id
stringlengths 19
24
| title
stringlengths 1
110
| content
stringlengths 1
1k
| contents
stringlengths 7
1.11k
| wiki_id
stringlengths 2
8
|
---|---|---|---|---|
wiki20220301en000_2900
|
Alkali metal
|
hydrogen species, being the foundation of acid-base chemistry. As an example of hydrogen's unorthodox properties stemming from its unusual electron configuration and small size, the hydrogen ion is very small (radius around 150 fm compared to the 50–220 pm size of most other atoms and ions) and so is nonexistent in condensed systems other than in association with other atoms or molecules. Indeed, transferring of protons between chemicals is the basis of acid-base chemistry. Also unique is hydrogen's ability to form hydrogen bonds, which are an effect of charge-transfer, electrostatic, and electron correlative contributing phenomena. While analogous lithium bonds are also known, they are mostly electrostatic. Nevertheless, hydrogen can take on the same structural role as the alkali metals in some molecular crystals, and has a close relationship with the lightest alkali metals (especially lithium).
|
Alkali metal. hydrogen species, being the foundation of acid-base chemistry. As an example of hydrogen's unorthodox properties stemming from its unusual electron configuration and small size, the hydrogen ion is very small (radius around 150 fm compared to the 50–220 pm size of most other atoms and ions) and so is nonexistent in condensed systems other than in association with other atoms or molecules. Indeed, transferring of protons between chemicals is the basis of acid-base chemistry. Also unique is hydrogen's ability to form hydrogen bonds, which are an effect of charge-transfer, electrostatic, and electron correlative contributing phenomena. While analogous lithium bonds are also known, they are mostly electrostatic. Nevertheless, hydrogen can take on the same structural role as the alkali metals in some molecular crystals, and has a close relationship with the lightest alkali metals (especially lithium).
|
666
|
wiki20220301en000_2901
|
Alkali metal
|
Ammonium and derivatives The ammonium ion () has very similar properties to the heavier alkali metals, acting as an alkali metal intermediate between potassium and rubidium, and is often considered a close relative. For example, most alkali metal salts are soluble in water, a property which ammonium salts share. Ammonium is expected to behave stably as a metal ( ions in a sea of delocalised electrons) at very high pressures (though less than the typical pressure where transitions from insulating to metallic behaviour occur around, 100 GPa), and could possibly occur inside the ice giants Uranus and Neptune, which may have significant impacts on their interior magnetic fields. It has been estimated that the transition from a mixture of ammonia and dihydrogen molecules to metallic ammonium may occur at pressures just below 25 GPa. Under standard conditions, ammonium can form a metallic amalgam with mercury.
|
Alkali metal. Ammonium and derivatives The ammonium ion () has very similar properties to the heavier alkali metals, acting as an alkali metal intermediate between potassium and rubidium, and is often considered a close relative. For example, most alkali metal salts are soluble in water, a property which ammonium salts share. Ammonium is expected to behave stably as a metal ( ions in a sea of delocalised electrons) at very high pressures (though less than the typical pressure where transitions from insulating to metallic behaviour occur around, 100 GPa), and could possibly occur inside the ice giants Uranus and Neptune, which may have significant impacts on their interior magnetic fields. It has been estimated that the transition from a mixture of ammonia and dihydrogen molecules to metallic ammonium may occur at pressures just below 25 GPa. Under standard conditions, ammonium can form a metallic amalgam with mercury.
|
666
|
wiki20220301en000_2902
|
Alkali metal
|
Other "pseudo-alkali metals" include the alkylammonium cations, in which some of the hydrogen atoms in the ammonium cation are replaced by alkyl or aryl groups. In particular, the quaternary ammonium cations () are very useful since they are permanently charged, and they are often used as an alternative to the expensive Cs+ to stabilise very large and very easily polarisable anions such as . Tetraalkylammonium hydroxides, like alkali metal hydroxides, are very strong bases that react with atmospheric carbon dioxide to form carbonates. Furthermore, the nitrogen atom may be replaced by a phosphorus, arsenic, or antimony atom (the heavier nonmetallic pnictogens), creating a phosphonium () or arsonium () cation that can itself be substituted similarly; while stibonium () itself is not known, some of its organic derivatives are characterised.
|
Alkali metal. Other "pseudo-alkali metals" include the alkylammonium cations, in which some of the hydrogen atoms in the ammonium cation are replaced by alkyl or aryl groups. In particular, the quaternary ammonium cations () are very useful since they are permanently charged, and they are often used as an alternative to the expensive Cs+ to stabilise very large and very easily polarisable anions such as . Tetraalkylammonium hydroxides, like alkali metal hydroxides, are very strong bases that react with atmospheric carbon dioxide to form carbonates. Furthermore, the nitrogen atom may be replaced by a phosphorus, arsenic, or antimony atom (the heavier nonmetallic pnictogens), creating a phosphonium () or arsonium () cation that can itself be substituted similarly; while stibonium () itself is not known, some of its organic derivatives are characterised.
|
666
|
wiki20220301en000_2903
|
Alkali metal
|
Cobaltocene and derivatives
|
Alkali metal. Cobaltocene and derivatives
|
666
|
wiki20220301en000_2904
|
Alkali metal
|
Cobaltocene, Co(C5H5)2, is a metallocene, the cobalt analogue of ferrocene. It is a dark purple solid. Cobaltocene has 19 valence electrons, one more than usually found in organotransition metal complexes, such as its very stable relative, ferrocene, in accordance with the 18-electron rule. This additional electron occupies an orbital that is antibonding with respect to the Co–C bonds. Consequently, many chemical reactions of Co(C5H5)2 are characterized by its tendency to lose this "extra" electron, yielding a very stable 18-electron cation known as cobaltocenium. Many cobaltocenium salts coprecipitate with caesium salts, and cobaltocenium hydroxide is a strong base that absorbs atmospheric carbon dioxide to form cobaltocenium carbonate. Like the alkali metals, cobaltocene is a strong reducing agent, and decamethylcobaltocene is stronger still due to the combined inductive effect of the ten methyl groups. Cobalt may be substituted by its heavier congener rhodium to give rhodocene, an
|
Alkali metal. Cobaltocene, Co(C5H5)2, is a metallocene, the cobalt analogue of ferrocene. It is a dark purple solid. Cobaltocene has 19 valence electrons, one more than usually found in organotransition metal complexes, such as its very stable relative, ferrocene, in accordance with the 18-electron rule. This additional electron occupies an orbital that is antibonding with respect to the Co–C bonds. Consequently, many chemical reactions of Co(C5H5)2 are characterized by its tendency to lose this "extra" electron, yielding a very stable 18-electron cation known as cobaltocenium. Many cobaltocenium salts coprecipitate with caesium salts, and cobaltocenium hydroxide is a strong base that absorbs atmospheric carbon dioxide to form cobaltocenium carbonate. Like the alkali metals, cobaltocene is a strong reducing agent, and decamethylcobaltocene is stronger still due to the combined inductive effect of the ten methyl groups. Cobalt may be substituted by its heavier congener rhodium to give rhodocene, an
|
666
|
wiki20220301en000_2905
|
Alkali metal
|
agent, and decamethylcobaltocene is stronger still due to the combined inductive effect of the ten methyl groups. Cobalt may be substituted by its heavier congener rhodium to give rhodocene, an even stronger reducing agent. Iridocene (involving iridium) would presumably be still more potent, but is not very well-studied due to its instability.
|
Alkali metal. agent, and decamethylcobaltocene is stronger still due to the combined inductive effect of the ten methyl groups. Cobalt may be substituted by its heavier congener rhodium to give rhodocene, an even stronger reducing agent. Iridocene (involving iridium) would presumably be still more potent, but is not very well-studied due to its instability.
|
666
|
wiki20220301en000_2906
|
Alkali metal
|
Thallium
|
Alkali metal. Thallium
|
666
|
wiki20220301en000_2907
|
Alkali metal
|
Thallium is the heaviest stable element in group 13 of the periodic table. At the bottom of the periodic table, the inert pair effect is quite strong, because of the relativistic stabilisation of the 6s orbital and the decreasing bond energy as the atoms increase in size so that the amount of energy released in forming two more bonds is not worth the high ionisation energies of the 6s electrons. It displays the +1 oxidation state that all the known alkali metals display, and thallium compounds with thallium in its +1 oxidation state closely resemble the corresponding potassium or silver compounds stoichiometrically due to the similar ionic radii of the Tl+ (164 pm), K+ (152 pm) and Ag+ (129 pm) ions. It was sometimes considered an alkali metal in continental Europe (but not in England) in the years immediately following its discovery, and was placed just after caesium as the sixth alkali metal in Dmitri Mendeleev's 1869 periodic table and Julius Lothar Meyer's 1868 periodic table.
|
Alkali metal. Thallium is the heaviest stable element in group 13 of the periodic table. At the bottom of the periodic table, the inert pair effect is quite strong, because of the relativistic stabilisation of the 6s orbital and the decreasing bond energy as the atoms increase in size so that the amount of energy released in forming two more bonds is not worth the high ionisation energies of the 6s electrons. It displays the +1 oxidation state that all the known alkali metals display, and thallium compounds with thallium in its +1 oxidation state closely resemble the corresponding potassium or silver compounds stoichiometrically due to the similar ionic radii of the Tl+ (164 pm), K+ (152 pm) and Ag+ (129 pm) ions. It was sometimes considered an alkali metal in continental Europe (but not in England) in the years immediately following its discovery, and was placed just after caesium as the sixth alkali metal in Dmitri Mendeleev's 1869 periodic table and Julius Lothar Meyer's 1868 periodic table.
|
666
|
wiki20220301en000_2908
|
Alkali metal
|
in the years immediately following its discovery, and was placed just after caesium as the sixth alkali metal in Dmitri Mendeleev's 1869 periodic table and Julius Lothar Meyer's 1868 periodic table. (Mendeleev's 1871 periodic table and Meyer's 1870 periodic table put thallium in its current position in the boron group and left the space below caesium blank.) However, thallium also displays the oxidation state +3, which no known alkali metal displays (although ununennium, the undiscovered seventh alkali metal, is predicted to possibly display the +3 oxidation state). The sixth alkali metal is now considered to be francium. While Tl+ is stabilised by the inert pair effect, this inert pair of 6s electrons is still able to participate chemically, so that these electrons are stereochemically active in aqueous solution. Additionally, the thallium halides (except TlF) are quite insoluble in water, and TlI has an unusual structure because of the presence of the stereochemically active inert
|
Alkali metal. in the years immediately following its discovery, and was placed just after caesium as the sixth alkali metal in Dmitri Mendeleev's 1869 periodic table and Julius Lothar Meyer's 1868 periodic table. (Mendeleev's 1871 periodic table and Meyer's 1870 periodic table put thallium in its current position in the boron group and left the space below caesium blank.) However, thallium also displays the oxidation state +3, which no known alkali metal displays (although ununennium, the undiscovered seventh alkali metal, is predicted to possibly display the +3 oxidation state). The sixth alkali metal is now considered to be francium. While Tl+ is stabilised by the inert pair effect, this inert pair of 6s electrons is still able to participate chemically, so that these electrons are stereochemically active in aqueous solution. Additionally, the thallium halides (except TlF) are quite insoluble in water, and TlI has an unusual structure because of the presence of the stereochemically active inert
|
666
|
wiki20220301en000_2909
|
Alkali metal
|
active in aqueous solution. Additionally, the thallium halides (except TlF) are quite insoluble in water, and TlI has an unusual structure because of the presence of the stereochemically active inert pair in thallium.
|
Alkali metal. active in aqueous solution. Additionally, the thallium halides (except TlF) are quite insoluble in water, and TlI has an unusual structure because of the presence of the stereochemically active inert pair in thallium.
