book="statpearls" part="nurse-article-17160" sec="nurse-article-17160.s16">Discharge Planning</SectionTitle></Section><Section><SectionTitle book="statpearls" part="nurse-article-17160" sec="nurse-article-17160.s17">Evidence-Based Issues</SectionTitle></Section><Section><SectionTitle book="statpearls" part="nurse-article-17160" sec="nurse-article-17160.s18">Review Questions</SectionTitle></Section><Section><SectionTitle book="statpearls" part="nurse-article-17160" sec="nurse-article-17160.s23">References</SectionTitle></Section></Sections><ContributionDate><Year>2022</Year><Month>8</Month><Day>8</Day></ContributionDate><ReferenceList><Reference><Citation>Nascimento BR, Brant LCC, Marino BCA, Passaglia LG, Ribeiro ALP. Implementing myocardial infarction systems of care in low/middle-income countries. Heart. 2019 Jan;105(1):20-26.</Citation><ArticleIdList><ArticleId IdType="pubmed">30269080</ArticleId></ArticleIdList></Reference><Reference><Citation>Barberi C, van den Hondel KE. The use of cardiac troponin T (cTnT) in the postmortem diagnosis of acute myocardial infarction and sudden cardiac death: A systematic review. Forensic Sci Int. 2018 Nov;292:27-38.</Citation><ArticleIdList><ArticleId IdType="pubmed">30269044</ArticleId></ArticleIdList></Reference><Reference><Citation>Alaour B, Liew F, Kaier TE. Cardiac Troponin - diagnostic problems and impact on cardiovascular disease. Ann Med. 2018 Dec;50(8):655-665.</Citation><ArticleIdList><ArticleId IdType="pubmed">30265127</ArticleId></ArticleIdList></Reference><Reference><Citation>Massberg S, Polzin A. [Update ESC-Guideline 2017: Dual Antiplatelet Therapy]. Dtsch Med Wochenschr. 2018 Aug;143(15):1090-1093.</Citation><ArticleIdList><ArticleId IdType="pubmed">30060279</ArticleId></ArticleIdList></Reference><Reference><Citation>Scheen AJ. [From atherosclerosis to atherothrombosis : from a silent chronic pathology to an acute critical event]. Rev Med Liege. 2018 May;73(5-6):224-228.</Citation><ArticleIdList><ArticleId IdType="pubmed">29926559</ArticleId></ArticleIdList></Reference><Reference><Citation>Berg DD, Wiviott SD, Braunwald E, Guo J, Im K, Kashani A, Gibson CM, Cannon CP, Morrow DA, Bhatt DL, Mega JL, O'Donoghue ML, Antman EM, Newby LK, Sabatine MS, Giugliano RP. Modes and timing of death in 66&#x2009;252 patients with non-ST-segment elevation acute coronary syndromes enrolled in 14 TIMI trials. Eur Heart J. 2018 Nov 07;39(42):3810-3820.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6220126</ArticleId><ArticleId IdType="pubmed">30239711</ArticleId></ArticleIdList></Reference><Reference><Citation>Deng D, Liu L, Xu G, Gan J, Shen Y, Shi Y, Zhu R, Lin Y. Epidemiology and Serum Metabolic Characteristics of Acute Myocardial Infarction Patients in Chest Pain Centers. Iran J Public Health. 2018 Jul;47(7):1017-1029.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6119561</ArticleId><ArticleId IdType="pubmed">30182001</ArticleId></ArticleIdList></Reference><Reference><Citation>Haig C, Carrick D, Carberry J, Mangion K, Maznyczka A, Wetherall K, McEntegart M, Petrie MC, Eteiba H, Lindsay M, Hood S, Watkins S, Davie A, Mahrous A, Mordi I, Ahmed N, Teng Yue May V, Ford I, Radjenovic A, Welsh P, Sattar N, Oldroyd KG, Berry C. Current Smoking and Prognosis After&#xa0;Acute ST-Segment Elevation Myocardial&#xa0;Infarction: New Pathophysiological Insights. JACC Cardiovasc Imaging. 2019 Jun;12(6):993-1003.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6547246</ArticleId><ArticleId IdType="pubmed">30031700</ArticleId></ArticleIdList></Reference><Reference><Citation>Alqu&#xe9;zar-Arb&#xe9; A, Sanch&#xed;s J, Guill&#xe9;n E, Bardaj&#xed; A, Mir&#xf3; &#xd2;, Ord&#xf3;&#xf1;ez-Llanos J. Cardiac troponin measurement and interpretation in the diagnosis of acute myocardial infarction in the emergency department: a consensus statement. Emergencias. 2018 Oct;30(5):336-349.</Citation><ArticleIdList><ArticleId IdType="pubmed">30260119</ArticleId></ArticleIdList></Reference><Reference><Citation>Perera M, Aggarwal L, Scott IA, Logan B. Received care compared to ADP-guided care of patients admitted to hospital with chest pain of possible cardiac origin. Int J Gen Med. 2018;11:345-351.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6128279</ArticleId><ArticleId IdType="pubmed">30214268</ArticleId></ArticleIdList></Reference><Reference><Citation>Riley RF, Miller CD, Russell GB, Soliman EZ, Hiestand BC, Herrington DM, Mahler SA. Usefulness of Serial 12-Lead Electrocardiograms in Predicting 30-Day Outcomes in Patients With Undifferentiated Chest Pain (the ASAP CATH Study). Am J Cardiol. 2018 Aug 01;122(3):374-380.</Citation><ArticleIdList><ArticleId IdType="pubmed">30196932</ArticleId></ArticleIdList></Reference><Reference><Citation>Larson EA, German DM, Shatzel J, DeLoughery TG. Anticoagulation in the cardiac patient: A concise review. Eur J Haematol. 2019 Jan;102(1):3-19.</Citation><ArticleIdList><ArticleId IdType="pubmed">30203452</ArticleId></ArticleIdList></Reference><Reference><Citation>Bath PM, Woodhouse LJ, Appleton JP, Beridze M, Christensen H, Dineen RA, Flaherty K, Duley L, England TJ, Havard D, Heptinstall S, James M, Kasonde C, Krishnan K, Markus HS, Montgomery AA, Pocock S, Randall M, Ranta A, Robinson TG, Scutt P, Venables GS, Sprigg N. Triple versus guideline antiplatelet therapy to prevent recurrence after acute ischaemic stroke or transient ischaemic attack: the TARDIS RCT. Health Technol Assess. 2018 Aug;22(48):1-76.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6139477</ArticleId><ArticleId IdType="pubmed">30179153</ArticleId></ArticleIdList></Reference><Reference><Citation>Adamski P, Adamska U, Ostrowska M, Navarese EP, Kubica J. Evaluating current and emerging antithrombotic therapy currently available for the treatment of acute coronary syndrome in geriatric populations. Expert Opin Pharmacother. 2018 Sep;19(13):1415-1425.</Citation><ArticleIdList><ArticleId IdType="pubmed">30132731</ArticleId></ArticleIdList></Reference><Reference><Citation>Aeyels D, Seys D, Sinnaeve PR, Claeys MJ, Gevaert S, Schoors D, Sermeus W, Panella M, Bruyneel L, Vanhaecht K. Managing in-hospital quality improvement: An importance-performance analysis to set priorities for ST-elevation myocardial infarction care. Eur J Cardiovasc Nurs. 2018 Aug;17(6):535-542.</Citation><ArticleIdList><ArticleId IdType="pubmed">29448818</ArticleId></ArticleIdList></Reference><Reference><Citation>Schwaab B. [Cardiac Rehabilitation]. Rehabilitation (Stuttg) 2018 Apr;57(2):117-126.</Citation><ArticleIdList><ArticleId IdType="pubmed">29216666</ArticleId></ArticleIdList></Reference><Reference><Citation>El Hajj MS, Jaam MJ, Awaisu A. Effect of pharmacist care on medication adherence and cardiovascular outcomes among patients post-acute coronary syndrome: A&#xa0;systematic review. Res Social Adm Pharm. 2018 Jun;14(6):507-520.</Citation><ArticleIdList><ArticleId IdType="pubmed">28641999</ArticleId></ArticleIdList></Reference><Reference><Citation>Stone GW, Ellis SG, Gori T, Metzger DC, Stein B, Erickson M, Torzewski J, Williams J, Lawson W, Broderick TM, Kabour A, Piegari G, Cavendish J, Bertolet B, Choi JW, Marx SO, G&#xe9;n&#xe9;reux P, Kereiakes DJ, ABSORB IV Investigators Blinded outcomes and angina assessment of coronary bioresorbable scaffolds: 30-day and 1-year results from the ABSORB IV randomised trial. Lancet. 2018 Oct 27;392(10157):1530-1540.</Citation><ArticleIdList><ArticleId IdType="pubmed">30266412</ArticleId></ArticleIdList></Reference><Reference><Citation>Lopes RD, de Barros E Silva PGM, de Andrade Jesu&#xed;no I, Santucci EV, Barbosa LM, Damiani LP, Nakagawa Santos RH, Laranjeira LN, Dall Orto FTC, Beraldo de Andrade P, de Castro Bienert IR, Alexander JH, Granger CB, Berwanger O. Timing of Loading Dose of Atorvastatin in Patients Undergoing Percutaneous Coronary Intervention for Acute Coronary Syndromes: Insights From the SECURE-PCI Randomized Clinical Trial. JAMA Cardiol. 2018 Nov 01;3(11):1113-1118.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6583055</ArticleId><ArticleId IdType="pubmed">30264159</ArticleId></ArticleIdList></Reference><Reference><Citation>Choi AR, Jeong MH, Hong YJ, Sohn SJ, Kook HY, Sim DS, Ahn YK, Lee KH, Cho JY, Kim YJ, Cho MC, Kim CJ, other Korea Acute Myocardial Infarction Registry Investigators Clinical characteristics and outcomes in acute myocardial infarction patients with versus without any cardiovascular risk factors. Korean J Intern Med. 2019 Sep;34(5):1040-1049.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6718753</ArticleId><ArticleId IdType="pubmed">30257551</ArticleId></ArticleIdList></Reference><Reference><Citation>Piotrowicz R, Wolszakiewicz J. Cardiac rehabilitation following myocardial infarction. Cardiol J. 2008;15(5):481-7.</Citation><ArticleIdList><ArticleId IdType="pubmed">18810728</ArticleId></ArticleIdList></Reference><Reference><Citation>Ruano-Ravina A, Pena-Gil C, Abu-Assi E, Raposeiras S, van 't Hof A, Meindersma E, Bossano Prescott EI, Gonz&#xe1;lez-Juanatey JR. Participation and adherence to cardiac rehabilitation programs. A systematic review. Int J Cardiol. 2016 Nov 15;223:436-443.</Citation><ArticleIdList><ArticleId IdType="pubmed">27557484</ArticleId></ArticleIdList></Reference><Reference><Citation>Sj&#xf6;lin I, B&#xe4;ck M, Nilsson L, Schiopu A, Leosdottir M. Association between attending exercise-based cardiac rehabilitation and cardiovascular risk factors at one-year post myocardial infarction. PLoS One. 2020;15(5):e0232772.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7213725</ArticleId><ArticleId IdType="pubmed">32392231</ArticleId></ArticleIdList></Reference><Reference><Citation>Contractor AS. Cardiac rehabilitation after myocardial infarction. J Assoc Physicians India. 2011 Dec;59 Suppl:51-5.</Citation><ArticleIdList><ArticleId IdType="pubmed">22624283</ArticleId></ArticleIdList></Reference></ReferenceList></BookDocument><PubmedBookData><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">33760518</ArticleId></ArticleIdList></PubmedBookData></PubmedBookArticle><PubmedBookArticle><BookDocument><PMID Version="1">31536197</PMID><ArticleIdList><ArticleId IdType="bookaccession">NBK546589</ArticleId></ArticleIdList><Book><Publisher><PublisherName>StatPearls Publishing</PublisherName><PublisherLocation>Treasure Island (FL)</PublisherLocation></Publisher><BookTitle book="statpearls">StatPearls</BookTitle><PubDate><Year>2023</Year><Month>01</Month></PubDate><BeginningDate><Year>2023</Year><Month>01</Month></BeginningDate><Medium>Internet</Medium></Book><ArticleTitle book="statpearls" part="article-17683">Physiology, Anticholinergic Reaction</ArticleTitle><Language>eng</Language><AuthorList Type="authors" CompleteYN="Y"><Author ValidYN="Y"><LastName>Migirov</LastName><ForeName>Allan</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Cleveland Clinic Foundation</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Datta</LastName><ForeName>Anita R.</ForeName><Initials>AR</Initials><AffiliationInfo><Affiliation>HCA Houston healthcare Kingwood</Affiliation></AffiliationInfo></Author></AuthorList><PublicationType UI="D000072643">Study Guide</PublicationType><Abstract>Acetylcholine (ACh) is a neurotransmitter that acts on the central nervous system (CNS), the autonomic nervous system (ANS), and at the neuromuscular junction (NMJ). Generally, ACh receptors at the NMJ are nicotinic type while in the CNS and ANS they are usually muscarinic type. As a reminder, these receptors are functionally and structurally different; nicotinic ACh receptors are ligand-gated ion channels, whereas muscarinic ACh receptors are G-protein coupled receptors. Processes that enhance ACh function are termed &#x201c;cholinergic&#x201d; while processes that inhibit the action of ACh at its receptors are termed &#x201c;anticholinergic.&#x201d; Anticholinergic effects are most commonly the result of medication. These medications should be more appropriately termed "antimuscarinics," as they usually block muscarinic but not nicotinic receptors. At least 600 drugs/medicinal products are recognized to have anticholinergic activity, and the most common of these are responsible for a significant amount of poisoning admissions. Many also contribute to the development of an anticholinergic reaction: a constellation of symptoms resulting from the antagonism of muscarinic receptors throughout the body. The features of the anticholinergic reaction are deducible from an understanding of the normal function of muscarinic receptors at various organs, and the following mnemonic summarizes these effects: Mad as a hatter (delirium). Blind as a bat (ocular symptoms). Dry as a bone (anhidrosis/dry mouth/dry skin). Hot as a hare (fever). Bloated as a toad (constipation). The heart runs alone (tachycardia). Full as a flask (urinary retention). Red as a beet (cutaneous vasodilation). Clinically the most significant feature is delirium, particularly in the elderly, who are most likely to be affected by the anticholinergic reaction.<CopyrightInformation>Copyright &#xa9; 2023, StatPearls Publishing LLC.</CopyrightInformation></Abstract><Sections><Section><SectionTitle book="statpearls" part="article-17683" sec="article-17683.s1">Introduction</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-17683" sec="article-17683.s2">Cellular Level</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-17683" sec="article-17683.s3">Organ Systems Involved</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-17683" sec="article-17683.s4">Mechanism</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-17683" sec="article-17683.s5">Related Testing</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-17683" sec="article-17683.s6">Clinical Significance</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-17683" sec="article-17683.s7">Review Questions</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-17683" sec="article-17683.s8">References</SectionTitle></Section></Sections><ContributionDate><Year>2022</Year><Month>8</Month><Day>8</Day></ContributionDate><ReferenceList><Reference><Citation>Ferreira-Vieira TH, Guimaraes IM, Silva FR, Ribeiro FM. Alzheimer's disease: Targeting the Cholinergic System. Curr Neuropharmacol. 2016;14(1):101-15.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4787279</ArticleId><ArticleId IdType="pubmed">26813123</ArticleId></ArticleIdList></Reference><Reference><Citation>Dawson AH, Buckley NA. Pharmacological management of anticholinergic delirium - theory, evidence and practice. Br J Clin Pharmacol. 2016 Mar;81(3):516-24.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4767198</ArticleId><ArticleId IdType="pubmed">26589572</ArticleId></ArticleIdList></Reference><Reference><Citation>Dur&#xe1;n CE, Azermai M, Vander Stichele RH. Systematic review of anticholinergic risk scales in older adults. Eur J Clin Pharmacol. 2013 Jul;69(7):1485-96.</Citation><ArticleIdList><ArticleId IdType="pubmed">23529548</ArticleId></ArticleIdList></Reference><Reference><Citation>Abrams P, Andersson KE, Buccafusco JJ, Chapple C, de Groat WC, Fryer AD, Kay G, Laties A, Nathanson NM, Pasricha PJ, Wein AJ. Muscarinic receptors: their distribution and function in body systems, and the implications for treating overactive bladder. Br J Pharmacol. 2006 Jul;148(5):565-78.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC1751864</ArticleId><ArticleId IdType="pubmed">16751797</ArticleId></ArticleIdList></Reference><Reference><Citation>Gerretsen P, Pollock BG. Rediscovering adverse anticholinergic effects. J Clin Psychiatry. 2011 Jun;72(6):869-70.</Citation><ArticleIdList><ArticleId IdType="pubmed">21733482</ArticleId></ArticleIdList></Reference><Reference><Citation>Price D, Fromer L, Kaplan A, van der Molen T, Rom&#xe1;n-Rodr&#xed;guez M. Is there a rationale and role for long-acting anticholinergic bronchodilators in asthma? NPJ Prim Care Respir Med. 2014 Jul 17;24:14023.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4373380</ArticleId><ArticleId IdType="pubmed">25030457</ArticleId></ArticleIdList></Reference><Reference><Citation>Lampela P, Paajanen T, Hartikainen S, Huupponen R. Central Anticholinergic Adverse Effects and Their Measurement. Drugs Aging. 2015 Dec;32(12):963-74.</Citation><ArticleIdList><ArticleId IdType="pubmed">26518014</ArticleId></ArticleIdList></Reference><Reference><Citation>Tune LE. Anticholinergic effects of medication in elderly patients. J Clin Psychiatry. 2001;62 Suppl 21:11-4.</Citation><ArticleIdList><ArticleId IdType="pubmed">11584981</ArticleId></ArticleIdList></Reference><Reference><Citation>Ueki T, Nakashima M. Relationship Between Constipation and Medication. J UOEH. 2019;41(2):145-151.</Citation><ArticleIdList><ArticleId IdType="pubmed">31292358</ArticleId></ArticleIdList></Reference><Reference><Citation>Torres NE, Zollman PJ, Low PA. Characterization of muscarinic receptor subtype of rat eccrine sweat gland by autoradiography. Brain Res. 1991 May 31;550(1):129-32.</Citation><ArticleIdList><ArticleId IdType="pubmed">1888990</ArticleId></ArticleIdList></Reference><Reference><Citation>Golding JF, Wesnes KA, Leaker BR. The effects of the selective muscarinic M3 receptor antagonist darifenacin, and of hyoscine (scopolamine), on motion sickness, skin conductance &amp; cognitive function. Br J Clin Pharmacol. 2018 Jul;84(7):1535-1543.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6005615</ArticleId><ArticleId IdType="pubmed">29522648</ArticleId></ArticleIdList></Reference><Reference><Citation>Black CE, Huang N, Neligan PC, Levine RH, Lipa JE, Lintlop S, Forrest CR, Pang CY. Effect of nicotine on vasoconstrictor and vasodilator responses in human skin vasculature. Am J Physiol Regul Integr Comp Physiol. 2001 Oct;281(4):R1097-104.</Citation><ArticleIdList><ArticleId IdType="pubmed">11557615</ArticleId></ArticleIdList></Reference><Reference><Citation>Cooke JP, Ghebremariam YT. Endothelial nicotinic acetylcholine receptors and angiogenesis. Trends Cardiovasc Med. 2008 Oct;18(7):247-53.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2673464</ArticleId><ArticleId IdType="pubmed">19232953</ArticleId></ArticleIdList></Reference><Reference><Citation>Fujii N, Louie JC, McNeely BD, Zhang SY, Tran MA, Kenny GP. Nicotinic receptor activation augments muscarinic receptor-mediated eccrine sweating but not cutaneous vasodilatation in young males. Exp Physiol. 2017 Feb 01;102(2):245-254.</Citation><ArticleIdList><ArticleId IdType="pubmed">27859779</ArticleId></ArticleIdList></Reference><Reference><Citation>Yates C, Manini AF. Utility of the electrocardiogram in drug overdose and poisoning: theoretical considerations and clinical implications. Curr Cardiol Rev. 2012 May;8(2):137-51.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3406273</ArticleId><ArticleId IdType="pubmed">22708912</ArticleId></ArticleIdList></Reference><Reference><Citation>Shi S, Klotz U. Age-related changes in pharmacokinetics. Curr Drug Metab. 2011 Sep;12(7):601-10.</Citation><ArticleIdList><ArticleId IdType="pubmed">21495970</ArticleId></ArticleIdList></Reference><Reference><Citation>Stegemann S, Ecker F, Maio M, Kraahs P, Wohlfart R, Breitkreutz J, Zimmer A, Bar-Shalom D, Hettrich P, Broegmann B. Geriatric drug therapy: neglecting the inevitable majority. Ageing Res Rev. 2010 Oct;9(4):384-98.</Citation><ArticleIdList><ArticleId IdType="pubmed">20478411</ArticleId></ArticleIdList></Reference><Reference><Citation>de Leon J. Paying attention to pharmacokinetic and pharmacodynamic mechanisms to progress in the area of anticholinergic use in geriatric patients. Curr Drug Metab. 2011 Sep;12(7):635-46.</Citation><ArticleIdList><ArticleId IdType="pubmed">21495973</ArticleId></ArticleIdList></Reference><Reference><Citation>Patel T, Slonim K, Lee L. Use of potentially inappropriate medications among ambulatory home-dwelling elderly patients with dementia: A review of the literature. Can Pharm J (Ott) 2017 May-Jun;150(3):169-183.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5415067</ArticleId><ArticleId IdType="pubmed">28507653</ArticleId></ArticleIdList></Reference><Reference><Citation>Sheu JJ, Tsai MT, Erickson SR, Wu CH. Association between Anticholinergic Medication Use and Risk of Dementia among Patients with Parkinson's Disease. Pharmacotherapy. 2019 Aug;39(8):798-808.</Citation><ArticleIdList><ArticleId IdType="pubmed">31251824</ArticleId></ArticleIdList></Reference><Reference><Citation>Hafdi M, Hoevenaar-Blom MP, Beishuizen CRL, Moll van Charante EP, Richard E, van Gool WA. Association of Benzodiazepine and Anticholinergic Drug Usage With Incident Dementia: A Prospective Cohort Study of Community-Dwelling Older Adults. J Am Med Dir Assoc. 2020 Feb;21(2):188-193.e3.</Citation><ArticleIdList><ArticleId IdType="pubmed">31300339</ArticleId></ArticleIdList></Reference><Reference><Citation>Andrade C. Anticholinergic Drug Exposure and the Risk of Dementia: There Is Modest Evidence for an Association but Not for Causality. J Clin Psychiatry. 2019 Aug 06;80(4)</Citation><ArticleIdList><ArticleId IdType="pubmed">31390497</ArticleId></ArticleIdList></Reference><Reference><Citation>O&#x2bc;Neil CA, Krauss MJ, Bettale J, Kessels A, Costantinou E, Dunagan WC, Fraser VJ. Medications and Patient Characteristics Associated With Falling in the Hospital. J Patient Saf. 2018 Mar;14(1):27-33.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4573384</ArticleId><ArticleId IdType="pubmed">25782559</ArticleId></ArticleIdList></Reference><Reference><Citation>Mirrakhimov AE, Ayach T, Barbaryan A, Talari G, Chadha R, Gray A. The Role of Sodium Bicarbonate in the Management of Some Toxic Ingestions. Int J Nephrol. 2017;2017:7831358.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5591930</ArticleId><ArticleId IdType="pubmed">28932601</ArticleId></ArticleIdList></Reference></ReferenceList></BookDocument><PubmedBookData><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">31536197</ArticleId></ArticleIdList></PubmedBookData></PubmedBookArticle><PubmedBookArticle><BookDocument><PMID Version="1">30969594</PMID><ArticleIdList><ArticleId IdType="bookaccession">NBK539772</ArticleId></ArticleIdList><Book><Publisher><PublisherName>StatPearls Publishing</PublisherName><PublisherLocation>Treasure Island (FL)</PublisherLocation></Publisher><BookTitle book="statpearls">StatPearls</BookTitle><PubDate><Year>2023</Year><Month>01</Month></PubDate><BeginningDate><Year>2023</Year><Month>01</Month></BeginningDate><Medium>Internet</Medium></Book><ArticleTitle book="statpearls" part="article-25465">Myocardial Perfusion Scan</ArticleTitle><Language>eng</Language><AuthorList Type="authors" CompleteYN="Y"><Author ValidYN="Y"><LastName>Patel</LastName><ForeName>Jigar J.</ForeName><Initials>JJ</Initials><AffiliationInfo><Affiliation>George Washington University</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Alzahrani</LastName><ForeName>Talal</ForeName><Initials>T</Initials><AffiliationInfo><Affiliation>Taibah University</Affiliation></AffiliationInfo></Author></AuthorList><PublicationType UI="D000072643">Study Guide</PublicationType><Abstract>Myocardial perfusion scanning plays a significant role in diagnostic and therapeutic decision making in cardiac disease. These refer to a group of non-invasive imaging tests that can be performed to help clinicians assess blood flow to areas of myocardium. Obtaining information on perfusion and metabolite uptake from myocardium plays a vital role in determining the appropriate medical treatment or intervention for optimizing one's cardiac health. These tests are useful for diagnostic and prognostic purposes throughout a variety of clinical settings, including evaluating symptoms concerning for angina, to rule out acute coronary syndrome as a cause of chest pain, assessing therapeutic outcome after interventions, as well as for assessing for viable or scarred myocardium. With such information, clinicians can appropriately understand a patient's coronary health, perform risk stratification for future cardiovascular events, assess for therapeutic response to interventions correcting perfusion defects, and allow for prognostication. Perfusion scanning utilizes various radiotracers, which are administered to the patient and allowed to distribute to multiple tissues. These radiotracers emit photons, which are detectable with a gamma camera which typically contains a single sodium iodide crystal (Single photon emission computed tomography, or SPECT) or multiple crystals (typically used in positron emission tomography, or PET) to interact with captured photons. These cameras contain a collimator, which helps eliminate background, and a photomultiplier, which translate the interactions between the photon and crystals into electrical energy to produce images. In SPECT imaging techniques, common radiotracers used include thallium-201 or technetium-based radiotracers, including technetium-99m sestamibi or technetium-99m tetrofosmin. Thallium-201 is distributed actively into myocardial cells, whereas technetium-based products are distributed passively depending on blood flow and myocardial viability. These radiotracers are injected when the heart is stressed, either by exercise or pharmacologically. The uptake of radiotracer indicates areas of perfusion and viable tissue during stress and at rest. Areas of poor perfusion display improved perfusion during rest, termed reversible ischemia. SPECT, which is more commonly used and available in clinical practice today, uses planar images to reconstruct a three-dimensional representation of myocardial perfusion. Unlike planar imaging, SPECT can obtain sequential slices without overlap of normal and abnormal areas with improved resolution over planar imaging&#xa0;.&#xa0;&#xa0;SPECT imaging has undergone validation in multiple large scale studies for detection of coronary artery disease; however, there are some limitations to this imaging modality. These include artifacts such as those caused by motion, attenuation, or extracardiac activity affecting the quality of images and reader variability. Also, SPECT imaging typically uses technetium-99m tracers, which have low first-pass extraction, and thus leading to the underestimation of ischemic changes both in extent and severity. PET imaging, although less available than SPECT, can help overcome some of these limitations. PET images have better spatial resolution and allow for attenuation correction more accuracy than SPECT. With the high temporal resolution, PET scanning also allows for quantification of myocardial blood flow and myocardial flow reserve and can be of great utility in risk stratification in assessing cardiovascular mortality. Further, PET imaging has the advantages of protocols requiring less time, less radiation exposure compared to SPECT imaging techniques. In PET imaging, radiotracers such as ammonia N-13, rubidium-82, and flurpiridaz F-18 are radiotracers used in for myocardial perfusion imaging. Rubidium-82 is used commonly and can produce good quality images as it has a 65% myocardial extraction rate. In contrast, ammonia N-13 and fluripiridaz F-18 have a myocardial extraction rate of 80% and 95% respectively, therefore producing better quality images with higher resolution. The downside of the later radiotracers is the need for an on-site cyclotron. Rubidium-82 is usable for pharmacologic stress testing, whereas ammonia-N-13 and flurpiridaz F-18 can be used for both exercise and pharmacologic stress testing. To obtain stress images, exercise or pharmacologic testing can is an option. Common pharmacologic agents used include&#xa0;regadenoson,&#xa0;adenosine, and&#xa0;dipyridamole. All three medications work by causing coronary vasodilatation, with subsequent blood flow differences. Adenosine and dipyridamole are A-2A as well as&#xa0;A-1, A-2B, and A-3 receptor agonists, which can also cause bronchospasm, AV nodal block, chest tightness, and flushing. Regadenoson is a selective A-2A agonist which can be a choice in patients with known bronchospasms. Thus, regadenoson is the most common pharmacological agent used in clinical practice.&#xa0;<CopyrightInformation>Copyright &#xa9; 2023, StatPearls Publishing LLC.</CopyrightInformation></Abstract><Sections><Section><SectionTitle book="statpearls" part="article-25465" sec="article-25465.s1">Introduction</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-25465" sec="article-25465.s2">Procedures</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-25465" sec="article-25465.s3">Indications</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-25465" sec="article-25465.s4">Potential Diagnosis</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-25465" sec="article-25465.s5">Normal and Critical Findings</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-25465" sec="article-25465.s6">Interfering Factors</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-25465" sec="article-25465.s7">Patient Safety and Education</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-25465" sec="article-25465.s8">Clinical Significance</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-25465" sec="article-25465.s9">Review Questions</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-25465" sec="article-25465.s10">References</SectionTitle></Section></Sections><ContributionDate><Year>2022</Year><Month>8</Month><Day>8</Day></ContributionDate><ReferenceList><Reference><Citation>Delso G, Ter Voert E, Veit-Haibach P. How does PET/MR work? Basic physics for physicians. Abdom Imaging. 2015 Aug;40(6):1352-7.</Citation><ArticleIdList><ArticleId IdType="pubmed">25906344</ArticleId></ArticleIdList></Reference><Reference><Citation>Angelidis G, Giamouzis G, Karagiannis G, Butler J, Tsougos I, Valotassiou V, Giannakoulas G, Dimakopoulos N, Xanthopoulos A, Skoularigis J, Triposkiadis F, Georgoulias P. SPECT and PET in ischemic heart failure. Heart Fail Rev. 2017 Mar;22(2):243-261.</Citation><ArticleIdList><ArticleId IdType="pubmed">28150111</ArticleId></ArticleIdList></Reference><Reference><Citation>Verberne HJ, Acampa W, Anagnostopoulos C, Ballinger J, Bengel F, De Bondt P, Buechel RR, Cuocolo A, van Eck-Smit BL, Flotats A, Hacker M, Hindorf C, Kaufmann PA, Lindner O, Ljungberg M, Lonsdale M, Manrique A, Minarik D, Scholte AJ, Slart RH, Tr&#xe4;g&#xe5;rdh E, de Wit TC, Hesse B, European Association of Nuclear Medicine (EANM) EANM procedural guidelines for radionuclide myocardial perfusion imaging with SPECT and SPECT/CT: 2015 revision. Eur J Nucl Med Mol Imaging. 2015 Nov;42(12):1929-40.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4589547</ArticleId><ArticleId IdType="pubmed">26290421</ArticleId></ArticleIdList></Reference><Reference><Citation>Iskandrian AS. Single-photon emission computed tomographic thallium imaging with adenosine, dipyridamole, and exercise. Am Heart J. 1991 Jul;122(1 Pt 1):279-84; discussion 302-6.</Citation><ArticleIdList><ArticleId IdType="pubmed">2063758</ArticleId></ArticleIdList></Reference><Reference><Citation>Jaarsma C, Leiner T, Bekkers SC, Crijns HJ, Wildberger JE, Nagel E, Nelemans PJ, Schalla S. Diagnostic performance of noninvasive myocardial perfusion imaging using single-photon emission computed tomography, cardiac magnetic resonance, and positron emission tomography imaging for the detection of obstructive coronary artery disease: a meta-analysis. J Am Coll Cardiol. 2012 May 08;59(19):1719-28.</Citation><ArticleIdList><ArticleId IdType="pubmed">22554604</ArticleId></ArticleIdList></Reference><Reference><Citation>Pelletier-Galarneau M, Martineau P, El Fakhri G. Quantification of PET Myocardial Blood Flow. Curr Cardiol Rep. 2019 Feb 28;21(3):11.</Citation><ArticleIdList><ArticleId IdType="pubmed">30815744</ArticleId></ArticleIdList></Reference><Reference><Citation>Slomka P, Xu Y, Berman D, Germano G. Quantitative analysis of perfusion studies: strengths and pitfalls. J Nucl Cardiol. 2012 Apr;19(2):338-46.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3412547</ArticleId><ArticleId IdType="pubmed">22302181</ArticleId></ArticleIdList></Reference><Reference><Citation>Shanoudy H, Raggi P, Beller GA, Soliman A, Ammermann EG, Kastner RJ, Watson DD. Comparison of technetium-99m tetrofosmin and thallium-201 single-photon emission computed tomographic imaging for detection of myocardial perfusion defects in patients with coronary artery disease. J Am Coll Cardiol. 1998 Feb;31(2):331-7.</Citation><ArticleIdList><ArticleId IdType="pubmed">9462576</ArticleId></ArticleIdList></Reference><Reference><Citation>Hung GU, Wang YF, Su HY, Hsieh TC, Ko CL, Yen RF. New Trends in Radionuclide Myocardial Perfusion Imaging. Acta Cardiol Sin. 2016 Mar;32(2):156-66.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4816914</ArticleId><ArticleId IdType="pubmed">27122946</ArticleId></ArticleIdList></Reference><Reference><Citation>Murthy VL, Naya M, Foster CR, Hainer J, Gaber M, Di Carli G, Blankstein R, Dorbala S, Sitek A, Pencina MJ, Di Carli MF. Improved cardiac risk assessment with noninvasive measures of coronary flow reserve. Circulation. 2011 Nov 15;124(20):2215-24.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3495106</ArticleId><ArticleId IdType="pubmed">22007073</ArticleId></ArticleIdList></Reference><Reference><Citation>Driessen RS, Raijmakers PG, Stuijfzand WJ, Knaapen P. Myocardial perfusion imaging with PET. Int J Cardiovasc Imaging. 2017 Jul;33(7):1021-1031.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5489578</ArticleId><ArticleId IdType="pubmed">28188475</ArticleId></ArticleIdList></Reference><Reference><Citation>Henzlova MJ, Duvall WL, Einstein AJ, Travin MI, Verberne HJ. ASNC imaging guidelines for SPECT nuclear cardiology procedures: Stress, protocols, and tracers. J Nucl Cardiol. 2016 Jun;23(3):606-39.</Citation><ArticleIdList><ArticleId IdType="pubmed">26914678</ArticleId></ArticleIdList></Reference><Reference><Citation>Cullom SJ, Case JA, Courter SA, McGhie AI, Bateman TM. Regadenoson pharmacologic rubidium-82 PET: a comparison of quantitative perfusion and function to dipyridamole. J Nucl Cardiol. 2013 Feb;20(1):76-83.</Citation><ArticleIdList><ArticleId IdType="pubmed">23188625</ArticleId></ArticleIdList></Reference><Reference><Citation>Hendel RC, Berman DS, Di Carli MF, Heidenreich PA, Henkin RE, Pellikka PA, Pohost GM, Williams KA, American College of Cardiology Foundation Appropriate Use Criteria Task Force. American Society of Nuclear Cardiology. American College of Radiology. American Heart Association. American Society of Echocardiology. Society of Cardiovascular Computed Tomography. Society for Cardiovascular Magnetic Resonance. Society of Nuclear Medicine ACCF/ASNC/ACR/AHA/ASE/SCCT/SCMR/SNM 2009 Appropriate Use Criteria for Cardiac Radionuclide Imaging: A Report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the American Society of Nuclear Cardiology, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the Society of Cardiovascular Computed Tomography, the Society for Cardiovascular Magnetic Resonance, and the Society of Nuclear Medicine. J Am Coll Cardiol. 2009 Jun 09;53(23):2201-29.</Citation><ArticleIdList><ArticleId IdType="pubmed">19497454</ArticleId></ArticleIdList></Reference></ReferenceList></BookDocument><PubmedBookData><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">30969594</ArticleId></ArticleIdList></PubmedBookData></PubmedBookArticle><PubmedBookArticle><BookDocument><PMID Version="1">30422561</PMID><ArticleIdList><ArticleId IdType="bookaccession">NBK532966</ArticleId></ArticleIdList><Book><Publisher><PublisherName>StatPearls Publishing</PublisherName><PublisherLocation>Treasure Island (FL)</PublisherLocation></Publisher><BookTitle book="statpearls">StatPearls</BookTitle><PubDate><Year>2023</Year><Month>01</Month></PubDate><BeginningDate><Year>2023</Year><Month>01</Month></BeginningDate><Medium>Internet</Medium></Book><ArticleTitle book="statpearls" part="article-25462">Myocardial Infarction Serum Markers</ArticleTitle><Language>eng</Language><AuthorList Type="authors" CompleteYN="Y"><Author ValidYN="Y"><LastName>Basit</LastName><ForeName>Hajira</ForeName><Initials>H</Initials><AffiliationInfo><Affiliation>Brookdale University</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Huecker</LastName><ForeName>Martin R.</ForeName><Initials>MR</Initials><AffiliationInfo><Affiliation>University of Louisville</Affiliation></AffiliationInfo></Author></AuthorList><PublicationType UI="D000072643">Study Guide</PublicationType><Abstract>According to the European Society of Cardiology, American College of Cardiology Foundation, American Heart Association, and World Health Federation Expert consensus document on the third universal definition of myocardial infarction, acute myocardial infarction can be diagnosed in several ways, one of which depends on cardiac enzymes.&#xa0;&#xa0;The pertinent definition is: "Detection of a rise and/or fall of cardiac biomarker values (preferably cardiac troponin) with at least one value above the 99 percentile upper reference limit and with at least&#xa0;one of the following:&#xa0;: Symptoms of ischemia. New or presumed new significant ST segment-T wave changes or new left bundle branch block. Development of pathological Q waves on ECG. Imaging evidence of a new loss of viable myocardium or new regional wall motion abnormality. Identification of an intracoronary thrombus by angiography or autopsy.". The morbidity and mortality associated with acute myocardial infarction are well understood and discussed elsewhere. Given the known morbidity and mortality associated with acute myocardial infarction and the importance of early diagnosis and management, the above definition places a heavy burden on cardiac enzymes as their elevation alone, along with symptoms of ischemia, is enough to make the diagnosis of acute myocardial infarction.&#xa0; The ideal cardiac enzyme or biomarker needs to be highly specific, highly sensitive, and easily detectable as early as possible in the disease process. Several biomarkers have been developed in the past and will be discussed in this article. "Cardiac enzymes" is a broad term encompassing several intracellular myocyte components that can be found in serum and measured under certain circumstances such as myocardial ischemia, trauma, myocarditis. In the proper clinical setting, elevation in the level of enzymes present in serum is key in the diagnosis of myocardial infarction. While troponin is the most commonly used cardiac enzyme for diagnosis of myocardial infarction, others exist and may be helpful in some situations.<CopyrightInformation>Copyright &#xa9; 2023, StatPearls Publishing LLC.</CopyrightInformation></Abstract><Sections><Section><SectionTitle book="statpearls" part="article-25462" sec="article-25462.s1">Introduction</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-25462" sec="article-25462.s2">Specimen Requirements and Procedure</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-25462" sec="article-25462.s3">Diagnostic Tests</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-25462" sec="article-25462.s4">Testing Procedures</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-25462" sec="article-25462.s5">Interfering Factors</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-25462" sec="article-25462.s6">Results, Reporting, and Critical Findings</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-25462" sec="article-25462.s7">Clinical Significance</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-25462" sec="article-25462.s8">Enhancing Healthcare Team Outcomes</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-25462" sec="article-25462.s9">Review Questions</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-25462" sec="article-25462.s10">References</SectionTitle></Section></Sections><ContributionDate><Year>2022</Year><Month>8</Month><Day>8</Day></ContributionDate><ReferenceList><Reference><Citation>Dugani SB, Ayala Melendez AP, Reka R, Hydoub YM, McCafferty SN, Murad MH, Alsheikh-Ali AA, Mora S. Risk factors associated with premature myocardial infarction: a systematic review protocol. BMJ Open. 2019 Feb 11;9(2):e023647.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6377544</ArticleId><ArticleId IdType="pubmed">30755446</ArticleId></ArticleIdList></Reference><Reference><Citation>Lin X, Zhang S, Huo Z. Serum Circulating miR-150 is a Predictor of Post-Acute Myocardial Infarction Heart Failure. Int Heart J. 2019 Mar 20;60(2):280-286.</Citation><ArticleIdList><ArticleId IdType="pubmed">30745540</ArticleId></ArticleIdList></Reference><Reference><Citation>Smolders VF, Zodda E, Quax PHA, Carini M, Barber&#xe0; JA, Thomson TM, Tura-Ceide O, Cascante M. Metabolic Alterations in Cardiopulmonary Vascular Dysfunction. Front Mol Biosci. 2018;5:120.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6349769</ArticleId><ArticleId IdType="pubmed">30723719</ArticleId></ArticleIdList></Reference><Reference><Citation>Pertiwi K, Kok DE, Wanders AJ, de Goede J, Zock PL, Geleijnse JM. Circulating n-3 fatty acids and linoleic acid as indicators of dietary fatty acid intake in post-myocardial infarction patients. Nutr Metab Cardiovasc Dis. 2019 Apr;29(4):343-350.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6431560</ArticleId><ArticleId IdType="pubmed">30718141</ArticleId></ArticleIdList></Reference><Reference><Citation>Dutka M, Bobi&#x144;ski R, Korbecki J. The relevance of microRNA in post-infarction left ventricular remodelling and heart failure. Heart Fail Rev. 2019 Jul;24(4):575-586.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6560007</ArticleId><ArticleId IdType="pubmed">30710255</ArticleId></ArticleIdList></Reference><Reference><Citation>Lam E, Higgins V, Zhang L, Chan MK, Bohn MK, Trajcevski K, Liu P, Adeli K, Nathan PC. Normative Values of High-Sensitivity Cardiac Troponin T and N-Terminal pro-B-Type Natriuretic Peptide in Children and Adolescents: A Study from the CALIPER Cohort. J Appl Lab Med. 2021 Mar 01;6(2):344-353.</Citation><ArticleIdList><ArticleId IdType="pubmed">32995884</ArticleId></ArticleIdList></Reference><Reference><Citation>Yang C, Liu F, Liu W, Cao G, Liu J, Huang S, Zhu M, Tu C, Wang J, Xiong B. Myocardial injury and risk factors for mortality in patients with COVID-19 pneumonia. Int J Cardiol. 2021 Mar 01;326:230-236.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC7510443</ArticleId><ArticleId IdType="pubmed">32979425</ArticleId></ArticleIdList></Reference><Reference><Citation>Calvey GD, Katz AM, Zielinski KA, Dzikovski B, Pollack L. Characterizing Enzyme Reactions in Microcrystals for Effective Mix-and-Inject Experiments using X-ray Free-Electron Lasers. Anal Chem. 2020 Oct 20;92(20):13864-13870.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC8367009</ArticleId><ArticleId IdType="pubmed">32955854</ArticleId></ArticleIdList></Reference><Reference><Citation>Aydin S, Ugur K, Aydin S, Sahin &#x130;, Yardim M. Biomarkers in acute myocardial infarction: current perspectives. Vasc Health Risk Manag. 2019;15:1-10.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6340361</ArticleId><ArticleId IdType="pubmed">30697054</ArticleId></ArticleIdList></Reference><Reference><Citation>Kim JY, Kim KH, Cho JY, Sim DS, Yoon HJ, Yoon NS, Hong YJ, Park HW, Kim JH, Ahn Y, Jeong MH, Cho JG, Park JC. D-dimer/troponin ratio in the differential diagnosis of acute pulmonary embolism from non-ST elevation myocardial infarction. Korean J Intern Med. 2019 Nov;34(6):1263-1271.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6823570</ArticleId><ArticleId IdType="pubmed">30685960</ArticleId></ArticleIdList></Reference><Reference><Citation>Blankenberg S, Wittlinger T, Nowak B, Rupprecht HJ. [Troponins as biomarkers for myocardial injury and myocardial infarction]. Herz. 2019 Feb;44(1):4-9.</Citation><ArticleIdList><ArticleId IdType="pubmed">30680412</ArticleId></ArticleIdList></Reference><Reference><Citation>Peres BU, Hirsch Allen AJ, Fox N, Laher I, Hanly P, Skomro R, Almeida F, Ayas NT, Canadian Sleep and Circadian Network Circulating biomarkers to identify cardiometabolic complications in patients with Obstructive Sleep Apnea: A systematic review. Sleep Med Rev. 2019 Apr;44:48-57.</Citation><ArticleIdList><ArticleId IdType="pubmed">30685729</ArticleId></ArticleIdList></Reference><Reference><Citation>Tevaearai Stahel HT, Do PD, Klaus JB, Gahl B, Locca D, G&#xf6;ber V, Carrel TP. Clinical Relevance of Troponin T Profile Following Cardiac Surgery. Front Cardiovasc Med. 2018;5:182.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6301188</ArticleId><ArticleId IdType="pubmed">30619889</ArticleId></ArticleIdList></Reference></ReferenceList></BookDocument><PubmedBookData><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">30422561</ArticleId></ArticleIdList></PubmedBookData></PubmedBookArticle><PubmedBookArticle><BookDocument><PMID Version="1">29939649</PMID><ArticleIdList><ArticleId IdType="bookaccession">NBK507872</ArticleId></ArticleIdList><Book><Publisher><PublisherName>StatPearls Publishing</PublisherName><PublisherLocation>Treasure Island (FL)</PublisherLocation></Publisher><BookTitle book="statpearls">StatPearls</BookTitle><PubDate><Year>2023</Year><Month>01</Month></PubDate><BeginningDate><Year>2023</Year><Month>01</Month></BeginningDate><Medium>Internet</Medium></Book><ArticleTitle book="statpearls" part="article-18701">Right Bundle Branch Block</ArticleTitle><Language>eng</Language><AuthorList Type="authors" CompleteYN="Y"><Author ValidYN="Y"><LastName>Harkness</LastName><ForeName>Weston T.</ForeName><Initials>WT</Initials><AffiliationInfo><Affiliation>Sky Ridge Medical Center</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Hicks</LastName><ForeName>Mary</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Rocky Vista University/Sky Ridge MC</Affiliation></AffiliationInfo></Author></AuthorList><PublicationType UI="D000072643">Study Guide</PublicationType><Abstract>Right bundle branch block (RBBB) is an electrocardiogram finding that occurs when the physiologic electrical conduction system of the heart, specifically in the His-Purkinje system, is altered or interrupted resulting in a widened QRS and electrocardiographic vector changes. The bundle of His divides in the interventricular septum into the right and left bundle branches. Initially, the right bundle branch off of the bundle of His travels down the interventricular septum near the endocardium. It then dives deeper into the muscular layer before re-emerging near the endocardium again. The right bundle branch receives most of its blood supply from the anterior descending coronary artery. It also receives collateral circulation from the right or left circumflex coronary arteries, depending on the dominance of the heart. Right bundle branch block is associated with structural changes from stretch or ischemia to the myocardium. It can also occur iatrogenically from certain common cardiac procedures, such as right heart catheterization. Although there is no significant association with cardiovascular risk factors, the presence of a right bundle branch block is a predictor of mortality in myocardial infarction, heart failure, and certain heart blocks. In asymptomatic patients, isolated right bundle branch block typically does not need further evaluation.<CopyrightInformation>Copyright &#xa9; 2023, StatPearls Publishing LLC.</CopyrightInformation></Abstract><Sections><Section><SectionTitle book="statpearls" part="article-18701" sec="article-18701.s1">Continuing Education Activity</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-18701" sec="article-18701.s2">Introduction</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-18701" sec="article-18701.s3">Etiology</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-18701" sec="article-18701.s4">Epidemiology</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-18701" sec="article-18701.s5">Pathophysiology</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-18701" sec="article-18701.s6">History and Physical</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-18701" sec="article-18701.s7">Evaluation</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-18701" sec="article-18701.s8">Treatment / Management</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-18701" sec="article-18701.s9">Differential Diagnosis</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-18701" sec="article-18701.s10">Prognosis</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-18701" sec="article-18701.s11">Pearls and Other Issues</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-18701" sec="article-18701.s12">Enhancing Healthcare Team Outcomes</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-18701" sec="article-18701.s13">Review Questions</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-18701" sec="article-18701.s16">References</SectionTitle></Section></Sections><ContributionDate><Year>2022</Year><Month>8</Month><Day>8</Day></ContributionDate><ReferenceList><Reference><Citation>Tusscher KH, Panfilov AV. Modelling of the ventricular conduction system. Prog Biophys Mol Biol. 2008 Jan-Apr;96(1-3):152-70.</Citation><ArticleIdList><ArticleId IdType="pubmed">17910889</ArticleId></ArticleIdList></Reference><Reference><Citation>Sarda L, Colin P, Boccara F, Daou D, Lebtahi R, Faraggi M, Nguyen C, Cohen A, Slama MS, Steg PG, Le Guludec D. Myocarditis in patients with clinical presentation of myocardial infarction and normal coronary angiograms. J Am Coll Cardiol. 2001 Mar 01;37(3):786-92.</Citation><ArticleIdList><ArticleId IdType="pubmed">11693753</ArticleId></ArticleIdList></Reference><Reference><Citation>Patil AR. Risk of right bundle-branch block and complete heart block during pulmonary artery catheterization. Crit Care Med. 1990 Jan;18(1):122-3.</Citation><ArticleIdList><ArticleId IdType="pubmed">2293963</ArticleId></ArticleIdList></Reference><Reference><Citation>Rotman M, Triebwasser JH. A clinical and follow-up study of right and left bundle branch block. Circulation. 1975 Mar;51(3):477-84.</Citation><ArticleIdList><ArticleId IdType="pubmed">1132086</ArticleId></ArticleIdList></Reference><Reference><Citation>Horowitz LN, Alexander JA, Edmunds LH. Postoperative right bundle branch block: identification of three levels of block. Circulation. 1980 Aug;62(2):319-28.</Citation><ArticleIdList><ArticleId IdType="pubmed">7397974</ArticleId></ArticleIdList></Reference><Reference><Citation>Ohmae M, Rabkin SW. Hyperkalemia-induced bundle branch block and complete heart block. Clin Cardiol. 1981 Jan;4(1):43-6.</Citation><ArticleIdList><ArticleId IdType="pubmed">7226590</ArticleId></ArticleIdList></Reference><Reference><Citation>Stein PD, Matta F, Sabra MJ, Treadaway B, Vijapura C, Warren R, Joshi P, Sadiq M, Kofoed JT, Hughes P, Chabala SD, Keyes DC, Kakish E, Hughes MJ. Relation of electrocardiographic changes in pulmonary embolism to right ventricular enlargement. Am J Cardiol. 2013 Dec 15;112(12):1958-61.</Citation><ArticleIdList><ArticleId IdType="pubmed">24075285</ArticleId></ArticleIdList></Reference><Reference><Citation>Agarwal S, Tuzcu EM, Desai MY, Smedira N, Lever HM, Lytle BW, Kapadia SR. Updated meta-analysis of septal alcohol ablation versus myectomy for hypertrophic cardiomyopathy. J Am Coll Cardiol. 2010 Feb 23;55(8):823-34.</Citation><ArticleIdList><ArticleId IdType="pubmed">20170823</ArticleId></ArticleIdList></Reference><Reference><Citation>LENEGRE J. ETIOLOGY AND PATHOLOGY OF BILATERAL BUNDLE BRANCH BLOCK IN RELATION TO COMPLETE HEART BLOCK. Prog Cardiovasc Dis. 1964 Mar;6:409-44.</Citation><ArticleIdList><ArticleId IdType="pubmed">14153648</ArticleId></ArticleIdList></Reference><Reference><Citation>LEV M. ANATOMIC BASIS FOR ATRIOVENTRICULAR BLOCK. Am J Med. 1964 Nov;37:742-8.</Citation><ArticleIdList><ArticleId IdType="pubmed">14237429</ArticleId></ArticleIdList></Reference><Reference><Citation>Denes P, Wu D, Dhingra RC, Amat-y-leon F, Wyndham C, Rosen KM. Eectrophysiological observations in pateints with rate dependent bundle branch block. Circulation. 1975 Feb;51(2):244-50.</Citation><ArticleIdList><ArticleId IdType="pubmed">1112004</ArticleId></ArticleIdList></Reference><Reference><Citation>Eriksson P, Hansson PO, Eriksson H, Dellborg M. Bundle-branch block in a general male population: the study of men born 1913. Circulation. 1998 Dec 01;98(22):2494-500.</Citation><ArticleIdList><ArticleId IdType="pubmed">9832497</ArticleId></ArticleIdList></Reference><Reference><Citation>Arnsdorf MF. The cellular basis of cardiac arrhythmias. A matrical perspective. Ann N Y Acad Sci. 1990;601:263-80.</Citation><ArticleIdList><ArticleId IdType="pubmed">2221691</ArticleId></ArticleIdList></Reference><Reference><Citation>LEATHAM A. Splitting of the first and second heart sounds. Lancet. 1954 Sep 25;267(6839):607-14.</Citation><ArticleIdList><ArticleId IdType="pubmed">13202450</ArticleId></ArticleIdList></Reference><Reference><Citation>Surawicz B, Childers R, Deal BJ, Gettes LS, Bailey JJ, Gorgels A, Hancock EW, Josephson M, Kligfield P, Kors JA, Macfarlane P, Mason JW, Mirvis DM, Okin P, Pahlm O, Rautaharju PM, van Herpen G, Wagner GS, Wellens H, American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology. American College of Cardiology Foundation. Heart Rhythm Society AHA/ACCF/HRS recommendations for the standardization and interpretation of the electrocardiogram: part III: intraventricular conduction disturbances: a scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society. Endorsed by the International Society for Computerized Electrocardiology. J Am Coll Cardiol. 2009 Mar 17;53(11):976-81.</Citation><ArticleIdList><ArticleId IdType="pubmed">19281930</ArticleId></ArticleIdList></Reference><Reference><Citation>Bilchick KC, Kamath S, DiMarco JP, Stukenborg GJ. Bundle-branch block morphology and other predictors of outcome after cardiac resynchronization therapy in Medicare patients. Circulation. 2010 Nov 16;122(20):2022-30.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3659803</ArticleId><ArticleId IdType="pubmed">21041691</ArticleId></ArticleIdList></Reference><Reference><Citation>Gussak I, Antzelevitch C, Bjerregaard P, Towbin JA, Chaitman BR. The Brugada syndrome: clinical, electrophysiologic and genetic aspects. J Am Coll Cardiol. 1999 Jan;33(1):5-15.</Citation><ArticleIdList><ArticleId IdType="pubmed">9935001</ArticleId></ArticleIdList></Reference><Reference><Citation>Okmen E, Erdinler I, Oguz E, Akyol A, Turek O, Cam N, Ulufer T. An electrocardiographic algorithm for determining the location of pacemaker electrode in patients with right bundle branch block configuration during permanent ventricular pacing. Angiology. 2006 Oct-Nov;57(5):623-30.</Citation><ArticleIdList><ArticleId IdType="pubmed">17067986</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang ZM, Rautaharju PM, Soliman EZ, Manson JE, Cain ME, Martin LW, Bavry AA, Mehta L, Vitolins M, Prineas RJ. Mortality risk associated with bundle branch blocks and related repolarization abnormalities (from the Women's Health Initiative [WHI]). Am J Cardiol. 2012 Nov 15;110(10):1489-95.</Citation><ArticleIdList><ArticleId IdType="pubmed">22858187</ArticleId></ArticleIdList></Reference><Reference><Citation>Wagner GS, Macfarlane P, Wellens H, Josephson M, Gorgels A, Mirvis DM, Pahlm O, Surawicz B, Kligfield P, Childers R, Gettes LS, Bailey JJ, Deal BJ, Gorgels A, Hancock EW, Kors JA, Mason JW, Okin P, Rautaharju PM, van Herpen G, American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology. American College of Cardiology Foundation. Heart Rhythm Society AHA/ACCF/HRS recommendations for the standardization and interpretation of the electrocardiogram: part VI: acute ischemia/infarction: a scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society. Endorsed by the International Society for Computerized Electrocardiology. J Am Coll Cardiol. 2009 Mar 17;53(11):1003-11.</Citation><ArticleIdList><ArticleId IdType="pubmed">19281933</ArticleId></ArticleIdList></Reference></ReferenceList></BookDocument><PubmedBookData><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">29939649</ArticleId></ArticleIdList></PubmedBookData></PubmedBookArticle><PubmedBookArticle><BookDocument><PMID Version="1">29083808</PMID><ArticleIdList><ArticleId IdType="bookaccession">NBK459269</ArticleId></ArticleIdList><Book><Publisher><PublisherName>StatPearls Publishing</PublisherName><PublisherLocation>Treasure Island (FL)</PublisherLocation></Publisher><BookTitle book="statpearls">StatPearls</BookTitle><PubDate><Year>2023</Year><Month>01</Month></PubDate><BeginningDate><Year>2023</Year><Month>01</Month></BeginningDate><Medium>Internet</Medium></Book><ArticleTitle book="statpearls" part="article-17160">Acute Myocardial Infarction</ArticleTitle><Language>eng</Language><AuthorList Type="authors" CompleteYN="Y"><Author ValidYN="Y"><LastName>Mechanic</LastName><ForeName>Oren J.</ForeName><Initials>OJ</Initials><AffiliationInfo><Affiliation>Harvard Medical School/BIDMC</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Gavin</LastName><ForeName>Michael</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Harvard Medical School</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Grossman</LastName><ForeName>Shamai A.</ForeName><Initials>SA</Initials><AffiliationInfo><Affiliation>HVD Med Sch</Affiliation></AffiliationInfo></Author></AuthorList><PublicationType UI="D000072643">Study Guide</PublicationType><Abstract>Acute myocardial infarction is one of the leading causes of death in the developed world. The prevalence of the disease approaches three million people worldwide, with more than one million deaths in the United States annually. Acute myocardial infarction can be divided into two categories, non-ST-segment elevation MI (NSTEMI) and ST-segment elevation MI (STEMI). Unstable angina is similar to NSTEMI. However, cardiac markers are not elevated. An MI results in irreversible damage to the heart muscle due to a lack of oxygen. An MI may lead to impairment in diastolic and systolic function and make the patient prone to arrhythmias. In addition, an MI can lead to a number of serious complications. The key is to reperfuse the heart and restore blood flow. The earlier the treatment (less than 6 hours from symptom onset), the better the prognosis. An MI is diagnosed when two of the following criteria are met: 1. Symptoms of ischemia. 2. New ST-segment changes or a left bundle branch block (LBBB). 3. Presence of pathological Q waves on the ECG. 4. Imaging study showing new regional wall motion abnormality. 5. Presence of an intracoronary thrombus at autopsy or angiography.
2,335,740
A curious case of pulmonary hypertension in a child.
Pulmonary hypertension in young children can be due to a myriad of conditions. Few aetiologies of pulmonary hypertension are potentially reversible. An extensive workup for the cause of pulmonary hypertension is a must before attributing it to idiopathic pulmonary hypertension. We describe an uncommon aetiology of pulmonary hypertension in a young boy.</AbstractText>A 12-year-old child, with past history of tubercular pleural effusion, presented with dyspnoea on exertion and easy fatiguability for 2&#xa0;years. He was evaluated elsewhere and was being treated as primary pulmonary hypertension with pulmonary vasodilators. The child was revaluated since the clinical features were not completely favouring the diagnosis. On detailed evaluation, a diagnosis of constrictive pericarditis was made. He was referred for pericardiectomy.</AbstractText>Constrictive pericarditis presenting with severe pulmonary hypertension without congestive symptoms is very rare. In patients presenting with pulmonary hypertension, always look for a reversible cause before labeling them as idiopathic PAH.</AbstractText>&#xa9; 2022. The Author(s).</CopyrightInformation>
2,335,741
Analgesic effect of ultrasound-guided erector spinae plane block (espb) in general anesthesia for cesarean section: a randomized controlled trial.
