id
stringlengths
19
24
title
stringlengths
1
110
content
stringlengths
1
1k
contents
stringlengths
7
1.11k
wiki_id
stringlengths
2
8
wiki20220301en000_2500
Asphalt
In Alberta, five bitumen upgraders produce synthetic crude oil and a variety of other products: The Suncor Energy upgrader near Fort McMurray, Alberta produces synthetic crude oil plus diesel fuel; the Syncrude Canada, Canadian Natural Resources, and Nexen upgraders near Fort McMurray produce synthetic crude oil; and the Shell Scotford Upgrader near Edmonton produces synthetic crude oil plus an intermediate feedstock for the nearby Shell Oil Refinery. A sixth upgrader, under construction in 2015 near Redwater, Alberta, will upgrade half of its crude bitumen directly to diesel fuel, with the remainder of the output being sold as feedstock to nearby oil refineries and petrochemical plants. Non-upgraded crude bitumen
Asphalt. In Alberta, five bitumen upgraders produce synthetic crude oil and a variety of other products: The Suncor Energy upgrader near Fort McMurray, Alberta produces synthetic crude oil plus diesel fuel; the Syncrude Canada, Canadian Natural Resources, and Nexen upgraders near Fort McMurray produce synthetic crude oil; and the Shell Scotford Upgrader near Edmonton produces synthetic crude oil plus an intermediate feedstock for the nearby Shell Oil Refinery. A sixth upgrader, under construction in 2015 near Redwater, Alberta, will upgrade half of its crude bitumen directly to diesel fuel, with the remainder of the output being sold as feedstock to nearby oil refineries and petrochemical plants. Non-upgraded crude bitumen
657
wiki20220301en000_2501
Asphalt
Canadian bitumen does not differ substantially from oils such as Venezuelan extra-heavy and Mexican heavy oil in chemical composition, and the real difficulty is moving the extremely viscous bitumen through oil pipelines to the refinery. Many modern oil refineries are extremely sophisticated and can process non-upgraded bitumen directly into products such as gasoline, diesel fuel, and refined asphalt without any preprocessing. This is particularly common in areas such as the US Gulf coast, where refineries were designed to process Venezuelan and Mexican oil, and in areas such as the US Midwest where refineries were rebuilt to process heavy oil as domestic light oil production declined. Given the choice, such heavy oil refineries usually prefer to buy bitumen rather than synthetic oil because the cost is lower, and in some cases because they prefer to produce more diesel fuel and less gasoline. By 2015 Canadian production and exports of non-upgraded bitumen exceeded that of synthetic
Asphalt. Canadian bitumen does not differ substantially from oils such as Venezuelan extra-heavy and Mexican heavy oil in chemical composition, and the real difficulty is moving the extremely viscous bitumen through oil pipelines to the refinery. Many modern oil refineries are extremely sophisticated and can process non-upgraded bitumen directly into products such as gasoline, diesel fuel, and refined asphalt without any preprocessing. This is particularly common in areas such as the US Gulf coast, where refineries were designed to process Venezuelan and Mexican oil, and in areas such as the US Midwest where refineries were rebuilt to process heavy oil as domestic light oil production declined. Given the choice, such heavy oil refineries usually prefer to buy bitumen rather than synthetic oil because the cost is lower, and in some cases because they prefer to produce more diesel fuel and less gasoline. By 2015 Canadian production and exports of non-upgraded bitumen exceeded that of synthetic
657
wiki20220301en000_2502
Asphalt
the cost is lower, and in some cases because they prefer to produce more diesel fuel and less gasoline. By 2015 Canadian production and exports of non-upgraded bitumen exceeded that of synthetic crude oil at over per day, of which about 65% was exported to the United States.
Asphalt. the cost is lower, and in some cases because they prefer to produce more diesel fuel and less gasoline. By 2015 Canadian production and exports of non-upgraded bitumen exceeded that of synthetic crude oil at over per day, of which about 65% was exported to the United States.
657
wiki20220301en000_2503
Asphalt
Because of the difficulty of moving crude bitumen through pipelines, non-upgraded bitumen is usually diluted with natural-gas condensate in a form called dilbit or with synthetic crude oil, called synbit. However, to meet international competition, much non-upgraded bitumen is now sold as a blend of multiple grades of bitumen, conventional crude oil, synthetic crude oil, and condensate in a standardized benchmark product such as Western Canadian Select. This sour, heavy crude oil blend is designed to have uniform refining characteristics to compete with internationally marketed heavy oils such as Mexican Mayan or Arabian Dubai Crude. Radioactive waste encapsulation matrix
Asphalt. Because of the difficulty of moving crude bitumen through pipelines, non-upgraded bitumen is usually diluted with natural-gas condensate in a form called dilbit or with synthetic crude oil, called synbit. However, to meet international competition, much non-upgraded bitumen is now sold as a blend of multiple grades of bitumen, conventional crude oil, synthetic crude oil, and condensate in a standardized benchmark product such as Western Canadian Select. This sour, heavy crude oil blend is designed to have uniform refining characteristics to compete with internationally marketed heavy oils such as Mexican Mayan or Arabian Dubai Crude. Radioactive waste encapsulation matrix
657
wiki20220301en000_2504
Asphalt
Asphalt was used starting in the 1960s as a hydrophobic matrix aiming to encapsulate radioactive waste such as medium-activity salts (mainly soluble sodium nitrate and sodium sulfate) produced by the reprocessing of spent nuclear fuels or radioactive sludges from sedimentation ponds. Bituminised radioactive waste containing highly radiotoxic alpha-emitting transuranic elements from nuclear reprocessing plants have been produced at industrial scale in France, Belgium and Japan, but this type of waste conditioning has been abandoned because operational safety issues (risks of fire, as occurred in a bituminisation plant at Tokai Works in Japan) and long-term stability problems related to their geological disposal in deep rock formations. One of the main problems is the swelling of asphalt exposed to radiation and to water. Asphalt swelling is first induced by radiation because of the presence of hydrogen gas bubbles generated by alpha and gamma radiolysis. A second mechanism is the
Asphalt. Asphalt was used starting in the 1960s as a hydrophobic matrix aiming to encapsulate radioactive waste such as medium-activity salts (mainly soluble sodium nitrate and sodium sulfate) produced by the reprocessing of spent nuclear fuels or radioactive sludges from sedimentation ponds. Bituminised radioactive waste containing highly radiotoxic alpha-emitting transuranic elements from nuclear reprocessing plants have been produced at industrial scale in France, Belgium and Japan, but this type of waste conditioning has been abandoned because operational safety issues (risks of fire, as occurred in a bituminisation plant at Tokai Works in Japan) and long-term stability problems related to their geological disposal in deep rock formations. One of the main problems is the swelling of asphalt exposed to radiation and to water. Asphalt swelling is first induced by radiation because of the presence of hydrogen gas bubbles generated by alpha and gamma radiolysis. A second mechanism is the
657
wiki20220301en000_2505
Asphalt
exposed to radiation and to water. Asphalt swelling is first induced by radiation because of the presence of hydrogen gas bubbles generated by alpha and gamma radiolysis. A second mechanism is the matrix swelling when the encapsulated hygroscopic salts exposed to water or moisture start to rehydrate and to dissolve. The high concentration of salt in the pore solution inside the bituminised matrix is then responsible for osmotic effects inside the bituminised matrix. The water moves in the direction of the concentrated salts, the asphalt acting as a semi-permeable membrane. This also causes the matrix to swell. The swelling pressure due to osmotic effect under constant volume can be as high as 200 bar. If not properly managed, this high pressure can cause fractures in the near field of a disposal gallery of bituminised medium-level waste. When the bituminised matrix has been altered by swelling, encapsulated radionuclides are easily leached by the contact of ground water and released
Asphalt. exposed to radiation and to water. Asphalt swelling is first induced by radiation because of the presence of hydrogen gas bubbles generated by alpha and gamma radiolysis. A second mechanism is the matrix swelling when the encapsulated hygroscopic salts exposed to water or moisture start to rehydrate and to dissolve. The high concentration of salt in the pore solution inside the bituminised matrix is then responsible for osmotic effects inside the bituminised matrix. The water moves in the direction of the concentrated salts, the asphalt acting as a semi-permeable membrane. This also causes the matrix to swell. The swelling pressure due to osmotic effect under constant volume can be as high as 200 bar. If not properly managed, this high pressure can cause fractures in the near field of a disposal gallery of bituminised medium-level waste. When the bituminised matrix has been altered by swelling, encapsulated radionuclides are easily leached by the contact of ground water and released
657
wiki20220301en000_2506
Asphalt
disposal gallery of bituminised medium-level waste. When the bituminised matrix has been altered by swelling, encapsulated radionuclides are easily leached by the contact of ground water and released in the geosphere. The high ionic strength of the concentrated saline solution also favours the migration of radionuclides in clay host rocks. The presence of chemically reactive nitrate can also affect the redox conditions prevailing in the host rock by establishing oxidizing conditions, preventing the reduction of redox-sensitive radionuclides. Under their higher valences, radionuclides of elements such as selenium, technetium, uranium, neptunium and plutonium have a higher solubility and are also often present in water as non-retarded anions. This makes the disposal of medium-level bituminised waste very challenging.
Asphalt. disposal gallery of bituminised medium-level waste. When the bituminised matrix has been altered by swelling, encapsulated radionuclides are easily leached by the contact of ground water and released in the geosphere. The high ionic strength of the concentrated saline solution also favours the migration of radionuclides in clay host rocks. The presence of chemically reactive nitrate can also affect the redox conditions prevailing in the host rock by establishing oxidizing conditions, preventing the reduction of redox-sensitive radionuclides. Under their higher valences, radionuclides of elements such as selenium, technetium, uranium, neptunium and plutonium have a higher solubility and are also often present in water as non-retarded anions. This makes the disposal of medium-level bituminised waste very challenging.
657
wiki20220301en000_2507
Asphalt
Different types of asphalt have been used: blown bitumen (partly oxidized with air oxygen at high temperature after distillation, and harder) and direct distillation bitumen (softer). Blown bitumens like Mexphalte, with a high content of saturated hydrocarbons, are more easily biodegraded by microorganisms than direct distillation bitumen, with a low content of saturated hydrocarbons and a high content of aromatic hydrocarbons. Concrete encapsulation of radwaste is presently considered a safer alternative by the nuclear industry and the waste management organisations.
Asphalt. Different types of asphalt have been used: blown bitumen (partly oxidized with air oxygen at high temperature after distillation, and harder) and direct distillation bitumen (softer). Blown bitumens like Mexphalte, with a high content of saturated hydrocarbons, are more easily biodegraded by microorganisms than direct distillation bitumen, with a low content of saturated hydrocarbons and a high content of aromatic hydrocarbons. Concrete encapsulation of radwaste is presently considered a safer alternative by the nuclear industry and the waste management organisations.
657
wiki20220301en000_2508
Asphalt
Concrete encapsulation of radwaste is presently considered a safer alternative by the nuclear industry and the waste management organisations. Other uses Roofing shingles and roll roofing account for most of the remaining asphalt consumption. Other uses include cattle sprays, fence-post treatments, and waterproofing for fabrics. Asphalt is used to make Japan black, a lacquer known especially for its use on iron and steel, and it is also used in paint and marker inks by some exterior paint supply companies to increase the weather resistance and permanence of the paint or ink, and to make the color darker. Asphalt is also used to seal some alkaline batteries during the manufacturing process. Production
Asphalt. Concrete encapsulation of radwaste is presently considered a safer alternative by the nuclear industry and the waste management organisations. Other uses Roofing shingles and roll roofing account for most of the remaining asphalt consumption. Other uses include cattle sprays, fence-post treatments, and waterproofing for fabrics. Asphalt is used to make Japan black, a lacquer known especially for its use on iron and steel, and it is also used in paint and marker inks by some exterior paint supply companies to increase the weather resistance and permanence of the paint or ink, and to make the color darker. Asphalt is also used to seal some alkaline batteries during the manufacturing process. Production
657
wiki20220301en000_2509
Asphalt
Production About 40,000,000 tons were produced in 1984. It is obtained as the "heavy" (i.e., difficult to distill) fraction. Material with a boiling point greater than around 500 °C is considered asphalt. Vacuum distillation separates it from the other components in crude oil (such as naphtha, gasoline and diesel). The resulting material is typically further treated to extract small but valuable amounts of lubricants and to adjust the properties of the material to suit applications. In a de-asphalting unit, the crude asphalt is treated with either propane or butane in a supercritical phase to extract the lighter molecules, which are then separated. Further processing is possible by "blowing" the product: namely reacting it with oxygen. This step makes the product harder and more viscous.
Asphalt. Production About 40,000,000 tons were produced in 1984. It is obtained as the "heavy" (i.e., difficult to distill) fraction. Material with a boiling point greater than around 500 °C is considered asphalt. Vacuum distillation separates it from the other components in crude oil (such as naphtha, gasoline and diesel). The resulting material is typically further treated to extract small but valuable amounts of lubricants and to adjust the properties of the material to suit applications. In a de-asphalting unit, the crude asphalt is treated with either propane or butane in a supercritical phase to extract the lighter molecules, which are then separated. Further processing is possible by "blowing" the product: namely reacting it with oxygen. This step makes the product harder and more viscous.
657
wiki20220301en000_2510
Asphalt
Asphalt is typically stored and transported at temperatures around . Sometimes diesel oil or kerosene are mixed in before shipping to retain liquidity; upon delivery, these lighter materials are separated out of the mixture. This mixture is often called "bitumen feedstock", or BFS. Some dump trucks route the hot engine exhaust through pipes in the dump body to keep the material warm. The backs of tippers carrying asphalt, as well as some handling equipment, are also commonly sprayed with a releasing agent before filling to aid release. Diesel oil is no longer used as a release agent due to environmental concerns. Oil sands
Asphalt. Asphalt is typically stored and transported at temperatures around . Sometimes diesel oil or kerosene are mixed in before shipping to retain liquidity; upon delivery, these lighter materials are separated out of the mixture. This mixture is often called "bitumen feedstock", or BFS. Some dump trucks route the hot engine exhaust through pipes in the dump body to keep the material warm. The backs of tippers carrying asphalt, as well as some handling equipment, are also commonly sprayed with a releasing agent before filling to aid release. Diesel oil is no longer used as a release agent due to environmental concerns. Oil sands
657
wiki20220301en000_2511
Asphalt
Naturally occurring crude bitumen impregnated in sedimentary rock is the prime feed stock for petroleum production from "oil sands", currently under development in Alberta, Canada. Canada has most of the world's supply of natural bitumen, covering 140,000 square kilometres (an area larger than England), giving it the second-largest proven oil reserves in the world. The Athabasca oil sands are the largest bitumen deposit in Canada and the only one accessible to surface mining, although recent technological breakthroughs have resulted in deeper deposits becoming producible by in situ methods. Because of oil price increases after 2003, producing bitumen became highly profitable, but as a result of the decline after 2014 it became uneconomic to build new plants again. By 2014, Canadian crude bitumen production averaged about per day and was projected to rise to per day by 2020. The total amount of crude bitumen in Alberta that could be extracted is estimated to be about , which at a
Asphalt. Naturally occurring crude bitumen impregnated in sedimentary rock is the prime feed stock for petroleum production from "oil sands", currently under development in Alberta, Canada. Canada has most of the world's supply of natural bitumen, covering 140,000 square kilometres (an area larger than England), giving it the second-largest proven oil reserves in the world. The Athabasca oil sands are the largest bitumen deposit in Canada and the only one accessible to surface mining, although recent technological breakthroughs have resulted in deeper deposits becoming producible by in situ methods. Because of oil price increases after 2003, producing bitumen became highly profitable, but as a result of the decline after 2014 it became uneconomic to build new plants again. By 2014, Canadian crude bitumen production averaged about per day and was projected to rise to per day by 2020. The total amount of crude bitumen in Alberta that could be extracted is estimated to be about , which at a
657
wiki20220301en000_2512
Asphalt
bitumen production averaged about per day and was projected to rise to per day by 2020. The total amount of crude bitumen in Alberta that could be extracted is estimated to be about , which at a rate of would last about 200 years.