|
666
|
wiki20220301en000_2910
|
Alkali metal
|
Copper, silver, and gold
|
Alkali metal. Copper, silver, and gold
|
666
|
wiki20220301en000_2911
|
Alkali metal
|
The group 11 metals (or coinage metals), copper, silver, and gold, are typically categorised as transition metals given they can form ions with incomplete d-shells. Physically, they have the relatively low melting points and high electronegativity values associated with post-transition metals. "The filled d subshell and free s electron of Cu, Ag, and Au contribute to their high electrical and thermal conductivity. Transition metals to the left of group 11 experience interactions between s electrons and the partially filled d subshell that lower electron mobility." Chemically, the group 11 metals behave like main-group metals in their +1 valence states, and are hence somewhat related to the alkali metals: this is one reason for their previously being labelled as "group IB", paralleling the alkali metals' "group IA". They are occasionally classified as post-transition metals. Their spectra are analogous to those of the alkali metals. Their monopositive ions are paramagnetic and
|
Alkali metal. The group 11 metals (or coinage metals), copper, silver, and gold, are typically categorised as transition metals given they can form ions with incomplete d-shells. Physically, they have the relatively low melting points and high electronegativity values associated with post-transition metals. "The filled d subshell and free s electron of Cu, Ag, and Au contribute to their high electrical and thermal conductivity. Transition metals to the left of group 11 experience interactions between s electrons and the partially filled d subshell that lower electron mobility." Chemically, the group 11 metals behave like main-group metals in their +1 valence states, and are hence somewhat related to the alkali metals: this is one reason for their previously being labelled as "group IB", paralleling the alkali metals' "group IA". They are occasionally classified as post-transition metals. Their spectra are analogous to those of the alkali metals. Their monopositive ions are paramagnetic and
|
666
|
wiki20220301en000_2912
|
Alkali metal
|
the alkali metals' "group IA". They are occasionally classified as post-transition metals. Their spectra are analogous to those of the alkali metals. Their monopositive ions are paramagnetic and contribute no colour to their salts, like those of the alkali metals.
|
Alkali metal. the alkali metals' "group IA". They are occasionally classified as post-transition metals. Their spectra are analogous to those of the alkali metals. Their monopositive ions are paramagnetic and contribute no colour to their salts, like those of the alkali metals.
|
666
|
wiki20220301en000_2913
|
Alkali metal
|
In Mendeleev's 1871 periodic table, copper, silver, and gold are listed twice, once under group VIII (with the iron triad and platinum group metals), and once under group IB. Group IB was nonetheless parenthesised to note that it was tentative. Mendeleev's main criterion for group assignment was the maximum oxidation state of an element: on that basis, the group 11 elements could not be classified in group IB, due to the existence of copper(II) and gold(III) compounds being known at that time. However, eliminating group IB would make group I the only main group (group VIII was labelled a transition group) to lack an A–B bifurcation. Soon afterward, a majority of chemists chose to classify these elements in group IB and remove them from group VIII for the resulting symmetry: this was the predominant classification until the rise of the modern medium-long 18-column periodic table, which separated the alkali metals and group 11 metals.
|
Alkali metal. In Mendeleev's 1871 periodic table, copper, silver, and gold are listed twice, once under group VIII (with the iron triad and platinum group metals), and once under group IB. Group IB was nonetheless parenthesised to note that it was tentative. Mendeleev's main criterion for group assignment was the maximum oxidation state of an element: on that basis, the group 11 elements could not be classified in group IB, due to the existence of copper(II) and gold(III) compounds being known at that time. However, eliminating group IB would make group I the only main group (group VIII was labelled a transition group) to lack an A–B bifurcation. Soon afterward, a majority of chemists chose to classify these elements in group IB and remove them from group VIII for the resulting symmetry: this was the predominant classification until the rise of the modern medium-long 18-column periodic table, which separated the alkali metals and group 11 metals.
|
666
|
wiki20220301en000_2914
|
Alkali metal
|
The coinage metals were traditionally regarded as a subdivision of the alkali metal group, due to them sharing the characteristic s1 electron configuration of the alkali metals (group 1: p6s1; group 11: d10s1). However, the similarities are largely confined to the stoichiometries of the +1 compounds of both groups, and not their chemical properties. This stems from the filled d subshell providing a much weaker shielding effect on the outermost s electron than the filled p subshell, so that the coinage metals have much higher first ionisation energies and smaller ionic radii than do the corresponding alkali metals. Furthermore, they have higher melting points, hardnesses, and densities, and lower reactivities and solubilities in liquid ammonia, as well as having more covalent character in their compounds. Finally, the alkali metals are at the top of the electrochemical series, whereas the coinage metals are almost at the very bottom. The coinage metals' filled d shell is much more
|
Alkali metal. The coinage metals were traditionally regarded as a subdivision of the alkali metal group, due to them sharing the characteristic s1 electron configuration of the alkali metals (group 1: p6s1; group 11: d10s1). However, the similarities are largely confined to the stoichiometries of the +1 compounds of both groups, and not their chemical properties. This stems from the filled d subshell providing a much weaker shielding effect on the outermost s electron than the filled p subshell, so that the coinage metals have much higher first ionisation energies and smaller ionic radii than do the corresponding alkali metals. Furthermore, they have higher melting points, hardnesses, and densities, and lower reactivities and solubilities in liquid ammonia, as well as having more covalent character in their compounds. Finally, the alkali metals are at the top of the electrochemical series, whereas the coinage metals are almost at the very bottom. The coinage metals' filled d shell is much more
|
666
|
wiki20220301en000_2915
|
Alkali metal
|
in their compounds. Finally, the alkali metals are at the top of the electrochemical series, whereas the coinage metals are almost at the very bottom. The coinage metals' filled d shell is much more easily disrupted than the alkali metals' filled p shell, so that the second and third ionisation energies are lower, enabling higher oxidation states than +1 and a richer coordination chemistry, thus giving the group 11 metals clear transition metal character. Particularly noteworthy is gold forming ionic compounds with rubidium and caesium, in which it forms the auride ion (Au−) which also occurs in solvated form in liquid ammonia solution: here gold behaves as a pseudohalogen because its 5d106s1 configuration has one electron less than the quasi-closed shell 5d106s2 configuration of mercury.
|
Alkali metal. in their compounds. Finally, the alkali metals are at the top of the electrochemical series, whereas the coinage metals are almost at the very bottom. The coinage metals' filled d shell is much more easily disrupted than the alkali metals' filled p shell, so that the second and third ionisation energies are lower, enabling higher oxidation states than +1 and a richer coordination chemistry, thus giving the group 11 metals clear transition metal character. Particularly noteworthy is gold forming ionic compounds with rubidium and caesium, in which it forms the auride ion (Au−) which also occurs in solvated form in liquid ammonia solution: here gold behaves as a pseudohalogen because its 5d106s1 configuration has one electron less than the quasi-closed shell 5d106s2 configuration of mercury.
|
666
|
wiki20220301en000_2916
|
Alkali metal
|
Production and isolation
|
Alkali metal. Production and isolation
|
666
|
wiki20220301en000_2917
|
Alkali metal
|
The production of pure alkali metals is somewhat complicated due to their extreme reactivity with commonly used substances, such as water. From their silicate ores, all the stable alkali metals may be obtained the same way: sulfuric acid is first used to dissolve the desired alkali metal ion and aluminium(III) ions from the ore (leaching), whereupon basic precipitation removes aluminium ions from the mixture by precipitating it as the hydroxide. The remaining insoluble alkali metal carbonate is then precipitated selectively; the salt is then dissolved in hydrochloric acid to produce the chloride. The result is then left to evaporate and the alkali metal can then be isolated. Lithium and sodium are typically isolated through electrolysis from their liquid chlorides, with calcium chloride typically added to lower the melting point of the mixture. The heavier alkali metals, however, are more typically isolated in a different way, where a reducing agent (typically sodium for potassium and
|
Alkali metal. The production of pure alkali metals is somewhat complicated due to their extreme reactivity with commonly used substances, such as water. From their silicate ores, all the stable alkali metals may be obtained the same way: sulfuric acid is first used to dissolve the desired alkali metal ion and aluminium(III) ions from the ore (leaching), whereupon basic precipitation removes aluminium ions from the mixture by precipitating it as the hydroxide. The remaining insoluble alkali metal carbonate is then precipitated selectively; the salt is then dissolved in hydrochloric acid to produce the chloride. The result is then left to evaporate and the alkali metal can then be isolated. Lithium and sodium are typically isolated through electrolysis from their liquid chlorides, with calcium chloride typically added to lower the melting point of the mixture. The heavier alkali metals, however, are more typically isolated in a different way, where a reducing agent (typically sodium for potassium and
|
666
|
wiki20220301en000_2918
|
Alkali metal
|
added to lower the melting point of the mixture. The heavier alkali metals, however, are more typically isolated in a different way, where a reducing agent (typically sodium for potassium and magnesium or calcium for the heaviest alkali metals) is used to reduce the alkali metal chloride. The liquid or gaseous product (the alkali metal) then undergoes fractional distillation for purification. Most routes to the pure alkali metals require the use of electrolysis due to their high reactivity; one of the few which does not is the pyrolysis of the corresponding alkali metal azide, which yields the metal for sodium, potassium, rubidium, and caesium and the nitride for lithium.
|
Alkali metal. added to lower the melting point of the mixture. The heavier alkali metals, however, are more typically isolated in a different way, where a reducing agent (typically sodium for potassium and magnesium or calcium for the heaviest alkali metals) is used to reduce the alkali metal chloride. The liquid or gaseous product (the alkali metal) then undergoes fractional distillation for purification. Most routes to the pure alkali metals require the use of electrolysis due to their high reactivity; one of the few which does not is the pyrolysis of the corresponding alkali metal azide, which yields the metal for sodium, potassium, rubidium, and caesium and the nitride for lithium.
|
666
|
wiki20220301en000_2919
|
Alkali metal
|
Lithium salts have to be extracted from the water of mineral springs, brine pools, and brine deposits. The metal is produced electrolytically from a mixture of fused lithium chloride and potassium chloride.
|
Alkali metal. Lithium salts have to be extracted from the water of mineral springs, brine pools, and brine deposits. The metal is produced electrolytically from a mixture of fused lithium chloride and potassium chloride.
|
666
|
wiki20220301en000_2920
|
Alkali metal
|
Sodium occurs mostly in seawater and dried seabed, but is now produced through electrolysis of sodium chloride by lowering the melting point of the substance to below 700 °C through the use of a Downs cell. Extremely pure sodium can be produced through the thermal decomposition of sodium azide. Potassium occurs in many minerals, such as sylvite (potassium chloride). Previously, potassium was generally made from the electrolysis of potassium chloride or potassium hydroxide, found extensively in places such as Canada, Russia, Belarus, Germany, Israel, United States, and Jordan, in a method similar to how sodium was produced in the late 1800s and early 1900s. It can also be produced from seawater. However, these methods are problematic because the potassium metal tends to dissolve in its molten chloride and vaporises significantly at the operating temperatures, potentially forming the explosive superoxide. As a result, pure potassium metal is now produced by reducing molten potassium
|
Alkali metal. Sodium occurs mostly in seawater and dried seabed, but is now produced through electrolysis of sodium chloride by lowering the melting point of the substance to below 700 °C through the use of a Downs cell. Extremely pure sodium can be produced through the thermal decomposition of sodium azide. Potassium occurs in many minerals, such as sylvite (potassium chloride). Previously, potassium was generally made from the electrolysis of potassium chloride or potassium hydroxide, found extensively in places such as Canada, Russia, Belarus, Germany, Israel, United States, and Jordan, in a method similar to how sodium was produced in the late 1800s and early 1900s. It can also be produced from seawater. However, these methods are problematic because the potassium metal tends to dissolve in its molten chloride and vaporises significantly at the operating temperatures, potentially forming the explosive superoxide. As a result, pure potassium metal is now produced by reducing molten potassium
|
666
|
wiki20220301en000_2921
|
Alkali metal
|
molten chloride and vaporises significantly at the operating temperatures, potentially forming the explosive superoxide. As a result, pure potassium metal is now produced by reducing molten potassium chloride with sodium metal at 850 °C.
|
Alkali metal. molten chloride and vaporises significantly at the operating temperatures, potentially forming the explosive superoxide. As a result, pure potassium metal is now produced by reducing molten potassium chloride with sodium metal at 850 °C.
|
666
|
wiki20220301en000_2922
|
Alkali metal
|
Na (g) + KCl (l) NaCl (l) + K (g) Although sodium is less reactive than potassium, this process works because at such high temperatures potassium is more volatile than sodium and can easily be distilled off, so that the equilibrium shifts towards the right to produce more potassium gas and proceeds almost to completion.
|
Alkali metal. Na (g) + KCl (l) NaCl (l) + K (g) Although sodium is less reactive than potassium, this process works because at such high temperatures potassium is more volatile than sodium and can easily be distilled off, so that the equilibrium shifts towards the right to produce more potassium gas and proceeds almost to completion.
|
666
|
wiki20220301en000_2923
|
Alkali metal
|
Metals like sodium are obtained by electrolysis of molten salts. Rb & Cs obtained mainly as by products of Li processing. To make pure cesium, ores of cesium and rubidium are crushed and heated to 650 °C with sodium metal, generating an alloy that can then be separated via a fractional distillation technique. Because metallic cesium is too reactive to handle, it is normally offered as cesium azide (CsN3). Cesium hydroxide is formed when cesium interacts aggressively with water and ice (CsOH).