The analgesic effects of erector spinae plane block in general anesthesia for cesarean section and recovery from puerperae remain unclear.</AbstractText>Sixty patients with contraindications for spinal anesthesia who required general anesthesia for cesarean section were enrolled and randomly divided into the erector spinal plane block (ESPB) combined with the general anesthesia group (group E) and general anesthesia group (group G). Group E received bilateral ESPB (20&#xa0;ml of 0.25% ropivacaine on each side) under ultrasound guidance 30&#xa0;min before general anesthesia. The primary outcomes were the number of patient-controlled intravenous analgesia (PCIA) boluses, and Bruggemann comfort scale (BCS) scores at 2&#xa0;h, 6&#xa0;h, 12&#xa0;h, and 24&#xa0;h after operation. The second outcome was intraoperative anesthesia dosage, fetal delivery time, puerperae emergence time, visual analog scale (VAS) at 2&#xa0;h, 6&#xa0;h, 12&#xa0;h, and 24&#xa0;h after operation, and incidence of nausea and vomiting. Heart rate (HR) and mean arterial pressure (MAP) were recorded 10&#xa0;min before the start of anesthesia (T0), at the induction of anesthesia (T1), at skin incision (T2), and fetal delivery (T3), and immediately after surgery (T4).</AbstractText>The number of PCIA boluses was lower in group E than in group G (P&#x2009;&lt;&#x2009;0.001). The BCS score increased at 2&#xa0;h and 6&#xa0;h after the operation in group E (P&#x2009;&lt;&#x2009;0.05), while the VAS score significantly decreased in group E at the same time (P&#x2009;&lt;&#x2009;0.05). Compared with group G, the doses of propofol and remifentanil were significantly decreased in group E (P&#x2009;&lt;&#x2009;0.001), the emergence time of puerperae was shortened (P&#x2009;=&#x2009;0.003), and the incidence of nausea and vomiting was significantly decreased (P&#x2009;=&#x2009;0.014).</AbstractText>Ultrasound-guided ESPB applied to general anesthesia for a cesarean section can significantly reduce the required dose of general anesthetic drugs, shorten the recovery time of the puerperae, and improve postoperative analgesia.</AbstractText>www.</AbstractText>gov under the number ChiCTR2200056337 (04-02-2022).</AbstractText>&#xa9; 2022. The Author(s).</CopyrightInformation>
2,335,742
Bilateral Cardiac Sympathetic Denervation for Treatment-Resistant Ventricular Arrhythmias in Heart Failure Patients with a Reduced Ejection Fraction.<Pagination><StartPage>692</StartPage><EndPage>699</EndPage><MedlinePgn>692-699</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1536/ihj.21-601</ELocationID><Abstract><AbstractText>The sympathetic nervous system plays an important role in life-threatening ventricular arrhythmias (VAs). Bilateral cardiac sympathetic denervation (BCSD) is performed for refractory VAs. We sought to assess our institutional experience with BCSD in managing treatment-resistant monomorphic ventricular tachycardia (MMVT) in heart failure patients with a reduced ejection fraction (HFrEF).Four patients with HFrEF (EF 30.0 &#xb1; 8.2%, New York Heart Association [NYHA] class IV 1) underwent BCSD for MMVT (VT storm 3, repetitive VT requiring implantable cardioverter defibrillator [ICD] therapy 1) refractory to antiarrhythmic drugs, catheter ablation and ICD therapy. BCSD was effective for suppressing VT in 3 patients for whom deep sedation was effective for suppressing VT. One patient remained alive after 14 months of follow-up without episodes of VT. One patient died of acute myocardial infarction before discharge and 1 patient died from unknown cause at 3 days post-discharge. In contrast, BCSD was completely ineffective for suppressing VT in a patient with NYHA class IV for whom deep sedation and stellate ganglion block were ineffective. This patient died on the 10th post-CSD day, despite left ventricular assist device implantation. In all cases, BCSD was successfully performed without procedure-related complications.Despite the limited number of cases, our results showed that BCSD in patients with HFrEF suppressed refractory MMVT in acute-phase except for a patient with NYHA class IV; however, the prognoses were not good. BCSD may be a treatment option at an earlier stage of NYHA and a bridge to orthotopic heart transplantation, even if BCSD is effective for suppressing VAs.</AbstractText></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Miki</LastName><ForeName>Yuko</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Division of Cardiology, Gunma Prefectural Cardiovascular Center.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Yoshimura</LastName><ForeName>Shingo</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Division of Cardiology, Gunma Prefectural Cardiovascular Center.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Sasaki</LastName><ForeName>Takehito</ForeName><Initials>T</Initials><AffiliationInfo><Affiliation>Division of Cardiology, Gunma Prefectural Cardiovascular Center.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Takizawa</LastName><ForeName>Ryoya</ForeName><Initials>R</Initials><AffiliationInfo><Affiliation>Division of Cardiology, Gunma Prefectural Cardiovascular Center.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kimura</LastName><ForeName>Kohki</ForeName><Initials>K</Initials><AffiliationInfo><Affiliation>Division of Cardiology, Gunma Prefectural Cardiovascular Center.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Haraguchi</LastName><ForeName>Yumiko</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Division of Cardiology, Gunma Prefectural Cardiovascular Center.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Sasaki</LastName><ForeName>Wataru</ForeName><Initials>W</Initials><AffiliationInfo><Affiliation>Division of Cardiology, Gunma Prefectural Cardiovascular Center.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kishi</LastName><ForeName>Shohei</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Division of Cardiology, Gunma Prefectural Cardiovascular Center.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Nakatani</LastName><ForeName>Yosuke</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Division of Cardiology, Gunma Prefectural Cardiovascular Center.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kaseno</LastName><ForeName>Kenichi</ForeName><Initials>K</Initials><AffiliationInfo><Affiliation>Division of Cardiology, Gunma Prefectural Cardiovascular Center.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Goto</LastName><ForeName>Koji</ForeName><Initials>K</Initials><AffiliationInfo><Affiliation>Division of Cardiology, Gunma Prefectural Cardiovascular Center.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Take</LastName><ForeName>Yutaka</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Division of Cardiology, Gunma Prefectural Cardiovascular Center.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Nakamura</LastName><ForeName>Kohki</ForeName><Initials>K</Initials><AffiliationInfo><Affiliation>Division of Cardiology, Gunma Prefectural Cardiovascular Center.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Niwamae</LastName><ForeName>Nogiku</ForeName><Initials>N</Initials><AffiliationInfo><Affiliation>Department of Cardiovascular Medicine, Japanese Red Cross Maebashi Hospital.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kamiyoshihara</LastName><ForeName>Mitsuhiro</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Department of General Thoracic Surgery, Japanese Red Cross Maebashi Hospital.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Naito</LastName><ForeName>Shigeto</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Division of Cardiology, Gunma Prefectural Cardiovascular Center.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>Japan</Country><MedlineTA>Int Heart J</MedlineTA><NlmUniqueID>101244240</NlmUniqueID><ISSNLinking>1349-2365</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D000359" MajorTopicYN="N">Aftercare</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D001145" MajorTopicYN="N">Arrhythmias, Cardiac</DescriptorName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D017115" MajorTopicYN="Y">Catheter Ablation</DescriptorName><QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D017147" MajorTopicYN="Y">Defibrillators, Implantable</DescriptorName><QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006333" MajorTopicYN="Y">Heart Failure</DescriptorName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName><QualifierName UI="Q000601" MajorTopicYN="N">surgery</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D010351" MajorTopicYN="N">Patient Discharge</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D013318" MajorTopicYN="N">Stroke Volume</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D013562" MajorTopicYN="N">Sympathectomy</DescriptorName><QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D017180" MajorTopicYN="Y">Tachycardia, Ventricular</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D016896" MajorTopicYN="N">Treatment Outcome</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Electrical storm</Keyword><Keyword MajorTopicYN="N">Heart failure with reduced ejection fraction</Keyword><Keyword MajorTopicYN="N">Refractory ventricular arrhythmia</Keyword><Keyword MajorTopicYN="N">Ventricular tachycardia</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="entrez"><Year>2022</Year><Month>7</Month><Day>31</Day><Hour>21</Hour><Minute>42</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2022</Year><Month>8</Month><Day>1</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2022</Year><Month>8</Month><Day>3</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">35908853</ArticleId><ArticleId IdType="doi">10.1536/ihj.21-601</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedBookArticle><BookDocument><PMID Version="1">32644681</PMID><ArticleIdList><ArticleId IdType="bookaccession">NBK559255</ArticleId></ArticleIdList><Book><Publisher><PublisherName>StatPearls Publishing</PublisherName><PublisherLocation>Treasure Island (FL)</PublisherLocation></Publisher><BookTitle book="statpearls">StatPearls</BookTitle><PubDate><Year>2023</Year><Month>01</Month></PubDate><BeginningDate><Year>2023</Year><Month>01</Month></BeginningDate><Medium>Internet</Medium></Book><ArticleTitle book="statpearls" part="article-20993">Elevated Hemidiaphragm<Language>eng</Language><AuthorList Type="authors" CompleteYN="Y"><Author ValidYN="Y"><LastName>Patel</LastName><ForeName>Paula R.</ForeName><Initials>PR</Initials><AffiliationInfo><Affiliation>Wyckoff Heights Medical Center</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Bechmann</LastName><ForeName>Samuel</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>New Jersey Medical School</Affiliation></AffiliationInfo></Author></AuthorList><PublicationType UI="D000072643">Study Guide</PublicationType><Abstract><AbstractText>The diaphragm is a thin, dome-shaped muscular structure that functions as a respiratory pump and is the primary muscle for inspiration.&#xa0;Elevated hemidiaphragm occurs when one side of the diaphragm becomes weak from muscular disease or loss of innervation due to phrenic nerve injury. Patients may present with difficulty breathing, but more commonly elevated hemidiaphragm is found on imaging as an incidental finding, and patients are asymptomatic. The phrenic nerve runs in the fascia over the anterior scalene muscle. An anesthesiologist commonly performs interscalene blocks for shoulder surgery, such as a rotator cuff repair, humeral fracture, total shoulder replacement, and&#xa0;other arm surgery. phrenic nerve paralysis is a known complication from the interscalene block. It has been observed in many case reports and series in both anesthesia and neurosurgical literature, but only a single case report in the emergency medicine literature. The diaphragm is the primary muscle for inspiration along with secondary muscles such as the sternocleidomastoid, external intercostals, and scalene muscles.&#xa0;During inspiration, the diaphragm flattens pulling air into the lungs, whereas during expiration, the diaphragm relaxes, allowing&#xa0;air to flow out of the lungs passively. As the diaphragm flattens during inspiration subatmospheric, negative pressure is created within the thoracic cavity&#xa0;that&#xa0;overcomes atmospheric pressure.&#xa0; This forms a vacuum that facilitates the movement of air into the lungs. Also, as the diaphragm contracts, the floor of the thoracic cavity moves downward, and the walls move outward. This causes inflation of the lungs and allows for gas exchange to occur. As the diaphragm relaxes, the tension on the chest wall muscles decreases, causing the muscles to recoil and passively push the air out during expiration. The&#xa0;diaphragm&#xa0;has three points of origin, creating a C shape that culminates in a stable, dense fibrous center tendon. The sternal group of muscle fibers is attached&#xa0;to&#xa0;the posterior aspect of the xiphoid process. The costal group of muscle fibers originates from the inner surface of seven to twelfth ribs. The&#xa0;lumbar group of muscular fibers arises from the medial and lateral arcuate ligaments and anterior longitudinal ligament, and lumbar vertebral bodies of L2-L3. There are three openings in the diaphragm, allowing structures to pass between the thoracic and abdominal cavity. The esophageal hiatus through which the esophagus and vagus nerve pass, the aortic hiatus through which the aorta, azygos vein and thoracic duct pass, and the&#xa0;caval hiatus&#xa0;through which the&#xa0;inferior vena cava passes. The diaphragm anatomically&#xa0;separates the thoracic cavity from the abdominal cavity,&#xa0;making the diaphragm the base of the thoracic cavity and the apex of the abdominal cavity. The diaphragm is separated into the right and left&#xa0;half. Each side has it's own blood supply from the inferior and superior phrenic arteries arising directly from the aorta, subcostal and intercostal arteries.&#xa0;Phrenic veins drain blood from the diaphragm directly into the inferior vena cava. The diaphragm is innervated by the ipsilateral phrenic nerve that arises from the cervical nerve roots of C3-C5.&#xa0;The phrenic nerve emerges through the anterior scalene muscle on either side of the neck and courses posteriorly to the subclavian vein.&#xa0;Both phrenic nerves enter into the thoracic cavity through the thoracic aperture. In the thoracic cavity, the right and left phrenic nerves&#xa0;follow different paths. The right phrenic nerve descends anteriorly over the right atrium of the heart and exits through the inferior vena cava opening to innervate the inferior surface of the hemidiaphragm. The left phrenic nerve crosses the aortic arch and pericardium overlying the left ventricle until it pierces through the diaphragm to innervate the inferior surface of the left hemidiaphragm. Sensory innervation of the diaphragm is from the intercostal nerves 6-11. Elevated Hemidiaphragm is a condition where one portion of the diaphragm is higher than the other.&#xa0;Often elevated hemidiaphragm is asymptomatic and visualized as an incidental finding on radiologic studies like chest X-ray or chest CT (computed tomography). Patients are typically asymptomatic due to the compensation and recruitment of other inspiratory muscles,&#xa0;and often the healthy hemidiaphragm compensates to maintain the pressure gradient required for adequate gas exchange. However, evidence suggests that the function of the contralateral, healthy hemidiaphragm may be impacted by lower abdominal pressure. In severe cases of unilateral hemidiaphragm paralysis, patients may lose their inspiratory capacity, which can impair the ability of the heart to pump&#xa0;efficiently. Under normal circumstances, the intrathoracic pressure and contraction of the diaphragm overcome the force of gravity and propel blood into the right atrium from the inferior vena cava (IVC). When the pressure gradient cannot be maintained, the right atrium will collapse, and&#xa0;the patient may present as though they have cardiac tamponade.&#xa0;Accurate diagnosis, treatment, and management of elevated hemidiaphragm are essential in patients presenting with&#xa0;dyspnea and multi-organ involvement.</AbstractText><CopyrightInformation>Copyright &#xa9; 2023, StatPearls Publishing LLC.</CopyrightInformation></Abstract><Sections><Section><SectionTitle book="statpearls" part="article-20993" sec="article-20993.s1">Continuing Education Activity</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-20993" sec="article-20993.s2">Introduction</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-20993" sec="article-20993.s3">Etiology</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-20993" sec="article-20993.s4">Epidemiology</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-20993" sec="article-20993.s5">Pathophysiology</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-20993" sec="article-20993.s6">History and Physical</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-20993" sec="article-20993.s7">Evaluation</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-20993" sec="article-20993.s8">Treatment / Management</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-20993" sec="article-20993.s9">Differential Diagnosis</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-20993" sec="article-20993.s10">Prognosis</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-20993" sec="article-20993.s11">Complications</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-20993" sec="article-20993.s12">Consultations</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-20993" sec="article-20993.s13">Deterrence and Patient Education</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-20993" sec="article-20993.s14">Enhancing Healthcare Team Outcomes</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-20993" sec="article-20993.s15">Review Questions</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-20993" sec="article-20993.s17">References</SectionTitle></Section></Sections><ContributionDate><Year>2022</Year><Month>8</Month><Day>1</Day></ContributionDate><ReferenceList><Reference><Citation>Roussos C, Macklem PT. The respiratory muscles. N Engl J Med. 1982 Sep 23;307(13):786-97.</Citation><ArticleIdList><ArticleId IdType="pubmed">7050712</ArticleId></ArticleIdList></Reference><Reference><Citation>Fell SC. Surgical anatomy of the diaphragm and the phrenic nerve. Chest Surg Clin N Am. 1998 May;8(2):281-94.</Citation><ArticleIdList><ArticleId IdType="pubmed">9619305</ArticleId></ArticleIdList></Reference><Reference><Citation>Kokatnur L, Rudrappa M. Diaphragmatic Palsy. Diseases. 2018 Feb 13;6(1)</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5871962</ArticleId><ArticleId IdType="pubmed">29438332</ArticleId></ArticleIdList></Reference><Reference><Citation>Caleffi-Pereira M, Pletsch-Assun&#xe7;&#xe3;o R, Cardenas LZ, Santana PV, Ferreira JG, Iamonti VC, Caruso P, Fernandez A, de Carvalho CRR, Albuquerque ALP. Unilateral diaphragm paralysis: a dysfunction restricted not just to one hemidiaphragm. BMC Pulm Med. 2018 Aug 02;18(1):126.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6090915</ArticleId><ArticleId IdType="pubmed">30068327</ArticleId></ArticleIdList></Reference><Reference><Citation>Thomas SC, Garg A, Pulkkinen C, Smith S, Kumar A, Atoui R. An Unusual Case of Cardiac Tamponade Secondary to an Elevated Right Hemidiaphragm. Can J Cardiol. 2018 Dec;34(12):1688.e21-1688.e23.</Citation><ArticleIdList><ArticleId IdType="pubmed">30527167</ArticleId></ArticleIdList></Reference><Reference><Citation>Kharma N. Dysfunction of the diaphragm: imaging as a diagnostic tool. Curr Opin Pulm Med. 2013 Jul;19(4):394-8.</Citation><ArticleIdList><ArticleId IdType="pubmed">23715292</ArticleId></ArticleIdList></Reference><Reference><Citation>McCaul JA, Hislop WS. Transient hemi-diaphragmatic paralysis following neck surgery: report of a case and review of the literature. J R Coll Surg Edinb. 2001 Jun;46(3):186-8.</Citation><ArticleIdList><ArticleId IdType="pubmed">11478021</ArticleId></ArticleIdList></Reference><Reference><Citation>Chapman SA, Holmes MD, Taylor DJ. Unilateral diaphragmatic paralysis following bronchial artery embolization for hemoptysis. Chest. 2000 Jul;118(1):269-70.</Citation><ArticleIdList><ArticleId IdType="pubmed">10893396</ArticleId></ArticleIdList></Reference><Reference><Citation>Doyle MP, McCarty JP, Lazzara AA. Case Study of Phrenic Nerve Paralysis: "I Can't Breathe!". J Emerg Med. 2020 Jun;58(6):e237-e241.</Citation><ArticleIdList><ArticleId IdType="pubmed">32354588</ArticleId></ArticleIdList></Reference><Reference><Citation>Canbaz S, Turgut N, Halici U, Balci K, Ege T, Duran E. Electrophysiological evaluation of phrenic nerve injury during cardiac surgery--a prospective, controlled, clinical study. BMC Surg. 2004 Jan 14;4:2.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC320489</ArticleId><ArticleId IdType="pubmed">14723798</ArticleId></ArticleIdList></Reference><Reference><Citation>Nguyen MTH, Reid FSW, Barnett SA, Bentley L, Rees MA. Unusual cause of an elevated hemidiaphragm: large right-sided spontaneous diaphragmatic hernia induced by severe chronic cough in an adolescent patient with asthma. Intern Med J. 2019 Feb;49(2):273-274.</Citation><ArticleIdList><ArticleId IdType="pubmed">30754083</ArticleId></ArticleIdList></Reference><Reference><Citation>Dub&#xe9; BP, Dres M. Diaphragm Dysfunction: Diagnostic Approaches and Management Strategies. J Clin Med. 2016 Dec 05;5(12)</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5184786</ArticleId><ArticleId IdType="pubmed">27929389</ArticleId></ArticleIdList></Reference><Reference><Citation>Deng Y, Byth K, Paterson HS. Phrenic nerve injury associated with high free right internal mammary artery harvesting. Ann Thorac Surg. 2003 Aug;76(2):459-63.</Citation><ArticleIdList><ArticleId IdType="pubmed">12902085</ArticleId></ArticleIdList></Reference><Reference><Citation>Aguirre VJ, Sinha P, Zimmet A, Lee GA, Kwa L, Rosenfeldt F. Phrenic nerve injury during cardiac surgery: mechanisms, management and prevention. Heart Lung Circ. 2013 Nov;22(11):895-902.</Citation><ArticleIdList><ArticleId IdType="pubmed">23948287</ArticleId></ArticleIdList></Reference><Reference><Citation>van Doorn PA, Ruts L, Jacobs BC. Clinical features, pathogenesis, and treatment of Guillain-Barr&#xe9; syndrome. Lancet Neurol. 2008 Oct;7(10):939-50.</Citation><ArticleIdList><ArticleId IdType="pubmed">18848313</ArticleId></ArticleIdList></Reference><Reference><Citation>Gibson GJ. Diaphragmatic paresis: pathophysiology, clinical features, and investigation. Thorax. 1989 Nov;44(11):960-70.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC462156</ArticleId><ArticleId IdType="pubmed">2688182</ArticleId></ArticleIdList></Reference><Reference><Citation>Blumhof S, Wheeler D, Thomas K, McCool FD, Mora J. Change in Diaphragmatic Thickness During the Respiratory Cycle Predicts Extubation Success at Various Levels of Pressure Support Ventilation. Lung. 2016 Aug;194(4):519-25.</Citation><ArticleIdList><ArticleId IdType="pubmed">27422706</ArticleId></ArticleIdList></Reference><Reference><Citation>Groth SS, Andrade RS. Diaphragm plication for eventration or paralysis: a review of the literature. Ann Thorac Surg. 2010 Jun;89(6):S2146-50.</Citation><ArticleIdList><ArticleId IdType="pubmed">20493999</ArticleId></ArticleIdList></Reference><Reference><Citation>Groth SS, Rueth NM, Kast T, D'Cunha J, Kelly RF, Maddaus MA, Andrade RS. Laparoscopic diaphragmatic plication for diaphragmatic paralysis and eventration: an objective evaluation of short-term and midterm results. J Thorac Cardiovasc Surg. 2010 Jun;139(6):1452-6.</Citation><ArticleIdList><ArticleId IdType="pubmed">20080267</ArticleId></ArticleIdList></Reference><Reference><Citation>Onders RP, Elmo M, Khansarinia S, Bowman B, Yee J, Road J, Bass B, Dunkin B, Ingvarsson PE, Oddsd&#xf3;ttir M. Complete worldwide operative experience in laparoscopic diaphragm pacing: results and differences in spinal cord injured patients and amyotrophic lateral sclerosis patients. Surg Endosc. 2009 Jul;23(7):1433-40.</Citation><ArticleIdList><ArticleId IdType="pubmed">19067067</ArticleId></ArticleIdList></Reference><Reference><Citation>Posluszny JA, Onders R, Kerwin AJ, Weinstein MS, Stein DM, Knight J, Lottenberg L, Cheatham ML, Khansarinia S, Dayal S, Byers PM, Diebel L. Multicenter review of diaphragm pacing in spinal cord injury: successful not only in weaning from ventilators but also in bridging to independent respiration. J Trauma Acute Care Surg. 2014 Feb;76(2):303-9; discussion 309-10.</Citation><ArticleIdList><ArticleId IdType="pubmed">24458038</ArticleId></ArticleIdList></Reference></ReferenceList></BookDocument><PubmedBookData><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">32644681</ArticleId></ArticleIdList></PubmedBookData></PubmedBookArticle><PubmedBookArticle><BookDocument><PMID Version="1">32310423</PMID><ArticleIdList><ArticleId IdType="bookaccession">NBK555963</ArticleId></ArticleIdList><Book><Publisher><PublisherName>StatPearls Publishing</PublisherName><PublisherLocation>Treasure Island (FL)</PublisherLocation></Publisher><BookTitle book="statpearls">StatPearls</BookTitle><PubDate><Year>2023</Year><Month>01</Month></PubDate><BeginningDate><Year>2023</Year><Month>01</Month></BeginningDate><Medium>Internet</Medium></Book><ArticleTitle book="statpearls" part="article-27092">Pharmacologic Stress Testing
The sympathetic nervous system plays an important role in life-threatening ventricular arrhythmias (VAs). Bilateral cardiac sympathetic denervation (BCSD) is performed for refractory VAs. We sought to assess our institutional experience with BCSD in managing treatment-resistant monomorphic ventricular tachycardia (MMVT) in heart failure patients with a reduced ejection fraction (HFrEF).Four patients with HFrEF (EF 30.0 &#xb1; 8.2%, New York Heart Association [NYHA] class IV 1) underwent BCSD for MMVT (VT storm 3, repetitive VT requiring implantable cardioverter defibrillator [ICD] therapy 1) refractory to antiarrhythmic drugs, catheter ablation and ICD therapy. BCSD was effective for suppressing VT in 3 patients for whom deep sedation was effective for suppressing VT. One patient remained alive after 14 months of follow-up without episodes of VT. One patient died of acute myocardial infarction before discharge and 1 patient died from unknown cause at 3 days post-discharge. In contrast, BCSD was completely ineffective for suppressing VT in a patient with NYHA class IV for whom deep sedation and stellate ganglion block were ineffective. This patient died on the 10th post-CSD day, despite left ventricular assist device implantation. In all cases, BCSD was successfully performed without procedure-related complications.Despite the limited number of cases, our results showed that BCSD in patients with HFrEF suppressed refractory MMVT in acute-phase except for a patient with NYHA class IV; however, the prognoses were not good. BCSD may be a treatment option at an earlier stage of NYHA and a bridge to orthotopic heart transplantation, even if BCSD is effective for suppressing VAs.</Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Miki</LastName><ForeName>Yuko</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Division of Cardiology, Gunma Prefectural Cardiovascular Center.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Yoshimura</LastName><ForeName>Shingo</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Division of Cardiology, Gunma Prefectural Cardiovascular Center.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Sasaki</LastName><ForeName>Takehito</ForeName><Initials>T</Initials><AffiliationInfo><Affiliation>Division of Cardiology, Gunma Prefectural Cardiovascular Center.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Takizawa</LastName><ForeName>Ryoya</ForeName><Initials>R</Initials><AffiliationInfo><Affiliation>Division of Cardiology, Gunma Prefectural Cardiovascular Center.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kimura</LastName><ForeName>Kohki</ForeName><Initials>K</Initials><AffiliationInfo><Affiliation>Division of Cardiology, Gunma Prefectural Cardiovascular Center.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Haraguchi</LastName><ForeName>Yumiko</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Division of Cardiology, Gunma Prefectural Cardiovascular Center.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Sasaki</LastName><ForeName>Wataru</ForeName><Initials>W</Initials><AffiliationInfo><Affiliation>Division of Cardiology, Gunma Prefectural Cardiovascular Center.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kishi</LastName><ForeName>Shohei</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Division of Cardiology, Gunma Prefectural Cardiovascular Center.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Nakatani</LastName><ForeName>Yosuke</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Division of Cardiology, Gunma Prefectural Cardiovascular Center.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kaseno</LastName><ForeName>Kenichi</ForeName><Initials>K</Initials><AffiliationInfo><Affiliation>Division of Cardiology, Gunma Prefectural Cardiovascular Center.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Goto</LastName><ForeName>Koji</ForeName><Initials>K</Initials><AffiliationInfo><Affiliation>Division of Cardiology, Gunma Prefectural Cardiovascular Center.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Take</LastName><ForeName>Yutaka</ForeName><Initials>Y</Initials><AffiliationInfo><Affiliation>Division of Cardiology, Gunma Prefectural Cardiovascular Center.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Nakamura</LastName><ForeName>Kohki</ForeName><Initials>K</Initials><AffiliationInfo><Affiliation>Division of Cardiology, Gunma Prefectural Cardiovascular Center.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Niwamae</LastName><ForeName>Nogiku</ForeName><Initials>N</Initials><AffiliationInfo><Affiliation>Department of Cardiovascular Medicine, Japanese Red Cross Maebashi Hospital.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kamiyoshihara</LastName><ForeName>Mitsuhiro</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Department of General Thoracic Surgery, Japanese Red Cross Maebashi Hospital.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Naito</LastName><ForeName>Shigeto</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Division of Cardiology, Gunma Prefectural Cardiovascular Center.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList></Article><MedlineJournalInfo><Country>Japan</Country><MedlineTA>Int Heart J</MedlineTA><NlmUniqueID>101244240</NlmUniqueID><ISSNLinking>1349-2365</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D000359" MajorTopicYN="N">Aftercare</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D001145" MajorTopicYN="N">Arrhythmias, Cardiac</DescriptorName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D017115" MajorTopicYN="Y">Catheter Ablation</DescriptorName><QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D017147" MajorTopicYN="Y">Defibrillators, Implantable</DescriptorName><QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006333" MajorTopicYN="Y">Heart Failure</DescriptorName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName><QualifierName UI="Q000601" MajorTopicYN="N">surgery</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D010351" MajorTopicYN="N">Patient Discharge</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D013318" MajorTopicYN="N">Stroke Volume</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D013562" MajorTopicYN="N">Sympathectomy</DescriptorName><QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D017180" MajorTopicYN="Y">Tachycardia, Ventricular</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D016896" MajorTopicYN="N">Treatment Outcome</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Electrical storm</Keyword><Keyword MajorTopicYN="N">Heart failure with reduced ejection fraction</Keyword><Keyword MajorTopicYN="N">Refractory ventricular arrhythmia</Keyword><Keyword MajorTopicYN="N">Ventricular tachycardia</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="entrez"><Year>2022</Year><Month>7</Month><Day>31</Day><Hour>21</Hour><Minute>42</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2022</Year><Month>8</Month><Day>1</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2022</Year><Month>8</Month><Day>3</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">35908853</ArticleId><ArticleId IdType="doi">10.1536/ihj.21-601</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedBookArticle><BookDocument><PMID Version="1">32644681</PMID><ArticleIdList><ArticleId IdType="bookaccession">NBK559255</ArticleId></ArticleIdList><Book><Publisher><PublisherName>StatPearls Publishing</PublisherName><PublisherLocation>Treasure Island (FL)</PublisherLocation></Publisher><BookTitle book="statpearls">StatPearls</BookTitle><PubDate><Year>2023</Year><Month>01</Month></PubDate><BeginningDate><Year>2023</Year><Month>01</Month></BeginningDate><Medium>Internet</Medium></Book><ArticleTitle book="statpearls" part="article-20993">Elevated Hemidiaphragm</ArticleTitle><Language>eng</Language><AuthorList Type="authors" CompleteYN="Y"><Author ValidYN="Y"><LastName>Patel</LastName><ForeName>Paula R.</ForeName><Initials>PR</Initials><AffiliationInfo><Affiliation>Wyckoff Heights Medical Center</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Bechmann</LastName><ForeName>Samuel</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>New Jersey Medical School</Affiliation></AffiliationInfo></Author></AuthorList><PublicationType UI="D000072643">Study Guide</PublicationType><Abstract>The diaphragm is a thin, dome-shaped muscular structure that functions as a respiratory pump and is the primary muscle for inspiration.&#xa0;Elevated hemidiaphragm occurs when one side of the diaphragm becomes weak from muscular disease or loss of innervation due to phrenic nerve injury. Patients may present with difficulty breathing, but more commonly elevated hemidiaphragm is found on imaging as an incidental finding, and patients are asymptomatic. The phrenic nerve runs in the fascia over the anterior scalene muscle. An anesthesiologist commonly performs interscalene blocks for shoulder surgery, such as a rotator cuff repair, humeral fracture, total shoulder replacement, and&#xa0;other arm surgery. phrenic nerve paralysis is a known complication from the interscalene block. It has been observed in many case reports and series in both anesthesia and neurosurgical literature, but only a single case report in the emergency medicine literature. The diaphragm is the primary muscle for inspiration along with secondary muscles such as the sternocleidomastoid, external intercostals, and scalene muscles.&#xa0;During inspiration, the diaphragm flattens pulling air into the lungs, whereas during expiration, the diaphragm relaxes, allowing&#xa0;air to flow out of the lungs passively. As the diaphragm flattens during inspiration subatmospheric, negative pressure is created within the thoracic cavity&#xa0;that&#xa0;overcomes atmospheric pressure.&#xa0; This forms a vacuum that facilitates the movement of air into the lungs. Also, as the diaphragm contracts, the floor of the thoracic cavity moves downward, and the walls move outward. This causes inflation of the lungs and allows for gas exchange to occur. As the diaphragm relaxes, the tension on the chest wall muscles decreases, causing the muscles to recoil and passively push the air out during expiration. The&#xa0;diaphragm&#xa0;has three points of origin, creating a C shape that culminates in a stable, dense fibrous center tendon. The sternal group of muscle fibers is attached&#xa0;to&#xa0;the posterior aspect of the xiphoid process. The costal group of muscle fibers originates from the inner surface of seven to twelfth ribs. The&#xa0;lumbar group of muscular fibers arises from the medial and lateral arcuate ligaments and anterior longitudinal ligament, and lumbar vertebral bodies of L2-L3. There are three openings in the diaphragm, allowing structures to pass between the thoracic and abdominal cavity. The esophageal hiatus through which the esophagus and vagus nerve pass, the aortic hiatus through which the aorta, azygos vein and thoracic duct pass, and the&#xa0;caval hiatus&#xa0;through which the&#xa0;inferior vena cava passes. The diaphragm anatomically&#xa0;separates the thoracic cavity from the abdominal cavity,&#xa0;making the diaphragm the base of the thoracic cavity and the apex of the abdominal cavity. The diaphragm is separated into the right and left&#xa0;half. Each side has it's own blood supply from the inferior and superior phrenic arteries arising directly from the aorta, subcostal and intercostal arteries.&#xa0;Phrenic veins drain blood from the diaphragm directly into the inferior vena cava. The diaphragm is innervated by the ipsilateral phrenic nerve that arises from the cervical nerve roots of C3-C5.&#xa0;The phrenic nerve emerges through the anterior scalene muscle on either side of the neck and courses posteriorly to the subclavian vein.&#xa0;Both phrenic nerves enter into the thoracic cavity through the thoracic aperture. In the thoracic cavity, the right and left phrenic nerves&#xa0;follow different paths. The right phrenic nerve descends anteriorly over the right atrium of the heart and exits through the inferior vena cava opening to innervate the inferior surface of the hemidiaphragm. The left phrenic nerve crosses the aortic arch and pericardium overlying the left ventricle until it pierces through the diaphragm to innervate the inferior surface of the left hemidiaphragm. Sensory innervation of the diaphragm is from the intercostal nerves 6-11. Elevated Hemidiaphragm is a condition where one portion of the diaphragm is higher than the other.&#xa0;Often elevated hemidiaphragm is asymptomatic and visualized as an incidental finding on radiologic studies like chest X-ray or chest CT (computed tomography). Patients are typically asymptomatic due to the compensation and recruitment of other inspiratory muscles,&#xa0;and often the healthy hemidiaphragm compensates to maintain the pressure gradient required for adequate gas exchange. However, evidence suggests that the function of the contralateral, healthy hemidiaphragm may be impacted by lower abdominal pressure. In severe cases of unilateral hemidiaphragm paralysis, patients may lose their inspiratory capacity, which can impair the ability of the heart to pump&#xa0;efficiently. Under normal circumstances, the intrathoracic pressure and contraction of the diaphragm overcome the force of gravity and propel blood into the right atrium from the inferior vena cava (IVC). When the pressure gradient cannot be maintained, the right atrium will collapse, and&#xa0;the patient may present as though they have cardiac tamponade.&#xa0;Accurate diagnosis, treatment, and management of elevated hemidiaphragm are essential in patients presenting with&#xa0;dyspnea and multi-organ involvement.<CopyrightInformation>Copyright &#xa9; 2023, StatPearls Publishing LLC.</CopyrightInformation></Abstract><Sections><Section><SectionTitle book="statpearls" part="article-20993" sec="article-20993.s1">Continuing Education Activity</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-20993" sec="article-20993.s2">Introduction</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-20993" sec="article-20993.s3">Etiology</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-20993" sec="article-20993.s4">Epidemiology</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-20993" sec="article-20993.s5">Pathophysiology</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-20993" sec="article-20993.s6">History and Physical</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-20993" sec="article-20993.s7">Evaluation</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-20993" sec="article-20993.s8">Treatment / Management</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-20993" sec="article-20993.s9">Differential Diagnosis</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-20993" sec="article-20993.s10">Prognosis</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-20993" sec="article-20993.s11">Complications</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-20993" sec="article-20993.s12">Consultations</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-20993" sec="article-20993.s13">Deterrence and Patient Education</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-20993" sec="article-20993.s14">Enhancing Healthcare Team Outcomes</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-20993" sec="article-20993.s15">Review Questions</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-20993" sec="article-20993.s17">References</SectionTitle></Section></Sections><ContributionDate><Year>2022</Year><Month>8</Month><Day>1</Day></ContributionDate><ReferenceList><Reference><Citation>Roussos C, Macklem PT. The respiratory muscles. N Engl J Med. 1982 Sep 23;307(13):786-97.</Citation><ArticleIdList><ArticleId IdType="pubmed">7050712</ArticleId></ArticleIdList></Reference><Reference><Citation>Fell SC. Surgical anatomy of the diaphragm and the phrenic nerve. Chest Surg Clin N Am. 1998 May;8(2):281-94.</Citation><ArticleIdList><ArticleId IdType="pubmed">9619305</ArticleId></ArticleIdList></Reference><Reference><Citation>Kokatnur L, Rudrappa M. Diaphragmatic Palsy. Diseases. 2018 Feb 13;6(1)</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5871962</ArticleId><ArticleId IdType="pubmed">29438332</ArticleId></ArticleIdList></Reference><Reference><Citation>Caleffi-Pereira M, Pletsch-Assun&#xe7;&#xe3;o R, Cardenas LZ, Santana PV, Ferreira JG, Iamonti VC, Caruso P, Fernandez A, de Carvalho CRR, Albuquerque ALP. Unilateral diaphragm paralysis: a dysfunction restricted not just to one hemidiaphragm. BMC Pulm Med. 2018 Aug 02;18(1):126.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6090915</ArticleId><ArticleId IdType="pubmed">30068327</ArticleId></ArticleIdList></Reference><Reference><Citation>Thomas SC, Garg A, Pulkkinen C, Smith S, Kumar A, Atoui R. An Unusual Case of Cardiac Tamponade Secondary to an Elevated Right Hemidiaphragm. Can J Cardiol. 2018 Dec;34(12):1688.e21-1688.e23.</Citation><ArticleIdList><ArticleId IdType="pubmed">30527167</ArticleId></ArticleIdList></Reference><Reference><Citation>Kharma N. Dysfunction of the diaphragm: imaging as a diagnostic tool. Curr Opin Pulm Med. 2013 Jul;19(4):394-8.</Citation><ArticleIdList><ArticleId IdType="pubmed">23715292</ArticleId></ArticleIdList></Reference><Reference><Citation>McCaul JA, Hislop WS. Transient hemi-diaphragmatic paralysis following neck surgery: report of a case and review of the literature. J R Coll Surg Edinb. 2001 Jun;46(3):186-8.</Citation><ArticleIdList><ArticleId IdType="pubmed">11478021</ArticleId></ArticleIdList></Reference><Reference><Citation>Chapman SA, Holmes MD, Taylor DJ. Unilateral diaphragmatic paralysis following bronchial artery embolization for hemoptysis. Chest. 2000 Jul;118(1):269-70.</Citation><ArticleIdList><ArticleId IdType="pubmed">10893396</ArticleId></ArticleIdList></Reference><Reference><Citation>Doyle MP, McCarty JP, Lazzara AA. Case Study of Phrenic Nerve Paralysis: "I Can't Breathe!". J Emerg Med. 2020 Jun;58(6):e237-e241.</Citation><ArticleIdList><ArticleId IdType="pubmed">32354588</ArticleId></ArticleIdList></Reference><Reference><Citation>Canbaz S, Turgut N, Halici U, Balci K, Ege T, Duran E. Electrophysiological evaluation of phrenic nerve injury during cardiac surgery--a prospective, controlled, clinical study. BMC Surg. 2004 Jan 14;4:2.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC320489</ArticleId><ArticleId IdType="pubmed">14723798</ArticleId></ArticleIdList></Reference><Reference><Citation>Nguyen MTH, Reid FSW, Barnett SA, Bentley L, Rees MA. Unusual cause of an elevated hemidiaphragm: large right-sided spontaneous diaphragmatic hernia induced by severe chronic cough in an adolescent patient with asthma. Intern Med J. 2019 Feb;49(2):273-274.</Citation><ArticleIdList><ArticleId IdType="pubmed">30754083</ArticleId></ArticleIdList></Reference><Reference><Citation>Dub&#xe9; BP, Dres M. Diaphragm Dysfunction: Diagnostic Approaches and Management Strategies. J Clin Med. 2016 Dec 05;5(12)</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5184786</ArticleId><ArticleId IdType="pubmed">27929389</ArticleId></ArticleIdList></Reference><Reference><Citation>Deng Y, Byth K, Paterson HS. Phrenic nerve injury associated with high free right internal mammary artery harvesting. Ann Thorac Surg. 2003 Aug;76(2):459-63.</Citation><ArticleIdList><ArticleId IdType="pubmed">12902085</ArticleId></ArticleIdList></Reference><Reference><Citation>Aguirre VJ, Sinha P, Zimmet A, Lee GA, Kwa L, Rosenfeldt F. Phrenic nerve injury during cardiac surgery: mechanisms, management and prevention. Heart Lung Circ. 2013 Nov;22(11):895-902.</Citation><ArticleIdList><ArticleId IdType="pubmed">23948287</ArticleId></ArticleIdList></Reference><Reference><Citation>van Doorn PA, Ruts L, Jacobs BC. Clinical features, pathogenesis, and treatment of Guillain-Barr&#xe9; syndrome. Lancet Neurol. 2008 Oct;7(10):939-50.</Citation><ArticleIdList><ArticleId IdType="pubmed">18848313</ArticleId></ArticleIdList></Reference><Reference><Citation>Gibson GJ. Diaphragmatic paresis: pathophysiology, clinical features, and investigation. Thorax. 1989 Nov;44(11):960-70.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC462156</ArticleId><ArticleId IdType="pubmed">2688182</ArticleId></ArticleIdList></Reference><Reference><Citation>Blumhof S, Wheeler D, Thomas K, McCool FD, Mora J. Change in Diaphragmatic Thickness During the Respiratory Cycle Predicts Extubation Success at Various Levels of Pressure Support Ventilation. Lung. 2016 Aug;194(4):519-25.</Citation><ArticleIdList><ArticleId IdType="pubmed">27422706</ArticleId></ArticleIdList></Reference><Reference><Citation>Groth SS, Andrade RS. Diaphragm plication for eventration or paralysis: a review of the literature. Ann Thorac Surg. 2010 Jun;89(6):S2146-50.</Citation><ArticleIdList><ArticleId IdType="pubmed">20493999</ArticleId></ArticleIdList></Reference><Reference><Citation>Groth SS, Rueth NM, Kast T, D'Cunha J, Kelly RF, Maddaus MA, Andrade RS. Laparoscopic diaphragmatic plication for diaphragmatic paralysis and eventration: an objective evaluation of short-term and midterm results. J Thorac Cardiovasc Surg. 2010 Jun;139(6):1452-6.</Citation><ArticleIdList><ArticleId IdType="pubmed">20080267</ArticleId></ArticleIdList></Reference><Reference><Citation>Onders RP, Elmo M, Khansarinia S, Bowman B, Yee J, Road J, Bass B, Dunkin B, Ingvarsson PE, Oddsd&#xf3;ttir M. Complete worldwide operative experience in laparoscopic diaphragm pacing: results and differences in spinal cord injured patients and amyotrophic lateral sclerosis patients. Surg Endosc. 2009 Jul;23(7):1433-40.</Citation><ArticleIdList><ArticleId IdType="pubmed">19067067</ArticleId></ArticleIdList></Reference><Reference><Citation>Posluszny JA, Onders R, Kerwin AJ, Weinstein MS, Stein DM, Knight J, Lottenberg L, Cheatham ML, Khansarinia S, Dayal S, Byers PM, Diebel L. Multicenter review of diaphragm pacing in spinal cord injury: successful not only in weaning from ventilators but also in bridging to independent respiration. J Trauma Acute Care Surg. 2014 Feb;76(2):303-9; discussion 309-10.</Citation><ArticleIdList><ArticleId IdType="pubmed">24458038</ArticleId></ArticleIdList></Reference></ReferenceList></BookDocument><PubmedBookData><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">32644681</ArticleId></ArticleIdList></PubmedBookData></PubmedBookArticle><PubmedBookArticle><BookDocument><PMID Version="1">32310423</PMID><ArticleIdList><ArticleId IdType="bookaccession">NBK555963</ArticleId></ArticleIdList><Book><Publisher><PublisherName>StatPearls Publishing</PublisherName><PublisherLocation>Treasure Island (FL)</PublisherLocation></Publisher><BookTitle book="statpearls">StatPearls</BookTitle><PubDate><Year>2023</Year><Month>01</Month></PubDate><BeginningDate><Year>2023</Year><Month>01</Month></BeginningDate><Medium>Internet</Medium></Book><ArticleTitle book="statpearls" part="article-27092">Pharmacologic Stress Testing</ArticleTitle><Language>eng</Language><AuthorList Type="authors" CompleteYN="Y"><Author ValidYN="Y"><LastName>Lak</LastName><ForeName>Hassan Mehmood</ForeName><Initials>HM</Initials><AffiliationInfo><Affiliation>Cleveland Clinic Foundation</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ranka</LastName><ForeName>Sagar</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>University of Kansas</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Goyal</LastName><ForeName>Amandeep</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>University of Kansas Medical Center</Affiliation></AffiliationInfo></Author></AuthorList><PublicationType UI="D000072643">Study Guide</PublicationType><Abstract>Cardiac stress testing is the most commonly used modality for diagnostic purposes in patients with known or suspected coronary artery disease (CAD). The utility of stress testing should be interpreted based on the likelihood of the disease. Patients with a low probability of disease have a high risk of false-positive results and may end up further unnecessary invasive testing without changing patient outcomes. Those with high pretest probability have a high risk of false-negative results that can miss a critical diagnosis; therefore, these patients should proceed directly to more confirmatory testing such as cardiac catheterization. Stress testing is most clinically useful in intermediate-risk patients for CAD that will help further reclassify these patients into low risk and high-risk depending on the stress test result. Stress testing can also be used to obtain prognostic information to determine the patient's response to optical medical therapy, measure exercise capacity, evaluate ischemia who are already started on medical therapy for known CAD. In general exercise, stress is preferred because it provides a gauge of functional capacity, exercise tolerance, and symptom provocation.&#xa0;Pharmacologic stress testing is an alternative modality in patients who are unable to exercise and with the following conditions: 1. Patients presenting with unstable angina. 2. History of heart failure which is not well controlled, and there is a concern for deterioration. 3. Poorly controlled blood pressure with systolic blood pressure significantly higher (&gt;200 mmHg at rest). 4. Patients with a history of aortic stenosis which is significantly worse on echocardiogram (aortic valve area &lt;1.0 cm2 and mean gradient &gt;40 mmHg) and have ongoing symptoms. 5. Myocardial infarction in the last week. 6. Acute pulmonary embolism. 7. Acute inflammation of pericardium or myocardium. 8. Severe pulmonary hypertension. Exercise stress testing is also not very helpful in patients with an insufficient hemodynamic response to exercise due to abnormalities involving the respiratory system, and having ongoing issues involving muscles, bones, and vessels in the peripheral system. Also, the exercise stress test is not useful when baseline EKG is abnormal such as with left ventricular hypertrophy (LVH), left bundle branch block (LBBB), paced rhythm, Wolff Parkinson White (WPW) syndrome,&#xa0;or greater than 1 mm ST-segment depression. These patients are suitable candidates for testing involving pharmacologic agents. Pharmacologic stress testing is used in combination with imaging modalities such as radionuclide imaging and echocardiography.
2,335,743
Atrial myxoma surgery and P-wave remodeling.<Pagination><StartPage>1160</StartPage><EndPage>1164</EndPage><MedlinePgn>1160-1164</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1111/pace.14573</ELocationID><Abstract><AbstractText Label="INTRODUCTION">Data regarding atrial electrocardiographic parameters in patients with atrial myxomas are scarce.</AbstractText><AbstractText Label="METHODS">We aimed to study atrial electrocardiographic features in patients with atrial myxomas, before and after surgery. We also analyze the incidence of atrial fibrillation during follow-up and its correlation with different P-wave indexes. In total 32 patients in sinus rhythm that underwent atrial myxoma surgery were included.</AbstractText><AbstractText Label="RESULTS">Mean age was 55.0&#xa0;&#xb1;&#xa0;12.6 years and 18 (56.3%) were women. Ten patients had left atrial enlargement (31.3%). Only one myxoma was located in the right atrium. At baseline seven cases of partial interatrial block (IAB) were detected (21.9%), two in the absence of left atrial enlargement. There were significant differences in atrial electrocardiographic indexes before and after surgery, including P-wave duration (108.9&#xa0;&#xb1;&#xa0;17.9&#xa0;ms vs. 93.0&#xa0;&#xb1;&#xa0;12.4&#xa0;ms; p &lt;&#xa0;.001), partial IAB (21.9%&#xa0;vs. 3.1%; p&#xa0;=&#xa0;.012) and duration of P-wave terminal force in lead V1 negativity (-0.6&#xa0;&#xb1;&#xa0;0.3&#xa0;vs. -0.5&#xa0;&#xb1;&#xa0;0.3&#xa0;mm; p&#xa0;=&#xa0;.034). At a mean follow-up of 10.0&#xa0;&#xb1;&#xa0;5.5 years, 10 patients (31.3%) had experienced at least one episode of atrial fibrillation. Post-operative P-wave duration was associated with atrial fibrillation occurrence during follow-up (Hazard ratio: 0.90, 95% confidence interval: 0.83-0.98; p =&#xa0;.020).</AbstractText><AbstractText Label="CONCLUSIONS">Abnormalities in atrial electrocardiographic indexes are common in atrial myxomas and frequently improve after surgery. Post-operative P-wave duration is associated with atrial fibrillation occurrence during follow-up.</AbstractText><CopyrightInformation>&#xa9; 2022 Wiley Periodicals LLC.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Herrera</LastName><ForeName>Cristian</ForeName><Initials>C</Initials><Identifier Source="ORCID">0000-0002-9048-9609</Identifier><AffiliationInfo><Affiliation>Centro de Investigaci&#xf3;n Biom&#xe9;dica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain, Madrid, Spain.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Bru&#xf1;a</LastName><ForeName>Vanesa</ForeName><Initials>V</Initials><AffiliationInfo><Affiliation>Department of Cardiology, Hospital Universitario 12 de Octubre, Centro de Investigaci&#xf3;n Biom&#xe9;dica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Barrio</LastName><ForeName>Jose Mar&#xed;a</ForeName><Initials>JM</Initials><AffiliationInfo><Affiliation>Department of Anestesiology, Cardiac Surgery Postoperative Care Unit, Hospital General Universitario Gregorio Mara&#xf1;&#xf3;n, Madrid, Spain.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Cuerpo</LastName><ForeName>Gregorio</ForeName><Initials>G</Initials><AffiliationInfo><Affiliation>Department of Cardiac Surgery, Hospital General Universitario Gregorio Mara&#xf1;&#xf3;n, Madrid, Spain.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Fern&#xe1;ndez-Avil&#xe9;s</LastName><ForeName>Francisco</ForeName><Initials>F</Initials><AffiliationInfo><Affiliation>Centro de Investigaci&#xf3;n Biom&#xe9;dica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain, Madrid, Spain.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Faculty of Medicine, Universidad Complutense, Madrid, Spain.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Bay&#xe9;s de Luna</LastName><ForeName>Antonio</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Cardiovascular Research Foundation, Cardiovascular ICCC Program, Research Institute Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Mart&#xed;nez-Sell&#xe9;s</LastName><ForeName>Manuel</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Centro de Investigaci&#xf3;n Biom&#xe9;dica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain, Madrid, Spain.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Faculty of Medicine, Universidad Complutense, Madrid, Spain.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Faculty of Biomedical and Health Science, Universidad Europea, Madrid, Spain.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2022</Year><Month>08</Month><Day>16</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Pacing Clin Electrophysiol</MedlineTA><NlmUniqueID>7803944</NlmUniqueID><ISSNLinking>0147-8389</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D001281" MajorTopicYN="Y">Atrial Fibrillation</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D004562" MajorTopicYN="N">Electrocardiography</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006325" MajorTopicYN="N">Heart Atria</DescriptorName><QualifierName UI="Q000601" MajorTopicYN="N">surgery</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006338" MajorTopicYN="Y">Heart Neoplasms</DescriptorName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName><QualifierName UI="Q000601" MajorTopicYN="N">surgery</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D009232" MajorTopicYN="Y">Myxoma</DescriptorName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName><QualifierName UI="Q000601" MajorTopicYN="N">surgery</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">P-wave</Keyword><Keyword MajorTopicYN="N">cardiac surgery</Keyword><Keyword MajorTopicYN="N">cardiac tumor</Keyword><Keyword MajorTopicYN="N">interatrial block</Keyword><Keyword MajorTopicYN="N">myxoma</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="revised"><Year>2022</Year><Month>6</Month><Day>28</Day></PubMedPubDate><PubMedPubDate PubStatus="received"><Year>2022</Year><Month>3</Month><Day>16</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2022</Year><Month>7</Month><Day>22</Day></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2022</Year><Month>7</Month><Day>29</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2022</Year><Month>9</Month><Day>21</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2022</Year><Month>7</Month><Day>28</Day><Hour>1</Hour><Minute>32</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">35898158</ArticleId><ArticleId IdType="doi">10.1111/pace.14573</ArticleId></ArticleIdList><ReferenceList><Title>REFERENCES</Title><Reference><Citation>Burke A, Tavora F. The 2015 WHO classification of tumors of the heart and pericardium. J Thorac Oncol. 2016;11:441-452.</Citation></Reference><Reference><Citation>Tyebally S, Chen D, Bhattacharyya S, et&#xa0;al. Cardiac tumors: JACC cardiooncology state-of-the-art review. JACC CardioOncol. 2020;2:293-311.</Citation></Reference><Reference><Citation>Bay&#xe9;s De Luna A, Platonov P, Cosio FG, et&#xa0;al. Interatrial blocks. A separate entity from left atrial enlargement: a consensus report. J Electrocardiol. 2012;45:445-451.</Citation></Reference><Reference><Citation>Gentille-Lorente DI, Scott L, Escobar-Robledo LA, et&#xa0;al. Atypical advanced interatrial block due to giant atrial lipoma. Pacing Clin Electrophysiol. 2021;44:737-739.</Citation></Reference><Reference><Citation>Morris JJ, Estes EH, Whalen RE, Thompson HK, Mcintosh HD. P-wave analysis in valvular heart disease. Circulation. 1964;29:242-252.</Citation></Reference><Reference><Citation>Alexander B, Milden J, Hazim B, et&#xa0;al. New electrocardiographic score for the prediction of atrial fibrillation: the MVP ECG risk score (morphology-voltage-P-wave duration). Ann Noninvasive Electrocardiol. 2019;24:1-7.</Citation></Reference><Reference><Citation>De LunaAB, A Baranchuk, Robledo LAE, Roessel AM, Mart&#xed;nez-Sell&#xe9;s M. Diagnosis of interatrial block. J Geriatr Cardiol. 2017;14:161-165.</Citation></Reference><Reference><Citation>Lang RM, Badano LP, Victor MA, et&#xa0;al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28:1-39. e14.</Citation></Reference><Reference><Citation>Komiya N, Isomoto S, Hayano M, Kugimiya T, Yano K. The influence of tumor size on the electrocardiographic changes in patients with left atrial myxoma. J Electrocardiol. 2002;35:53-57.</Citation></Reference><Reference><Citation>Harikrishnan S, Bohora S, Pillai VV, et&#xa0;al. Left atrial myxoma-influence of tumour size on electrocardiographic findings. Indian Heart J. 2012;64:170-172.</Citation></Reference><Reference><Citation>Josephson ME, Kastor JA, Morganroth J. Electrocardiographic left atrial enlargement electrophysiologic, echocardiographic and hemodynamic correlates. Am J Cardiol. 1977;39:967-971.</Citation></Reference><Reference><Citation>Lee KS, Appleton CP, Lester SJ, et&#xa0;al. Relation of electrocardiographic criteria for left atrial enlargement to two-dimensional echocardiographic left atrial volume measurements. Am J Cardiol. 2007;99:113-118.</Citation></Reference><Reference><Citation>Tsao CW, Josephson ME, Hauser TH, et&#xa0;al. Accuracy of electrocardiographic criteria for atrial enlargement: validation with cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2008;10:1-7.</Citation></Reference><Reference><Citation>Herrera C, Bru&#xf1;a V, Comella A, et&#xa0;al. Left atrial enlargement in competitive athletes and atrial electrophysiology. Rev Esp Cardiol (Engl Ed). 2022;75(5):421-428. English, Spanish. https://doi.org/10.1016/j.rec.2021.05.020. Epub 2021 Aug 7. PMID: 34373222.</Citation></Reference><Reference><Citation>Sajeev JK, Koshy AN, Dewey H, et&#xa0;al. Poor reliability of P-wave terminal force V1 in ischemic stroke. J Electrocardiol. 2019;52:47-52.</Citation></Reference><Reference><Citation>Rasmussen MU, Fabricius-Bjerre A, Kumarathurai P, et&#xa0;al. Common source of miscalculation and misclassification of P-wave negativity and P-wave terminal force in lead V1. J Electrocardiol. 2019;53:85-88.</Citation></Reference><Reference><Citation>Guerra JM, Vilahur G, Bay&#xe9;s de Luna A, et&#xa0;al. Interatrial block can occur in the absence of left atrial enlargement: new experimental model. Pacing Clin Electrophysiol. 2020;43:427-429.</Citation></Reference><Reference><Citation>O'Neal WT, Zhang ZM, Loehr LR, Chen LY, Alonso A, Soliman EZ. Electrocardiographic advanced interatrial block and atrial fibrillation risk in the general population. Am J Cardiol. 2016;117:1755-1759.</Citation></Reference><Reference><Citation>Melduni RM, Schaff HV, Bailey KR, et&#xa0;al. Implications of new-onset atrial fibrillation after cardiac surgery on long-term prognosis: a community-based study. Am Heart J. 2015;170:659-668.</Citation></Reference><Reference><Citation>Lowres N, Mulcahy G, Jin K, Gallagher R, Neubeck L, Freedman B. Incidence of postoperative atrial fibrillation recurrence in patients discharged in sinus rhythm after cardiac surgery: a systematic review and meta-analysis. Interact Cardiovasc Thorac Surg. 2018;26:504-511.</Citation></Reference><Reference><Citation>Nielsen JB, K&#xfc;hl JT, Pietersen A, et&#xa0;al. P-wave duration and the risk of atrial fibrillation: results from the Copenhagen ECG study. Heart Rhythm. 2015;12(9):1887-1895. https://doi.org/10.1016/j.hrthm.2015.04.026. Epub 2015 Apr 23. PMID: 25916567.</Citation></Reference><Reference><Citation>Vicent L, Fern&#xe1;ndez-cord&#xf3;n C, Nombela-franco L, et&#xa0;al. Baseline ECG and prognosis after transcatheter aortic valve implantation. J Am Heart Assoc. 2020;9:e017624.</Citation></Reference><Reference><Citation>Bay&#xe9;s de Luna A, Mar&#xed;&#x131;nez-Sell&#xe9;s M, Bay&#xe9;s-Gen&#xed;s A, Elosua R, Baranchuk A. What every clinician should know about Bay&#xe9;s syndrome. Rev Esp Cardiol. 2020;73:758-762.</Citation></Reference><Reference><Citation>Bay&#xe9;s-de-Luna A, Mart&#xed;nez-Sell&#xe9;s M, Elosua R, et&#xa0;al. Relation of advanced interatrial block to risk of atrial fibrillation and stroke. Am J Cardiol. 2020;125:1745-1748.</Citation></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="Publisher" Owner="NLM"><PMID Version="1">35897126</PMID><DateRevised><Year>2022</Year><Month>07</Month><Day>27</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1479-828X</ISSN><JournalIssue CitedMedium="Internet"><PubDate><Year>2022</Year><Month>Jul</Month><Day>27</Day></PubDate></JournalIssue><Title>The Australian &amp; New Zealand journal of obstetrics &amp; gynaecology</Title><ISOAbbreviation>Aust N Z J Obstet Gynaecol</ISOAbbreviation></Journal>Fetal heart block: Vaginal delivery an option.