Asphalt. bitumen production averaged about per day and was projected to rise to per day by 2020. The total amount of crude bitumen in Alberta that could be extracted is estimated to be about , which at a rate of would last about 200 years.
657
wiki20220301en000_2513
Asphalt
Alternatives and bioasphalt Although uncompetitive economically, asphalt can be made from nonpetroleum-based renewable resources such as sugar, molasses and rice, corn and potato starches. Asphalt can also be made from waste material by fractional distillation of used motor oil, which is sometimes otherwise disposed of by burning or dumping into landfills. Use of motor oil may cause premature cracking in colder climates, resulting in roads that need to be repaved more frequently. Nonpetroleum-based asphalt binders can be made light-colored. Lighter-colored roads absorb less heat from solar radiation, reducing their contribution to the urban heat island effect. Parking lots that use asphalt alternatives are called green parking lots.
Asphalt. Alternatives and bioasphalt Although uncompetitive economically, asphalt can be made from nonpetroleum-based renewable resources such as sugar, molasses and rice, corn and potato starches. Asphalt can also be made from waste material by fractional distillation of used motor oil, which is sometimes otherwise disposed of by burning or dumping into landfills. Use of motor oil may cause premature cracking in colder climates, resulting in roads that need to be repaved more frequently. Nonpetroleum-based asphalt binders can be made light-colored. Lighter-colored roads absorb less heat from solar radiation, reducing their contribution to the urban heat island effect. Parking lots that use asphalt alternatives are called green parking lots.
657
wiki20220301en000_2514
Asphalt
Albanian deposits Selenizza is a naturally occurring solid hydrocarbon bitumen found in native deposits in Selenice, in Albania, the only European asphalt mine still in use. The bitumen is found in the form of veins, filling cracks in a more or less horizontal direction. The bitumen content varies from 83% to 92% (soluble in carbon disulphide), with a penetration value near to zero and a softening point (ring and ball) around 120 °C. The insoluble matter, consisting mainly of silica ore, ranges from 8% to 17%.
Asphalt. Albanian deposits Selenizza is a naturally occurring solid hydrocarbon bitumen found in native deposits in Selenice, in Albania, the only European asphalt mine still in use. The bitumen is found in the form of veins, filling cracks in a more or less horizontal direction. The bitumen content varies from 83% to 92% (soluble in carbon disulphide), with a penetration value near to zero and a softening point (ring and ball) around 120 °C. The insoluble matter, consisting mainly of silica ore, ranges from 8% to 17%.
657
wiki20220301en000_2515
Asphalt
Albanian bitumen extraction has a long history and was practiced in an organized way by the Romans. After centuries of silence, the first mentions of Albanian bitumen appeared only in 1868, when the Frenchman Coquand published the first geological description of the deposits of Albanian bitumen. In 1875, the exploitation rights were granted to the Ottoman government and in 1912, they were transferred to the Italian company Simsa. Since 1945, the mine was exploited by the Albanian government and from 2001 to date, the management passed to a French company, which organized the mining process for the manufacture of the natural bitumen on an industrial scale. Today the mine is predominantly exploited in an open pit quarry but several of the many underground mines (deep and extending over several km) still remain viable. Selenizza is produced primarily in granular form, after melting the bitumen pieces selected in the mine.
Asphalt. Albanian bitumen extraction has a long history and was practiced in an organized way by the Romans. After centuries of silence, the first mentions of Albanian bitumen appeared only in 1868, when the Frenchman Coquand published the first geological description of the deposits of Albanian bitumen. In 1875, the exploitation rights were granted to the Ottoman government and in 1912, they were transferred to the Italian company Simsa. Since 1945, the mine was exploited by the Albanian government and from 2001 to date, the management passed to a French company, which organized the mining process for the manufacture of the natural bitumen on an industrial scale. Today the mine is predominantly exploited in an open pit quarry but several of the many underground mines (deep and extending over several km) still remain viable. Selenizza is produced primarily in granular form, after melting the bitumen pieces selected in the mine.
657
wiki20220301en000_2516
Asphalt
Selenizza is mainly used as an additive in the road construction sector. It is mixed with traditional asphalt to improve both the viscoelastic properties and the resistance to ageing. It may be blended with the hot asphalt in tanks, but its granular form allows it to be fed in the mixer or in the recycling ring of normal asphalt plants. Other typical applications include the production of mastic asphalts for sidewalks, bridges, car-parks and urban roads as well as drilling fluid additives for the oil and gas industry. Selenizza is available in powder or in granular material of various particle sizes and is packaged in sacks or in thermal fusible polyethylene bags. A life-cycle assessment study of the natural selenizza compared with petroleum asphalt has shown that the environmental impact of the selenizza is about half the impact of the road asphalt produced in oil refineries in terms of carbon dioxide emission.
Asphalt. Selenizza is mainly used as an additive in the road construction sector. It is mixed with traditional asphalt to improve both the viscoelastic properties and the resistance to ageing. It may be blended with the hot asphalt in tanks, but its granular form allows it to be fed in the mixer or in the recycling ring of normal asphalt plants. Other typical applications include the production of mastic asphalts for sidewalks, bridges, car-parks and urban roads as well as drilling fluid additives for the oil and gas industry. Selenizza is available in powder or in granular material of various particle sizes and is packaged in sacks or in thermal fusible polyethylene bags. A life-cycle assessment study of the natural selenizza compared with petroleum asphalt has shown that the environmental impact of the selenizza is about half the impact of the road asphalt produced in oil refineries in terms of carbon dioxide emission.
657
wiki20220301en000_2517
Asphalt
Recycling Asphalt is a commonly recycled material in the construction industry. The two most common recycled materials that contain asphalt are reclaimed asphalt pavement (RAP) and reclaimed asphalt shingles (RAS). RAP is recycled at a greater rate than any other material in the United States, and typically contains approximately 5 – 6% asphalt binder. Asphalt shingles typically contain 20 – 40% asphalt binder. Asphalt naturally becomes stiffer over time due to oxidation, evaporation, exudation, and physical hardening. For this reason, recycled asphalt is typically combined with virgin asphalt, softening agents, and/or rejuvenating additives to restore its physical and chemical properties. For information on the processing and performance of RAP and RAS, see Asphalt Concrete. For information on the different types of RAS and associated health and safety concerns, see Asphalt Shingles.
Asphalt. Recycling Asphalt is a commonly recycled material in the construction industry. The two most common recycled materials that contain asphalt are reclaimed asphalt pavement (RAP) and reclaimed asphalt shingles (RAS). RAP is recycled at a greater rate than any other material in the United States, and typically contains approximately 5 – 6% asphalt binder. Asphalt shingles typically contain 20 – 40% asphalt binder. Asphalt naturally becomes stiffer over time due to oxidation, evaporation, exudation, and physical hardening. For this reason, recycled asphalt is typically combined with virgin asphalt, softening agents, and/or rejuvenating additives to restore its physical and chemical properties. For information on the processing and performance of RAP and RAS, see Asphalt Concrete. For information on the different types of RAS and associated health and safety concerns, see Asphalt Shingles.
657
wiki20220301en000_2518
Asphalt
For information on the different types of RAS and associated health and safety concerns, see Asphalt Shingles. For information on in-place recycling methods used to restore pavements and roadways, see Road Surface. Economics Although asphalt typically makes up only 4 to 5 percent (by weight) of the pavement mixture, as the pavement's binder, it is also the most expensive part of the cost of the road-paving material. During asphalt's early use in modern paving, oil refiners gave it away. However, asphalt is a highly traded commodity today. Its prices increased substantially in the early 21st Century. A U.S. government report states: "In 2002, asphalt sold for approximately $160 per ton. By the end of 2006, the cost had doubled to approximately $320 per ton, and then it almost doubled again in 2012 to approximately $610 per ton."
Asphalt. For information on the different types of RAS and associated health and safety concerns, see Asphalt Shingles. For information on in-place recycling methods used to restore pavements and roadways, see Road Surface. Economics Although asphalt typically makes up only 4 to 5 percent (by weight) of the pavement mixture, as the pavement's binder, it is also the most expensive part of the cost of the road-paving material. During asphalt's early use in modern paving, oil refiners gave it away. However, asphalt is a highly traded commodity today. Its prices increased substantially in the early 21st Century. A U.S. government report states: "In 2002, asphalt sold for approximately $160 per ton. By the end of 2006, the cost had doubled to approximately $320 per ton, and then it almost doubled again in 2012 to approximately $610 per ton."
657
wiki20220301en000_2519
Asphalt
The report indicates that an "average" 1-mile (1.6-kilometer)-long, four-lane highway would include "300 tons of asphalt," which, "in 2002 would have cost around $48,000. By 2006 this would have increased to $96,000 and by 2012 to $183,000... an increase of about $135,000 for every mile of highway in just 10 years." Health and safety People can be exposed to asphalt in the workplace by breathing in fumes or skin absorption. The National Institute for Occupational Safety and Health (NIOSH) has set a recommended exposure limit of 5 mg/m3 over a 15-minute period.
Asphalt. The report indicates that an "average" 1-mile (1.6-kilometer)-long, four-lane highway would include "300 tons of asphalt," which, "in 2002 would have cost around $48,000. By 2006 this would have increased to $96,000 and by 2012 to $183,000... an increase of about $135,000 for every mile of highway in just 10 years." Health and safety People can be exposed to asphalt in the workplace by breathing in fumes or skin absorption. The National Institute for Occupational Safety and Health (NIOSH) has set a recommended exposure limit of 5 mg/m3 over a 15-minute period.
657
wiki20220301en000_2520
Asphalt
Asphalt is basically an inert material that must be heated or diluted to a point where it becomes workable for the production of materials for paving, roofing, and other applications. In examining the potential health hazards associated with asphalt, the International Agency for Research on Cancer (IARC) determined that it is the application parameters, predominantly temperature, that affect occupational exposure and the potential bioavailable carcinogenic hazard/risk of the asphalt emissions. In particular, temperatures greater than 199 °C (390 °F), were shown to produce a greater exposure risk than when asphalt was heated to lower temperatures, such as those typically used in asphalt pavement mix production and placement. IARC has classified paving asphalt fumes as a Class 2B possible carcinogen, indicating inadequate evidence of carcinogenicity in humans.
Asphalt. Asphalt is basically an inert material that must be heated or diluted to a point where it becomes workable for the production of materials for paving, roofing, and other applications. In examining the potential health hazards associated with asphalt, the International Agency for Research on Cancer (IARC) determined that it is the application parameters, predominantly temperature, that affect occupational exposure and the potential bioavailable carcinogenic hazard/risk of the asphalt emissions. In particular, temperatures greater than 199 °C (390 °F), were shown to produce a greater exposure risk than when asphalt was heated to lower temperatures, such as those typically used in asphalt pavement mix production and placement. IARC has classified paving asphalt fumes as a Class 2B possible carcinogen, indicating inadequate evidence of carcinogenicity in humans.
657
wiki20220301en000_2521
Asphalt
In 2020, scientists reported that asphalt currently is a significant and largely overlooked source of air pollution in urban areas, especially during hot and sunny periods. An asphalt-like substance found in the Himalayas and known as shilajit is sometimes used as an Ayurveda medicine, but is not in fact a tar, resin or asphalt. See also Asphalt plant Asphaltene Bioasphalt Bitumen-based fuel Bituminous rocks Blacktop Cariphalte Cooper Research Technology Duxit Macadam Oil sands Pitch drop experiment Pitch (resin) Road surface Tar Tarmac Sealcoat Stamped asphalt Notes References Sources Barth, Edwin J. (1962), Asphalt: Science and Technology, Gordon and Breach. . External links Pavement Interactive – Asphalt CSU Sacramento, The World Famous Asphalt Museum! National Institute for Occupational Safety and Health – Asphalt Fumes Scientific American, "Asphalt", 20-Aug-1881, pp. 121
Asphalt. In 2020, scientists reported that asphalt currently is a significant and largely overlooked source of air pollution in urban areas, especially during hot and sunny periods. An asphalt-like substance found in the Himalayas and known as shilajit is sometimes used as an Ayurveda medicine, but is not in fact a tar, resin or asphalt. See also Asphalt plant Asphaltene Bioasphalt Bitumen-based fuel Bituminous rocks Blacktop Cariphalte Cooper Research Technology Duxit Macadam Oil sands Pitch drop experiment Pitch (resin) Road surface Tar Tarmac Sealcoat Stamped asphalt Notes References Sources Barth, Edwin J. (1962), Asphalt: Science and Technology, Gordon and Breach. . External links Pavement Interactive – Asphalt CSU Sacramento, The World Famous Asphalt Museum! National Institute for Occupational Safety and Health – Asphalt Fumes Scientific American, "Asphalt", 20-Aug-1881, pp. 121
657
wiki20220301en000_2522
Asphalt
Amorphous solids Building materials Chemical mixtures IARC Group 2B carcinogens Pavements Petroleum products Road construction materials
Asphalt. Amorphous solids Building materials Chemical mixtures IARC Group 2B carcinogens Pavements Petroleum products Road construction materials
657
wiki20220301en000_2523
American National Standards Institute
The American National Standards Institute (ANSI ) is a private non-profit organization that oversees the development of voluntary consensus standards for products, services, processes, systems, and personnel in the United States. The organization also coordinates U.S. standards with international standards so that American products can be used worldwide. ANSI accredits standards that are developed by representatives of other standards organizations, government agencies, consumer groups, companies, and others. These standards ensure that the characteristics and performance of products are consistent, that people use the same definitions and terms, and that products are tested the same way. ANSI also accredits organizations that carry out product or personnel certification in accordance with requirements defined in international standards.
American National Standards Institute. The American National Standards Institute (ANSI ) is a private non-profit organization that oversees the development of voluntary consensus standards for products, services, processes, systems, and personnel in the United States. The organization also coordinates U.S. standards with international standards so that American products can be used worldwide. ANSI accredits standards that are developed by representatives of other standards organizations, government agencies, consumer groups, companies, and others. These standards ensure that the characteristics and performance of products are consistent, that people use the same definitions and terms, and that products are tested the same way. ANSI also accredits organizations that carry out product or personnel certification in accordance with requirements defined in international standards.
659
wiki20220301en000_2524
American National Standards Institute
The organization's headquarters are in Washington, D.C. ANSI's operations office is located in New York City. The ANSI annual operating budget is funded by the sale of publications, membership dues and fees, accreditation services, fee-based programs, and international standards programs. History ANSI was most likely originally formed in 1918, when five engineering societies and three government agencies founded the American Engineering Standards Committee (AESC). In 1928, the AESC became the American Standards Association (ASA). In 1966, the ASA was reorganized and became United States of America Standards Institute (USASI). The present name was adopted in 1969.
American National Standards Institute. The organization's headquarters are in Washington, D.C. ANSI's operations office is located in New York City. The ANSI annual operating budget is funded by the sale of publications, membership dues and fees, accreditation services, fee-based programs, and international standards programs. History ANSI was most likely originally formed in 1918, when five engineering societies and three government agencies founded the American Engineering Standards Committee (AESC). In 1928, the AESC became the American Standards Association (ASA). In 1966, the ASA was reorganized and became United States of America Standards Institute (USASI). The present name was adopted in 1969.
659
wiki20220301en000_2525
American National Standards Institute
Prior to 1918, these five founding engineering societies: American Institute of Electrical Engineers (AIEE, now IEEE) American Society of Mechanical Engineers (ASME) American Society of Civil Engineers (ASCE) American Institute of Mining Engineers (AIME, now American Institute of Mining, Metallurgical, and Petroleum Engineers) American Society for Testing and Materials (now ASTM International) had been members of the United Engineering Society (UES). At the behest of the AIEE, they invited the U.S. government Departments of War, Navy (combined in 1947 to become the Department of Defense or DOD) and Commerce to join in founding a national standards organization. According to Adam Stanton, the first permanent secretary and head of staff in 1919, AESC started as an ambitious program and little else. Staff for the first year consisted of one executive, Clifford B. LePage, who was on loan from a founding member, ASME. An annual budget of $7,500 was provided by the founding bodies.