|
Alkali metal. Metals like sodium are obtained by electrolysis of molten salts. Rb & Cs obtained mainly as by products of Li processing. To make pure cesium, ores of cesium and rubidium are crushed and heated to 650 °C with sodium metal, generating an alloy that can then be separated via a fractional distillation technique. Because metallic cesium is too reactive to handle, it is normally offered as cesium azide (CsN3). Cesium hydroxide is formed when cesium interacts aggressively with water and ice (CsOH).
|
666
|
wiki20220301en000_2924
|
Alkali metal
|
Rubidium is the 16th most prevalent element in the earth's crust, however it is quite rare. Some minerals found in North America, South Africa, Russia, and Canada contain rubidium. Some potassium minerals (lepidolites, biotites, feldspar, carnallite) contain it, together with caesium. Pollucite, carnallite, leucite, and lepidolite are all minerals that contain rubidium. As a by-product of lithium extraction, it is commercially obtained from lepidolite. Rubidium is also found in potassium rocks and brines, which is a commercial supply. The majority of rubidium is now obtained as a byproduct of refining lithium. Rubidium is used in vacuum tubes as a getter, a material that combines with and removes trace gases from vacuum tubes.
|
Alkali metal. Rubidium is the 16th most prevalent element in the earth's crust, however it is quite rare. Some minerals found in North America, South Africa, Russia, and Canada contain rubidium. Some potassium minerals (lepidolites, biotites, feldspar, carnallite) contain it, together with caesium. Pollucite, carnallite, leucite, and lepidolite are all minerals that contain rubidium. As a by-product of lithium extraction, it is commercially obtained from lepidolite. Rubidium is also found in potassium rocks and brines, which is a commercial supply. The majority of rubidium is now obtained as a byproduct of refining lithium. Rubidium is used in vacuum tubes as a getter, a material that combines with and removes trace gases from vacuum tubes.
|
666
|
wiki20220301en000_2925
|
Alkali metal
|
For several years in the 1950s and 1960s, a by-product of the potassium production called Alkarb was a main source for rubidium. Alkarb contained 21% rubidium while the rest was potassium and a small fraction of caesium. Today the largest producers of caesium, for example the Tanco Mine in Manitoba, Canada, produce rubidium as by-product from pollucite. Today, a common method for separating rubidium from potassium and caesium is the fractional crystallisation of a rubidium and caesium alum (Cs, Rb)Al(SO4)2·12H2O, which yields pure rubidium alum after approximately 30 recrystallisations. The limited applications and the lack of a mineral rich in rubidium limit the production of rubidium compounds to 2 to 4 tonnes per year. Caesium, however, is not produced from the above reaction. Instead, the mining of pollucite ore is the main method of obtaining pure caesium, extracted from the ore mainly by three methods: acid digestion, alkaline decomposition, and direct reduction. Both metals are
|
Alkali metal. For several years in the 1950s and 1960s, a by-product of the potassium production called Alkarb was a main source for rubidium. Alkarb contained 21% rubidium while the rest was potassium and a small fraction of caesium. Today the largest producers of caesium, for example the Tanco Mine in Manitoba, Canada, produce rubidium as by-product from pollucite. Today, a common method for separating rubidium from potassium and caesium is the fractional crystallisation of a rubidium and caesium alum (Cs, Rb)Al(SO4)2·12H2O, which yields pure rubidium alum after approximately 30 recrystallisations. The limited applications and the lack of a mineral rich in rubidium limit the production of rubidium compounds to 2 to 4 tonnes per year. Caesium, however, is not produced from the above reaction. Instead, the mining of pollucite ore is the main method of obtaining pure caesium, extracted from the ore mainly by three methods: acid digestion, alkaline decomposition, and direct reduction. Both metals are
|
666
|
wiki20220301en000_2926
|
Alkali metal
|
the mining of pollucite ore is the main method of obtaining pure caesium, extracted from the ore mainly by three methods: acid digestion, alkaline decomposition, and direct reduction. Both metals are produced as by-products of lithium production: after 1958, when interest in lithium's thermonuclear properties increased sharply, the production of rubidium and caesium also increased correspondingly. Pure rubidium and caesium metals are produced by reducing their chlorides with calcium metal at 750 °C and low pressure.
|
Alkali metal. the mining of pollucite ore is the main method of obtaining pure caesium, extracted from the ore mainly by three methods: acid digestion, alkaline decomposition, and direct reduction. Both metals are produced as by-products of lithium production: after 1958, when interest in lithium's thermonuclear properties increased sharply, the production of rubidium and caesium also increased correspondingly. Pure rubidium and caesium metals are produced by reducing their chlorides with calcium metal at 750 °C and low pressure.
|
666
|
wiki20220301en000_2927
|
Alkali metal
|
As a result of its extreme rarity in nature, most francium is synthesised in the nuclear reaction 197Au + 18O → 210Fr + 5 n, yielding francium-209, francium-210, and francium-211. The greatest quantity of francium ever assembled to date is about 300,000 neutral atoms, which were synthesised using the nuclear reaction given above. When the only natural isotope francium-223 is specifically required, it is produced as the alpha daughter of actinium-227, itself produced synthetically from the neutron irradiation of natural radium-226, one of the daughters of natural uranium-238. Applications
|
Alkali metal. As a result of its extreme rarity in nature, most francium is synthesised in the nuclear reaction 197Au + 18O → 210Fr + 5 n, yielding francium-209, francium-210, and francium-211. The greatest quantity of francium ever assembled to date is about 300,000 neutral atoms, which were synthesised using the nuclear reaction given above. When the only natural isotope francium-223 is specifically required, it is produced as the alpha daughter of actinium-227, itself produced synthetically from the neutron irradiation of natural radium-226, one of the daughters of natural uranium-238. Applications
|
666
|
wiki20220301en000_2928
|
Alkali metal
|
Applications Lithium, sodium, and potassium have many applications, while rubidium and caesium are very useful in academic contexts but do not have many applications yet. Lithium is often used in lithium-ion batteries, and lithium oxide can help process silica. Lithium stearate is a thickener and can be used to make lubricating greases; it is produced from lithium hydroxide, which is also used to absorb carbon dioxide in space capsules and submarines. Lithium chloride is used as a brazing alloy for aluminium parts. Metallic lithium is used in alloys with magnesium and aluminium to give very tough and light alloys.
|
Alkali metal. Applications Lithium, sodium, and potassium have many applications, while rubidium and caesium are very useful in academic contexts but do not have many applications yet. Lithium is often used in lithium-ion batteries, and lithium oxide can help process silica. Lithium stearate is a thickener and can be used to make lubricating greases; it is produced from lithium hydroxide, which is also used to absorb carbon dioxide in space capsules and submarines. Lithium chloride is used as a brazing alloy for aluminium parts. Metallic lithium is used in alloys with magnesium and aluminium to give very tough and light alloys.
|
666
|
wiki20220301en000_2929
|
Alkali metal
|
Sodium compounds have many applications, the most well-known being sodium chloride as table salt. Sodium salts of fatty acids are used as soap. Pure sodium metal also has many applications, including use in sodium-vapour lamps, which produce very efficient light compared to other types of lighting, and can help smooth the surface of other metals. Being a strong reducing agent, it is often used to reduce many other metals, such as titanium and zirconium, from their chlorides. Furthermore, it is very useful as a heat-exchange liquid in fast breeder nuclear reactors due to its low melting point, viscosity, and cross-section towards neutron absorption.
|
Alkali metal. Sodium compounds have many applications, the most well-known being sodium chloride as table salt. Sodium salts of fatty acids are used as soap. Pure sodium metal also has many applications, including use in sodium-vapour lamps, which produce very efficient light compared to other types of lighting, and can help smooth the surface of other metals. Being a strong reducing agent, it is often used to reduce many other metals, such as titanium and zirconium, from their chlorides. Furthermore, it is very useful as a heat-exchange liquid in fast breeder nuclear reactors due to its low melting point, viscosity, and cross-section towards neutron absorption.
|
666
|
wiki20220301en000_2930
|
Alkali metal
|
Potassium compounds are often used as fertilisers as potassium is an important element for plant nutrition. Potassium hydroxide is a very strong base, and is used to control the pH of various substances. Potassium nitrate and potassium permanganate are often used as powerful oxidising agents. Potassium superoxide is used in breathing masks, as it reacts with carbon dioxide to give potassium carbonate and oxygen gas. Pure potassium metal is not often used, but its alloys with sodium may substitute for pure sodium in fast breeder nuclear reactors. Rubidium and caesium are often used in atomic clocks. Caesium atomic clocks are extraordinarily accurate; if a clock had been made at the time of the dinosaurs, it would be off by less than four seconds (after 80 million years). For that reason, caesium atoms are used as the definition of the second. Rubidium ions are often used in purple fireworks, and caesium is often used in drilling fluids in the petroleum industry.
|
Alkali metal. Potassium compounds are often used as fertilisers as potassium is an important element for plant nutrition. Potassium hydroxide is a very strong base, and is used to control the pH of various substances. Potassium nitrate and potassium permanganate are often used as powerful oxidising agents. Potassium superoxide is used in breathing masks, as it reacts with carbon dioxide to give potassium carbonate and oxygen gas. Pure potassium metal is not often used, but its alloys with sodium may substitute for pure sodium in fast breeder nuclear reactors. Rubidium and caesium are often used in atomic clocks. Caesium atomic clocks are extraordinarily accurate; if a clock had been made at the time of the dinosaurs, it would be off by less than four seconds (after 80 million years). For that reason, caesium atoms are used as the definition of the second. Rubidium ions are often used in purple fireworks, and caesium is often used in drilling fluids in the petroleum industry.
|
666
|
wiki20220301en000_2931
|
Alkali metal
|
Francium has no commercial applications, but because of francium's relatively simple atomic structure, among other things, it has been used in spectroscopy experiments, leading to more information regarding energy levels and the coupling constants between subatomic particles. Studies on the light emitted by laser-trapped francium-210 ions have provided accurate data on transitions between atomic energy levels, similar to those predicted by quantum theory. Biological role and precautions Metals Pure alkali metals are dangerously reactive with air and water and must be kept away from heat, fire, oxidising agents, acids, most organic compounds, halocarbons, plastics, and moisture. They also react with carbon dioxide and carbon tetrachloride, so that normal fire extinguishers are counterproductive when used on alkali metal fires. Some Class D dry powder extinguishers designed for metal fires are effective, depriving the fire of oxygen and cooling the alkali metal.
|
Alkali metal. Francium has no commercial applications, but because of francium's relatively simple atomic structure, among other things, it has been used in spectroscopy experiments, leading to more information regarding energy levels and the coupling constants between subatomic particles. Studies on the light emitted by laser-trapped francium-210 ions have provided accurate data on transitions between atomic energy levels, similar to those predicted by quantum theory. Biological role and precautions Metals Pure alkali metals are dangerously reactive with air and water and must be kept away from heat, fire, oxidising agents, acids, most organic compounds, halocarbons, plastics, and moisture. They also react with carbon dioxide and carbon tetrachloride, so that normal fire extinguishers are counterproductive when used on alkali metal fires. Some Class D dry powder extinguishers designed for metal fires are effective, depriving the fire of oxygen and cooling the alkali metal.
|
666
|
wiki20220301en000_2932
|
Alkali metal
|
Experiments are usually conducted using only small quantities of a few grams in a fume hood. Small quantities of lithium may be disposed of by reaction with cool water, but the heavier alkali metals should be dissolved in the less reactive isopropanol. The alkali metals must be stored under mineral oil or an inert atmosphere. The inert atmosphere used may be argon or nitrogen gas, except for lithium, which reacts with nitrogen. Rubidium and caesium must be kept away from air, even under oil, because even a small amount of air diffused into the oil may trigger formation of the dangerously explosive peroxide; for the same reason, potassium should not be stored under oil in an oxygen-containing atmosphere for longer than 6 months. Ions
|
Alkali metal. Experiments are usually conducted using only small quantities of a few grams in a fume hood. Small quantities of lithium may be disposed of by reaction with cool water, but the heavier alkali metals should be dissolved in the less reactive isopropanol. The alkali metals must be stored under mineral oil or an inert atmosphere. The inert atmosphere used may be argon or nitrogen gas, except for lithium, which reacts with nitrogen. Rubidium and caesium must be kept away from air, even under oil, because even a small amount of air diffused into the oil may trigger formation of the dangerously explosive peroxide; for the same reason, potassium should not be stored under oil in an oxygen-containing atmosphere for longer than 6 months. Ions
|
666
|
wiki20220301en000_2933
|
Alkali metal
|
Ions The bioinorganic chemistry of the alkali metal ions has been extensively reviewed. Solid state crystal structures have been determined for many complexes of alkali metal ions in small peptides, nucleic acid constituents, carbohydrates and ionophore complexes.