Data regarding atrial electrocardiographic parameters in patients with atrial myxomas are scarce.</AbstractText>We aimed to study atrial electrocardiographic features in patients with atrial myxomas, before and after surgery. We also analyze the incidence of atrial fibrillation during follow-up and its correlation with different P-wave indexes. In total 32 patients in sinus rhythm that underwent atrial myxoma surgery were included.</AbstractText>Mean age was 55.0&#xa0;&#xb1;&#xa0;12.6 years and 18 (56.3%) were women. Ten patients had left atrial enlargement (31.3%). Only one myxoma was located in the right atrium. At baseline seven cases of partial interatrial block (IAB) were detected (21.9%), two in the absence of left atrial enlargement. There were significant differences in atrial electrocardiographic indexes before and after surgery, including P-wave duration (108.9&#xa0;&#xb1;&#xa0;17.9&#xa0;ms vs. 93.0&#xa0;&#xb1;&#xa0;12.4&#xa0;ms; p &lt;&#xa0;.001), partial IAB (21.9%&#xa0;vs. 3.1%; p&#xa0;=&#xa0;.012) and duration of P-wave terminal force in lead V1 negativity (-0.6&#xa0;&#xb1;&#xa0;0.3&#xa0;vs. -0.5&#xa0;&#xb1;&#xa0;0.3&#xa0;mm; p&#xa0;=&#xa0;.034). At a mean follow-up of 10.0&#xa0;&#xb1;&#xa0;5.5 years, 10 patients (31.3%) had experienced at least one episode of atrial fibrillation. Post-operative P-wave duration was associated with atrial fibrillation occurrence during follow-up (Hazard ratio: 0.90, 95% confidence interval: 0.83-0.98; p =&#xa0;.020).</AbstractText>Abnormalities in atrial electrocardiographic indexes are common in atrial myxomas and frequently improve after surgery. Post-operative P-wave duration is associated with atrial fibrillation occurrence during follow-up.</AbstractText>&#xa9; 2022 Wiley Periodicals LLC.</CopyrightInformation>
2,335,744
Internal organ and skeletal muscle development in commercial broilers with woody breast myopathy.
Increasing growth rate, body weight, and breast muscle yield have been linked to broiler muscle problems such as woody breast (WB). The aim of this study was to investigate the internal organ and skeletal muscle development of broilers with WB myopathy under dietary and Eimeria challenge treatments. A 3 diet (control, antibiotic, or probiotic)&#xa0;&#xd7;&#xa0;2 challenge (control or Eimeria)&#xa0;&#xd7;&#xa0;2 sex factorial arrangement of treatments was used in a randomized complete block design. Ross&#xa0;&#xd7;&#xa0;Ross 708 chicks were randomly assigned to 96 floor pens with 12 treatment combinations (8 replicates per treatment). Internal organs were sampled on d 13 and 41. Skeletal muscles were sampled on d 41. Internal organ and skeletal muscle weights were analyzed using a 3-way analysis of variance (ANOVA). Relationships between WB and internal organ and skeletal muscle weights were analyzed using one-way ANOVA as all treatments were pooled together and regrouped according to WB scores. On d 41, absolute and relative heart weights were greater in males when they were averaged over diet and challenge treatments (P &lt; 0.001 and P&#xa0;=&#xa0;0.026, respectively). The birds with WB score 3 had greater absolute heart (P&#xa0;=&#xa0;0.0002) and spleen weights (P&#xa0;=&#xa0;0.016), but there was no difference in relative spleen weight (P &gt; 0.05). When averaged over diet and challenge treatments, males have greater absolute duodenum, jejunum, and ileum weights (for all P &lt; 0.0001). Compared with birds with normal breasts, the birds with WB scores 1, 2, and 3 had a greater live weight (for all P &lt; 0.0001) and absolute and relative breast weights (for all P &lt; 0.0001). The birds with WB score 1, 2, and 3 had greater (P &lt; 0.0001) absolute but lower (P &lt; 0.0001) relative drumstick, thigh, and wing weights. Results indicated that broilers with WB had lower relative proventriculus and gizzard weights and greater relative breast meat weight with lower relative drumstick, thigh, and wing muscle weights.
2,335,745
PEG-Free Polyion Complex Nanocarriers for Brain-Derived Neurotrophic Factor.
Many therapeutic formulations incorporate poly(ethylene glycol) (PEG) as a stealth component to minimize early clearance. However, PEG is immunogenic and susceptible to accelerated clearance after multiple administrations. Here, we present two novel reformulations of a polyion complex (PIC), originally composed of poly(ethylene glycol)<sub>113</sub>-b-poly(glutamic acid)<sub>50</sub> (PEG-PLE) and brain-derived neurotrophic factor (BDNF), termed Nano-BDNF (Nano-BDNF PEG-PLE). We replace the PEG based block copolymer with two new polymers, poly(sarcosine)<sub>127</sub>-b-poly(glutamic acid)<sub>50</sub> (PSR-PLE) and poly(methyl-2-oxazolines)<sub>38</sub>-<i>b</i>-poly(oxazolepropanoic acid)<sub>27</sub>-<i>b</i>-poly(methyl-2-oxazoline)<sub>38</sub> (PMeOx-PPaOx-PMeOx), which are driven to association with BDNF via electrostatic interactions and hydrogen bonding to form a PIC. Formulation using a microfluidic mixer yields small and narrowly disperse nanoparticles which associate following similar principles. Additionally, we demonstrate that encapsulation does not inhibit access by the receptor kinase, which affects BDNF's physiologic benefits. Finally, we investigate the formation of nascent nanoparticles through a series of characterization experiments and isothermal titration experiments which show the effects of pH in the context of particle self-assembly. Our findings indicate that thoughtful reformulation of PEG based, therapeutic PICs with non-PEG alternatives can be accomplished without compromising the self-assembly of the PIC.
2,335,746
Electrical Dyssynchrony in Cardiac Amyloidosis: Prevalence, Predictors, Clinical Correlates, and Outcomes.<Pagination><StartPage>1664</StartPage><EndPage>1672</EndPage><MedlinePgn>1664-1672</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/j.cardfail.2022.07.046</ELocationID><ELocationID EIdType="pii" ValidYN="Y">S1071-9164(22)00647-9</ELocationID><Abstract><AbstractText Label="BACKGROUND">Conduction-system involvement in cardiac amyloidosis (CA) is common. The prevalence, clinical correlates and impact on outcome related to ventricular electrical dyssynchrony in CA remain insufficiently elucidated.</AbstractText><AbstractText Label="METHODS">Data from a prospectively maintained registry of patients with CA diagnosed in the Cleveland Clinic's amyloidosis clinic was used to determine the frequency of electrical dyssynchrony (defined as a QRS &gt; 130 msec). The relation with the clinical profile and clinical outcome was assessed. To determine the impact of hypertrophy on QRS prolongation, a QRS-matched cohort without CA was used for comparison of cardiac magnetic resonance imaging.</AbstractText><AbstractText Label="RESULTS">A total of 1140 patients with CA (39% AL, 61% TTR) were evaluated, of whom 230 (20%) had electrical dyssynchrony. The type of conduction block was predominantly a right bundle branch block (BBB, 48%) followed by left BBB (35%) and intraventricular conduction delay (17%). Presence of transthyretin amyloidosis (ATTR-CA), older age, male gender, white race, and coronary artery disease were independently (P&lt; 0.05 for all) associated with electrical dyssynchrony, and patients were more commonly prescribed a mineralocorticoid receptor antagonist. In ATTR-CA, specifically, every increase in ATTR-CA disease stage was associated with a 1.55-fold (1.23--1.95; P&lt; 0.001) increased odds for electrical dyssynchrony. In a subset of patients with CA who underwent cardiac magnetic resonance imaging (n&#x202f;=&#x202f;41), left ventricular mass index was unrelated to the QRS duration (r&#x202f;=&#x202f;0.187; P = 0.283) in CA, in contrast to a non-CA QRS-matched cohort (r&#x202f;=&#x202f;0.397; P&lt; 0.001). Patients with electrical dyssynchrony were more symptomatic at initial presentation, as illustrated by a higher New York Heart Association class (P= 0.041). During a median follow-up of 462 days (IQR:138--996 days), a higher proportion of patients with electrical dyssynchrony died from all-cause death (P= 0.037) or developed a permanent pacing indication (3% vs 10.4%; P&lt; 0.001) during follow-up.</AbstractText><AbstractText Label="CONCLUSION">Electrical dyssynchrony is common in CA, especially in ATTR-CA, and is associated with worse functional status and clinical outcome. Given the high rate of permanent pacing indications at follow-up, additional studies are necessary to determine the best monitoring and pacing strategies in CA.</AbstractText><CopyrightInformation>Copyright &#xa9; 2022 Elsevier Inc. All rights reserved.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Martens</LastName><ForeName>Pieter</ForeName><Initials>P</Initials><AffiliationInfo><Affiliation>Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA; Department of Cardiology, Ziekenhuis Oost Limburg, Genk, Belgium and University Hasselt, Belgium. Electronic address: [email protected].</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Hanna</LastName><ForeName>Mazen</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Valent</LastName><ForeName>Jason</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland Ohio, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Mullens</LastName><ForeName>Wilfried</ForeName><Initials>W</Initials><AffiliationInfo><Affiliation>Department of Cardiology, Ziekenhuis Oost Limburg, Genk, Belgium and University Hasselt, Belgium.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ives</LastName><ForeName>Lauren</ForeName><Initials>L</Initials><AffiliationInfo><Affiliation>Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kwon</LastName><ForeName>Debbie H</ForeName><Initials>DH</Initials><AffiliationInfo><Affiliation>Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Rickard</LastName><ForeName>John</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Tang</LastName><ForeName>W H Wilson</ForeName><Initials>WHW</Initials><AffiliationInfo><Affiliation>Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2022</Year><Month>07</Month><Day>23</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Card Fail</MedlineTA><NlmUniqueID>9442138</NlmUniqueID><ISSNLinking>1071-9164</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D015995" MajorTopicYN="N">Prevalence</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006333" MajorTopicYN="Y">Heart Failure</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D002037" MajorTopicYN="N">Bundle-Branch Block</DescriptorName><QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006329" MajorTopicYN="N">Heart Conduction System</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D028227" MajorTopicYN="Y">Amyloid Neuropathies, Familial</DescriptorName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName><QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D004562" MajorTopicYN="N">Electrocardiography</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Cardiac amyloidosis</Keyword><Keyword MajorTopicYN="N">disease severity</Keyword><Keyword MajorTopicYN="N">electrical dyssynchrony</Keyword><Keyword MajorTopicYN="N">natural history</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2022</Year><Month>4</Month><Day>23</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2022</Year><Month>7</Month><Day>6</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2022</Year><Month>7</Month><Day>6</Day></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2022</Year><Month>7</Month><Day>27</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2022</Year><Month>12</Month><Day>20</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2022</Year><Month>7</Month><Day>26</Day><Hour>19</Hour><Minute>12</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">35882259</ArticleId><ArticleId IdType="doi">10.1016/j.cardfail.2022.07.046</ArticleId><ArticleId IdType="pii">S1071-9164(22)00647-9</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="Publisher" Owner="NLM"><PMID Version="1">35879191</PMID><DateRevised><Year>2022</Year><Month>11</Month><Day>02</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1878-0938</ISSN><JournalIssue CitedMedium="Internet"><PubDate><Year>2022</Year><Month>May</Month><Day>01</Day></PubDate></JournalIssue><Title>Cardiovascular revascularization medicine : including molecular interventions</Title><ISOAbbreviation>Cardiovasc Revasc Med</ISOAbbreviation></Journal>First application of the LAMPOON procedure to a surgical mitral bioprosthesis.
A cardiogenic shock patient with a history of a surgical mitral valve replacement presented to the hospital with critical mitral stenosis with thickening of prosthetic valve leaflets and thrombus in left atrial appendage. We considered TMVR inside of the degenerated bioprosthetic valve. However, there were two concerns during TMVR based on multimodality imaging assessment: 1) LVOT obstruction due to the surgical bioprosthetic leaflet, 2) stroke due to left atrial appendage thrombus. We performed TMVR with LAMPOON (laceration of the anterior leaflet of the surgical valve to prevent left ventricular outflow tract obstruction) for the bioprosthesis using cerebral protection. While the LAMPOON procedure has developed to prevent LVOT obstruction by the native anterior mitral leaflet during transcatheter mitral valve-in-ring or valve-in-mitral annular calcification, this is the first case that illustrates its use for mitral valve-in-valve replacement.
2,335,747
Impact of membranous septum length on pacemaker need with different transcatheter aortic valve replacement systems: The INTERSECT registry.<Pagination><StartPage>524</StartPage><EndPage>530</EndPage><MedlinePgn>524-530</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/j.jcct.2022.07.003</ELocationID><ELocationID EIdType="pii" ValidYN="Y">S1934-5925(22)00249-0</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">New permanent pacemaker implantation (new-PPI) remains a compelling issue after Transcatheter Aortic Valve Replacement (TAVR). Previous studies reported the relationship between a short MS length and the new-PPI post-TAVR with a self-expanding THV. However, this relationship has not been investigated in different currently available THV. Therefore, the aim of this study was to investigate the association between membranous septum (MS)-length and new-PPI after TAVR with different Transcatheter Heart Valve (THV)-platforms.</AbstractText><AbstractText Label="METHODS" NlmCategory="METHODS">We included patients with a successful TAVR-procedure and an analyzable pre-procedural multi-slice computed tomography. MS-length was measured using a standardized methodology. The primary endpoint was the need for new-PPI within 30 days after TAVR.</AbstractText><AbstractText Label="RESULTS" NlmCategory="RESULTS">In total, 1811 patients were enrolled (median age 81.9 years [IQR 77.2-85.4], 54% male). PPI was required in 275 patients (15.2%) and included respectively 14.2%, 20.7% and 6.3% for Sapien3, Evolut and ACURATE-THV(p&#xa0;&#x200b;&lt;&#xa0;&#x200b;0.01). Median MS-length was significantly shorter in patients with a new-PPI (3.7&#xa0;&#x200b;mm [IQR 2.2-5.1] vs. 4.1&#xa0;&#x200b;mm [IQR 2.8-6.0], p&#xa0;&#x200b;=&#xa0;&#x200b;&lt;0.01). Shorter MS-length was a predictor for PPI in patients receiving a Sapien3 (OR 0.87 [95% CI 0.79-0.96], p&#xa0;&#x200b;=&#xa0;&#x200b;&lt;0.01) and an Evolut-THV (OR 0.91 [95% CI 0.84-0.98], p&#xa0;&#x200b;=&#xa0;&#x200b;0.03), but not for an ACURATE-THV (OR 0.99 [95% CI 0.79-1.21], p&#xa0;&#x200b;=&#xa0;&#x200b;0.91). By multivariable analysis, first-degree atrioventricular-block (OR 2.01 [95% CI 1.35-3.00], p = &lt;0.01), right bundle branch block (OR 8.33 [95% CI 5.21-13.33], p = &lt;0.01), short MS-length (OR 0.89 [95% CI 0.83-0.97], p&#xa0;&#x200b;&lt;&#xa0;&#x200b;0.01), annulus area (OR 1.003 [95% CI 1.001-1.005], p&#xa0;&#x200b;=&#xa0;&#x200b;0.04), NCC implantation depth (OR 1.13 [95% CI 1.07-1.19] and use of Evolut-THV(OR 1.54 [95% CI 1.03-2.27], p&#xa0;&#x200b;=&#xa0;&#x200b;0.04) were associated with new-PPI.</AbstractText><AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">MS length was an independent predictor for PPI across different THV platforms, except for the ACURATE-THV. Based on our study observations within the total cohort, we identified 3 risk groups by MS length: MS length &#x2264;3&#xa0;&#x200b;mm defined a high-risk group for PPI (&gt;20%), MS length 3-7&#xa0;&#x200b;mm intermediate risk for PPI (10-20%) and MS length &gt; 7&#xa0;&#x200b;mm defined a low risk for PPI (&lt;10%). Anatomy-tailored-THV-selection may mitigate the need for new-PPI in patients undergoing TAVR.</AbstractText><CopyrightInformation>Copyright &#xa9; 2022 The Authors. Published by Elsevier Inc. All rights reserved.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Hokken</LastName><ForeName>Thijmen W</ForeName><Initials>TW</Initials><AffiliationInfo><Affiliation>Department of Cardiology, Erasmus University Medical Center, Rotterdam, the Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Muhemin</LastName><ForeName>Mohammed</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Heart Center Lucerne, Lucerner Kantonsspital, Lucerne, Switzerland.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Okuno</LastName><ForeName>Taishi</ForeName><Initials>T</Initials><AffiliationInfo><Affiliation>Department of Cardiology, Inselspital Bern, University Hospital, University of Bern, Bern, Switzerland.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Veulemans</LastName><ForeName>Verena</ForeName><Initials>V</Initials><AffiliationInfo><Affiliation>Department of Cardiology, Pulmonology and Vascular Diseases, University Hospital D&#xfc;sseldorf, D&#xfc;sseldorf, Germany.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Lopes</LastName><ForeName>Bernardo B</ForeName><Initials>BB</Initials><AffiliationInfo><Affiliation>Minneapolis Heart Institute, Abbott Northwestern Hospital, Minneapolis, MN, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Beneduce</LastName><ForeName>Alessandro</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Interventional Cardiology Unit, San Raffaele Scientific Institute, Milan, Italy.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Vittorio</LastName><ForeName>Romano</ForeName><Initials>R</Initials><AffiliationInfo><Affiliation>Interventional Cardiology Unit, San Raffaele Scientific Institute, Milan, Italy.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ooms</LastName><ForeName>Joris F</ForeName><Initials>JF</Initials><AffiliationInfo><Affiliation>Department of Cardiology, Erasmus University Medical Center, Rotterdam, the Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Adrichem</LastName><ForeName>Rik</ForeName><Initials>R</Initials><AffiliationInfo><Affiliation>Department of Cardiology, Erasmus University Medical Center, Rotterdam, the Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Neleman</LastName><ForeName>Tara</ForeName><Initials>T</Initials><AffiliationInfo><Affiliation>Department of Cardiology, Erasmus University Medical Center, Rotterdam, the Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kardys</LastName><ForeName>Isabella</ForeName><Initials>I</Initials><AffiliationInfo><Affiliation>Department of Cardiology, Erasmus University Medical Center, Rotterdam, the Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Daemen</LastName><ForeName>Joost</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Department of Cardiology, Erasmus University Medical Center, Rotterdam, the Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Chieffo</LastName><ForeName>Alaide</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Interventional Cardiology Unit, San Raffaele Scientific Institute, Milan, Italy.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Montorfano</LastName><ForeName>Matteo</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Interventional Cardiology Unit, San Raffaele Scientific Institute, Milan, Italy.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Cavalcante</LastName><ForeName>Joao</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Minneapolis Heart Institute, Abbott Northwestern Hospital, Minneapolis, MN, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zeus</LastName><ForeName>Tobias</ForeName><Initials>T</Initials><AffiliationInfo><Affiliation>Department of Cardiology, Pulmonology and Vascular Diseases, University Hospital D&#xfc;sseldorf, D&#xfc;sseldorf, Germany.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Pilgrim</LastName><ForeName>Thomas</ForeName><Initials>T</Initials><AffiliationInfo><Affiliation>Department of Cardiology, Inselspital Bern, University Hospital, University of Bern, Bern, Switzerland.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Toggweiler</LastName><ForeName>Stefan</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>Heart Center Lucerne, Lucerner Kantonsspital, Lucerne, Switzerland.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Van Mieghem</LastName><ForeName>Nicolas M</ForeName><Initials>NM</Initials><AffiliationInfo><Affiliation>Department of Cardiology, Erasmus University Medical Center, Rotterdam, the Netherlands. Electronic address: https://twitter.com/drnvanmieghem.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2022</Year><Month>07</Month><Day>13</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Cardiovasc Comput Tomogr</MedlineTA><NlmUniqueID>101308347</NlmUniqueID><ISSNLinking>1876-861X</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000369" MajorTopicYN="N">Aged, 80 and over</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D065467" MajorTopicYN="Y">Transcatheter Aortic Valve Replacement</DescriptorName><QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D001024" MajorTopicYN="Y">Aortic Valve Stenosis</DescriptorName><QualifierName UI="Q000000981" MajorTopicYN="N">diagnostic imaging</QualifierName><QualifierName UI="Q000601" MajorTopicYN="N">surgery</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006350" MajorTopicYN="Y">Heart Valve Prosthesis</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012307" MajorTopicYN="N">Risk Factors</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D016896" MajorTopicYN="N">Treatment Outcome</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D011237" MajorTopicYN="N">Predictive Value of Tests</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D010138" MajorTopicYN="Y">Pacemaker, Artificial</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012042" MajorTopicYN="N">Registries</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D001021" MajorTopicYN="N">Aortic Valve</DescriptorName><QualifierName UI="Q000000981" MajorTopicYN="N">diagnostic imaging</QualifierName><QualifierName UI="Q000601" MajorTopicYN="N">surgery</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D011474" MajorTopicYN="N">Prosthesis Design</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Computed tomography</Keyword><Keyword MajorTopicYN="N">Membranous septum length</Keyword><Keyword MajorTopicYN="N">Permanent pacemaker implantation</Keyword><Keyword MajorTopicYN="N">Transcatheter aortic valve replacement</Keyword><Keyword MajorTopicYN="N">Transcatheter heart valves</Keyword></KeywordList><CoiStatement>Declaration of competing interest Thijmen W. Hokken: none. Mohammed Muhemin: none. Taishi Okuno: none. Verena Veulemans has consulting fees from Medtronic and Edwards lifesciences. Bernardo B. Lopes: none. Alessandro Beneduce: none. Romano Vittorio: none. Joris F. Ooms: none. Rik Adrichem: none. Tara Neleman: none. Isabella Kardys: none. Joost Daemen has received institutional grants from Abbott Vascular, ACIST Medical, Astra Zeneca, Boston Scientific, Medtronic, Microport, Pie Medical and ReCor Medical. A. Chieffo has received speaker/consultant fees from Abbott, Abiomed, Biosensor, Cardinal Health, GADA, and Magenta. Matteo Montorfano has honoraria from Medtronic, Boston Scientific and Abbott. Joao Cavalcante: none. Tobias Zeus has received grants from Medtronic and Edwards lifesciences. Thomas Pilgrim reports research grants to the institution from Edwards Lifesciences, Boston Scientifc and Biotronik, personal fees from Biotronik and Boston Scientific, and other from HighLife SAS. Stefan Toggweiler: has consulting fees from Boston Schientific, Medtronic, Biosensors, Shockwave, Teleflex, Medira, Atheart Medical and VeoSource and stock options from Hi-D imaging. Nicolas M. Van Mieghem received research grants and advisory fees from Abbott, Boston Scientific Corporation, Edwards Lifesciences, Medtronic, Teleflex, Daiichi Sankyo; and from Ancora Heart.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2022</Year><Month>4</Month><Day>12</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2022</Year><Month>6</Month><Day>9</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2022</Year><Month>7</Month><Day>10</Day></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2022</Year><Month>7</Month><Day>26</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2022</Year><Month>12</Month><Day>17</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2022</Year><Month>7</Month><Day>25</Day><Hour>1</Hour><Minute>49</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">35872136</ArticleId><ArticleId IdType="doi">10.1016/j.jcct.2022.07.003</ArticleId><ArticleId IdType="pii">S1934-5925(22)00249-0</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedBookArticle><BookDocument><PMID Version="1">33085352</PMID><ArticleIdList><ArticleId IdType="bookaccession">NBK563205</ArticleId></ArticleIdList><Book><Publisher><PublisherName>StatPearls Publishing</PublisherName><PublisherLocation>Treasure Island (FL)</PublisherLocation></Publisher><BookTitle book="statpearls">StatPearls</BookTitle><PubDate><Year>2023</Year><Month>01</Month></PubDate><BeginningDate><Year>2023</Year><Month>01</Month></BeginningDate><Medium>Internet</Medium></Book><ArticleTitle book="statpearls" part="article-17973">Atrioventricular Dissociation<Language>eng</Language><AuthorList Type="authors" CompleteYN="Y"><Author ValidYN="Y"><LastName>Rahman</LastName><ForeName>Mohammed Faraaz F.</ForeName><Initials>MFF</Initials></Author><Author ValidYN="Y"><LastName>Yandrapalli</LastName><ForeName>Srikanth</ForeName><Initials>S</Initials><AffiliationInfo><Affiliation>New York Medical College/Westchester Medical Center</Affiliation></AffiliationInfo></Author></AuthorList><PublicationType UI="D000072643">Study Guide</PublicationType><Abstract><AbstractText>The term&#xa0;atrioventricular (AV) dissociation describes a family of arrhythmias where independent pacemakers control the atria and ventricles. The standard activation of the cardiac circuits works in the order of impulse transmission from the sinoatrial (SA) node to the atria, the AV node, and ventricular activation via the His-Purkinje system. Disruption in this pathway leads to a dissociation between the conduction rates of the atria and ventricle. The severity of this event varies, from benign in cases of isorhythmic AV dissociation to complete heart block, which in cases might be fatal if not treated with a permanent pacemaker. Another important cause of this condition is ventricular tachycardia, which is lethal if not recognized or treated appropriately.</AbstractText><CopyrightInformation>Copyright &#xa9; 2023, StatPearls Publishing LLC.</CopyrightInformation></Abstract><Sections><Section><SectionTitle book="statpearls" part="article-17973" sec="article-17973.s1">Continuing Education Activity</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-17973" sec="article-17973.s2">Introduction</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-17973" sec="article-17973.s3">Etiology</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-17973" sec="article-17973.s4">Epidemiology</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-17973" sec="article-17973.s5">Pathophysiology</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-17973" sec="article-17973.s6">Toxicokinetics</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-17973" sec="article-17973.s7">History and Physical</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-17973" sec="article-17973.s8">Evaluation</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-17973" sec="article-17973.s9">Treatment / Management</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-17973" sec="article-17973.s10">Differential Diagnosis</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-17973" sec="article-17973.s11">Prognosis</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-17973" sec="article-17973.s12">Complications</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-17973" sec="article-17973.s13">Deterrence and Patient Education</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-17973" sec="article-17973.s14">Enhancing Healthcare Team Outcomes</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-17973" sec="article-17973.s15">Review Questions</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-17973" sec="article-17973.s16">References</SectionTitle></Section></Sections><ContributionDate><Year>2022</Year><Month>7</Month><Day>25</Day></ContributionDate><ReferenceList><Reference><Citation>Littmann L, Monroe MH, Letts DP. Wide-complex tachycardia. Circulation. 2001 May 29;103(21):E109-9.</Citation><ArticleIdList><ArticleId IdType="pubmed">11382741</ArticleId></ArticleIdList></Reference><Reference><Citation>Mazur A, Kusniec J, Strasberg B. Bundle branch reentrant ventricular tachycardia. Indian Pacing Electrophysiol J. 2005 Apr 01;5(2):86-95.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC1502081</ArticleId><ArticleId IdType="pubmed">16943949</ArticleId></ArticleIdList></Reference><Reference><Citation>Rosen KM. Junctional tachycardia. Mechanisms, diagnosis, differential diagnosis, and management. Circulation. 1973 Mar;47(3):654-64.</Citation><ArticleIdList><ArticleId IdType="pubmed">4571060</ArticleId></ArticleIdList></Reference><Reference><Citation>MARRIOTT HJ, SCHUBART AF, BRADLEY SM. A-V dissociation: a reappraisal. Am J Cardiol. 1958 Nov;2(5):586-605.</Citation><ArticleIdList><ArticleId IdType="pubmed">13594847</ArticleId></ArticleIdList></Reference><Reference><Citation>Harrigan RA, Perron AD, Brady WJ. Atrioventricular dissociation. Am J Emerg Med. 2001 May;19(3):218-22.</Citation><ArticleIdList><ArticleId IdType="pubmed">11326350</ArticleId></ArticleIdList></Reference><Reference><Citation>Marriott HJ, Menendez MM. A-V dissociation revisited. Prog Cardiovasc Dis. 1966 May;8(6):522-38.</Citation><ArticleIdList><ArticleId IdType="pubmed">5932450</ArticleId></ArticleIdList></Reference><Reference><Citation>Derlet RW, Horowitz BZ. Cardiotoxic drugs. Emerg Med Clin North Am. 1995 Nov;13(4):771-91.</Citation><ArticleIdList><ArticleId IdType="pubmed">7588189</ArticleId></ArticleIdList></Reference><Reference><Citation>Fisch C, Knoebel SB. Digitalis cardiotoxicity. J Am Coll Cardiol. 1985 May;5(5 Suppl A):91A-98A.</Citation><ArticleIdList><ArticleId IdType="pubmed">3886755</ArticleId></ArticleIdList></Reference><Reference><Citation>DeWitt CR, Waksman JC. Pharmacology, pathophysiology and management of calcium channel blocker and beta-blocker toxicity. Toxicol Rev. 2004;23(4):223-38.</Citation><ArticleIdList><ArticleId IdType="pubmed">15898828</ArticleId></ArticleIdList></Reference><Reference><Citation>SCHOTT A. Paroxysmal auricular tachycardia with auriculoventricular block; follow up; transient dissociation with interference. Proc R Soc Med. 1946 Apr;39:302-4.</Citation><ArticleIdList><ArticleId IdType="pubmed">21064383</ArticleId></ArticleIdList></Reference><Reference><Citation>Garcia EL, Kim R, Hsu SS, Catanzaro JN. Interference dissociation in the presence of dual atrioventricular nodal physiology. HeartRhythm Case Rep. 2017 Jan;3(1):49-52.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5420023</ArticleId><ArticleId IdType="pubmed">28491767</ArticleId></ArticleIdList></Reference><Reference><Citation>Podrid PJ. ECG Response: August 6, 2013. Isorhythmic dissociation. Circulation. 2013 Aug 06;128(6):673.</Citation><ArticleIdList><ArticleId IdType="pubmed">23918188</ArticleId></ArticleIdList></Reference><Reference><Citation>PICK A. A-V DISSOCIATION. A PROPOSAL FOR A COMPREHENSIVE CLASSIFICATION AND CONSISTENT TERMINOLOGY. Am Heart J. 1963 Aug;66:147-50.</Citation><ArticleIdList><ArticleId IdType="pubmed">14054102</ArticleId></ArticleIdList></Reference><Reference><Citation>Hamdan R, Le Heuzey JY, Marijon E. Understanding the atrioventricular dissociation. Int J Cardiol. 2012 Jun 28;158(1):108-10.</Citation><ArticleIdList><ArticleId IdType="pubmed">22578952</ArticleId></ArticleIdList></Reference><Reference><Citation>van der Linde MR. Lyme carditis: clinical characteristics of 105 cases. Scand J Infect Dis Suppl. 1991;77:81-4.</Citation><ArticleIdList><ArticleId IdType="pubmed">1947815</ArticleId></ArticleIdList></Reference><Reference><Citation>Kim NH, Oh SK, Jeong JW. Hyperkalaemia induced complete atrioventricular block with a narrow QRS complex. Heart. 2005 Jan;91(1):e5.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC1768656</ArticleId><ArticleId IdType="pubmed">15604312</ArticleId></ArticleIdList></Reference><Reference><Citation>Borchers AT, Keen CL, Huntley AC, Gershwin ME. Lyme disease: a rigorous review of diagnostic criteria and treatment. J Autoimmun. 2015 Feb;57:82-115.</Citation><ArticleIdList><ArticleId IdType="pubmed">25451629</ArticleId></ArticleIdList></Reference><Reference><Citation>Knabben V, Chhabra L, Slane M. StatPearls [Internet] StatPearls Publishing; Treasure Island (FL): 2023. Feb 28, Third-Degree Atrioventricular Block.</Citation><ArticleIdList><ArticleId IdType="pubmed">0</ArticleId></ArticleIdList></Reference><Reference><Citation>Kotsakou M, Kioumis I, Lazaridis G, Pitsiou G, Lampaki S, Papaiwannou A, Karavergou A, Tsakiridis K, Katsikogiannis N, Karapantzos I, Karapantzou C, Baka S, Mpoukovinas I, Karavasilis V, Rapti A, Trakada G, Zissimopoulos A, Zarogoulidis K, Zarogoulidis P. Pacemaker insertion. Ann Transl Med. 2015 Mar;3(3):42.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4356861</ArticleId><ArticleId IdType="pubmed">25815303</ArticleId></ArticleIdList></Reference></ReferenceList></BookDocument><PubmedBookData><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">33085352</ArticleId></ArticleIdList></PubmedBookData></PubmedBookArticle><PubmedBookArticle><BookDocument><PMID Version="1">30521225</PMID><ArticleIdList><ArticleId IdType="bookaccession">NBK534804</ArticleId></ArticleIdList><Book><Publisher><PublisherName>StatPearls Publishing</PublisherName><PublisherLocation>Treasure Island (FL)</PublisherLocation></Publisher><BookTitle book="statpearls">StatPearls</BookTitle><PubDate><Year>2023</Year><Month>01</Month></PubDate><BeginningDate><Year>2023</Year><Month>01</Month></BeginningDate><Medium>Internet</Medium></Book><ArticleTitle book="statpearls" part="article-189">Cryoballoon Pulmonary Vein Catheter Ablation of Atrial Fibrillation<Language>eng</Language><AuthorList Type="authors" CompleteYN="Y"><Author ValidYN="Y"><LastName>Yacoub</LastName><ForeName>Mena</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Northside Hospital</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Sheppard</LastName><ForeName>Robert C.</ForeName><Initials>RC</Initials><AffiliationInfo><Affiliation>Northside Hospital/Un of South Florida</Affiliation></AffiliationInfo></Author></AuthorList><PublicationType UI="D000072643">Study Guide</PublicationType><Abstract><AbstractText>Atrial fibrillation (AF) is the most common cardiac arrhythmia encountered in the United States with about 3 million people reported being diagnosed with the disorder.&#xa0;The prevalence of atrial fibrillation dramatically increases with advancing age. As our population has enjoyed greater longevity, along with the increasing presence of risk factors known associated with atrial fibrillation such as hypertension and obesity, the incidence and prevalence of AF is expected to continue to increase. There is significant morbidity associated with the development and perpetuation of AF, including stroke, heart failure, cognitive impairment, renal failure, increased mortality&#xa0;and a negative impact to&#xa0;the quality of life.&#xa0;As such, controlling the arrhythmia is often essential to patient quality of life and prognosis, but has been difficult to attain. Since Haussaiguarre et al. reported that AF most often began in the posterior left atrium surrounding the ostia of the pulmonary veins,&#xa0;pulmonary vein electrical isolation via catheter ablation has been the cornerstone of nonpharmacological treatment of AF. Treatment of AF may be medical or surgical, depending on patient characteristics, duration of disease, symptoms, and patient preference. The two most frequently used energy sources used for ablation are electrocautery (known as&#xa0;radio-frequency), and cryoenergy,;&#xa0;although other energy sources are being actively investigated for their efficacy and safety. Both methods have been employed during open-heart surgery with equal efficacy.&#xa0;Catheter&#xa0;radiofrequency&#xa0;ablation, where electrocautery is delivered to the tip of a steerable wire, has been used to treat cardiac arrhythmias since the 1980s.&#xa0;Catheter cryoablation, where liquid nitrogen is introduced to scar arrhythmic cardiac tissue, was more recently introduced to deliver less severe burns and thus a more controlled degree of&#xa0;injury.&#xa0;It is most widely used in pediatrics due to the ability to reverse its effects if not applied for a long period due to its slow injury rate. As radio-frequency energy has been the primary energy source used to electrically isolate all four pulmonary veins,&#xa0;an extensive number of ablation lesions&#xa0;are needed to be delivered by wire to encircle the vein ostia. This posed a challenge of&#xa0;completely encircling the peri-ostial pulmonary veins to produce complete conduction block, leaving gaps in the ablation lines and less control in the degree of&#xa0;injury delivered, which could lead to injury to contiguous structures such as the esophagus.&#xa0;In 2012 the FDA approved a multicenter examination of second-generation cryoballoon which is delivered through a catheter over a wire and can deliver a continuous encircling freeze lesion to the left atrial tissue surrounding the ostia of the pulmonary veins, thus being more consistent in ablation delivery and being less prone to gaps in the ablation field.&#xa0;Cryoenergy's greater lesion control should also theoretically have less risk to injure deeper tissues and thus, safer.&#xa0;A large multicenter trial in Europe showed both methods were equally effective in electrically isolating pulmonary veins and were equally effective in preventing recurrent atrial fibrillation.&#xa0;This activity reviews the methodology of catheter cryoballoon ablation using a multicenter examination of second-generation cryoballoon to treat symptomatic AF and its expected outcomes and risks.</AbstractText><CopyrightInformation>Copyright &#xa9; 2023, StatPearls Publishing LLC.</CopyrightInformation></Abstract><Sections><Section><SectionTitle book="statpearls" part="article-189" sec="article-189.s1">Continuing Education Activity</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-189" sec="article-189.s2">Introduction</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-189" sec="article-189.s3">Anatomy and Physiology</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-189" sec="article-189.s4">Indications</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-189" sec="article-189.s5">Contraindications</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-189" sec="article-189.s6">Technique or Treatment</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-189" sec="article-189.s7">Complications</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-189" sec="article-189.s8">Clinical Significance</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-189" sec="article-189.s9">Enhancing Healthcare Team Outcomes</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-189" sec="article-189.s10">Review Questions</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-189" sec="article-189.s12">References</SectionTitle></Section></Sections><ContributionDate><Year>2022</Year><Month>7</Month><Day>25</Day></ContributionDate><ReferenceList><Reference><Citation>January CT, Wann LS, Alpert JS, Calkins H, Cigarroa JE, Cleveland JC, Conti JB, Ellinor PT, Ezekowitz MD, Field ME, Murray KT, Sacco RL, Stevenson WG, Tchou PJ, Tracy CM, Yancy CW, American College of Cardiology/American Heart Association Task Force on Practice Guidelines 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. J Am Coll Cardiol. 2014 Dec 02;64(21):e1-76.</Citation><ArticleIdList><ArticleId IdType="pubmed">24685669</ArticleId></ArticleIdList></Reference><Reference><Citation>Miyasaka Y, Barnes ME, Gersh BJ, Cha SS, Bailey KR, Abhayaratna WP, Seward JB, Tsang TS. Secular trends in incidence of atrial fibrillation in Olmsted County, Minnesota, 1980 to 2000, and implications on the projections for future prevalence. Circulation. 2006 Jul 11;114(2):119-25.</Citation><ArticleIdList><ArticleId IdType="pubmed">16818816</ArticleId></ArticleIdList></Reference><Reference><Citation>Schnabel RB, Sullivan LM, Levy D, Pencina MJ, Massaro JM, D'Agostino RB, Newton-Cheh C, Yamamoto JF, Magnani JW, Tadros TM, Kannel WB, Wang TJ, Ellinor PT, Wolf PA, Vasan RS, Benjamin EJ. Development of a risk score for atrial fibrillation (Framingham Heart Study): a community-based cohort study. Lancet. 2009 Feb 28;373(9665):739-45.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2764235</ArticleId><ArticleId IdType="pubmed">19249635</ArticleId></ArticleIdList></Reference><Reference><Citation>Ha&#xef;ssaguerre M, Ja&#xef;s P, Shah DC, Takahashi A, Hocini M, Quiniou G, Garrigue S, Le Mouroux A, Le M&#xe9;tayer P, Cl&#xe9;menty J. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med. 1998 Sep 03;339(10):659-66.</Citation><ArticleIdList><ArticleId IdType="pubmed">9725923</ArticleId></ArticleIdList></Reference><Reference><Citation>Brick AV, Braile DM. Surgical Ablation of Atrial Fibrillation Using Energy Sources. Braz J Cardiovasc Surg. 2015 Nov-Dec;30(6):636-43.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4762556</ArticleId><ArticleId IdType="pubmed">26934404</ArticleId></ArticleIdList></Reference><Reference><Citation>Garg J, Chaudhary R, Palaniswamy C, Shah N, Krishnamoorthy P, Bozorgnia B, Natale A. Cryoballoon versus Radiofrequency Ablation for Atrial Fibrillation: A Meta-analysis of 16 Clinical Trials. J Atr Fibrillation. 2016 Oct-Nov;9(3):1429.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5368545</ArticleId><ArticleId IdType="pubmed">28496925</ArticleId></ArticleIdList></Reference><Reference><Citation>Goel R, Anderson K, Slaton J, Schmidlin F, Vercellotti G, Belcher J, Bischof JC. Adjuvant approaches to enhance cryosurgery. J Biomech Eng. 2009 Jul;131(7):074003.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4934372</ArticleId><ArticleId IdType="pubmed">19640135</ArticleId></ArticleIdList></Reference><Reference><Citation>Barnett AS, Bahnson TD, Piccini JP. Recent Advances in Lesion Formation for Catheter Ablation of Atrial Fibrillation. Circ Arrhythm Electrophysiol. 2016 May;9(5)</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4843816</ArticleId><ArticleId IdType="pubmed">27103088</ArticleId></ArticleIdList></Reference><Reference><Citation>Wittkampf FH, Derksen R, Wever EF, Simmers TA, Boersma LV, Vonken EP, Velthuis BK, Sreeram N, Rensing BJ, Cramer MJ. Technique of pulmonary vein isolation by catheter ablation. Neth Heart J. 2002 May;10(5):241-244.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2499711</ArticleId><ArticleId IdType="pubmed">25696100</ArticleId></ArticleIdList></Reference><Reference><Citation>Katz-Agranov N, Nevah Rubin MI. Severe esophageal injury after radiofrequency ablation - a deadly complication. World J Gastroenterol. 2017 May 14;23(18):3374-3378.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5434445</ArticleId><ArticleId IdType="pubmed">28566899</ArticleId></ArticleIdList></Reference><Reference><Citation>Ozcan C, Ruskin J, Mansour M. Cryoballoon catheter ablation in atrial fibrillation. Cardiol Res Pract. 2011;2011:256347.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3130969</ArticleId><ArticleId IdType="pubmed">21747987</ArticleId></ArticleIdList></Reference><Reference><Citation>Leila R, Raluca P, Yves G, Dirk S, Bruno S. Cryoablation Versus Radiofrequency Ablation in AVNRT: Same Goal, Different Strategy. J Atr Fibrillation. 2015 Jun-Jul;8(1):1220.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5135113</ArticleId><ArticleId IdType="pubmed">27957174</ArticleId></ArticleIdList></Reference><Reference><Citation>Kuck K, Brugada J, Albenque J. Cryoballoon or Radiofrequency Ablation for Atrial Fibrillation. N Engl J Med. 2016 Sep 15;375(11):1100-1.</Citation><ArticleIdList><ArticleId IdType="pubmed">27626535</ArticleId></ArticleIdList></Reference><Reference><Citation>Kato R, Lickfett L, Meininger G, Dickfeld T, Wu R, Juang G, Angkeow P, LaCorte J, Bluemke D, Berger R, Halperin HR, Calkins H. Pulmonary vein anatomy in patients undergoing catheter ablation of atrial fibrillation: lessons learned by use of magnetic resonance imaging. Circulation. 2003 Apr 22;107(15):2004-10.</Citation><ArticleIdList><ArticleId IdType="pubmed">12681994</ArticleId></ArticleIdList></Reference><Reference><Citation>Nathan H, Eliakim M. The junction between the left atrium and the pulmonary veins. An anatomic study of human hearts. Circulation. 1966 Sep;34(3):412-22.</Citation><ArticleIdList><ArticleId IdType="pubmed">5922708</ArticleId></ArticleIdList></Reference><Reference><Citation>Stiles MK, John B, Wong CX, Kuklik P, Brooks AG, Lau DH, Dimitri H, Roberts-Thomson KC, Wilson L, De Sciscio P, Young GD, Sanders P. Paroxysmal lone atrial fibrillation is associated with an abnormal atrial substrate: characterizing the "second factor". J Am Coll Cardiol. 2009 Apr 07;53(14):1182-91.</Citation><ArticleIdList><ArticleId IdType="pubmed">19341858</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen PS, Chen LS, Fishbein MC, Lin SF, Nattel S. Role of the autonomic nervous system in atrial fibrillation: pathophysiology and therapy. Circ Res. 2014 Apr 25;114(9):1500-15.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4043633</ArticleId><ArticleId IdType="pubmed">24763467</ArticleId></ArticleIdList></Reference><Reference><Citation>Pellman J, Sheikh F. Atrial fibrillation: mechanisms, therapeutics, and future directions. Compr Physiol. 2015 Apr;5(2):649-65.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5240842</ArticleId><ArticleId IdType="pubmed">25880508</ArticleId></ArticleIdList></Reference><Reference><Citation>Calkins H, Hindricks G, Cappato R, Kim YH, Saad EB, Aguinaga L, Akar JG, Badhwar V, Brugada J, Camm J, Chen PS, Chen SA, Chung MK, Nielsen JC, Curtis AB, Davies DW, Day JD, d'Avila A, de Groot NMSN, Di Biase L, Duytschaever M, Edgerton JR, Ellenbogen KA, Ellinor PT, Ernst S, Fenelon G, Gerstenfeld EP, Haines DE, Haissaguerre M, Helm RH, Hylek E, Jackman WM, Jalife J, Kalman JM, Kautzner J, Kottkamp H, Kuck KH, Kumagai K, Lee R, Lewalter T, Lindsay BD, Macle L, Mansour M, Marchlinski FE, Michaud GF, Nakagawa H, Natale A, Nattel S, Okumura K, Packer D, Pokushalov E, Reynolds MR, Sanders P, Scanavacca M, Schilling R, Tondo C, Tsao HM, Verma A, Wilber DJ, Yamane T. 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation: Executive summary. J Arrhythm. 2017 Oct;33(5):369-409.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5634725</ArticleId><ArticleId IdType="pubmed">29021841</ArticleId></ArticleIdList></Reference><Reference><Citation>Packer DL, Mark DB, Robb RA, Monahan KH, Bahnson TD, Moretz K, Poole JE, Mascette A, Rosenberg Y, Jeffries N, Al-Khalidi HR, Lee KL, CABANA Investigators Catheter Ablation versus Antiarrhythmic Drug Therapy for Atrial Fibrillation (CABANA) Trial: Study Rationale and Design. Am Heart J. 2018 May;199:192-199.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6517320</ArticleId><ArticleId IdType="pubmed">29754661</ArticleId></ArticleIdList></Reference><Reference><Citation>Liu X, Palmer J. Outcomes of 200 consecutive, fluoroless atrial fibrillation ablations using a new technique. Pacing Clin Electrophysiol. 2018 Nov;41(11):1404-1411.</Citation><ArticleIdList><ArticleId IdType="pubmed">30194724</ArticleId></ArticleIdList></Reference><Reference><Citation>F&#xfc;rnkranz A, K&#xf6;ster I, Chun KR, Metzner A, Mathew S, Konstantinidou M, Ouyang F, Kuck KH. Cryoballoon temperature predicts acute pulmonary vein isolation. Heart Rhythm. 2011 Jun;8(6):821-5.</Citation><ArticleIdList><ArticleId IdType="pubmed">21315836</ArticleId></ArticleIdList></Reference><Reference><Citation>Cappato R, Calkins H, Chen SA, Davies W, Iesaka Y, Kalman J, Kim YH, Klein G, Packer D, Skanes A. Worldwide survey on the methods, efficacy, and safety of catheter ablation for human atrial fibrillation. Circulation. 2005 Mar 08;111(9):1100-5.</Citation><ArticleIdList><ArticleId IdType="pubmed">15723973</ArticleId></ArticleIdList></Reference><Reference><Citation>Parikh V, Kowalski M. Comparison of Phrenic Nerve Injury during Atrial Fibrillation Ablation between Different Modalities, Pathophysiology and Management. J Atr Fibrillation. 2015 Dec;8(4):1314.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5135188</ArticleId><ArticleId IdType="pubmed">27957229</ArticleId></ArticleIdList></Reference><Reference><Citation>Canpolat U, Kocyigit D, Aytemir K. Complications of Atrial Fibrillation Cryoablation. J Atr Fibrillation. 2017 Dec;10(4):1620.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5821627</ArticleId><ArticleId IdType="pubmed">29487676</ArticleId></ArticleIdList></Reference><Reference><Citation>Mujovi&#x107; N, Marinkovi&#x107; M, Lenarczyk R, Tilz R, Potpara TS. Catheter Ablation of Atrial Fibrillation: An Overview for Clinicians. Adv Ther. 2017 Aug;34(8):1897-1917.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5565661</ArticleId><ArticleId IdType="pubmed">28733782</ArticleId></ArticleIdList></Reference><Reference><Citation>Packer DL, Kowal RC, Wheelan KR, Irwin JM, Champagne J, Guerra PG, Dubuc M, Reddy V, Nelson L, Holcomb RG, Lehmann JW, Ruskin JN, STOP AF Cryoablation Investigators Cryoballoon ablation of pulmonary veins for paroxysmal atrial fibrillation: first results of the North American Arctic Front (STOP AF) pivotal trial. J Am Coll Cardiol. 2013 Apr 23;61(16):1713-23.</Citation><ArticleIdList><ArticleId IdType="pubmed">23500312</ArticleId></ArticleIdList></Reference><Reference><Citation>Andrade JG, Dubuc M, Guerra PG, Macle L, Rivard L, Roy D, Talajic M, Thibault B, Khairy P. Cryoballoon ablation for atrial fibrillation. Indian Pacing Electrophysiol J. 2012 Mar;12(2):39-53.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3337368</ArticleId><ArticleId IdType="pubmed">22557842</ArticleId></ArticleIdList></Reference><Reference><Citation>Calkins H, Reynolds MR, Spector P, Sondhi M, Xu Y, Martin A, Williams CJ, Sledge I. Treatment of atrial fibrillation with antiarrhythmic drugs or radiofrequency ablation: two systematic literature reviews and meta-analyses. Circ Arrhythm Electrophysiol. 2009 Aug;2(4):349-61.</Citation><ArticleIdList><ArticleId IdType="pubmed">19808490</ArticleId></ArticleIdList></Reference><Reference><Citation>Kuck KH, F&#xfc;rnkranz A. Cryoballoon ablation of atrial fibrillation. J Cardiovasc Electrophysiol. 2010 Dec;21(12):1427-31.</Citation><ArticleIdList><ArticleId IdType="pubmed">21091966</ArticleId></ArticleIdList></Reference><Reference><Citation>Andrade JG, Khairy P, Guerra PG, Deyell MW, Rivard L, Macle L, Thibault B, Talajic M, Roy D, Dubuc M. Efficacy and safety of cryoballoon ablation for atrial fibrillation: a systematic review of published studies. Heart Rhythm. 2011 Sep;8(9):1444-51.</Citation><ArticleIdList><ArticleId IdType="pubmed">21457789</ArticleId></ArticleIdList></Reference><Reference><Citation>Kubala M, Hermida JS, Nadji G, Quenum S, Traulle S, Jarry G. Normal pulmonary veins anatomy is associated with better AF-free survival after cryoablation as compared to atypical anatomy with common left pulmonary vein. Pacing Clin Electrophysiol. 2011 Jul;34(7):837-43.</Citation><ArticleIdList><ArticleId IdType="pubmed">21418249</ArticleId></ArticleIdList></Reference><Reference><Citation>Khoueiry Z, Albenque JP, Providencia R, Combes S, Combes N, Jourda F, Sousa PA, Cardin C, Pasquie JL, Cung TT, Massin F, Marijon E, Boveda S. Outcomes after cryoablation vs. radiofrequency in patients with paroxysmal atrial fibrillation: impact of pulmonary veins anatomy. Europace. 2016 Sep;18(9):1343-51.</Citation><ArticleIdList><ArticleId IdType="pubmed">26817755</ArticleId></ArticleIdList></Reference><Reference><Citation>Sorgente A, Chierchia GB, de Asmundis C, Sarkozy A, Namdar M, Capulzini L, Yazaki Y, M&#xfc;ller-Burri SA, Bayrak F, Brugada P. Pulmonary vein ostium shape and orientation as possible predictors of occlusion in patients with drug-refractory paroxysmal atrial fibrillation undergoing cryoballoon ablation. Europace. 2011 Feb;13(2):205-12.</Citation><ArticleIdList><ArticleId IdType="pubmed">20974756</ArticleId></ArticleIdList></Reference></ReferenceList></BookDocument><PubmedBookData><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">30521225</ArticleId></ArticleIdList></PubmedBookData></PubmedBookArticle><PubmedBookArticle><BookDocument><PMID Version="1">30137796</PMID><ArticleIdList><ArticleId IdType="bookaccession">NBK519511</ArticleId></ArticleIdList><Book><Publisher><PublisherName>StatPearls Publishing</PublisherName><PublisherLocation>Treasure Island (FL)</PublisherLocation></Publisher><BookTitle book="statpearls">StatPearls</BookTitle><PubDate><Year>2023</Year><Month>01</Month></PubDate><BeginningDate><Year>2023</Year><Month>01</Month></BeginningDate><Medium>Internet</Medium></Book><ArticleTitle book="statpearls" part="article-19125">Central Line