American National Standards Institute. Prior to 1918, these five founding engineering societies: American Institute of Electrical Engineers (AIEE, now IEEE) American Society of Mechanical Engineers (ASME) American Society of Civil Engineers (ASCE) American Institute of Mining Engineers (AIME, now American Institute of Mining, Metallurgical, and Petroleum Engineers) American Society for Testing and Materials (now ASTM International) had been members of the United Engineering Society (UES). At the behest of the AIEE, they invited the U.S. government Departments of War, Navy (combined in 1947 to become the Department of Defense or DOD) and Commerce to join in founding a national standards organization. According to Adam Stanton, the first permanent secretary and head of staff in 1919, AESC started as an ambitious program and little else. Staff for the first year consisted of one executive, Clifford B. LePage, who was on loan from a founding member, ASME. An annual budget of $7,500 was provided by the founding bodies.
659
wiki20220301en000_2526
American National Standards Institute
In 1931, the organization (renamed ASA in 1928) became affiliated with the U.S. National Committee of the International Electrotechnical Commission (IEC), which had been formed in 1904 to develop electrical and electronics standards. Members ANSI's members are government agencies, organizations, academic and international bodies, and individuals. In total, the Institute represents the interests of more than 270,000 companies and organizations and 30 million professionals worldwide. Process Although ANSI itself does not develop standards, the Institute oversees the development and use of standards by accrediting the procedures of standards developing organizations. ANSI accreditation signifies that the procedures used by standards developing organizations meet the institute's requirements for openness, balance, consensus, and due process.
American National Standards Institute. In 1931, the organization (renamed ASA in 1928) became affiliated with the U.S. National Committee of the International Electrotechnical Commission (IEC), which had been formed in 1904 to develop electrical and electronics standards. Members ANSI's members are government agencies, organizations, academic and international bodies, and individuals. In total, the Institute represents the interests of more than 270,000 companies and organizations and 30 million professionals worldwide. Process Although ANSI itself does not develop standards, the Institute oversees the development and use of standards by accrediting the procedures of standards developing organizations. ANSI accreditation signifies that the procedures used by standards developing organizations meet the institute's requirements for openness, balance, consensus, and due process.
659
wiki20220301en000_2527
American National Standards Institute
ANSI also designates specific standards as American National Standards, or ANS, when the Institute determines that the standards were developed in an environment that is equitable, accessible and responsive to the requirements of various stakeholders. Voluntary consensus standards quicken the market acceptance of products while making clear how to improve the safety of those products for the protection of consumers. There are approximately 9,500 American National Standards that carry the ANSI designation. The American National Standards process involves: consensus by a group that is open to representatives from all interested parties broad-based public review and comment on draft standards consideration of and response to comments incorporation of submitted changes that meet the same consensus requirements into a draft standard availability of an appeal by any participant alleging that these principles were not respected during the standards-development process.
American National Standards Institute. ANSI also designates specific standards as American National Standards, or ANS, when the Institute determines that the standards were developed in an environment that is equitable, accessible and responsive to the requirements of various stakeholders. Voluntary consensus standards quicken the market acceptance of products while making clear how to improve the safety of those products for the protection of consumers. There are approximately 9,500 American National Standards that carry the ANSI designation. The American National Standards process involves: consensus by a group that is open to representatives from all interested parties broad-based public review and comment on draft standards consideration of and response to comments incorporation of submitted changes that meet the same consensus requirements into a draft standard availability of an appeal by any participant alleging that these principles were not respected during the standards-development process.
659
wiki20220301en000_2528
American National Standards Institute
International activities In addition to facilitating the formation of standards in the United States, ANSI promotes the use of U.S. standards internationally, advocates U.S. policy and technical positions in international and regional standards organizations, and encourages the adoption of international standards as national standards where appropriate. The institute is the official U.S. representative to the two major international standards organizations, the International Organization for Standardization (ISO), as a founding member, and the International Electrotechnical Commission (IEC), via the U.S. National Committee (USNC). ANSI participates in almost the entire technical program of both the ISO and the IEC, and administers many key committees and subgroups. In many instances, U.S. standards are taken forward to ISO and IEC, through ANSI or the USNC, where they are adopted in whole or in part as international standards.
American National Standards Institute. International activities In addition to facilitating the formation of standards in the United States, ANSI promotes the use of U.S. standards internationally, advocates U.S. policy and technical positions in international and regional standards organizations, and encourages the adoption of international standards as national standards where appropriate. The institute is the official U.S. representative to the two major international standards organizations, the International Organization for Standardization (ISO), as a founding member, and the International Electrotechnical Commission (IEC), via the U.S. National Committee (USNC). ANSI participates in almost the entire technical program of both the ISO and the IEC, and administers many key committees and subgroups. In many instances, U.S. standards are taken forward to ISO and IEC, through ANSI or the USNC, where they are adopted in whole or in part as international standards.
659
wiki20220301en000_2529
American National Standards Institute
Adoption of ISO and IEC standards as American standards increased from 0.2% in 1986 to 15.5% in May 2012. Standards panels The Institute administers nine standards panels: ANSI Homeland Defense and Security Standardization Collaborative (HDSSC) ANSI Nanotechnology Standards Panel (ANSI-NSP) ID Theft Prevention and ID Management Standards Panel (IDSP) ANSI Energy Efficiency Standardization Coordination Collaborative (EESCC) Nuclear Energy Standards Coordination Collaborative (NESCC) Electric Vehicles Standards Panel (EVSP) ANSI-NAM Network on Chemical Regulation ANSI Biofuels Standards Coordination Panel Healthcare Information Technology Standards Panel (HITSP) Each of the panels works to identify, coordinate, and harmonize voluntary standards relevant to these areas.
American National Standards Institute. Adoption of ISO and IEC standards as American standards increased from 0.2% in 1986 to 15.5% in May 2012. Standards panels The Institute administers nine standards panels: ANSI Homeland Defense and Security Standardization Collaborative (HDSSC) ANSI Nanotechnology Standards Panel (ANSI-NSP) ID Theft Prevention and ID Management Standards Panel (IDSP) ANSI Energy Efficiency Standardization Coordination Collaborative (EESCC) Nuclear Energy Standards Coordination Collaborative (NESCC) Electric Vehicles Standards Panel (EVSP) ANSI-NAM Network on Chemical Regulation ANSI Biofuels Standards Coordination Panel Healthcare Information Technology Standards Panel (HITSP) Each of the panels works to identify, coordinate, and harmonize voluntary standards relevant to these areas.
659
wiki20220301en000_2530
American National Standards Institute
Each of the panels works to identify, coordinate, and harmonize voluntary standards relevant to these areas. In 2009, ANSI and the National Institute of Standards and Technology (NIST) formed the Nuclear Energy Standards Coordination Collaborative (NESCC). NESCC is a joint initiative to identify and respond to the current need for standards in the nuclear industry.
American National Standards Institute. Each of the panels works to identify, coordinate, and harmonize voluntary standards relevant to these areas. In 2009, ANSI and the National Institute of Standards and Technology (NIST) formed the Nuclear Energy Standards Coordination Collaborative (NESCC). NESCC is a joint initiative to identify and respond to the current need for standards in the nuclear industry.
659
wiki20220301en000_2531
American National Standards Institute
American national standards The ASA (as for American Standards Association) photographic exposure system, originally defined in ASA Z38.2.1 (since 1943) and ASA PH2.5 (since 1954), together with the DIN system (DIN 4512 since 1934), became the basis for the ISO system (since 1974), currently used worldwide (ISO 6, ISO 2240, ISO 5800, ISO 12232).
American National Standards Institute. American national standards The ASA (as for American Standards Association) photographic exposure system, originally defined in ASA Z38.2.1 (since 1943) and ASA PH2.5 (since 1954), together with the DIN system (DIN 4512 since 1934), became the basis for the ISO system (since 1974), currently used worldwide (ISO 6, ISO 2240, ISO 5800, ISO 12232).
659
wiki20220301en000_2532
American National Standards Institute
A standard for the set of values used to represent characters in digital computers. The ANSI code standard extended the previously created ASCII seven bit code standard (ASA X3.4-1963), with additional codes for European alphabets (see also Extended Binary Coded Decimal Interchange Code or EBCDIC). In Microsoft Windows, the phrase "ANSI" refers to the Windows ANSI code pages (even though they are not ANSI standards). Most of these are fixed width, though some characters for ideographic languages are variable width. Since these characters are based on a draft of the ISO-8859 series, some of Microsoft's symbols are visually very similar to the ISO symbols, leading many to falsely assume that they are identical. The first computer programming language standard was "American Standard Fortran" (informally known as "FORTRAN 66"), approved in March 1966 and published as ASA X3.9-1966.
American National Standards Institute. A standard for the set of values used to represent characters in digital computers. The ANSI code standard extended the previously created ASCII seven bit code standard (ASA X3.4-1963), with additional codes for European alphabets (see also Extended Binary Coded Decimal Interchange Code or EBCDIC). In Microsoft Windows, the phrase "ANSI" refers to the Windows ANSI code pages (even though they are not ANSI standards). Most of these are fixed width, though some characters for ideographic languages are variable width. Since these characters are based on a draft of the ISO-8859 series, some of Microsoft's symbols are visually very similar to the ISO symbols, leading many to falsely assume that they are identical. The first computer programming language standard was "American Standard Fortran" (informally known as "FORTRAN 66"), approved in March 1966 and published as ASA X3.9-1966.
659
wiki20220301en000_2533
American National Standards Institute
The first computer programming language standard was "American Standard Fortran" (informally known as "FORTRAN 66"), approved in March 1966 and published as ASA X3.9-1966. The programming language COBOL had ANSI standards in 1968, 1974, and 1985. The COBOL 2002 standard was issued by ISO. The original standard implementation of the C programming language was standardized as ANSI X3.159-1989, becoming the well-known ANSI C. The X3J13 committee was created in 1986 to formalize the ongoing consolidation of Common Lisp, culminating in 1994 with the publication of ANSI's first object-oriented programming standard. A popular Unified Thread Standard for nuts and bolts is ANSI/ASME B1.1 which was defined in 1935, 1949, 1989, and 2003. The ANSI-NSF International standards used for commercial kitchens, such as restaurants, cafeterias, delis, etc. The ANSI/APSP (Association of Pool & Spa Professionals) standards used for pools, spas, hot tubs, barriers, and suction entrapment avoidance.
American National Standards Institute. The first computer programming language standard was "American Standard Fortran" (informally known as "FORTRAN 66"), approved in March 1966 and published as ASA X3.9-1966. The programming language COBOL had ANSI standards in 1968, 1974, and 1985. The COBOL 2002 standard was issued by ISO. The original standard implementation of the C programming language was standardized as ANSI X3.159-1989, becoming the well-known ANSI C. The X3J13 committee was created in 1986 to formalize the ongoing consolidation of Common Lisp, culminating in 1994 with the publication of ANSI's first object-oriented programming standard. A popular Unified Thread Standard for nuts and bolts is ANSI/ASME B1.1 which was defined in 1935, 1949, 1989, and 2003. The ANSI-NSF International standards used for commercial kitchens, such as restaurants, cafeterias, delis, etc. The ANSI/APSP (Association of Pool & Spa Professionals) standards used for pools, spas, hot tubs, barriers, and suction entrapment avoidance.
659
wiki20220301en000_2534
American National Standards Institute
The ANSI/APSP (Association of Pool & Spa Professionals) standards used for pools, spas, hot tubs, barriers, and suction entrapment avoidance. The ANSI/HI (Hydraulic Institute) standards used for pumps. The ANSI for eye protection is Z87.1, which gives a specific impact resistance rating to the eyewear. This standard is commonly used for shop glasses, shooting glasses, and many other examples of protective eyewear. The ANSI paper sizes (ANSI/ASME Y14.1).
American National Standards Institute. The ANSI/APSP (Association of Pool & Spa Professionals) standards used for pools, spas, hot tubs, barriers, and suction entrapment avoidance. The ANSI/HI (Hydraulic Institute) standards used for pumps. The ANSI for eye protection is Z87.1, which gives a specific impact resistance rating to the eyewear. This standard is commonly used for shop glasses, shooting glasses, and many other examples of protective eyewear. The ANSI paper sizes (ANSI/ASME Y14.1).
659
wiki20220301en000_2535
American National Standards Institute
Other initiatives In 2008, ANSI, in partnership with Citation Technologies, created the first dynamic, online web library for ISO 14000 standards. On June 23, 2009, ANSI announced a product and services agreement with Citation Technologies to deliver all ISO Standards on a web-based platform. Through the ANSI-Citation partnership, 17,765 International Standards developed by more than 3,000 ISO technical bodies will be made available on the citation platform, arming subscribers with powerful search tools and collaboration, notification, and change-management functionality. ANSI, in partnership with Citation Technologies, AAMI, ASTM, and DIN, created a single, centralized database for medical device standards on September 9, 2009. In early 2009, ANSI launched a new Certificate Accreditation Program (ANSI-CAP) to provide neutral, third-party attestation that a given certificate program meets the American National Standard ASTM E2659-09.
American National Standards Institute. Other initiatives In 2008, ANSI, in partnership with Citation Technologies, created the first dynamic, online web library for ISO 14000 standards. On June 23, 2009, ANSI announced a product and services agreement with Citation Technologies to deliver all ISO Standards on a web-based platform. Through the ANSI-Citation partnership, 17,765 International Standards developed by more than 3,000 ISO technical bodies will be made available on the citation platform, arming subscribers with powerful search tools and collaboration, notification, and change-management functionality. ANSI, in partnership with Citation Technologies, AAMI, ASTM, and DIN, created a single, centralized database for medical device standards on September 9, 2009. In early 2009, ANSI launched a new Certificate Accreditation Program (ANSI-CAP) to provide neutral, third-party attestation that a given certificate program meets the American National Standard ASTM E2659-09.
659
wiki20220301en000_2536
American National Standards Institute
In 2009, ANSI began accepting applications for certification bodies seeking accreditation according to requirements defined under the Toy Safety Certification Program (TSCP) as the official third-party accreditor of TSCP's product certification bodies. In 2006, ANSI launched www.StandardsPortal.org, an online resource for facilitating more open and efficient trade between international markets in the areas of standards, conformity assessment, and technical regulations. The site currently features content for the United States, China, India, Korea, and Brazil, with additional countries and regions planned for future content. ANSI design standards have also been incorporated into building codes encompassing several specific building sub-sets, such as the ANSI/SPRI ES-1, which pertains to "Wind Design Standard for Edge Systems Used With Low Slope Roofing Systems", for example.
American National Standards Institute. In 2009, ANSI began accepting applications for certification bodies seeking accreditation according to requirements defined under the Toy Safety Certification Program (TSCP) as the official third-party accreditor of TSCP's product certification bodies. In 2006, ANSI launched www.StandardsPortal.org, an online resource for facilitating more open and efficient trade between international markets in the areas of standards, conformity assessment, and technical regulations. The site currently features content for the United States, China, India, Korea, and Brazil, with additional countries and regions planned for future content. ANSI design standards have also been incorporated into building codes encompassing several specific building sub-sets, such as the ANSI/SPRI ES-1, which pertains to "Wind Design Standard for Edge Systems Used With Low Slope Roofing Systems", for example.