|
Alkali metal. Ions The bioinorganic chemistry of the alkali metal ions has been extensively reviewed. Solid state crystal structures have been determined for many complexes of alkali metal ions in small peptides, nucleic acid constituents, carbohydrates and ionophore complexes.
|
666
|
wiki20220301en000_2934
|
Alkali metal
|
Lithium naturally only occurs in traces in biological systems and has no known biological role, but does have effects on the body when ingested. Lithium carbonate is used as a mood stabiliser in psychiatry to treat bipolar disorder (manic-depression) in daily doses of about 0.5 to 2 grams, although there are side-effects. Excessive ingestion of lithium causes drowsiness, slurred speech and vomiting, among other symptoms, and poisons the central nervous system, which is dangerous as the required dosage of lithium to treat bipolar disorder is only slightly lower than the toxic dosage. Its biochemistry, the way it is handled by the human body and studies using rats and goats suggest that it is an essential trace element, although the natural biological function of lithium in humans has yet to be identified.
|
Alkali metal. Lithium naturally only occurs in traces in biological systems and has no known biological role, but does have effects on the body when ingested. Lithium carbonate is used as a mood stabiliser in psychiatry to treat bipolar disorder (manic-depression) in daily doses of about 0.5 to 2 grams, although there are side-effects. Excessive ingestion of lithium causes drowsiness, slurred speech and vomiting, among other symptoms, and poisons the central nervous system, which is dangerous as the required dosage of lithium to treat bipolar disorder is only slightly lower than the toxic dosage. Its biochemistry, the way it is handled by the human body and studies using rats and goats suggest that it is an essential trace element, although the natural biological function of lithium in humans has yet to be identified.
|
666
|
wiki20220301en000_2935
|
Alkali metal
|
Sodium and potassium occur in all known biological systems, generally functioning as electrolytes inside and outside cells. Sodium is an essential nutrient that regulates blood volume, blood pressure, osmotic equilibrium and pH; the minimum physiological requirement for sodium is 500 milligrams per day. Sodium chloride (also known as common salt) is the principal source of sodium in the diet, and is used as seasoning and preservative, such as for pickling and jerky; most of it comes from processed foods. The Dietary Reference Intake for sodium is 1.5 grams per day, but most people in the United States consume more than 2.3 grams per day, the minimum amount that promotes hypertension; this in turn causes 7.6 million premature deaths worldwide.
|
Alkali metal. Sodium and potassium occur in all known biological systems, generally functioning as electrolytes inside and outside cells. Sodium is an essential nutrient that regulates blood volume, blood pressure, osmotic equilibrium and pH; the minimum physiological requirement for sodium is 500 milligrams per day. Sodium chloride (also known as common salt) is the principal source of sodium in the diet, and is used as seasoning and preservative, such as for pickling and jerky; most of it comes from processed foods. The Dietary Reference Intake for sodium is 1.5 grams per day, but most people in the United States consume more than 2.3 grams per day, the minimum amount that promotes hypertension; this in turn causes 7.6 million premature deaths worldwide.
|
666
|
wiki20220301en000_2936
|
Alkali metal
|
Potassium is the major cation (positive ion) inside animal cells, while sodium is the major cation outside animal cells. The concentration differences of these charged particles causes a difference in electric potential between the inside and outside of cells, known as the membrane potential. The balance between potassium and sodium is maintained by ion transporter proteins in the cell membrane. The cell membrane potential created by potassium and sodium ions allows the cell to generate an action potential—a "spike" of electrical discharge. The ability of cells to produce electrical discharge is critical for body functions such as neurotransmission, muscle contraction, and heart function. Disruption of this balance may thus be fatal: for example, ingestion of large amounts of potassium compounds can lead to hyperkalemia strongly influencing the cardiovascular system. Potassium chloride is used in the United States for lethal injection executions.
|
Alkali metal. Potassium is the major cation (positive ion) inside animal cells, while sodium is the major cation outside animal cells. The concentration differences of these charged particles causes a difference in electric potential between the inside and outside of cells, known as the membrane potential. The balance between potassium and sodium is maintained by ion transporter proteins in the cell membrane. The cell membrane potential created by potassium and sodium ions allows the cell to generate an action potential—a "spike" of electrical discharge. The ability of cells to produce electrical discharge is critical for body functions such as neurotransmission, muscle contraction, and heart function. Disruption of this balance may thus be fatal: for example, ingestion of large amounts of potassium compounds can lead to hyperkalemia strongly influencing the cardiovascular system. Potassium chloride is used in the United States for lethal injection executions.
|
666
|
wiki20220301en000_2937
|
Alkali metal
|
Due to their similar atomic radii, rubidium and caesium in the body mimic potassium and are taken up similarly. Rubidium has no known biological role, but may help stimulate metabolism, and, similarly to caesium, replace potassium in the body causing potassium deficiency. Partial substitution is quite possible and rather non-toxic: a 70 kg person contains on average 0.36 g of rubidium, and an increase in this value by 50 to 100 times did not show negative effects in test persons. Rats can survive up to 50% substitution of potassium by rubidium. Rubidium (and to a much lesser extent caesium) can function as temporary cures for hypokalemia; while rubidium can adequately physiologically substitute potassium in some systems, caesium is never able to do so. There is only very limited evidence in the form of deficiency symptoms for rubidium being possibly essential in goats; even if this is true, the trace amounts usually present in food are more than enough.
|
Alkali metal. Due to their similar atomic radii, rubidium and caesium in the body mimic potassium and are taken up similarly. Rubidium has no known biological role, but may help stimulate metabolism, and, similarly to caesium, replace potassium in the body causing potassium deficiency. Partial substitution is quite possible and rather non-toxic: a 70 kg person contains on average 0.36 g of rubidium, and an increase in this value by 50 to 100 times did not show negative effects in test persons. Rats can survive up to 50% substitution of potassium by rubidium. Rubidium (and to a much lesser extent caesium) can function as temporary cures for hypokalemia; while rubidium can adequately physiologically substitute potassium in some systems, caesium is never able to do so. There is only very limited evidence in the form of deficiency symptoms for rubidium being possibly essential in goats; even if this is true, the trace amounts usually present in food are more than enough.
|
666
|
wiki20220301en000_2938
|
Alkali metal
|
Caesium compounds are rarely encountered by most people, but most caesium compounds are mildly toxic. Like rubidium, caesium tends to substitute potassium in the body, but is significantly larger and is therefore a poorer substitute. Excess caesium can lead to hypokalemia, arrythmia, and acute cardiac arrest, but such amounts would not ordinarily be encountered in natural sources. As such, caesium is not a major chemical environmental pollutant. The median lethal dose (LD50) value for caesium chloride in mice is 2.3 g per kilogram, which is comparable to the LD50 values of potassium chloride and sodium chloride. Caesium chloride has been promoted as an alternative cancer therapy, but has been linked to the deaths of over 50 patients, on whom it was used as part of a scientifically unvalidated cancer treatment.
|
Alkali metal. Caesium compounds are rarely encountered by most people, but most caesium compounds are mildly toxic. Like rubidium, caesium tends to substitute potassium in the body, but is significantly larger and is therefore a poorer substitute. Excess caesium can lead to hypokalemia, arrythmia, and acute cardiac arrest, but such amounts would not ordinarily be encountered in natural sources. As such, caesium is not a major chemical environmental pollutant. The median lethal dose (LD50) value for caesium chloride in mice is 2.3 g per kilogram, which is comparable to the LD50 values of potassium chloride and sodium chloride. Caesium chloride has been promoted as an alternative cancer therapy, but has been linked to the deaths of over 50 patients, on whom it was used as part of a scientifically unvalidated cancer treatment.
|
666
|
wiki20220301en000_2939
|
Alkali metal
|
Radioisotopes of caesium require special precautions: the improper handling of caesium-137 gamma ray sources can lead to release of this radioisotope and radiation injuries. Perhaps the best-known case is the Goiânia accident of 1987, in which an improperly-disposed-of radiation therapy system from an abandoned clinic in the city of Goiânia, Brazil, was scavenged from a junkyard, and the glowing caesium salt sold to curious, uneducated buyers. This led to four deaths and serious injuries from radiation exposure. Together with caesium-134, iodine-131, and strontium-90, caesium-137 was among the isotopes distributed by the Chernobyl disaster which constitute the greatest risk to health. Radioisotopes of francium would presumably be dangerous as well due to their high decay energy and short half-life, but none have been produced in large enough amounts to pose any serious risk. Notes References A Groups (periodic table) Periodic table Articles containing video clips
|
Alkali metal. Radioisotopes of caesium require special precautions: the improper handling of caesium-137 gamma ray sources can lead to release of this radioisotope and radiation injuries. Perhaps the best-known case is the Goiânia accident of 1987, in which an improperly-disposed-of radiation therapy system from an abandoned clinic in the city of Goiânia, Brazil, was scavenged from a junkyard, and the glowing caesium salt sold to curious, uneducated buyers. This led to four deaths and serious injuries from radiation exposure. Together with caesium-134, iodine-131, and strontium-90, caesium-137 was among the isotopes distributed by the Chernobyl disaster which constitute the greatest risk to health. Radioisotopes of francium would presumably be dangerous as well due to their high decay energy and short half-life, but none have been produced in large enough amounts to pose any serious risk. Notes References A Groups (periodic table) Periodic table Articles containing video clips
|
666
|
wiki20220301en000_2940
|
Alphabet
|
An alphabet is a standardized set of basic written symbols or graphemes (called letters) that represent the phonemes of certain spoken languages. Not all writing systems represent language in this way; in a syllabary, each character represents a syllable, for instance, and logographic systems use characters to represent words, morphemes, or other semantic units.
|
Alphabet. An alphabet is a standardized set of basic written symbols or graphemes (called letters) that represent the phonemes of certain spoken languages. Not all writing systems represent language in this way; in a syllabary, each character represents a syllable, for instance, and logographic systems use characters to represent words, morphemes, or other semantic units.
|
670
|
wiki20220301en000_2941
|
Alphabet
|
The first fully phonemic script, the Proto-Canaanite script, later known as the Phoenician alphabet, is considered to be the first alphabet, and is the ancestor of most modern alphabets, including Arabic, Cyrillic, Greek, Hebrew, Latin, and possibly Brahmic. It was created by Semitic-speaking workers and slaves in the Sinai Peninsula (as the Proto-Sinaitic script), by selecting a small number of hieroglyphs commonly seen in their Egyptian surroundings to describe the sounds, as opposed to the semantic values, of their own Canaanite language. However, Peter T. Daniels distinguishes an abugida, or alphasyllabary, a set of graphemes that represent consonantal base letters which diacritics modify to represent vowels (as in Devanagari and other South Asian scripts), an abjad, in which letters predominantly or exclusively represent consonants (as in the original Phoenician, Hebrew or Arabic), and an "alphabet", a set of graphemes that represent both consonants and vowels. In this narrow
|
Alphabet. The first fully phonemic script, the Proto-Canaanite script, later known as the Phoenician alphabet, is considered to be the first alphabet, and is the ancestor of most modern alphabets, including Arabic, Cyrillic, Greek, Hebrew, Latin, and possibly Brahmic. It was created by Semitic-speaking workers and slaves in the Sinai Peninsula (as the Proto-Sinaitic script), by selecting a small number of hieroglyphs commonly seen in their Egyptian surroundings to describe the sounds, as opposed to the semantic values, of their own Canaanite language. However, Peter T. Daniels distinguishes an abugida, or alphasyllabary, a set of graphemes that represent consonantal base letters which diacritics modify to represent vowels (as in Devanagari and other South Asian scripts), an abjad, in which letters predominantly or exclusively represent consonants (as in the original Phoenician, Hebrew or Arabic), and an "alphabet", a set of graphemes that represent both consonants and vowels. In this narrow
|
670
|
wiki20220301en000_2942
|
Alphabet
|
predominantly or exclusively represent consonants (as in the original Phoenician, Hebrew or Arabic), and an "alphabet", a set of graphemes that represent both consonants and vowels. In this narrow sense of the word the first true alphabet was the Greek alphabet, which was developed on the basis of the earlier Phoenician alphabet.
|
Alphabet. predominantly or exclusively represent consonants (as in the original Phoenician, Hebrew or Arabic), and an "alphabet", a set of graphemes that represent both consonants and vowels. In this narrow sense of the word the first true alphabet was the Greek alphabet, which was developed on the basis of the earlier Phoenician alphabet.