The term&#xa0;atrioventricular (AV) dissociation describes a family of arrhythmias where independent pacemakers control the atria and ventricles. The standard activation of the cardiac circuits works in the order of impulse transmission from the sinoatrial (SA) node to the atria, the AV node, and ventricular activation via the His-Purkinje system. Disruption in this pathway leads to a dissociation between the conduction rates of the atria and ventricle. The severity of this event varies, from benign in cases of isorhythmic AV dissociation to complete heart block, which in cases might be fatal if not treated with a permanent pacemaker. Another important cause of this condition is ventricular tachycardia, which is lethal if not recognized or treated appropriately.<CopyrightInformation>Copyright &#xa9; 2023, StatPearls Publishing LLC.</CopyrightInformation></Abstract><Sections><Section><SectionTitle book="statpearls" part="article-17973" sec="article-17973.s1">Continuing Education Activity</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-17973" sec="article-17973.s2">Introduction</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-17973" sec="article-17973.s3">Etiology</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-17973" sec="article-17973.s4">Epidemiology</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-17973" sec="article-17973.s5">Pathophysiology</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-17973" sec="article-17973.s6">Toxicokinetics</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-17973" sec="article-17973.s7">History and Physical</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-17973" sec="article-17973.s8">Evaluation</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-17973" sec="article-17973.s9">Treatment / Management</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-17973" sec="article-17973.s10">Differential Diagnosis</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-17973" sec="article-17973.s11">Prognosis</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-17973" sec="article-17973.s12">Complications</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-17973" sec="article-17973.s13">Deterrence and Patient Education</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-17973" sec="article-17973.s14">Enhancing Healthcare Team Outcomes</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-17973" sec="article-17973.s15">Review Questions</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-17973" sec="article-17973.s16">References</SectionTitle></Section></Sections><ContributionDate><Year>2022</Year><Month>7</Month><Day>25</Day></ContributionDate><ReferenceList><Reference><Citation>Littmann L, Monroe MH, Letts DP. Wide-complex tachycardia. Circulation. 2001 May 29;103(21):E109-9.</Citation><ArticleIdList><ArticleId IdType="pubmed">11382741</ArticleId></ArticleIdList></Reference><Reference><Citation>Mazur A, Kusniec J, Strasberg B. Bundle branch reentrant ventricular tachycardia. Indian Pacing Electrophysiol J. 2005 Apr 01;5(2):86-95.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC1502081</ArticleId><ArticleId IdType="pubmed">16943949</ArticleId></ArticleIdList></Reference><Reference><Citation>Rosen KM. Junctional tachycardia. Mechanisms, diagnosis, differential diagnosis, and management. Circulation. 1973 Mar;47(3):654-64.</Citation><ArticleIdList><ArticleId IdType="pubmed">4571060</ArticleId></ArticleIdList></Reference><Reference><Citation>MARRIOTT HJ, SCHUBART AF, BRADLEY SM. A-V dissociation: a reappraisal. Am J Cardiol. 1958 Nov;2(5):586-605.</Citation><ArticleIdList><ArticleId IdType="pubmed">13594847</ArticleId></ArticleIdList></Reference><Reference><Citation>Harrigan RA, Perron AD, Brady WJ. Atrioventricular dissociation. Am J Emerg Med. 2001 May;19(3):218-22.</Citation><ArticleIdList><ArticleId IdType="pubmed">11326350</ArticleId></ArticleIdList></Reference><Reference><Citation>Marriott HJ, Menendez MM. A-V dissociation revisited. Prog Cardiovasc Dis. 1966 May;8(6):522-38.</Citation><ArticleIdList><ArticleId IdType="pubmed">5932450</ArticleId></ArticleIdList></Reference><Reference><Citation>Derlet RW, Horowitz BZ. Cardiotoxic drugs. Emerg Med Clin North Am. 1995 Nov;13(4):771-91.</Citation><ArticleIdList><ArticleId IdType="pubmed">7588189</ArticleId></ArticleIdList></Reference><Reference><Citation>Fisch C, Knoebel SB. Digitalis cardiotoxicity. J Am Coll Cardiol. 1985 May;5(5 Suppl A):91A-98A.</Citation><ArticleIdList><ArticleId IdType="pubmed">3886755</ArticleId></ArticleIdList></Reference><Reference><Citation>DeWitt CR, Waksman JC. Pharmacology, pathophysiology and management of calcium channel blocker and beta-blocker toxicity. Toxicol Rev. 2004;23(4):223-38.</Citation><ArticleIdList><ArticleId IdType="pubmed">15898828</ArticleId></ArticleIdList></Reference><Reference><Citation>SCHOTT A. Paroxysmal auricular tachycardia with auriculoventricular block; follow up; transient dissociation with interference. Proc R Soc Med. 1946 Apr;39:302-4.</Citation><ArticleIdList><ArticleId IdType="pubmed">21064383</ArticleId></ArticleIdList></Reference><Reference><Citation>Garcia EL, Kim R, Hsu SS, Catanzaro JN. Interference dissociation in the presence of dual atrioventricular nodal physiology. HeartRhythm Case Rep. 2017 Jan;3(1):49-52.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5420023</ArticleId><ArticleId IdType="pubmed">28491767</ArticleId></ArticleIdList></Reference><Reference><Citation>Podrid PJ. ECG Response: August 6, 2013. Isorhythmic dissociation. Circulation. 2013 Aug 06;128(6):673.</Citation><ArticleIdList><ArticleId IdType="pubmed">23918188</ArticleId></ArticleIdList></Reference><Reference><Citation>PICK A. A-V DISSOCIATION. A PROPOSAL FOR A COMPREHENSIVE CLASSIFICATION AND CONSISTENT TERMINOLOGY. Am Heart J. 1963 Aug;66:147-50.</Citation><ArticleIdList><ArticleId IdType="pubmed">14054102</ArticleId></ArticleIdList></Reference><Reference><Citation>Hamdan R, Le Heuzey JY, Marijon E. Understanding the atrioventricular dissociation. Int J Cardiol. 2012 Jun 28;158(1):108-10.</Citation><ArticleIdList><ArticleId IdType="pubmed">22578952</ArticleId></ArticleIdList></Reference><Reference><Citation>van der Linde MR. Lyme carditis: clinical characteristics of 105 cases. Scand J Infect Dis Suppl. 1991;77:81-4.</Citation><ArticleIdList><ArticleId IdType="pubmed">1947815</ArticleId></ArticleIdList></Reference><Reference><Citation>Kim NH, Oh SK, Jeong JW. Hyperkalaemia induced complete atrioventricular block with a narrow QRS complex. Heart. 2005 Jan;91(1):e5.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC1768656</ArticleId><ArticleId IdType="pubmed">15604312</ArticleId></ArticleIdList></Reference><Reference><Citation>Borchers AT, Keen CL, Huntley AC, Gershwin ME. Lyme disease: a rigorous review of diagnostic criteria and treatment. J Autoimmun. 2015 Feb;57:82-115.</Citation><ArticleIdList><ArticleId IdType="pubmed">25451629</ArticleId></ArticleIdList></Reference><Reference><Citation>Knabben V, Chhabra L, Slane M. StatPearls [Internet] StatPearls Publishing; Treasure Island (FL): 2023. Feb 28, Third-Degree Atrioventricular Block.</Citation><ArticleIdList><ArticleId IdType="pubmed">0</ArticleId></ArticleIdList></Reference><Reference><Citation>Kotsakou M, Kioumis I, Lazaridis G, Pitsiou G, Lampaki S, Papaiwannou A, Karavergou A, Tsakiridis K, Katsikogiannis N, Karapantzos I, Karapantzou C, Baka S, Mpoukovinas I, Karavasilis V, Rapti A, Trakada G, Zissimopoulos A, Zarogoulidis K, Zarogoulidis P. Pacemaker insertion. Ann Transl Med. 2015 Mar;3(3):42.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4356861</ArticleId><ArticleId IdType="pubmed">25815303</ArticleId></ArticleIdList></Reference></ReferenceList></BookDocument><PubmedBookData><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">33085352</ArticleId></ArticleIdList></PubmedBookData></PubmedBookArticle><PubmedBookArticle><BookDocument><PMID Version="1">30521225</PMID><ArticleIdList><ArticleId IdType="bookaccession">NBK534804</ArticleId></ArticleIdList><Book><Publisher><PublisherName>StatPearls Publishing</PublisherName><PublisherLocation>Treasure Island (FL)</PublisherLocation></Publisher><BookTitle book="statpearls">StatPearls</BookTitle><PubDate><Year>2023</Year><Month>01</Month></PubDate><BeginningDate><Year>2023</Year><Month>01</Month></BeginningDate><Medium>Internet</Medium></Book><ArticleTitle book="statpearls" part="article-189">Cryoballoon Pulmonary Vein Catheter Ablation of Atrial Fibrillation</ArticleTitle><Language>eng</Language><AuthorList Type="authors" CompleteYN="Y"><Author ValidYN="Y"><LastName>Yacoub</LastName><ForeName>Mena</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Northside Hospital</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Sheppard</LastName><ForeName>Robert C.</ForeName><Initials>RC</Initials><AffiliationInfo><Affiliation>Northside Hospital/Un of South Florida</Affiliation></AffiliationInfo></Author></AuthorList><PublicationType UI="D000072643">Study Guide</PublicationType><Abstract>Atrial fibrillation (AF) is the most common cardiac arrhythmia encountered in the United States with about 3 million people reported being diagnosed with the disorder.&#xa0;The prevalence of atrial fibrillation dramatically increases with advancing age. As our population has enjoyed greater longevity, along with the increasing presence of risk factors known associated with atrial fibrillation such as hypertension and obesity, the incidence and prevalence of AF is expected to continue to increase. There is significant morbidity associated with the development and perpetuation of AF, including stroke, heart failure, cognitive impairment, renal failure, increased mortality&#xa0;and a negative impact to&#xa0;the quality of life.&#xa0;As such, controlling the arrhythmia is often essential to patient quality of life and prognosis, but has been difficult to attain. Since Haussaiguarre et al. reported that AF most often began in the posterior left atrium surrounding the ostia of the pulmonary veins,&#xa0;pulmonary vein electrical isolation via catheter ablation has been the cornerstone of nonpharmacological treatment of AF. Treatment of AF may be medical or surgical, depending on patient characteristics, duration of disease, symptoms, and patient preference. The two most frequently used energy sources used for ablation are electrocautery (known as&#xa0;radio-frequency), and cryoenergy,;&#xa0;although other energy sources are being actively investigated for their efficacy and safety. Both methods have been employed during open-heart surgery with equal efficacy.&#xa0;Catheter&#xa0;radiofrequency&#xa0;ablation, where electrocautery is delivered to the tip of a steerable wire, has been used to treat cardiac arrhythmias since the 1980s.&#xa0;Catheter cryoablation, where liquid nitrogen is introduced to scar arrhythmic cardiac tissue, was more recently introduced to deliver less severe burns and thus a more controlled degree of&#xa0;injury.&#xa0;It is most widely used in pediatrics due to the ability to reverse its effects if not applied for a long period due to its slow injury rate. As radio-frequency energy has been the primary energy source used to electrically isolate all four pulmonary veins,&#xa0;an extensive number of ablation lesions&#xa0;are needed to be delivered by wire to encircle the vein ostia. This posed a challenge of&#xa0;completely encircling the peri-ostial pulmonary veins to produce complete conduction block, leaving gaps in the ablation lines and less control in the degree of&#xa0;injury delivered, which could lead to injury to contiguous structures such as the esophagus.&#xa0;In 2012 the FDA approved a multicenter examination of second-generation cryoballoon which is delivered through a catheter over a wire and can deliver a continuous encircling freeze lesion to the left atrial tissue surrounding the ostia of the pulmonary veins, thus being more consistent in ablation delivery and being less prone to gaps in the ablation field.&#xa0;Cryoenergy's greater lesion control should also theoretically have less risk to injure deeper tissues and thus, safer.&#xa0;A large multicenter trial in Europe showed both methods were equally effective in electrically isolating pulmonary veins and were equally effective in preventing recurrent atrial fibrillation.&#xa0;This activity reviews the methodology of catheter cryoballoon ablation using a multicenter examination of second-generation cryoballoon to treat symptomatic AF and its expected outcomes and risks.<CopyrightInformation>Copyright &#xa9; 2023, StatPearls Publishing LLC.</CopyrightInformation></Abstract><Sections><Section><SectionTitle book="statpearls" part="article-189" sec="article-189.s1">Continuing Education Activity</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-189" sec="article-189.s2">Introduction</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-189" sec="article-189.s3">Anatomy and Physiology</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-189" sec="article-189.s4">Indications</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-189" sec="article-189.s5">Contraindications</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-189" sec="article-189.s6">Technique or Treatment</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-189" sec="article-189.s7">Complications</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-189" sec="article-189.s8">Clinical Significance</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-189" sec="article-189.s9">Enhancing Healthcare Team Outcomes</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-189" sec="article-189.s10">Review Questions</SectionTitle></Section><Section><SectionTitle book="statpearls" part="article-189" sec="article-189.s12">References</SectionTitle></Section></Sections><ContributionDate><Year>2022</Year><Month>7</Month><Day>25</Day></ContributionDate><ReferenceList><Reference><Citation>January CT, Wann LS, Alpert JS, Calkins H, Cigarroa JE, Cleveland JC, Conti JB, Ellinor PT, Ezekowitz MD, Field ME, Murray KT, Sacco RL, Stevenson WG, Tchou PJ, Tracy CM, Yancy CW, American College of Cardiology/American Heart Association Task Force on Practice Guidelines 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. J Am Coll Cardiol. 2014 Dec 02;64(21):e1-76.</Citation><ArticleIdList><ArticleId IdType="pubmed">24685669</ArticleId></ArticleIdList></Reference><Reference><Citation>Miyasaka Y, Barnes ME, Gersh BJ, Cha SS, Bailey KR, Abhayaratna WP, Seward JB, Tsang TS. Secular trends in incidence of atrial fibrillation in Olmsted County, Minnesota, 1980 to 2000, and implications on the projections for future prevalence. Circulation. 2006 Jul 11;114(2):119-25.</Citation><ArticleIdList><ArticleId IdType="pubmed">16818816</ArticleId></ArticleIdList></Reference><Reference><Citation>Schnabel RB, Sullivan LM, Levy D, Pencina MJ, Massaro JM, D'Agostino RB, Newton-Cheh C, Yamamoto JF, Magnani JW, Tadros TM, Kannel WB, Wang TJ, Ellinor PT, Wolf PA, Vasan RS, Benjamin EJ. Development of a risk score for atrial fibrillation (Framingham Heart Study): a community-based cohort study. Lancet. 2009 Feb 28;373(9665):739-45.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2764235</ArticleId><ArticleId IdType="pubmed">19249635</ArticleId></ArticleIdList></Reference><Reference><Citation>Ha&#xef;ssaguerre M, Ja&#xef;s P, Shah DC, Takahashi A, Hocini M, Quiniou G, Garrigue S, Le Mouroux A, Le M&#xe9;tayer P, Cl&#xe9;menty J. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med. 1998 Sep 03;339(10):659-66.</Citation><ArticleIdList><ArticleId IdType="pubmed">9725923</ArticleId></ArticleIdList></Reference><Reference><Citation>Brick AV, Braile DM. Surgical Ablation of Atrial Fibrillation Using Energy Sources. Braz J Cardiovasc Surg. 2015 Nov-Dec;30(6):636-43.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4762556</ArticleId><ArticleId IdType="pubmed">26934404</ArticleId></ArticleIdList></Reference><Reference><Citation>Garg J, Chaudhary R, Palaniswamy C, Shah N, Krishnamoorthy P, Bozorgnia B, Natale A. Cryoballoon versus Radiofrequency Ablation for Atrial Fibrillation: A Meta-analysis of 16 Clinical Trials. J Atr Fibrillation. 2016 Oct-Nov;9(3):1429.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5368545</ArticleId><ArticleId IdType="pubmed">28496925</ArticleId></ArticleIdList></Reference><Reference><Citation>Goel R, Anderson K, Slaton J, Schmidlin F, Vercellotti G, Belcher J, Bischof JC. Adjuvant approaches to enhance cryosurgery. J Biomech Eng. 2009 Jul;131(7):074003.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4934372</ArticleId><ArticleId IdType="pubmed">19640135</ArticleId></ArticleIdList></Reference><Reference><Citation>Barnett AS, Bahnson TD, Piccini JP. Recent Advances in Lesion Formation for Catheter Ablation of Atrial Fibrillation. Circ Arrhythm Electrophysiol. 2016 May;9(5)</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4843816</ArticleId><ArticleId IdType="pubmed">27103088</ArticleId></ArticleIdList></Reference><Reference><Citation>Wittkampf FH, Derksen R, Wever EF, Simmers TA, Boersma LV, Vonken EP, Velthuis BK, Sreeram N, Rensing BJ, Cramer MJ. Technique of pulmonary vein isolation by catheter ablation. Neth Heart J. 2002 May;10(5):241-244.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC2499711</ArticleId><ArticleId IdType="pubmed">25696100</ArticleId></ArticleIdList></Reference><Reference><Citation>Katz-Agranov N, Nevah Rubin MI. Severe esophageal injury after radiofrequency ablation - a deadly complication. World J Gastroenterol. 2017 May 14;23(18):3374-3378.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5434445</ArticleId><ArticleId IdType="pubmed">28566899</ArticleId></ArticleIdList></Reference><Reference><Citation>Ozcan C, Ruskin J, Mansour M. Cryoballoon catheter ablation in atrial fibrillation. Cardiol Res Pract. 2011;2011:256347.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3130969</ArticleId><ArticleId IdType="pubmed">21747987</ArticleId></ArticleIdList></Reference><Reference><Citation>Leila R, Raluca P, Yves G, Dirk S, Bruno S. Cryoablation Versus Radiofrequency Ablation in AVNRT: Same Goal, Different Strategy. J Atr Fibrillation. 2015 Jun-Jul;8(1):1220.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5135113</ArticleId><ArticleId IdType="pubmed">27957174</ArticleId></ArticleIdList></Reference><Reference><Citation>Kuck K, Brugada J, Albenque J. Cryoballoon or Radiofrequency Ablation for Atrial Fibrillation. N Engl J Med. 2016 Sep 15;375(11):1100-1.</Citation><ArticleIdList><ArticleId IdType="pubmed">27626535</ArticleId></ArticleIdList></Reference><Reference><Citation>Kato R, Lickfett L, Meininger G, Dickfeld T, Wu R, Juang G, Angkeow P, LaCorte J, Bluemke D, Berger R, Halperin HR, Calkins H. Pulmonary vein anatomy in patients undergoing catheter ablation of atrial fibrillation: lessons learned by use of magnetic resonance imaging. Circulation. 2003 Apr 22;107(15):2004-10.</Citation><ArticleIdList><ArticleId IdType="pubmed">12681994</ArticleId></ArticleIdList></Reference><Reference><Citation>Nathan H, Eliakim M. The junction between the left atrium and the pulmonary veins. An anatomic study of human hearts. Circulation. 1966 Sep;34(3):412-22.</Citation><ArticleIdList><ArticleId IdType="pubmed">5922708</ArticleId></ArticleIdList></Reference><Reference><Citation>Stiles MK, John B, Wong CX, Kuklik P, Brooks AG, Lau DH, Dimitri H, Roberts-Thomson KC, Wilson L, De Sciscio P, Young GD, Sanders P. Paroxysmal lone atrial fibrillation is associated with an abnormal atrial substrate: characterizing the "second factor". J Am Coll Cardiol. 2009 Apr 07;53(14):1182-91.</Citation><ArticleIdList><ArticleId IdType="pubmed">19341858</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen PS, Chen LS, Fishbein MC, Lin SF, Nattel S. Role of the autonomic nervous system in atrial fibrillation: pathophysiology and therapy. Circ Res. 2014 Apr 25;114(9):1500-15.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC4043633</ArticleId><ArticleId IdType="pubmed">24763467</ArticleId></ArticleIdList></Reference><Reference><Citation>Pellman J, Sheikh F. Atrial fibrillation: mechanisms, therapeutics, and future directions. Compr Physiol. 2015 Apr;5(2):649-65.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5240842</ArticleId><ArticleId IdType="pubmed">25880508</ArticleId></ArticleIdList></Reference><Reference><Citation>Calkins H, Hindricks G, Cappato R, Kim YH, Saad EB, Aguinaga L, Akar JG, Badhwar V, Brugada J, Camm J, Chen PS, Chen SA, Chung MK, Nielsen JC, Curtis AB, Davies DW, Day JD, d'Avila A, de Groot NMSN, Di Biase L, Duytschaever M, Edgerton JR, Ellenbogen KA, Ellinor PT, Ernst S, Fenelon G, Gerstenfeld EP, Haines DE, Haissaguerre M, Helm RH, Hylek E, Jackman WM, Jalife J, Kalman JM, Kautzner J, Kottkamp H, Kuck KH, Kumagai K, Lee R, Lewalter T, Lindsay BD, Macle L, Mansour M, Marchlinski FE, Michaud GF, Nakagawa H, Natale A, Nattel S, Okumura K, Packer D, Pokushalov E, Reynolds MR, Sanders P, Scanavacca M, Schilling R, Tondo C, Tsao HM, Verma A, Wilber DJ, Yamane T. 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation: Executive summary. J Arrhythm. 2017 Oct;33(5):369-409.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5634725</ArticleId><ArticleId IdType="pubmed">29021841</ArticleId></ArticleIdList></Reference><Reference><Citation>Packer DL, Mark DB, Robb RA, Monahan KH, Bahnson TD, Moretz K, Poole JE, Mascette A, Rosenberg Y, Jeffries N, Al-Khalidi HR, Lee KL, CABANA Investigators Catheter Ablation versus Antiarrhythmic Drug Therapy for Atrial Fibrillation (CABANA) Trial: Study Rationale and Design. Am Heart J. 2018 May;199:192-199.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC6517320</ArticleId><ArticleId IdType="pubmed">29754661</ArticleId></ArticleIdList></Reference><Reference><Citation>Liu X, Palmer J. Outcomes of 200 consecutive, fluoroless atrial fibrillation ablations using a new technique. Pacing Clin Electrophysiol. 2018 Nov;41(11):1404-1411.</Citation><ArticleIdList><ArticleId IdType="pubmed">30194724</ArticleId></ArticleIdList></Reference><Reference><Citation>F&#xfc;rnkranz A, K&#xf6;ster I, Chun KR, Metzner A, Mathew S, Konstantinidou M, Ouyang F, Kuck KH. Cryoballoon temperature predicts acute pulmonary vein isolation. Heart Rhythm. 2011 Jun;8(6):821-5.</Citation><ArticleIdList><ArticleId IdType="pubmed">21315836</ArticleId></ArticleIdList></Reference><Reference><Citation>Cappato R, Calkins H, Chen SA, Davies W, Iesaka Y, Kalman J, Kim YH, Klein G, Packer D, Skanes A. Worldwide survey on the methods, efficacy, and safety of catheter ablation for human atrial fibrillation. Circulation. 2005 Mar 08;111(9):1100-5.</Citation><ArticleIdList><ArticleId IdType="pubmed">15723973</ArticleId></ArticleIdList></Reference><Reference><Citation>Parikh V, Kowalski M. Comparison of Phrenic Nerve Injury during Atrial Fibrillation Ablation between Different Modalities, Pathophysiology and Management. J Atr Fibrillation. 2015 Dec;8(4):1314.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5135188</ArticleId><ArticleId IdType="pubmed">27957229</ArticleId></ArticleIdList></Reference><Reference><Citation>Canpolat U, Kocyigit D, Aytemir K. Complications of Atrial Fibrillation Cryoablation. J Atr Fibrillation. 2017 Dec;10(4):1620.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5821627</ArticleId><ArticleId IdType="pubmed">29487676</ArticleId></ArticleIdList></Reference><Reference><Citation>Mujovi&#x107; N, Marinkovi&#x107; M, Lenarczyk R, Tilz R, Potpara TS. Catheter Ablation of Atrial Fibrillation: An Overview for Clinicians. Adv Ther. 2017 Aug;34(8):1897-1917.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC5565661</ArticleId><ArticleId IdType="pubmed">28733782</ArticleId></ArticleIdList></Reference><Reference><Citation>Packer DL, Kowal RC, Wheelan KR, Irwin JM, Champagne J, Guerra PG, Dubuc M, Reddy V, Nelson L, Holcomb RG, Lehmann JW, Ruskin JN, STOP AF Cryoablation Investigators Cryoballoon ablation of pulmonary veins for paroxysmal atrial fibrillation: first results of the North American Arctic Front (STOP AF) pivotal trial. J Am Coll Cardiol. 2013 Apr 23;61(16):1713-23.</Citation><ArticleIdList><ArticleId IdType="pubmed">23500312</ArticleId></ArticleIdList></Reference><Reference><Citation>Andrade JG, Dubuc M, Guerra PG, Macle L, Rivard L, Roy D, Talajic M, Thibault B, Khairy P. Cryoballoon ablation for atrial fibrillation. Indian Pacing Electrophysiol J. 2012 Mar;12(2):39-53.</Citation><ArticleIdList><ArticleId IdType="pmc">PMC3337368</ArticleId><ArticleId IdType="pubmed">22557842</ArticleId></ArticleIdList></Reference><Reference><Citation>Calkins H, Reynolds MR, Spector P, Sondhi M, Xu Y, Martin A, Williams CJ, Sledge I. Treatment of atrial fibrillation with antiarrhythmic drugs or radiofrequency ablation: two systematic literature reviews and meta-analyses. Circ Arrhythm Electrophysiol. 2009 Aug;2(4):349-61.</Citation><ArticleIdList><ArticleId IdType="pubmed">19808490</ArticleId></ArticleIdList></Reference><Reference><Citation>Kuck KH, F&#xfc;rnkranz A. Cryoballoon ablation of atrial fibrillation. J Cardiovasc Electrophysiol. 2010 Dec;21(12):1427-31.</Citation><ArticleIdList><ArticleId IdType="pubmed">21091966</ArticleId></ArticleIdList></Reference><Reference><Citation>Andrade JG, Khairy P, Guerra PG, Deyell MW, Rivard L, Macle L, Thibault B, Talajic M, Roy D, Dubuc M. Efficacy and safety of cryoballoon ablation for atrial fibrillation: a systematic review of published studies. Heart Rhythm. 2011 Sep;8(9):1444-51.</Citation><ArticleIdList><ArticleId IdType="pubmed">21457789</ArticleId></ArticleIdList></Reference><Reference><Citation>Kubala M, Hermida JS, Nadji G, Quenum S, Traulle S, Jarry G. Normal pulmonary veins anatomy is associated with better AF-free survival after cryoablation as compared to atypical anatomy with common left pulmonary vein. Pacing Clin Electrophysiol. 2011 Jul;34(7):837-43.</Citation><ArticleIdList><ArticleId IdType="pubmed">21418249</ArticleId></ArticleIdList></Reference><Reference><Citation>Khoueiry Z, Albenque JP, Providencia R, Combes S, Combes N, Jourda F, Sousa PA, Cardin C, Pasquie JL, Cung TT, Massin F, Marijon E, Boveda S. Outcomes after cryoablation vs. radiofrequency in patients with paroxysmal atrial fibrillation: impact of pulmonary veins anatomy. Europace. 2016 Sep;18(9):1343-51.</Citation><ArticleIdList><ArticleId IdType="pubmed">26817755</ArticleId></ArticleIdList></Reference><Reference><Citation>Sorgente A, Chierchia GB, de Asmundis C, Sarkozy A, Namdar M, Capulzini L, Yazaki Y, M&#xfc;ller-Burri SA, Bayrak F, Brugada P. Pulmonary vein ostium shape and orientation as possible predictors of occlusion in patients with drug-refractory paroxysmal atrial fibrillation undergoing cryoballoon ablation. Europace. 2011 Feb;13(2):205-12.</Citation><ArticleIdList><ArticleId IdType="pubmed">20974756</ArticleId></ArticleIdList></Reference></ReferenceList></BookDocument><PubmedBookData><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">30521225</ArticleId></ArticleIdList></PubmedBookData></PubmedBookArticle><PubmedBookArticle><BookDocument><PMID Version="1">30137796</PMID><ArticleIdList><ArticleId IdType="bookaccession">NBK519511</ArticleId></ArticleIdList><Book><Publisher><PublisherName>StatPearls Publishing</PublisherName><PublisherLocation>Treasure Island (FL)</PublisherLocation></Publisher><BookTitle book="statpearls">StatPearls</BookTitle><PubDate><Year>2023</Year><Month>01</Month></PubDate><BeginningDate><Year>2023</Year><Month>01</Month></BeginningDate><Medium>Internet</Medium></Book><ArticleTitle book="statpearls" part="article-19125">Central Line</ArticleTitle><Language>eng</Language><AuthorList Type="authors" CompleteYN="Y"><Author ValidYN="Y"><LastName>Leib</LastName><ForeName>Ari D.</ForeName><Initials>AD</Initials><AffiliationInfo><Affiliation>Adena Medical Center Chillicothe OH</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>England</LastName><ForeName>Bryan S.</ForeName><Initials>BS</Initials></Author><Author ValidYN="Y"><LastName>Kiel</LastName><ForeName>John</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>University of Florida College of Medicine - Jacksonville</Affiliation></AffiliationInfo></Author></AuthorList><PublicationType UI="D000072643">Study Guide</PublicationType><Abstract>Central venous catheterization (CVC) is a procedure frequently required in acute or critical care&#xa0;resuscitation. Indications include patients&#xa0;with multiple, incompatible&#xa0;intravenous (IV) medications with limited peripheral access, or who are being&#xa0;treated with vasoactive or phlebosclerotic agents which may not be suitably cared for with a peripheral IV alone. Some central lines are also placed for temporary or permanent hemodialysis access; these dialysis catheters are significantly larger than traditional double, triple, or quadruple lumen catheters placed in the emergency department (ED) or intensive care unit (ICU) setting. Central lines may also be placed to introduce Swan Ganz catheters to measure internal hemodynamics of the heart, or to introduce temporary transvenous pacemaker leads in the critically ill patient who has severe bradycardia or high-degree heart block: these are called introducer catheters. Most central lines are placed today via the Seldinger technique (a safety enhancement over the previous "cut-down" technique), in which the chosen vein is cannulated with a needle, a guidewire is inserted to maintain a tract through the skin into the vein, and the catheter is then inserted over the wire into the vein before the wire is removed. This procedure is generally performed with ultrasound guidance unless an ultrasound machine is unavailable or there are other exigent circumstances, in which case a&#xa0;palpation&#xa0;guided approach can be used.&#xa0;Despite the general overall safety&#xa0;of this procedure, complications do&#xa0;occur. This activity focuses on the complications of line placement.
2,335,748
A Cost-Utility Analysis of the Syncope: Pacing or Recording in The Later Years (SPRITELY) Trial.
The S</b>yncope: P</b>acing or R</b>ecording i</b>n t</b>he L</b>ater Y</b>ears (SPRITELY) trial reported that a strategy of empiric permanent pacing in patients with syncope and bifascicular block reduces major adverse events more effectively than acting on the results of an implantable cardiac monitor (ICM). Our objective was to determine the cost-effectiveness of using the ICM, compared with a pacemaker (PM), in the management of older adults (age &gt; 50 years) with bifascicular block and syncope enrolled in the SPRITELY trial.</AbstractText>SPRITELY was a pragmatic, open-label randomized controlled trial with a median follow-up of 33 months. The primary outcome of this analysis is the cost per additional quality-adjusted life-year (QALY). Resource utilization and utility data were collected prospectively, and outcomes at 2 years were compared between the 2 arms. A decision analytic model simulated a 3-year time horizon.</AbstractText>The mean cost incurred by participants randomized to the PM arm was $9918, compared to $15,416 (both in Canadian dollars) for participants randomized to the ICM arm. The ICM strategy resulted in 0.167 QALYs fewer than the PM strategy. Cost and QALY outcomes are sensitive to the proportion of participants randomized to the ICM arm who subsequently required PM insertion. In 40,000 iterations of probabilistic sensitivity analysis, the PM strategy resulted in cost-savings in 99.7% of iterations, compared with the ICM strategy.</AbstractText>The PM strategy was dominant-that is, less costly and estimated to result in a greater number of QALYs. For patients with unexplained syncope, bifascicular block, and age &gt; 50 years, a PM is more likely to be cost-effective than an ICM.</AbstractText>&#xa9; 2022 The Authors.</CopyrightInformation>
2,335,749
Interatrial Block Predicts Life-Threatening Arrhythmias in Dilated Cardiomyopathy.<Pagination><StartPage>e025473</StartPage><MedlinePgn>e025473</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">e025473</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1161/JAHA.121.025473</ELocationID><Abstract><AbstractText>Background Interatrial block (IAB) has been associated with supraventricular arrhythmias and stroke, and even with sudden cardiac death in the general population. Whether IAB is associated with life-threatening arrhythmias (LTA) and sudden cardiac death in dilated cardiomyopathy (DCM) remains unknown. This study aimed to determine the association between IAB and LTA in ambulant patients with DCM. Methods and Results A derivation cohort (Maastricht Dilated Cardiomyopathy Registry; N=469) and an external validation cohort (Utrecht Cardiomyopathy Cohort; N=321) were used for this study. The presence of IAB (P-wave duration&gt;120&#xa0;milliseconds) or atrial fibrillation (AF) was determined using digital calipers by physicians blinded to the study data. In the derivation cohort, IAB and AF were present in 291 (62%) and 70 (15%) patients with DCM, respectively. LTA (defined as sudden cardiac death, justified shock from implantable cardioverter-defibrillator or anti-tachypacing, or hemodynamic unstable ventricular fibrillation/tachycardia) occurred in 49 patients (3 with no IAB, 35 with IAB, and 11 patients with AF, respectively; median follow-up, 4.4&#xa0;years [2.1; 7.4]). The LTA-free survival distribution significantly differed between IAB or AF versus no IAB (both <i>P</i>&lt;0.01), but not between IAB versus AF (<i>P</i>=0.999). This association remained statistically significant in the multivariable model (IAB: HR, 4.8 (1.4-16.1), <i>P</i>=0.013; AF: HR, 6.4 (1.7-24.0), <i>P</i>=0.007). In the external validation cohort, the survival distribution was also significantly worse for IAB or AF versus no IAB (<i>P</i>=0.037; <i>P</i>=0.005), but not for IAB versus AF (<i>P</i>=0.836). Conclusions IAB is an easy to assess, widely applicable marker associated with LTA in DCM. IAB and AF seem to confer similar risk of LTA. Further research on IAB in DCM, and on the management of IAB in DCM is warranted.</AbstractText></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Henkens</LastName><ForeName>Michiel T H M</ForeName><Initials>MTHM</Initials><Identifier Source="ORCID">0000-0001-6222-071X</Identifier><AffiliationInfo><Affiliation>Department of Cardiology, CARIM Maastricht University Medical Centre Maastricht The Netherlands.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Netherlands Heart Institute Utrecht The Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>L&#xf3;pez Mart&#xed;nez</LastName><ForeName>Helena</ForeName><Initials>H</Initials><Identifier Source="ORCID">0000-0002-0963-0207</Identifier><AffiliationInfo><Affiliation>Hospital Universitari Germans Trias i Pujol Barcelona Spain.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Weerts</LastName><ForeName>Jerremy</ForeName><Initials>J</Initials><Identifier Source="ORCID">0000-0002-9369-3453</Identifier><AffiliationInfo><Affiliation>Department of Cardiology, CARIM Maastricht University Medical Centre Maastricht The Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Sammani</LastName><ForeName>Arjan</ForeName><Initials>A</Initials><Identifier Source="ORCID">0000-0002-5557-9342</Identifier><AffiliationInfo><Affiliation>Department of Cardiology Division of Heart and Lungs University Medical Center UtrechtUtrecht University Utrecht The Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Raafs</LastName><ForeName>Anne G</ForeName><Initials>AG</Initials><Identifier Source="ORCID">0000-0001-9228-8045</Identifier><AffiliationInfo><Affiliation>Department of Cardiology, CARIM Maastricht University Medical Centre Maastricht The Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Verdonschot</LastName><ForeName>Job A J</ForeName><Initials>JAJ</Initials><Identifier Source="ORCID">0000-0001-5549-1298</Identifier><AffiliationInfo><Affiliation>Department of Cardiology, CARIM Maastricht University Medical Centre Maastricht The Netherlands.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of clinical genetics, CARIM Maastricht University Medical Centre Maastricht The Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>van de Leur</LastName><ForeName>Rutger R</ForeName><Initials>RR</Initials><Identifier Source="ORCID">0000-0002-4779-5870</Identifier><AffiliationInfo><Affiliation>Department of Cardiology Division of Heart and Lungs University Medical Center UtrechtUtrecht University Utrecht The Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Sikking</LastName><ForeName>Maurits A</ForeName><Initials>MA</Initials><Identifier Source="ORCID">0000-0001-8165-6631</Identifier><AffiliationInfo><Affiliation>Department of Cardiology, CARIM Maastricht University Medical Centre Maastricht The Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Stroeks</LastName><ForeName>Sophia</ForeName><Initials>S</Initials><Identifier Source="ORCID">0000-0003-0965-6359</Identifier><AffiliationInfo><Affiliation>Department of Cardiology, CARIM Maastricht University Medical Centre Maastricht The Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>van Empel</LastName><ForeName>Vanessa P M</ForeName><Initials>VPM</Initials><Identifier Source="ORCID">0000-0002-6864-0296</Identifier><AffiliationInfo><Affiliation>Department of Cardiology, CARIM Maastricht University Medical Centre Maastricht The Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Brunner-La Rocca</LastName><ForeName>Hans-Peter</ForeName><Initials>HP</Initials><Identifier Source="ORCID">0000-0002-4356-8566</Identifier><AffiliationInfo><Affiliation>Department of Cardiology, CARIM Maastricht University Medical Centre Maastricht The Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>van Stipdonk</LastName><ForeName>Antonius M W</ForeName><Initials>AMW</Initials><Identifier Source="ORCID">0000-0002-6621-0727</Identifier><AffiliationInfo><Affiliation>Department of Cardiology, CARIM Maastricht University Medical Centre Maastricht The Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Farmakis</LastName><ForeName>Dimitrios</ForeName><Initials>D</Initials><Identifier Source="ORCID">0000-0001-8364-3447</Identifier><AffiliationInfo><Affiliation>University of Cyprus Medical School Nicosia Cyprus.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Heart Failure Unit Department of Cardiology Attikon University HospitalNational and Kapodistrian University of Athens Medical School Athens Greece.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Hazebroek</LastName><ForeName>Mark R</ForeName><Initials>MR</Initials><Identifier Source="ORCID">0000-0002-2151-7178</Identifier><AffiliationInfo><Affiliation>Department of Cardiology, CARIM Maastricht University Medical Centre Maastricht The Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Vernooy</LastName><ForeName>Kevin</ForeName><Initials>K</Initials><Identifier Source="ORCID">0000-0002-8818-5964</Identifier><AffiliationInfo><Affiliation>Department of Cardiology, CARIM Maastricht University Medical Centre Maastricht The Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Bay&#xe9;s-de-Luna</LastName><ForeName>Antoni</ForeName><Initials>A</Initials><Identifier Source="ORCID">0000-0003-1676-207X</Identifier><AffiliationInfo><Affiliation>Cardiovascular Research Foundation. Cardiovascular ICCC- ProgramResearch Institute Hospital de la Santa Creu i Sant PauIIB-Sant Pau Barcelona Spain.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Asselbergs</LastName><ForeName>Folkert W</ForeName><Initials>FW</Initials><Identifier Source="ORCID">0000-0002-1692-8669</Identifier><AffiliationInfo><Affiliation>Department of Cardiology Division of Heart and Lungs University Medical Center UtrechtUtrecht University Utrecht The Netherlands.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Institute of Cardiovascular Science Faculty of Population Health Sciences University College London London UK.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Health Data Research UK and Institute of Health Informatics University College London London UK.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Bay&#xe9;s-Gen&#xed;s</LastName><ForeName>Antoni</ForeName><Initials>A</Initials><Identifier Source="ORCID">0000-0002-3044-197X</Identifier><AffiliationInfo><Affiliation>Hospital Universitari Germans Trias i Pujol Barcelona Spain.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Heymans</LastName><ForeName>Stephane R B</ForeName><Initials>SRB</Initials><Identifier Source="ORCID">0000-0001-9477-7803</Identifier><AffiliationInfo><Affiliation>Department of Cardiology, CARIM Maastricht University Medical Centre Maastricht The Netherlands.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Netherlands Heart Institute Utrecht The Netherlands.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Cardiovascular Research University of Leuven Leuven Belgium.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2022</Year><Month>07</Month><Day>15</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>J Am Heart Assoc</MedlineTA><NlmUniqueID>101580524</NlmUniqueID><ISSNLinking>2047-9980</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D001281" MajorTopicYN="Y">Atrial Fibrillation</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D002311" MajorTopicYN="Y">Cardiomyopathy, Dilated</DescriptorName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName><QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName><QualifierName UI="Q000628" MajorTopicYN="N">therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D016757" MajorTopicYN="N">Death, Sudden, Cardiac</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName><QualifierName UI="Q000209" MajorTopicYN="N">etiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D004562" MajorTopicYN="N">Electrocardiography</DescriptorName><QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000074021" MajorTopicYN="N">Interatrial Block</DescriptorName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName><QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">dilated cardiomyopathy</Keyword><Keyword MajorTopicYN="N">electrocardiography</Keyword><Keyword MajorTopicYN="N">interatrial block</Keyword><Keyword MajorTopicYN="N">life&#x2010;threatening arrhythmias</Keyword><Keyword MajorTopicYN="N">non&#x2010;ischemic cardiomyopathy</Keyword><Keyword MajorTopicYN="N">sudden cardiac death</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="entrez"><Year>2022</Year><Month>7</Month><Day>21</Day><Hour>11</Hour><Minute>14</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2022</Year><Month>7</Month><Day>22</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2022</Year><Month>7</Month><Day>26</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">35861818</ArticleId><ArticleId IdType="pmc">PMC9707810</ArticleId><ArticleId IdType="doi">10.1161/JAHA.121.025473</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Pinto YM, Elliott PM, Arbustini E, Adler Y, Anastasakis A, B&#xf6;hm M, Duboc D, Gimeno J, de Groote P, Imazio M, et al. Proposal for a revised definition of dilated cardiomyopathy, hypokinetic non&#x2010;dilated cardiomyopathy, and its implications for clinical practice: a position statement of the ESC working group on myocardial and pericardial diseases. Eur Heart J. 2016;37:1850&#x2013;1858. doi: 10.1093/eurheartj/ehv727</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/eurheartj/ehv727</ArticleId><ArticleId IdType="pubmed">26792875</ArticleId></ArticleIdList></Reference><Reference><Citation>Goldberger JJ, Subacius H, Patel T, Cunnane R, Kadish AH. Sudden cardiac death risk stratification in patients with nonischemic dilated cardiomyopathy. J Am Coll Cardiol. 2014;63:1879&#x2013;1889. doi: 10.1016/j.jacc.2013.12.021</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jacc.2013.12.021</ArticleId><ArticleId IdType="pubmed">24445228</ArticleId></ArticleIdList></Reference><Reference><Citation>Hershberger RE, Hedges DJ, Morales A. Dilated cardiomyopathy: the complexity of a diverse genetic architecture. Nat Rev Cardiol. 2013;10:531&#x2013;547. doi: 10.1038/nrcardio.2013.105</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/nrcardio.2013.105</ArticleId><ArticleId IdType="pubmed">23900355</ArticleId></ArticleIdList></Reference><Reference><Citation>Halliday BP, Cleland JGF, Goldberger JJ, Prasad SK. Personalizing risk stratification for sudden death in dilated cardiomyopathy: the past, present, and future. Circulation. 2017;136:215&#x2013;231. doi: 10.1161/CIRCULATIONAHA.116.027134</Citation><ArticleIdList><ArticleId IdType="doi">10.1161/CIRCULATIONAHA.116.027134</ArticleId><ArticleId IdType="pmc">PMC5516909</ArticleId><ArticleId IdType="pubmed">28696268</ArticleId></ArticleIdList></Reference><Reference><Citation>McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, B&#xf6;hm M, Burri H, Butler J, &#x10c;elutkien&#x117; J, Chioncel O, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42:3599&#x2013;3726. doi: 10.1093/eurheartj/ehab368</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/eurheartj/ehab368</ArticleId><ArticleId IdType="pubmed">34447992</ArticleId></ArticleIdList></Reference><Reference><Citation>Disertori M, Rigoni M, Pace N, Casolo G, Mase M, Gonzini L, Lucci D, Nollo G, Ravelli F. Myocardial fibrosis assessment by LGE Is a powerful predictor of ventricular tachyarrhythmias in ischemic and nonischemic LV dysfunction: a meta&#x2010;analysis. JACC Cardiovasc Imaging. 2016;9:1046&#x2013;1055. doi: 10.1016/j.jcmg.2016.01.033</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jcmg.2016.01.033</ArticleId><ArticleId IdType="pubmed">27450871</ArticleId></ArticleIdList></Reference><Reference><Citation>Ahmad T, Fiuzat M, Pencina MJ, Geller NL, Zannad F, Cleland JGF, Snider JV, Blankenberg S, Adams KF, Redberg RF, et al. Charting a roadmap for heart failure biomarker studies. JACC Heart Fail. 2014;2:477&#x2013;488. doi: 10.1016/j.jchf.2014.02.005</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jchf.2014.02.005</ArticleId><ArticleId IdType="pmc">PMC4194170</ArticleId><ArticleId IdType="pubmed">24929535</ArticleId></ArticleIdList></Reference><Reference><Citation>Magnani JW, Gorodeski EZ, Johnson VM, Sullivan LM, Hamburg NM, Benjamin EJ, Ellinor PT. P wave duration is associated with cardiovascular and all&#x2010;cause mortality outcomes: the National Health and Nutrition Examination Survey. Heart Rhythm. 2011;8:93&#x2013;100. doi: 10.1016/j.hrthm.2010.09.020</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.hrthm.2010.09.020</ArticleId><ArticleId IdType="pmc">PMC3046401</ArticleId><ArticleId IdType="pubmed">20868770</ArticleId></ArticleIdList></Reference><Reference><Citation>Bay&#xe9;s de Luna A, Platonov P, Cosio FG, Cygankiewicz I, Pastore C, Baranowski R, Bay&#xe9;s&#x2010;Genis A, Guindo J, Vi&#xf1;olas X, Garcia&#x2010;Niebla J, et al. Interatrial blocks. A separate entity from left atrial enlargement: a consensus report. J Electrocardiol. 2012;45:445&#x2013;451. doi: 10.1016/j.jelectrocard.2012.06.029</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jelectrocard.2012.06.029</ArticleId><ArticleId IdType="pubmed">22920783</ArticleId></ArticleIdList></Reference><Reference><Citation>Martinez&#x2010;Selles M, Elosua R, Ibarrola M, de Andres M, Diez&#x2010;Villanueva P, Bayes&#x2010;Genis A, Baranchuk A, Bayes&#x2010;de&#x2010;Luna A; Investigators BR . Advanced interatrial block and P&#x2010;wave duration are associated with atrial fibrillation and stroke in older adults with heart disease: the BAYES registry. Europace. 2020;22:1001&#x2013;1008. doi: 10.1093/europace/euaa114</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/europace/euaa114</ArticleId><ArticleId IdType="pubmed">32449904</ArticleId></ArticleIdList></Reference><Reference><Citation>Maheshwari A, Norby FL, Soliman EZ, Alraies MC, Adabag S, O'Neal WT, Alonso A, Chen LY. Relation of prolonged P&#x2010;wave duration to risk of sudden cardiac death in the general population (from the Atherosclerosis Risk in Communities Study). Am J Cardiol. 2017;119:1302&#x2013;1306. doi: 10.1016/j.amjcard.2017.01.012</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.amjcard.2017.01.012</ArticleId><ArticleId IdType="pmc">PMC5444665</ArticleId><ArticleId IdType="pubmed">28267962</ArticleId></ArticleIdList></Reference><Reference><Citation>Sammani A, Jansen M, Linschoten M, Bagheri A, de Jonge N, Kirkels H, van Laake LW, Vink A, van Tintelen JP, Dooijes D, et al. UNRAVEL: big data analytics research data platform to improve care of patients with cardiomyopathies using routine electronic health records and standardised biobanking. Neth Heart J. 2019;27:426&#x2013;434. doi: 10.1007/s12471-019-1288-4</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s12471-019-1288-4</ArticleId><ArticleId IdType="pmc">PMC6712144</ArticleId><ArticleId IdType="pubmed">31134468</ArticleId></ArticleIdList></Reference><Reference><Citation>Verdonschot JAJ, Hazebroek MR, Derks KWJ, Barandiar&#xe1;n Aizpurua A, Merken JJ, Wang P, Bierau J, van den Wijngaard A, Schalla SM, Abdul Hamid MA, et al. Titin cardiomyopathy leads to altered mitochondrial energetics, increased fibrosis and long&#x2010;term life&#x2010;threatening arrhythmias. Eur Heart J. 2018;39:864&#x2013;873. doi: 10.1093/eurheartj/ehx808</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/eurheartj/ehx808</ArticleId><ArticleId IdType="pubmed">29377983</ArticleId></ArticleIdList></Reference><Reference><Citation>Martinez&#x2010;Selles M, Baranchuk A, Elosua R, de Luna AB. Rationale and design of the BAYES (Interatrial Block and Yearly Events) registry. Clin Cardiol. 2017;40:196&#x2013;199. doi: 10.1002/clc.22647</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/clc.22647</ArticleId><ArticleId IdType="pmc">PMC6490352</ArticleId><ArticleId IdType="pubmed">27883210</ArticleId></ArticleIdList></Reference><Reference><Citation>Priori SG, Blomstrom&#x2010;Lundqvist C, Mazzanti A, Blom N, Borggrefe M, Camm J, Elliott PM, Fitzsimons D, Hatala R, Hindricks G, et al. 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: the Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC). Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Eur Heart J. 2015;36:2793&#x2013;2867. doi: 10.1093/eurheartj/ehv316</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/eurheartj/ehv316</ArticleId><ArticleId IdType="pubmed">26320108</ArticleId></ArticleIdList></Reference><Reference><Citation>Verdonschot JAJ, Hazebroek MR, Krapels IPC, Henkens MTHM, Raafs A, Wang P, Merken JJ, Claes GRF, Vanhoutte EK, van den Wijngaard A, et al. Implications of genetic testing in dilated cardiomyopathy. Circ Genom Precis Med. 2020;13:476&#x2013;487. doi: 10.1161/CIRCGEN.120.003031</Citation><ArticleIdList><ArticleId IdType="doi">10.1161/CIRCGEN.120.003031</ArticleId><ArticleId IdType="pubmed">32880476</ArticleId></ArticleIdList></Reference><Reference><Citation>Waldmann V, Jouven X, Narayanan K, Piot O, Chugh SS, Albert CM, Marijon E. Association between atrial fibrillation and sudden cardiac death: pathophysiological and epidemiological insights. Circ Res. 2020;127:301&#x2013;309. doi: 10.1161/CIRCRESAHA.120.316756</Citation><ArticleIdList><ArticleId IdType="doi">10.1161/CIRCRESAHA.120.316756</ArticleId><ArticleId IdType="pubmed">32833581</ArticleId></ArticleIdList></Reference><Reference><Citation>Odutayo A, Wong CX, Hsiao AJ, Hopewell S, Altman DG, Emdin CA. Atrial fibrillation and risks of cardiovascular disease, renal disease, and death: systematic review and meta&#x2010;analysis. BMJ. 2016;354:i4482. doi: 10.1136/bmj.i4482</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmj.i4482</ArticleId><ArticleId IdType="pubmed">27599725</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen LY, Sotoodehnia N, B&#x16f;&#x17e;kov&#xe1; P, Lopez FL, Yee LM, Heckbert SR, Prineas R, Soliman EZ, Adabag S, Konety S, et al. Atrial fibrillation and the risk of sudden cardiac death: the atherosclerosis risk in communities study and cardiovascular health study. JAMA Intern Med. 2013;173:29&#x2013;35. doi: 10.1001/2013.jamainternmed.744</Citation><ArticleIdList><ArticleId IdType="doi">10.1001/2013.jamainternmed.744</ArticleId><ArticleId IdType="pmc">PMC3578214</ArticleId><ArticleId IdType="pubmed">23404043</ArticleId></ArticleIdList></Reference><Reference><Citation>Bardai A, Blom MT, van Hoeijen DA, van Deutekom HW, Brouwer HJ, Tan HL. Atrial fibrillation is an independent risk factor for ventricular fibrillation: a large&#x2010;scale population&#x2010;based case&#x2010;control study. Circ Arrhythm Electrophysiol. 2014;7:1033&#x2013;1039. doi: 10.1161/CIRCEP.114.002094</Citation><ArticleIdList><ArticleId IdType="doi">10.1161/CIRCEP.114.002094</ArticleId><ArticleId IdType="pubmed">25236735</ArticleId></ArticleIdList></Reference><Reference><Citation>Ritchie MD, Denny JC, Zuvich RL, Crawford DC, Schildcrout JS, Bastarache L, Ramirez AH, Mosley JD, Pulley JM, Basford MA, et al. Genome&#x2010; and phenome&#x2010;wide analyses of cardiac conduction identifies markers of arrhythmia risk. Circulation. 2013;127:1377&#x2013;1385. doi: 10.1161/CIRCULATIONAHA.112.000604</Citation><ArticleIdList><ArticleId IdType="doi">10.1161/CIRCULATIONAHA.112.000604</ArticleId><ArticleId IdType="pmc">PMC3713791</ArticleId><ArticleId IdType="pubmed">23463857</ArticleId></ArticleIdList></Reference><Reference><Citation>Ling LH, Kistler PM, Ellims AH, Iles LM, Lee G, Hughes GL, Kalman JM, Kaye DM, Taylor AJ. Diffuse ventricular fibrosis in atrial fibrillation: noninvasive evaluation and relationships with aging and systolic dysfunction. J Am Coll Cardiol. 2012;60:2402&#x2013;2408. doi: 10.1016/j.jacc.2012.07.065</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jacc.2012.07.065</ArticleId><ArticleId IdType="pubmed">23141493</ArticleId></ArticleIdList></Reference><Reference><Citation>Bisbal F, Baranchuk A, Braunwald E, Bayes de Luna A, Bayes&#x2010;Genis A. Atrial failure as a clinical entity: JACC review topic of the week. J Am Coll Cardiol. 2020;75:222&#x2013;232. doi: 10.1016/j.jacc.2019.11.013</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jacc.2019.11.013</ArticleId><ArticleId IdType="pubmed">31948652</ArticleId></ArticleIdList></Reference><Reference><Citation>Kayvanpour E, Sammani A, Sedaghat&#x2010;Hamedani F, Lehmann DH, Broezel A, Koelemenoglu J, Chmielewski P, Curjol A, Socie P, Miersch T, et al. A novel risk model for predicting potentially life&#x2010;threatening arrhythmias in non&#x2010;ischemic dilated cardiomyopathy (DCM&#x2010;SVA risk). Int J Cardiol. 2021;339:75&#x2013;82. doi: 10.1016/j.ijcard.2021.07.002</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.ijcard.2021.07.002</ArticleId><ArticleId IdType="pubmed">34245791</ArticleId></ArticleIdList></Reference><Reference><Citation>Richards S, Aziz N, Bale S, Bick D, Das S, Gastier&#x2010;Foster J, Grody WW, Hegde M, Lyon E, Spector E, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405&#x2013;424. doi: 10.1038/gim.2015.30</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/gim.2015.30</ArticleId><ArticleId IdType="pmc">PMC4544753</ArticleId><ArticleId IdType="pubmed">25741868</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="Publisher" Owner="NLM"><PMID Version="1">35861187</PMID><DateRevised><Year>2022</Year><Month>07</Month><Day>21</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1942-7522</ISSN><JournalIssue CitedMedium="Internet"><PubDate><Year>2022</Year><Month>Jul</Month><Day>20</Day></PubDate></JournalIssue><Title>Ear, nose, &amp; throat journal</Title><ISOAbbreviation>Ear Nose Throat J</ISOAbbreviation></Journal>Application of Ultrasound-Guided Cervical Plexus Block in Type I Thyroid Cartilage Laryngoplasty and Vocal Cord Medialization Surgery.