659
wiki20220301en000_2537
American National Standards Institute
See also Accredited Crane Operator Certification ANSI ASC X9 ANSI ASC X12 ANSI C Institute of Environmental Sciences and Technology (IEST) Institute of Nuclear Materials Management (INMM) ISO (to which ANSI is the official US representative) National Information Standards Organization (NISO) National Institute of Standards and Technology (NIST) Open standards References External links 1918 establishments in the United States 501(c)(3) organizations Charities based in Washington, D.C. ISO member bodies Organizations established in 1918 Technical specifications
American National Standards Institute. See also Accredited Crane Operator Certification ANSI ASC X9 ANSI ASC X12 ANSI C Institute of Environmental Sciences and Technology (IEST) Institute of Nuclear Materials Management (INMM) ISO (to which ANSI is the official US representative) National Information Standards Organization (NISO) National Institute of Standards and Technology (NIST) Open standards References External links 1918 establishments in the United States 501(c)(3) organizations Charities based in Washington, D.C. ISO member bodies Organizations established in 1918 Technical specifications
659
wiki20220301en000_2538
Argument (disambiguation)
In logic and philosophy, an argument is an attempt to persuade someone of something, or give evidence or reasons for accepting a particular conclusion. Argument may also refer to: Mathematics and computer science Argument (complex analysis), a function which returns the polar angle of a complex number Command-line argument, an item of information provided to a program when it is started Parameter (computer programming), a piece of data provided as input to a subroutine Argument principle, a theorem in complex analysis An argument of a function, also known as an independent variable
Argument (disambiguation). In logic and philosophy, an argument is an attempt to persuade someone of something, or give evidence or reasons for accepting a particular conclusion. Argument may also refer to: Mathematics and computer science Argument (complex analysis), a function which returns the polar angle of a complex number Command-line argument, an item of information provided to a program when it is started Parameter (computer programming), a piece of data provided as input to a subroutine Argument principle, a theorem in complex analysis An argument of a function, also known as an independent variable
661
wiki20220301en000_2539
Argument (disambiguation)
Language and rhetoric Argument (literature), a brief summary, often in prose, of a poem or section of a poem or other work Argument (linguistics), a phrase that appears in a syntactic relationship with the verb in a clause Oral argument in the United States, a spoken presentation to a judge or appellate court by a lawyer (or parties when representing themselves) of the legal reasons why they should prevail Closing argument, in law, the concluding statement of each party's counsel reiterating the important arguments in a court case Other uses Musical argument, a concept in the theory of musical form Argument (ship), an Australian sloop wrecked in 1809 Das Argument, a German academic journal Argument Clinic, a Monty Python sketch A disagreement between two or more parties or the discussion of the disagreement Argument (horse) See also The Argument (disambiguation)
Argument (disambiguation). Language and rhetoric Argument (literature), a brief summary, often in prose, of a poem or section of a poem or other work Argument (linguistics), a phrase that appears in a syntactic relationship with the verb in a clause Oral argument in the United States, a spoken presentation to a judge or appellate court by a lawyer (or parties when representing themselves) of the legal reasons why they should prevail Closing argument, in law, the concluding statement of each party's counsel reiterating the important arguments in a court case Other uses Musical argument, a concept in the theory of musical form Argument (ship), an Australian sloop wrecked in 1809 Das Argument, a German academic journal Argument Clinic, a Monty Python sketch A disagreement between two or more parties or the discussion of the disagreement Argument (horse) See also The Argument (disambiguation)
661
wiki20220301en000_2540
Apollo 11
Apollo 11 (July 16–24, 1969) was the American spaceflight that first landed humans on the Moon. Commander Neil Armstrong and lunar module pilot Buzz Aldrin landed the Apollo Lunar Module Eagle on July 20, 1969, at 20:17 UTC, and Armstrong became the first person to step onto the Moon's surface six hours and 39 minutes later, on July 21 at 02:56 UTC. Aldrin joined him 19 minutes later, and they spent about two and a quarter hours together exploring the site they had named Tranquility Base upon landing. Armstrong and Aldrin collected of lunar material to bring back to Earth as pilot Michael Collins flew the Command Module Columbia in lunar orbit, and were on the Moon's surface for 21 hours, 36 minutes before lifting off to rejoin Columbia.
Apollo 11. Apollo 11 (July 16–24, 1969) was the American spaceflight that first landed humans on the Moon. Commander Neil Armstrong and lunar module pilot Buzz Aldrin landed the Apollo Lunar Module Eagle on July 20, 1969, at 20:17 UTC, and Armstrong became the first person to step onto the Moon's surface six hours and 39 minutes later, on July 21 at 02:56 UTC. Aldrin joined him 19 minutes later, and they spent about two and a quarter hours together exploring the site they had named Tranquility Base upon landing. Armstrong and Aldrin collected of lunar material to bring back to Earth as pilot Michael Collins flew the Command Module Columbia in lunar orbit, and were on the Moon's surface for 21 hours, 36 minutes before lifting off to rejoin Columbia.
662
wiki20220301en000_2541
Apollo 11
Apollo 11 was launched by a Saturn V rocket from Kennedy Space Center on Merritt Island, Florida, on July 16 at 13:32 UTC, and it was the fifth crewed mission of NASA's Apollo program. The Apollo spacecraft had three parts: a command module (CM) with a cabin for the three astronauts, the only part that returned to Earth; a service module (SM), which supported the command module with propulsion, electrical power, oxygen, and water; and a lunar module (LM) that had two stages—a descent stage for landing on the Moon and an ascent stage to place the astronauts back into lunar orbit.
Apollo 11. Apollo 11 was launched by a Saturn V rocket from Kennedy Space Center on Merritt Island, Florida, on July 16 at 13:32 UTC, and it was the fifth crewed mission of NASA's Apollo program. The Apollo spacecraft had three parts: a command module (CM) with a cabin for the three astronauts, the only part that returned to Earth; a service module (SM), which supported the command module with propulsion, electrical power, oxygen, and water; and a lunar module (LM) that had two stages—a descent stage for landing on the Moon and an ascent stage to place the astronauts back into lunar orbit.
662
wiki20220301en000_2542
Apollo 11
After being sent to the Moon by the Saturn V's third stage, the astronauts separated the spacecraft from it and traveled for three days until they entered lunar orbit. Armstrong and Aldrin then moved into Eagle and landed in the Sea of Tranquility on July 20. The astronauts used Eagles ascent stage to lift off from the lunar surface and rejoin Collins in the command module. They jettisoned Eagle before they performed the maneuvers that propelled Columbia out of the last of its 30 lunar orbits onto a trajectory back to Earth. They returned to Earth and splashed down in the Pacific Ocean on July 24 after more than eight days in space.
Apollo 11. After being sent to the Moon by the Saturn V's third stage, the astronauts separated the spacecraft from it and traveled for three days until they entered lunar orbit. Armstrong and Aldrin then moved into Eagle and landed in the Sea of Tranquility on July 20. The astronauts used Eagles ascent stage to lift off from the lunar surface and rejoin Collins in the command module. They jettisoned Eagle before they performed the maneuvers that propelled Columbia out of the last of its 30 lunar orbits onto a trajectory back to Earth. They returned to Earth and splashed down in the Pacific Ocean on July 24 after more than eight days in space.
662
wiki20220301en000_2543
Apollo 11
Armstrong's first step onto the lunar surface was broadcast on live TV to a worldwide audience. He described the event as "one small step for [a] man, one giant leap for mankind." Apollo 11 effectively proved US victory in the Space Race to demonstrate spaceflight superiority, by fulfilling a national goal proposed in 1961 by President John F. Kennedy, "before this decade is out, of landing a man on the Moon and returning him safely to the Earth." Background
Apollo 11. Armstrong's first step onto the lunar surface was broadcast on live TV to a worldwide audience. He described the event as "one small step for [a] man, one giant leap for mankind." Apollo 11 effectively proved US victory in the Space Race to demonstrate spaceflight superiority, by fulfilling a national goal proposed in 1961 by President John F. Kennedy, "before this decade is out, of landing a man on the Moon and returning him safely to the Earth." Background
662
wiki20220301en000_2544
Apollo 11
In the late 1950s and early 1960s, the United States was engaged in the Cold War, a geopolitical rivalry with the Soviet Union. On October 4, 1957, the Soviet Union launched Sputnik 1, the first artificial satellite. This surprise success fired fears and imaginations around the world. It demonstrated that the Soviet Union had the capability to deliver nuclear weapons over intercontinental distances, and challenged American claims of military, economic and technological superiority. This precipitated the Sputnik crisis, and triggered the Space Race to prove which superpower would achieve superior spaceflight capability. President Dwight D. Eisenhower responded to the Sputnik challenge by creating the National Aeronautics and Space Administration (NASA), and initiating Project Mercury, which aimed to launch a man into Earth orbit. But on April 12, 1961, Soviet cosmonaut Yuri Gagarin became the first person in space, and the first to orbit the Earth. Nearly a month later, on May 5, 1961,
Apollo 11. In the late 1950s and early 1960s, the United States was engaged in the Cold War, a geopolitical rivalry with the Soviet Union. On October 4, 1957, the Soviet Union launched Sputnik 1, the first artificial satellite. This surprise success fired fears and imaginations around the world. It demonstrated that the Soviet Union had the capability to deliver nuclear weapons over intercontinental distances, and challenged American claims of military, economic and technological superiority. This precipitated the Sputnik crisis, and triggered the Space Race to prove which superpower would achieve superior spaceflight capability. President Dwight D. Eisenhower responded to the Sputnik challenge by creating the National Aeronautics and Space Administration (NASA), and initiating Project Mercury, which aimed to launch a man into Earth orbit. But on April 12, 1961, Soviet cosmonaut Yuri Gagarin became the first person in space, and the first to orbit the Earth. Nearly a month later, on May 5, 1961,
662
wiki20220301en000_2545
Apollo 11
aimed to launch a man into Earth orbit. But on April 12, 1961, Soviet cosmonaut Yuri Gagarin became the first person in space, and the first to orbit the Earth. Nearly a month later, on May 5, 1961, Alan Shepard became the first American in space, completing a 15-minute suborbital journey. After being recovered from the Atlantic Ocean, he received a congratulatory telephone call from Eisenhower's successor, John F. Kennedy.
Apollo 11. aimed to launch a man into Earth orbit. But on April 12, 1961, Soviet cosmonaut Yuri Gagarin became the first person in space, and the first to orbit the Earth. Nearly a month later, on May 5, 1961, Alan Shepard became the first American in space, completing a 15-minute suborbital journey. After being recovered from the Atlantic Ocean, he received a congratulatory telephone call from Eisenhower's successor, John F. Kennedy.
662
wiki20220301en000_2546
Apollo 11
Since the Soviet Union had higher lift capacity launch vehicles, Kennedy chose, from among options presented by NASA, a challenge beyond the capacity of the existing generation of rocketry, so that the US and Soviet Union would be starting from a position of equality. A crewed mission to the Moon would serve this purpose. On May 25, 1961, Kennedy addressed the United States Congress on "Urgent National Needs" and declared: On September 12, 1962, Kennedy delivered another speech before a crowd of about 40,000 people in the Rice University football stadium in Houston, Texas. A widely quoted refrain from the middle portion of the speech reads as follows:
Apollo 11. Since the Soviet Union had higher lift capacity launch vehicles, Kennedy chose, from among options presented by NASA, a challenge beyond the capacity of the existing generation of rocketry, so that the US and Soviet Union would be starting from a position of equality. A crewed mission to the Moon would serve this purpose. On May 25, 1961, Kennedy addressed the United States Congress on "Urgent National Needs" and declared: On September 12, 1962, Kennedy delivered another speech before a crowd of about 40,000 people in the Rice University football stadium in Houston, Texas. A widely quoted refrain from the middle portion of the speech reads as follows:
662
wiki20220301en000_2547
Apollo 11
In spite of that, the proposed program faced the opposition of many Americans and was dubbed a "moondoggle" by Norbert Wiener, a mathematician at the Massachusetts Institute of Technology. The effort to land a man on the Moon already had a name: Project Apollo. When Kennedy met with Nikita Khrushchev, the Premier of the Soviet Union in June 1961, he proposed making the Moon landing a joint project, but Khrushchev did not take up the offer. Kennedy again proposed a joint expedition to the Moon in a speech to the United Nations General Assembly on September 20, 1963. The idea of a joint Moon mission was abandoned after Kennedy's death.
Apollo 11. In spite of that, the proposed program faced the opposition of many Americans and was dubbed a "moondoggle" by Norbert Wiener, a mathematician at the Massachusetts Institute of Technology. The effort to land a man on the Moon already had a name: Project Apollo. When Kennedy met with Nikita Khrushchev, the Premier of the Soviet Union in June 1961, he proposed making the Moon landing a joint project, but Khrushchev did not take up the offer. Kennedy again proposed a joint expedition to the Moon in a speech to the United Nations General Assembly on September 20, 1963. The idea of a joint Moon mission was abandoned after Kennedy's death.
662
wiki20220301en000_2548
Apollo 11
An early and crucial decision was choosing lunar orbit rendezvous over both direct ascent and Earth orbit rendezvous. A space rendezvous is an orbital maneuver in which two spacecraft navigate through space and meet up. In July 1962 NASA head James Webb announced that lunar orbit rendezvous would be used and that the Apollo spacecraft would have three major parts: a command module (CM) with a cabin for the three astronauts, and the only part that returned to Earth; a service module (SM), which supported the command module with propulsion, electrical power, oxygen, and water; and a lunar module (LM) that had two stages—a descent stage for landing on the Moon, and an ascent stage to place the astronauts back into lunar orbit. This design meant the spacecraft could be launched by a single Saturn V rocket that was then under development.
Apollo 11. An early and crucial decision was choosing lunar orbit rendezvous over both direct ascent and Earth orbit rendezvous. A space rendezvous is an orbital maneuver in which two spacecraft navigate through space and meet up. In July 1962 NASA head James Webb announced that lunar orbit rendezvous would be used and that the Apollo spacecraft would have three major parts: a command module (CM) with a cabin for the three astronauts, and the only part that returned to Earth; a service module (SM), which supported the command module with propulsion, electrical power, oxygen, and water; and a lunar module (LM) that had two stages—a descent stage for landing on the Moon, and an ascent stage to place the astronauts back into lunar orbit. This design meant the spacecraft could be launched by a single Saturn V rocket that was then under development.
662
wiki20220301en000_2549
Apollo 11
Technologies and techniques required for Apollo were developed by Project Gemini. The Apollo project was enabled by NASA's adoption of new advances in semiconductor electronic technology, including metal-oxide-semiconductor field-effect transistors (MOSFETs) in the Interplanetary Monitoring Platform (IMP) and silicon integrated circuit (IC) chips in the Apollo Guidance Computer (AGC). Project Apollo was abruptly halted by the Apollo 1 fire on January 27, 1967, in which astronauts Gus Grissom, Ed White, and Roger B. Chaffee died, and the subsequent investigation. In October 1968, Apollo 7 evaluated the command module in Earth orbit, and in December Apollo 8 tested it in lunar orbit. In March 1969, Apollo 9 put the lunar module through its paces in Earth orbit, and in May Apollo 10 conducted a "dress rehearsal" in lunar orbit. By July 1969, all was in readiness for Apollo 11 to take the final step onto the Moon.
Apollo 11. Technologies and techniques required for Apollo were developed by Project Gemini. The Apollo project was enabled by NASA's adoption of new advances in semiconductor electronic technology, including metal-oxide-semiconductor field-effect transistors (MOSFETs) in the Interplanetary Monitoring Platform (IMP) and silicon integrated circuit (IC) chips in the Apollo Guidance Computer (AGC). Project Apollo was abruptly halted by the Apollo 1 fire on January 27, 1967, in which astronauts Gus Grissom, Ed White, and Roger B. Chaffee died, and the subsequent investigation. In October 1968, Apollo 7 evaluated the command module in Earth orbit, and in December Apollo 8 tested it in lunar orbit. In March 1969, Apollo 9 put the lunar module through its paces in Earth orbit, and in May Apollo 10 conducted a "dress rehearsal" in lunar orbit. By July 1969, all was in readiness for Apollo 11 to take the final step onto the Moon.