|
670
|
wiki20220301en000_2943
|
Alphabet
|
Of the dozens of alphabets in use today, the most popular is the Latin alphabet, which was derived from the Greek, and which is now used by many languages world-wide, often with the addition of extra letters or diacritical marks. While most alphabets have letters composed of lines (linear writing), there are also exceptions such as the alphabets used in Braille. The Khmer alphabet (for Khmer) is the longest, with 74 letters. Alphabets are usually associated with a standard ordering of letters. This makes them useful for purposes of collation, specifically by allowing words to be sorted in alphabetical order. It also means that their letters can be used as an alternative method of "numbering" ordered items, in such contexts as numbered lists and number placements.
|
Alphabet. Of the dozens of alphabets in use today, the most popular is the Latin alphabet, which was derived from the Greek, and which is now used by many languages world-wide, often with the addition of extra letters or diacritical marks. While most alphabets have letters composed of lines (linear writing), there are also exceptions such as the alphabets used in Braille. The Khmer alphabet (for Khmer) is the longest, with 74 letters. Alphabets are usually associated with a standard ordering of letters. This makes them useful for purposes of collation, specifically by allowing words to be sorted in alphabetical order. It also means that their letters can be used as an alternative method of "numbering" ordered items, in such contexts as numbered lists and number placements.
|
670
|
wiki20220301en000_2944
|
Alphabet
|
Etymology The English word alphabet came into Middle English from the Late Latin word alphabetum, which in turn originated in the Greek ἀλφάβητος (alphabētos). The Greek word was made from the first two letters, alpha (α) and beta (β). The names for the Greek letters came from the first two letters of the Phoenician alphabet; aleph, which also meant ox, and bet, which also meant house. Sometimes, like in the alphabet song in English, the term "ABCs" is used instead of the word "alphabet" (Now I know my ABCs...). "Knowing one's ABCs", in general, can be used as a metaphor for knowing the basics about anything. History
|
Alphabet. Etymology The English word alphabet came into Middle English from the Late Latin word alphabetum, which in turn originated in the Greek ἀλφάβητος (alphabētos). The Greek word was made from the first two letters, alpha (α) and beta (β). The names for the Greek letters came from the first two letters of the Phoenician alphabet; aleph, which also meant ox, and bet, which also meant house. Sometimes, like in the alphabet song in English, the term "ABCs" is used instead of the word "alphabet" (Now I know my ABCs...). "Knowing one's ABCs", in general, can be used as a metaphor for knowing the basics about anything. History
|
670
|
wiki20220301en000_2945
|
Alphabet
|
History Ancient Northeast African and Middle Eastern scripts The history of the alphabet started in ancient Egypt. Egyptian writing had a set of some 24 hieroglyphs that are called uniliterals, to represent syllables that begin with a single consonant of their language, plus a vowel (or no vowel) to be supplied by the native speaker. These glyphs were used as pronunciation guides for logograms, to write grammatical inflections, and, later, to transcribe loan words and foreign names.
|
Alphabet. History Ancient Northeast African and Middle Eastern scripts The history of the alphabet started in ancient Egypt. Egyptian writing had a set of some 24 hieroglyphs that are called uniliterals, to represent syllables that begin with a single consonant of their language, plus a vowel (or no vowel) to be supplied by the native speaker. These glyphs were used as pronunciation guides for logograms, to write grammatical inflections, and, later, to transcribe loan words and foreign names.
|
670
|
wiki20220301en000_2946
|
Alphabet
|
In the Middle Bronze Age, an apparently "alphabetic" system known as the Proto-Sinaitic script appears in Egyptian turquoise mines in the Sinai peninsula dated to circa the 15th century BC, apparently left by Canaanite workers. In 1999, John and Deborah Darnell discovered an even earlier version of this first alphabet at Wadi el-Hol dated to circa 1800 BC and showing evidence of having been adapted from specific forms of Egyptian hieroglyphs that could be dated to circa 2000 BC, strongly suggesting that the first alphabet had been developed about that time. Based on letter appearances and names, it is believed to be based on Egyptian hieroglyphs. This script had no characters representing vowels, although originally it probably was a syllabary, but unneeded symbols were discarded. An alphabetic cuneiform script with 30 signs including three that indicate the following vowel was invented in Ugarit before the 15th century BC. This script was not used after the destruction of Ugarit.
|
Alphabet. In the Middle Bronze Age, an apparently "alphabetic" system known as the Proto-Sinaitic script appears in Egyptian turquoise mines in the Sinai peninsula dated to circa the 15th century BC, apparently left by Canaanite workers. In 1999, John and Deborah Darnell discovered an even earlier version of this first alphabet at Wadi el-Hol dated to circa 1800 BC and showing evidence of having been adapted from specific forms of Egyptian hieroglyphs that could be dated to circa 2000 BC, strongly suggesting that the first alphabet had been developed about that time. Based on letter appearances and names, it is believed to be based on Egyptian hieroglyphs. This script had no characters representing vowels, although originally it probably was a syllabary, but unneeded symbols were discarded. An alphabetic cuneiform script with 30 signs including three that indicate the following vowel was invented in Ugarit before the 15th century BC. This script was not used after the destruction of Ugarit.
|
670
|
wiki20220301en000_2947
|
Alphabet
|
The Proto-Sinaitic script eventually developed into the Phoenician alphabet, which is conventionally called "Proto-Canaanite" before c. 1050 BC. The oldest text in Phoenician script is an inscription on the sarcophagus of King Ahiram. This script is the parent script of all western alphabets. By the tenth century, two other forms can be distinguished, namely Canaanite and Aramaic. The Aramaic gave rise to the Hebrew script. The South Arabian alphabet, a sister script to the Phoenician alphabet, is the script from which the Ge'ez alphabet (an abugida) is descended. Vowelless alphabets are called abjads, currently exemplified in scripts including Arabic, Hebrew, and Syriac. The omission of vowels was not always a satisfactory solution and some "weak" consonants are sometimes used to indicate the vowel quality of a syllable (matres lectionis). These letters have a dual function since they are also used as pure consonants.
|
Alphabet. The Proto-Sinaitic script eventually developed into the Phoenician alphabet, which is conventionally called "Proto-Canaanite" before c. 1050 BC. The oldest text in Phoenician script is an inscription on the sarcophagus of King Ahiram. This script is the parent script of all western alphabets. By the tenth century, two other forms can be distinguished, namely Canaanite and Aramaic. The Aramaic gave rise to the Hebrew script. The South Arabian alphabet, a sister script to the Phoenician alphabet, is the script from which the Ge'ez alphabet (an abugida) is descended. Vowelless alphabets are called abjads, currently exemplified in scripts including Arabic, Hebrew, and Syriac. The omission of vowels was not always a satisfactory solution and some "weak" consonants are sometimes used to indicate the vowel quality of a syllable (matres lectionis). These letters have a dual function since they are also used as pure consonants.
|
670
|
wiki20220301en000_2948
|
Alphabet
|
The Proto-Sinaitic or Proto-Canaanite script and the Ugaritic script were the first scripts with a limited number of signs, in contrast to the other widely used writing systems at the time, Cuneiform, Egyptian hieroglyphs, and Linear B. The Phoenician script was probably the first phonemic script and it contained only about two dozen distinct letters, making it a script simple enough for common traders to learn. Another advantage of Phoenician was that it could be used to write down many different languages, since it recorded words phonemically.
|
Alphabet. The Proto-Sinaitic or Proto-Canaanite script and the Ugaritic script were the first scripts with a limited number of signs, in contrast to the other widely used writing systems at the time, Cuneiform, Egyptian hieroglyphs, and Linear B. The Phoenician script was probably the first phonemic script and it contained only about two dozen distinct letters, making it a script simple enough for common traders to learn. Another advantage of Phoenician was that it could be used to write down many different languages, since it recorded words phonemically.
|
670
|
wiki20220301en000_2949
|
Alphabet
|
The script was spread by the Phoenicians across the Mediterranean. In Greece, the script was modified to add vowels, giving rise to the ancestor of all alphabets in the West. It was the first alphabet in which vowels have independent letter forms separate from those of consonants. The Greeks chose letters representing sounds that did not exist in Greek to represent vowels. Vowels are significant in the Greek language, and the syllabical Linear B script that was used by the Mycenaean Greeks from the 16th century BC had 87 symbols, including 5 vowels. In its early years, there were many variants of the Greek alphabet, a situation that caused many different alphabets to evolve from it. European alphabets
|
Alphabet. The script was spread by the Phoenicians across the Mediterranean. In Greece, the script was modified to add vowels, giving rise to the ancestor of all alphabets in the West. It was the first alphabet in which vowels have independent letter forms separate from those of consonants. The Greeks chose letters representing sounds that did not exist in Greek to represent vowels. Vowels are significant in the Greek language, and the syllabical Linear B script that was used by the Mycenaean Greeks from the 16th century BC had 87 symbols, including 5 vowels. In its early years, there were many variants of the Greek alphabet, a situation that caused many different alphabets to evolve from it. European alphabets
|
670
|
wiki20220301en000_2950
|
Alphabet
|
European alphabets The Greek alphabet, in its Euboean form, was carried over by Greek colonists to the Italian peninsula, where it gave rise to a variety of alphabets used to write the Italic languages. One of these became the Latin alphabet, which was spread across Europe as the Romans expanded their empire. Even after the fall of the Roman state, the alphabet survived in intellectual and religious works. It eventually became used for the descendant languages of Latin (the Romance languages) and then for most of the other languages of western and central Europe.
|
Alphabet. European alphabets The Greek alphabet, in its Euboean form, was carried over by Greek colonists to the Italian peninsula, where it gave rise to a variety of alphabets used to write the Italic languages. One of these became the Latin alphabet, which was spread across Europe as the Romans expanded their empire. Even after the fall of the Roman state, the alphabet survived in intellectual and religious works. It eventually became used for the descendant languages of Latin (the Romance languages) and then for most of the other languages of western and central Europe.
|
670
|
wiki20220301en000_2951
|
Alphabet
|
Some adaptations of the Latin alphabet are augmented with ligatures, such as æ in Danish and Icelandic and Ȣ in Algonquian; by borrowings from other alphabets, such as the thorn þ in Old English and Icelandic, which came from the Futhark runes; and by modifying existing letters, such as the eth ð of Old English and Icelandic, which is a modified d. Other alphabets only use a subset of the Latin alphabet, such as Hawaiian, and Italian, which uses the letters j, k, x, y and w only in foreign words.
|
Alphabet. Some adaptations of the Latin alphabet are augmented with ligatures, such as æ in Danish and Icelandic and Ȣ in Algonquian; by borrowings from other alphabets, such as the thorn þ in Old English and Icelandic, which came from the Futhark runes; and by modifying existing letters, such as the eth ð of Old English and Icelandic, which is a modified d. Other alphabets only use a subset of the Latin alphabet, such as Hawaiian, and Italian, which uses the letters j, k, x, y and w only in foreign words.
|
670
|
wiki20220301en000_2952
|
Alphabet
|
Another notable script is Elder Futhark, which is believed to have evolved out of one of the Old Italic alphabets. Elder Futhark gave rise to a variety of alphabets known collectively as the Runic alphabets. The Runic alphabets were used for Germanic languages from AD 100 to the late Middle Ages. Its usage is mostly restricted to engravings on stone and jewelry, although inscriptions have also been found on bone and wood. These alphabets have since been replaced with the Latin alphabet, except for decorative usage for which the runes remained in use until the 20th century. The Old Hungarian script is a contemporary writing system of the Hungarians. It was in use during the entire history of Hungary, albeit not as an official writing system. From the 19th century it once again became more and more popular.
|
Alphabet. Another notable script is Elder Futhark, which is believed to have evolved out of one of the Old Italic alphabets. Elder Futhark gave rise to a variety of alphabets known collectively as the Runic alphabets. The Runic alphabets were used for Germanic languages from AD 100 to the late Middle Ages. Its usage is mostly restricted to engravings on stone and jewelry, although inscriptions have also been found on bone and wood. These alphabets have since been replaced with the Latin alphabet, except for decorative usage for which the runes remained in use until the 20th century. The Old Hungarian script is a contemporary writing system of the Hungarians. It was in use during the entire history of Hungary, albeit not as an official writing system. From the 19th century it once again became more and more popular.
|
670
|
wiki20220301en000_2953
|
Alphabet
|
The Glagolitic alphabet was the initial script of the liturgical language Old Church Slavonic and became, together with the Greek uncial script, the basis of the Cyrillic script. Cyrillic is one of the most widely used modern alphabetic scripts, and is notable for its use in Slavic languages and also for other languages within the former Soviet Union. Cyrillic alphabets include the Serbian, Macedonian, Bulgarian, Russian, Belarusian and Ukrainian. The Glagolitic alphabet is believed to have been created by Saints Cyril and Methodius, while the Cyrillic alphabet was invented by Clement of Ohrid, who was their disciple. They feature many letters that appear to have been borrowed from or influenced by Greek and Hebrew. The longest European alphabet is the Latin-derived Slovak alphabet, which has 46 letters.