Background Interatrial block (IAB) has been associated with supraventricular arrhythmias and stroke, and even with sudden cardiac death in the general population. Whether IAB is associated with life-threatening arrhythmias (LTA) and sudden cardiac death in dilated cardiomyopathy (DCM) remains unknown. This study aimed to determine the association between IAB and LTA in ambulant patients with DCM. Methods and Results A derivation cohort (Maastricht Dilated Cardiomyopathy Registry; N=469) and an external validation cohort (Utrecht Cardiomyopathy Cohort; N=321) were used for this study. The presence of IAB (P-wave duration&gt;120&#xa0;milliseconds) or atrial fibrillation (AF) was determined using digital calipers by physicians blinded to the study data. In the derivation cohort, IAB and AF were present in 291 (62%) and 70 (15%) patients with DCM, respectively. LTA (defined as sudden cardiac death, justified shock from implantable cardioverter-defibrillator or anti-tachypacing, or hemodynamic unstable ventricular fibrillation/tachycardia) occurred in 49 patients (3 with no IAB, 35 with IAB, and 11 patients with AF, respectively; median follow-up, 4.4&#xa0;years [2.1; 7.4]). The LTA-free survival distribution significantly differed between IAB or AF versus no IAB (both <i>P</i>&lt;0.01), but not between IAB versus AF (<i>P</i>=0.999). This association remained statistically significant in the multivariable model (IAB: HR, 4.8 (1.4-16.1), <i>P</i>=0.013; AF: HR, 6.4 (1.7-24.0), <i>P</i>=0.007). In the external validation cohort, the survival distribution was also significantly worse for IAB or AF versus no IAB (<i>P</i>=0.037; <i>P</i>=0.005), but not for IAB versus AF (<i>P</i>=0.836). Conclusions IAB is an easy to assess, widely applicable marker associated with LTA in DCM. IAB and AF seem to confer similar risk of LTA. Further research on IAB in DCM, and on the management of IAB in DCM is warranted.</Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Henkens</LastName><ForeName>Michiel T H M</ForeName><Initials>MTHM</Initials><Identifier Source="ORCID">0000-0001-6222-071X</Identifier><AffiliationInfo><Affiliation>Department of Cardiology, CARIM Maastricht University Medical Centre Maastricht The Netherlands.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Netherlands Heart Institute Utrecht The Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>L&#xf3;pez Mart&#xed;nez</LastName><ForeName>Helena</ForeName><Initials>H</Initials><Identifier Source="ORCID">0000-0002-0963-0207</Identifier><AffiliationInfo><Affiliation>Hospital Universitari Germans Trias i Pujol Barcelona Spain.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Weerts</LastName><ForeName>Jerremy</ForeName><Initials>J</Initials><Identifier Source="ORCID">0000-0002-9369-3453</Identifier><AffiliationInfo><Affiliation>Department of Cardiology, CARIM Maastricht University Medical Centre Maastricht The Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Sammani</LastName><ForeName>Arjan</ForeName><Initials>A</Initials><Identifier Source="ORCID">0000-0002-5557-9342</Identifier><AffiliationInfo><Affiliation>Department of Cardiology Division of Heart and Lungs University Medical Center UtrechtUtrecht University Utrecht The Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Raafs</LastName><ForeName>Anne G</ForeName><Initials>AG</Initials><Identifier Source="ORCID">0000-0001-9228-8045</Identifier><AffiliationInfo><Affiliation>Department of Cardiology, CARIM Maastricht University Medical Centre Maastricht The Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Verdonschot</LastName><ForeName>Job A J</ForeName><Initials>JAJ</Initials><Identifier Source="ORCID">0000-0001-5549-1298</Identifier><AffiliationInfo><Affiliation>Department of Cardiology, CARIM Maastricht University Medical Centre Maastricht The Netherlands.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of clinical genetics, CARIM Maastricht University Medical Centre Maastricht The Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>van de Leur</LastName><ForeName>Rutger R</ForeName><Initials>RR</Initials><Identifier Source="ORCID">0000-0002-4779-5870</Identifier><AffiliationInfo><Affiliation>Department of Cardiology Division of Heart and Lungs University Medical Center UtrechtUtrecht University Utrecht The Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Sikking</LastName><ForeName>Maurits A</ForeName><Initials>MA</Initials><Identifier Source="ORCID">0000-0001-8165-6631</Identifier><AffiliationInfo><Affiliation>Department of Cardiology, CARIM Maastricht University Medical Centre Maastricht The Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Stroeks</LastName><ForeName>Sophia</ForeName><Initials>S</Initials><Identifier Source="ORCID">0000-0003-0965-6359</Identifier><AffiliationInfo><Affiliation>Department of Cardiology, CARIM Maastricht University Medical Centre Maastricht The Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>van Empel</LastName><ForeName>Vanessa P M</ForeName><Initials>VPM</Initials><Identifier Source="ORCID">0000-0002-6864-0296</Identifier><AffiliationInfo><Affiliation>Department of Cardiology, CARIM Maastricht University Medical Centre Maastricht The Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Brunner-La Rocca</LastName><ForeName>Hans-Peter</ForeName><Initials>HP</Initials><Identifier Source="ORCID">0000-0002-4356-8566</Identifier><AffiliationInfo><Affiliation>Department of Cardiology, CARIM Maastricht University Medical Centre Maastricht The Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>van Stipdonk</LastName><ForeName>Antonius M W</ForeName><Initials>AMW</Initials><Identifier Source="ORCID">0000-0002-6621-0727</Identifier><AffiliationInfo><Affiliation>Department of Cardiology, CARIM Maastricht University Medical Centre Maastricht The Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Farmakis</LastName><ForeName>Dimitrios</ForeName><Initials>D</Initials><Identifier Source="ORCID">0000-0001-8364-3447</Identifier><AffiliationInfo><Affiliation>University of Cyprus Medical School Nicosia Cyprus.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Heart Failure Unit Department of Cardiology Attikon University HospitalNational and Kapodistrian University of Athens Medical School Athens Greece.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Hazebroek</LastName><ForeName>Mark R</ForeName><Initials>MR</Initials><Identifier Source="ORCID">0000-0002-2151-7178</Identifier><AffiliationInfo><Affiliation>Department of Cardiology, CARIM Maastricht University Medical Centre Maastricht The Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Vernooy</LastName><ForeName>Kevin</ForeName><Initials>K</Initials><Identifier Source="ORCID">0000-0002-8818-5964</Identifier><AffiliationInfo><Affiliation>Department of Cardiology, CARIM Maastricht University Medical Centre Maastricht The Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Bay&#xe9;s-de-Luna</LastName><ForeName>Antoni</ForeName><Initials>A</Initials><Identifier Source="ORCID">0000-0003-1676-207X</Identifier><AffiliationInfo><Affiliation>Cardiovascular Research Foundation. Cardiovascular ICCC- ProgramResearch Institute Hospital de la Santa Creu i Sant PauIIB-Sant Pau Barcelona Spain.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Asselbergs</LastName><ForeName>Folkert W</ForeName><Initials>FW</Initials><Identifier Source="ORCID">0000-0002-1692-8669</Identifier><AffiliationInfo><Affiliation>Department of Cardiology Division of Heart and Lungs University Medical Center UtrechtUtrecht University Utrecht The Netherlands.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Institute of Cardiovascular Science Faculty of Population Health Sciences University College London London UK.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Health Data Research UK and Institute of Health Informatics University College London London UK.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Bay&#xe9;s-Gen&#xed;s</LastName><ForeName>Antoni</ForeName><Initials>A</Initials><Identifier Source="ORCID">0000-0002-3044-197X</Identifier><AffiliationInfo><Affiliation>Hospital Universitari Germans Trias i Pujol Barcelona Spain.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Heymans</LastName><ForeName>Stephane R B</ForeName><Initials>SRB</Initials><Identifier Source="ORCID">0000-0001-9477-7803</Identifier><AffiliationInfo><Affiliation>Department of Cardiology, CARIM Maastricht University Medical Centre Maastricht The Netherlands.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Netherlands Heart Institute Utrecht The Netherlands.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Cardiovascular Research University of Leuven Leuven Belgium.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2022</Year><Month>07</Month><Day>15</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>J Am Heart Assoc</MedlineTA><NlmUniqueID>101580524</NlmUniqueID><ISSNLinking>2047-9980</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D001281" MajorTopicYN="Y">Atrial Fibrillation</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D002311" MajorTopicYN="Y">Cardiomyopathy, Dilated</DescriptorName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName><QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName><QualifierName UI="Q000628" MajorTopicYN="N">therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D016757" MajorTopicYN="N">Death, Sudden, Cardiac</DescriptorName><QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName><QualifierName UI="Q000209" MajorTopicYN="N">etiology</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D004562" MajorTopicYN="N">Electrocardiography</DescriptorName><QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D000074021" MajorTopicYN="N">Interatrial Block</DescriptorName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName><QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">dilated cardiomyopathy</Keyword><Keyword MajorTopicYN="N">electrocardiography</Keyword><Keyword MajorTopicYN="N">interatrial block</Keyword><Keyword MajorTopicYN="N">life&#x2010;threatening arrhythmias</Keyword><Keyword MajorTopicYN="N">non&#x2010;ischemic cardiomyopathy</Keyword><Keyword MajorTopicYN="N">sudden cardiac death</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="entrez"><Year>2022</Year><Month>7</Month><Day>21</Day><Hour>11</Hour><Minute>14</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2022</Year><Month>7</Month><Day>22</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2022</Year><Month>7</Month><Day>26</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">35861818</ArticleId><ArticleId IdType="pmc">PMC9707810</ArticleId><ArticleId IdType="doi">10.1161/JAHA.121.025473</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Pinto YM, Elliott PM, Arbustini E, Adler Y, Anastasakis A, B&#xf6;hm M, Duboc D, Gimeno J, de Groote P, Imazio M, et al. Proposal for a revised definition of dilated cardiomyopathy, hypokinetic non&#x2010;dilated cardiomyopathy, and its implications for clinical practice: a position statement of the ESC working group on myocardial and pericardial diseases. Eur Heart J. 2016;37:1850&#x2013;1858. doi: 10.1093/eurheartj/ehv727</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/eurheartj/ehv727</ArticleId><ArticleId IdType="pubmed">26792875</ArticleId></ArticleIdList></Reference><Reference><Citation>Goldberger JJ, Subacius H, Patel T, Cunnane R, Kadish AH. Sudden cardiac death risk stratification in patients with nonischemic dilated cardiomyopathy. J Am Coll Cardiol. 2014;63:1879&#x2013;1889. doi: 10.1016/j.jacc.2013.12.021</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jacc.2013.12.021</ArticleId><ArticleId IdType="pubmed">24445228</ArticleId></ArticleIdList></Reference><Reference><Citation>Hershberger RE, Hedges DJ, Morales A. Dilated cardiomyopathy: the complexity of a diverse genetic architecture. Nat Rev Cardiol. 2013;10:531&#x2013;547. doi: 10.1038/nrcardio.2013.105</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/nrcardio.2013.105</ArticleId><ArticleId IdType="pubmed">23900355</ArticleId></ArticleIdList></Reference><Reference><Citation>Halliday BP, Cleland JGF, Goldberger JJ, Prasad SK. Personalizing risk stratification for sudden death in dilated cardiomyopathy: the past, present, and future. Circulation. 2017;136:215&#x2013;231. doi: 10.1161/CIRCULATIONAHA.116.027134</Citation><ArticleIdList><ArticleId IdType="doi">10.1161/CIRCULATIONAHA.116.027134</ArticleId><ArticleId IdType="pmc">PMC5516909</ArticleId><ArticleId IdType="pubmed">28696268</ArticleId></ArticleIdList></Reference><Reference><Citation>McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, B&#xf6;hm M, Burri H, Butler J, &#x10c;elutkien&#x117; J, Chioncel O, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42:3599&#x2013;3726. doi: 10.1093/eurheartj/ehab368</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/eurheartj/ehab368</ArticleId><ArticleId IdType="pubmed">34447992</ArticleId></ArticleIdList></Reference><Reference><Citation>Disertori M, Rigoni M, Pace N, Casolo G, Mase M, Gonzini L, Lucci D, Nollo G, Ravelli F. Myocardial fibrosis assessment by LGE Is a powerful predictor of ventricular tachyarrhythmias in ischemic and nonischemic LV dysfunction: a meta&#x2010;analysis. JACC Cardiovasc Imaging. 2016;9:1046&#x2013;1055. doi: 10.1016/j.jcmg.2016.01.033</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jcmg.2016.01.033</ArticleId><ArticleId IdType="pubmed">27450871</ArticleId></ArticleIdList></Reference><Reference><Citation>Ahmad T, Fiuzat M, Pencina MJ, Geller NL, Zannad F, Cleland JGF, Snider JV, Blankenberg S, Adams KF, Redberg RF, et al. Charting a roadmap for heart failure biomarker studies. JACC Heart Fail. 2014;2:477&#x2013;488. doi: 10.1016/j.jchf.2014.02.005</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jchf.2014.02.005</ArticleId><ArticleId IdType="pmc">PMC4194170</ArticleId><ArticleId IdType="pubmed">24929535</ArticleId></ArticleIdList></Reference><Reference><Citation>Magnani JW, Gorodeski EZ, Johnson VM, Sullivan LM, Hamburg NM, Benjamin EJ, Ellinor PT. P wave duration is associated with cardiovascular and all&#x2010;cause mortality outcomes: the National Health and Nutrition Examination Survey. Heart Rhythm. 2011;8:93&#x2013;100. doi: 10.1016/j.hrthm.2010.09.020</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.hrthm.2010.09.020</ArticleId><ArticleId IdType="pmc">PMC3046401</ArticleId><ArticleId IdType="pubmed">20868770</ArticleId></ArticleIdList></Reference><Reference><Citation>Bay&#xe9;s de Luna A, Platonov P, Cosio FG, Cygankiewicz I, Pastore C, Baranowski R, Bay&#xe9;s&#x2010;Genis A, Guindo J, Vi&#xf1;olas X, Garcia&#x2010;Niebla J, et al. Interatrial blocks. A separate entity from left atrial enlargement: a consensus report. J Electrocardiol. 2012;45:445&#x2013;451. doi: 10.1016/j.jelectrocard.2012.06.029</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jelectrocard.2012.06.029</ArticleId><ArticleId IdType="pubmed">22920783</ArticleId></ArticleIdList></Reference><Reference><Citation>Martinez&#x2010;Selles M, Elosua R, Ibarrola M, de Andres M, Diez&#x2010;Villanueva P, Bayes&#x2010;Genis A, Baranchuk A, Bayes&#x2010;de&#x2010;Luna A; Investigators BR . Advanced interatrial block and P&#x2010;wave duration are associated with atrial fibrillation and stroke in older adults with heart disease: the BAYES registry. Europace. 2020;22:1001&#x2013;1008. doi: 10.1093/europace/euaa114</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/europace/euaa114</ArticleId><ArticleId IdType="pubmed">32449904</ArticleId></ArticleIdList></Reference><Reference><Citation>Maheshwari A, Norby FL, Soliman EZ, Alraies MC, Adabag S, O'Neal WT, Alonso A, Chen LY. Relation of prolonged P&#x2010;wave duration to risk of sudden cardiac death in the general population (from the Atherosclerosis Risk in Communities Study). Am J Cardiol. 2017;119:1302&#x2013;1306. doi: 10.1016/j.amjcard.2017.01.012</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.amjcard.2017.01.012</ArticleId><ArticleId IdType="pmc">PMC5444665</ArticleId><ArticleId IdType="pubmed">28267962</ArticleId></ArticleIdList></Reference><Reference><Citation>Sammani A, Jansen M, Linschoten M, Bagheri A, de Jonge N, Kirkels H, van Laake LW, Vink A, van Tintelen JP, Dooijes D, et al. UNRAVEL: big data analytics research data platform to improve care of patients with cardiomyopathies using routine electronic health records and standardised biobanking. Neth Heart J. 2019;27:426&#x2013;434. doi: 10.1007/s12471-019-1288-4</Citation><ArticleIdList><ArticleId IdType="doi">10.1007/s12471-019-1288-4</ArticleId><ArticleId IdType="pmc">PMC6712144</ArticleId><ArticleId IdType="pubmed">31134468</ArticleId></ArticleIdList></Reference><Reference><Citation>Verdonschot JAJ, Hazebroek MR, Derks KWJ, Barandiar&#xe1;n Aizpurua A, Merken JJ, Wang P, Bierau J, van den Wijngaard A, Schalla SM, Abdul Hamid MA, et al. Titin cardiomyopathy leads to altered mitochondrial energetics, increased fibrosis and long&#x2010;term life&#x2010;threatening arrhythmias. Eur Heart J. 2018;39:864&#x2013;873. doi: 10.1093/eurheartj/ehx808</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/eurheartj/ehx808</ArticleId><ArticleId IdType="pubmed">29377983</ArticleId></ArticleIdList></Reference><Reference><Citation>Martinez&#x2010;Selles M, Baranchuk A, Elosua R, de Luna AB. Rationale and design of the BAYES (Interatrial Block and Yearly Events) registry. Clin Cardiol. 2017;40:196&#x2013;199. doi: 10.1002/clc.22647</Citation><ArticleIdList><ArticleId IdType="doi">10.1002/clc.22647</ArticleId><ArticleId IdType="pmc">PMC6490352</ArticleId><ArticleId IdType="pubmed">27883210</ArticleId></ArticleIdList></Reference><Reference><Citation>Priori SG, Blomstrom&#x2010;Lundqvist C, Mazzanti A, Blom N, Borggrefe M, Camm J, Elliott PM, Fitzsimons D, Hatala R, Hindricks G, et al. 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: the Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC). Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Eur Heart J. 2015;36:2793&#x2013;2867. doi: 10.1093/eurheartj/ehv316</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/eurheartj/ehv316</ArticleId><ArticleId IdType="pubmed">26320108</ArticleId></ArticleIdList></Reference><Reference><Citation>Verdonschot JAJ, Hazebroek MR, Krapels IPC, Henkens MTHM, Raafs A, Wang P, Merken JJ, Claes GRF, Vanhoutte EK, van den Wijngaard A, et al. Implications of genetic testing in dilated cardiomyopathy. Circ Genom Precis Med. 2020;13:476&#x2013;487. doi: 10.1161/CIRCGEN.120.003031</Citation><ArticleIdList><ArticleId IdType="doi">10.1161/CIRCGEN.120.003031</ArticleId><ArticleId IdType="pubmed">32880476</ArticleId></ArticleIdList></Reference><Reference><Citation>Waldmann V, Jouven X, Narayanan K, Piot O, Chugh SS, Albert CM, Marijon E. Association between atrial fibrillation and sudden cardiac death: pathophysiological and epidemiological insights. Circ Res. 2020;127:301&#x2013;309. doi: 10.1161/CIRCRESAHA.120.316756</Citation><ArticleIdList><ArticleId IdType="doi">10.1161/CIRCRESAHA.120.316756</ArticleId><ArticleId IdType="pubmed">32833581</ArticleId></ArticleIdList></Reference><Reference><Citation>Odutayo A, Wong CX, Hsiao AJ, Hopewell S, Altman DG, Emdin CA. Atrial fibrillation and risks of cardiovascular disease, renal disease, and death: systematic review and meta&#x2010;analysis. BMJ. 2016;354:i4482. doi: 10.1136/bmj.i4482</Citation><ArticleIdList><ArticleId IdType="doi">10.1136/bmj.i4482</ArticleId><ArticleId IdType="pubmed">27599725</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen LY, Sotoodehnia N, B&#x16f;&#x17e;kov&#xe1; P, Lopez FL, Yee LM, Heckbert SR, Prineas R, Soliman EZ, Adabag S, Konety S, et al. Atrial fibrillation and the risk of sudden cardiac death: the atherosclerosis risk in communities study and cardiovascular health study. JAMA Intern Med. 2013;173:29&#x2013;35. doi: 10.1001/2013.jamainternmed.744</Citation><ArticleIdList><ArticleId IdType="doi">10.1001/2013.jamainternmed.744</ArticleId><ArticleId IdType="pmc">PMC3578214</ArticleId><ArticleId IdType="pubmed">23404043</ArticleId></ArticleIdList></Reference><Reference><Citation>Bardai A, Blom MT, van Hoeijen DA, van Deutekom HW, Brouwer HJ, Tan HL. Atrial fibrillation is an independent risk factor for ventricular fibrillation: a large&#x2010;scale population&#x2010;based case&#x2010;control study. Circ Arrhythm Electrophysiol. 2014;7:1033&#x2013;1039. doi: 10.1161/CIRCEP.114.002094</Citation><ArticleIdList><ArticleId IdType="doi">10.1161/CIRCEP.114.002094</ArticleId><ArticleId IdType="pubmed">25236735</ArticleId></ArticleIdList></Reference><Reference><Citation>Ritchie MD, Denny JC, Zuvich RL, Crawford DC, Schildcrout JS, Bastarache L, Ramirez AH, Mosley JD, Pulley JM, Basford MA, et al. Genome&#x2010; and phenome&#x2010;wide analyses of cardiac conduction identifies markers of arrhythmia risk. Circulation. 2013;127:1377&#x2013;1385. doi: 10.1161/CIRCULATIONAHA.112.000604</Citation><ArticleIdList><ArticleId IdType="doi">10.1161/CIRCULATIONAHA.112.000604</ArticleId><ArticleId IdType="pmc">PMC3713791</ArticleId><ArticleId IdType="pubmed">23463857</ArticleId></ArticleIdList></Reference><Reference><Citation>Ling LH, Kistler PM, Ellims AH, Iles LM, Lee G, Hughes GL, Kalman JM, Kaye DM, Taylor AJ. Diffuse ventricular fibrosis in atrial fibrillation: noninvasive evaluation and relationships with aging and systolic dysfunction. J Am Coll Cardiol. 2012;60:2402&#x2013;2408. doi: 10.1016/j.jacc.2012.07.065</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jacc.2012.07.065</ArticleId><ArticleId IdType="pubmed">23141493</ArticleId></ArticleIdList></Reference><Reference><Citation>Bisbal F, Baranchuk A, Braunwald E, Bayes de Luna A, Bayes&#x2010;Genis A. Atrial failure as a clinical entity: JACC review topic of the week. J Am Coll Cardiol. 2020;75:222&#x2013;232. doi: 10.1016/j.jacc.2019.11.013</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jacc.2019.11.013</ArticleId><ArticleId IdType="pubmed">31948652</ArticleId></ArticleIdList></Reference><Reference><Citation>Kayvanpour E, Sammani A, Sedaghat&#x2010;Hamedani F, Lehmann DH, Broezel A, Koelemenoglu J, Chmielewski P, Curjol A, Socie P, Miersch T, et al. A novel risk model for predicting potentially life&#x2010;threatening arrhythmias in non&#x2010;ischemic dilated cardiomyopathy (DCM&#x2010;SVA risk). Int J Cardiol. 2021;339:75&#x2013;82. doi: 10.1016/j.ijcard.2021.07.002</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.ijcard.2021.07.002</ArticleId><ArticleId IdType="pubmed">34245791</ArticleId></ArticleIdList></Reference><Reference><Citation>Richards S, Aziz N, Bale S, Bick D, Das S, Gastier&#x2010;Foster J, Grody WW, Hegde M, Lyon E, Spector E, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405&#x2013;424. doi: 10.1038/gim.2015.30</Citation><ArticleIdList><ArticleId IdType="doi">10.1038/gim.2015.30</ArticleId><ArticleId IdType="pmc">PMC4544753</ArticleId><ArticleId IdType="pubmed">25741868</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="Publisher" Owner="NLM"><PMID Version="1">35861187</PMID><DateRevised><Year>2022</Year><Month>07</Month><Day>21</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1942-7522</ISSN><JournalIssue CitedMedium="Internet"><PubDate><Year>2022</Year><Month>Jul</Month><Day>20</Day></PubDate></JournalIssue><Title>Ear, nose, &amp; throat journal</Title><ISOAbbreviation>Ear Nose Throat J</ISOAbbreviation></Journal><ArticleTitle>Application of Ultrasound-Guided Cervical Plexus Block in Type I Thyroid Cartilage Laryngoplasty and Vocal Cord Medialization Surgery.</ArticleTitle><Pagination><StartPage>1455613221115114</StartPage><MedlinePgn>1455613221115114</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1177/01455613221115114</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="UNASSIGNED">Under the background that cervical plexus block (CPB) is often adopted for type I thyroid cartilage laryngoplasty (TCL) and vocal cord medialization (VCM), the present study sought to investigate whether ultrasound-guided CPB (USCPB) could improve the efficiency of type I TCL and VCM.<AbstractText Label="METHODS" NlmCategory="UNASSIGNED">Patients with TCL were enrolled and subjected to deep and superficial USCPBs. Intravenous dexmedetomidine pumping was used to assist the painless sedation and ensure the patients to be awake for phonation during surgery. Blood pressure, electrocardiogram, heart rate (HR), and blood oxygen saturation (SpO<sub>2</sub>) of patients were recorded. The complications, like local anesthetic toxicity and total spinal anesthesia, were monitored.<AbstractText Label="RESULTS" NlmCategory="UNASSIGNED">All patients underwent CPB without infiltration anesthesia and complication. The use of Sufentanil at the dose of 5-10 &#x3bc;g was reported in 2 of 15 patients. No Horner syndrome was discovered in patients after anesthesia, and total intravenous anesthesia with intravenous pumping of dexmedetomidine was effective. During surgery, HR, diastolic blood pressure and mean blood pressure were barely changed, but systolic blood pressure was decreased.<AbstractText Label="CONCLUSION" NlmCategory="UNASSIGNED">Ultrasound-guided CPB with the intravenous dexmedetomidine pumping is a safe anesthesia method for patients during TCL.
2,335,750
Associations Between Asthma Diagnosis/Asthma Exacerbation and Previous Proton-Pump Inhibitor use: A Nested Case-Control Study Using a National Health Screening Cohort.
<b>Background:</b> Proton-pump inhibitors (PPIs) block acid secretion from gastric parietal cells; however, recent studies have reported that PPIs have antioxidant and anti-inflammatory properties in various cells. Newer PPIs are stronger inhibitors of acid secretion; however, the anti-inflammatory effects of these drugs have not been assessed. We evaluated anti-inflammatory effect of PPIs on the development of asthma/asthma exacerbation (AE) in a national health screening cohort. <b>Methods:</b> This case-control study comprised 64,809 participants with asthma who were 1:1 matched with controls from the Korean National Health Insurance Service-Health Screening Cohort. Conditional logistic regression analysis was used to evaluate the effect of previous PPI use on an asthma diagnosis in all participants. Unconditional logistic regression was used to assess the effect of PPI use on AE in participants with asthma. These relationships were estimated in a subgroup analysis according to PPI generation. <b>Results:</b> Overall, PPI use increased the risk of asthma diagnosis [adjusted odds ratio (aOR) = 1.29, 95% confidence interval (CI) = 1.23-1.35, <i>p</i> &lt; 0.001]. Use of the first-generation PPIs was associated with asthma (aOR = 1.34, 95% CI = 1.18-1.52, <i>p</i> &lt; 0.001), while use of second-generation PPIs was not (aOR = 0.97, 95% CI = 0.82-1.15, <i>p</i> = 0.748). In contrast, overall PPI use decreased the risk of AE in participants with asthma (aOR = 0.79, 95% CI = 0.75-0.84, <i>p</i> &lt; 0.001), although this effect was observed only for second-generation PPIs (aOR = 0.76, 95% CI = 0.65-0.89, <i>p</i> = 0.001). <b>Conclusion:</b> PPI use increased the risk for subsequent asthma diagnosis. However, this effect was confined to first-generation PPIs. Second-generation PPIs decreased the risk of AE.
2,335,751
<i>In-vivo</i> Sino-Atrial Node Mapping in Children and Adults With Congenital Heart Disease.<Pagination><StartPage>896825</StartPage><MedlinePgn>896825</MedlinePgn></Pagination><ELocationID EIdType="pii" ValidYN="Y">896825</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.3389/fped.2022.896825</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="UNASSIGNED">Sinus node dysfunction (SND) and atrial tachyarrhythmias frequently co-exist in the aging patient with congenital heart disease (CHD), even after surgical correction early in life. We examined differences in electrophysiological properties of the sino-atrial node (SAN) area between pediatric and adult patients with CHD.</AbstractText><AbstractText Label="METHODS" NlmCategory="UNASSIGNED">Epicardial mapping of the SAN was performed during sinus rhythm in 12 pediatric (0.6 [0.4-2.4] years) and 15 adult (47 [40-55] years) patients. Unipolar potentials were classified as single-, short or long double- and fractionated potentials. Unipolar voltage, relative R-to-S-amplitude ratio and duration of all potentials was calculated. Conduction velocity (CV) and the amount of conduction block (CB) was calculated.</AbstractText><AbstractText Label="RESULTS" NlmCategory="UNASSIGNED">SAN activity in pediatric patients was solely observed near the junction of the superior caval vein and the right atrium, while in adults SAN activity was observed even up to the middle part of the right atrium. Compared to pediatric patients, the SAN region of adults was characterized by lower CV, lower voltages, more CB and a higher degree of fractionation. At the earliest site of activation, single potentials from pediatrics consisted of broad monophasic S-waves with high amplitudes, while adults had smaller rS-potentials with longer duration which were more often fractionated.</AbstractText><AbstractText Label="CONCLUSIONS" NlmCategory="UNASSIGNED">Compared to pediatric patients, adults with uncorrected CHD have more inhomogeneous conduction and variations in preferential SAN exit site, which are presumable caused by aging related remodeling. Long-term follow-up of these patients is essential to demonstrate whether these changes are related to development of SND and also atrial tachyarrhythmias early in life.</AbstractText><CopyrightInformation>Copyright &#xa9; 2022 Kharbanda, van Schie, Ramdat Misier, Wesselius, Zwijnenburg, van Leeuwen, van de Woestijne, de Jong, Bogers, Taverne and de Groot.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Kharbanda</LastName><ForeName>Rohit K</ForeName><Initials>RK</Initials><AffiliationInfo><Affiliation>Department of Cardiology, Erasmus Medical Centre, Rotterdam, Netherlands.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Cardiothoracic Surgery, Erasmus Medical Centre, Rotterdam, Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>van Schie</LastName><ForeName>Mathijs S</ForeName><Initials>MS</Initials><AffiliationInfo><Affiliation>Department of Cardiology, Erasmus Medical Centre, Rotterdam, Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ramdat Misier</LastName><ForeName>Nawin L</ForeName><Initials>NL</Initials><AffiliationInfo><Affiliation>Department of Cardiology, Erasmus Medical Centre, Rotterdam, Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Wesselius</LastName><ForeName>Fons J</ForeName><Initials>FJ</Initials><AffiliationInfo><Affiliation>Department of Cardiology, Erasmus Medical Centre, Rotterdam, Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zwijnenburg</LastName><ForeName>Roxanne D</ForeName><Initials>RD</Initials><AffiliationInfo><Affiliation>Department of Cardiology, Erasmus Medical Centre, Rotterdam, Netherlands.</Affiliation></AffiliationInfo><AffiliationInfo><Affiliation>Department of Cardiothoracic Surgery, Erasmus Medical Centre, Rotterdam, Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>van Leeuwen</LastName><ForeName>Wouter J</ForeName><Initials>WJ</Initials><AffiliationInfo><Affiliation>Department of Cardiothoracic Surgery, Erasmus Medical Centre, Rotterdam, Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>van de Woestijne</LastName><ForeName>Pieter C</ForeName><Initials>PC</Initials><AffiliationInfo><Affiliation>Department of Cardiothoracic Surgery, Erasmus Medical Centre, Rotterdam, Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>de Jong</LastName><ForeName>Peter L</ForeName><Initials>PL</Initials><AffiliationInfo><Affiliation>Department of Cardiothoracic Surgery, Erasmus Medical Centre, Rotterdam, Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Bogers</LastName><ForeName>Ad J J C</ForeName><Initials>AJJC</Initials><AffiliationInfo><Affiliation>Department of Cardiothoracic Surgery, Erasmus Medical Centre, Rotterdam, Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Taverne</LastName><ForeName>Yannick J H J</ForeName><Initials>YJHJ</Initials><AffiliationInfo><Affiliation>Department of Cardiothoracic Surgery, Erasmus Medical Centre, Rotterdam, Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>de Groot</LastName><ForeName>Natasja M S</ForeName><Initials>NMS</Initials><AffiliationInfo><Affiliation>Department of Cardiology, Erasmus Medical Centre, Rotterdam, Netherlands.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2022</Year><Month>07</Month><Day>01</Day></ArticleDate></Article><MedlineJournalInfo><Country>Switzerland</Country><MedlineTA>Front Pediatr</MedlineTA><NlmUniqueID>101615492</NlmUniqueID><ISSNLinking>2296-2360</ISSNLinking></MedlineJournalInfo><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">atrial fibrillation</Keyword><Keyword MajorTopicYN="N">congenital heart disease</Keyword><Keyword MajorTopicYN="N">epicardial mapping</Keyword><Keyword MajorTopicYN="N">sino-atrial node</Keyword><Keyword MajorTopicYN="N">sinus node dysfunction (SND)</Keyword></KeywordList><CoiStatement>The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2022</Year><Month>3</Month><Day>15</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2022</Year><Month>6</Month><Day>6</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2022</Year><Month>7</Month><Day>18</Day><Hour>3</Hour><Minute>41</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2022</Year><Month>7</Month><Day>19</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2022</Year><Month>7</Month><Day>19</Day><Hour>6</Hour><Minute>1</Minute></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">35844762</ArticleId><ArticleId IdType="pmc">PMC9283725</ArticleId><ArticleId IdType="doi">10.3389/fped.2022.896825</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Labombarda F, Hamilton R, Shohoudi A, Aboulhosn J, Broberg CS, Chaix MA, et al. . Increasing Prevalence of Atrial Fibrillation and Permanent Atrial Arrhythmias in Congenital Heart Disease. J Am Coll Cardiol. (2017) 70:857&#x2013;65. 10.1016/j.jacc.2017.06.034</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jacc.2017.06.034</ArticleId><ArticleId IdType="pubmed">28797355</ArticleId></ArticleIdList></Reference><Reference><Citation>de Miguel IM, Avila P. Atrial Fibrillation in Congenital Heart Disease. Eur Cardiol. (2021) 16:e06. 10.15420/ecr.2020.41</Citation><ArticleIdList><ArticleId IdType="doi">10.15420/ecr.2020.41</ArticleId><ArticleId IdType="pmc">PMC7967824</ArticleId><ArticleId IdType="pubmed">33737960</ArticleId></ArticleIdList></Reference><Reference><Citation>Baumgartner H, De Backer J, Babu-Narayan SV, Budts W, Chessa M, Diller GP, et al. . 2020 ESC Guidelines for the management of adult congenital heart disease. Eur Heart J. (2021) 42:563&#x2013;645. 10.1093/eurheartj/ehaa554</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/eurheartj/ehaa554</ArticleId><ArticleId IdType="pubmed">32860028</ArticleId></ArticleIdList></Reference><Reference><Citation>Jongbloed MR, Vicente Steijn R, Hahurij ND, Kelder TP, Schalij MJ. Gittenberger-de Groot AC and Blom NA. Normal and abnormal development of the cardiac conduction system implications for conduction and rhythm disorders in the child and adult. Differentiation. (2012) 84:131&#x2013;48. 10.1016/j.diff.2012.04.006</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.diff.2012.04.006</ArticleId><ArticleId IdType="pubmed">22664174</ArticleId></ArticleIdList></Reference><Reference><Citation>Kharbanda RK, van Schie MS, Ramdat Misier NL, van Leeuwen WJ, Taverne Y, van de Woestijne PC, et al. . First evidence of atrial conduction disorders in pediatric patients with congenital heart disease. JACC Clin Electrophysiol. (2020) 6:1739&#x2013;43. 10.1016/j.jacep.2020.09.028</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jacep.2020.09.028</ArticleId><ArticleId IdType="pubmed">33357569</ArticleId></ArticleIdList></Reference><Reference><Citation>Kharbanda RK, van Schie MS, van Leeuwen WJ, Taverne Y, Houck CA, Kammeraad JAE, et al. . First-in-children epicardial mapping of the heart: unravelling arrhythmogenesis in congenital heart disease. Interact Cardiovasc Thorac Surg. (2021) 32:137&#x2013;40. 10.1093/icvts/ivaa233</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/icvts/ivaa233</ArticleId><ArticleId IdType="pmc">PMC8906696</ArticleId><ArticleId IdType="pubmed">33156915</ArticleId></ArticleIdList></Reference><Reference><Citation>Kharbanda RK, Wesselius FJ, van Schie MS, Taverne Y, Bogers A, de Groot NMS. Endo-epicardial mapping of in vivo human sinoatrial node activity. JACC Clin Electrophysiol. (2021) 7:693&#x2013;702. 10.1016/j.jacep.2020.11.017</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jacep.2020.11.017</ArticleId><ArticleId IdType="pubmed">33640354</ArticleId></ArticleIdList></Reference><Reference><Citation>van Schie MS, Kharbanda RK, Houck CA, Lanters EAH, Taverne Y, Bogers A, de Groot NMS. Identification of low-voltage areas: a unipolar, bipolar, and omnipolar perspective. Circ Arrhythm Electrophysiol. (2021) 14:e009912. 10.1161/CIRCEP.121.009912</Citation><ArticleIdList><ArticleId IdType="doi">10.1161/CIRCEP.121.009912</ArticleId><ArticleId IdType="pmc">PMC8294660</ArticleId><ArticleId IdType="pubmed">34143644</ArticleId></ArticleIdList></Reference><Reference><Citation>van Schie MS, Starreveld R, Roos-Serote MC, Taverne Y, van Schaagen FRN, Bogers A, et al. . Classification of sinus rhythm single potential morphology in patients with mitral valve disease. Europace. (2020) 22:1509&#x2013;19. 10.1093/europace/euaa130</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/europace/euaa130</ArticleId><ArticleId IdType="pmc">PMC7544534</ArticleId><ArticleId IdType="pubmed">33033830</ArticleId></ArticleIdList></Reference><Reference><Citation>Sanders P, Kistler PM, Morton JB, Spence SJ, Kalman JM. Remodeling of sinus node function in patients with congestive heart failure: reduction in sinus node reserve. Circulation. (2004) 110:897&#x2013;903. 10.1161/01.CIR.0000139336.69955.AB</Citation><ArticleIdList><ArticleId IdType="doi">10.1161/01.CIR.0000139336.69955.AB</ArticleId><ArticleId IdType="pubmed">15302799</ArticleId></ArticleIdList></Reference><Reference><Citation>Sanders P, Morton JB, Kistler PM, Spence SJ, Davidson NC, Hussin A, et al. . Electrophysiological and electroanatomic characterization of the atria in sinus node disease: evidence of diffuse atrial remodeling. Circulation. (2004) 109:1514&#x2013;22. 10.1161/01.CIR.0000121734.47409.AA</Citation><ArticleIdList><ArticleId IdType="doi">10.1161/01.CIR.0000121734.47409.AA</ArticleId><ArticleId IdType="pubmed">15007004</ArticleId></ArticleIdList></Reference><Reference><Citation>Fedorov VV, Glukhov AV, Chang R, Kostecki G, Aferol H, Hucker WJ, et al. . Optical mapping of the isolated coronary-perfused human sinus node. J Am Coll Cardiol. (2010) 56:1386&#x2013;94. 10.1016/j.jacc.2010.03.098</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/j.jacc.2010.03.098</ArticleId><ArticleId IdType="pmc">PMC3008584</ArticleId><ArticleId IdType="pubmed">20946995</ArticleId></ArticleIdList></Reference><Reference><Citation>Chiu IS, Hung CR, How SW, Chen MR. Is the sinus node visible grossly? A histological study of normal hearts. Int J Cardiol. (1989) 22:83&#x2013;7. 10.1016/0167-5273(89)90139-3</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/0167-5273(89)90139-3</ArticleId><ArticleId IdType="pubmed">2925288</ArticleId></ArticleIdList></Reference><Reference><Citation>Mangrum JM, DiMarco JP. The evaluation and management of bradycardia. N Engl J Med. (2000) 342:703&#x2013;9. 10.1056/NEJM200003093421006</Citation><ArticleIdList><ArticleId IdType="doi">10.1056/NEJM200003093421006</ArticleId><ArticleId IdType="pubmed">10706901</ArticleId></ArticleIdList></Reference><Reference><Citation>Hernandez-Madrid A, Paul T, Abrams D, Aziz PF, Blom NA, Chen J, et al. . Arrhythmias in congenital heart disease: a position paper of the European Heart Rhythm Association (EHRA), Association for European Paediatric and Congenital Cardiology (AEPC), and the European Society of Cardiology (ESC) Working Group on Grown-up Congenital heart disease, endorsed by HRS, PACES, APHRS, and SOLAECE. Europace. (2018) 20:1719&#x2013;53. 10.1093/europace/eux380</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/europace/eux380</ArticleId><ArticleId IdType="pubmed">29579186</ArticleId></ArticleIdList></Reference><Reference><Citation>Cuypers JA, Eindhoven JA, Slager MA, Opic P, Utens EM, Helbing WA, et al. . The natural and unnatural history of the Mustard procedure: long-term outcome up to 40 years. Eur Heart J. (2014) 35:1666&#x2013;74. 10.1093/eurheartj/ehu102</Citation><ArticleIdList><ArticleId IdType="doi">10.1093/eurheartj/ehu102</ArticleId><ArticleId IdType="pubmed">24644309</ArticleId></ArticleIdList></Reference><Reference><Citation>Clark EB, Kugler JD. Preoperative secundum atrial septal defect with coexisting sinus node and atrioventricular node dysfunction. Circulation. (1982) 65:976&#x2013;80. 10.1161/01.CIR.65.5.976</Citation><ArticleIdList><ArticleId IdType="doi">10.1161/01.CIR.65.5.976</ArticleId><ArticleId IdType="pubmed">7074763</ArticleId></ArticleIdList></Reference><Reference><Citation>Gillette PC, Shannon C, Garson A., Jr., Porter CJ, Ott D, Cooley DA, et al. . Pacemaker treatment of sick sinus syndrome in children. J Am Coll Cardiol. (1983) 1:1325&#x2013;9. 10.1016/S0735-1097(83)80147-8</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/S0735-1097(83)80147-8</ArticleId><ArticleId IdType="pubmed">6833672</ArticleId></ArticleIdList></Reference><Reference><Citation>Beder SD, Gillette PC, Garson A, Jr., Porter CB, McNamara DG. Symptomatic sick sinus syndrome in children and adolescents as the only manifestation of cardiac abnormality or associated with unoperated congenital heart disease. Am J Cardiol. (1983) 51:1133&#x2013;6. 10.1016/0002-9149(83)90358-2</Citation><ArticleIdList><ArticleId IdType="doi">10.1016/0002-9149(83)90358-2</ArticleId><ArticleId IdType="pubmed">6837459</ArticleId></ArticleIdList></Reference><Reference><Citation>Maeno Y, Hirose A, Kanbe T, Hori D. Fetal arrhythmia: prenatal diagnosis and perinatal management. J Obstet Gynaecol Res. (2009) 35:623&#x2013;9. 10.1111/j.1447-0756.2009.01080.x</Citation><ArticleIdList><ArticleId IdType="doi">10.1111/j.1447-0756.2009.01080.x</ArticleId><ArticleId IdType="pubmed">19751319</ArticleId></ArticleIdList></Reference><Reference><Citation>John RM, Kumar S. Sinus node and atrial arrhythmias. Circulation. (2016) 133:1892&#x2013;900. 10.1161/CIRCULATIONAHA.116.018011</Citation><ArticleIdList><ArticleId IdType="doi">10.1161/CIRCULATIONAHA.116.018011</ArticleId><ArticleId IdType="pubmed">27166347</ArticleId></ArticleIdList></Reference><Reference><Citation>Sharpe MD, Dobkowski WB, Murkin JM, Klein G, Yee R. Propofol has no direct effect on sinoatrial node function or on normal atrioventricular and accessory pathway conduction in Wolff-Parkinson-White syndrome during alfentanil/midazolam anesthesia. Anesthesiology. (1995) 82:888&#x2013;95. 10.1097/00000542-199504000-00011</Citation><ArticleIdList><ArticleId IdType="doi">10.1097/00000542-199504000-00011</ArticleId><ArticleId IdType="pubmed">7717560</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="Publisher" Owner="NLM"><PMID Version="1">35844104</PMID><DateRevised><Year>2022</Year><Month>07</Month><Day>18</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1467-1107</ISSN><JournalIssue CitedMedium="Internet"><PubDate><Year>2022</Year><Month>Jul</Month><Day>18</Day></PubDate></JournalIssue><Title>Cardiology in the young</Title><ISOAbbreviation>Cardiol Young</ISOAbbreviation></Journal>A comparison of ECG-based home monitoring devices in adults with CHD.<Pagination><StartPage>1</StartPage><EndPage>7</EndPage><MedlinePgn>1-7</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1017/S1047951122002244</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Various electrocardiogram (ECG)-based devices are available for home monitoring, but the reliability in adults with CHD is unknown. Therefore, we determined the accuracy of different ECG-based devices compared to the standard 12-lead ECG in adult CHD.</AbstractText><AbstractText Label="METHODS AND RESULTS" NlmCategory="RESULTS">This is a single-centre, prospective, cross-sectional study in 176 consecutive adults with CHD (54% male, age 40 &#xb1; 16.6 years, 24% severe CHD, 84% previous surgery, 3% atrial fibrillation (AF), 24% right bundle branch block). Diagnostic accuracy of the Withings Scanwatch (lead I), Eko DUO (precordial lead), and Kardia 6L (six leads) was determined in comparison to the standard 12-lead ECG on several tasks: 1) AF classification (percentage correct), 2) QRS-morphology classification (percentage correct), and 3) ECG intervals calculation (QTc time &#x2264; 40 ms difference). Both tested AF algorithms had high accuracy (Withings: 100%, Kardia 6L: 97%) in ECGs that were classified. However, the Withings algorithm classified fewer ECGs as inconclusive (5%) compared to 31% of Kardia (p &lt; 0.001). Physician evaluation of Kardia correctly classified QRS morphology more frequently (90% accuracy) compared to Eko DUO (84% accuracy) (p = 0.03). QTc was underestimated on all ECG-based devices (p &lt; 0.01). QTc duration accuracy was acceptable in only 51% of Withings versus 70% Eko and 74% Kardia (p &lt; 0.001 for both comparisons).</AbstractText><AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Although all devices demonstrated high accuracy in AF detection, the Withings automatic algorithm had fewest uninterpretable results. Kardia 6L was most accurate in overall evaluation such as QRS morphology and QTc duration. These findings can inform both patients and caregivers for optimal choice of home monitoring.</AbstractText></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Pengel</LastName><ForeName>Lindsay K D</ForeName><Initials>LKD</Initials><AffiliationInfo><Affiliation>Heart Center, Department of Cardiology, Amsterdam University Medical Center, Academic Medical Center, University of Amsterdam, The Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Robbers-Visser</LastName><ForeName>Dani&#xeb;lle</ForeName><Initials>D</Initials><AffiliationInfo><Affiliation>Heart Center, Department of Cardiology, Amsterdam University Medical Center, Academic Medical Center, University of Amsterdam, The Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Groenink</LastName><ForeName>Maarten</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Heart Center, Department of Cardiology, Amsterdam University Medical Center, Academic Medical Center, University of Amsterdam, The Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Winter</LastName><ForeName>Michiel M</ForeName><Initials>MM</Initials><AffiliationInfo><Affiliation>Heart Center, Department of Cardiology, Amsterdam University Medical Center, Academic Medical Center, University of Amsterdam, The Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Schuuring</LastName><ForeName>Mark J</ForeName><Initials>MJ</Initials><AffiliationInfo><Affiliation>Heart Center, Department of Cardiology, Amsterdam University Medical Center, Academic Medical Center, University of Amsterdam, The Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Bouma</LastName><ForeName>Berto J</ForeName><Initials>BJ</Initials><Identifier Source="ORCID">0000-0002-1433-9692</Identifier><AffiliationInfo><Affiliation>Heart Center, Department of Cardiology, Amsterdam University Medical Center, Academic Medical Center, University of Amsterdam, The Netherlands.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Bokma</LastName><ForeName>Jouke P</ForeName><Initials>JP</Initials><Identifier Source="ORCID">0000-0002-8808-4573</Identifier><AffiliationInfo><Affiliation>Heart Center, Department of Cardiology, Amsterdam University Medical Center, Academic Medical Center, University of Amsterdam, The Netherlands.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2022</Year><Month>07</Month><Day>18</Day></ArticleDate></Article><MedlineJournalInfo><Country>England</Country><MedlineTA>Cardiol Young</MedlineTA><NlmUniqueID>9200019</NlmUniqueID><ISSNLinking>1047-9511</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Atrial fibrillation</Keyword><Keyword MajorTopicYN="N">congenital</Keyword><Keyword MajorTopicYN="N">heart defects</Keyword><Keyword MajorTopicYN="N">telemedicine</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="entrez"><Year>2022</Year><Month>7</Month><Day>18</Day><Hour>2</Hour><Minute>32</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2022</Year><Month>7</Month><Day>19</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2022</Year><Month>7</Month><Day>19</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>aheadofprint</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">35844104</ArticleId><ArticleId IdType="doi">10.1017/S1047951122002244</ArticleId><ArticleId IdType="pii">S1047951122002244</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedBookArticle><BookDocument><PMID Version="1">29493966</PMID><ArticleIdList><ArticleId IdType="bookaccession">NBK482341</ArticleId></ArticleIdList><Book><Publisher><PublisherName>StatPearls Publishing</PublisherName><PublisherLocation>Treasure Island (FL)</PublisherLocation></Publisher><BookTitle book="statpearls">StatPearls</BookTitle><PubDate><Year>2023</Year><Month>01</Month></PubDate><BeginningDate><Year>2023</Year><Month>01</Month></BeginningDate><Medium>Internet</Medium></Book><ArticleTitle book="statpearls" part="article-23849">Kearns-Sayre Syndrome
Kearns-Sayre syndrome (KSS) is a clinical subtype of chronic progressive external ophthalmoplegia (CPEO). KSS is defined by the following triad: onset before the age of 20, CPEO, and pigmentary retinopathy. Affected individuals have at least 1 of the following conditions: complete heart block, cerebrospinal fluid (CSF) protein of more than 100 mg/dL, cerebellar ataxia, short stature, deafness, dementia, and endocrine abnormalities.
2,335,752
Vitamin B<sub>12</sub> and folate decrease inflammation and fibrosis in NASH by preventing syntaxin 17 homocysteinylation.<Pagination><StartPage>1246</StartPage><EndPage>1255</EndPage><MedlinePgn>1246-1255</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1016/j.jhep.2022.06.033</ELocationID><ELocationID EIdType="pii" ValidYN="Y">S0168-8278(22)02932-4</ELocationID><Abstract><AbstractText Label="BACKGROUND &amp; AIMS">Several recent clinical studies have shown that serum homocysteine (Hcy) levels are positively correlated, while vitamin B<sub>12</sub> (B<sub>12</sub>) and folate levels are negative correlated, with non-alcoholic steatohepatitis (NASH) severity. However, it is not known whether hyperhomocysteinemia (HHcy) plays a pathogenic role in NASH.</AbstractText><AbstractText Label="METHODS">We examined the effects of HHcy on NASH progression, metabolism, and autophagy in dietary and genetic mouse models, patients, and primates. We employed vitamin B<sub>12</sub> (B<sub>12</sub>) and folate (Fol) to reverse NASH features in mice and cell culture.</AbstractText><AbstractText Label="RESULTS">Serum Hcy correlated with hepatic inflammation and fibrosis in NASH. Elevated hepatic Hcy induced and exacerbated NASH. Gene expression of hepatic Hcy-metabolizing enzymes was downregulated in NASH. Surprisingly, we found increased homocysteinylation (Hcy-lation) and ubiquitination of multiple hepatic proteins in NASH including the key autophagosome/lysosome fusion protein, Syntaxin 17 (Stx17). This protein was Hcy-lated and ubiquitinated, and its degradation led to a block in autophagy. Genetic manipulation of Stx17 revealed its critical role in regulating autophagy, inflammation and fibrosis during HHcy. Remarkably, dietary B<sub>12</sub>/Fol, which promotes enzymatic conversion of Hcy to methionine, decreased HHcy and hepatic Hcy-lated protein levels, restored Stx17 expression and autophagy, stimulated &#x3b2; -oxidation of fatty acids, and improved hepatic histology in mice with pre-established NASH.</AbstractText><AbstractText Label="CONCLUSIONS">HHcy plays a key role in the pathogenesis of NASH via Stx17 homocysteinylation. B<sub>12</sub>/folate also may represent a novel first-line therapy for NASH.</AbstractText><AbstractText Label="LAY SUMMARY">The incidence of non-alcoholic steatohepatitis, for which there are no approved pharmacological therapies, is increasing, posing a significant healthcare challenge. Herein, based on studies in mice, primates and humans, we found that dietary supplementation with vitamin B<sub>12</sub> and folate could have therapeutic potential for the prevention or treatment of non-alcoholic steatohepatitis.</AbstractText><CopyrightInformation>Copyright &#xa9; 2022 The Author(s). Published by Elsevier B.V. All rights reserved.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Tripathi</LastName><ForeName>Madhulika</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857. Electronic address: [email protected].</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Singh</LastName><ForeName>Brijesh Kumar</ForeName><Initials>BK</Initials><AffiliationInfo><Affiliation>Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhou</LastName><ForeName>Jin</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Tikno</LastName><ForeName>Keziah</ForeName><Initials>K</Initials><AffiliationInfo><Affiliation>Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Widjaja</LastName><ForeName>Anissa</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Sandireddy</LastName><ForeName>Reddemma</ForeName><Initials>R</Initials><AffiliationInfo><Affiliation>Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Arul</LastName><ForeName>Kabilesh</ForeName><Initials>K</Initials><AffiliationInfo><Affiliation>Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Abdul Ghani</LastName><ForeName>Siti Aishah Binte</ForeName><Initials>SAB</Initials><AffiliationInfo><Affiliation>Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Bee</LastName><ForeName>George Goh Boon</ForeName><Initials>GGB</Initials><AffiliationInfo><Affiliation>Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore 169608.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Wong</LastName><ForeName>Kiraely Adam</ForeName><Initials>KA</Initials><AffiliationInfo><Affiliation>Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Pei</LastName><ForeName>Ho Jia</ForeName><Initials>HJ</Initials><AffiliationInfo><Affiliation>Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Shekeran</LastName><ForeName>Shamini Guna</ForeName><Initials>SG</Initials><AffiliationInfo><Affiliation>National Heart Center, 5 Hospital Drive, Singapore 169609.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Sinha</LastName><ForeName>Rohit Anthony</ForeName><Initials>RA</Initials><AffiliationInfo><Affiliation>Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Uttar Pradesh 226014, Lucknow, India.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Singh</LastName><ForeName>Manvendra K</ForeName><Initials>MK</Initials><AffiliationInfo><Affiliation>Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Cook</LastName><ForeName>Stuart Alexander</ForeName><Initials>SA</Initials><AffiliationInfo><Affiliation>Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857; Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Uttar Pradesh 226014, Lucknow, India.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Suzuki</LastName><ForeName>Ayako</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Duke Gastroenterology Clinic, 40 Duke Medicine Circle, Suite 03107, DUMC 3913 Durham, NC 27710, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Lim</LastName><ForeName>Teegan Reina</ForeName><Initials>TR</Initials><AffiliationInfo><Affiliation>Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore 169608.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Cheah</LastName><ForeName>Chang-Chuen</ForeName><Initials>CC</Initials><AffiliationInfo><Affiliation>Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore 169608.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Wang</LastName><ForeName>Jue</ForeName><Initials>J</Initials><AffiliationInfo><Affiliation>Institute of Molecular Medicine, Peking University, 5 Yiheyuan Road, Beijing, China 100871.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Xiao</LastName><ForeName>Rui-Ping</ForeName><Initials>RP</Initials><AffiliationInfo><Affiliation>Institute of Molecular Medicine, Peking University, 5 Yiheyuan Road, Beijing, China 100871.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhang</LastName><ForeName>Xiuqing</ForeName><Initials>X</Initials><AffiliationInfo><Affiliation>Institute of Molecular Medicine, Peking University, 5 Yiheyuan Road, Beijing, China 100871.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Chow</LastName><ForeName>Pierce Kah Hoe</ForeName><Initials>PKH</Initials><AffiliationInfo><Affiliation>Department of Surgery, Singapore General Hospital and Dept. of Surgical Oncology, National Cancer Centre, Singapore 169608.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Yen</LastName><ForeName>Paul Michael</ForeName><Initials>PM</Initials><AffiliationInfo><Affiliation>Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857; Duke Molecular Physiology Institute, 300 N Duke St, Durham, NC 27701, USA; Endocrinology, Metabolism, and Nutrition, 30 Duke Medicine Circle Clinic 1A, Durham, NC 27710, USA. Electronic address: [email protected].</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2022</Year><Month>07</Month><Day>09</Day></ArticleDate></Article><MedlineJournalInfo><Country>Netherlands</Country><MedlineTA>J Hepatol</MedlineTA><NlmUniqueID>8503886</NlmUniqueID><ISSNLinking>0168-8278</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D005227">Fatty Acids</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D050765">Qa-SNARE Proteins</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D014815">Vitamins</NameOfSubstance></Chemical><Chemical><RegistryNumber>0LVT1QZ0BA</RegistryNumber><NameOfSubstance UI="D006710">Homocysteine</NameOfSubstance></Chemical><Chemical><RegistryNumber>935E97BOY8</RegistryNumber><NameOfSubstance UI="D005492">Folic Acid</NameOfSubstance></Chemical><Chemical><RegistryNumber>AE28F7PNPL</RegistryNumber><NameOfSubstance UI="D008715">Methionine</NameOfSubstance></Chemical><Chemical><RegistryNumber>P6YC3EG204</RegistryNumber><NameOfSubstance UI="D014805">Vitamin B 12</NameOfSubstance></Chemical></ChemicalList><CitationSubset>IM</CitationSubset><CommentsCorrectionsList><CommentsCorrections RefType="CommentIn"><RefSource>J Hepatol. 2023 Jan;78(1):e34-e35</RefSource><PMID Version="1">36031159</PMID></CommentsCorrections><CommentsCorrections RefType="CommentIn"><RefSource>J Hepatol. 2023 Jan;78(1):e35-e36</RefSource><PMID Version="1">36257371</PMID></CommentsCorrections><CommentsCorrections RefType="CommentIn"><RefSource>J Hepatol. 2023 May;78(5):e172-e174</RefSource><PMID Version="1">36460167</PMID></CommentsCorrections><CommentsCorrections RefType="CommentIn"><RefSource>J Hepatol. 2023 May;78(5):e174-e175</RefSource><PMID Version="1">36736736</PMID></CommentsCorrections></CommentsCorrectionsList><MeshHeadingList><MeshHeading><DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005227" MajorTopicYN="N">Fatty Acids</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005355" MajorTopicYN="N">Fibrosis</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005492" MajorTopicYN="N">Folic Acid</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006710" MajorTopicYN="N">Homocysteine</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D020138" MajorTopicYN="Y">Hyperhomocysteinemia</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D007249" MajorTopicYN="N">Inflammation</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D008715" MajorTopicYN="N">Methionine</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D065626" MajorTopicYN="Y">Non-alcoholic Fatty Liver Disease</DescriptorName><QualifierName UI="Q000209" MajorTopicYN="N">etiology</QualifierName><QualifierName UI="Q000517" MajorTopicYN="N">prevention &amp; control</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D050765" MajorTopicYN="N">Qa-SNARE Proteins</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D014805" MajorTopicYN="N">Vitamin B 12</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D014815" MajorTopicYN="N">Vitamins</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Autophagy</Keyword><Keyword MajorTopicYN="N">B(12)</Keyword><Keyword MajorTopicYN="N">Fibrosis</Keyword><Keyword MajorTopicYN="N">Folate</Keyword><Keyword MajorTopicYN="N">Homocysteine</Keyword><Keyword MajorTopicYN="N">Non-alcoholic steatohepatitis (NASH)</Keyword><Keyword MajorTopicYN="N">Protein homocysteinylation</Keyword><Keyword MajorTopicYN="N">Syntaxin-17</Keyword><Keyword MajorTopicYN="N">Vitamin therapy</Keyword></KeywordList><CoiStatement>Conflicts of interest The authors declare no conflicts of interest that pertain to this work. Please refer to the accompanying ICMJE disclosure forms for further details.</CoiStatement></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2021</Year><Month>12</Month><Day>4</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2022</Year><Month>6</Month><Day>22</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2022</Year><Month>6</Month><Day>28</Day></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2022</Year><Month>7</Month><Day>13</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2022</Year><Month>10</Month><Day>20</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2022</Year><Month>7</Month><Day>12</Day><Hour>19</Hour><Minute>24</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">35820507</ArticleId><ArticleId IdType="doi">10.1016/j.jhep.2022.06.033</ArticleId><ArticleId IdType="pii">S0168-8278(22)02932-4</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="Publisher" Owner="NLM"><PMID Version="1">35819544</PMID><DateRevised><Year>2022</Year><Month>07</Month><Day>12</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1573-7241</ISSN><JournalIssue CitedMedium="Internet"><PubDate><Year>2022</Year><Month>Jul</Month><Day>12</Day></PubDate></JournalIssue><Title>Cardiovascular drugs and therapy</Title><ISOAbbreviation>Cardiovasc Drugs Ther</ISOAbbreviation></Journal>Effects of Glucagon-Like Peptide-1 Receptor Agonist (GLP-1RA) on Cardiac Structure and Function: A Systematic Review and Meta-Analysis of Randomized-Controlled Trials.
<AbstractText Label="BACKGROUND &amp; AIMS">Several recent clinical studies have shown that serum homocysteine (Hcy) levels are positively correlated, while vitamin B12</sub> (B12</sub>) and folate levels are negative correlated, with non-alcoholic steatohepatitis (NASH) severity. However, it is not known whether hyperhomocysteinemia (HHcy) plays a pathogenic role in NASH.</AbstractText>We examined the effects of HHcy on NASH progression, metabolism, and autophagy in dietary and genetic mouse models, patients, and primates. We employed vitamin B12</sub> (B12</sub>) and folate (Fol) to reverse NASH features in mice and cell culture.</AbstractText>Serum Hcy correlated with hepatic inflammation and fibrosis in NASH. Elevated hepatic Hcy induced and exacerbated NASH. Gene expression of hepatic Hcy-metabolizing enzymes was downregulated in NASH. Surprisingly, we found increased homocysteinylation (Hcy-lation) and ubiquitination of multiple hepatic proteins in NASH including the key autophagosome/lysosome fusion protein, Syntaxin 17 (Stx17). This protein was Hcy-lated and ubiquitinated, and its degradation led to a block in autophagy. Genetic manipulation of Stx17 revealed its critical role in regulating autophagy, inflammation and fibrosis during HHcy. Remarkably, dietary B12</sub>/Fol, which promotes enzymatic conversion of Hcy to methionine, decreased HHcy and hepatic Hcy-lated protein levels, restored Stx17 expression and autophagy, stimulated &#x3b2; -oxidation of fatty acids, and improved hepatic histology in mice with pre-established NASH.</AbstractText>HHcy plays a key role in the pathogenesis of NASH via Stx17 homocysteinylation. B12</sub>/folate also may represent a novel first-line therapy for NASH.</AbstractText>The incidence of non-alcoholic steatohepatitis, for which there are no approved pharmacological therapies, is increasing, posing a significant healthcare challenge. Herein, based on studies in mice, primates and humans, we found that dietary supplementation with vitamin B12</sub> and folate could have therapeutic potential for the prevention or treatment of non-alcoholic steatohepatitis.</AbstractText>Copyright &#xa9; 2022 The Author(s). Published by Elsevier B.V. All rights reserved.</CopyrightInformation>
2,335,753
Effects of Different Doses of Dexmedetomidine Combined with Thoracic Paravertebral Nerve Block Anesthesia on Agitation and Hemodynamics in Patients Undergoing Thoracotomy during Recovery.
To investigate the effect of different doses of dexmedetomidine combined with thoracic paravertebral nerve block anesthesia on agitation and hemodynamics in patients undergoing thoracotomy during recovery.</AbstractText>One hundred patients who underwent thoracotomy in our hospital from August 2018 to April 2021 were enrolled and assigned (1&#x2009;:&#x2009;1&#x2009;:&#x2009;1&#x2009;:&#x2009;1) into 4 groups via the random number table method. The patients in the control group were treated with double-lumen tube general anesthesia&#x2009;+&#x2009;ropivacaine for thoracic paravertebral nerve block anesthesia; patients in experimental group A received double-lumen general anesthesia +0.5&#x2009;&#x3bc;</i>g&#xb7;kg-1</sup> dexmedetomidine&#x2009;+&#x2009;ropivacaine for thoracic paravertebral nerve block anesthesia; patients in experimental group B received thoracic paravertebral nerve block anesthesia with double-lumen general anesthesia +1.0&#x2009;&#x3bc;</i>g&#xb7;kg-1</sup> dexmedetomidine&#x2009;+&#x2009;ropivacaine; patients in experimental group C received thoracic paravertebral nerve block anesthesia with double-lumen general anesthesia +1.5&#x2009;&#x3bc;</i>g&#xb7;kg-1</sup> dexmedetomidine&#x2009;+&#x2009;ropivacaine. The postoperative recovery time and visual analog scale (VAS), level of hemodynamics (heart rate (HR), mean arterial pressure (MAP)), agitation during the recovery period, and complications were compared amongst the 4 groups of patients at different time points.</AbstractText>The postoperative VAS scores of patients in groups B2 and B3 were slightly lower than those of patients in groups A and B1, but a one-way analysis of variance revealed no statistical difference in the postoperative recovery time and VAS pain scores of the four groups (P</i> &gt; 0.05), and the recovery time of patients in experimental group C was slightly higher than that of patients in group B2. At T0 and T1, there was no significant difference in the levels of HR and MAP among the four groups (P</i> &gt; 0.05). The levels of HR and MAP of the patients in groups B2 and B3 were significantly different from the patients in the control group and experimental group A at T2 and T3 (P</i> &lt; 0.05). The patients in experimental group B and experimental group C showed better outcomes than those in the control group and experimental group A in the assessment of agitation during the recovery period (P</i> &lt; 0.05). There was no significant difference in the incidence of complications among the four groups (P</i> &gt; 0.05).</AbstractText>In line with the principle of preference for a small anesthesia dose, 1.0&#x2009;&#x3bc;</i>g&#xb7;kg-1</sup> dose of dexmedetomidine combined with ropivacaine produces a pronounced efficacy in patients undergoing thoracotomy. It effectively controls the occurrence of agitation during the recovery period and maintains the stability of the patient's hemodynamics, with a high clinical safety profile.</AbstractText>Copyright &#xa9; 2022 Baoli Zu et al.</CopyrightInformation>
2,335,754
Effect of Preoperative Thoracic Paravertebral Blocks on Emergence Agitation During Tracheal Extubation: A Randomized Controlled Trial.
This study aims to compare the effects of preoperative thoracic paravertebral blocks (TPVB) with intercoastal nerve blocks (ICNB) on emergence agitation (EA) during tracheal extubation in patients who underwent thoracoscopic lobectomy.</AbstractText>A randomized clinical trial was conducted in patients undergoing thoracoscopic lobectomy at Beijing Chest Hospital between June 2019 and December 2020.</AbstractText>Patients were randomly assigned 1:1 to receive either ultrasound-guided preoperative TPVB or ICNB.</AbstractText>The primary outcome was the occurrence of emergency agitation, which was evaluated by Aono's four-point scale (AFPS). Secondary outcomes included hemodynamics [mean arterial pressure (MAP) and heart rate (HR)]; and post-operative pain intensity [visual analog scale (VAS), Ramsay sedation score (RSS), and patient-controlled analgesia (PCA) demand times].</AbstractText>Among the 100 patients aged 55-75 years old, 50 were randomized to each group; 97 patients completed the trial. Compared to the ICNB group, the occurrence of EA in the TPVB group was significantly lower [31.3% (15/48) vs. 12.2% (6/49), relative risk = 1.276, 95% CI: 1.02-1.60, P</i> = 0.028]. For patients in the TPVB group, the MAP and HR at 5, 10, and 30 min after extubation were significantly lower; the intraoperative details including emergence time, extubation time, and consumption of sufentanil were significantly shorter than that in the ICNB group. Additionally, patients in the TPVB group showed significantly lower VAS at rest or coughing and significantly lower RSS at 60 and 240 min after extubation than patients in the ICNB group (all P</i> &lt; 0.05).</AbstractText>Preoperative TPVB was associated with less EA during tracheal extubation when compared with ICNB in patients undergoing thoracoscopic lobectomy.</AbstractText>[http://www.chictr.org.cn/index.aspx], identifier [ChiCTR1900023852].</AbstractText>Copyright &#xa9; 2022 Liu, Luo, Wang, Zhang, Liu, Huang and Xu.</CopyrightInformation>
2,335,755
How to be a better scientist: Lessons from scientific philosophy, the historical development of science, and past errors within exercise physiology.
What is science? While a simple question, the answer is complex. Science is a process involving human behaviour, and due to the human influence, science is often not pursued correctly. In fact, one can argue that we still do not know what the "correct" pursuit of science should entail. This is because science remains a work in progress, differs for different questions, and we often are not aware of the mistakes made until years, or decades, later. Such mistakes are common, regardless of the discipline. Within exercise physiology, mistakes have been frequent and led to eventual corrections; the replacement of the post-exercise rate of oxygen consumption (V&#x307;O<sub>2</sub>) debt concept with that of excess post-exercise V&#x307;O<sub>2</sub>; the invalidation of the cellular production of lactic acid; improvements to maximal heart rate estimation; and on-going debate over the Central Governor Model. Improved training and education in the historical development of science and the contributions from scientific philosophy are important in providing an understanding of science, and more importantly, how to pursue "better" vs. "inferior" forms of science. The writings of Popper and Kuhn are core to enhanced understanding of how to improve the quality of science pursued. Unfortunately, quality education and training in the historical and philosophical development of science remain poor in most countries. Until inadequate educational training is overcome, there is sustained risk for the pursuit of science to remain inadequate, which in turn has a potential widespread detriment to humanity and the planet we live on.
2,335,756
Tetrahydrocurcumin improves lipopolysaccharide-induced myocardial dysfunction by inhibiting oxidative stress and inflammation via JNK/ERK signaling pathway regulation.