662
wiki20220301en000_2550
Apollo 11
The Soviet Union appeared to be winning the Space Race by beating the US to firsts, but its early lead was overtaken by the US Gemini program and Soviet failure to develop the N1 launcher, which would have been comparable to the Saturn V. The Soviets tried to beat the US to return lunar material to the Earth by means of uncrewed probes. On July 13, three days before Apollo 11's launch, the Soviet Union launched Luna 15, which reached lunar orbit before Apollo 11. During descent, a malfunction caused Luna 15 to crash in Mare Crisium about two hours before Armstrong and Aldrin took off from the Moon's surface to begin their voyage home. The Nuffield Radio Astronomy Laboratories radio telescope in England recorded transmissions from Luna 15 during its descent, and these were released in July 2009 for the 40th anniversary of Apollo 11. Personnel Prime crew
Apollo 11. The Soviet Union appeared to be winning the Space Race by beating the US to firsts, but its early lead was overtaken by the US Gemini program and Soviet failure to develop the N1 launcher, which would have been comparable to the Saturn V. The Soviets tried to beat the US to return lunar material to the Earth by means of uncrewed probes. On July 13, three days before Apollo 11's launch, the Soviet Union launched Luna 15, which reached lunar orbit before Apollo 11. During descent, a malfunction caused Luna 15 to crash in Mare Crisium about two hours before Armstrong and Aldrin took off from the Moon's surface to begin their voyage home. The Nuffield Radio Astronomy Laboratories radio telescope in England recorded transmissions from Luna 15 during its descent, and these were released in July 2009 for the 40th anniversary of Apollo 11. Personnel Prime crew
662
wiki20220301en000_2551
Apollo 11
Personnel Prime crew The initial crew assignment of Commander Neil Armstrong, Command Module Pilot (CMP) Jim Lovell, and Lunar Module Pilot (LMP) Buzz Aldrin on the backup crew for Apollo9 was officially announced on November 20, 1967. Lovell and Aldrin had previously flown together as the crew of Gemini 12. Due to design and manufacturing delays in the LM, Apollo8 and Apollo9 swapped prime and backup crews, and Armstrong's crew became the backup for Apollo8. Based on the normal crew rotation scheme, Armstrong was then expected to command Apollo 11.
Apollo 11. Personnel Prime crew The initial crew assignment of Commander Neil Armstrong, Command Module Pilot (CMP) Jim Lovell, and Lunar Module Pilot (LMP) Buzz Aldrin on the backup crew for Apollo9 was officially announced on November 20, 1967. Lovell and Aldrin had previously flown together as the crew of Gemini 12. Due to design and manufacturing delays in the LM, Apollo8 and Apollo9 swapped prime and backup crews, and Armstrong's crew became the backup for Apollo8. Based on the normal crew rotation scheme, Armstrong was then expected to command Apollo 11.
662
wiki20220301en000_2552
Apollo 11
There would be one change. Michael Collins, the CMP on the Apollo8 crew, began experiencing trouble with his legs. Doctors diagnosed the problem as a bony growth between his fifth and sixth vertebrae, requiring surgery. Lovell took his place on the Apollo8 crew, and when Collins recovered he joined Armstrong's crew as CMP. In the meantime, Fred Haise filled in as backup LMP, and Aldrin as backup CMP for Apollo 8. Apollo 11 was the second American mission where all the crew members had prior spaceflight experience, the first being Apollo 10. The next was STS-26 in 1988. Deke Slayton gave Armstrong the option to replace Aldrin with Lovell, since some thought Aldrin was difficult to work with. Armstrong had no issues working with Aldrin but thought it over for a day before declining. He thought Lovell deserved to command his own mission (eventually Apollo 13).
Apollo 11. There would be one change. Michael Collins, the CMP on the Apollo8 crew, began experiencing trouble with his legs. Doctors diagnosed the problem as a bony growth between his fifth and sixth vertebrae, requiring surgery. Lovell took his place on the Apollo8 crew, and when Collins recovered he joined Armstrong's crew as CMP. In the meantime, Fred Haise filled in as backup LMP, and Aldrin as backup CMP for Apollo 8. Apollo 11 was the second American mission where all the crew members had prior spaceflight experience, the first being Apollo 10. The next was STS-26 in 1988. Deke Slayton gave Armstrong the option to replace Aldrin with Lovell, since some thought Aldrin was difficult to work with. Armstrong had no issues working with Aldrin but thought it over for a day before declining. He thought Lovell deserved to command his own mission (eventually Apollo 13).
662
wiki20220301en000_2553
Apollo 11
The Apollo 11 prime crew had none of the close cheerful camaraderie characterized by that of Apollo 12. Instead, they forged an amiable working relationship. Armstrong in particular was notoriously aloof, but Collins, who considered himself a loner, confessed to rebuffing Aldrin's attempts to create a more personal relationship. Aldrin and Collins described the crew as "amiable strangers". Armstrong did not agree with the assessment, and said "... all the crews I was on worked very well together." Backup crew
Apollo 11. The Apollo 11 prime crew had none of the close cheerful camaraderie characterized by that of Apollo 12. Instead, they forged an amiable working relationship. Armstrong in particular was notoriously aloof, but Collins, who considered himself a loner, confessed to rebuffing Aldrin's attempts to create a more personal relationship. Aldrin and Collins described the crew as "amiable strangers". Armstrong did not agree with the assessment, and said "... all the crews I was on worked very well together." Backup crew
662
wiki20220301en000_2554
Apollo 11
Backup crew The backup crew consisted of Lovell as Commander, William Anders as CMP, and Haise as LMP. Anders had flown with Lovell on Apollo8. In early 1969, he accepted a job with the National Aeronautics and Space Council effective August 1969, and announced he would retire as an astronaut at that time. Ken Mattingly was moved from the support crew into parallel training with Anders as backup CMP in case Apollo 11 was delayed past its intended July launch date, at which point Anders would be unavailable. By the normal crew rotation in place during Apollo, Lovell, Mattingly, and Haise were scheduled to fly on Apollo 14 after backing up for Apollo 11. Later, Lovell's crew was forced to switch places with Alan Shepard's tentative Apollo 13 crew to give Shepard more training time. Support crew
Apollo 11. Backup crew The backup crew consisted of Lovell as Commander, William Anders as CMP, and Haise as LMP. Anders had flown with Lovell on Apollo8. In early 1969, he accepted a job with the National Aeronautics and Space Council effective August 1969, and announced he would retire as an astronaut at that time. Ken Mattingly was moved from the support crew into parallel training with Anders as backup CMP in case Apollo 11 was delayed past its intended July launch date, at which point Anders would be unavailable. By the normal crew rotation in place during Apollo, Lovell, Mattingly, and Haise were scheduled to fly on Apollo 14 after backing up for Apollo 11. Later, Lovell's crew was forced to switch places with Alan Shepard's tentative Apollo 13 crew to give Shepard more training time. Support crew
662
wiki20220301en000_2555
Apollo 11
Support crew During Projects Mercury and Gemini, each mission had a prime and a backup crew. For Apollo, a third crew of astronauts was added, known as the support crew. The support crew maintained the flight plan, checklists and mission ground rules, and ensured the prime and backup crews were apprised of changes. They developed procedures, especially those for emergency situations, so these were ready for when the prime and backup crews came to train in the simulators, allowing them to concentrate on practicing and mastering them. For Apollo 11, the support crew consisted of Ken Mattingly, Ronald Evans and Bill Pogue. Capsule communicators
Apollo 11. Support crew During Projects Mercury and Gemini, each mission had a prime and a backup crew. For Apollo, a third crew of astronauts was added, known as the support crew. The support crew maintained the flight plan, checklists and mission ground rules, and ensured the prime and backup crews were apprised of changes. They developed procedures, especially those for emergency situations, so these were ready for when the prime and backup crews came to train in the simulators, allowing them to concentrate on practicing and mastering them. For Apollo 11, the support crew consisted of Ken Mattingly, Ronald Evans and Bill Pogue. Capsule communicators
662
wiki20220301en000_2556
Apollo 11
Capsule communicators The capsule communicator (CAPCOM) was an astronaut at the Mission Control Center in Houston, Texas, who was the only person who communicated directly with the flight crew. For Apollo 11, the CAPCOMs were: Charles Duke, Ronald Evans, Bruce McCandless II, James Lovell, William Anders, Ken Mattingly, Fred Haise, Don L. Lind, Owen K. Garriott and Harrison Schmitt. Flight directors The flight directors for this mission were: Other key personnel Other key personnel who played important roles in the Apollo 11 mission include the following. Preparations Insignia
Apollo 11. Capsule communicators The capsule communicator (CAPCOM) was an astronaut at the Mission Control Center in Houston, Texas, who was the only person who communicated directly with the flight crew. For Apollo 11, the CAPCOMs were: Charles Duke, Ronald Evans, Bruce McCandless II, James Lovell, William Anders, Ken Mattingly, Fred Haise, Don L. Lind, Owen K. Garriott and Harrison Schmitt. Flight directors The flight directors for this mission were: Other key personnel Other key personnel who played important roles in the Apollo 11 mission include the following. Preparations Insignia
662
wiki20220301en000_2557
Apollo 11
Preparations Insignia The Apollo 11 mission emblem was designed by Collins, who wanted a symbol for "peaceful lunar landing by the United States". At Lovell's suggestion, he chose the bald eagle, the national bird of the United States, as the symbol. Tom Wilson, a simulator instructor, suggested an olive branch in its beak to represent their peaceful mission. Collins added a lunar background with the Earth in the distance. The sunlight in the image was coming from the wrong direction; the shadow should have been in the lower part of the Earth instead of the left. Aldrin, Armstrong and Collins decided the Eagle and the Moon would be in their natural colors, and decided on a blue and gold border. Armstrong was concerned that "eleven" would not be understood by non-English speakers, so they went with "Apollo 11", and they decided not to put their names on the patch, so it would "be representative of everyone who had worked toward a lunar landing".
Apollo 11. Preparations Insignia The Apollo 11 mission emblem was designed by Collins, who wanted a symbol for "peaceful lunar landing by the United States". At Lovell's suggestion, he chose the bald eagle, the national bird of the United States, as the symbol. Tom Wilson, a simulator instructor, suggested an olive branch in its beak to represent their peaceful mission. Collins added a lunar background with the Earth in the distance. The sunlight in the image was coming from the wrong direction; the shadow should have been in the lower part of the Earth instead of the left. Aldrin, Armstrong and Collins decided the Eagle and the Moon would be in their natural colors, and decided on a blue and gold border. Armstrong was concerned that "eleven" would not be understood by non-English speakers, so they went with "Apollo 11", and they decided not to put their names on the patch, so it would "be representative of everyone who had worked toward a lunar landing".
662
wiki20220301en000_2558
Apollo 11
An illustrator at the Manned Spacecraft Center (MSC) did the artwork, which was then sent off to NASA officials for approval. The design was rejected. Bob Gilruth, the director of the MSC felt the talons of the eagle looked "too warlike". After some discussion, the olive branch was moved to the talons. When the Eisenhower dollar coin was released in 1971, the patch design provided the eagle for its reverse side. The design was also used for the smaller Susan B. Anthony dollar unveiled in 1979. Call signs After the crew of Apollo 10 named their spacecraft Charlie Brown and Snoopy, assistant manager for public affairs Julian Scheer wrote to George Low, the Manager of the Apollo Spacecraft Program Office at the MSC, to suggest the Apollo 11 crew be less flippant in naming their craft. The name Snowcone was used for the CM and Haystack was used for the LM in both internal and external communications during early mission planning.
Apollo 11. An illustrator at the Manned Spacecraft Center (MSC) did the artwork, which was then sent off to NASA officials for approval. The design was rejected. Bob Gilruth, the director of the MSC felt the talons of the eagle looked "too warlike". After some discussion, the olive branch was moved to the talons. When the Eisenhower dollar coin was released in 1971, the patch design provided the eagle for its reverse side. The design was also used for the smaller Susan B. Anthony dollar unveiled in 1979. Call signs After the crew of Apollo 10 named their spacecraft Charlie Brown and Snoopy, assistant manager for public affairs Julian Scheer wrote to George Low, the Manager of the Apollo Spacecraft Program Office at the MSC, to suggest the Apollo 11 crew be less flippant in naming their craft. The name Snowcone was used for the CM and Haystack was used for the LM in both internal and external communications during early mission planning.
662
wiki20220301en000_2559
Apollo 11
The LM was named Eagle after the motif which was featured prominently on the mission insignia. At Scheer's suggestion, the CM was named Columbia after Columbiad, the giant cannon that launched a spacecraft (also from Florida) in Jules Verne's 1865 novel From the Earth to the Moon. It also referred to Columbia, a historical name of the United States. In Collins' 1976 book, he said Columbia was in reference to Christopher Columbus. Mementos The astronauts had personal preference kits (PPKs), small bags containing personal items of significance they wanted to take with them on the mission. Five PPKs were carried on Apollo 11: three (one for each astronaut) were stowed on Columbia before launch, and two on Eagle.
Apollo 11. The LM was named Eagle after the motif which was featured prominently on the mission insignia. At Scheer's suggestion, the CM was named Columbia after Columbiad, the giant cannon that launched a spacecraft (also from Florida) in Jules Verne's 1865 novel From the Earth to the Moon. It also referred to Columbia, a historical name of the United States. In Collins' 1976 book, he said Columbia was in reference to Christopher Columbus. Mementos The astronauts had personal preference kits (PPKs), small bags containing personal items of significance they wanted to take with them on the mission. Five PPKs were carried on Apollo 11: three (one for each astronaut) were stowed on Columbia before launch, and two on Eagle.
662
wiki20220301en000_2560
Apollo 11
Neil Armstrong's LM PPK contained a piece of wood from the Wright brothers' 1903 Wright Flyers left propeller and a piece of fabric from its wing, along with a diamond-studded astronaut pin originally given to Slayton by the widows of the Apollo1 crew. This pin had been intended to be flown on that mission and given to Slayton afterwards, but following the disastrous launch pad fire and subsequent funerals, the widows gave the pin to Slayton. Armstrong took it with him on Apollo 11. Site selection
Apollo 11. Neil Armstrong's LM PPK contained a piece of wood from the Wright brothers' 1903 Wright Flyers left propeller and a piece of fabric from its wing, along with a diamond-studded astronaut pin originally given to Slayton by the widows of the Apollo1 crew. This pin had been intended to be flown on that mission and given to Slayton afterwards, but following the disastrous launch pad fire and subsequent funerals, the widows gave the pin to Slayton. Armstrong took it with him on Apollo 11. Site selection
662
wiki20220301en000_2561
Apollo 11
Site selection NASA's Apollo Site Selection Board announced five potential landing sites on February 8, 1968. These were the result of two years' worth of studies based on high-resolution photography of the lunar surface by the five uncrewed probes of the Lunar Orbiter program and information about surface conditions provided by the Surveyor program. The best Earth-bound telescopes could not resolve features with the resolution Project Apollo required. The landing site had to be close to the lunar equator to minimize the amount of propellant required, clear of obstacles to minimize maneuvering, and flat to simplify the task of the landing radar. Scientific value was not a consideration.
Apollo 11. Site selection NASA's Apollo Site Selection Board announced five potential landing sites on February 8, 1968. These were the result of two years' worth of studies based on high-resolution photography of the lunar surface by the five uncrewed probes of the Lunar Orbiter program and information about surface conditions provided by the Surveyor program. The best Earth-bound telescopes could not resolve features with the resolution Project Apollo required. The landing site had to be close to the lunar equator to minimize the amount of propellant required, clear of obstacles to minimize maneuvering, and flat to simplify the task of the landing radar. Scientific value was not a consideration.