|
Alphabet. The Glagolitic alphabet was the initial script of the liturgical language Old Church Slavonic and became, together with the Greek uncial script, the basis of the Cyrillic script. Cyrillic is one of the most widely used modern alphabetic scripts, and is notable for its use in Slavic languages and also for other languages within the former Soviet Union. Cyrillic alphabets include the Serbian, Macedonian, Bulgarian, Russian, Belarusian and Ukrainian. The Glagolitic alphabet is believed to have been created by Saints Cyril and Methodius, while the Cyrillic alphabet was invented by Clement of Ohrid, who was their disciple. They feature many letters that appear to have been borrowed from or influenced by Greek and Hebrew. The longest European alphabet is the Latin-derived Slovak alphabet, which has 46 letters.
|
670
|
wiki20220301en000_2954
|
Alphabet
|
The longest European alphabet is the Latin-derived Slovak alphabet, which has 46 letters. Asian alphabets Beyond the logographic Chinese writing, many phonetic scripts are in existence in Asia. The Arabic alphabet, Hebrew alphabet, Syriac alphabet, and other abjads of the Middle East are developments of the Aramaic alphabet. Most alphabetic scripts of India and Eastern Asia are descended from the Brahmi script, which is often believed to be a descendant of Aramaic.
|
Alphabet. The longest European alphabet is the Latin-derived Slovak alphabet, which has 46 letters. Asian alphabets Beyond the logographic Chinese writing, many phonetic scripts are in existence in Asia. The Arabic alphabet, Hebrew alphabet, Syriac alphabet, and other abjads of the Middle East are developments of the Aramaic alphabet. Most alphabetic scripts of India and Eastern Asia are descended from the Brahmi script, which is often believed to be a descendant of Aramaic.
|
670
|
wiki20220301en000_2955
|
Alphabet
|
Most alphabetic scripts of India and Eastern Asia are descended from the Brahmi script, which is often believed to be a descendant of Aramaic. In Korea, the Hangul alphabet was created by Sejong the Great. Hangul is a unique alphabet: it is a featural alphabet, where many of the letters are designed from a sound's place of articulation (P to look like the widened mouth, L to look like the tongue pulled in, etc.); its design was planned by the government of the day; and it places individual letters in syllable clusters with equal dimensions, in the same way as Chinese characters, to allow for mixed-script writing (one syllable always takes up one type-space no matter how many letters get stacked into building that one sound-block).
|
Alphabet. Most alphabetic scripts of India and Eastern Asia are descended from the Brahmi script, which is often believed to be a descendant of Aramaic. In Korea, the Hangul alphabet was created by Sejong the Great. Hangul is a unique alphabet: it is a featural alphabet, where many of the letters are designed from a sound's place of articulation (P to look like the widened mouth, L to look like the tongue pulled in, etc.); its design was planned by the government of the day; and it places individual letters in syllable clusters with equal dimensions, in the same way as Chinese characters, to allow for mixed-script writing (one syllable always takes up one type-space no matter how many letters get stacked into building that one sound-block).
|
670
|
wiki20220301en000_2956
|
Alphabet
|
Zhuyin (sometimes called Bopomofo) is a semi-syllabary used to phonetically transcribe Mandarin Chinese in the Republic of China. After the later establishment of the People's Republic of China and its adoption of Hanyu Pinyin, the use of Zhuyin today is limited, but it is still widely used in Taiwan where the Republic of China still governs. Zhuyin developed out of a form of Chinese shorthand based on Chinese characters in the early 1900s and has elements of both an alphabet and a syllabary. Like an alphabet the phonemes of syllable initials are represented by individual symbols, but like a syllabary the phonemes of the syllable finals are not; rather, each possible final (excluding the medial glide) is represented by its own symbol. For example, luan is represented as ㄌㄨㄢ (l-u-an), where the last symbol ㄢ represents the entire final -an. While Zhuyin is not used as a mainstream writing system, it is still often used in ways similar to a romanization system—that is, for aiding in
|
Alphabet. Zhuyin (sometimes called Bopomofo) is a semi-syllabary used to phonetically transcribe Mandarin Chinese in the Republic of China. After the later establishment of the People's Republic of China and its adoption of Hanyu Pinyin, the use of Zhuyin today is limited, but it is still widely used in Taiwan where the Republic of China still governs. Zhuyin developed out of a form of Chinese shorthand based on Chinese characters in the early 1900s and has elements of both an alphabet and a syllabary. Like an alphabet the phonemes of syllable initials are represented by individual symbols, but like a syllabary the phonemes of the syllable finals are not; rather, each possible final (excluding the medial glide) is represented by its own symbol. For example, luan is represented as ㄌㄨㄢ (l-u-an), where the last symbol ㄢ represents the entire final -an. While Zhuyin is not used as a mainstream writing system, it is still often used in ways similar to a romanization system—that is, for aiding in
|
670
|
wiki20220301en000_2957
|
Alphabet
|
the last symbol ㄢ represents the entire final -an. While Zhuyin is not used as a mainstream writing system, it is still often used in ways similar to a romanization system—that is, for aiding in pronunciation and as an input method for Chinese characters on computers and cellphones.
|
Alphabet. the last symbol ㄢ represents the entire final -an. While Zhuyin is not used as a mainstream writing system, it is still often used in ways similar to a romanization system—that is, for aiding in pronunciation and as an input method for Chinese characters on computers and cellphones.
|
670
|
wiki20220301en000_2958
|
Alphabet
|
European alphabets, especially Latin and Cyrillic, have been adapted for many languages of Asia. Arabic is also widely used, sometimes as an abjad (as with Urdu and Persian) and sometimes as a complete alphabet (as with Kurdish and Uyghur). Types
|
Alphabet. European alphabets, especially Latin and Cyrillic, have been adapted for many languages of Asia. Arabic is also widely used, sometimes as an abjad (as with Urdu and Persian) and sometimes as a complete alphabet (as with Kurdish and Uyghur). Types
|
670
|
wiki20220301en000_2959
|
Alphabet
|
The term "alphabet" is used by linguists and paleographers in both a wide and a narrow sense. In the wider sense, an alphabet is a script that is segmental at the phoneme level—that is, it has separate glyphs for individual sounds and not for larger units such as syllables or words. In the narrower sense, some scholars distinguish "true" alphabets from two other types of segmental script, abjads and abugidas. These three differ from each other in the way they treat vowels: abjads have letters for consonants and leave most vowels unexpressed; abugidas are also consonant-based, but indicate vowels with diacritics to or a systematic graphic modification of the consonants. In alphabets in the narrow sense, on the other hand, consonants and vowels are written as independent letters. The earliest known alphabet in the wider sense is the Wadi el-Hol script, believed to be an abjad, which through its successor Phoenician is the ancestor of modern alphabets, including Arabic, Greek, Latin (via
|
Alphabet. The term "alphabet" is used by linguists and paleographers in both a wide and a narrow sense. In the wider sense, an alphabet is a script that is segmental at the phoneme level—that is, it has separate glyphs for individual sounds and not for larger units such as syllables or words. In the narrower sense, some scholars distinguish "true" alphabets from two other types of segmental script, abjads and abugidas. These three differ from each other in the way they treat vowels: abjads have letters for consonants and leave most vowels unexpressed; abugidas are also consonant-based, but indicate vowels with diacritics to or a systematic graphic modification of the consonants. In alphabets in the narrow sense, on the other hand, consonants and vowels are written as independent letters. The earliest known alphabet in the wider sense is the Wadi el-Hol script, believed to be an abjad, which through its successor Phoenician is the ancestor of modern alphabets, including Arabic, Greek, Latin (via
|
670
|
wiki20220301en000_2960
|
Alphabet
|
known alphabet in the wider sense is the Wadi el-Hol script, believed to be an abjad, which through its successor Phoenician is the ancestor of modern alphabets, including Arabic, Greek, Latin (via the Old Italic alphabet), Cyrillic (via the Greek alphabet) and Hebrew (via Aramaic).
|
Alphabet. known alphabet in the wider sense is the Wadi el-Hol script, believed to be an abjad, which through its successor Phoenician is the ancestor of modern alphabets, including Arabic, Greek, Latin (via the Old Italic alphabet), Cyrillic (via the Greek alphabet) and Hebrew (via Aramaic).
|
670
|
wiki20220301en000_2961
|
Alphabet
|
Examples of present-day abjads are the Arabic and Hebrew scripts; true alphabets include Latin, Cyrillic, and Korean hangul; and abugidas are used to write Tigrinya, Amharic, Hindi, and Thai. The Canadian Aboriginal syllabics are also an abugida rather than a syllabary as their name would imply, since each glyph stands for a consonant that is modified by rotation to represent the following vowel. (In a true syllabary, each consonant-vowel combination would be represented by a separate glyph.) All three types may be augmented with syllabic glyphs. Ugaritic, for example, is basically an abjad, but has syllabic letters for . (These are the only time vowels are indicated.) Cyrillic is basically a true alphabet, but has syllabic letters for (я, е, ю); Coptic has a letter for . Devanagari is typically an abugida augmented with dedicated letters for initial vowels, though some traditions use अ as a zero consonant as the graphic base for such vowels.
|
Alphabet. Examples of present-day abjads are the Arabic and Hebrew scripts; true alphabets include Latin, Cyrillic, and Korean hangul; and abugidas are used to write Tigrinya, Amharic, Hindi, and Thai. The Canadian Aboriginal syllabics are also an abugida rather than a syllabary as their name would imply, since each glyph stands for a consonant that is modified by rotation to represent the following vowel. (In a true syllabary, each consonant-vowel combination would be represented by a separate glyph.) All three types may be augmented with syllabic glyphs. Ugaritic, for example, is basically an abjad, but has syllabic letters for . (These are the only time vowels are indicated.) Cyrillic is basically a true alphabet, but has syllabic letters for (я, е, ю); Coptic has a letter for . Devanagari is typically an abugida augmented with dedicated letters for initial vowels, though some traditions use अ as a zero consonant as the graphic base for such vowels.
|
670
|
wiki20220301en000_2962
|
Alphabet
|
The boundaries between the three types of segmental scripts are not always clear-cut. For example, Sorani Kurdish is written in the Arabic script, which is normally an abjad. However, in Kurdish, writing the vowels is mandatory, and full letters are used, so the script is a true alphabet. Other languages may use a Semitic abjad with mandatory vowel diacritics, effectively making them abugidas. On the other hand, the Phagspa script of the Mongol Empire was based closely on the Tibetan abugida, but all vowel marks were written after the preceding consonant rather than as diacritic marks. Although short a was not written, as in the Indic abugidas, one could argue that the linear arrangement made this a true alphabet. Conversely, the vowel marks of the Tigrinya abugida and the Amharic abugida (ironically, the original source of the term "abugida") have been so completely assimilated into their consonants that the modifications are no longer systematic and have to be learned as a syllabary
|
Alphabet. The boundaries between the three types of segmental scripts are not always clear-cut. For example, Sorani Kurdish is written in the Arabic script, which is normally an abjad. However, in Kurdish, writing the vowels is mandatory, and full letters are used, so the script is a true alphabet. Other languages may use a Semitic abjad with mandatory vowel diacritics, effectively making them abugidas. On the other hand, the Phagspa script of the Mongol Empire was based closely on the Tibetan abugida, but all vowel marks were written after the preceding consonant rather than as diacritic marks. Although short a was not written, as in the Indic abugidas, one could argue that the linear arrangement made this a true alphabet. Conversely, the vowel marks of the Tigrinya abugida and the Amharic abugida (ironically, the original source of the term "abugida") have been so completely assimilated into their consonants that the modifications are no longer systematic and have to be learned as a syllabary
|
670
|
wiki20220301en000_2963
|
Alphabet
|
(ironically, the original source of the term "abugida") have been so completely assimilated into their consonants that the modifications are no longer systematic and have to be learned as a syllabary rather than as a segmental script. Even more extreme, the Pahlavi abjad eventually became logographic. (See below.)
|
Alphabet. (ironically, the original source of the term "abugida") have been so completely assimilated into their consonants that the modifications are no longer systematic and have to be learned as a syllabary rather than as a segmental script. Even more extreme, the Pahlavi abjad eventually became logographic. (See below.)