Acute myocardial dysfunction in patients with sepsis is attributed to oxidative stress, inflammation, and cardiomyocyte loss; however, specific drugs for its prevention are still lacking. Tetrahydrocurcumin (THC) has been proven to contribute to the prevention of various cardiovascular diseases by decreasing oxidative stress and inflammation. This study was performed to investigate the functions and mechanism of action of THC in septic cardiomyopathy.</AbstractText>After the oral administration of THC (120&#xa0;mg/kg) for 5 consecutive days, a mouse model of sepsis was established via intraperitoneal lipopolysaccharide (LPS, 10&#xa0;mg/kg) injection. Following this, cardiac function was assessed, pathological section staining was performed, and inflammatory markers were detected.</AbstractText>Myocardial systolic function was severely compromised in parallel with the accumulation of reactive oxygen species and enhanced cardiomyocyte apoptosis in mice with sepsis. These adverse changes were markedly reversed in response to THC treatment in septic mice as well as in LPS-treated H9c2 cells. Mechanistically, THC inhibited the release of pro-inflammatory cytokines, including tumor necrosis factor alpha, interleukin (IL)-1&#x3b2;, and IL-6, by upregulating mitogen-activated protein kinase phosphatase 1, to block the phosphorylation of c-Jun N-terminal kinase (JNK) and extracellular signal-regulated protein kinase (ERK). Additionally, THC enhanced the levels of antioxidant proteins, including nuclear factor-erythroid 2-related factor 2, superoxide dismutase 2, and NAD(P)H quinone oxidoreductase 1, while decreasing gp91phox</sup> expression. Furthermore, upon THC treatment, Bcl-2 expression was significantly increased, along with a decline in Bax and cleaved caspase-3 expression, which reduced cardiomyocyte loss.</AbstractText>Our findings indicate that THC exhibited protective potential against septic cardiomyopathy by reducing oxidative stress and inflammation through the regulation of JNK/ERK signaling. The findings of this study provide a basis for the further evaluation of THC as a therapeutic agent against septic cardiomyopathy.</AbstractText>Copyright &#xa9; 2022 The Authors. Published by Elsevier GmbH.. All rights reserved.</CopyrightInformation>
2,335,757
COVID-19 due to the B.1.617.2 (Delta) variant compared to B.1.1.7 (Alpha) variant of SARS-CoV-2: a prospective observational cohort study.
The Delta (B.1.617.2) variant was the predominant UK circulating SARS-CoV-2 strain between May and December 2021. How Delta infection compares with previous variants is unknown. This prospective observational cohort study assessed symptomatic adults participating in the app-based COVID Symptom Study who tested positive for SARS-CoV-2 from May 26 to July 1, 2021 (Delta overwhelmingly&#xa0;the predominant circulating UK variant), compared (1:1, age- and sex-matched) with individuals presenting from December 28, 2020 to May 6, 2021 (Alpha (B.1.1.7)&#xa0;the predominant variant). We assessed illness (symptoms, duration, presentation to hospital) during Alpha- and Delta-predominant timeframes; and transmission, reinfection, and vaccine effectiveness during the Delta-predominant period. 3581 individuals (aged 18 to 100&#xa0;years) from each timeframe were assessed. The seven most frequent symptoms were common to both variants. Within the first 28&#xa0;days of illness, some symptoms were more common with Delta versus Alpha infection (including fever, sore throat, and headache) and some&#xa0;vice versa (dyspnoea). Symptom burden in the first week was higher with Delta versus Alpha infection; however, the odds of any given symptom lasting&#x2009;&#x2265;&#x2009;7&#xa0;days was either lower or unchanged. Illness duration&#x2009;&#x2265;&#x2009;28&#xa0;days was lower with Delta versus Alpha infection, though unchanged in unvaccinated individuals. Hospitalisation for COVID-19 was unchanged. The Delta variant appeared more (1.49) transmissible than Alpha. Re-infections were low in all UK regions. Vaccination markedly reduced the risk of Delta infection&#xa0;(by 69-84%). We conclude that&#xa0;COVID-19 from Delta or Alpha infections is similar. The Delta variant is more transmissible than Alpha; however, current vaccines showed good efficacy against disease. This research framework can be useful&#xa0;for future comparisons with new emerging variants.
2,335,758
In vivo peripheral nerve activation using sinusoidal low-frequency alternating currents.
The sinusoidal low-frequency alternating current (LFAC) waveform was explored recently as a novel means to evoke nerve conduction block. In the present work, we explored whether increasing the amplitude of the LFAC waveform results in nerve fiber activation in autonomic nerves. In-silico methods and preliminary work in somatic nerves indicated a potential frequency dependency on the threshold of activation. The Hering-Breuer (HB) reflex was used as a biomarker to detect cervical vagus nerve activation.</AbstractText>Experiments were conducted in isoflurane-anesthetized swine (n&#xa0;=&#xa0;5). Two stimulating bipolar cuff electrodes and a tripolar recording cuff electrode were implanted on the left vagus nerve. To ensure the electrical stimulation affects only the afferent pathways, the nerve was crushed caudal to the electrodes to eliminate cardiac effects. (1) Standard pulse stimulation (Vstim) using a monophasic train of pulses was applied through the caudal electrode to elicit HB reflex and to identify the activated nerve fiber type. (2) Continuous sinusoidal LFAC waveform with a frequency ranging from 5 through 20&#x2009;Hz was applied to the rostral electrode without Vstim to explore the activation thresholds at each LFAC frequency. In both cases, the activation of nerve fibers was detected by a HB reflex-induced reduction in the breathing rate.</AbstractText>LFAC was found to be capable of eliciting an HB response. The LFAC activation thresholds were found to be frequency-dependent. The HB threshold was 1.02&#x2009;&#xb1;&#x2009;0.3 mAp</sub> at 5&#xa0;Hz, 0.66&#x2009;&#xb1;&#x2009;0.3 mAp</sub> at 10&#xa0;Hz, and 0.44&#x2009;&#xb1;&#x2009;0.2 mAp</sub> at 20&#x2009;Hz. In comparison, it was 0.7&#x2009;&#xb1;&#x2009;0.47&#x2009;mA for a 100&#x2009;&#x3bc;s pulse. The LFAC amplitude was within the linear limits of the electrode interface. Damage to the cuff electrodes or the nerve tissues was not observed. Analysis of Vstim-based compound nerve action potentials (CNAP) indicated that the decrease in breathing rate was found to be correlated with the activation of slower components of the CNAP suggesting that LFAC reached and elicited responses from these slower fibers associated with afferents projecting to the HB response.</AbstractText>These results suggest the feasibility of the LFAC waveform at 5, 10, and 20&#x2009;Hz to activate autonomic nerve fibers and potentially provide a new modality to the neurorehabilitation field.</AbstractText>&#xa9; 2022 The Authors. Artificial Organs published by International Center for Artificial Organ and Transplantation (ICAOT) and Wiley Periodicals LLC.</CopyrightInformation>
2,335,759
Intelligent Algorithm-Based Ultrasound for Evaluating the Anesthesia and Nursing Intervention for Elderly Patients with Femoral Intertrochanteric Fractures.
This study was aimed to explore the anesthesia, analgesia, and nursing intervention scheme for elderly patients undergoing the operation of intertrochanteric fracture of femur under the guidance of ultrasound optimized by blind deblurring algorithm. Fifty elderly patients undergoing intertrochanteric femoral surgery were randomly enrolled into control group (tracheal intubation intravenous anesthesia&#x2009;+&#x2009;routine nursing) and experimental group (ultrasound-guided nerve block anesthesia&#x2009;+&#x2009;comprehensive nursing based on blind deblurring algorithm), with 25 patients in each group. The effects of anesthesia and recovery were evaluated in the two groups. The results showed that the image evaluation index of blind deblurring algorithm was superior to other algorithms (BM3D, DnCNN, and Red-Net), which improved the quality of ultrasound imaging and was more conducive to intraoperative anesthesia guidance. At the beginning and end of intubation and operation, the fluctuation range of mean arterial pressure (MAP) and heart rate (HR) in the experimental group was lower than that in the control group. The maintenance time of sensory and motor anesthesia block (7.53&#x2009;&#xb1;&#x2009;1.47&#x2009;h, 5.45&#x2009;&#xb1;&#x2009;1.36&#x2009;h) was longer than that of control group (3.38&#x2009;&#xb1;&#x2009;1.26&#x2009;h, 3.02&#x2009;&#xb1;&#x2009;1.31&#x2009;h). Visual Analogue Scale/Score (VAS) scores at 6&#x2009;h, 12&#x2009;h, and 24&#x2009;h after surgery were lower than those in the control group. The effective rate of nursing and the incidence of complications (92% and 8%) were better than the control group (80% and 16%), and the difference was statistically significant (<i>P</i> &lt; 0.05). In summary, the optimization effect of blind deblurring algorithm was good, which can improve the quality of ultrasound-guided surgery and help in the smooth implementation of surgery. Moreover, nerve block anesthesia and comprehensive nursing were of great value in postoperative analgesia and recovery of patients.
2,335,760
Short and long-term outcomes of children with autoimmune congenital heart block treated with a combined maternal-neonatal therapy. A comparison study.<Pagination><StartPage>1161</StartPage><EndPage>1168</EndPage><MedlinePgn>1161-1168</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1038/s41372-022-01431-4</ELocationID><Abstract><AbstractText Label="OBJECTIVE">The short and long-term outcomes of children with anti-Ro/La-related congenital heart block treated with a combined maternal-neonatal therapy protocol were compared with those of controls treated with other therapies.</AbstractText><AbstractText Label="STUDY DESIGN">Sixteen mothers were treated during pregnancy with a therapy consisting of daily oral fluorinated steroids, weekly plasma exchange and fortnightly intravenous immunoglobulins and their neonates with intravenous immunoglobulins (study group); 19 mothers were treated with fluorinated steroids alone or associated to intravenous immunoglobulins or plasma exchange (control group).</AbstractText><AbstractText Label="RESULT">The combined-therapy children showed a significantly lower progression rate from 2nd to 3rd degree block at birth, a significant increase in heart rate at birth and a significantly lower number of pacemaker implants during post-natal follow-up with respect to those treated with the other therapies.</AbstractText><AbstractText Label="CONCLUSION">The combined therapy produced better short and long term outcomes with respect to the other therapies studied.</AbstractText><CopyrightInformation>&#xa9; 2022. The Author(s), under exclusive licence to Springer Nature America, Inc.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Ruffatti</LastName><ForeName>Amelia</ForeName><Initials>A</Initials><Identifier Source="ORCID">0000-0003-1391-9828</Identifier><AffiliationInfo><Affiliation>Department of Medicine, DIMED, University of Padua, Padua, Italy. [email protected].</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Cerutti</LastName><ForeName>Alessia</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Department of Women's and Children's Health, Pediatric Cardiology Unit, University of Padua, Padua, Italy.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Tonello</LastName><ForeName>Marta</ForeName><Initials>M</Initials><Identifier Source="ORCID">0000-0001-9826-4079</Identifier><AffiliationInfo><Affiliation>Department of Medicine, DIMED, Rheumatology Unit, University of Padua, Padua, Italy.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Favaro</LastName><ForeName>Maria</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Department of Medicine, DIMED, Rheumatology Unit, University of Padua, Padua, Italy.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Del Ross</LastName><ForeName>Teresa</ForeName><Initials>T</Initials><AffiliationInfo><Affiliation>Department of Medicine, DIMED, Rheumatology Unit, University of Padua, Padua, Italy.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Calligaro</LastName><ForeName>Antonia</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Department of Medicine, DIMED, Rheumatology Unit, University of Padua, Padua, Italy.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Grava</LastName><ForeName>Chiara</ForeName><Initials>C</Initials><AffiliationInfo><Affiliation>Department of Medicine, Rheumatology Unit, S. Martino Hospital, Belluno, Italy.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zen</LastName><ForeName>Margherita</ForeName><Initials>M</Initials><AffiliationInfo><Affiliation>Department of Medicine, DIMED, Rheumatology Unit, University of Padua, Padua, Italy.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Hoxha</LastName><ForeName>Ariela</ForeName><Initials>A</Initials><AffiliationInfo><Affiliation>Department of Medicine, DIMED, General Internal Medicine Unit, University of Padua, Padua, Italy.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Di Salvo</LastName><ForeName>Giovanni</ForeName><Initials>G</Initials><AffiliationInfo><Affiliation>Department of Women's and Children's Health, Pediatric Cardiology Unit, University of Padua, Padua, Italy.</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2022</Year><Month>06</Month><Day>18</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>J Perinatol</MedlineTA><NlmUniqueID>8501884</NlmUniqueID><ISSNLinking>0743-8346</ISSNLinking></MedlineJournalInfo><ChemicalList><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D016756">Immunoglobulins, Intravenous</NameOfSubstance></Chemical><Chemical><RegistryNumber>0</RegistryNumber><NameOfSubstance UI="D013259">Steroids, Fluorinated</NameOfSubstance></Chemical><Chemical><RegistryNumber>9842X06Q6M</RegistryNumber><NameOfSubstance UI="D001623">Betamethasone</NameOfSubstance></Chemical></ChemicalList><SupplMeshList><SupplMeshName Type="Disease" UI="C535758">Congenital heart block</SupplMeshName></SupplMeshList><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D001623" MajorTopicYN="N">Betamethasone</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D002648" MajorTopicYN="N">Child</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006327" MajorTopicYN="Y">Heart Block</DescriptorName><QualifierName UI="Q000151" MajorTopicYN="N">congenital</QualifierName><QualifierName UI="Q000628" MajorTopicYN="N">therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D016756" MajorTopicYN="Y">Immunoglobulins, Intravenous</DescriptorName><QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D007231" MajorTopicYN="N">Infant, Newborn</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D011247" MajorTopicYN="N">Pregnancy</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D013259" MajorTopicYN="N">Steroids, Fluorinated</DescriptorName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2022</Year><Month>2</Month><Day>22</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2022</Year><Month>6</Month><Day>8</Day></PubMedPubDate><PubMedPubDate PubStatus="revised"><Year>2022</Year><Month>5</Month><Day>18</Day></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2022</Year><Month>6</Month><Day>19</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2022</Year><Month>9</Month><Day>9</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2022</Year><Month>6</Month><Day>18</Day><Hour>23</Hour><Minute>50</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">35717457</ArticleId><ArticleId IdType="doi">10.1038/s41372-022-01431-4</ArticleId><ArticleId IdType="pii">10.1038/s41372-022-01431-4</ArticleId></ArticleIdList><ReferenceList><Reference><Citation>Skog A, Lagnefeldt L, Conner P, Wahren-Herlenius M, Sonesson SE. Outcome in 212 anti-Ro/SSA-positive pregnancies and population-based incidence of congenital heart block. Acta Obstet Gynecol Scand. 2016;95:98&#x2013;105.</Citation><ArticleIdList><ArticleId IdType="pubmed">26411741</ArticleId><ArticleId IdType="doi">10.1111/aogs.12785</ArticleId></ArticleIdList></Reference><Reference><Citation>Ambrosi A, Wahren-Herlenius M. Congenital heart block: evidence for a pathogenic role of maternal autoantibodies. Arthritis Res Ther. 2012;14:208.</Citation><ArticleIdList><ArticleId IdType="pubmed">22546326</ArticleId><ArticleId IdType="pmc">3446439</ArticleId><ArticleId IdType="doi">10.1186/ar3787</ArticleId></ArticleIdList></Reference><Reference><Citation>Trucco SM, Jaeggi E, Cuneo B, Moon-Grady AJ, Silverman E, Silverman N, et al. Use of intravenous gamma globulin and corticosteroids in the treatment of maternal autoantibody-mediated cardiomyopathy. J Am Coll Cardiol. 2011;57:715&#x2013;23.</Citation><ArticleIdList><ArticleId IdType="pubmed">21292131</ArticleId><ArticleId IdType="doi">10.1016/j.jacc.2010.09.044</ArticleId></ArticleIdList></Reference><Reference><Citation>Morel N, L&#xe9;vesque K, Maltret A, Baron G, Hamidou M, Orquevaux P, et al. &#x201c;Lupus n&#xe9;onatal&#x201d; group. Incidence, risk factors, and mortality of neonatal and late-onset dilated cardiomyopathy associated with cardiac neonatal lupus. Int J Cardiol. 2017;248:263&#x2013;9.</Citation><ArticleIdList><ArticleId IdType="pubmed">28843719</ArticleId><ArticleId IdType="doi">10.1016/j.ijcard.2017.07.100</ArticleId></ArticleIdList></Reference><Reference><Citation>Brito-Zer&#xf3;n P, Izmirly PM, Ramos-Casals M, Buyon JP, Khamashta MA. The clinical spectrum of autoimmune congenital heart block. Nat Rev Rheumatol. 2015;11:301&#x2013;12.</Citation><ArticleIdList><ArticleId IdType="pubmed">25800217</ArticleId><ArticleId IdType="pmc">5551504</ArticleId><ArticleId IdType="doi">10.1038/nrrheum.2015.29</ArticleId></ArticleIdList></Reference><Reference><Citation>Sonesson SE, Salomonsson S, Jacobsson LA, Bremme K, Wahren-Herlenius M. Signs of first-degree heart block occur in one-third of fetuses of pregnant women with anti-SSA/Ro 52-kd antibodies. Arthritis Rheum. 2004;50:1253&#x2013;61.</Citation><ArticleIdList><ArticleId IdType="pubmed">15077309</ArticleId><ArticleId IdType="doi">10.1002/art.20126</ArticleId></ArticleIdList></Reference><Reference><Citation>Eliasson H, Sonesson SE, Sharland G, Granath F, Simpson JM, Carvalho JS, et al. Fetal Working Group of the European Association of Pediatric Cardiology. Isolated atrioventricular block in the fetus: a retrospective, multinational, multicenter study of 175 patients. Circulation. 2011;124:1919&#x2013;26.</Citation><ArticleIdList><ArticleId IdType="pubmed">21986286</ArticleId><ArticleId IdType="doi">10.1161/CIRCULATIONAHA.111.041970</ArticleId></ArticleIdList></Reference><Reference><Citation>Friedman DM, Kim MY, Copel JA, Llanos C, Davis C, Buyon JP. Prospective evaluation of fetuses with autoimmune-associated congenital heart block followed in the PR Interval and Dexamethasone Evaluation (PRIDE) Study. Am J Cardiol. 2009;103:1102&#x2013;6.</Citation><ArticleIdList><ArticleId IdType="pubmed">19361597</ArticleId><ArticleId IdType="pmc">2730772</ArticleId><ArticleId IdType="doi">10.1016/j.amjcard.2008.12.027</ArticleId></ArticleIdList></Reference><Reference><Citation>Mofors J, Eliasson H, Ambrosi A, Salomonsson S, Skog A, Fored M, et al. Comorbidity and long-term outcome in patients with congenital heart block and their siblings exposed to Ro/SSA autoantibodies in utero. Ann Rheum Dis. 2019;78:696&#x2013;703.</Citation><ArticleIdList><ArticleId IdType="pubmed">30808622</ArticleId><ArticleId IdType="doi">10.1136/annrheumdis-2018-214406</ArticleId></ArticleIdList></Reference><Reference><Citation>Kuleva M, Le Bidois J, Decaudin A, Villain E, Costedoat-Chalumeau N, Lemercier D, et al. Clinical course and outcome of antenatally detected atrioventricular block: experience of a single tertiary centre and review of the literature. Prenat Diagn. 2015;35:354&#x2013;61.</Citation><ArticleIdList><ArticleId IdType="pubmed">25487821</ArticleId><ArticleId IdType="doi">10.1002/pd.4547</ArticleId></ArticleIdList></Reference><Reference><Citation>Mofors J, Sonesson SE, Wahren-Herlenius M. Effects of maternal medication on long-term outcome in congenital heart block remain to be established. Response to: &#x2018;Comorbidity and long-term outcome in patients with congenital heart block and their siblings exposed to Ro/SSA autoantibodies in utero&#x2019; by Satis et al. Ann Rheum Dis. 2020;79:e95.</Citation><ArticleIdList><ArticleId IdType="pubmed">31272943</ArticleId><ArticleId IdType="doi">10.1136/annrheumdis-2019-215677</ArticleId></ArticleIdList></Reference><Reference><Citation>Cuneo BF, Sonesson SE, Levasseur S, Moon-Grady AJ, Krishnan A, Donofrio MT, et al. Home monitoring for fetal heart rhythm during Anti-Ro Pregnancies. J Am Coll Cardiol. 2018;72:1940&#x2013;51.</Citation><ArticleIdList><ArticleId IdType="pubmed">30309472</ArticleId><ArticleId IdType="doi">10.1016/j.jacc.2018.07.076</ArticleId></ArticleIdList></Reference><Reference><Citation>Michael A, Radwan AA, Ali AK, Abd-Elkariem AY, Shazly SA. Middle-East Obstetrics and Gynecology Graduate Education (MOGGE) Foundation Research Group. Use of antenatal fluorinated corticosteroids in management of congenital heart block: Systematic review and meta-analysis. Eur J Obstet Gynecol Reprod Biol X. 2019;4:100072.</Citation><ArticleIdList><ArticleId IdType="pubmed">31517303</ArticleId><ArticleId IdType="pmc">6728741</ArticleId><ArticleId IdType="doi">10.1016/j.eurox.2019.100072</ArticleId></ArticleIdList></Reference><Reference><Citation>Hoxha A, Mattia E, Zanetti A, Carrara G, Morel N, Costedoat-Chalumeau N, et al. Fluorinated steroids are not superior to any treatment to ameliorate the outcome of autoimmune mediated congenital heart block: a systematic review of the literature and meta-analysis. Clin Exp Rheumatol. 2020;38:783&#x2013;91.</Citation><ArticleIdList><ArticleId IdType="pubmed">32573408</ArticleId></ArticleIdList></Reference><Reference><Citation>Izmirly P, Kim M, Friedman DM, Costedoat-Chalumeau N, Clancy R, Copel JA, et al. Hydroxychloroquine to prevent recurrent congenital heart block in fetuses of Anti-SSA/Ro-Positive Mothers. J Am Coll Cardiol. 2020;76:292&#x2013;302.</Citation><ArticleIdList><ArticleId IdType="pubmed">32674792</ArticleId><ArticleId IdType="pmc">7394202</ArticleId><ArticleId IdType="doi">10.1016/j.jacc.2020.05.045</ArticleId></ArticleIdList></Reference><Reference><Citation>Ruffatti A, Milanesi O, Chiandetti L, Cerutti A, Gervasi MT, De Silvestro G, et al. A combination therapy to treat second-degree anti-Ro/La-related congenital heart block: a strategy to avoid stable third-degree heart block? Lupus. 2012;21:666&#x2013;71.</Citation><ArticleIdList><ArticleId IdType="pubmed">22187163</ArticleId><ArticleId IdType="doi">10.1177/0961203311430969</ArticleId></ArticleIdList></Reference><Reference><Citation>Di Mauro A, Caroli Casavola V, Favia Guarnieri G, Calderoni G, Cicinelli E, Laforgia N. Antenatal and postnatal combined therapy for autoantibody-related congenital atrioventricular block. BMC Pregnancy Childbirth. 2013;13:220.</Citation><ArticleIdList><ArticleId IdType="pubmed">24286473</ArticleId><ArticleId IdType="pmc">4219454</ArticleId><ArticleId IdType="doi">10.1186/1471-2393-13-220</ArticleId></ArticleIdList></Reference><Reference><Citation>Ruffatti A, Marson P, Svaluto-Moreolo G, Marozio L, Tibaldi M, Favaro M, et al. A combination therapy protocol of plasmapheresis, intravenous immunoglobulins and betamethasone to treat anti-Ro/La-related congenital atrioventricular block. A case series and review of the literature. Autoimmun Rev. 2013;12:768&#x2013;73.</Citation><ArticleIdList><ArticleId IdType="pubmed">23340276</ArticleId><ArticleId IdType="doi">10.1016/j.autrev.2013.01.002</ArticleId></ArticleIdList></Reference><Reference><Citation>Mart&#xed;nez-S&#xe1;nchez N, Robles-Marhuenda &#xc1;, &#xc1;lvarez-Doforno R, Viejo A, Antol&#xed;n-Alvarado E, Deir&#xf3;s-Bronte L, et al. The effect of a triple therapy on maternal anti-Ro/SS-A levels associated to fetal cardiac manifestations. Autoimmun Rev. 2015;14:423&#x2013;8.</Citation><ArticleIdList><ArticleId IdType="pubmed">25599954</ArticleId><ArticleId IdType="doi">10.1016/j.autrev.2015.01.005</ArticleId></ArticleIdList></Reference><Reference><Citation>Ruffatti A, Favaro M, Brucato A, Ramoni V, Facchinetti M, Tonello M, et al. Apheresis in high risk antiphospholipid syndrome pregnancy and autoimmune congenital heart block. Transfus Apher Sci. 2015;53:269&#x2013;78.</Citation><ArticleIdList><ArticleId IdType="pubmed">26626966</ArticleId><ArticleId IdType="doi">10.1016/j.transci.2015.11.006</ArticleId></ArticleIdList></Reference><Reference><Citation>Ruffatti A, Cerutti A, Favaro M, Del Ross T, Calligaro A, Hoxha A, et al. Plasmapheresis, intravenous immunoglobulins and bethametasone - a combined protocol to treat autoimmune congenital heart block: a prospective cohort study. Clin Exp Rheumatol. 2016;34:706&#x2013;13.</Citation><ArticleIdList><ArticleId IdType="pubmed">27385463</ArticleId></ArticleIdList></Reference><Reference><Citation>Brito-Zer&#xf3;n P, Pasoto SG, Robles-Marhuenda A, Mandl T, Vissink A, Armagan B.Sj&#xf6;gren Big Data Consortium et al. Autoimmune congenital heart block and primary Sj&#xf6;gren&#x2019;s syndrome: characterisation and outcomes of 49 cases. Clin Exp Rheumatol. 2020;38:95&#x2013;102.</Citation><ArticleIdList><ArticleId IdType="pubmed">33025893</ArticleId></ArticleIdList></Reference><Reference><Citation>Kertesz NJ, Fenrich AL, Friedman RA. Congenital complete atrioventricular block. Tex Heart Inst J. 1997;24:301&#x2013;7.</Citation><ArticleIdList><ArticleId IdType="pubmed">9456483</ArticleId><ArticleId IdType="pmc">325472</ArticleId></ArticleIdList></Reference><Reference><Citation>Friedman D, Duncanson LJ, Glickstein J, Buyon J. A review of congenital heart block. Images Paediatr Cardiol. 2003;5:36&#x2013;48.</Citation><ArticleIdList><ArticleId IdType="pubmed">22368629</ArticleId><ArticleId IdType="pmc">3232542</ArticleId></ArticleIdList></Reference><Reference><Citation>Epstein AE, DiMarco JP, Ellenbogen KA, Estes NA 3rd, Freedman RA, Gettes LS, et al. American College of Cardiology Foundation; American Heart Association Task Force on Practice Guidelines; Heart Rhythm Society. 2012 ACCF/AHA/HRS focused update incorporated into the ACCF/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. J Am Coll Cardiol. 2013;61:e6&#x2013;75.</Citation><ArticleIdList><ArticleId IdType="pubmed">23265327</ArticleId><ArticleId IdType="doi">10.1016/j.jacc.2012.12.014</ArticleId></ArticleIdList></Reference><Reference><Citation>Tonello M, Ruffatti A, Marson P, Tison T, Marozio L, Hoxha A, et al. Plasma exchange effectively removes 52- and 60-kDa anti-Ro/SSA and anti-La/SSB antibodies in pregnant women with congenital heart block. Transfusion. 2015;55:1782&#x2013;6.</Citation><ArticleIdList><ArticleId IdType="pubmed">25825254</ArticleId><ArticleId IdType="doi">10.1111/trf.13046</ArticleId></ArticleIdList></Reference><Reference><Citation>van der Lugt NM, van Kampen A, Walther FJ, Brand A, Lopriore E. Outcome and management in neonatal thrombocytopenia due to maternal idiopathic thrombocytopenic purpura. Vox Sang. 2013;105:236&#x2013;43.</Citation><ArticleIdList><ArticleId IdType="pubmed">23782272</ArticleId><ArticleId IdType="doi">10.1111/vox.12036</ArticleId></ArticleIdList></Reference><Reference><Citation>Klauninger R, Skog A, Horvath L, Winqvist O, Edner A, Bremme K, et al. Serologic follow-up of children born to mothers with Ro/SSA autoantibodies. Lupus. 2009;18:792&#x2013;8.</Citation><ArticleIdList><ArticleId IdType="pubmed">19578103</ArticleId><ArticleId IdType="doi">10.1177/0961203309103188</ArticleId></ArticleIdList></Reference><Reference><Citation>Lebwohl B, Rubio-Tapia A. Epidemiology, presentation, and diagnosis of celiac disease. Gastroenterology. 2021;160:63&#x2013;75.</Citation><ArticleIdList><ArticleId IdType="pubmed">32950520</ArticleId><ArticleId IdType="doi">10.1053/j.gastro.2020.06.098</ArticleId></ArticleIdList></Reference><Reference><Citation>Bishop TW. Mental disorders and learning disabilities in children and adolescents: learning disabilities. FP Ess. 2018;475:18&#x2013;22.</Citation></Reference><Reference><Citation>Kelly EN, Sananes R, Chiu-Man C, Silverman ED, Jaeggi E. Prenatal anti-Ro antibody exposure, congenital complete atrioventricular heart block, and high-dose steroid therapy: impact on neurocognitive outcome in school-age children. Arthritis Rheumatol. 2014;66:2290&#x2013;6.</Citation><ArticleIdList><ArticleId IdType="pubmed">24756962</ArticleId><ArticleId IdType="doi">10.1002/art.38675</ArticleId></ArticleIdList></Reference><Reference><Citation>Fredi M, Andreoli L, Bacco B, Bertero T, Bortoluzzi A, Breda S, et al. First report of the Italian registry on immune-mediated congenital heart block (Lu.Ne Registry). Front Cardiovasc Med. 2019;6:11.</Citation><ArticleIdList><ArticleId IdType="pubmed">30873413</ArticleId><ArticleId IdType="pmc">6404544</ArticleId><ArticleId IdType="doi">10.3389/fcvm.2019.00011</ArticleId></ArticleIdList></Reference><Reference><Citation>Routsias JG, Kyriakidis NC, Friedman DM, Llanos C, Clancy R, Moutsopoulos HM, et al. Association of the idiotype:antiidiotype antibody ratio with the efficacy of intravenous immunoglobulin treatment for the prevention of recurrent autoimmune-associated congenital heart block. Arthritis Rheum. 2011;63:2783&#x2013;9.</Citation><ArticleIdList><ArticleId IdType="pubmed">21618202</ArticleId><ArticleId IdType="pmc">3551293</ArticleId><ArticleId IdType="doi">10.1002/art.30464</ArticleId></ArticleIdList></Reference><Reference><Citation>Arroyave CM, Puente Ledezma F, Montiel Amoroso G, Mart&#xed;nez Garc&#xed;a AC. Myocardiopathy diagnosed in utero in a mother with SS-A antibodies treated with plasmapheresis. Ginecol Obstet Mex. 1995;63:134&#x2013;7.</Citation><ArticleIdList><ArticleId IdType="pubmed">7744295</ArticleId></ArticleIdList></Reference><Reference><Citation>David AL, Ataullah I, Yates R, Sullivan I, Charles P, Williams D. Congenital fetal heart block: a potential therapeutic role for intravenous immunoglobulin. Obstet Gynecol. 2010;116:543&#x2013;7.</Citation><ArticleIdList><ArticleId IdType="pubmed">20664449</ArticleId><ArticleId IdType="doi">10.1097/AOG.0b013e3181e75a4a</ArticleId></ArticleIdList></Reference><Reference><Citation>Angelini A, Moreolo GS, Ruffatti A, Milanesi O, Thiene G. Images in cardiovascular medicine. Calcification of the atrioventricular node in a fetus affected by congenital complete heart block. Circulation. 2002;105:1254&#x2013;5.</Citation><ArticleIdList><ArticleId IdType="pubmed">11889022</ArticleId><ArticleId IdType="doi">10.1161/hc1002.103433</ArticleId></ArticleIdList></Reference><Reference><Citation>Cuneo BF, Ambrose SE, Tworetzky W. Detection and successful treatment of emergent anti-SSA-mediated fetal atrioventricular block. Am J Obstet Gynecol. 2016;215:527&#x2013;8.</Citation><ArticleIdList><ArticleId IdType="pubmed">27418449</ArticleId><ArticleId IdType="doi">10.1016/j.ajog.2016.07.002</ArticleId></ArticleIdList></Reference><Reference><Citation>Brucato A, Ramoni V, Gerosa M, Pisoni MP. Congenital fetal heart block: a potential therapeutic role for intravenous immunoglobulin. Obstet Gynecol. 2011;117:177.</Citation><ArticleIdList><ArticleId IdType="pubmed">21173668</ArticleId><ArticleId IdType="doi">10.1097/AOG.0b013e3182042972</ArticleId></ArticleIdList></Reference><Reference><Citation>Ruffatti A, Favaro M, Cozzi F, Tonello M, Grava C, Lazzarin P, et al. Anti-SSA/Ro-related congenital heart block in two family members of different generations: Comment on the article by Clancy et al. Arthritis Rheum. 2005;52:1623&#x2013;5.</Citation><ArticleIdList><ArticleId IdType="pubmed">15880834</ArticleId><ArticleId IdType="doi">10.1002/art.21152</ArticleId></ArticleIdList></Reference><Reference><Citation>Askanase AD, Friedman DM, Copel J, Dische MR, Dubin A, Starc TJ, et al. Spectrum and progression of conduction abnormalities in infants born to mothers with anti-SSA/Ro-SSB/La antibodies. Lupus. 2002;11:145&#x2013;51.</Citation><ArticleIdList><ArticleId IdType="pubmed">11999879</ArticleId><ArticleId IdType="doi">10.1191/0961203302lu173oa</ArticleId></ArticleIdList></Reference><Reference><Citation>Bosch T. Therapeutic apheresis&#x2014;state of the art in the year 2005. Ther Apher Dial. 2005;9:459&#x2013;68.</Citation><ArticleIdList><ArticleId IdType="pubmed">16354277</ArticleId><ArticleId IdType="doi">10.1111/j.1744-9987.2005.00306.x</ArticleId></ArticleIdList></Reference><Reference><Citation>Colpo A, Marson P, Pavanello F, Tison T, Gervasi MT, Zambon A, et al. Therapeutic apheresis during pregnancy: a single center experience. Transfus Apher Sci. 2019;58:652&#x2013;8.</Citation><ArticleIdList><ArticleId IdType="pubmed">31522920</ArticleId><ArticleId IdType="doi">10.1016/j.transci.2019.07.009</ArticleId></ArticleIdList></Reference></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="Publisher" Owner="NLM"><PMID Version="1">35716858</PMID><DateRevised><Year>2023</Year><Month>04</Month><Day>12</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1556-3871</ISSN><JournalIssue CitedMedium="Internet"><PubDate><Year>2022</Year><Month>Jun</Month><Day>15</Day></PubDate></JournalIssue><Title>Heart rhythm</Title><ISOAbbreviation>Heart Rhythm</ISOAbbreviation></Journal>Testosterone does not shorten action potential duration in Langendorff-perfused rabbit ventricles.
The short and long-term outcomes of children with anti-Ro/La-related congenital heart block treated with a combined maternal-neonatal therapy protocol were compared with those of controls treated with other therapies.</AbstractText>Sixteen mothers were treated during pregnancy with a therapy consisting of daily oral fluorinated steroids, weekly plasma exchange and fortnightly intravenous immunoglobulins and their neonates with intravenous immunoglobulins (study group); 19 mothers were treated with fluorinated steroids alone or associated to intravenous immunoglobulins or plasma exchange (control group).</AbstractText>The combined-therapy children showed a significantly lower progression rate from 2nd to 3rd degree block at birth, a significant increase in heart rate at birth and a significantly lower number of pacemaker implants during post-natal follow-up with respect to those treated with the other therapies.</AbstractText>The combined therapy produced better short and long term outcomes with respect to the other therapies studied.</AbstractText>&#xa9; 2022. The Author(s), under exclusive licence to Springer Nature America, Inc.</CopyrightInformation>
2,335,761
Programmed-release intraosseus anesthesia as an alternative to lower alveolar nerve block in lower third molar extraction: a randomized clinical trial.
Intraosseous anesthesia is the process by which an anesthetic solution, after penetration of the cortical bone, is directly injected into the spongiosa of the alveolar bone supporting the tooth. This study aimed to compare the effectiveness of the traditional inferior alveolar nerve block (IANB) and computerized intraosseous anesthesia in the surgical extraction of impacted lower third molars, compare their side effects systemically by monitoring heart rate, and assess patients' a posteriori preference of one technique over the other.</AbstractText>Thirty-nine patients with bilaterally impacted third molars participated in this study. Each patient in the sample was both a case and control, where the conventional technique was randomly assigned to one side (group 1) and the alternative method to the contralateral side (group 2).</AbstractText>The traditional technique was faster in execution than anesthesia delivered via electronic syringe, which took 3 min to be administered. However, it was necessary to wait for an average of 6 &#xb1; 4 min from the execution to achieve the onset of IANB, while the latency of intraosseous anesthesia was zero. Vincent's sign and lingual nerve anesthesia occurred in 100% of cases in group 1. In group 2, Vincent's sign was recorded in 13% of cases and lingual anesthesia in four cases. The average duration of the perceived anesthetic effect was 192 &#xb1; 68 min in group 1 and 127 &#xb1; 75 min in group 2 (P &lt; 0.001). The difference between the heart rate of group 1 and group 2 was statistically significant. During infiltration in group 1, heartbeat frequency increased by 5 &#xb1; 13 beats per minute, while in group 2, it increased by 22 &#xb1; 10 beats per minute (P &lt; 0.001). No postoperative complications were reported for either technique. Patients showed a preference of 67% for the alternative technique and 20% for the traditional, and 13% of patients were indifferent.</AbstractText>The results identified intraosseous anesthesia as a valid alternative to conventional anesthesia in impacted lower third molar extraction.</AbstractText>Copyright &#xa9; 2022 Journal of Dental Anesthesia and Pain Medicine.</CopyrightInformation>
2,335,762
[Clinical case of the cardiovascular system involvement in a patient with Charcot-Marie-Tooth disease].<Pagination><StartPage>67</StartPage><EndPage>71</EndPage><MedlinePgn>67-71</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.18087/cardio.2022.5.n1810</ELocationID><Abstract><AbstractText>Hereditary motor and sensory type 1A neuropathy (known as Charcot-Marie-Tooth disease) is a disease of peripheral nerves characterized by symptoms of progressive polyneuropathy with preferential damage of distal extremity muscles. Damage to the cardiovascular system is extremely rare and heterogenous in this pathology. This disease is not included in the list of indications for interventional antiarrhythmic aid. We could not find in available literature a clinical description of the development of sinus node dysfunction associated with this pathology. The present clinical report presents a case of detection and successful treatment of a damage to the cardiovascular system that manifested itself as sinus node dysfunction/sick sinus syndrome in the tachy-brady variant. A combination treatment approach using radiofrequency catheter ablation, implantation of a permanent pacemaker, and antiarrhythmic therapy associated with drug and non-drug treatment of motor sensory neuropathy resulted in recovery and long-term maintenance of sinus rhythm as well as in beneficial changes in the patient's neurological status.</AbstractText></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Sokolov</LastName><ForeName>D V</ForeName><Initials>DV</Initials><AffiliationInfo><Affiliation>JSC &#xab;Medicine&#xbb; (Academician Roytberg's clinic).</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhelyakov</LastName><ForeName>E G</ForeName><Initials>EG</Initials><AffiliationInfo><Affiliation>Medical Research and Educational Center of Lomonosov Moscow State University.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Koval'chuk</LastName><ForeName>V V</ForeName><Initials>VV</Initials><AffiliationInfo><Affiliation>Pavlov First St. Petersburg State Medical University.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kondratova</LastName><ForeName>N V</ForeName><Initials>NV</Initials><AffiliationInfo><Affiliation>JSC &#xab;Medicine&#xbb; (Academician Roytberg's clinic).</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Snezhitskij</LastName><ForeName>V A</ForeName><Initials>VA</Initials><AffiliationInfo><Affiliation>Grodno State Medical University.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kalatsei</LastName><ForeName>L V</ForeName><Initials>LV</Initials><AffiliationInfo><Affiliation>Grodno State Medical University.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Belenkov</LastName><ForeName>Yu N</ForeName><Initials>YN</Initials><AffiliationInfo><Affiliation>Sechenov First Moscow State Medical University (Sechenov University).</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ardashev</LastName><ForeName>A V</ForeName><Initials>AV</Initials><AffiliationInfo><Affiliation>Medical Research and Educational Center, Lomonosov Moscow State University.</Affiliation></AffiliationInfo></Author></AuthorList><Language>rus</Language><PublicationTypeList><PublicationType UI="D002363">Case Reports</PublicationType><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2022</Year><Month>05</Month><Day>31</Day></ArticleDate></Article><MedlineJournalInfo><Country>Russia (Federation)</Country><MedlineTA>Kardiologiia</MedlineTA><NlmUniqueID>0376351</NlmUniqueID><ISSNLinking>0022-9040</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D002319" MajorTopicYN="Y">Cardiovascular System</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D002607" MajorTopicYN="Y">Charcot-Marie-Tooth Disease</DescriptorName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName><QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName><QualifierName UI="Q000628" MajorTopicYN="N">therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012804" MajorTopicYN="N">Sick Sinus Syndrome</DescriptorName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2021</Year><Month>8</Month><Day>30</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2021</Year><Month>11</Month><Day>26</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2022</Year><Month>6</Month><Day>13</Day><Hour>2</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2022</Year><Month>6</Month><Day>14</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2022</Year><Month>6</Month><Day>15</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">35692176</ArticleId><ArticleId IdType="doi">10.18087/cardio.2022.5.n1810</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="Publisher" Owner="NLM"><PMID Version="1">35690080</PMID><DateRevised><Year>2022</Year><Month>07</Month><Day>05</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1097-6868</ISSN><JournalIssue CitedMedium="Internet"><PubDate><Year>2022</Year><Month>Jun</Month><Day>08</Day></PubDate></JournalIssue><Title>American journal of obstetrics and gynecology</Title><ISOAbbreviation>Am J Obstet Gynecol</ISOAbbreviation></Journal>Reducing the burden of surveillance in pregnant women&#xa0;with no history of fetal atrioventricular block using the negative predictive value of anti-Ro/SSA antibody titers.
Hereditary motor and sensory type 1A neuropathy (known as Charcot-Marie-Tooth disease) is a disease of peripheral nerves characterized by symptoms of progressive polyneuropathy with preferential damage of distal extremity muscles. Damage to the cardiovascular system is extremely rare and heterogenous in this pathology. This disease is not included in the list of indications for interventional antiarrhythmic aid. We could not find in available literature a clinical description of the development of sinus node dysfunction associated with this pathology. The present clinical report presents a case of detection and successful treatment of a damage to the cardiovascular system that manifested itself as sinus node dysfunction/sick sinus syndrome in the tachy-brady variant. A combination treatment approach using radiofrequency catheter ablation, implantation of a permanent pacemaker, and antiarrhythmic therapy associated with drug and non-drug treatment of motor sensory neuropathy resulted in recovery and long-term maintenance of sinus rhythm as well as in beneficial changes in the patient's neurological status.</Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Sokolov</LastName><ForeName>D V</ForeName><Initials>DV</Initials><AffiliationInfo><Affiliation>JSC &#xab;Medicine&#xbb; (Academician Roytberg's clinic).</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Zhelyakov</LastName><ForeName>E G</ForeName><Initials>EG</Initials><AffiliationInfo><Affiliation>Medical Research and Educational Center of Lomonosov Moscow State University.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Koval'chuk</LastName><ForeName>V V</ForeName><Initials>VV</Initials><AffiliationInfo><Affiliation>Pavlov First St. Petersburg State Medical University.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kondratova</LastName><ForeName>N V</ForeName><Initials>NV</Initials><AffiliationInfo><Affiliation>JSC &#xab;Medicine&#xbb; (Academician Roytberg's clinic).</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Snezhitskij</LastName><ForeName>V A</ForeName><Initials>VA</Initials><AffiliationInfo><Affiliation>Grodno State Medical University.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Kalatsei</LastName><ForeName>L V</ForeName><Initials>LV</Initials><AffiliationInfo><Affiliation>Grodno State Medical University.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Belenkov</LastName><ForeName>Yu N</ForeName><Initials>YN</Initials><AffiliationInfo><Affiliation>Sechenov First Moscow State Medical University (Sechenov University).</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Ardashev</LastName><ForeName>A V</ForeName><Initials>AV</Initials><AffiliationInfo><Affiliation>Medical Research and Educational Center, Lomonosov Moscow State University.</Affiliation></AffiliationInfo></Author></AuthorList><Language>rus</Language><PublicationTypeList><PublicationType UI="D002363">Case Reports</PublicationType><PublicationType UI="D016428">Journal Article</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2022</Year><Month>05</Month><Day>31</Day></ArticleDate></Article><MedlineJournalInfo><Country>Russia (Federation)</Country><MedlineTA>Kardiologiia</MedlineTA><NlmUniqueID>0376351</NlmUniqueID><ISSNLinking>0022-9040</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D002319" MajorTopicYN="Y">Cardiovascular System</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D002607" MajorTopicYN="Y">Charcot-Marie-Tooth Disease</DescriptorName><QualifierName UI="Q000150" MajorTopicYN="N">complications</QualifierName><QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName><QualifierName UI="Q000628" MajorTopicYN="N">therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D012804" MajorTopicYN="N">Sick Sinus Syndrome</DescriptorName></MeshHeading></MeshHeadingList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="received"><Year>2021</Year><Month>8</Month><Day>30</Day></PubMedPubDate><PubMedPubDate PubStatus="accepted"><Year>2021</Year><Month>11</Month><Day>26</Day></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2022</Year><Month>6</Month><Day>13</Day><Hour>2</Hour><Minute>22</Minute></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2022</Year><Month>6</Month><Day>14</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2022</Year><Month>6</Month><Day>15</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate></History><PublicationStatus>epublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">35692176</ArticleId><ArticleId IdType="doi">10.18087/cardio.2022.5.n1810</ArticleId></ArticleIdList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="Publisher" Owner="NLM"><PMID Version="1">35690080</PMID><DateRevised><Year>2022</Year><Month>07</Month><Day>05</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1097-6868</ISSN><JournalIssue CitedMedium="Internet"><PubDate><Year>2022</Year><Month>Jun</Month><Day>08</Day></PubDate></JournalIssue><Title>American journal of obstetrics and gynecology</Title><ISOAbbreviation>Am J Obstet Gynecol</ISOAbbreviation></Journal><ArticleTitle>Reducing the burden of surveillance in pregnant women&#xa0;with no history of fetal atrioventricular block using the negative predictive value of anti-Ro/SSA antibody titers.</ArticleTitle><ELocationID EIdType="pii" ValidYN="Y">S0002-9378(22)00442-2</ELocationID><ELocationID EIdType="doi" ValidYN="Y">10.1016/j.ajog.2022.05.071</ELocationID><Abstract><AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">The risk of fetal atrioventricular block in anti-Ro/SSA antibody-exposed pregnancies with no previous affected offspring is approximately 2%. A high antibody titer is necessary but not sufficient for atrioventricular block, and specific antibody titers do not predict risk. However, there are no data on the negative predictive value of antibody titer to identify pregnancies at low risk of fetal atrioventricular block, and may not require surveillance.<AbstractText Label="OBJECTIVE" NlmCategory="OBJECTIVE">This study aimed to define anti-Ro52 and anti-Ro60 antibody thresholds for the identification of fetuses unlikely to develop atrioventricular block using clinically validated and research laboratory tests.<AbstractText Label="STUDY DESIGN" NlmCategory="METHODS">This study performed a multicenter review of pregnant subjects who tested positive in their local commercial laboratories for anti-Ro/SSA antibodies at the University of Colorado Children's Hospital (2014-2021) and Phoenix Children's Hospital (2014-2021) and enrolled in the Research Registry for Neonatal Lupus (RRNL) at New York University Langone Medical Center (2002-2021). The subjects were referred on the basis of rheumatologic symptoms or history of atrioventricular block in a previous pregnancy and were retrospectively grouped on the basis of pregnancy outcome. Group 1 indicated no fetal atrioventricular block in current or past pregnancies; group 2 indicated fetal atrioventricular block in the current pregnancy; and group 3 indicated normal current pregnancy but with fetal atrioventricular block in a previous pregnancy. Maternal sera were analyzed for anti-Ro52 and anti-Ro60 antibodies using a clinically validated multiplex bead assay (Associated Regional and University Pathologists Laboratories, Salt Lake City, UT) and a research enzyme-linked immunosorbent immunoassay (New York University). This study calculated the negative predictive value separately for anti-Ro52 and anti-Ro60 antibodies and for the 2 combined using a logistic regression model and a parallel testing strategy.<AbstractText Label="RESULTS" NlmCategory="RESULTS">This study recruited 270 subjects (141 in group 1, 66 in group 2, and 63 in group 3). Of note, 89 subjects in group 1 had data on hydroxychloroquine treatment: anti-Ro/SSA antibody titers were no different between those treated (n=46) and untreated (n=43). Mean anti-Ro52 and anti-Ro60 titers were the lowest in group 1 and not different between groups 2 and 3. No case of fetal atrioventricular block developed among subjects with anti-Ro52 and anti-Ro60 titers of &lt;110 arbitrary units per milliliter using the multiplex bead assay of the Associated Regional and University Pathologists Laboratories (n=141). No case of fetal atrioventricular block developed among subjects with research laboratory anti-Ro52 titers of &lt;650 and anti-Ro60 of &lt;4060 enzyme-linked immunosorbent immunoassay units (n=94). Using these 100% negative predictive value thresholds, more than 50% of the anti-Ro/SSA antibody pregnancies that ultimately had no fetal atrioventricular block could be excluded from surveillance based on clinical and research titers, respectively.<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">Study data suggested that there is a clinical immunoassay level of maternal anti-Ro/SSA antibodies below which the pregnancy is at low risk of fetal atrioventricular block. This study speculated that prospectively applying these data may avert the costly serial echocardiograms currently recommended for all anti-Ro/SSA-antibody positive pregnancies and guide future management.
2,335,763
The Hemodynamic Parameters Values Prediction on the Non-Invasive Hydrocuff Technology Basis with a Neural Network Applying.
The task to develop a mechanism for predicting the hemodynamic parameters values based on non-invasive hydrocuff technology of a pulse wave signal fixation is described in this study. The advantages and disadvantages of existing methods of recording the ripple curve are noted in the published materials. This study proposes a new hydrocuff method for hemodynamic parameters and blood pressure values measuring. A block diagram of the device being developed is presented. Algorithms for processing the pulse wave contour are presented. A neural network applying necessity for the multiparametric feature space formation is substantiated. The pulse wave contours obtained using hydrocuff technology of oscillation formation for various age groups are presented. According to preliminary estimates, by the moment of the dicrotic surge formation, it is possible to judge the ratio of the heart and blood vessels work, which makes it possible to form an expanded feature space of significant parameters based on neural network classifiers. This study presents the characteristics accounted for creating a database for training a neural network.