662
wiki20220301en000_2562
Apollo 11
Areas that appeared promising on photographs taken on Earth were often found to be totally unacceptable. The original requirement that the site be free of craters had to be relaxed, as no such site was found. Five sites were considered: Sites1 and2 were in the Sea of Tranquility (Mare Tranquillitatis); Site3 was in the Central Bay (Sinus Medii); and Sites4 and5 were in the Ocean of Storms (Oceanus Procellarum). The final site selection was based on seven criteria: The site needed to be smooth, with relatively few craters; with approach paths free of large hills, tall cliffs or deep craters that might confuse the landing radar and cause it to issue incorrect readings; reachable with a minimum amount of propellant; allowing for delays in the launch countdown; providing the Apollo spacecraft with a free-return trajectory, one that would allow it to coast around the Moon and safely return to Earth without requiring any engine firings should a problem arise on the way to the Moon;
Apollo 11. Areas that appeared promising on photographs taken on Earth were often found to be totally unacceptable. The original requirement that the site be free of craters had to be relaxed, as no such site was found. Five sites were considered: Sites1 and2 were in the Sea of Tranquility (Mare Tranquillitatis); Site3 was in the Central Bay (Sinus Medii); and Sites4 and5 were in the Ocean of Storms (Oceanus Procellarum). The final site selection was based on seven criteria: The site needed to be smooth, with relatively few craters; with approach paths free of large hills, tall cliffs or deep craters that might confuse the landing radar and cause it to issue incorrect readings; reachable with a minimum amount of propellant; allowing for delays in the launch countdown; providing the Apollo spacecraft with a free-return trajectory, one that would allow it to coast around the Moon and safely return to Earth without requiring any engine firings should a problem arise on the way to the Moon;
662
wiki20220301en000_2563
Apollo 11
with good visibility during the landing approach, meaning the Sun would be between 7and 20 degrees behind the LM; and a general slope of less than two degrees in the landing area.
Apollo 11. with good visibility during the landing approach, meaning the Sun would be between 7and 20 degrees behind the LM; and a general slope of less than two degrees in the landing area.
662
wiki20220301en000_2564
Apollo 11
The requirement for the Sun angle was particularly restrictive, limiting the launch date to one day per month. A landing just after dawn was chosen to limit the temperature extremes the astronauts would experience. The Apollo Site Selection Board selected Site2, with Sites 3and5 as backups in the event of the launch being delayed. In May 1969, Apollo 10's lunar module flew to within of Site2, and reported it was acceptable. First-step decision During the first press conference after the Apollo 11 crew was announced, the first question was, "Which one of you gentlemen will be the first man to step onto the lunar surface?" Slayton told the reporter it had not been decided, and Armstrong added that it was "not based on individual desire".
Apollo 11. The requirement for the Sun angle was particularly restrictive, limiting the launch date to one day per month. A landing just after dawn was chosen to limit the temperature extremes the astronauts would experience. The Apollo Site Selection Board selected Site2, with Sites 3and5 as backups in the event of the launch being delayed. In May 1969, Apollo 10's lunar module flew to within of Site2, and reported it was acceptable. First-step decision During the first press conference after the Apollo 11 crew was announced, the first question was, "Which one of you gentlemen will be the first man to step onto the lunar surface?" Slayton told the reporter it had not been decided, and Armstrong added that it was "not based on individual desire".
662
wiki20220301en000_2565
Apollo 11
One of the first versions of the egress checklist had the lunar module pilot exit the spacecraft before the commander, which matched what had been done on Gemini missions, where the commander had never performed the spacewalk. Reporters wrote in early 1969 that Aldrin would be the first man to walk on the Moon, and Associate Administrator George Mueller told reporters he would be first as well. Aldrin heard that Armstrong would be the first because Armstrong was a civilian, which made Aldrin livid. Aldrin attempted to persuade other lunar module pilots he should be first, but they responded cynically about what they perceived as a lobbying campaign. Attempting to stem interdepartmental conflict, Slayton told Aldrin that Armstrong would be first since he was the commander. The decision was announced in a press conference on April 14, 1969.
Apollo 11. One of the first versions of the egress checklist had the lunar module pilot exit the spacecraft before the commander, which matched what had been done on Gemini missions, where the commander had never performed the spacewalk. Reporters wrote in early 1969 that Aldrin would be the first man to walk on the Moon, and Associate Administrator George Mueller told reporters he would be first as well. Aldrin heard that Armstrong would be the first because Armstrong was a civilian, which made Aldrin livid. Aldrin attempted to persuade other lunar module pilots he should be first, but they responded cynically about what they perceived as a lobbying campaign. Attempting to stem interdepartmental conflict, Slayton told Aldrin that Armstrong would be first since he was the commander. The decision was announced in a press conference on April 14, 1969.
662
wiki20220301en000_2566
Apollo 11
For decades, Aldrin believed the final decision was largely driven by the lunar module's hatch location. Because the astronauts had their spacesuits on and the spacecraft was so small, maneuvering to exit the spacecraft was difficult. The crew tried a simulation in which Aldrin left the spacecraft first, but he damaged the simulator while attempting to egress. While this was enough for mission planners to make their decision, Aldrin and Armstrong were left in the dark on the decision until late spring. Slayton told Armstrong the plan was to have him leave the spacecraft first, if he agreed. Armstrong said, "Yes, that's the way to do it."
Apollo 11. For decades, Aldrin believed the final decision was largely driven by the lunar module's hatch location. Because the astronauts had their spacesuits on and the spacecraft was so small, maneuvering to exit the spacecraft was difficult. The crew tried a simulation in which Aldrin left the spacecraft first, but he damaged the simulator while attempting to egress. While this was enough for mission planners to make their decision, Aldrin and Armstrong were left in the dark on the decision until late spring. Slayton told Armstrong the plan was to have him leave the spacecraft first, if he agreed. Armstrong said, "Yes, that's the way to do it."
662
wiki20220301en000_2567
Apollo 11
The media accused Armstrong of exercising his commander's prerogative to exit the spacecraft first. Chris Kraft revealed in his 2001 autobiography that a meeting occurred between Gilruth, Slayton, Low, and himself to make sure Aldrin would not be the first to walk on the Moon. They argued that the first person to walk on the Moon should be like Charles Lindbergh, a calm and quiet person. They made the decision to change the flight plan so the commander was the first to egress from the spacecraft. Pre-launch
Apollo 11. The media accused Armstrong of exercising his commander's prerogative to exit the spacecraft first. Chris Kraft revealed in his 2001 autobiography that a meeting occurred between Gilruth, Slayton, Low, and himself to make sure Aldrin would not be the first to walk on the Moon. They argued that the first person to walk on the Moon should be like Charles Lindbergh, a calm and quiet person. They made the decision to change the flight plan so the commander was the first to egress from the spacecraft. Pre-launch
662
wiki20220301en000_2568
Apollo 11
Pre-launch The ascent stage of LM-5 Eagle arrived at the Kennedy Space Center on January 8, 1969, followed by the descent stage four days later, and CSM-107 Columbia on January 23. There were several differences between Eagle and Apollo 10's LM-4 Snoopy; Eagle had a VHF radio antenna to facilitate communication with the astronauts during their EVA on the lunar surface; a lighter ascent engine; more thermal protection on the landing gear; and a package of scientific experiments known as the Early Apollo Scientific Experiments Package (EASEP). The only change in the configuration of the command module was the removal of some insulation from the forward hatch. The CSM was mated on January 29, and moved from the Operations and Checkout Building to the Vehicle Assembly Building on April 14.
Apollo 11. Pre-launch The ascent stage of LM-5 Eagle arrived at the Kennedy Space Center on January 8, 1969, followed by the descent stage four days later, and CSM-107 Columbia on January 23. There were several differences between Eagle and Apollo 10's LM-4 Snoopy; Eagle had a VHF radio antenna to facilitate communication with the astronauts during their EVA on the lunar surface; a lighter ascent engine; more thermal protection on the landing gear; and a package of scientific experiments known as the Early Apollo Scientific Experiments Package (EASEP). The only change in the configuration of the command module was the removal of some insulation from the forward hatch. The CSM was mated on January 29, and moved from the Operations and Checkout Building to the Vehicle Assembly Building on April 14.
662
wiki20220301en000_2569
Apollo 11
The S-IVB third stage of Saturn V AS-506 had arrived on January 18, followed by the S-II second stage on February 6, S-IC first stage on February 20, and the Saturn V Instrument Unit on February 27. At 12:30 on May 20, the assembly departed the Vehicle Assembly Building atop the crawler-transporter, bound for Launch Pad 39A, part of Launch Complex 39, while Apollo 10 was still on its way to the Moon. A countdown test commenced on June 26, and concluded on July 2. The launch complex was floodlit on the night of July 15, when the crawler-transporter carried the mobile service structure back to its parking area. In the early hours of the morning, the fuel tanks of the S-II and S-IVB stages were filled with liquid hydrogen. Fueling was completed by three hours before launch. Launch operations were partly automated, with 43 programs written in the ATOLL programming language.
Apollo 11. The S-IVB third stage of Saturn V AS-506 had arrived on January 18, followed by the S-II second stage on February 6, S-IC first stage on February 20, and the Saturn V Instrument Unit on February 27. At 12:30 on May 20, the assembly departed the Vehicle Assembly Building atop the crawler-transporter, bound for Launch Pad 39A, part of Launch Complex 39, while Apollo 10 was still on its way to the Moon. A countdown test commenced on June 26, and concluded on July 2. The launch complex was floodlit on the night of July 15, when the crawler-transporter carried the mobile service structure back to its parking area. In the early hours of the morning, the fuel tanks of the S-II and S-IVB stages were filled with liquid hydrogen. Fueling was completed by three hours before launch. Launch operations were partly automated, with 43 programs written in the ATOLL programming language.
662
wiki20220301en000_2570
Apollo 11
Slayton roused the crew shortly after 04:00, and they showered, shaved, and had the traditional pre-flight breakfast of steak and eggs with Slayton and the backup crew. They then donned their space suits and began breathing pure oxygen. At 06:30, they headed out to Launch Complex 39. Haise entered Columbia about three hours and ten minutes before launch time. Along with a technician, he helped Armstrong into the left-hand couch at 06:54. Five minutes later, Collins joined him, taking up his position on the right-hand couch. Finally, Aldrin entered, taking the center couch. Haise left around two hours and ten minutes before launch. The closeout crew sealed the hatch, and the cabin was purged and pressurized. The closeout crew then left the launch complex about an hour before launch time. The countdown became automated at three minutes and twenty seconds before launch time. Over 450 personnel were at the consoles in the firing room. Mission Launch and flight to lunar orbit
Apollo 11. Slayton roused the crew shortly after 04:00, and they showered, shaved, and had the traditional pre-flight breakfast of steak and eggs with Slayton and the backup crew. They then donned their space suits and began breathing pure oxygen. At 06:30, they headed out to Launch Complex 39. Haise entered Columbia about three hours and ten minutes before launch time. Along with a technician, he helped Armstrong into the left-hand couch at 06:54. Five minutes later, Collins joined him, taking up his position on the right-hand couch. Finally, Aldrin entered, taking the center couch. Haise left around two hours and ten minutes before launch. The closeout crew sealed the hatch, and the cabin was purged and pressurized. The closeout crew then left the launch complex about an hour before launch time. The countdown became automated at three minutes and twenty seconds before launch time. Over 450 personnel were at the consoles in the firing room. Mission Launch and flight to lunar orbit
662
wiki20220301en000_2571
Apollo 11
Mission Launch and flight to lunar orbit An estimated one million spectators watched the launch of Apollo 11 from the highways and beaches in the vicinity of the launch site. Dignitaries included the Chief of Staff of the United States Army, General William Westmoreland, four cabinet members, 19 state governors, 40 mayors, 60 ambassadors and 200 congressmen. Vice President Spiro Agnew viewed the launch with former president Lyndon B. Johnson and his wife Lady Bird Johnson. Around 3,500 media representatives were present. About two-thirds were from the United States; the rest came from 55 other countries. The launch was televised live in 33 countries, with an estimated 25 million viewers in the United States alone. Millions more around the world listened to radio broadcasts. President Richard Nixon viewed the launch from his office in the White House with his NASA liaison officer, Apollo astronaut Frank Borman.
Apollo 11. Mission Launch and flight to lunar orbit An estimated one million spectators watched the launch of Apollo 11 from the highways and beaches in the vicinity of the launch site. Dignitaries included the Chief of Staff of the United States Army, General William Westmoreland, four cabinet members, 19 state governors, 40 mayors, 60 ambassadors and 200 congressmen. Vice President Spiro Agnew viewed the launch with former president Lyndon B. Johnson and his wife Lady Bird Johnson. Around 3,500 media representatives were present. About two-thirds were from the United States; the rest came from 55 other countries. The launch was televised live in 33 countries, with an estimated 25 million viewers in the United States alone. Millions more around the world listened to radio broadcasts. President Richard Nixon viewed the launch from his office in the White House with his NASA liaison officer, Apollo astronaut Frank Borman.
662
wiki20220301en000_2572
Apollo 11
Saturn V AS-506 launched Apollo 11 on July 16, 1969, at 13:32:00 UTC (9:32:00 EDT). At 13.2 seconds into the flight, the launch vehicle began to roll into its flight azimuth of 72.058°. Full shutdown of the first-stage engines occurred about 2minutes and 42 seconds into the mission, followed by separation of the S-IC and ignition of the S-II engines. The second stage engines then cut off and separated at about 9minutes and 8seconds, allowing the first ignition of the S-IVB engine a few seconds later.
Apollo 11. Saturn V AS-506 launched Apollo 11 on July 16, 1969, at 13:32:00 UTC (9:32:00 EDT). At 13.2 seconds into the flight, the launch vehicle began to roll into its flight azimuth of 72.058°. Full shutdown of the first-stage engines occurred about 2minutes and 42 seconds into the mission, followed by separation of the S-IC and ignition of the S-II engines. The second stage engines then cut off and separated at about 9minutes and 8seconds, allowing the first ignition of the S-IVB engine a few seconds later.
662
wiki20220301en000_2573
Apollo 11
Apollo 11 entered a near-circular Earth orbit at an altitude of by , twelve minutes into its flight. After one and a half orbits, a second ignition of the S-IVB engine pushed the spacecraft onto its trajectory toward the Moon with the trans-lunar injection (TLI) burn at 16:22:13 UTC. About 30 minutes later, with Collins in the left seat and at the controls, the transposition, docking, and extraction maneuver was performed. This involved separating Columbia from the spent S-IVB stage, turning around, and docking with Eagle still attached to the stage. After the LM was extracted, the combined spacecraft headed for the Moon, while the rocket stage flew on a trajectory past the Moon. This was done to avoid the third stage colliding with the spacecraft, the Earth, or the Moon. A slingshot effect from passing around the Moon threw it into an orbit around the Sun.
Apollo 11. Apollo 11 entered a near-circular Earth orbit at an altitude of by , twelve minutes into its flight. After one and a half orbits, a second ignition of the S-IVB engine pushed the spacecraft onto its trajectory toward the Moon with the trans-lunar injection (TLI) burn at 16:22:13 UTC. About 30 minutes later, with Collins in the left seat and at the controls, the transposition, docking, and extraction maneuver was performed. This involved separating Columbia from the spent S-IVB stage, turning around, and docking with Eagle still attached to the stage. After the LM was extracted, the combined spacecraft headed for the Moon, while the rocket stage flew on a trajectory past the Moon. This was done to avoid the third stage colliding with the spacecraft, the Earth, or the Moon. A slingshot effect from passing around the Moon threw it into an orbit around the Sun.
662
wiki20220301en000_2574
Apollo 11
On July 19 at 17:21:50 UTC, Apollo 11 passed behind the Moon and fired its service propulsion engine to enter lunar orbit. In the thirty orbits that followed, the crew saw passing views of their landing site in the southern Sea of Tranquility about southwest of the crater Sabine D. The site was selected in part because it had been characterized as relatively flat and smooth by the automated Ranger 8 and Surveyor 5 landers and the Lunar Orbiter mapping spacecraft, and because it was unlikely to present major landing or EVA challenges. It lay about southeast of the Surveyor5 landing site, and southwest of Ranger8's crash site. Lunar descent
Apollo 11. On July 19 at 17:21:50 UTC, Apollo 11 passed behind the Moon and fired its service propulsion engine to enter lunar orbit. In the thirty orbits that followed, the crew saw passing views of their landing site in the southern Sea of Tranquility about southwest of the crater Sabine D. The site was selected in part because it had been characterized as relatively flat and smooth by the automated Ranger 8 and Surveyor 5 landers and the Lunar Orbiter mapping spacecraft, and because it was unlikely to present major landing or EVA challenges. It lay about southeast of the Surveyor5 landing site, and southwest of Ranger8's crash site. Lunar descent
662
wiki20220301en000_2575
Apollo 11
Lunar descent At 12:52:00 UTC on July 20, Aldrin and Armstrong entered Eagle, and began the final preparations for lunar descent. At 17:44:00 Eagle separated from Columbia. Collins, alone aboard Columbia, inspected Eagle as it pirouetted before him to ensure the craft was not damaged, and that the landing gear was correctly deployed. Armstrong exclaimed: "The Eagle has wings!" As the descent began, Armstrong and Aldrin found themselves passing landmarks on the surface two or three seconds early, and reported that they were "long"; they would land miles west of their target point. Eagle was traveling too fast. The problem could have been mascons—concentrations of high mass in a region or regions of the Moon's crust that contains a gravitational anomaly, potentially altering Eagle'''s trajectory. Flight Director Gene Kranz speculated that it could have resulted from extra air pressure in the docking tunnel. Or it could have been the result of Eagles pirouette maneuver.
