File size: 5,341 Bytes
07e6790
 
 
 
 
 
 
 
 
 
 
56f9d69
07e6790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56f9d69
07e6790
 
 
 
 
 
 
 
 
 
 
 
56f9d69
 
 
 
 
 
 
07e6790
56f9d69
 
b661446
07e6790
 
 
56f9d69
07e6790
 
56f9d69
07e6790
56f9d69
07e6790
 
d153237
07e6790
56f9d69
07e6790
56f9d69
 
07e6790
56f9d69
 
 
 
 
 
 
07e6790
 
56f9d69
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# from datasets import (
#     GeneratorBasedBuilder,
#     DatasetInfo,
#     SplitGenerator,
#     Split,
#     DownloadManager,
#     Features,
#     Value,
#     Array2D,
# )
# from adversarial_gym.chess_env import ChessEnv

# class ChessPGNDataset(GeneratorBasedBuilder):
#     VERSION = "0.0.1"

#     def _info(self):
#         return DatasetInfo(
#             description="Chess positions + moves + results, streamed from PGN shards",
#             features=Features({
#                 "state":  Array2D((8,8), dtype="int8"),
#                 "action": Value("int16"),
#                 "result": Value("int8"),
#             })
#         )

#     def _split_generators(self, dl_manager: DownloadManager):
#         from pathlib import Path
        
#         data_dir = Path(self.config.data_dir)
        
#         train_shards = sorted(data_dir.joinpath("train").glob("*.pgn"))
#         test_shards  = sorted(data_dir.joinpath("test").glob("*.pgn"))
#         train_paths = dl_manager.download([str(p) for p in train_shards])
#         test_paths  = dl_manager.download([str(p) for p in test_shards])

#         return [
#             SplitGenerator(
#                 name=Split.TRAIN,
#                 gen_kwargs={"shards": train_paths},
#             ),
#             SplitGenerator(
#                 name=Split.TEST,
#                 gen_kwargs={"shards": test_paths},
#             ),
#         ]
#     def _generate_examples(self, shards):
#         import chess.pgn
#         uid = 0

#         for path in sorted(shards):
#             with open(path, "r") as f:
#                 while (game := chess.pgn.read_game(f)) is not None:
#                     board = game.board()
#                     base = {"1-0":1,"0-1":-1}.get(game.headers["Result"], 0)
#                     for move in game.mainline_moves():
#                         state  = ChessEnv.get_piece_configuration(board)
#                         state  = state if board.turn else -state
#                         action = ChessEnv.move_to_action(move)
#                         result = base * (-1 if board.turn == 0 else 1)
#                         yield uid, {
#                             "state":  state.astype("int8"),
#                             "action": int(action),
#                             "result": int(result),
#                         }
#                         uid += 1
#                         board.push(move)




from datasets import GeneratorBasedBuilder, DatasetInfo, SplitGenerator, Split, Features, Value, Array2D, DownloadManager


from pathlib import Path
from datasets import BuilderConfig, Version

class ChessPGNConfig(BuilderConfig):
    def __init__(   self,
                    name: str = "default",
                    version: Version = Version("1.0.0"),
                    description: str = "PGN chess shards",
                    data_dir: str = None,
                    data_files: dict = None,
                    **kwargs):
        super().__init__(
            name=name,
            version=version,
            description=description,
            data_dir=data_dir,
            data_files=data_files or {},
            **kwargs
        )
class ChessPGNDataset(GeneratorBasedBuilder):
    BUILDER_CONFIG_CLASS = ChessPGNConfig
    BUILDER_CONFIGS = [
        ChessPGNConfig(
            name="default",
            data_files={
                "train": [str(p) for p in Path("train").glob("*.pgn")],
                "test":  [str(p) for p in Path("test").glob("*.pgn")],
            },
        )
    ]

    DEFAULT_WRITER_BATCH_SIZE = 512

    def _info(self):
        return DatasetInfo(
            features=Features({
                "state":  Array2D((8,8), dtype="int8"),
                "action": Value("int16"),
                "result": Value("int8"),
            }),
        )

    def _split_generators(self, dl_manager: DownloadManager):
        # use config.data_files directly—no data_dir needed
        train_files = dl_manager.download(self.config.data_files["train"])
        test_files  = dl_manager.download(self.config.data_files["test"])
        return [
            SplitGenerator(name=Split.TRAIN, gen_kwargs={"shards": train_files}),
            SplitGenerator(name=Split.TEST,  gen_kwargs={"shards": test_files}),
        ]

    def _generate_examples(self, shards):
        import chess.pgn, numpy as np
        from adversarial_gym.chess_env import ChessEnv

        uid = 0
        for path in sorted(shards):
            with open(path) as f:
                while (game := chess.pgn.read_game(f)) is not None:
                    board = game.board()
                    base = {"1-0":1,"0-1":-1}.get(game.headers["Result"],0)
                    for move in game.mainline_moves():
                        state  = ChessEnv.get_piece_configuration(board)
                        state  = state if board.turn else -state
                        action = ChessEnv.move_to_action(move)
                        result = base * (-1 if board.turn == 0 else 1)
                        yield uid, {
                            "state":  state.astype("int8"),
                            "action": np.int16(action),
                            "result": np.int8(result),
                        }
                        uid += 1
                        board.push(move)