2,335,764
Physiologic Pacing Targeting the His Bundle and Left Bundle Branch: a Review of the Literature.<Pagination><StartPage>959</StartPage><EndPage>978</EndPage><MedlinePgn>959-978</MedlinePgn></Pagination><ELocationID EIdType="doi" ValidYN="Y">10.1007/s11886-022-01723-3</ELocationID><Abstract><AbstractText Label="PURPOSE OF REVIEW">Conduction system pacing (CSP) has emerged as a means to preserve or restore physiological ventricular activation via pacing at the His bundle or at more distal targets in the conduction system, including the left bundle branch area. This review examines strengths, weaknesses, and clinical applications of CSP performed via these approaches.</AbstractText><AbstractText Label="RECENT FINDINGS">His bundle pacing (HBP) has been successfully utilized for standard bradyarrhythmia indications and for QRS correction among patients receiving devices for cardiac resynchronization therapy (CRT). Limitations of HBP pacing have included implant complexity and rising pacing thresholds over time. Left bundle branch area pacing (LBBAP) appears to deliver similar physiological benefits with shorter implant times and more stable thresholds. More recently, hybrid systems utilizing HBP or LBBAP in combination with left ventricular leads have been used to treat heart failure (HF) patients, and may be useful in multilevel or mixed conduction blocks. There is growing interest in CSP for bradycardia and HF indications, although high quality data with randomized controlled trials are needed to help guide future treatment paradigms.</AbstractText><CopyrightInformation>&#xa9; 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.</CopyrightInformation></Abstract><AuthorList CompleteYN="Y"><Author ValidYN="Y"><LastName>Scheetz</LastName><ForeName>Seth D</ForeName><Initials>SD</Initials><Identifier Source="ORCID">0000-0002-8009-8989</Identifier><AffiliationInfo><Affiliation>Department of Internal Medicine, University of Chicago Medicine, Chicago, USA.</Affiliation></AffiliationInfo></Author><Author ValidYN="Y"><LastName>Upadhyay</LastName><ForeName>Gaurav A</ForeName><Initials>GA</Initials><AffiliationInfo><Affiliation>Section of Cardiology, Center for Arrhythmia Care, University of Chicago Medicine, Chicago, USA. [email protected].</Affiliation></AffiliationInfo></Author></AuthorList><Language>eng</Language><PublicationTypeList><PublicationType UI="D016428">Journal Article</PublicationType><PublicationType UI="D016454">Review</PublicationType></PublicationTypeList><ArticleDate DateType="Electronic"><Year>2022</Year><Month>06</Month><Day>09</Day></ArticleDate></Article><MedlineJournalInfo><Country>United States</Country><MedlineTA>Curr Cardiol Rep</MedlineTA><NlmUniqueID>100888969</NlmUniqueID><ISSNLinking>1523-3782</ISSNLinking></MedlineJournalInfo><CitationSubset>IM</CitationSubset><MeshHeadingList><MeshHeading><DescriptorName UI="D001919" MajorTopicYN="N">Bradycardia</DescriptorName><QualifierName UI="Q000209" MajorTopicYN="N">etiology</QualifierName><QualifierName UI="Q000628" MajorTopicYN="N">therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D002036" MajorTopicYN="N">Bundle of His</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D002037" MajorTopicYN="N">Bundle-Branch Block</DescriptorName><QualifierName UI="Q000628" MajorTopicYN="N">therapy</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D002304" MajorTopicYN="N">Cardiac Pacing, Artificial</DescriptorName><QualifierName UI="Q000009" MajorTopicYN="N">adverse effects</QualifierName></MeshHeading><MeshHeading><DescriptorName UI="D058406" MajorTopicYN="Y">Cardiac Resynchronization Therapy</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D004562" MajorTopicYN="N">Electrocardiography</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006333" MajorTopicYN="Y">Heart Failure</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName></MeshHeading><MeshHeading><DescriptorName UI="D016896" MajorTopicYN="N">Treatment Outcome</DescriptorName></MeshHeading></MeshHeadingList><KeywordList Owner="NOTNLM"><Keyword MajorTopicYN="N">Biventricular pacing</Keyword><Keyword MajorTopicYN="N">Conduction system pacing</Keyword><Keyword MajorTopicYN="N">His-bundle pacing</Keyword><Keyword MajorTopicYN="N">Left bundle branch area pacing</Keyword><Keyword MajorTopicYN="N">Left ventricular septal pacing</Keyword></KeywordList></MedlineCitation><PubmedData><History><PubMedPubDate PubStatus="accepted"><Year>2022</Year><Month>5</Month><Day>18</Day></PubMedPubDate><PubMedPubDate PubStatus="pubmed"><Year>2022</Year><Month>6</Month><Day>10</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="medline"><Year>2022</Year><Month>7</Month><Day>30</Day><Hour>6</Hour><Minute>0</Minute></PubMedPubDate><PubMedPubDate PubStatus="entrez"><Year>2022</Year><Month>6</Month><Day>9</Day><Hour>11</Hour><Minute>28</Minute></PubMedPubDate></History><PublicationStatus>ppublish</PublicationStatus><ArticleIdList><ArticleId IdType="pubmed">35678938</ArticleId><ArticleId IdType="doi">10.1007/s11886-022-01723-3</ArticleId><ArticleId IdType="pii">10.1007/s11886-022-01723-3</ArticleId></ArticleIdList><ReferenceList><ReferenceList><Title>Papers of particular interest, published recently, have been highlighted as: &#x2022; Of importance &#x2022;&#x2022; Of major importance</Title><Reference><Citation>Israel CW. Clinical trials of atrial and ventricular pacing modes. Clinical cardiac pacing, defibrillation and resynchronization therapy: Elsevier; 2011. p. 234&#x2013;56.</Citation></Reference><Reference><Citation>Gillis AM, Russo AM, Ellenbogen KA, Swerdlow CD, Olshansky B, Al-Khatib SM, et al. HRS/ACCF expert consensus statement on pacemaker device and mode selection. J Am Coll Cardiol. 2012;60(7):682&#x2013;703.</Citation><ArticleIdList><ArticleId IdType="pubmed">22854177</ArticleId><ArticleId IdType="doi">10.1016/j.jacc.2012.06.011</ArticleId></ArticleIdList></Reference><Reference><Citation>Lamas GA, Orav EJ, Stambler BS, Ellenbogen KA, Sgarbossa EB, Huang SK, et al. Quality of life and clinical outcomes in elderly patients treated with ventricular pacing as compared with dual-chamber pacing. Pacemaker Selection in the Elderly Investigators. N Engl J Med.&#xa0;1998;338(16):1097&#x2013;104.</Citation></Reference><Reference><Citation>Connolly SJ, Kerr CR, Gent M, Roberts RS, Yusuf S, Gillis AM, et al. Effects of physiologic pacing versus ventricular pacing on the risk of stroke and death due to cardiovascular causes. Canadian Trial of Physiologic Pacing Investigators. N Engl J Med.&#xa0;2000;342(19):1385&#x2013;91.</Citation></Reference><Reference><Citation>Toff WD, Camm AJ, Skehan JD. Single-chamber versus dual-chamber pacing for high-grade atrioventricular block. N Engl J Med. 2005;353(2):145&#x2013;55.</Citation><ArticleIdList><ArticleId IdType="pubmed">16014884</ArticleId><ArticleId IdType="doi">10.1056/NEJMoa042283</ArticleId></ArticleIdList></Reference><Reference><Citation>Merchant FM, Mittal S. Pacing induced cardiomyopathy. J Cardiovasc Electrophysiol. 2020;31(1):286&#x2013;92.</Citation><ArticleIdList><ArticleId IdType="pubmed">31724791</ArticleId><ArticleId IdType="doi">10.1111/jce.14277</ArticleId></ArticleIdList></Reference><Reference><Citation>Teresa ED, Chamorro JL, Pulp&#xf3;n LA, Ruiz C, Bail&#xf3;n IR, Alzueta J, Artaza MD. An even more physiological pacing: changing the sequence of ventricular activation. K Steinbach, A Laskovics (Eds). Proceedings of the 7th World Symposium on Cardiac Pacing, Steinkopff-Verlag, Darmstadt, Germany. 1983:395&#x2013;401.</Citation></Reference><Reference><Citation>Cazeau S, Ritter P, Bakdach S, Lazarus A, Limousin M, Henao L, et al. Four chamber pacing in dilated cardiomyopathy. Pacing and clinical electrophysiology&#x202f;: PACE. 1994;17(11 Pt 2):1974&#x2013;9.</Citation><ArticleIdList><ArticleId IdType="pubmed">7845801</ArticleId><ArticleId IdType="doi">10.1111/j.1540-8159.1994.tb03783.x</ArticleId></ArticleIdList></Reference><Reference><Citation>Bakker PF, Meijburg HW, de Vries JW, Mower MM, Thomas AC, Hull ML, et al. Biventricular pacing in end-stage heart failure improves functional capacity and left ventricular function. J Interv Card Electrophysiol. 2000;4(2):395&#x2013;404.</Citation><ArticleIdList><ArticleId IdType="pubmed">10936005</ArticleId><ArticleId IdType="doi">10.1023/A:1009854417694</ArticleId></ArticleIdList></Reference><Reference><Citation>Daubert JC, Ritter P, Le Breton H, Gras D, Leclercq C, Lazarus A, et al. Permanent left ventricular pacing with transvenous leads inserted into the coronary veins. Pacing and clinical electrophysiology&#x202f;: PACE. 1998;21(1 Pt 2):239&#x2013;45.</Citation><ArticleIdList><ArticleId IdType="pubmed">9474680</ArticleId><ArticleId IdType="doi">10.1111/j.1540-8159.1998.tb01096.x</ArticleId></ArticleIdList></Reference><Reference><Citation>McAlister FA, Ezekowitz J, Hooton N, Vandermeer B, Spooner C, Dryden DM, et al. Cardiac resynchronization therapy for patients with left ventricular systolic dysfunction: a systematic review. JAMA. 2007;297(22):2502&#x2013;14.</Citation><ArticleIdList><ArticleId IdType="pubmed">17565085</ArticleId><ArticleId IdType="doi">10.1001/jama.297.22.2502</ArticleId></ArticleIdList></Reference><Reference><Citation>Linde C, Ellenbogen K, McAlister FA. Cardiac resynchronization therapy (CRT): clinical trials, guidelines, and target populations. Heart Rhythm. 2012;9(8 Suppl):S3&#x2013;13.</Citation><ArticleIdList><ArticleId IdType="pubmed">22521934</ArticleId><ArticleId IdType="doi">10.1016/j.hrthm.2012.04.026</ArticleId></ArticleIdList></Reference><Reference><Citation>Brignole M, Auricchio A, Baron-Esquivias G, Bordachar P, Boriani G, Breithardt OA, et al. 2013 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy: the Task Force on cardiac pacing and resynchronization therapy of the European Society of Cardiology (ESC). Developed in collaboration with the European Heart Rhythm Association (EHRA). Eur Heart J. 2013;34(29):2281&#x2013;329.</Citation></Reference><Reference><Citation>Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Drazner MH, et al. 2013 ACCF/AHA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation. 2013;128(16):1810&#x2013;52.</Citation><ArticleIdList><ArticleId IdType="pubmed">23741057</ArticleId><ArticleId IdType="doi">10.1161/CIR.0b013e31829e8807</ArticleId></ArticleIdList></Reference><Reference><Citation>Cherian TS, Upadhyay GA. Right ventricular pacing and cardiac resynchronization devices. Cardiac Electrophysiology Clinics. 2018;10(1):31&#x2013;42.</Citation><ArticleIdList><ArticleId IdType="pubmed">29428140</ArticleId><ArticleId IdType="doi">10.1016/j.ccep.2017.11.004</ArticleId></ArticleIdList></Reference><Reference><Citation>Kiehl EL, Makki T, Kumar R, Gumber D, Kwon DH, Rickard JW, et al. Incidence and predictors of right ventricular pacing-induced cardiomyopathy in patients with complete atrioventricular block and preserved left ventricular systolic function. Heart Rhythm. 2016;13(12):2272&#x2013;8.</Citation><ArticleIdList><ArticleId IdType="pubmed">27855853</ArticleId><ArticleId IdType="doi">10.1016/j.hrthm.2016.09.027</ArticleId></ArticleIdList></Reference><Reference><Citation>Khurshid S, Obeng-Gyimah E, Supple GE, Schaller R, Lin D, Owens AT, et al. Reversal of pacing-induced cardiomyopathy following cardiac resynchronization therapy. JACC Clinical Electrophysiology. 2018;4(2):168&#x2013;77.</Citation><ArticleIdList><ArticleId IdType="pubmed">29749933</ArticleId><ArticleId IdType="doi">10.1016/j.jacep.2017.10.002</ArticleId></ArticleIdList></Reference><Reference><Citation>Brignole M, Auricchio A, Baron-Esquivias G, Bordachar P, Boriani G, Breithardt OA, et al. 2013 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy: the Task Force on cardiac pacing and resynchronization therapy of the European Society of Cardiology (ESC). Developed in collaboration with the European Heart Rhythm Association (EHRA). Eur Heart J. 2013;34(29):2281&#x2013;329.</Citation></Reference><Reference><Citation>Huang W, Chen X, Su L, Wu S, Xia X, Vijayaraman P. A beginner&#x2019;s guide to permanent left bundle branch pacing. Heart Rhythm. 2019;16(12):1791&#x2013;6.</Citation><ArticleIdList><ArticleId IdType="pubmed">31233818</ArticleId><ArticleId IdType="doi">10.1016/j.hrthm.2019.06.016</ArticleId></ArticleIdList></Reference><Reference><Citation>&#x2022; Vijayaraman P, Dandamudi G, Zanon F, Sharma PS, Tung R, Huang W, et al. Permanent His bundle pacing: recommendations from a multicenter His bundle pacing collaborative working group for standardization of definitions, implant measurements, and follow-up. Heart rhythm. 2018;15(3):460&#x2013;8.&#xa0;This publication established criteria for selective versus nonselective His bundle capture.</Citation></Reference><Reference><Citation>Upadhyay GA, Razminia P, Tung R.&#xa0;His-bundle pacing is the best approach to physiological pacing. Heart Rhythm O2. 2020;1(1):68&#x2013;75.</Citation></Reference><Reference><Citation>Mazurak M, Kusa J. Jan Evangelista Purkinje: a passion for discovery. Tex Heart Inst J. 2018;45(1):23&#x2013;6.</Citation><ArticleIdList><ArticleId IdType="pubmed">29556147</ArticleId><ArticleId IdType="pmc">5832080</ArticleId><ArticleId IdType="doi">10.14503/THIJ-17-6351</ArticleId></ArticleIdList></Reference><Reference><Citation>Roguin A. Wilhelm H Jr. (1863&#x2013;1934)--the man behind the bundle. Heart Rhythm. 2006 Apr;3(4):480&#x2013;483. https://doi.org/10.1016/j.hrthm.2005.11.020 . PMID:16567300.</Citation></Reference><Reference><Citation>Suma K. Sunao Tawara: a father of modern cardiology. Pacing and clinical electrophysiology: PACE. 2001;24(1):88&#x2013;96.</Citation><ArticleIdList><ArticleId IdType="pubmed">11227976</ArticleId><ArticleId IdType="doi">10.1046/j.1460-9592.2001.00088.x</ArticleId></ArticleIdList></Reference><Reference><Citation>James TN, Sherf L. Fine structure of the His bundle. Circulation. 1971;44(1):9&#x2013;28.</Citation><ArticleIdList><ArticleId IdType="pubmed">5561420</ArticleId><ArticleId IdType="doi">10.1161/01.CIR.44.1.9</ArticleId></ArticleIdList></Reference><Reference><Citation>El-Sherif N, Amay YLF, Schonfield C, Scherlag BJ, Rosen K, Lazzara R, et al. Normalization of bundle branch block patterns by distal His bundle pacing. Clinical and experimental evidence of longitudinal dissociation in the pathologic his bundle. Circulation. 1978;57(3):473&#x2013;83.</Citation></Reference><Reference><Citation>Upadhyay GA, Cherian T, Shatz DY, Beaser AD, Aziz Z, Ozcan C, et al. Intracardiac delineation of septal conduction in left bundle-branch block patterns. Circulation. 2019;139(16):1876&#x2013;88.</Citation><ArticleIdList><ArticleId IdType="pubmed">30704273</ArticleId><ArticleId IdType="doi">10.1161/CIRCULATIONAHA.118.038648</ArticleId></ArticleIdList></Reference><Reference><Citation>Kossmann CE, Berger AR, Rader B, Brumlik J, Briller SA, Donnelly JH. Intracardiac and intravascular potentials resulting from electrical activity of the normal human heart. Circulation. 1950;2(1):10&#x2013;30.</Citation><ArticleIdList><ArticleId IdType="pubmed">15427192</ArticleId><ArticleId IdType="doi">10.1161/01.CIR.2.1.10</ArticleId></ArticleIdList></Reference><Reference><Citation>Alanis J, Gonzalez H, Lopez E. The electrical activity of the bundle of His. J Physiol. 1958;142(1):127&#x2013;40.</Citation><ArticleIdList><ArticleId IdType="pubmed">13564423</ArticleId><ArticleId IdType="pmc">1356698</ArticleId><ArticleId IdType="doi">10.1113/jphysiol.1958.sp006003</ArticleId></ArticleIdList></Reference><Reference><Citation>Giraud G, Puech P, Latour H, Hertault J. Variations of potential connected with the activity of the auriculo-ventricular condution system in man (endocavitary electrocardiographic recording). Arch Mal Coeur Vaiss. 1960;53:757&#x2013;76.</Citation><ArticleIdList><ArticleId IdType="pubmed">13705664</ArticleId></ArticleIdList></Reference><Reference><Citation>Narula OS, Cohen LS, Samet P, Lister JW, Scherlag B, Hildner FJ. Localization of A-V conduction defects in man by recording of the His bundle electrogram. Am J Cardiol. 1970;25(2):228&#x2013;37.</Citation><ArticleIdList><ArticleId IdType="pubmed">5443905</ArticleId><ArticleId IdType="doi">10.1016/0002-9149(70)90583-7</ArticleId></ArticleIdList></Reference><Reference><Citation>Narula OS, Lister JW, Cohen LS, Samet P. Localization of A-V conduction delays in man. Circulation. 1968;38:146.</Citation></Reference><Reference><Citation>Scherlag BJ, Lau SH, Helfant RH, Berkowitz WD, Stein E, Damato AN. Catheter technique for recording His bundle activity in man. Circulation. 1969;39(1):13&#x2013;8.</Citation><ArticleIdList><ArticleId IdType="pubmed">5782803</ArticleId><ArticleId IdType="doi">10.1161/01.CIR.39.1.13</ArticleId></ArticleIdList></Reference><Reference><Citation>Narula OS, Scherlag BJ, Samet P. Pervenous pacing of the specialized conducting system in man. His bundle and A-V nodal stimulation. Circulation. 1970;41(1):77&#x2013;87.</Citation></Reference><Reference><Citation>Narula OS. Longitudinal dissociation in the His bundle. Bundle branch block due to asynchronous conduction within the His bundle in man. Circulation. 1977;56(6):996&#x2013;1006.</Citation></Reference><Reference><Citation>Karpawich PP, Gates J, Stokes KB. Septal His-Purkinje ventricular pacing in canines: a new endocardial electrode approach. Pacing and clinical electrophysiology: PACE. 1992;15(11 Pt 2):2011&#x2013;5.</Citation><ArticleIdList><ArticleId IdType="pubmed">1279590</ArticleId><ArticleId IdType="doi">10.1111/j.1540-8159.1992.tb03012.x</ArticleId></ArticleIdList></Reference><Reference><Citation>Deshmukh P, Casavant DA, Romanyshyn M, Anderson K. Permanent, direct His-bundle pacing: a novel approach to cardiac pacing in patients with normal His-Purkinje activation. Circulation. 2000;101(8):869&#x2013;77.</Citation><ArticleIdList><ArticleId IdType="pubmed">10694526</ArticleId><ArticleId IdType="doi">10.1161/01.CIR.101.8.869</ArticleId></ArticleIdList></Reference><Reference><Citation>&#x2022; Huang W, Su L, Wu S, Xu L, Xiao F, Zhou X, et al. A novel pacing strategy with low and stable output: pacing the left bundle branch immediately beyond the conduction block. Can J Cardiol. 2017;33(12):1736.e1&#x2013;.e3. This publication described the technique for left bundle branch area pacing for the first time and became the foundation for modern approaches to LBBAP.</Citation></Reference><Reference><Citation>Occhetta E, Bortnik M, Magnani A, Francalacci G, Piccinino C, Plebani L, et al. Prevention of ventricular desynchronization by permanent para-Hisian pacing after atrioventricular node ablation in chronic atrial fibrillation: a crossover, blinded, randomized study versus apical right ventricular pacing. J Am Coll Cardiol. 2006;47(10):1938&#x2013;45.</Citation><ArticleIdList><ArticleId IdType="pubmed">16697308</ArticleId><ArticleId IdType="doi">10.1016/j.jacc.2006.01.056</ArticleId></ArticleIdList></Reference><Reference><Citation>Kronborg MB, Mortensen PT, Poulsen SH, Gerdes JC, Jensen HK, Nielsen JC. His or para-His pacing preserves left ventricular function in atrioventricular block: a double-blind, randomized, crossover study. Europace. 2014;16(8):1189&#x2013;96.</Citation></Reference><Reference><Citation>&#x2022;&#x2022; Abdelrahman M, Subzposh FA, Beer D, Durr B, Naperkowski A, Sun H, et al. Clinical outcomes of His bundle pacing compared to right ventricular pacing. J Am Coll Cardiol.&#xa0;2018;71(20):2319&#x2013;30. This study is one of the largest cohort studies comparing HBP and RVP for a bradycardia indication. HBP reduced the combined endpoint of death, heart failure hospitalization, or upgrade to biventricular pacing (25% for HBP, 32% for RVP); the results were driven primarily by heart failure hospitalization in patients requiring &gt;20% ventricular pacing.</Citation></Reference><Reference><Citation>Zanon F, Abdelrahman M, Marcantoni L, Naperkowski A, Subzposh FA, Pastore G, et al. Long term performance and safety of His bundle pacing: a multicenter experience. J Cardiovasc Electrophysiol. 2019;30(9):1594&#x2013;601.</Citation><ArticleIdList><ArticleId IdType="pubmed">31310410</ArticleId><ArticleId IdType="doi">10.1111/jce.14063</ArticleId></ArticleIdList></Reference><Reference><Citation>Lustgarten DL, Crespo EM, Arkhipova-Jenkins I, Lobel R, Winget J, Koehler J, et al. His-bundle pacing versus biventricular pacing in cardiac resynchronization therapy patients: a crossover design comparison. Heart Rhythm. 2015;12(7):1548&#x2013;57.</Citation><ArticleIdList><ArticleId IdType="pubmed">25828601</ArticleId><ArticleId IdType="doi">10.1016/j.hrthm.2015.03.048</ArticleId></ArticleIdList></Reference><Reference><Citation>Ajijola OA, Upadhyay GA, Macias C, Shivkumar K, Tung R. Permanent His-bundle pacing for cardiac resynchronization therapy: initial feasibility study in lieu of left ventricular lead. Heart Rhythm. 2017;14(9):1353&#x2013;61.</Citation><ArticleIdList><ArticleId IdType="pubmed">28400315</ArticleId><ArticleId IdType="doi">10.1016/j.hrthm.2017.04.003</ArticleId></ArticleIdList></Reference><Reference><Citation>Sharma PS, Dandamudi G, Herweg B, Wilson D, Singh R, Naperkowski A, et al. Permanent His-bundle pacing as an alternative to biventricular pacing for cardiac resynchronization therapy: A multicenter experience. Heart Rhythm. 2018;15(3):413&#x2013;20.</Citation><ArticleIdList><ArticleId IdType="pubmed">29031929</ArticleId><ArticleId IdType="doi">10.1016/j.hrthm.2017.10.014</ArticleId></ArticleIdList></Reference><Reference><Citation>Huang W, Su L, Wu S, Xu L, Xiao F, Zhou X, et al. Long-term outcomes of His bundle pacing in patients with heart failure with left bundle branch block. Heart (British Cardiac Society). 2019;105(2):137&#x2013;43.</Citation></Reference><Reference><Citation>&#x2022;&#x2022; Upadhyay GA, Vijayaraman P, Nayak HM, Verma N, Dandamudi G, Sharma PS, et al. His corrective pacing or biventricular pacing for cardiac resynchronization in&#xa0;heart failure. J Am Coll Cardiol.&#xa0;2019;74(1):157&#x2013;9. The His-SYNC study was the first prospective, multi-center, single-blind, randomized controlled trial comparing HBP to BiVP for CRT. With intention-to-treat analysis, His-CRT significantly reduced QRS duration while BiV-CRT did not. Both His-CRT and BiV-CRT improved median LVEF; the study was underpowered to show a significant difference in echocardiographic response though there was a trend towards a better response with His-CRT.</Citation></Reference><Reference><Citation>&#x2022;&#x2022; Upadhyay GA, Vijayaraman P, Nayak HM, Verma N, Dandamudi G, Sharma PS, et al. On-treatment comparison between corrective His bundle pacing and biventricular pacing for cardiac resynchronization: a secondary analysis of His-SYNC. Heart Rhythm. 2019. This study included a secondary analysis of the His-SYNC trial with treatment-received analysis and per-protocol analysis. Though findings from the intention-to-treat analysis were amplified in as-treated analysis, there were still no significant group differences between His-CRT and BiV-CRT with respect to echocardiographic or clinical outcomes.</Citation></Reference><Reference><Citation>&#x2022;&#x2022; Vinther M, Risum N, Svendsen JH, Mogelvang R, Philbert BT. A randomized trial of His pacing versus biventricular pacing in symptomatic HF patients with left bundle branch block (His-alternative). JACC Clinical Electrophysiology. 2021. This His-Alternative study is the largest prospective, single-blind, randomized controlled study of His-CRT versus BiV-CRT. His-CRT showed similar LVEF and clinical improvement compared to BiV-CRT but had higher pacing thresholds.</Citation></Reference><Reference><Citation>Vijayaraman P, Dandamudi G, Subzposh FA, Shepard RK, Kalahasty G, Padala SK, et al. Imaging-based localization of His bundle pacing electrodes: results from the prospective IMAGE-HBP study. JACC Clinical Electrophysiology. 2021;7(1):73&#x2013;84.</Citation><ArticleIdList><ArticleId IdType="pubmed">33478715</ArticleId><ArticleId IdType="doi">10.1016/j.jacep.2020.07.026</ArticleId></ArticleIdList></Reference><Reference><Citation>Sharma PS, Subzposh FA, Ellenbogen KA, Vijayaraman P. Permanent His-bundle pacing in patients with prosthetic cardiac valves. Heart Rhythm. 2017;14(1):59&#x2013;64.</Citation><ArticleIdList><ArticleId IdType="pubmed">27663607</ArticleId><ArticleId IdType="doi">10.1016/j.hrthm.2016.09.016</ArticleId></ArticleIdList></Reference><Reference><Citation>Huang W, Su L, Wu S, Xu L, Xiao F, Zhou X, et al. Benefits of permanent His bundle pacing combined with atrioventricular node ablation in atrial fibrillation patients with heart failure with both preserved and reduced left ventricular ejection fraction. J Am Heart Assoc. 2017;6(4).</Citation></Reference><Reference><Citation>Vijayaraman P, Subzposh FA, Naperkowski A. Atrioventricular node ablation and His bundle pacing. Europace. 2017;19(suppl_4):iv10-iv6.</Citation></Reference><Reference><Citation>Shan P, Su L, Zhou X, Wu S, Xu L, Xiao F, et al. Beneficial effects of upgrading to His bundle pacing in chronically paced patients with left ventricular ejection fraction &lt;50. Heart Rhythm. 2018;15(3):405&#x2013;12.</Citation><ArticleIdList><ArticleId IdType="pubmed">29081396</ArticleId><ArticleId IdType="doi">10.1016/j.hrthm.2017.10.031</ArticleId></ArticleIdList></Reference><Reference><Citation>&#x2022; Vijayaraman P, Subzposh FA, Naperkowski A, Panikkath R, John K, Mascarenhas V, et al. Prospective evaluation of feasibility and electrophysiologic and echocardiographic characteristics of left bundle branch area pacing. Heart Rhythm. 2019;16(12):1774&#x2013;82. This prospective, single-center, observational study was the first to show that LBBAP is feasible in patients with a pacemaker indication for either bradycardia or heart failure. There was a high degree of acute procedural success and pacing threshold remained stable at 3-month follow-up.</Citation></Reference><Reference><Citation>Ravi V, Beer D, Pietrasik GM, Hanifin JL, Ooms S, Ayub MT, et al. Development of new-onset or progressive atrial fibrillation in patients with permanent His bundle pacing versus right ventricular pacing: results from the RUSH HBP registry. J Am Heart Assoc. 2020;9(22): e018478.</Citation><ArticleIdList><ArticleId IdType="pubmed">33174509</ArticleId><ArticleId IdType="pmc">7763709</ArticleId><ArticleId IdType="doi">10.1161/JAHA.120.018478</ArticleId></ArticleIdList></Reference><Reference><Citation>Vijayaraman P, Subzposh FA, Naperkowski A. Extraction of the permanent His bundle pacing lead: Safety outcomes and feasibility of reimplantation. Heart Rhythm. 2019;16(8):1196&#x2013;203.</Citation><ArticleIdList><ArticleId IdType="pubmed">31200093</ArticleId><ArticleId IdType="doi">10.1016/j.hrthm.2019.06.005</ArticleId></ArticleIdList></Reference><Reference><Citation>Keene D, Arnold AD, Jastrz&#x119;bski M, Burri H, Zweibel S, Crespo E, et al. His bundle pacing, learning curve, procedure characteristics, safety, and feasibility: Insights from a large international observational study. J Cardiovasc Electrophysiol. 2019;30(10):1984&#x2013;93.</Citation><ArticleIdList><ArticleId IdType="pubmed">31310403</ArticleId><ArticleId IdType="pmc">7038224</ArticleId><ArticleId IdType="doi">10.1111/jce.14064</ArticleId></ArticleIdList></Reference><Reference><Citation>Bhatt AG, Musat DL, Milstein N, Pimienta J, Flynn L, Sichrovsky T, et al. The efficacy of His bundle pacing: lessons learned from implementation for the first time at an experienced electrophysiology center. JACC Clinical electrophysiology. 2018;4(11):1397&#x2013;406.</Citation><ArticleIdList><ArticleId IdType="pubmed">30466843</ArticleId><ArticleId IdType="doi">10.1016/j.jacep.2018.07.013</ArticleId></ArticleIdList></Reference><Reference><Citation>De Leon J, Seow SC, Boey E, Soh R, Tan E, Gan HH, et al. Adopting permanent His bundle pacing: learning curves and medium-term outcomes. Europace. 2021.</Citation></Reference><Reference><Citation>Zanon F, Marcantoni L, Zuin M, Pastore G, Baracca E, Tiribello A, et al. Electrogram-only guided approach to His bundle pacing with minimal fluoroscopy: a single-center experience. J Cardiovasc Electrophysiol. 2020;31(4):805&#x2013;12.</Citation><ArticleIdList><ArticleId IdType="pubmed">31976602</ArticleId><ArticleId IdType="doi">10.1111/jce.14366</ArticleId></ArticleIdList></Reference><Reference><Citation>Vijayaraman P, Ellenbogen KA. Approach to permanent His bundle pacing in challenging implants. Heart Rhythm. 2018;15(9):1428&#x2013;31.</Citation><ArticleIdList><ArticleId IdType="pubmed">29524475</ArticleId><ArticleId IdType="doi">10.1016/j.hrthm.2018.03.006</ArticleId></ArticleIdList></Reference><Reference><Citation>Teigeler T, Kolominsky J, Vo C, Shepard RK, Kalahasty G, Kron J, et al. Intermediate-term performance and safety of His-bundle pacing leads: a single-center experience. Heart Rhythm. 2021;18(5):743&#x2013;9.</Citation><ArticleIdList><ArticleId IdType="pubmed">33418127</ArticleId><ArticleId IdType="doi">10.1016/j.hrthm.2020.12.031</ArticleId></ArticleIdList></Reference><Reference><Citation>Beer D, Subzposh FA, Colburn S, Naperkowski A, Vijayaraman P. His bundle pacing capture threshold stability during long-term follow-up and correlation with lead slack. Europace. 2021;23(5):757&#x2013;66.</Citation><ArticleIdList><ArticleId IdType="pubmed">33236070</ArticleId><ArticleId IdType="doi">10.1093/europace/euaa350</ArticleId></ArticleIdList></Reference><Reference><Citation>Li Y, Chen K, Dai Y, Li C, Sun Q, Chen R, et al. Left bundle branch pacing for symptomatic bradycardia: Implant success rate, safety, and pacing characteristics. Heart Rhythm. 2019;16(12):1758&#x2013;65.</Citation><ArticleIdList><ArticleId IdType="pubmed">31125667</ArticleId><ArticleId IdType="doi">10.1016/j.hrthm.2019.05.014</ArticleId></ArticleIdList></Reference><Reference><Citation>&#x2022; Padala SK, Master VM, Terricabras M, Chiocchini A, Garg A, Kron J, et al. Initial experience, safety, and feasibility of left bundle branch area pacing: a&#xa0;multicenter&#xa0;prospective study. JACC Clinical Electrophysiology. 2020;6(14):1773&#x2013;82. This two-center, prospective, observational study showed that LBBAP is feasible and safe.</Citation></Reference><Reference><Citation>Li X, Li H, Ma W, Ning X, Liang E, Pang K, et al. Permanent left bundle branch area pacing for atrioventricular block: Feasibility, safety, and acute effect. Heart Rhythm. 2019;16(12):1766&#x2013;73.</Citation><ArticleIdList><ArticleId IdType="pubmed">31048065</ArticleId><ArticleId IdType="doi">10.1016/j.hrthm.2019.04.043</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang J, Liang Y, Wang W, Chen X, Bai J, Chen H, et al. Left bundle branch area pacing is superior to right ventricular septum pacing concerning depolarization-repolarization reserve. J Cardiovasc Electrophysiol. 2020;31(1):313&#x2013;22.</Citation><ArticleIdList><ArticleId IdType="pubmed">31778249</ArticleId><ArticleId IdType="doi">10.1111/jce.14295</ArticleId></ArticleIdList></Reference><Reference><Citation>Chen X, Jin Q, Bai J, Wang W, Qin S, Wang J, et al. The feasibility and safety of left bundle branch pacing vs. right ventricular pacing after mid-long-term follow-up: a single-centre experience. Europace. 2020;22(Suppl_2):ii36-ii44.</Citation></Reference><Reference><Citation>Li X, Zhang J, Qiu C, Wang Z, Li H, Pang K, et al. Clinical outcomes in patients with left bundle branch area pacing vs. right ventricular pacing for atrioventricular block. Frontiers in Cardiovascular Medicine. 2021;8:685253.</Citation></Reference><Reference><Citation>Zhu H, Wang Z, Li X, Yao Y, Liu Z, Fan X. Medium- and long-term lead stability and echocardiographic outcomes of left bundle branch area pacing compared to right ventricular pacing. J Cardiovasc Dev Dis. 2021;8(12).</Citation></Reference><Reference><Citation>&#x2022;&#x2022; Sharma PS, Patel NR, Ravi V, Zalavadia DV, Dommaraju S, Garg V, et al. Clinical outcomes of left bundle branch area pacing compared to right ventricular pacing: results from the Geisinger-Rush conduction system pacing registry. Heart Rhythm. 2022;19(1):3&#x2013;11. This two-center, observational study evaluated LBBAP compared to RVP for bradycardia indications. LBBAP improved the primary composite outcome of all-cause mortality, heart failure hospitalization, or upgrade to BiVP compared to &gt;20% RVP.</Citation></Reference><Reference><Citation>Chen X, Wei L, Bai J, Wang W, Qin S, Wang J, et al. Procedure-related complications of left bundle branch pacing: a single-center experience. Front Cardiovasc Med. 2021;8: 645947.</Citation><ArticleIdList><ArticleId IdType="pubmed">33869306</ArticleId><ArticleId IdType="pmc">8044788</ArticleId><ArticleId IdType="doi">10.3389/fcvm.2021.645947</ArticleId></ArticleIdList></Reference><Reference><Citation>Ponnusamy SS, Patel NR, Naperkowski A, Subzposh FA, Vijayaraman P. Cardiac troponin release following left bundle branch pacing. J Cardiovasc Electrophysiol. 2021;32(3):851&#x2013;5.</Citation><ArticleIdList><ArticleId IdType="pubmed">33484212</ArticleId><ArticleId IdType="doi">10.1111/jce.14905</ArticleId></ArticleIdList></Reference><Reference><Citation>&#x2022;&#x2022; Huang W, Wu S, Vijayaraman P, Su L, Chen X, Cai B, et al. Cardiac resynchronization therapy in patients with nonischemic cardiomyopathy using left&#xa0;bundle&#xa0;branch pacing. JACC Clinical Electrophysiology. 2020;6(7):849&#x2013;58. This prospective, multi-center study evaluated LBBAP for CRT indications. LBBAP improved LVEF and functional class, reduced LV end-systolic volume, and had stable capture threshold and R-waves.</Citation></Reference><Reference><Citation>&#x2022; Vijayaraman P, Ponnusamy S, Cano &#xd3;, Sharma PS, Naperkowski A, Subsposh FA, et al. Left bundle branch area pacing for cardiac resynchronization therapy: results from the international LBBAP collaborative study&#xa0;group. JACC Clinical Electrophysiology. 2021;7(2):135&#x2013;47. This multicenter cohort study showed LBBAP for cardiac resynchronization therapy had high implantation success rates (85%). It achieved a clinical response in 72% of patients and an echocardiographic response (&#x2265;5% increase in LVEF) in 73% of patients.</Citation></Reference><Reference><Citation>&#x2022; Wu S, Su L, Vijayaraman P, Zheng R, Cai M, Xu L, et al. Left bundle branch pacing for cardiac resynchronization therapy: nonrandomized on-treatment comparison with His bundle pacing and biventricular pacing. Can J Cardiol. 2021;37(2):319&#x2013;28. This prospective, single center, retrospective cohort study showed that HBP (n=49) and LBBAP (n=32) for a CRT indication improved LVEF and NYHA class at a significantly higher rate than standard biventricular pacing.</Citation></Reference><Reference><Citation>Chen K, Li Y. How to implant left bundle branch pacing lead in routine clinical practice. J Cardiovasc Electrophysiol. 2019;30(11):2569&#x2013;77.</Citation><ArticleIdList><ArticleId IdType="pubmed">31535747</ArticleId><ArticleId IdType="doi">10.1111/jce.14190</ArticleId></ArticleIdList></Reference><Reference><Citation>Lin J, Hu Q, Chen K, Dai Y, Chen R, Sun Q, et al. Relationship of paced left bundle branch pacing morphology with anatomic location and physiological outcomes. Heart Rhythm. 2021;18(6):946&#x2013;53.</Citation><ArticleIdList><ArticleId IdType="pubmed">33781981</ArticleId><ArticleId IdType="doi">10.1016/j.hrthm.2021.03.034</ArticleId></ArticleIdList></Reference><Reference><Citation>&#x2022; Liu X, Niu HX, Gu M, Chen X, Hu Y, Cai M, et al. Contrast-enhanced image-guided lead deployment for left bundle branch pacing. Heart Rhythm. 2021;18(8):1318&#x2013;25. This publication described use of contrast to guide lead deployment for LBBAP.</Citation></Reference><Reference><Citation>Ponnusamy SS, Vijayaraman P. Left bundle branch pacing guided by premature ventricular complexes during implant. HeartRhythm Case Reports. 2020;6(11):850&#x2013;3.</Citation><ArticleIdList><ArticleId IdType="pubmed">33204621</ArticleId><ArticleId IdType="pmc">7653472</ArticleId><ArticleId IdType="doi">10.1016/j.hrcr.2020.08.010</ArticleId></ArticleIdList></Reference><Reference><Citation>&#x2022; Jastrz&#x119;bski M, Kie&#x142;basa G, Moskal P, Bednarek A, Kusiak A, Sondej T, et al. Fixation beats: A novel marker for reaching the left bundle branch area during deep septal lead implantation. Heart Rhythm. 2021;18(4):562&#x2013;9. This publication described use of a PVC-guided method for lead implantation for LBBAP.</Citation></Reference><Reference><Citation>Ponnusamy SS, Vijayaraman P. How to implant his bundle and left bundle pacing leads: tips and pearls. Card Fail Rev. 2021;7: e13.</Citation><ArticleIdList><ArticleId IdType="pubmed">34466272</ArticleId><ArticleId IdType="pmc">8383140</ArticleId><ArticleId IdType="doi">10.15420/cfr.2021.04</ArticleId></ArticleIdList></Reference><Reference><Citation>Jastrz&#x119;bski M, Moskal P, Ho&#x142;da MK, Strona M, Bednarek A, Kie&#x142;basa G, et al. Deep septal deployment of a thin, lumenless pacing lead: a translational cadaver simulation study. Europace. 2020;22(1):156&#x2013;61.</Citation></Reference><Reference><Citation>Ponnusamy SS, Arora V, Namboodiri N, Kumar V, Kapoor A, Vijayaraman P. Left bundle branch pacing: a comprehensive review. J Cardiovasc Electrophysiol. 2020;31(9):2462&#x2013;73.</Citation><ArticleIdList><ArticleId IdType="pubmed">32681681</ArticleId><ArticleId IdType="doi">10.1111/jce.14681</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang S, Zhou X, Gold MR. Left bundle branch pacing: JACC review topic of the week. J Am Coll Cardiol. 2019;74(24):3039&#x2013;49.</Citation><ArticleIdList><ArticleId IdType="pubmed">31865972</ArticleId><ArticleId IdType="doi">10.1016/j.jacc.2019.10.039</ArticleId></ArticleIdList></Reference><Reference><Citation>Wu S, Chen X, Wang S, Xu L, Xiao F, Huang Z, et al. Evaluation of the criteria to distinguish left bundle branch pacing from left ventricular septal pacing. JACC Clin Electrophysiol. 2021;7(9):1166&#x2013;77.</Citation><ArticleIdList><ArticleId IdType="pubmed">33933414</ArticleId><ArticleId IdType="doi">10.1016/j.jacep.2021.02.018</ArticleId></ArticleIdList></Reference><Reference><Citation>Tung R, Upadhyay GA. The burden of proof in defining conduction pacing criteria: back to fundamental electrophysiology. JACC Clin Electrophysiol. 2021;7(9):1178&#x2013;81.</Citation><ArticleIdList><ArticleId IdType="pubmed">34556287</ArticleId><ArticleId IdType="doi">10.1016/j.jacep.2021.06.003</ArticleId></ArticleIdList></Reference><Reference><Citation>Jastrz&#x119;bski M, Burri H, Kie&#x142;basa G, Curila K, Moskal P, Bednarek A, et al. The V6&#x2013;V1 interpeak interval: a novel criterion for the diagnosis of left bundle branch capture. Europace. 2022;24(1):40&#x2013;7.</Citation><ArticleIdList><ArticleId IdType="pubmed">34255038</ArticleId><ArticleId IdType="doi">10.1093/europace/euab164</ArticleId></ArticleIdList></Reference><Reference><Citation>Ravi V, Larsen T, Ooms S, Trohman R, Sharma PS. Late-onset interventricular septal perforation from left bundle branch pacing. HeartRhythm Case Reports. 2020;6(9):627&#x2013;31.</Citation><ArticleIdList><ArticleId IdType="pubmed">32983881</ArticleId><ArticleId IdType="pmc">7498514</ArticleId><ArticleId IdType="doi">10.1016/j.hrcr.2020.06.008</ArticleId></ArticleIdList></Reference><Reference><Citation>Ponnusamy SS, Vijayaraman P. Aborted ST-elevation myocardial infarction - an unusual complication of left bundle branch pacing. HeartRhythm Case Reports. 2020;6(8):520&#x2013;2.</Citation><ArticleIdList><ArticleId IdType="pubmed">32817832</ArticleId><ArticleId IdType="pmc">7424302</ArticleId><ArticleId IdType="doi">10.1016/j.hrcr.2020.05.010</ArticleId></ArticleIdList></Reference><Reference><Citation>Upadhyay GA, Vijayaraman P, Nayak HM, Verma N, Dandamudi G, Sharma PS, et al. On-treatment comparison between corrective His bundle pacing and biventricular pacing for cardiac resynchronization: a secondary analysis of the His-SYNC Pilot Trial. Heart Rhythm. 2019;16(12):1797&#x2013;807.</Citation><ArticleIdList><ArticleId IdType="pubmed">31096064</ArticleId><ArticleId IdType="doi">10.1016/j.hrthm.2019.05.009</ArticleId></ArticleIdList></Reference><Reference><Citation>Boczar K, S&#x142;awuta A, Z&#x105;bek A, D&#x119;bski M, Vijayaraman P, Gajek J, et al. Cardiac resynchronization therapy with His bundle pacing. PACE. 2019;42(3):374&#x2013;80.</Citation><ArticleIdList><ArticleId IdType="pubmed">30659629</ArticleId><ArticleId IdType="doi">10.1111/pace.13611</ArticleId></ArticleIdList></Reference><Reference><Citation>Deshmukh A, Sattur S, Bechtol T, Heckman LIB, Prinzen FW, Deshmukh P. Sequential His bundle and left ventricular pacing for cardiac resynchronization. J Cardiovasc Electrophysiol. 2020;31(9):2448&#x2013;54.</Citation><ArticleIdList><ArticleId IdType="pubmed">32666630</ArticleId><ArticleId IdType="doi">10.1111/jce.14674</ArticleId></ArticleIdList></Reference><Reference><Citation>Zweerink A, Zubarev S, Bakelants E, Potyagaylo D, Stettler C, Chmelevsky M, et al. His-optimized cardiac resynchronization therapy with ventricular fusion pacing for electrical resynchronization in heart failure. JACC Clinical electrophysiology. 2021;7(7):881&#x2013;92.</Citation><ArticleIdList><ArticleId IdType="pubmed">33640346</ArticleId><ArticleId IdType="doi">10.1016/j.jacep.2020.11.029</ArticleId></ArticleIdList></Reference><Reference><Citation>Jastrz&#x119;bski M, Moskal P, Huybrechts W, Curila K, Sreekumar P, Rademakers LM, et al. Left bundle branch-optimized cardiac resynchronization therapy (LOT-CRT): results from an international LBBAP collaborative study group. Heart Rhythm. 2021.</Citation></Reference><Reference><Citation>Deshmukh PM, Romanyshyn M. Direct His-bundle pacing: present and future. PACE. 2004;27(6 Pt 2):862&#x2013;70.</Citation><ArticleIdList><ArticleId IdType="pubmed">15189517</ArticleId><ArticleId IdType="doi">10.1111/j.1540-8159.2004.00548.x</ArticleId></ArticleIdList></Reference><Reference><Citation>Vijayaraman P, Naperkowski A, Ellenbogen KA, Dandamudi G. Electrophysiologic insights into site of atrioventricular block: lessons from permanent His bundle pacing. JACC Clinical Electrophysiology. 2015;1(6):571&#x2013;81.</Citation><ArticleIdList><ArticleId IdType="pubmed">29759411</ArticleId><ArticleId IdType="doi">10.1016/j.jacep.2015.09.012</ArticleId></ArticleIdList></Reference><Reference><Citation>Vijayaraman P, Dandamudi G, Lustgarten D, Ellenbogen KA. Permanent His bundle pacing: electrophysiological and echocardiographic observations from long-term follow-up. PACE. 2017;40(7):883&#x2013;91.</Citation><ArticleIdList><ArticleId IdType="pubmed">28569391</ArticleId><ArticleId IdType="doi">10.1111/pace.13130</ArticleId></ArticleIdList></Reference><Reference><Citation>Vijayaraman P, Naperkowski A, Subzposh FA, Abdelrahman M, Sharma PS, Oren JW, et al. Permanent His-bundle pacing: long-term lead performance and clinical outcomes. Heart Rhythm. 2018;15(5):696&#x2013;702.</Citation><ArticleIdList><ArticleId IdType="pubmed">29274474</ArticleId><ArticleId IdType="doi">10.1016/j.hrthm.2017.12.022</ArticleId></ArticleIdList></Reference><Reference><Citation>Sharma PS, Naperkowski A, Bauch TD, Chan JYS, Arnold AD, Whinnett ZI, et al. Permanent His bundle pacing for cardiac resynchronization therapy in patients with heart failure and right bundle branch block. Circ Arrhythm Electrophysiol. 2018;11(9): e006613.</Citation><ArticleIdList><ArticleId IdType="pubmed">30354292</ArticleId><ArticleId IdType="doi">10.1161/CIRCEP.118.006613</ArticleId></ArticleIdList></Reference><Reference><Citation>Orlov MV, Casavant D, Koulouridis I, Maslov M, Erez A, Hicks A, et al. Permanent His-bundle pacing using stylet-directed, active-fixation leads placed via coronary sinus sheaths compared to conventional lumen-less system. Heart Rhythm. 2019;16(12):1825&#x2013;31.</Citation><ArticleIdList><ArticleId IdType="pubmed">31425775</ArticleId><ArticleId IdType="doi">10.1016/j.hrthm.2019.08.017</ArticleId></ArticleIdList></Reference><Reference><Citation>Sarkar R, Kaur D, Subramanian M, Yalagudri S, Sridevi C, Devidutta S, et al. Permanent HIS bundle pacing feasibility in routine clinical practice: experience from an Indian Center. Indian Heart J. 2019;71(4):360&#x2013;3.</Citation><ArticleIdList><ArticleId IdType="pubmed">31779867</ArticleId><ArticleId IdType="pmc">6890947</ArticleId><ArticleId IdType="doi">10.1016/j.ihj.2019.09.003</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang S, Wu S, Xu L, Xiao F, Whinnett ZI, Vijayaraman P, et al. Feasibility and efficacy of His bundle pacing or left bundle pacing combined with atrioventricular node ablation in patients with persistent atrial fibrillation and implantable cardioverter-defibrillator therapy. J Am Heart Assoc. 2019;8(24): e014253.</Citation><ArticleIdList><ArticleId IdType="pubmed">31830874</ArticleId><ArticleId IdType="pmc">6951078</ArticleId><ArticleId IdType="doi">10.1161/JAHA.119.014253</ArticleId></ArticleIdList></Reference><Reference><Citation>De Pooter J, Gauthey A, Calle S, Noel A, Kefer J, Marchandise S, et al. Feasibility of His-bundle pacing in patients with conduction disorders following transcatheter aortic valve replacement. J Cardiovasc Electrophysiol. 2020;31(4):813&#x2013;21.</Citation><ArticleIdList><ArticleId IdType="pubmed">31990128</ArticleId><ArticleId IdType="doi">10.1111/jce.14371</ArticleId></ArticleIdList></Reference><Reference><Citation>Su L, Cai M, Wu S, Wang S, Xu T, Vijayaraman P, et al. Long-term performance and risk factors analysis after permanent His-bundle pacing and atrioventricular node ablation in patients with atrial fibrillation and heart failure. Europace. 2020;22(Suppl_2):ii19-ii26.</Citation></Reference><Reference><Citation>Upadhyay GA, Henry M, Genovese D, Desai P, Lattell J, Wey H, et al. Impact of physiological pacing on functional mitral regurgitation in systolic dysfunction: Initial echocardiographic remodeling findings after His bundle pacing. Heart Rhythm O2. 2021;2(5):446&#x2013;54.</Citation></Reference><Reference><Citation>Michalik J, Dabrowska-Kugacka A, Kosmalska K, Moroz R, Kot A, Lewicka E, et al. Hemodynamic effects of permanent his bundle pacing compared to right ventricular pacing assessed by two-dimensional speckle-tracking echocardiography. Int J Environ Res Public Health. 2021;18(21).</Citation></Reference><Reference><Citation>&#x17d;i&#x17e;ek D, Antoli&#x10d; B, Me&#x17e;nar AZ, Zavrl-D&#x17e;ananovi&#x107; D, Jan M, &#x160;tublar J, et al. Biventricular versus His bundle pacing after atrioventricular node ablation in heart failure patients with narrow QRS. Acta Cardiol. 2021:1&#x2013;9.</Citation></Reference><Reference><Citation>Mori&#xf1;a-V&#xe1;zquez P, Moraleda-Salas MT, Arce-Le&#xf3;n &#xc1;, Venegas-Gamero J, Fern&#xe1;ndez-G&#xf3;mez JM, D&#xed;az-Fern&#xe1;ndez JF. Effectiveness and safety of AV node ablation after His bundle pacing in patients with uncontrolled atrial arrhythmias. PACE. 2021;44(6):1004&#x2013;9.</Citation><ArticleIdList><ArticleId IdType="pubmed">33904179</ArticleId><ArticleId IdType="doi">10.1111/pace.14252</ArticleId></ArticleIdList></Reference><Reference><Citation>Li Y, Tian H, Zhang J, Cheng C. Effects of His bundle pacing and right ventricular apex pacing on cardiac electrical and mechanical synchrony and cardiac function in patients with heart failure and atrial fibrillation. Am J Transl Res. 2021;13(4):3294&#x2013;301.</Citation><ArticleIdList><ArticleId IdType="pubmed">34017501</ArticleId><ArticleId IdType="pmc">8129246</ArticleId></ArticleIdList></Reference><Reference><Citation>Dandamudi G, Simon J, Cano O, Master V, Koruth JS, Naperkowski A, et al. Permanent His bundle pacing in patients with congenital complete heart block: a multicenter experience. JACC Clinical Electrophysiology. 2021;7(4):522&#x2013;9.</Citation><ArticleIdList><ArticleId IdType="pubmed">33358665</ArticleId><ArticleId IdType="doi">10.1016/j.jacep.2020.09.015</ArticleId></ArticleIdList></Reference><Reference><Citation>Ye Y, Zhang K, Yang Y, Jiang D, Pan Y, Sheng X, et al. Feasibility and safety of both His bundle pacing and left bundle branch area pacing in atrial fibrillation patients: intermediate term follow-up. J Interv Card&#xa0;Electrophysiol. 2021.</Citation></Reference><Reference><Citation>Chaumont C, Auquier N, Milhem A, Mirolo A, Al Arnaout A, Popescu E, et al. Can permanent His bundle pacing be safely started by operators new to this technique? Data from a multicenter registry. J Cardiovasc Electrophysiol. 2021;32(2):417&#x2013;27.</Citation><ArticleIdList><ArticleId IdType="pubmed">33373093</ArticleId><ArticleId IdType="doi">10.1111/jce.14860</ArticleId></ArticleIdList></Reference><Reference><Citation>Hasumi E, Fujiu K, Nakanishi K, Komuro I. Impacts of left bundle/peri-left bundle pacing on left ventricular contraction. Circ J. 2019;83(9):1965&#x2013;7.</Citation><ArticleIdList><ArticleId IdType="pubmed">31327794</ArticleId><ArticleId IdType="doi">10.1253/circj.CJ-19-0399</ArticleId></ArticleIdList></Reference><Reference><Citation>Zhang W, Huang J, Qi Y, Wang F, Guo L, Shi X, et al. Cardiac resynchronization therapy by left bundle branch area pacing in patients with heart failure and left bundle branch block. Heart Rhythm. 2019;16(12):1783&#x2013;90.</Citation><ArticleIdList><ArticleId IdType="pubmed">31513945</ArticleId><ArticleId IdType="doi">10.1016/j.hrthm.2019.09.006</ArticleId></ArticleIdList></Reference><Reference><Citation>Das A, Islam SS, Pathak SK, Majumdar I, Sharwar SA, Saha R, et al. Left bundle branch area. A new site for physiological pacing: a pilot study. Heart Vessels. 2020;35(11):1563&#x2013;72.</Citation></Reference><Reference><Citation>Wang Y, Gu K, Qian Z, Hou X, Chen X, Qiu Y, et al. The efficacy of left bundle branch area pacing compared with biventricular pacing in patients with heart failure: a matched case-control study. J Cardiovasc Electrophysiol. 2020;31(8):2068&#x2013;77.</Citation><ArticleIdList><ArticleId IdType="pubmed">32562442</ArticleId><ArticleId IdType="doi">10.1111/jce.14628</ArticleId></ArticleIdList></Reference><Reference><Citation>Qian Z, Qiu Y, Wang Y, Jiang Z, Wu H, Hou X, et al. Lead performance and clinical outcomes of patients with permanent His-Purkinje system pacing: a single-centre experience. Europace. 2020;22(Suppl_2):ii45-ii53.</Citation></Reference><Reference><Citation>Ravi V, Hanifin JL, Larsen T, Huang HD, Trohman RG, Sharma PS. Pros and cons of left bundle branch pacing: a single-center experience. Circ Arrhythm Electrophysiol. 2020;13(12): e008874.</Citation><ArticleIdList><ArticleId IdType="pubmed">33198496</ArticleId><ArticleId IdType="doi">10.1161/CIRCEP.120.008874</ArticleId></ArticleIdList></Reference><Reference><Citation>Su L, Wang S, Wu S, Xu L, Huang Z, Chen X, et al. Long-term safety and feasibility of left bundle branch pacing in a large single-center study. Circ Arrhythm Electrophysiol. 2021;14(2): e009261.</Citation><ArticleIdList><ArticleId IdType="pubmed">33426907</ArticleId><ArticleId IdType="doi">10.1161/CIRCEP.120.009261</ArticleId></ArticleIdList></Reference><Reference><Citation>Wang Z, Zhu H, Li X, Yao Y, Liu Z, Fan X. Left bundle branch area pacing versus right ventricular pacing in patients with persistent atrial fibrillation requiring ventricular pacing. PACE. 2021;44(12):2024&#x2013;30.</Citation><ArticleIdList><ArticleId IdType="pubmed">34699072</ArticleId><ArticleId IdType="doi">10.1111/pace.14394</ArticleId></ArticleIdList></Reference><Reference><Citation>Rademakers LM, van den Broek JL, Op&#x2019;t Hof M, Bracke FA. Initial experience, feasibility and safety of permanent left bundle branch pacing: results from a&#xa0;prospective single-centre study. Neth Heart J. 2021.</Citation></Reference><Reference><Citation>Chen X, Ye Y, Wang Z, Jin Q, Qiu Z, Wang J, et al. Cardiac resynchronization therapy via left bundle branch pacing vs. optimized biventricular pacing with adaptive algorithm in heart failure with left bundle branch block: a prospective, multi-centre, observational study. Europace. 2021.</Citation></Reference><Reference><Citation>Gul EE, Kabadi RA, Padala SK, Sanchez Somonte P, Kron J, Shepard RK, et al. Safety and feasibility of left bundle branch area pacing following valvular interventions: multicenter study. J Cardiovasc Electrophysiol. 2021;32(9):2515&#x2013;21.</Citation><ArticleIdList><ArticleId IdType="pubmed">34245466</ArticleId><ArticleId IdType="doi">10.1111/jce.15153</ArticleId></ArticleIdList></Reference><Reference><Citation>Ponnusamy SS, Bopanna D, Syed T, Muthu G, Kumar S. Feasibility, safety and outcomes of left bundle branch pacing in octogenarians. Indian Heart J. 2021;73(1):117&#x2013;20.</Citation><ArticleIdList><ArticleId IdType="pubmed">33714396</ArticleId><ArticleId IdType="pmc">7961252</ArticleId><ArticleId IdType="doi">10.1016/j.ihj.2020.12.017</ArticleId></ArticleIdList></Reference><Reference><Citation>Hua J, Chen Y, Yu J, Xiong Q, Xia Z, Xia Z, et al. Long-term outcomes of left bundle branch area pacing versus biventricular pacing in patients with heart failure and complete left bundle branch block. Heart Vessel. 2022.</Citation></Reference></ReferenceList></ReferenceList></PubmedData></PubmedArticle><PubmedArticle><MedlineCitation Status="Publisher" Owner="NLM"><PMID Version="1">35678827</PMID><DateRevised><Year>2022</Year><Month>06</Month><Day>09</Day></DateRevised><Article PubModel="Print-Electronic"><Journal><ISSN IssnType="Electronic">1432-1971</ISSN><JournalIssue CitedMedium="Internet"><PubDate><Year>2022</Year><Month>Jun</Month><Day>09</Day></PubDate></JournalIssue><Title>Pediatric cardiology</Title><ISOAbbreviation>Pediatr Cardiol</ISOAbbreviation></Journal>Conduction System Pacing in Pediatrics and Congenital Heart Disease, a Single Center Series of 24 Patients.
His-bundle pacing has demonstrated feasibility in numerous adult studies to reverse and prevent pacing-induced cardiomyopathy, however, is met with higher capture thresholds with deployment sheaths designed for adults with his-bundles in the typical location. To describe 24 pediatric and adult congenital patients post-physiologic pacing. Patients at the University of Minnesota Masonic Children's Hospital with congenital complete heart block or congenital heart disease and atrioventricular block presented for pacemaker placement between November 2019 and January 2021. Twenty-four patients had attempted his-bundle placement using either Medtronic's C315 or C308 sheaths and 3830 leads except for 3 patients who had Boston Scientific's His system with the Shape 3 sheath and 7842 leads. Twenty-four total patients underwent physiologic pacing (23 his-bundle, 13 female, 11 male) with median age of 14&#xa0;years (range 8-39&#xa0;years) with median weight of 51&#xa0;kg (range 21.2-81&#xa0;kg) with five right-sided implants performed. Twelve patients had congenital heart disease including atrioventricular canal defects, tetralogy of Fallot, and ventricular septal defect repairs (nine patients with ventricular septal defect repairs). Twelve patients had selective His-bundle pacing (six with congenital heart disease). Median threshold to capture was 0.5&#xa0;V at 0.4&#xa0;ms (range 0.4 to 1.1&#xa0;V at 0.4&#xa0;ms), impedance 570&#xa0;ohms (range 456-1140&#xa0;ohms), and sensing median of 9.7&#xa0;mV (range 1.5-13.8&#xa0;mV if present). The median follow-up time was 610&#xa0;days (range 240-760&#xa0;days). No complications occurred peri-procedurally or during follow-up. His-bundle pacing is feasible in pediatric and congenital heart disease patients.
2,335,765
Efficacy of Dexmedetomidine Anesthesia plus Dorsal Penile Nerve Block in Pediatric Circumcision.
To assess the efficacy of dexmedetomidine anesthesia plus dorsal penile nerve block in pediatric circumcision.</AbstractText>In this retrospective study, 80 children receiving circumcision in our hospital from February 2020 to February 2021 were recruited and assigned via different anesthesia methods at a ratio of 1&#x2009;:&#x2009;1 to receive dorsal penile nerve block plus dexmedetomidine anesthesia (combined anesthesia group) or only sevoflurane for total inhalational anesthesia (total anesthesia group). Traditional Chinese medicine (TCM) care was introduced to both groups of patients. Outcome measures included vital signs, operative indices, anesthesia effect, adverse reactions, parent satisfaction, and nursing satisfaction.</AbstractText>There were no significant differences in the heart rate, oxygen saturation, and mean arterial pressure between the two groups of children before anesthesia, after anesthesia, and during the awakening period (P</i> &gt; 0.05). Patients receiving combined anesthesia showed a shorter time lapse before the disappearance of eyelash reflex, longer time lapse before postoperative analgesic use, faster awakening, and shorter operation time and hospital stay versus those receiving total inhalational anesthesia alone (P</i> &gt; 0.05). The combined anesthesia resulted in a lower Induction Compliance Checklist (ICC) score, McGill score, and Richmond Agitation-Sedation Scale (RASS) score and a higher Ramsay score versus total anesthesia (P</i> &gt; 0.05). Patients receiving combined anesthesia showed a significantly lower incidence of adverse events (5.00% (2/40)) versus total inhalational anesthesia (62.50% (25/40)) (X</i> 2</sup>&#x2009;=&#x2009;29.574, P</i> &gt; 0.05). The combined anesthesia group had a higher parent satisfaction (92.50% (37/40)) versus the total anesthesia group (75.00% (30/40)) (X</i> 2</sup>&#x2009;=&#x2009;4.501, P</i> &gt; 0.05). A total of 80 questionnaires were distributed, with a 100% return rate and a 100% validity rate, and all 80 questionnaires scored 90 points or above. The families of children in both groups were satisfied with the quality of TCM care.</AbstractText>The efficacy of dorsal penile nerve block plus dexmedetomidine anesthesia in pediatric circumcision is better than total inhalational anesthesia with sevoflurane.</AbstractText>Copyright &#xa9; 2022 Ling Ji et al.</CopyrightInformation>
2,335,766
Dexmedetomidine prolongs the duration of local anesthetics when used as an adjuvant through both perineural and systemic mechanisms: a prospective randomized double-blinded trial.
To study the respective peripheral and systemic mechanisms of action of dexmedetomidine, as adjuvant to regional anesthesia, we compared dexmedetomidine added to ropivacaine for mid-forearm nerve blocks, to either systemic-only dexmedetomidine, and to a control with no dexmedetomidine.</AbstractText>Sixty patients undergoing hand surgery were randomly divided into three groups (n&#x2009;=&#x2009;20 per group). Each group underwent a triple-nerve (median, radial and ulnar) mid-forearm blocks with 0.75% ropivacaine. In the DexP group, 60&#xa0;&#xb5;g of dexmedetomidine were added to the anesthetic mixture, while in the DexIV group, they were intravenously infused. Normal saline as a placebo was used, either as adjuvant, or intravenously. All patients underwent also a supraclavicular block with 1.5% lidocaine for tourniquet pain. The main outcomes were the duration of analgesia and the duration of sensory blockade separately for each nerve termination of the upper limb, and the duration of motor blockade of the upper limb. Tolerance was assessed by blood pressure and heart rate, and the report of adverse events.</AbstractText>Duration of analgesia was longer in the DexP group, in comparison to the two other groups (P&#x2009;&lt;&#x2009;0.001), while it was similar in the DexIV and the control group. For cutaneous territories targeted by the three mid-forearm blocks, the between-group differences behaved similarly. For the other cutaneous territories (musculocutaneous and posterior brachial cutaneous nerves), duration of sensory blockade was shorter in the control group than in the two dexmedetomidine groups. For duration of motor blockade, the between-group differences behaved similarly. Both blood pressure and heart rate were reduced in the DexP and the DexIV groups, compared to the control.</AbstractText>Dexmedetomidine used as an adjuvant to regional anesthesia may act mostly though a perineural mechanism, especially for the sensory aspects of anesthesia. A systemic action might however explain other clinical effects.</AbstractText>ChiCTR-IOR-17011149 , date of registration: 16/04/2017.</AbstractText>&#xa9; 2022. The Author(s).</CopyrightInformation>
2,335,767
Clinical effect of ultrasound-guided nerve block and dexmedetomidine anesthesia on lower extremity operative fracture reduction.
Lower extremity fractures are mainly treated by surgical reduction, but this operation is often affected by the patient's level of agitation and the type of anesthesia used. The main treatment for lower-extremity fractures is operative reduction. However, operations can often be affected by both agitation and the degree of anesthesia. Therefore, it is of great importance to develop an effective anesthesia program to effectively ensure the progress of surgery.</AbstractText>To discuss the effect of ultrasound-guided nerve block combined with dexmedetomidine anesthesia in lower extremity fracture surgery.</AbstractText>A total of 120 hospital patients with lower extremity fractures were selected for this retrospective study and divided into an observation group (n</i> = 60) and a control group (n</i> = 60) according to the anesthesia scheme; the control group received ultrasound-guided nerve block; the observation group was treated with dextromethomidine on the basis of the control group, and the mean arterial pressure, heart rate (HR), and blood oxygen saturation were observed in the two groups.</AbstractText>The mean arterial pressure of T1, T2 and T3 in the observation group were 94.40 &#xb1; 7.10, 90.84 &#xb1; 7.21 and 91.03 &#xb1; 6.84 mmHg, significantly higher than that of the control group (P</i> &lt; 0.05). The observation group's HR at T1 was 76.60 &#xb1; 7.52 times/min, significantly lower than that of the control group (P</i> &lt; 0.05); The observation group's HR at T2 and T3 was 75.40 &#xb1; 8.03 times/min and 76.64 &#xb1; 7.11 times/min, significantly higher than that of the control group (P</i> &lt; 0.05). The observation group's visual analog score at 2 h, 6 h and 12 h after operation was 3.55 &#xb1; 0.87, 2.84 &#xb1; 0.65 and 2.05 &#xb1; 0.40. the recovery time was 15.51 &#xb1; 4.21 min, significantly lower than that of the control group (P</i> &lt; 0.05). Six hours post-anesthesia, epinephrine and norepinephrine in the observation group were 81. 10 &#xb1; 21.19 pg/mL and 510. 20 &#xb1; 98.27 pg/mL, significantly lower than that of the control group (P</i> &lt; 0.05), and the mini-mental state exam score of the observation group was 25. 51 &#xb1; 1.15, significantly higher than that in the control group (P</i> &lt; 0.05).</AbstractText>Ultrasound-guided nerve block combined with dexmedetomidine has a good anesthetic effect in the operation of lower limb fractures and has little effect on the hemodynamics of patients.</AbstractText>&#xa9;The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.</CopyrightInformation>
2,335,768
"Orphan" Connexin43 in Plakophilin-2 Deficient Hearts Revealed by Volume Electron Microscopy.