Apollo 11. Lunar descent At 12:52:00 UTC on July 20, Aldrin and Armstrong entered Eagle, and began the final preparations for lunar descent. At 17:44:00 Eagle separated from Columbia. Collins, alone aboard Columbia, inspected Eagle as it pirouetted before him to ensure the craft was not damaged, and that the landing gear was correctly deployed. Armstrong exclaimed: "The Eagle has wings!" As the descent began, Armstrong and Aldrin found themselves passing landmarks on the surface two or three seconds early, and reported that they were "long"; they would land miles west of their target point. Eagle was traveling too fast. The problem could have been mascons—concentrations of high mass in a region or regions of the Moon's crust that contains a gravitational anomaly, potentially altering Eagle'''s trajectory. Flight Director Gene Kranz speculated that it could have resulted from extra air pressure in the docking tunnel. Or it could have been the result of Eagles pirouette maneuver.
662
wiki20220301en000_2576
Apollo 11
Five minutes into the descent burn, and above the surface of the Moon, the LM guidance computer (LGC) distracted the crew with the first of several unexpected 1201 and 1202 program alarms. Inside Mission Control Center, computer engineer Jack Garman told Guidance Officer Steve Bales it was safe to continue the descent, and this was relayed to the crew. The program alarms indicated "executive overflows", meaning the guidance computer could not complete all its tasks in real-time and had to postpone some of them. Margaret Hamilton, the Director of Apollo Flight Computer Programming at the MIT Charles Stark Draper Laboratory later recalled:
Apollo 11. Five minutes into the descent burn, and above the surface of the Moon, the LM guidance computer (LGC) distracted the crew with the first of several unexpected 1201 and 1202 program alarms. Inside Mission Control Center, computer engineer Jack Garman told Guidance Officer Steve Bales it was safe to continue the descent, and this was relayed to the crew. The program alarms indicated "executive overflows", meaning the guidance computer could not complete all its tasks in real-time and had to postpone some of them. Margaret Hamilton, the Director of Apollo Flight Computer Programming at the MIT Charles Stark Draper Laboratory later recalled:
662
wiki20220301en000_2577
Apollo 11
During the mission, the cause was diagnosed as the rendezvous radar switch being in the wrong position, causing the computer to process data from both the rendezvous and landing radars at the same time. Software engineer Don Eyles concluded in a 2005 Guidance and Control Conference paper that the problem was due to a hardware design bug previously seen during testing of the first uncrewed LM in Apollo 5. Having the rendezvous radar on (so it was warmed up in case of an emergency landing abort) should have been irrelevant to the computer, but an electrical phasing mismatch between two parts of the rendezvous radar system could cause the stationary antenna to appear to the computer as dithering back and forth between two positions, depending upon how the hardware randomly powered up. The extra spurious cycle stealing, as the rendezvous radar updated an involuntary counter, caused the computer alarms. Landing
Apollo 11. During the mission, the cause was diagnosed as the rendezvous radar switch being in the wrong position, causing the computer to process data from both the rendezvous and landing radars at the same time. Software engineer Don Eyles concluded in a 2005 Guidance and Control Conference paper that the problem was due to a hardware design bug previously seen during testing of the first uncrewed LM in Apollo 5. Having the rendezvous radar on (so it was warmed up in case of an emergency landing abort) should have been irrelevant to the computer, but an electrical phasing mismatch between two parts of the rendezvous radar system could cause the stationary antenna to appear to the computer as dithering back and forth between two positions, depending upon how the hardware randomly powered up. The extra spurious cycle stealing, as the rendezvous radar updated an involuntary counter, caused the computer alarms. Landing
662
wiki20220301en000_2578
Apollo 11
Landing When Armstrong again looked outside, he saw that the computer's landing target was in a boulder-strewn area just north and east of a crater (later determined to be West crater), so he took semi-automatic control. Armstrong considered landing short of the boulder field so they could collect geological samples from it, but could not since their horizontal velocity was too high. Throughout the descent, Aldrin called out navigation data to Armstrong, who was busy piloting Eagle. Now above the surface, Armstrong knew their propellant supply was dwindling and was determined to land at the first possible landing site.
Apollo 11. Landing When Armstrong again looked outside, he saw that the computer's landing target was in a boulder-strewn area just north and east of a crater (later determined to be West crater), so he took semi-automatic control. Armstrong considered landing short of the boulder field so they could collect geological samples from it, but could not since their horizontal velocity was too high. Throughout the descent, Aldrin called out navigation data to Armstrong, who was busy piloting Eagle. Now above the surface, Armstrong knew their propellant supply was dwindling and was determined to land at the first possible landing site.
662
wiki20220301en000_2579
Apollo 11
Armstrong found a clear patch of ground and maneuvered the spacecraft towards it. As he got closer, now above the surface, he discovered his new landing site had a crater in it. He cleared the crater and found another patch of level ground. They were now from the surface, with only 90 seconds of propellant remaining. Lunar dust kicked up by the LM's engine began to impair his ability to determine the spacecraft's motion. Some large rocks jutted out of the dust cloud, and Armstrong focused on them during his descent so he could determine the spacecraft's speed.
Apollo 11. Armstrong found a clear patch of ground and maneuvered the spacecraft towards it. As he got closer, now above the surface, he discovered his new landing site had a crater in it. He cleared the crater and found another patch of level ground. They were now from the surface, with only 90 seconds of propellant remaining. Lunar dust kicked up by the LM's engine began to impair his ability to determine the spacecraft's motion. Some large rocks jutted out of the dust cloud, and Armstrong focused on them during his descent so he could determine the spacecraft's speed.
662
wiki20220301en000_2580
Apollo 11
A light informed Aldrin that at least one of the probes hanging from Eagle footpads had touched the surface a few moments before the landing and he said: "Contact light!" Armstrong was supposed to immediately shut the engine down, as the engineers suspected the pressure caused by the engine's own exhaust reflecting off the lunar surface could make it explode, but he forgot. Three seconds later, Eagle landed and Armstrong shut the engine down. Aldrin immediately said "Okay, engine stop. ACA—out of detent." Armstrong acknowledged: "Out of detent. Auto." Aldrin continued: "Mode control—both auto. Descent engine command override off. Engine arm—off. 413 is in."
Apollo 11. A light informed Aldrin that at least one of the probes hanging from Eagle footpads had touched the surface a few moments before the landing and he said: "Contact light!" Armstrong was supposed to immediately shut the engine down, as the engineers suspected the pressure caused by the engine's own exhaust reflecting off the lunar surface could make it explode, but he forgot. Three seconds later, Eagle landed and Armstrong shut the engine down. Aldrin immediately said "Okay, engine stop. ACA—out of detent." Armstrong acknowledged: "Out of detent. Auto." Aldrin continued: "Mode control—both auto. Descent engine command override off. Engine arm—off. 413 is in."
662
wiki20220301en000_2581
Apollo 11
ACA was the Attitude Control Assembly—the LM's control stick. Output went to the LGC to command the reaction control system (RCS) jets to fire. "Out of Detent" meant the stick had moved away from its centered position; it was spring-centered like the turn indicator in a car. LGC address 413 contained the variable that indicated the LM had landed.Eagle landed at 20:17:40 UTC on Sunday July 20 with of usable fuel remaining. Information available to the crew and mission controllers during the landing showed the LM had enough fuel for another 25 seconds of powered flight before an abort without touchdown would have become unsafe, but post-mission analysis showed that the real figure was probably closer to 50 seconds. Apollo 11 landed with less fuel than most subsequent missions, and the astronauts encountered a premature low fuel warning. This was later found to be the result of the propellant sloshing more than expected, uncovering a fuel sensor. On subsequent missions, extra anti-slosh
Apollo 11. ACA was the Attitude Control Assembly—the LM's control stick. Output went to the LGC to command the reaction control system (RCS) jets to fire. "Out of Detent" meant the stick had moved away from its centered position; it was spring-centered like the turn indicator in a car. LGC address 413 contained the variable that indicated the LM had landed.Eagle landed at 20:17:40 UTC on Sunday July 20 with of usable fuel remaining. Information available to the crew and mission controllers during the landing showed the LM had enough fuel for another 25 seconds of powered flight before an abort without touchdown would have become unsafe, but post-mission analysis showed that the real figure was probably closer to 50 seconds. Apollo 11 landed with less fuel than most subsequent missions, and the astronauts encountered a premature low fuel warning. This was later found to be the result of the propellant sloshing more than expected, uncovering a fuel sensor. On subsequent missions, extra anti-slosh
662
wiki20220301en000_2582
Apollo 11
encountered a premature low fuel warning. This was later found to be the result of the propellant sloshing more than expected, uncovering a fuel sensor. On subsequent missions, extra anti-slosh baffles were added to the tanks to prevent this.
Apollo 11. encountered a premature low fuel warning. This was later found to be the result of the propellant sloshing more than expected, uncovering a fuel sensor. On subsequent missions, extra anti-slosh baffles were added to the tanks to prevent this.
662
wiki20220301en000_2583
Apollo 11
Armstrong acknowledged Aldrin's completion of the post-landing checklist with "Engine arm is off", before responding to the CAPCOM, Charles Duke, with the words, "Houston, Tranquility Base here. The Eagle has landed." Armstrong's unrehearsed change of call sign from "Eagle" to "Tranquility Base" emphasized to listeners that landing was complete and successful. Duke mispronounced his reply as he expressed the relief at Mission Control: "Roger, Twan—Tranquility, we copy you on the ground. You got a bunch of guys about to turn blue. We're breathing again. Thanks a lot." Two and a half hours after landing, before preparations began for the EVA, Aldrin radioed to Earth:
Apollo 11. Armstrong acknowledged Aldrin's completion of the post-landing checklist with "Engine arm is off", before responding to the CAPCOM, Charles Duke, with the words, "Houston, Tranquility Base here. The Eagle has landed." Armstrong's unrehearsed change of call sign from "Eagle" to "Tranquility Base" emphasized to listeners that landing was complete and successful. Duke mispronounced his reply as he expressed the relief at Mission Control: "Roger, Twan—Tranquility, we copy you on the ground. You got a bunch of guys about to turn blue. We're breathing again. Thanks a lot." Two and a half hours after landing, before preparations began for the EVA, Aldrin radioed to Earth:
662
wiki20220301en000_2584
Apollo 11
Two and a half hours after landing, before preparations began for the EVA, Aldrin radioed to Earth: He then took communion privately. At this time NASA was still fighting a lawsuit brought by atheist Madalyn Murray O'Hair (who had objected to the Apollo8 crew reading from the Book of Genesis) demanding that their astronauts refrain from broadcasting religious activities while in space. For this reason, Aldrin chose to refrain from directly mentioning taking communion on the Moon. Aldrin was an elder at the Webster Presbyterian Church, and his communion kit was prepared by the pastor of the church, Dean Woodruff. Webster Presbyterian possesses the chalice used on the Moon and commemorates the event each year on the Sunday closest to July 20. The schedule for the mission called for the astronauts to follow the landing with a five-hour sleep period, but they chose to begin preparations for the EVA early, thinking they would be unable to sleep. Lunar surface operations
Apollo 11. Two and a half hours after landing, before preparations began for the EVA, Aldrin radioed to Earth: He then took communion privately. At this time NASA was still fighting a lawsuit brought by atheist Madalyn Murray O'Hair (who had objected to the Apollo8 crew reading from the Book of Genesis) demanding that their astronauts refrain from broadcasting religious activities while in space. For this reason, Aldrin chose to refrain from directly mentioning taking communion on the Moon. Aldrin was an elder at the Webster Presbyterian Church, and his communion kit was prepared by the pastor of the church, Dean Woodruff. Webster Presbyterian possesses the chalice used on the Moon and commemorates the event each year on the Sunday closest to July 20. The schedule for the mission called for the astronauts to follow the landing with a five-hour sleep period, but they chose to begin preparations for the EVA early, thinking they would be unable to sleep. Lunar surface operations
662
wiki20220301en000_2585
Apollo 11
Preparations for Neil Armstrong and Buzz Aldrin to walk on the Moon began at 23:43. These took longer than expected; three and a half hours instead of two. During training on Earth, everything required had been neatly laid out in advance, but on the Moon the cabin contained a large number of other items as well, such as checklists, food packets, and tools. Six hours and thirty-nine minutes after landing Armstrong and Aldrin were ready to go outside, and Eagle was depressurized.Eagles hatch was opened at 02:39:33. Armstrong initially had some difficulties squeezing through the hatch with his portable life support system (PLSS). Some of the highest heart rates recorded from Apollo astronauts occurred during LM egress and ingress. At 02:51 Armstrong began his descent to the lunar surface. The remote control unit on his chest kept him from seeing his feet. Climbing down the nine-rung ladder, Armstrong pulled a D-ring to deploy the modular equipment stowage assembly (MESA) folded against
Apollo 11. Preparations for Neil Armstrong and Buzz Aldrin to walk on the Moon began at 23:43. These took longer than expected; three and a half hours instead of two. During training on Earth, everything required had been neatly laid out in advance, but on the Moon the cabin contained a large number of other items as well, such as checklists, food packets, and tools. Six hours and thirty-nine minutes after landing Armstrong and Aldrin were ready to go outside, and Eagle was depressurized.Eagles hatch was opened at 02:39:33. Armstrong initially had some difficulties squeezing through the hatch with his portable life support system (PLSS). Some of the highest heart rates recorded from Apollo astronauts occurred during LM egress and ingress. At 02:51 Armstrong began his descent to the lunar surface. The remote control unit on his chest kept him from seeing his feet. Climbing down the nine-rung ladder, Armstrong pulled a D-ring to deploy the modular equipment stowage assembly (MESA) folded against
662
wiki20220301en000_2586
Apollo 11
remote control unit on his chest kept him from seeing his feet. Climbing down the nine-rung ladder, Armstrong pulled a D-ring to deploy the modular equipment stowage assembly (MESA) folded against Eagle side and activate the TV camera.
Apollo 11. remote control unit on his chest kept him from seeing his feet. Climbing down the nine-rung ladder, Armstrong pulled a D-ring to deploy the modular equipment stowage assembly (MESA) folded against Eagle side and activate the TV camera.
662
wiki20220301en000_2587
Apollo 11
Apollo 11 used slow-scan television (TV) incompatible with broadcast TV, so it was displayed on a special monitor and a conventional TV camera viewed this monitor (thus, a broadcast of a broadcast), significantly reducing the quality of the picture. The signal was received at Goldstone in the United States, but with better fidelity by Honeysuckle Creek Tracking Station near Canberra in Australia. Minutes later the feed was switched to the more sensitive Parkes radio telescope in Australia. Despite some technical and weather difficulties, ghostly black and white images of the first lunar EVA were received and broadcast to at least 600 million people on Earth. Copies of this video in broadcast format were saved and are widely available, but recordings of the original slow scan source transmission from the lunar surface were likely destroyed during routine magnetic tape re-use at NASA.