|
670
|
wiki20220301en000_2964
|
Alphabet
|
Thus the primary classification of alphabets reflects how they treat vowels. For tonal languages, further classification can be based on their treatment of tone, though names do not yet exist to distinguish the various types. Some alphabets disregard tone entirely, especially when it does not carry a heavy functional load, as in Somali and many other languages of Africa and the Americas. Such scripts are to tone what abjads are to vowels. Most commonly, tones are indicated with diacritics, the way vowels are treated in abugidas. This is the case for Vietnamese (a true alphabet) and Thai (an abugida). In Thai, tone is determined primarily by the choice of consonant, with diacritics for disambiguation. In the Pollard script, an abugida, vowels are indicated by diacritics, but the placement of the diacritic relative to the consonant is modified to indicate the tone. More rarely, a script may have separate letters for tones, as is the case for Hmong and Zhuang. For most of these scripts,
|
Alphabet. Thus the primary classification of alphabets reflects how they treat vowels. For tonal languages, further classification can be based on their treatment of tone, though names do not yet exist to distinguish the various types. Some alphabets disregard tone entirely, especially when it does not carry a heavy functional load, as in Somali and many other languages of Africa and the Americas. Such scripts are to tone what abjads are to vowels. Most commonly, tones are indicated with diacritics, the way vowels are treated in abugidas. This is the case for Vietnamese (a true alphabet) and Thai (an abugida). In Thai, tone is determined primarily by the choice of consonant, with diacritics for disambiguation. In the Pollard script, an abugida, vowels are indicated by diacritics, but the placement of the diacritic relative to the consonant is modified to indicate the tone. More rarely, a script may have separate letters for tones, as is the case for Hmong and Zhuang. For most of these scripts,
|
670
|
wiki20220301en000_2965
|
Alphabet
|
of the diacritic relative to the consonant is modified to indicate the tone. More rarely, a script may have separate letters for tones, as is the case for Hmong and Zhuang. For most of these scripts, regardless of whether letters or diacritics are used, the most common tone is not marked, just as the most common vowel is not marked in Indic abugidas; in Zhuyin not only is one of the tones unmarked, but there is a diacritic to indicate lack of tone, like the virama of Indic.
|
Alphabet. of the diacritic relative to the consonant is modified to indicate the tone. More rarely, a script may have separate letters for tones, as is the case for Hmong and Zhuang. For most of these scripts, regardless of whether letters or diacritics are used, the most common tone is not marked, just as the most common vowel is not marked in Indic abugidas; in Zhuyin not only is one of the tones unmarked, but there is a diacritic to indicate lack of tone, like the virama of Indic.
|
670
|
wiki20220301en000_2966
|
Alphabet
|
The number of letters in an alphabet can be quite small. The Book Pahlavi script, an abjad, had only twelve letters at one point, and may have had even fewer later on. Today the Rotokas alphabet has only twelve letters. (The Hawaiian alphabet is sometimes claimed to be as small, but it actually consists of 18 letters, including the ʻokina and five long vowels. However, Hawaiian Braille has only 13 letters.) While Rotokas has a small alphabet because it has few phonemes to represent (just eleven), Book Pahlavi was small because many letters had been conflated—that is, the graphic distinctions had been lost over time, and diacritics were not developed to compensate for this as they were in Arabic, another script that lost many of its distinct letter shapes. For example, a comma-shaped letter represented g, d, y, k, or j. However, such apparent simplifications can perversely make a script more complicated. In later Pahlavi papyri, up to half of the remaining graphic distinctions of these
|
Alphabet. The number of letters in an alphabet can be quite small. The Book Pahlavi script, an abjad, had only twelve letters at one point, and may have had even fewer later on. Today the Rotokas alphabet has only twelve letters. (The Hawaiian alphabet is sometimes claimed to be as small, but it actually consists of 18 letters, including the ʻokina and five long vowels. However, Hawaiian Braille has only 13 letters.) While Rotokas has a small alphabet because it has few phonemes to represent (just eleven), Book Pahlavi was small because many letters had been conflated—that is, the graphic distinctions had been lost over time, and diacritics were not developed to compensate for this as they were in Arabic, another script that lost many of its distinct letter shapes. For example, a comma-shaped letter represented g, d, y, k, or j. However, such apparent simplifications can perversely make a script more complicated. In later Pahlavi papyri, up to half of the remaining graphic distinctions of these
|
670
|
wiki20220301en000_2967
|
Alphabet
|
represented g, d, y, k, or j. However, such apparent simplifications can perversely make a script more complicated. In later Pahlavi papyri, up to half of the remaining graphic distinctions of these twelve letters were lost, and the script could no longer be read as a sequence of letters at all, but instead each word had to be learned as a whole—that is, they had become logograms as in Egyptian Demotic.
|
Alphabet. represented g, d, y, k, or j. However, such apparent simplifications can perversely make a script more complicated. In later Pahlavi papyri, up to half of the remaining graphic distinctions of these twelve letters were lost, and the script could no longer be read as a sequence of letters at all, but instead each word had to be learned as a whole—that is, they had become logograms as in Egyptian Demotic.
|
670
|
wiki20220301en000_2968
|
Alphabet
|
The largest segmental script is probably an abugida, Devanagari. When written in Devanagari, Vedic Sanskrit has an alphabet of 53 letters, including the visarga mark for final aspiration and special letters for kš and jñ, though one of the letters is theoretical and not actually used. The Hindi alphabet must represent both Sanskrit and modern vocabulary, and so has been expanded to 58 with the khutma letters (letters with a dot added) to represent sounds from Persian and English. Thai has a total of 59 symbols, consisting of 44 consonants, 13 vowels and 2 syllabics, not including 4 diacritics for tone marks and one for vowel length.
|
Alphabet. The largest segmental script is probably an abugida, Devanagari. When written in Devanagari, Vedic Sanskrit has an alphabet of 53 letters, including the visarga mark for final aspiration and special letters for kš and jñ, though one of the letters is theoretical and not actually used. The Hindi alphabet must represent both Sanskrit and modern vocabulary, and so has been expanded to 58 with the khutma letters (letters with a dot added) to represent sounds from Persian and English. Thai has a total of 59 symbols, consisting of 44 consonants, 13 vowels and 2 syllabics, not including 4 diacritics for tone marks and one for vowel length.
|
670
|
wiki20220301en000_2969
|
Alphabet
|
The largest known abjad is Sindhi, with 51 letters. The largest alphabets in the narrow sense include Kabardian and Abkhaz (for Cyrillic), with 58 and 56 letters, respectively, and Slovak (for the Latin script), with 46. However, these scripts either count di- and tri-graphs as separate letters, as Spanish did with ch and ll until recently, or uses diacritics like Slovak č.
|
Alphabet. The largest known abjad is Sindhi, with 51 letters. The largest alphabets in the narrow sense include Kabardian and Abkhaz (for Cyrillic), with 58 and 56 letters, respectively, and Slovak (for the Latin script), with 46. However, these scripts either count di- and tri-graphs as separate letters, as Spanish did with ch and ll until recently, or uses diacritics like Slovak č.
|
670
|
wiki20220301en000_2970
|
Alphabet
|
The Georgian alphabet ( ) is an alphabetic writing system. With 33 letters, it is the largest true alphabet where each letter is graphically independent. The original Georgian alphabet had 38 letters but 5 letters were removed in the 19th century by Ilia Chavchavadze. The Georgian alphabet is much closer to Greek than the other Caucasian alphabets. The letter order parallels the Greek, with the consonants without a Greek equivalent organized at the end of the alphabet. The origins of the alphabet are still unknown. Some Armenian and Western scholars believe it was created by Mesrop Mashtots (Armenian: Մեսրոպ Մաշտոց Mesrop Maštoc') also known as Mesrob the Vartabed, who was an early medieval Armenian linguist, theologian, statesman and hymnologist, best known for inventing the Armenian alphabet c. 405 AD; other Georgian and Western scholars are against this theory. Most scholars link the creation of the Georgian script to the process of Christianization of Iberia, a core Georgian
|
Alphabet. The Georgian alphabet ( ) is an alphabetic writing system. With 33 letters, it is the largest true alphabet where each letter is graphically independent. The original Georgian alphabet had 38 letters but 5 letters were removed in the 19th century by Ilia Chavchavadze. The Georgian alphabet is much closer to Greek than the other Caucasian alphabets. The letter order parallels the Greek, with the consonants without a Greek equivalent organized at the end of the alphabet. The origins of the alphabet are still unknown. Some Armenian and Western scholars believe it was created by Mesrop Mashtots (Armenian: Մեսրոպ Մաշտոց Mesrop Maštoc') also known as Mesrob the Vartabed, who was an early medieval Armenian linguist, theologian, statesman and hymnologist, best known for inventing the Armenian alphabet c. 405 AD; other Georgian and Western scholars are against this theory. Most scholars link the creation of the Georgian script to the process of Christianization of Iberia, a core Georgian
|
670
|
wiki20220301en000_2971
|
Alphabet
|
alphabet c. 405 AD; other Georgian and Western scholars are against this theory. Most scholars link the creation of the Georgian script to the process of Christianization of Iberia, a core Georgian kingdom of Kartli. The alphabet was therefore most probably created between the conversion of Iberia under King Mirian III (326 or 337) and the Bir el Qutt inscriptions of 430, contemporaneously with the Armenian alphabet.
|
Alphabet. alphabet c. 405 AD; other Georgian and Western scholars are against this theory. Most scholars link the creation of the Georgian script to the process of Christianization of Iberia, a core Georgian kingdom of Kartli. The alphabet was therefore most probably created between the conversion of Iberia under King Mirian III (326 or 337) and the Bir el Qutt inscriptions of 430, contemporaneously with the Armenian alphabet.
|
670
|
wiki20220301en000_2972
|
Alphabet
|
Syllabaries typically contain 50 to 400 glyphs, and the glyphs of logographic systems typically number from the many hundreds into the thousands. Thus a simple count of the number of distinct symbols is an important clue to the nature of an unknown script. The Armenian alphabet ( or ) is a graphically unique alphabetical writing system that has been used to write the Armenian language. It was created in year 405 A.D. originally contained 36 letters. Two more letters, օ (o) and ֆ (f), were added in the Middle Ages. During the 1920s orthography reform, a new letter և (capital ԵՎ) was added, which was a ligature before ե+ւ, while the letter Ւ ւ was discarded and reintroduced as part of a new letter ՈՒ ու (which was a digraph before).
|
Alphabet. Syllabaries typically contain 50 to 400 glyphs, and the glyphs of logographic systems typically number from the many hundreds into the thousands. Thus a simple count of the number of distinct symbols is an important clue to the nature of an unknown script. The Armenian alphabet ( or ) is a graphically unique alphabetical writing system that has been used to write the Armenian language. It was created in year 405 A.D. originally contained 36 letters. Two more letters, օ (o) and ֆ (f), were added in the Middle Ages. During the 1920s orthography reform, a new letter և (capital ԵՎ) was added, which was a ligature before ե+ւ, while the letter Ւ ւ was discarded and reintroduced as part of a new letter ՈՒ ու (which was a digraph before).
|
670
|
wiki20220301en000_2973
|
Alphabet
|
The Armenian script's directionality is horizontal left-to-right, like the Latin and Greek alphabets. It also uses bicameral script like those. The Armenian word for "alphabet" is (), named after the first two letters of the Armenian alphabet Ա այբ ayb and Բ բեն ben. Alphabetical order Alphabets often come to be associated with a standard ordering of their letters, which can then be used for purposes of collation—namely for the listing of words and other items in what is called alphabetical order.
|
Alphabet. The Armenian script's directionality is horizontal left-to-right, like the Latin and Greek alphabets. It also uses bicameral script like those. The Armenian word for "alphabet" is (), named after the first two letters of the Armenian alphabet Ա այբ ayb and Բ բեն ben. Alphabetical order Alphabets often come to be associated with a standard ordering of their letters, which can then be used for purposes of collation—namely for the listing of words and other items in what is called alphabetical order.
|
670
|
wiki20220301en000_2974
|
Alphabet
|
The basic ordering of the Latin alphabet (A B C D E F G H I J K L M N O P Q R S T U V W X Y
|
Alphabet. The basic ordering of the Latin alphabet (A B C D E F G H I J K L M N O P Q R S T U V W X Y
|
670
|
wiki20220301en000_2975
|
Alphabet
|
Q R S T U V W X Y Z), which is derived from the Northwest Semitic "Abgad" order, is well established, although languages using this alphabet have different conventions for their treatment of modified letters (such as the French é, à, and ô) and of certain combinations of letters (multigraphs). In French, these are not considered to be additional letters for the purposes of collation. However, in Icelandic, the accented letters such as á, í, and ö are considered distinct letters representing different vowel sounds from the sounds represented by their unaccented counterparts. In Spanish, ñ is considered a separate letter, but accented vowels such as á and é are not. The ll and ch were also considered single letters, but in 1994 the Real Academia Española changed the collating order so that ll is between lk and lm in the dictionary and ch is between cg and ci, and in 2010 the tenth congress of the Association of Spanish Language Academies changed it so they were no longer letters at all.