Previous studies revealed an abundance of functional Connexin43 (Cx43) hemichannels consequent to loss of plakophilin-2 (PKP2) expression in adult murine hearts. The increased Cx43-mediated membrane permeability is likely responsible for excess entry of calcium into the cells, leading to an arrhythmogenic/cardiomyopathic phenotype. The latter has translational implications to the molecular mechanisms of inheritable arrhythmogenic right ventricular cardiomyopathy (ARVC). Despite functional evidence, visualization of these "orphan" (i.e., non-paired in a gap junction configuration) Cx43 hemichannels remains lacking. Immuno-electron microscopy (IEM) remains an extremely powerful tool to localize, with nanometric resolution, a protein within its native structural landscape. Yet, challenges for IEM are to preserve the antigenicity of the molecular target and to provide access for antibodies to reach their target, while maintaining the cellular/tissue ultrastructure. Fixation is important for maintaining cell structure, but strong fixation and vigorous dehydration (as it is routine for EM) can alter protein structure, thus impairing antigen-antibody binding. Here, we implemented a method to combine pre-embedding immunolabeling (pre-embedding) with serial block-face scanning electron microscopy (SBF-SEM). We utilized a murine model of cardiomyocyte-specific, Tamoxifen (TAM) activated knockout of PKP2. Adult hearts were harvested 14 days post-TAM, at this time hearts present a phenotype of concealed ARVC (i.e., an arrhythmogenic phenotype but no overt structural disease). Thick (200&#xa0;&#xb5;m) vibratome slices were immunolabelled for Cx43 and treated with nanogold or FluoroNanogold, coupled with a silver enhancement. Left or right ventricular free walls were dissected and three-dimensional (3D) localization of Cx43 in cardiac muscle was performed using SBF-SEM. Reconstructed images allowed us to visualize the entire length of gap junction plaques, seen as two parallel, closely packed strings of Cx43-immunoreactive beads at the intercalated disc. In contrast, in PKP2-deficient hearts we observed bulging of the intercellular space, and entire areas where only one of the two strings could be observed, indicating the presence of orphan Cx43. We conclude that pre-embedding and SBF-SEM allowed visualization of cardiac Cx43 plaques in their native environment, providing for the first time a visual complement of functional data indicating the presence of orphan Cx43 hemichannels resulting from loss of desmosomal integrity in the heart.
2,335,769
<i>Pax3</i> Hypomorphs Reveal Hidden Pax7 Functional Genetic Compensation <i>in Utero</i>.
Pax3 and Pax7 transcription factors are paralogs within the <i>Pax</i> gene family that that are expressed in early embryos in partially overlapping expression domains and have distinct functions. Significantly, mammalian development is largely unaffected by <i>Pax7</i> systemic deletion but systemic <i>Pax3</i> deletion results in defects in neural tube closure, neural crest emigration, cardiac outflow tract septation, muscle hypoplasia and <i>in utero</i> lethality by E14. However, we previously demonstrated that <i>Pax3</i> hypomorphs expressing only 20% functional Pax3 protein levels exhibit normal neural tube and heart development, but myogenesis is selectively impaired. To determine why only some Pax3-expressing cell lineages are affected and to further titrate Pax3 threshold levels required for neural tube and heart development, we generated hypomorphs containing both a hypomorphic and a null <i>Pax3</i> allele. This resulted in mutants only expressing 10% functional Pax3 protein with exacerbated neural tube, neural crest and muscle defects, but still a normal heart. To examine why the cardiac neural crest appears resistant to very low Pax3 levels, we examined its paralog <i>Pax7</i>. Significantly, Pax7 expression is both ectopically expressed in Pax3-expressing dorsal neural tube cells and is also upregulated in the Pax3-expressing lineages. To test whether this compensatory Pax7 expression is functional, we deleted <i>Pax7</i> both systemically and lineage-specifically in hypomorphs expressing only 10% Pax3. Removal of one <i>Pax7</i> allele resulted in partial outflow tract defects, and complete loss of <i>Pax7</i> resulted in full penetrance outflow tract defects and <i>in utero</i> lethality. Moreover, combinatorial loss of Pax3 and Pax7 resulted in severe craniofacial defects and a total block of neural crest cell emigration from the neural tube. <i>Pax7<sup>Cre</sup></i> lineage mapping revealed ectopic labeling of Pax3-derived neural crest tissues and within the outflow tract of the heart, experimentally confirming the observation of ectopic activation of Pax7 in 10% <i>Pax3</i> hypomorphs. Finally, genetic cell ablation of <i>Pax7<sup>Cr</sup></i><sup>e</sup>-marked cells is sufficient to cause outflow tract defects in hypomorphs expressing only 10% Pax3, confirming that ectopic and induced Pax7 can play an overlapping functional genetic compensational role in both cardiac neural crest lineage and during craniofacial development, which is normally masked by the dominant role of Pax3.
2,335,770
Comparison of Temperature and Pain Changes between the Drip and Topical Methods of Administering the Transnasal Sphenopalatine Ganglion Block.
The objective of this study was to compare facial temperatures and the visual analogue scale (VAS) between the drip method and the topical method of transnasal sphenopalatine ganglion block (SPGB). The transnasal SPGB is administered to patients with facial or head and neck pain. In the transnasal approach, the drip and topical methods are frequently used. We compared facial temperatures and VAS after transnasal SPGB. Medical records of 74 patients who visited the pain clinic and underwent transnasal SPGB were retrospectively reviewed. A total of 156 transnasal SPGB were performed. The patients were divided into the drip-method and topical-method groups. Facial temperatures were measured in six areas of the right and left forehead, maxilla, and mandible before and 30 min after completion of the transnasal SPGB. Temperatures were compared before and 30 min after SPGB in each group and between the two groups. VAS scores were compared at the same times of SPGB in each group and between the two groups. In the drip-method group, there were significant increases at four areas of the face in temperature changes at 30 min after SPGB. In the topical-method group, there was no significant difference in the temperature changes at 30 min after SPGB. There were statistically significant differences in the facial temperature changes between the two groups in the right forehead (p = 0.001), left forehead (p = 0.015), and right maxillary area (p = 0.046). In herpes zoster, there were statistically significant differences in the VAS scores between before and 30 min after SPGB in both groups (p &lt; 0.001, p = 0.008) and between two groups (p &lt; 0.001). In migraine, there were statistically significant differences in VAS scores between before and 30 min after SPGB in both groups (p &lt; 0.001, p = 0.004) and between two groups (p = 0.014). Transnasal SPGB using two methods showed different temperature changes and VAS scores.
2,335,771
Ultrasound-guided lumbar medial branch blocks and intra-articular facet joint injections: a systematic review and meta-analysis.
There is great interest in expanding the use of ultrasound (US), but new challenges exist with its application to lumbar facet-targeted procedures. The primary aim of this systematic review and meta-analysis was to determine the risk of incorrect needle placement associated with US-guided lumbar medial branch blocks (MBB) and facet joint injections (FJI) as confirmed by fluoroscopy or computerized tomography (CT). An a priori protocol was registered, and a database search was conducted. Inclusion criteria included all study types. Risk of bias was assessed using the Cochrane risk of bias tool for randomized controlled trials and the National Heart, Lung, and Blood tool for assessing risk bias for observational cohort studies. Pooled analysis of the risk difference (RD) of incorrect needle placement was calculated. Pooled analysis of 7 studies demonstrated an 11% RD (<i>P</i> &lt; 0.0009) of incorrect needle placement for US-guided MBB confirmed using fluoroscopy with and without contrast. Pooled analysis of 3 studies demonstrated a 13% RD (<i>P</i> &lt; 0.0001) of incorrect needle placement for US-guided FJI confirmed using CT. The time to complete a single-level MBB ranged from 2.6 to 5.0 minutes. The certainty of evidence was low to very low. Ultrasound-guided lumbar MBB and FJI are associated with a significant risk of incorrect needle placement when confirmed by fluoroscopy or CT. The technical limitations of US and individual patient factors could contribute to the risk of incorrect needle placement.
2,335,772
Effect of Ultrasound-Guided Fascia Iliac Compartment Block on Serum NLRP3 and Inflammatory Factors in Patients with Femoral Intertrochanteric Fracture.
To investigate the effects of ultrasound-guided fascia iliac compartment block (FICB) on patients' postoperative pain and inflammatory factors as well as nucleotide-binding domain and leucine-rich repeat (NLR) family, pyrin domain-containing 3 (NLRP3) in femoral intertrochanteric fracture.</AbstractText>This single-blind randomized controlled study included 231 patients with femoral intertrochanteric fracture treated in our hospital from January 2017 to December 2020. All patients were randomized into two groups, the FICB group (n</i> = 116) and the general anesthesia group (control group, n</i> = 115). The serum NLRP3 levels and inflammatory factors were evaluated. The heart rate (HR), mean arterial pressure (MAP), and SpO2</sub> values were recorded. Pain condition was measured by the visual analogue scale (VAS) score. Harris score was performed for positive hip function.</AbstractText>The values of HR and MAP were significantly lower after anesthesia induction in FICB groups compared with the control group. However, no significant difference was found for SpO2</sub>. Compared with the control group, the VAS scores within 72&#x2009;h after surgery were all markedly lower in the FICB group than in the control group and showed no significant difference at 1 week after surgery. The levels of NLRP3 and interleukin 6 (IL-6) were significantly lower in FICB patients at 1&#x2009;h, 6&#x2009;h, 24&#x2009;h, 48&#x2009;h, and 72&#x2009;h after surgery compared with the control group. Tumor necrosis factor-&#x3b1;</i> (TNF-&#x3b1;</i>) showed a significant lower level in the FICB group at 1&#x2009;h and 6&#x2009;h after surgery, and significant lower levels of C-reactive protein (CRP) were found at 1&#x2009;h and 24&#x2009;h after surgery compared with the control group. Positive correlation was found between NLRP3 and IL-6, as well as CRP and VAS scores after 1&#x2009;h of the surgery. No significant difference was found for both Harris score and postoperative complications between the two groups.</AbstractText>Fascia iliac compartment block could reduce the postoperative pain, which might be associated with the decrease of the serum levels of NLRP3, CRP, IL-6, and TNF-&#x3b1;</i> in femoral intertrochanteric fracture patients.</AbstractText>Copyright &#xa9; 2022 Kailai Zhu et al.</CopyrightInformation>
2,335,773
Computer-controlled Intraligamentary local anaesthesia in extraction of mandibular primary molars: randomised controlled clinical trial.
Local anesthesia (LA) poses a threat in children more than the treatment process itself, so pediatric dentists are always demanding less painful techniques. Computer-controlled Intraligamentary anaesthesia (CC-ILA) is designed to reduce injection pain and side effects of conventional techniques. The present study aims to assess the pain experience using Computer-controlled Intraligamentary anaesthesia (CC-ILA) during injection and its effectiveness in controlling pain during extraction of mandibular primary molars in pediatric patients.</AbstractText>This randomized controlled clinical trial includes 50 healthy cooperative children, aged 5-7&#xa0;years with mandibular primary molars indicated for extraction. They were randomly allocated to two groups according to LA technique: test group received CC-ILA and control group received Inferior alveolar nerve block (IANB). Pain was measured during injection and extraction: physiologically using Heart rate (HR), subjectively using Face-Pain-Scale (FPS), and objectively using Sound-Eye-Motor scale (SEM). Patients were recalled after 24-h to record lip-biting events. Data was collected and statistically analysed.</AbstractText>A total of 50 children (29 females and 21 males) with mean age 6.10&#x2009;&#xb1;&#x2009;0.76 participated in the study. There were significantly lower scores in the heart rate in the CC-ILA group during injection (p&#x2009;=&#x2009;0.04), but no significant difference was recorded between the two groups during extraction (p&#x2009;=&#x2009;0.17). The SEM and FPS showed significant lower scores in the CC-ILA group during injection (p&#x2009;&lt;&#x2009;0.0001, p&#x2009;&lt;&#x2009;0.0001) and extraction (p&#x2009;&lt;&#x2009;0.0001, p&#x2009;=&#x2009;0.01) respectively. No children in CC-ILA group reported lip-biting after 24-h compared to 32% in IANB (p&#x2009;&lt;&#x2009;0.0001).</AbstractText>CC-ILA provides significantly less painful injections than conventional techniques and has proved to be as effective as IANB during extraction of mandibular primary molars. An important advantage of this technique was the complete absence of any lip/cheek biting events. Trial registration The study was prospectively registered in ClinicalTrials.gov with the identifier: NCT04739735 on 26th of January 2021, https://clinicaltrials.gov/ct2/show/NCT04739735 .</AbstractText>&#xa9; 2022. The Author(s).</CopyrightInformation>
2,335,774
Bellidifolin Inhibits SRY-Related High Mobility Group-Box Gene 9 to Block TGF-<i>&#x3b2;</i> Signalling Activation to Ameliorate Myocardial Fibrosis.
Myocardial fibrosis is the main morphological change of ventricular remodelling caused by cardiovascular diseases, mainly manifested due to the excessive production of collagen proteins. SRY-related high mobility group-box gene 9 (SOX9) is a new target regulating myocardial fibrosis. Bellidifolin (BEL), the active component of <i>G. acuta</i>, can prevent heart damage. However, it is unclear whether BEL can regulate SOX9 to alleviate myocardial fibrosis. The mice were subjected to isoproterenol (ISO) to establish myocardial fibrosis, and human myocardial fibroblasts (HCFs) were activated by TGF-<i>&#x3b2;</i>1 in the present study. The pathological changes of cardiac tissue were observed by HE staining. Masson staining was applied to reveal the collagen deposition in the heart. The measurement for expression of fibrosis-related proteins, SOX9, and TGF-<i>&#x3b2;</i>1 signalling molecules adopted Western blot and immunohistochemistry. The effects of BEL on HCFs, activity were detected by CCK-8. The result showed that BEL did not affect cell viability. And, the data indicated that BEL inhibited the elevations in <i>&#x3b1;</i>-SMA, Collagen I, and Collagen III by decreasing SOX9 expression. Additionally, SOX9 suppression by siRNA downregulated the TGF-<i>&#x3b2;</i>1 expression and prevented Smad3 phosphorylation, as supported by reducing the expression of <i>&#x3b1;</i>-SMA, Collagen I, and Collagen III. In vivo study verified that BEL ameliorated myocardial fibrosis by inhibiting SOX9. Therefore, BEL inhibited SOX9 to block TGF-<i>&#x3b2;</i>1 signalling activation to ameliorate myocardial fibrosis.
2,335,775
GRK5 is an essential co-repressor of the cardiac mineralocorticoid receptor and is selectively induced by finerenone.
In the heart, aldosterone (Aldo) binds the mineralocorticoid receptor (MR) to exert damaging, adverse remodeling-promoting effects. We recently showed that G protein-coupled receptor-kinase (GRK)-5 blocks the cardiac MR by directly phosphorylating it, thereby repressing its transcriptional activity. MR antagonist (MRA) drugs block the cardiac MR reducing morbidity and mortality of advanced human heart failure. Non-steroidal MRAs, such as finerenone, may provide better cardio-protection against Aldo than classic, steroidal MRAs, like spironolactone and eplerenone.</AbstractText>To investigate potential differences between finerenone and eplerenone at engaging GRK5-dependent cardiac MR phosphorylation and subsequent blockade.</AbstractText>We used H9c2 cardiomyocytes, which endogenously express the MR and GRK5.</AbstractText>GRK5 phosphorylates the MR in H9c2 cardiomyocytes in response to finerenone but not to eplerenone. Unlike eplerenone, finerenone alone potently and efficiently suppresses cardiac MR transcriptional activity, thus displaying inverse agonism. GRK5 is necessary for finerenone's inverse agonism, since GRK5 genetic deletion renders finerenone incapable of blocking cardiac MR transcriptional activity. Eplerenone alone does not fully suppress cardiac MR basal activity regardless of GRK5 expression levels. Finally, GRK5 is necessary for the anti-apoptotic, anti-oxidative, and anti-fibrotic effects of both finerenone and eplerenone against Aldo, as well as for the higher efficacy and potency of finerenone at blocking Aldo-induced apoptosis, oxidative stress, and fibrosis.</AbstractText>Finerenone, but not eplerenone, induces GRK5-dependent cardiac MR inhibition, which underlies, at least in part, its higher potency and efficacy, compared to eplerenone, as an MRA in the heart. GRK5 acts as a co-repressor of the cardiac MR and is essential for efficient MR antagonism in the myocardium.</AbstractText>&#xa9;The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.</CopyrightInformation>
2,335,776
Sugammadex reversal of muscle relaxant blockade provided less Post-Anesthesia Care Unit adverse effects than neostigmine/glycopyrrolate.
Sugammadex is a direct reversal agent of aminosteroid muscle relaxants, particularly rocuronium, with promptly and completely reverse of deep neuromuscular block (NMB), which allows better surgical conditions. Sugammadex exhibits advantages over indirect reversal agent acetylcholinesterase inhibitor neostigmine with less adverse effects. In this retrospective review, we compared the incidence of postoperative vomiting (POV), postoperative urinary retention (POUR), and hemodynamic changes between sugammadex and neostigmine/glycopyrrolate in reversal of muscular blockade. Sugammadex showed superior in all three aspects. The heart rate was 7.253 lower (P&#xa0;&lt;&#xa0;0.0001) and mean arterial pressure was 5.213 lower (P&#xa0;&lt;&#xa0;0.0001) in sugammadex group. The POV of neostigmine/glycopyrrolate group was 3.16 times more than sugammadex group (OR&#xa0;=&#xa0;3.16, p&#xa0;&lt;&#xa0;0.0001), and POUR of neostigmine/glycopyrrolate group was 4.291 times more than sugammadex group (OR&#xa0;=&#xa0;4.291, p&#xa0;&lt;&#xa0;0.0001). Sugammadex showed better hemodynamic stability, and lower incidence of POV and POUR than neostigmine/glycopyrrolate.
2,335,777
Cardiopulmonary Effects and Pharmacokinetics of Dexmedetomidine Used as an Adjunctive Analgesic to Regional Anesthesia of the Oral Cavity with Levobupivacaine in Dogs.
This study investigated the cardiopulmonary effects and pharmacokinetics of dexmedetomidine (DEX) used as an adjunctive analgesic for regional anesthesia of the oral cavity with levobupivacaine in anesthetized dogs. Forty dogs were randomly assigned to four groups of 10 dogs. All dogs received levobupivacaine (4 blocks) with DEX IO (infraorbital block, <i>n</i> = 10) or IA (inferior alveolar block, <i>n</i> = 10) or placebo (PLC; <i>n</i> = 10) or DEX (<i>n</i> = 10) was injected intravenously (IV) after administration of levobupivacaine. The dose of DEX was always 0.5 &#xb5;g/kg. Cardiopulmonary parameters were recorded, and blood was drawn for the quantification of DEX in plasma using LC-MS/MS. Heart rate was lower in all LB + DEX groups, while mean arterial pressure (MAP) was higher in the LB + DEX IV and LB + DEX IA groups compared to the LB + PLC IV group. Compared to DEX IV, IO and IA administration resulted in lower MAP up to 2 min after application. Absorption of DEX was faster at IO administration (C<sub>max</sub> and T<sub>max</sub> were 0.47 &#xb1; 0.08 ng/mL and 7.22 &#xb1; 1.28 min and 0.76 &#xb1; 0.09 ng/mL and 7.50 &#xb1; 1.63 min for the IO and IA block, respectively). The IA administration resulted in better bioavailability and faster elimination (t<sub>1/2</sub> was 63.44 &#xb1; 24.15 min and 23.78 &#xb1; 3.78 min for the IO and IA block, respectively). Perineural administration of DEX may be preferable because of the less pronounced cardiovascular response compared to IV administration.
2,335,778
Abiotic factors and aging alter the physicochemical characteristics and toxicity of Phosphorus nanomaterials to zebrafish embryos.
Nanoscale phosphorus (P)-based formulations are being investigated as potentially new fertilizers to overcome the challenges of conventional bulk P fertilizers in agriculture, including low efficacy rates and high application levels. After agricultural applications, the NMs may be released into aquatic environments and transform over time (by aging) or in the presence of abiotic factors such as natural organic matter or sunlight exposure. It is, therefore, important to investigate the physicochemical changes of NMs in environmentally realistic conditions and assess their potential acute and sublethal toxic effects on aquatic organisms. To investigate this, two separate studies were conducted: 1. the effects of 3-months aged P-based NMs on zebrafish embryos, and 2. the influence of humic acid (HA), UV exposure, or a combination of both on P-based NM toxicity in zebrafish embryos. Four different types of nanohydroxyapatites (nHAPs) and a nanophosphorus (nP) were included in the study. These NMs differed in their physicochemical properties, most prominently their shape and size. Environmental transformations were observed for P-based NMs due to aging or interaction with abiotic factors. The aging of the NMs increased the hydrodynamic diameter (HDD) of rod- and needle-shaped NMs and decreased the size of the platelet and spherical NMs, whereas interactions with HA and UV decreased the NMs' HDD. It was observed that no LC<sub>50</sub> (survival) and IC<sub>50</sub> (hatch and heart rates) were obtained when the zebrafish embryos were exposed to the aged NMs or when NMs were added in the presence of HA and UV. Overall, these results suggest that P-based NMs cause no acute toxicity and minimal sub-lethal toxicity to zebrafish embryos in environmentally realistic experimental conditions.
2,335,779
Femoral and sciatic nerve blockade of the pelvic limb with and without obturator nerve block for tibial plateau levelling osteotomy surgery in dogs.
To determine the effect of blocking the obturator nerve in addition to performing femoral nerve and sciatic nerve blocks on intraoperative nociception in dogs undergoing unilateral tibial plateau levelling osteotomy (TPLO) surgery.</AbstractText>Prospective, blinded, randomized, placebo-controlled, clinical comparison.</AbstractText>A total of 88 client-owned dogs undergoing unilateral TPLO surgery (100 procedures).</AbstractText>Dogs were randomly assigned to either group FSO (femoral, sciatic and obturator nerve blocks) [n&#xa0;= 50; ropivacaine 0.75% (0.75 mg kg-1</sup>)] or group FSP (femoral, sciatic and placebo) [n&#xa0;= 50; ropivacaine 0.75% (0.75 mg kg-1</sup>) femoral and sciatic nerve blocks plus saline solution 0.9% (0.1 mL kg-1</sup>) as a placebo injection around the obturator nerve]. The anaesthetic protocol was standardized. Data collection included intraoperative cardiopulmonary variables and opioid consumption. Rescue analgesia consisted of an intravenous bolus of fentanyl (2 &#x3bc;g kg-1</sup>) and was administered when a change in cardiopulmonary variables (20% increase in mean arterial pressure or heart rate) was attributed to a sympathetic stimulus. Data were analysed using generalized linear mixed models, cross tables and multivariable binary logistic regression. Results were expressed as adjusted odds ratios with 95% confidence intervals and Wald p values (&#x3b1;&#xa0;= 0.05).</AbstractText>There were no clinically relevant differences between groups in intraoperative cardiopulmonary variables and need for rescue analgesia. The requirement for rescue analgesia was significantly higher in dogs with a body weight &gt;34 kg.</AbstractText>Anaesthesia of the obturator nerve in addition to the femoral and sciatic nerves was not associated with clinically significant differences in cardiopulmonary variables or a reduced need for rescue analgesia. Therefore, the clinical benefit of an additional obturator nerve block for intraoperative antinociception in dogs undergoing unilateral TPLO surgery using the described anaesthetic regimen is low.</AbstractText>Copyright &#xa9; 2022 Association of Veterinary Anaesthetists and American College of Veterinary Anesthesia and Analgesia. Published by Elsevier Ltd. All rights reserved.</CopyrightInformation>
2,335,780
The ultrasound-guided funicular block in cats undergoing orchiectomy: ropivacaine injection into the spermatic cord to improve intra and postoperative analgesia.
The orchiectomy in cats is a common surgical procedure with medium level of pain and for this reason requires intra and postoperative analgesia management. The aim of this study was to compare intra and postoperative pain in two groups of cats undergoing orchiectomy. Sixty healthy cats were randomly assigned in two groups (n&#x2009;=&#x2009;30) to receive pre surgery ropivacaine hydrochloride (0.2&#xa0;mL/kg at 0.5%) (R Group) or NaCl 0.9% (C group) into the spermatic cord. The intraoperative evaluation was carried out using the cardiorespiratory stability parameters and eventually administration of rescue analgesia. A rescue analgesia (fentanyl 2&#xa0;&#xb5;g/kg) was administered during orchiectomy in case of considerable increase of blood pressure, heart rate or respiratory rate. The postoperative evaluation was been done using scores following a UNESP-Botucatu multimodal scale for 6&#xa0;h post-surgery.</AbstractText>As result, cats in R group responded better to surgical procedure, maintaining lower postoperative pain scores than C group.</AbstractText>The ultrasound-guided funicular block used in this study, as already demonstrated in dogs, is a good method to protect the cats from surgical pain and ensure a good level of surgical analgesia.</AbstractText>&#xa9; 2022. The Author(s).</CopyrightInformation>
2,335,781
The Salzburg 10/7 HIIT shock cycle study: the effects of a 7-day high-intensity interval training shock microcycle with or without additional low-intensity training on endurance performance, well-being, stress and recovery in endurance trained athletes-study protocol of a randomized controlled trial.
Performing multiple high-intensity interval training (HIIT) sessions in a compressed period of time (approximately 7-14&#xa0;days) is called a HIIT shock microcycle (SM) and promises a rapid increase in endurance performance. However, the efficacy of HIIT-SM, as well as knowledge about optimal training volumes during a SM in the endurance-trained population have not been adequately investigated. This study aims to examine the effects of two different types of HIIT-SM (with or without additional low-intensity training (LIT)) compared to a control group (CG) on key endurance performance variables. Moreover, participants are closely monitored for stress, fatigue, recovery, and sleep before, during and after the intervention using innovative biomarkers, questionnaires, and wearable devices.</AbstractText>This is a study protocol of a randomized controlled trial that includes the results of a pilot participant. Thirty-six endurance trained athletes will be recruited and randomly assigned to either a HIIT-SM (HSM) group, HIIT-SM with additional LIT (HSM&#x2009;+&#x2009;LIT) group or a CG. All participants will be monitored before (9&#xa0;days), during (7&#xa0;days), and after (14&#xa0;days) a 7-day intervention, for a total of 30&#xa0;days. Participants in both intervention groups will complete 10 HIIT sessions over 7 consecutive days, with an additional 30&#xa0;min of LIT in the HSM&#x2009;+&#x2009;LIT group. HIIT sessions consist of aerobic HIIT, i.e., 5&#x2009;&#xd7;&#x2009;4&#xa0;min at 90-95% of maximal heart rate interspersed by recovery periods of 2.5&#xa0;min. To determine the effects of the intervention, physiological exercise testing, and a 5 km time trial will be conducted before and after the intervention.</AbstractText>The feasibility study indicates good adherence and performance improvement of the pilot participant. Load monitoring tools, i.e., biomarkers and questionnaires showed increased values during the intervention period, indicating sensitive variables.</AbstractText>This study will be the first to examine the effects of different total training volumes of HIIT-SM, especially the combination of LIT and HIIT in the HSM&#x2009;+&#x2009;LIT group. In addition, different assessments to monitor the athletes' load during such an exhaustive training period will allow the identification of load monitoring tools such as innovative biomarkers, questionnaires, and wearable technology.</AbstractText>clinicaltrials.gov, NCT05067426. Registered 05 October 2021-Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT05067426 . Protocol Version Issue date: 1 Dec 2021. Original protocol. Authors: TLS, NH.</AbstractText>&#xa9; 2022. The Author(s).</CopyrightInformation>
2,335,782
Thai Patients' Drug Safety Knowledge and Perceptions Relating to Different Forms of Written Medicine Information: A Comparative Study.
The aim of the study was to evaluate the medication safety knowledge, quality of the written medicine information (WMI), and perceptions of taking the medicines in patients receiving package inserts (PIs) in comparison with patient information leaflets (PILs).</AbstractText>A cross-sectional, comparative study was conducted from December 2020 to May 2021 at two university hospitals in Thailand. Outpatients who visited the pharmacy departments and were prescribed one of the three medicines: atorvastatin, celecoxib, or metformin were randomly selected by a permuted block randomization. The medication safety knowledge was measured using a set of validated and closed questions. The quality of the WMI was measured by the Consumer Information Rating Form (CIRF). Satisfaction with information and perceptions of the benefits and risks of medications were rated by the participants using a visual analog scale (0 to 10).</AbstractText>Of the 1150 invited patients, 750 completed the questionnaires (65.2%). A higher proportion of respondents with high level of medication safety knowledge was found in those reading the PILs than the PIs (44.5% and 20.8%, respectively). The type of leaflet received was a significant predictor of the high knowledge level (p &lt; 0.001). The mean CIRF scores were significantly higher among those reading the PILs than the PIs (p &lt; 0.001). Patients reading the PILs were also more satisfied with the information and had more positive perceptions of the benefits from taking medicines and intention to adhere than those reading the PIs. Patients' perceptions of risks after reading both leaflets were moderate (median score = 5.0), with the PIL group having slightly more concern about risks than the PI group.</AbstractText>The PILs showed superior effectiveness to the PIs in enhancing knowledge about medication safety, providing greater satisfaction with the information, and positive perceptions of benefit and intention to comply with the medications. PILs should be provided more frequently to patients receiving medicines than PIs.</AbstractText>&#xa9; 2022 Wongtaweepkij et al.</CopyrightInformation>
2,335,783
Autophagy is Involved in Cardiac Remodeling in Response to Environmental Temperature Change.
<b>Objectives:</b> To study the reversibility of cold-induced cardiac hypertrophy and the role of autophagy in this process. <b>Background:</b> Chronic exposure to cold is known to cause cardiac hypertrophy independent of blood pressure elevation. The reversibility of this process and the molecular mechanisms involved are unknown. <b>Methods:</b> Studies were performed in two-month-old mice exposed to cold (4&#xb0;C) for 24&#xa0;h or 10&#xa0;days. After exposure, the animals were returned to room temperature (21&#xb0;C) for 24&#xa0;h or 1&#xa0;week. <b>Results:</b> We found that chronic cold exposure significantly increased the heart weight/tibia length (HW/TL) ratio, the mean area of cardiomyocytes, and the expression of hypertrophy markers, but significantly decreased the expression of genes involved in fatty acid oxidation<i>.</i> Echocardiographic measurements confirmed hypertrophy development after chronic cold exposure<i>.</i> One week of deacclimation for cold-exposed mice fully reverted the morphological, functional, and gene expression indicators of cardiac hypertrophy. Experiments involving injection of leupeptin at 1&#xa0;h before sacrifice (to block autophagic flux) indicated that cardiac autophagy was repressed under cold exposure and re-activated during the first 24&#xa0;h after mice were returned to room temperature. Pharmacological blockage of autophagy for 1&#xa0;week using chloroquine in mice subjected to deacclimation from cold significantly inhibited the reversion of cardiac hypertrophy. <b>Conclusion:</b> Our data indicate that mice exposed to cold develop a marked cardiac hypertrophy that is reversed after 1&#xa0;week of deacclimation. We propose that autophagy is a major mechanism underlying the heart remodeling seen in response to cold exposure and its posterior reversion after deacclimation.
2,335,784
Kearns-Sayre Syndrome Minus: Two Cases of Identical Large-Scale Mitochondrial DNA Deletions with Presentations outside the Classical Triad.
A curious triad of retinitis pigmentosa, external ophthalmoplegia, and complete heart block was presented by Sayre et al. in 1958. Since then, the disorder named Kearns-Sayre syndrome (KSS) has come to represent patients with mitochondrial DNA deletions presenting before adulthood, primarily with chronic progressive external ophthalmoplegia (CPEO) and pigmentary retinopathy. However, it is increasingly noted that the presentations can well be variable despite similar genetic deletions. Here, we present two cases with identical large-scale mitochondrial DNA deletions but very dissimilar outlook.
2,335,785
Health Outcomes of 215 Mothers of Children With Autoimmune Congenital Heart Block: Analysis of the French Neonatal Lupus Syndrome Registry.
Transplacental passage of maternal anti-SSA and anti-SSB antibodies, potentially associated with maternal autoimmune diseases, can cause neonatal lupus syndrome. Given the paucity of data in this setting, we report short- and long-term outcomes of mothers of offspring with congenital heart block (CHB).</AbstractText>This retrospective study included anti-SSA/SSB antibody-positive mothers of fetuses with high-degree CHB and focused on their health status before pregnancy, at CHB diagnosis, and thereafter.</AbstractText>We analyzed 215 women with at least 1 pregnancy with CHB. Prior to this diagnosis, only 52 (24%) mothers had been diagnosed with an autoimmune disease, mainly systemic lupus erythematosus (SLE; n = 26, 12%) and Sj&#xf6;gren syndrome (SS; n = 16, 7%). Six more were diagnosed with an autoimmune disease during the index pregnancy. Of the 157 mothers (73%) with no such diagnosis at childbirth, 77 (49%) developed one after a median follow-up of 11 years (range: 21 days to 54 years). By the end of follow-up, 135 women (63%) had an autoimmune disease diagnosis, mainly SLE (n = 54, 25%) and SS (n = 72, 33%). Three patients with SLE had renal involvement, and only 6 (3%) had required an immunosuppressive drug at any point. The symptoms best predicting autoimmune disease development were arthralgia and myalgia (P</i> &lt; 0.001), dry syndrome (P</i> = 0.01), and parotid swelling (P</i> = 0.05).</AbstractText>One-quarter of the patients had an autoimmune disease diagnosis at the time of the fetal CHB diagnosis. Nearly half of those without an initial diagnosis progressed during follow-up, most without severe manifestations. Severe diseases such as lupus nephritis were rarely seen, and immunosuppressive drugs were rarely required.</AbstractText>Copyright &#xa9; 2022 by the Journal of Rheumatology.</CopyrightInformation>
2,335,786
An online breathing and wellbeing programme (ENO Breathe) for people with persistent symptoms following COVID-19: a parallel-group, single-blind, randomised controlled trial.
There are few evidence-based interventions for long COVID; however, holistic approaches supporting recovery are advocated. We assessed whether an online breathing and wellbeing programme improves health related quality-of-life (HRQoL) in people with persisting breathlessness following COVID-19.</AbstractText>We conducted a parallel-group, single-blind, randomised controlled trial in patients who had been referred from one of 51 UK-based collaborating long COVID clinics. Eligible participants were aged 18 years or older; were recovering from COVID-19 with ongoing breathlessness, with or without anxiety, at least 4 weeks after symptom onset; had internet access with an appropriate device; and were deemed clinically suitable for participation by one of the collaborating COVID-19 clinics. Following clinical assessment, potential participants were given a unique online portal code. Participants were randomly assigned (1:1) to either immediate participation in the English National Opera (ENO) Breathe programme or to usual care. Randomisation was done by the research team using computer-generated block randomisation lists, with block size 10. The researcher responsible for randomisation was masked to responses. Participants in the ENO Breathe group participated in a 6-week online breathing and wellbeing programme, developed for people with long COVID experiencing breathlessness, focusing on breathing retraining using singing techniques. Those in the deferred group received usual care until they exited the trial. The primary outcome, assessed in the intention-to-treat population, was change in HRQoL, assessed using the RAND 36-item short form survey instrument mental health composite (MHC) and physical health composite (PHC) scores. Secondary outcome measures were the chronic obstructive pulmonary disease assessment test score, visual analogue scales (VAS) for breathlessness, and scores on the dyspnoea-12, the generalised anxiety disorder 7-item scale, and the short form-6D. A thematic analysis exploring participant experience was also conducted using qualitative data from focus groups, survey responses, and email correspondence. This trial is registered with ClinicalTrials.gov, NCT04830033.</AbstractText>Between April 22 and May 25, 2021, 158 participants were recruited and randomly assigned. Of these, eight (5%) individuals were excluded and 150 participants were allocated to a treatment group (74 in the ENO Breathe group and 76 in the usual care group). Compared with usual care, ENO Breathe was associated with an improvement in MHC score (regression coefficient 2&#xb7;42 [95% CI 0&#xb7;03 to 4&#xb7;80]; p=0&#xb7;047), but not PHC score (0&#xb7;60 [-1&#xb7;33 to 2&#xb7;52]; p=0&#xb7;54). VAS for breathlessness (running) favoured ENO Breathe participation (-10&#xb7;48 [-17&#xb7;23 to -3&#xb7;73]; p=0&#xb7;0026). No other statistically significant between-group differences in secondary outcomes were observed. One minor self-limiting adverse event was reported by a participant in the ENO Breathe group who felt dizzy using a computer for extended periods. Thematic analysis of ENO Breathe participant experience identified three key themes: (1) improvements in symptoms; (2) feeling that the programme was complementary to standard care; and (3) the particular suitability of singing and music to address their needs.</AbstractText>Our findings suggest that an online breathing and wellbeing programme can improve the mental component of HRQoL and elements of breathlessness in people with persisting symptoms after COVID-19. Mind-body and music-based approaches, including practical, enjoyable, symptom-management techniques might have a role supporting recovery.</AbstractText>Imperial College London.</AbstractText>Copyright &#xa9; 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. Published by Elsevier Ltd.. All rights reserved.</CopyrightInformation>
2,335,787
Association of Socioeconomic Status and Infarct Volume With Functional Outcome in Patients With Ischemic Stroke.
Long-term disability after stroke is associated with socioeconomic status (SES). However, the reasons for such disparities in outcomes remain unclear.</AbstractText>To assess whether lower SES is associated with larger admission infarct volume and whether initial infarct volume accounts for the association between SES and long-term disability.</AbstractText><AbstractText Label="DESIGN, SETTING, AND PARTICIPANTS">This cohort study was conducted in a prospective, consecutive population (n = 1256) presenting with acute ischemic stroke who underwent magnetic resonance imaging (MRI) within 24 hours of admission. Patients were recruited in Massachusetts General Hospital, Boston, from May 31, 2009, to December 31, 2011. Data were analyzed from May 1, 2019, until June 30, 2020.</AbstractText>Initial stroke severity (within 24 hours of presentation) was determined using clinical (National Institutes of Health Stroke Scale [NIHSS]) and imaging (infarct volume by diffusion-weighted MRI) measures. Stroke etiologic subtypes were determined using the Causative Classification of Ischemic Stroke algorithm. Long-term stroke disability was measured using the modified Rankin Scale. Socioeconomic status was estimated using zip code-derived median household income and census block group-derived area deprivation index (ADI). Regression and mediation analyses were performed.</AbstractText>A total of 1098 patients had imaging and SES data available (mean [SD] age,&#x2009;68.1 [15.7] years; 607 men [55.3%]). Income was inversely associated with initial infarct volume (standardized &#x3b2;, -0.074 [95% CI, -0.127 to -0.020]; P&#x2009;=&#x2009;.007), initial NIHSS (standardized &#x3b2;, -0.113 [95% CI, -0.171 to -0.054]; P&#x2009;&lt; .001), and long-term disability (standardized &#x3b2;, -0.092 [95% CI, -0.149 to -0.035]; P&#x2009;=&#x2009;.001), which remained significant after multivariable adjustments. Initial stroke severity accounted for 64% of the association between SES and long-term disability (standardized &#x3b2;, -0.063 [95% CI, -0.095 to -0.029]; P&#x2009;&lt;&#x2009;.05). Findings were similar when SES was alternatively assessed using ADI.</AbstractText>The findings of this cohort study suggest that lower SES is associated with larger infarct volumes on presentation. These SES-associated differences in initial stroke severity accounted for most of the subsequent disparities in long-term disability in this study. These findings shift the culpability for SES-associated disparities in poststroke disability from poststroke factors to those that precede presentation.</AbstractText>
2,335,788
Pregnancy outcomes of a joint obstetric and rheumatology clinic in a tertiary centre: a 2-year retrospective study of 98 pregnancies.
The purpose of this study was to describe the maternal and fetal outcomes in patients with inflammatory rheumatic diseases attending a joint rheumatology and obstetric clinic in the UK.</AbstractText>Electronic records of 98 patients attending the joint rheumatology and obstetric clinic between January 2018 and January 2020 were analysed. Data on patient demographics, characteristics (including age, ethnicity, diagnosis, and medications taken during pregnancy), pregnancy outcomes (miscarriage, stillbirth or live birth), maternal complications [infection, post-partum haemorrhage (PPH) or pre-eclampsia] and fetal complications (sepsis, congenital heart block, prematurity and low birth weight) were tabulated. Subgroups of patients based on maternal diagnosis, medications and Ro/La antibody status were described in a similar manner.</AbstractText>The cohort was found to be predominantly Caucasian women &gt;30&#x2009;years of age, diagnosed with a CTD. Of 98 pregnancies, 97% (n</i>&#x2009;=&#x2009;95) resulted in a live birth, with only 2% resulting in miscarriage (n</i>&#x2009;=&#x2009;2) and 1% in stillbirth (n</i>&#x2009;=&#x2009;1). The median duration of gestation was 38 (interquartile range 37-39)&#x2009;weeks, and the majority of patients had a normal vaginal delivery (35%, n</i>&#x2009;=&#x2009;34), whereas 30% had emergency Caesarean sections (n</i>&#x2009;=&#x2009;29). The median birth weight was 3120&#xa0;(interquartile range 2690-3410)&#x2009;g. The most common maternal complications were PPH (56%, n</i>&#x2009;=&#x2009;54) and infection (22%, n</i>&#x2009;=&#x2009;21). The most common fetal complications were prematurity (23%, n</i>&#x2009;=&#x2009;22) and low birth weight (17%, n</i>&#x2009;=&#x2009;16).</AbstractText>We report favourable outcomes from this service model, including a high live birth rate, a low miscarriage rate and a high median birth weight. With limited reported data of pregnancy outcomes from joint obstetric/rheumatology clinics, this service model might be beneficial in other centres.</AbstractText>&#xa9; The Author(s) 2022. Published by Oxford University Press on behalf of the British Society for Rheumatology.</CopyrightInformation>
2,335,789
Comparative Study of Lipid- and Polymer-Supported Membranes Obtained by Vesicle Fusion.
We compare the fusion of giant lipid and block-copolymer vesicles on glass and poly(dimethylsiloxane) substrates. Both types of vesicles are similar in their ability to fuse to hydrophilic substrates and form patches with distinct heart or circular shapes. We use epifluorescence/confocal microscopy and atomic force microscopy on membrane patches to (i) characterize bilayer fluidity and patch-edge stability and (ii) follow the intermediate stages in the formation of continuous supported bilayers. Polymer membranes show much lower membrane fluidity and, unlike lipids, an inability of adjacent patches to fuse spontaneously into continuous membranes. We ascribe this effect to hydration repulsion forces acting between the patch edges, which can be diminished by increasing the sample temperature. We show that large areas of supported polymer membranes can be created by fusing giant vesicles on glass or poly(dimethylsiloxane) substrates and annealing their edges.
2,335,790
Effects of the Femoral Nerve Block and Adductor Canal Block on Tourniquet Response and Postoperative Analgesia in Total Knee Arthroplasty.
Tourniquet has emerged as an important role in surgical procedures, sixty patients undergoing elective total knee arthroplasty are randomly divided into the nerve block group and adductor duct block group in this paper. The changes of mean arterial pressure (MAP) and heart rate (HR) at different time points during operation, the changes of VAS scores at resting pain and exercise pain, and the changes of quadriceps femur muscle strength at different time points after operation are observed in 2 groups. The experimental results show that compared with adductor duct block, femoral nerve block can better relieve the intraoperative tourniquet reaction without affecting the postoperative analgesic effect and the muscle strength of quadriceps femurs.
2,335,791
A Novel Study of Correlation of Lipid Parameters with Clinical Profile, Staging and Onset of Rhino Orbito Cerebral Mucormycosis Covid 19 Pandemic.
Mucormycosis is an angioinvasive disease caused by mold fungi of the genus Rhizopus, Mucor. India has reported surge in cases of COVID 19 associated Mucormycosis over the past few months due to the increasing frequency of risk factors like corticosteroid therapy, uncontrolled diabetes, neutropenia and obesity. Studies have shown that eukaryote cell membrane contains cholesterol and fungal cell wall contains ergosterol with lanosterol being precursor for both and ergosterol is essential for mitochondrial DNA maintenance in fungi, as cholesterol is in humans. The current study is based on the hypothesis that fungi can use human cholesterol as a raw material to maintain its cell function and accentuate its own multiplication and this can indirectly be shown by the association between deranged lipid parameters in an individual with severity of Mucormycosis. Thus present study aims to estimate the lipid parameters and correlate the serum lipid parameters with clinical profile, stage of the disease and duration of onset of mucormycosis in patients with COVID associated Mucormycosis.</AbstractText>This is a cross sectional study conducted on 103 patients diagnosed with COVID 19 associated mucormycosis admitted to the hospitals attached to BMCRI from July 2021 to September 2021. Serum fasting lipid profile and other biochemical parameters were determined. The correlation of lipid levels with clinical profile, onset and staging of mucormycosis patients were obtained.</AbstractText>The age distribution varied from 22yrs to 75yrs of whom majority were males (83.4%). Among patients with mucormycosis of all severity stages, nasal block (79.6%) was found to be most common symptom followed by headache(75.7%). Among patients with mucormycosis most frequent associated comorbidity was Diabetes mellitus (DM) followed by hypertension (HTN) followed by DM and HTN followed by Ischemic Heart Disease (IHD) followed by DM,HTN and IHD. The study showed statistically significant correlation such that severity of mucormycosis increased with progressive worsening lipid parameters. It also showed statistically significant correlation such that patients with increasing TC,LDL,VLDL,TG levels had shorter COVID 19 onset to mucormycosis onset duration.</AbstractText>The study showed a positive correlation between serum lipid profile and staging of mucormycosis and negative correlation between lipid levels with duration between onset of COVID 19 to onset of mucormycosis. Hence serum lipid profile can be used as an excellent marker to predict the severity and prognosis of COVID 19 associated mucormycosis.</AbstractText>&#xa9; Journal of the Association of Physicians of India 2011.</CopyrightInformation>
2,335,792
Neurons in the Dorsomedial Hypothalamus Promote, Prolong, and Deepen Torpor in the Mouse.
Torpor is a naturally occurring, hypometabolic, hypothermic state engaged by a wide range of animals in response to imbalance between the supply and demand for nutrients. Recent work has identified some of the key neuronal populations involved in daily torpor induction in mice, in particular, projections from the preoptic area of the hypothalamus to the dorsomedial hypothalamus (DMH). The DMH plays a role in thermoregulation, control of energy expenditure, and circadian rhythms, making it well positioned to contribute to the expression of torpor. We used activity-dependent genetic TRAPing techniques to target DMH neurons that were active during natural torpor bouts in female mice. Chemogenetic reactivation of torpor-TRAPed DMH neurons in calorie-restricted mice promoted torpor, resulting in longer and deeper torpor bouts. Chemogenetic inhibition of torpor-TRAPed DMH neurons did not block torpor entry, suggesting a modulatory role for the DMH in the control of torpor. This work adds to the evidence that the preoptic area of the hypothalamus and the DMH form part of a circuit within the mouse hypothalamus that controls entry into daily torpor.<b>SIGNIFICANCE STATEMENT</b> Daily heterotherms, such as mice, use torpor to cope with environments in which the supply of metabolic fuel is not sufficient for the maintenance of normothermia. Daily torpor involves reductions in body temperature, as well as active suppression of heart rate and metabolism. How the CNS controls this profound deviation from normal homeostasis is not known, but a projection from the preoptic area to the dorsomedial hypothalamus has recently been implicated. We demonstrate that the dorsomedial hypothalamus contains neurons that are active during torpor. Activity in these neurons promotes torpor entry and maintenance, but their activation alone does not appear to be sufficient for torpor entry.
2,335,793
Comparative performance of verbal autopsy methods in identifying causes of adult mortality: A case study in India.
<AbstractText Label="BACKGROUND &amp; OBJECTIVES">Cause of death assignment from verbal autopsy (VA) questionnaires is conventionally accomplished through physician review. However, since recently, computer softwares have been developed to assign the cause of death. The present study evaluated the performance of computer software in assigning the cause of death from the VA, as compared to physician review.</AbstractText>VA of 600 adult deaths was conducted using open- and close-ended questionnaires in Nandpur Kalour Block of Punjab, India. Entire VA forms were used by two physicians independently to assign the cause of death using the International Statistical Classification of Diseases and Related Health Problems (ICD)-10 codes. In case of disagreement between them, reconciliation was done, and in cases of persistent disagreements finally, adjudication was done by a third physician. InterVA-4-generated causes from close-ended questionnaires were compared using Kappa statistics with causes assigned by physicians using a questionnaire having both open- and close-ended questions. At the population level, Cause-Specific Mortality Fraction (CSMF) accuracy and P-value from McNemar's paired Chi-square were calculated. CSMF accuracy indicates the absolute deviation of a set of proportions of causes of death out of the total number of deaths between the two methods.</AbstractText>The overall agreement between InterVA-4 and physician coding was 'fair' (&#x3ba;=0.42; 95% confidence interval 0.38, 0.46). CSMF accuracy was found to be 0.71. The differences in proportions from the two methods were statistically different as per McNemar's paired Chi-square test for ischaemic heart diseases, liver cirrhosis and maternal deaths.</AbstractText><AbstractText Label="INTERPRETATION &amp; CONCLUSIONS">In comparison to physicians, assignment of causes of death by InterVA- 4 was only 'fair'. Hence, it may be appropriate to continue with physician review as the optimal option available in the current scenario.</AbstractText>
2,335,794
Comparison of Postoperative Pulmonary Outcomes in Patients Undergoing Cesarean Section under General and Spinal Anesthesia: A Single-Center Audit.
Regional anesthesia (RA), i.e., spinal or epidural anesthesia when performed for lower segment cesarean section (LSCS) provides excellent surgical conditions, avoiding manipulation of the maternal airway, maternal satisfaction, and good postoperative analgesia. However, in situations like fetal distress (fetal heart rate abnormalities), obstetric indications (abruption of placenta, antenatal placental bleeding, cord prolapse), maternal refusal for RA, contraindications to neuraxial anesthesia (anticoagulation, coagulopathy), and at times failed RA general anesthesia (GA) is administered. Several studies have demonstrated greater mortality and morbidity when LSCS is done under GA when compared to neuraxial block.</AbstractText>After necessary approval, we retrospectively reviewed data over a period of 1 year (January 1, 2020-December 31, 2020) of LSCS under GA versus RA. The aim was to compare immediate postoperative complications, postoperative pulmonary complications up to 4 weeks from the time of elective and emergency LSCS under either RA or GA.</AbstractText>Of the 753 patients who underwent LSCS in one calendar year, there were 272 (36.12%) elective and 481 (63.87%) emergency LSCS. The number of elective LSCS under neuraxial block was 219 (29.09%) and under GA were 53 (7.03%). Emergency LSCS done under neuraxial block were 268 (35.59%) and under GA were 213 (28.28%). There were no adverse pulmonary complications at the end of 4 weeks in either group.</AbstractText>RA provides maternal satisfaction and excellent perioperative analgesia in LSCS. Safe GA can be achieved with proper airway planning, if case is attended by at least two anesthesiologist with adequate preoperative fasting, and postoperative monitoring.</AbstractText>Copyright: &#xa9; 2022 Anesthesia: Essays and Researches.</CopyrightInformation>
2,335,795
Effect of Injection Speed of Heavy Bupivacaine in Spinal Anesthesia on Quality of Block and Hemodynamic Changes.
Spinal anesthesia is a technique widely used for gynecological, lower abdominal, pelvic and lower limb procedures. Even though it causes a profound nerve block, it is associated with profound hypotension.</AbstractText>To assess the effect of the speed of injection of heavy bupivacaine on quality of block and hemodynamic changes in patients undergoing gynecological surgeries under spinal anesthesia.</AbstractText>This was a prospective randomized study conducted on 40 patients. Group F patients were given 3.2 mL of 0.5% heavy bupivacaine intrathecally in 15 s and Group S patients were given the same drug over 60 s. The time to achieve T10</sub> dermatomal block, maximum block height, block height at 5 min were recorded. Heart rate (HR), systolic, diastolic blood pressures, and mean arterial pressures (MAP) were also recorded at different time points.</AbstractText>HR, systolic BP, diastolic BP, and MAPs and mean block height at 5 min were comparable between the two groups at all time points. The time to achieve T10</sub> dermatome block was significantly faster in Group F (1.85 &#xb1; 1.14 min) as compared to Group S (3.98 &#xb1; 1.58 min). Majority of patients in Group F (65%) had a maximum block up to T6</sub> and those in Group S (45%) had a block upto T4</sub>. The usage of vasopressors was found to be significantly higher in Group F compared to Group S with P</i> = 0.041.</AbstractText>Using faster speed of injection of heavy bupivacaine during spinal anesthesia can lead to faster achievement of blockade but with significantly higher usage of vasopressors.</AbstractText>Copyright: &#xa9; 2022 Anesthesia: Essays and Researches.</CopyrightInformation>
2,335,796
A Comparative Study on Sedation Efficacy Between General and Regional Anesthesia with Dexmedetomidine in Patients Under Maxillofacial Surgery.
Securing the airway in the surgery of maxillofacial disorders and traumas is fundamental during the operation. The present study aims to investigate the beneficial sedative effects of dexmedetomidine (DEX) in patients who underwent maxillofacial surgery with regional anesthesia compared to general anesthesia.</AbstractText>Fifty patients, aged 20-45 years old were randomly divided into two groups of regional anesthesia (RA) and general anesthesia (GA) (each n=25). The group RA received regional block with sedation (DEX: 1 &#x3bc;g/kg infused over 10 min followed by the maintenance dose of 0.5 &#x3bc;g/kg/h) and the group GA underwent general anesthesia (DEX: 0.1 &#x3bc;g/kg/min over 10 min followed by 0.4-0.7 &#x3bc;g/kg/h). Postoperative pain scores, anesthesia outcomes, hemodynamic parameters, the time of the post-anesthesia care unit (PACU) discharge and intra and postoperative complications were comparatively assessed in both groups.</AbstractText>The baseline characteristics of the patients (age, gender, BMI, and ASA physical status) showed no differences between the two groups (P&gt;0.05). Although the duration of surgery and recovery time showed no differences between the groups, the duration of anesthesia and extubation time was remarkably lower in the RA group than in the GA group (P&lt;0.01). Administration of nerve blocks demonstrated less pain and longer sleep time in the postoperative phase as compared to the GA group. Heart rate and mean arterial blood pressure were significantly less in the RA group at the end of the loading dose of DEX and incision time (P&lt;0.05). SpO2, respiration rate and Ramsay sedation scale did not exhibit any significant differences between the two groups at all-time points (P&gt;0.05). No significant differences were observed with regard to the adverse events between the two groups (P&gt;0.05).</AbstractText>Although our findings revealed that both methods are suitable and safe methods for maxillofacial surgery, the outcomes of anesthesia with regional block and sedation include less pain in the postoperative phase, shorter extubation time and earlier discharge from the PACU demonstrated that this method is more reliable for maxillofacial surgery. Further controlled studies are needed to compare the effectiveness and safety profiles of two RA and GA techniques and also to compare DEX with other anesthetic agents to achieve optimum outcomes in maxillofacial surgeries.</AbstractText>Copyright&#xa9; Bentham Science Publishers; For any queries, please email at [email protected].</CopyrightInformation>
2,335,797
A selectivity filter mutation provides insights into gating regulation of a K<sup>+</sup> channel.
G-protein coupled inwardly rectifying potassium (GIRK) channels are key players in inhibitory neurotransmission in heart and brain. We conducted molecular dynamics simulations to investigate the effect of a selectivity filter (SF) mutation, G154S, on GIRK2 structure and function. We observe mutation-induced loss of selectivity, changes in ion occupancy and altered filter geometry. Unexpectedly, we reveal aberrant SF dynamics in the mutant to be correlated with motions in the binding site of the channel activator G&#x3b2;&#x3b3;. This coupling is corroborated by electrophysiological experiments, revealing that GIRK2<sub>wt</sub> activation by G&#x3b2;&#x3b3; reduces the affinity of Ba<sup>2+</sup> block. We further present a functional characterization of the human GIRK2<sub>G154S</sub> mutant validating our computational findings. This study identifies an allosteric connection between the SF and a crucial activator binding site. This allosteric gating mechanism may also apply to other potassium channels that are modulated by accessory proteins.
2,335,798
The circular RNA circNlgnmediates doxorubicin-inducedcardiac remodeling and fibrosis.
Doxorubicin is a chemotherapeutic medication commonly used to treat many types of cancers, but it has side effects including vomiting, rash, hair loss, and bone marrow suppression. The most dangerous side effects are cardiomyopathy, cardiofibrosis, and heart failure, as doxorubicin generates cytotoxicity and stops DNA replication. There is no treatment to block these side effects. We have developed a transgenic mouse line overexpressing the circular RNA circNlgn and shown that circNlgn is a mediator of doxorubicin-induced cardiofibrosis. Increased expression of circNlgn decreased cardiac function and induced cardiofibrosis by upregulating Gadd45b, Sema4C, and RAD50 and activating p38 and pJNK in circNlgn transgenic heart. Silencing circNlgn decreased the effects of doxorubicin on cardiac cell activities and prevented doxorubicin-induced expression of fibrosis-associated molecules. The protein (Nlgn173) translated by circNlgn could bind and activate H2AX, producing &#x3b3;H2AX, resulting in upregulation of IL-1b, IL-2Rb, IL-6, EGR1, and EGR3. We showed that silencing these molecules in the signaling pathway prevented doxorubicin-induced cardiomyocyte apoptosis, increased cardiomyocyte viability, decreased cardiac fibroblast proliferation, and inhibited collagen production. This mechanism may hold therapeutic implications for mitigating the side effects of doxorubicin therapy in cancer patients.
2,335,799
Exosomes: Potential executors of IL-35 gene-modified adipose-derived mesenchymal stem cells in inhibiting acute&#xa0;rejection after heart transplantation.
Heart transplantation has become the only 'cure' for end-stage heart diseases, but acute allograft rejection is the major obstacle to the survival of patients. Our previous studies showed that IL-35 gene-modified adipose-derived mesenchymal stem cells (IL-35-ASCs) can effectively inhibit graft rejection and prolong the survival of transplanted hearts in mice. This study further explored the mechanism of IL-35-ASCs, especially focusing on the important role of IL-35-ASC-derived exosomes (IL-35-ASCexos) in inhibiting acute rejection. IL-35-ASCs were constructed in vitro and pretreated with IL-35 neutralizing antibody and GW4869 (an inhibitor of neutral sphingomyelinase that impairs exosome biogenesis/release). Then, pretreated IL-35-ASCs and CD4<sup>+</sup> T cells were cocultured in Transwell plates, and changes in regulatory T cells (Tregs) and cytokines were detected. Then, IL-35-ASCexos were extracted, identified and analysed, and their immunoregulatory effects on CD4<sup>+</sup> T cells were studied through coculture experiments. Finally, IL-35-ASCexos were applied to a mouse heart transplantation model to investigate the therapeutic effects on acute rejection of the allograft. The coculture experiment showed that the IL-35-neutralizing antibody could not completely block the immunosuppressive function of IL-35-ASCs, while GW4869 could effectively reduce their immunoregulatory characteristics. Similar to IL-35-ASCs, IL-35-ASCexos also have powerful immunosuppressive properties, effectively upregulating the Treg ratio in vivo and in vitro and prolonging graft survival. As the main effectors of IL-35-ASCs, these findings highlight the therapeutic potential of IL-35-ASCexos in inhibiting acute cardiac rejection of the allograft. Although the specific mechanism remains unclear and needs to be further explored, IL-35-ASCexos therapy is expected to become a new method to inhibit acute graft rejection.