Apollo 11. Apollo 11 used slow-scan television (TV) incompatible with broadcast TV, so it was displayed on a special monitor and a conventional TV camera viewed this monitor (thus, a broadcast of a broadcast), significantly reducing the quality of the picture. The signal was received at Goldstone in the United States, but with better fidelity by Honeysuckle Creek Tracking Station near Canberra in Australia. Minutes later the feed was switched to the more sensitive Parkes radio telescope in Australia. Despite some technical and weather difficulties, ghostly black and white images of the first lunar EVA were received and broadcast to at least 600 million people on Earth. Copies of this video in broadcast format were saved and are widely available, but recordings of the original slow scan source transmission from the lunar surface were likely destroyed during routine magnetic tape re-use at NASA.
662
wiki20220301en000_2588
Apollo 11
After describing the surface dust as "very fine-grained" and "almost like a powder", at 02:56:15, six and a half hours after landing, Armstrong stepped off Eagle footpad and declared: "That's one small step for [a] man, one giant leap for mankind."
Apollo 11. After describing the surface dust as "very fine-grained" and "almost like a powder", at 02:56:15, six and a half hours after landing, Armstrong stepped off Eagle footpad and declared: "That's one small step for [a] man, one giant leap for mankind."
662
wiki20220301en000_2589
Apollo 11
Armstrong intended to say "That's one small step for a man", but the word "a" is not audible in the transmission, and thus was not initially reported by most observers of the live broadcast. When later asked about his quote, Armstrong said he believed he said "for a man", and subsequent printed versions of the quote included the "a" in square brackets. One explanation for the absence may be that his accent caused him to slur the words "for a" together; another is the intermittent nature of the audio and video links to Earth, partly because of storms near Parkes Observatory. A more recent digital analysis of the tape claims to reveal the "a" may have been spoken but obscured by static. Other analysis points to the claims of static and slurring as "face-saving fabrication", and that Armstrong himself later admitted to misspeaking the line.
Apollo 11. Armstrong intended to say "That's one small step for a man", but the word "a" is not audible in the transmission, and thus was not initially reported by most observers of the live broadcast. When later asked about his quote, Armstrong said he believed he said "for a man", and subsequent printed versions of the quote included the "a" in square brackets. One explanation for the absence may be that his accent caused him to slur the words "for a" together; another is the intermittent nature of the audio and video links to Earth, partly because of storms near Parkes Observatory. A more recent digital analysis of the tape claims to reveal the "a" may have been spoken but obscured by static. Other analysis points to the claims of static and slurring as "face-saving fabrication", and that Armstrong himself later admitted to misspeaking the line.
662
wiki20220301en000_2590
Apollo 11
About seven minutes after stepping onto the Moon's surface, Armstrong collected a contingency soil sample using a sample bag on a stick. He then folded the bag and tucked it into a pocket on his right thigh. This was to guarantee there would be some lunar soil brought back in case an emergency required the astronauts to abandon the EVA and return to the LM. Twelve minutes after the sample was collected, he removed the TV camera from the MESA and made a panoramic sweep, then mounted it on a tripod. The TV camera cable remained partly coiled and presented a tripping hazard throughout the EVA. Still photography was accomplished with a Hasselblad camera that could be operated hand held or mounted on Armstrong's Apollo space suit. Aldrin joined Armstrong on the surface. He described the view with the simple phrase: "Magnificent desolation."
Apollo 11. About seven minutes after stepping onto the Moon's surface, Armstrong collected a contingency soil sample using a sample bag on a stick. He then folded the bag and tucked it into a pocket on his right thigh. This was to guarantee there would be some lunar soil brought back in case an emergency required the astronauts to abandon the EVA and return to the LM. Twelve minutes after the sample was collected, he removed the TV camera from the MESA and made a panoramic sweep, then mounted it on a tripod. The TV camera cable remained partly coiled and presented a tripping hazard throughout the EVA. Still photography was accomplished with a Hasselblad camera that could be operated hand held or mounted on Armstrong's Apollo space suit. Aldrin joined Armstrong on the surface. He described the view with the simple phrase: "Magnificent desolation."
662
wiki20220301en000_2591
Apollo 11
Armstrong said moving in the lunar gravity, one-sixth of Earth's, was "even perhaps easier than the simulations ... It's absolutely no trouble to walk around." Aldrin joined him on the surface and tested methods for moving around, including two-footed kangaroo hops. The PLSS backpack created a tendency to tip backward, but neither astronaut had serious problems maintaining balance. Loping became the preferred method of movement. The astronauts reported that they needed to plan their movements six or seven steps ahead. The fine soil was quite slippery. Aldrin remarked that moving from sunlight into Eagle shadow produced no temperature change inside the suit, but the helmet was warmer in sunlight, so he felt cooler in shadow. The MESA failed to provide a stable work platform and was in shadow, slowing work somewhat. As they worked, the moonwalkers kicked up gray dust, which soiled the outer part of their suits.
Apollo 11. Armstrong said moving in the lunar gravity, one-sixth of Earth's, was "even perhaps easier than the simulations ... It's absolutely no trouble to walk around." Aldrin joined him on the surface and tested methods for moving around, including two-footed kangaroo hops. The PLSS backpack created a tendency to tip backward, but neither astronaut had serious problems maintaining balance. Loping became the preferred method of movement. The astronauts reported that they needed to plan their movements six or seven steps ahead. The fine soil was quite slippery. Aldrin remarked that moving from sunlight into Eagle shadow produced no temperature change inside the suit, but the helmet was warmer in sunlight, so he felt cooler in shadow. The MESA failed to provide a stable work platform and was in shadow, slowing work somewhat. As they worked, the moonwalkers kicked up gray dust, which soiled the outer part of their suits.
662
wiki20220301en000_2592
Apollo 11
The astronauts planted the Lunar Flag Assembly containing a flag of the United States on the lunar surface, in clear view of the TV camera. Aldrin remembered, "Of all the jobs I had to do on the Moon the one I wanted to go the smoothest was the flag raising." But the astronauts struggled with the telescoping rod and could only jam the pole about into the hard lunar surface. Aldrin was afraid it might topple in front of TV viewers. But he gave "a crisp West Point salute". Before Aldrin could take a photo of Armstrong with the flag, President Richard Nixon spoke to them through a telephone-radio transmission, which Nixon called "the most historic phone call ever made from the White House." Nixon originally had a long speech prepared to read during the phone call, but Frank Borman, who was at the White House as a NASA liaison during Apollo 11, convinced Nixon to keep his words brief.
Apollo 11. The astronauts planted the Lunar Flag Assembly containing a flag of the United States on the lunar surface, in clear view of the TV camera. Aldrin remembered, "Of all the jobs I had to do on the Moon the one I wanted to go the smoothest was the flag raising." But the astronauts struggled with the telescoping rod and could only jam the pole about into the hard lunar surface. Aldrin was afraid it might topple in front of TV viewers. But he gave "a crisp West Point salute". Before Aldrin could take a photo of Armstrong with the flag, President Richard Nixon spoke to them through a telephone-radio transmission, which Nixon called "the most historic phone call ever made from the White House." Nixon originally had a long speech prepared to read during the phone call, but Frank Borman, who was at the White House as a NASA liaison during Apollo 11, convinced Nixon to keep his words brief.
662
wiki20220301en000_2593
Apollo 11
They deployed the EASEP, which included a passive seismic experiment package used to measure moonquakes and a retroreflector array used for the lunar laser ranging experiment. Then Armstrong walked from the LM to snap photos at the rim of Little West Crater while Aldrin collected two core samples. He used the geologist's hammer to pound in the tubes—the only time the hammer was used on Apollo 11—but was unable to penetrate more than deep. The astronauts then collected rock samples using scoops and tongs on extension handles. Many of the surface activities took longer than expected, so they had to stop documenting sample collection halfway through the allotted 34 minutes. Aldrin shoveled of soil into the box of rocks in order to pack them in tightly. Two types of rocks were found in the geological samples: basalt and breccia. Three new minerals were discovered in the rock samples collected by the astronauts: armalcolite, tranquillityite, and pyroxferroite. Armalcolite was named
Apollo 11. They deployed the EASEP, which included a passive seismic experiment package used to measure moonquakes and a retroreflector array used for the lunar laser ranging experiment. Then Armstrong walked from the LM to snap photos at the rim of Little West Crater while Aldrin collected two core samples. He used the geologist's hammer to pound in the tubes—the only time the hammer was used on Apollo 11—but was unable to penetrate more than deep. The astronauts then collected rock samples using scoops and tongs on extension handles. Many of the surface activities took longer than expected, so they had to stop documenting sample collection halfway through the allotted 34 minutes. Aldrin shoveled of soil into the box of rocks in order to pack them in tightly. Two types of rocks were found in the geological samples: basalt and breccia. Three new minerals were discovered in the rock samples collected by the astronauts: armalcolite, tranquillityite, and pyroxferroite. Armalcolite was named
662
wiki20220301en000_2594
Apollo 11
the geological samples: basalt and breccia. Three new minerals were discovered in the rock samples collected by the astronauts: armalcolite, tranquillityite, and pyroxferroite. Armalcolite was named after Armstrong, Aldrin, and Collins. All have subsequently been found on Earth.
Apollo 11. the geological samples: basalt and breccia. Three new minerals were discovered in the rock samples collected by the astronauts: armalcolite, tranquillityite, and pyroxferroite. Armalcolite was named after Armstrong, Aldrin, and Collins. All have subsequently been found on Earth.
662
wiki20220301en000_2595
Apollo 11
While on the surface, Armstrong uncovered a plaque mounted on the LM ladder, bearing two drawings of Earth (of the Western and Eastern Hemispheres), an inscription, and signatures of the astronauts and President Nixon. The inscription read: At the behest of the Nixon administration to add a reference to God, NASA included the vague date as a reason to include A.D., which stands for Anno Domini, "in the year of our Lord" (although it should have been placed before the year, not after).
Apollo 11. While on the surface, Armstrong uncovered a plaque mounted on the LM ladder, bearing two drawings of Earth (of the Western and Eastern Hemispheres), an inscription, and signatures of the astronauts and President Nixon. The inscription read: At the behest of the Nixon administration to add a reference to God, NASA included the vague date as a reason to include A.D., which stands for Anno Domini, "in the year of our Lord" (although it should have been placed before the year, not after).
662
wiki20220301en000_2596
Apollo 11
Mission Control used a coded phrase to warn Armstrong his metabolic rates were high, and that he should slow down. He was moving rapidly from task to task as time ran out. As metabolic rates remained generally lower than expected for both astronauts throughout the walk, Mission Control granted the astronauts a 15-minute extension. In a 2010 interview, Armstrong explained that NASA limited the first moonwalk's time and distance because there was no empirical proof of how much cooling water the astronauts' PLSS backpacks would consume to handle their body heat generation while working on the Moon. Lunar ascent
Apollo 11. Mission Control used a coded phrase to warn Armstrong his metabolic rates were high, and that he should slow down. He was moving rapidly from task to task as time ran out. As metabolic rates remained generally lower than expected for both astronauts throughout the walk, Mission Control granted the astronauts a 15-minute extension. In a 2010 interview, Armstrong explained that NASA limited the first moonwalk's time and distance because there was no empirical proof of how much cooling water the astronauts' PLSS backpacks would consume to handle their body heat generation while working on the Moon. Lunar ascent
662
wiki20220301en000_2597
Apollo 11
Lunar ascent Aldrin entered Eagle first. With some difficulty the astronauts lifted film and two sample boxes containing of lunar surface material to the LM hatch using a flat cable pulley device called the Lunar Equipment Conveyor (LEC). This proved to be an inefficient tool, and later missions preferred to carry equipment and samples up to the LM by hand. Armstrong reminded Aldrin of a bag of memorial items in his sleeve pocket, and Aldrin tossed the bag down. Armstrong then jumped onto the ladder's third rung, and climbed into the LM. After transferring to LM life support, the explorers lightened the ascent stage for the return to lunar orbit by tossing out their PLSS backpacks, lunar overshoes, an empty Hasselblad camera, and other equipment. The hatch was closed again at 05:11:13. They then pressurized the LM and settled down to sleep.
Apollo 11. Lunar ascent Aldrin entered Eagle first. With some difficulty the astronauts lifted film and two sample boxes containing of lunar surface material to the LM hatch using a flat cable pulley device called the Lunar Equipment Conveyor (LEC). This proved to be an inefficient tool, and later missions preferred to carry equipment and samples up to the LM by hand. Armstrong reminded Aldrin of a bag of memorial items in his sleeve pocket, and Aldrin tossed the bag down. Armstrong then jumped onto the ladder's third rung, and climbed into the LM. After transferring to LM life support, the explorers lightened the ascent stage for the return to lunar orbit by tossing out their PLSS backpacks, lunar overshoes, an empty Hasselblad camera, and other equipment. The hatch was closed again at 05:11:13. They then pressurized the LM and settled down to sleep.
662
wiki20220301en000_2598
Apollo 11
Presidential speech writer William Safire had prepared an In Event of Moon Disaster announcement for Nixon to read in the event the Apollo 11 astronauts were stranded on the Moon. The remarks were in a memo from Safire to Nixon's White House Chief of Staff H. R. Haldeman, in which Safire suggested a protocol the administration might follow in reaction to such a disaster. According to the plan, Mission Control would "close down communications" with the LM, and a clergyman would "commend their souls to the deepest of the deep" in a public ritual likened to burial at sea. The last line of the prepared text contained an allusion to Rupert Brooke's First World War poem, "The Soldier". While moving inside the cabin, Aldrin accidentally damaged the circuit breaker that would arm the main engine for liftoff from the Moon. There was a concern this would prevent firing the engine, stranding them on the Moon. A felt-tip pen was sufficient to activate the switch.
Apollo 11. Presidential speech writer William Safire had prepared an In Event of Moon Disaster announcement for Nixon to read in the event the Apollo 11 astronauts were stranded on the Moon. The remarks were in a memo from Safire to Nixon's White House Chief of Staff H. R. Haldeman, in which Safire suggested a protocol the administration might follow in reaction to such a disaster. According to the plan, Mission Control would "close down communications" with the LM, and a clergyman would "commend their souls to the deepest of the deep" in a public ritual likened to burial at sea. The last line of the prepared text contained an allusion to Rupert Brooke's First World War poem, "The Soldier". While moving inside the cabin, Aldrin accidentally damaged the circuit breaker that would arm the main engine for liftoff from the Moon. There was a concern this would prevent firing the engine, stranding them on the Moon. A felt-tip pen was sufficient to activate the switch.
662
wiki20220301en000_2599
Apollo 11
After more than hours on the lunar surface, in addition to the scientific instruments, the astronauts left behind: an Apollo 1 mission patch in memory of astronauts Roger Chaffee, Gus Grissom, and Edward White, who died when their command module caught fire during a test in January 1967; two memorial medals of Soviet cosmonauts Vladimir Komarov and Yuri Gagarin, who died in 1967 and 1968 respectively; a memorial bag containing a gold replica of an olive branch as a traditional symbol of peace; and a silicon message disk carrying the goodwill statements by Presidents Eisenhower, Kennedy, Johnson, and Nixon along with messages from leaders of 73 countries around the world. The disk also carries a listing of the leadership of the US Congress, a listing of members of the four committees of the House and Senate responsible for the NASA legislation, and the names of NASA's past and then-current top management.
Apollo 11. After more than hours on the lunar surface, in addition to the scientific instruments, the astronauts left behind: an Apollo 1 mission patch in memory of astronauts Roger Chaffee, Gus Grissom, and Edward White, who died when their command module caught fire during a test in January 1967; two memorial medals of Soviet cosmonauts Vladimir Komarov and Yuri Gagarin, who died in 1967 and 1968 respectively; a memorial bag containing a gold replica of an olive branch as a traditional symbol of peace; and a silicon message disk carrying the goodwill statements by Presidents Eisenhower, Kennedy, Johnson, and Nixon along with messages from leaders of 73 countries around the world. The disk also carries a listing of the leadership of the US Congress, a listing of members of the four committees of the House and Senate responsible for the NASA legislation, and the names of NASA's past and then-current top management.
662