|
Alphabet. Q R S T U V W X Y Z), which is derived from the Northwest Semitic "Abgad" order, is well established, although languages using this alphabet have different conventions for their treatment of modified letters (such as the French é, à, and ô) and of certain combinations of letters (multigraphs). In French, these are not considered to be additional letters for the purposes of collation. However, in Icelandic, the accented letters such as á, í, and ö are considered distinct letters representing different vowel sounds from the sounds represented by their unaccented counterparts. In Spanish, ñ is considered a separate letter, but accented vowels such as á and é are not. The ll and ch were also considered single letters, but in 1994 the Real Academia Española changed the collating order so that ll is between lk and lm in the dictionary and ch is between cg and ci, and in 2010 the tenth congress of the Association of Spanish Language Academies changed it so they were no longer letters at all.
|
670
|
wiki20220301en000_2976
|
Alphabet
|
In German, words starting with sch- (which spells the German phoneme ) are inserted between words with initial sca- and sci- (all incidentally loanwords) instead of appearing after initial sz, as though it were a single letter—in contrast to several languages such as Albanian, in which dh-, ë-, gj-, ll-, rr-, th-, xh- and zh- (all representing phonemes and considered separate single letters) would follow the letters d, e, g, l, n, r, t, x and z respectively, as well as Hungarian and Welsh. Further, German words with an umlaut are collated ignoring the umlaut—contrary to Turkish that adopted the graphemes ö and ü, and where a word like tüfek, would come after tuz, in the dictionary. An exception is the German telephone directory where umlauts are sorted like ä = ae since names such as Jäger also appear with the spelling Jaeger, and are not distinguished in the spoken language.
|
Alphabet. In German, words starting with sch- (which spells the German phoneme ) are inserted between words with initial sca- and sci- (all incidentally loanwords) instead of appearing after initial sz, as though it were a single letter—in contrast to several languages such as Albanian, in which dh-, ë-, gj-, ll-, rr-, th-, xh- and zh- (all representing phonemes and considered separate single letters) would follow the letters d, e, g, l, n, r, t, x and z respectively, as well as Hungarian and Welsh. Further, German words with an umlaut are collated ignoring the umlaut—contrary to Turkish that adopted the graphemes ö and ü, and where a word like tüfek, would come after tuz, in the dictionary. An exception is the German telephone directory where umlauts are sorted like ä = ae since names such as Jäger also appear with the spelling Jaeger, and are not distinguished in the spoken language.
|
670
|
wiki20220301en000_2977
|
Alphabet
|
The Danish and Norwegian alphabets end with æ—ø—å, whereas the Swedish and Finnish ones conventionally put å—ä—ö at the end. It is unknown whether the earliest alphabets had a defined sequence. Some alphabets today, such as the Hanuno'o script, are learned one letter at a time, in no particular order, and are not used for collation where a definite order is required. However, a dozen Ugaritic tablets from the fourteenth century BC preserve the alphabet in two sequences. One, the ABCDE order later used in Phoenician, has continued with minor changes in Hebrew, Greek, Armenian, Gothic, Cyrillic, and Latin; the other, HMĦLQ, was used in southern Arabia and is preserved today in Ethiopic. Both orders have therefore been stable for at least 3000 years. Runic used an unrelated Futhark sequence, which was later simplified. Arabic uses its own sequence, although Arabic retains the traditional abjadi order for numbering.
|
Alphabet. The Danish and Norwegian alphabets end with æ—ø—å, whereas the Swedish and Finnish ones conventionally put å—ä—ö at the end. It is unknown whether the earliest alphabets had a defined sequence. Some alphabets today, such as the Hanuno'o script, are learned one letter at a time, in no particular order, and are not used for collation where a definite order is required. However, a dozen Ugaritic tablets from the fourteenth century BC preserve the alphabet in two sequences. One, the ABCDE order later used in Phoenician, has continued with minor changes in Hebrew, Greek, Armenian, Gothic, Cyrillic, and Latin; the other, HMĦLQ, was used in southern Arabia and is preserved today in Ethiopic. Both orders have therefore been stable for at least 3000 years. Runic used an unrelated Futhark sequence, which was later simplified. Arabic uses its own sequence, although Arabic retains the traditional abjadi order for numbering.
|
670
|
wiki20220301en000_2978
|
Alphabet
|
Runic used an unrelated Futhark sequence, which was later simplified. Arabic uses its own sequence, although Arabic retains the traditional abjadi order for numbering. The Brahmic family of alphabets used in India use a unique order based on phonology: The letters are arranged according to how and where they are produced in the mouth. This organization is used in Southeast Asia, Tibet, Korean hangul, and even Japanese kana, which is not an alphabet. Names of letters The Phoenician letter names, in which each letter was associated with a word that begins with that sound (acrophony), continue to be used to varying degrees in Samaritan, Aramaic, Syriac, Hebrew, Greek and Arabic.
|
Alphabet. Runic used an unrelated Futhark sequence, which was later simplified. Arabic uses its own sequence, although Arabic retains the traditional abjadi order for numbering. The Brahmic family of alphabets used in India use a unique order based on phonology: The letters are arranged according to how and where they are produced in the mouth. This organization is used in Southeast Asia, Tibet, Korean hangul, and even Japanese kana, which is not an alphabet. Names of letters The Phoenician letter names, in which each letter was associated with a word that begins with that sound (acrophony), continue to be used to varying degrees in Samaritan, Aramaic, Syriac, Hebrew, Greek and Arabic.
|
670
|
wiki20220301en000_2979
|
Alphabet
|
The names were abandoned in Latin, which instead referred to the letters by adding a vowel (usually e) before or after the consonant; the two exceptions were Y and Z, which were borrowed from the Greek alphabet rather than Etruscan, and were known as Y Graeca "Greek Y" (pronounced I Graeca "Greek I") and zeta (from Greek)—this discrepancy was inherited by many European languages, as in the term zed for Z in all forms of English other than American English. Over time names sometimes shifted or were added, as in double U for W ("double V" in French), the English name for Y, and American zee for Z. Comparing names in English and French gives a clear reflection of the Great Vowel Shift: A, B, C and D are pronounced in today's English, but in contemporary French they are . The French names (from which the English names are derived) preserve the qualities of the English vowels from before the Great Vowel Shift. By contrast, the names of F, L, M, N and S () remain the same in both
|
Alphabet. The names were abandoned in Latin, which instead referred to the letters by adding a vowel (usually e) before or after the consonant; the two exceptions were Y and Z, which were borrowed from the Greek alphabet rather than Etruscan, and were known as Y Graeca "Greek Y" (pronounced I Graeca "Greek I") and zeta (from Greek)—this discrepancy was inherited by many European languages, as in the term zed for Z in all forms of English other than American English. Over time names sometimes shifted or were added, as in double U for W ("double V" in French), the English name for Y, and American zee for Z. Comparing names in English and French gives a clear reflection of the Great Vowel Shift: A, B, C and D are pronounced in today's English, but in contemporary French they are . The French names (from which the English names are derived) preserve the qualities of the English vowels from before the Great Vowel Shift. By contrast, the names of F, L, M, N and S () remain the same in both
|
670
|
wiki20220301en000_2980
|
Alphabet
|
names (from which the English names are derived) preserve the qualities of the English vowels from before the Great Vowel Shift. By contrast, the names of F, L, M, N and S () remain the same in both languages, because "short" vowels were largely unaffected by the Shift.
|
Alphabet. names (from which the English names are derived) preserve the qualities of the English vowels from before the Great Vowel Shift. By contrast, the names of F, L, M, N and S () remain the same in both languages, because "short" vowels were largely unaffected by the Shift.
|
670
|
wiki20220301en000_2981
|
Alphabet
|
In Cyrillic originally the letters were given names based on Slavic words; this was later abandoned as well in favor of a system similar to that used in Latin. Letters of Armenian alphabet also have distinct letter names. Orthography and pronunciation
|
Alphabet. In Cyrillic originally the letters were given names based on Slavic words; this was later abandoned as well in favor of a system similar to that used in Latin. Letters of Armenian alphabet also have distinct letter names. Orthography and pronunciation
|
670
|
wiki20220301en000_2982
|
Alphabet
|
Letters of Armenian alphabet also have distinct letter names. Orthography and pronunciation When an alphabet is adopted or developed to represent a given language, an orthography generally comes into being, providing rules for the spelling of words in that language. In accordance with the principle on which alphabets are based, these rules will generally map letters of the alphabet to the phonemes (significant sounds) of the spoken language. In a perfectly phonemic orthography there would be a consistent one-to-one correspondence between the letters and the phonemes, so that a writer could predict the spelling of a word given its pronunciation, and a speaker would always know the pronunciation of a word given its spelling, and vice versa. However, this ideal is not usually achieved in practice; some languages (such as Spanish and Finnish) come close to it, while others (such as English) deviate from it to a much larger degree.
|
Alphabet. Letters of Armenian alphabet also have distinct letter names. Orthography and pronunciation When an alphabet is adopted or developed to represent a given language, an orthography generally comes into being, providing rules for the spelling of words in that language. In accordance with the principle on which alphabets are based, these rules will generally map letters of the alphabet to the phonemes (significant sounds) of the spoken language. In a perfectly phonemic orthography there would be a consistent one-to-one correspondence between the letters and the phonemes, so that a writer could predict the spelling of a word given its pronunciation, and a speaker would always know the pronunciation of a word given its spelling, and vice versa. However, this ideal is not usually achieved in practice; some languages (such as Spanish and Finnish) come close to it, while others (such as English) deviate from it to a much larger degree.
|
670
|
wiki20220301en000_2983
|
Alphabet
|
The pronunciation of a language often evolves independently of its writing system, and writing systems have been borrowed for languages they were not designed for, so the degree to which letters of an alphabet correspond to phonemes of a language varies greatly from one language to another and even within a single language.
|
Alphabet. The pronunciation of a language often evolves independently of its writing system, and writing systems have been borrowed for languages they were not designed for, so the degree to which letters of an alphabet correspond to phonemes of a language varies greatly from one language to another and even within a single language.
|
670
|
wiki20220301en000_2984
|
Alphabet
|
Languages may fail to achieve a one-to-one correspondence between letters and sounds in any of several ways: A language may represent a given phoneme by a combination of letters rather than just a single letter. Two-letter combinations are called digraphs and three-letter groups are called trigraphs. German uses the tetragraphs (four letters) "tsch" for the phoneme and (in a few borrowed words) "dsch" for . Kabardian also uses a tetragraph for one of its phonemes, namely "кхъу". Two letters representing one sound occur in several instances in Hungarian as well (where, for instance, cs stands for [tʃ], sz for [s], zs for [ʒ], dzs for [dʒ]). A language may represent the same phoneme with two or more different letters or combinations of letters. An example is modern Greek which may write the phoneme in six different ways: , , , , , and (though the last is rare).
|
Alphabet. Languages may fail to achieve a one-to-one correspondence between letters and sounds in any of several ways: A language may represent a given phoneme by a combination of letters rather than just a single letter. Two-letter combinations are called digraphs and three-letter groups are called trigraphs. German uses the tetragraphs (four letters) "tsch" for the phoneme and (in a few borrowed words) "dsch" for . Kabardian also uses a tetragraph for one of its phonemes, namely "кхъу". Two letters representing one sound occur in several instances in Hungarian as well (where, for instance, cs stands for [tʃ], sz for [s], zs for [ʒ], dzs for [dʒ]). A language may represent the same phoneme with two or more different letters or combinations of letters. An example is modern Greek which may write the phoneme in six different ways: , , , , , and (though the last is rare).
|
670
|
wiki20220301en000_2985
|
Alphabet
|
A language may spell some words with unpronounced letters that exist for historical or other reasons. For example, the spelling of the Thai word for "beer" [เบียร์] retains a letter for the final consonant "r" present in the English word it was borrowed from, but silences it. Pronunciation of individual words may change according to the presence of surrounding words in a sentence (sandhi). Different dialects of a language may use different phonemes for the same word. A language may use different sets of symbols or different rules for distinct sets of vocabulary items, such as the Japanese hiragana and katakana syllabaries, or the various rules in English for spelling words from Latin and Greek, or the original Germanic vocabulary.
|
Alphabet. A language may spell some words with unpronounced letters that exist for historical or other reasons. For example, the spelling of the Thai word for "beer" [เบียร์] retains a letter for the final consonant "r" present in the English word it was borrowed from, but silences it. Pronunciation of individual words may change according to the presence of surrounding words in a sentence (sandhi). Different dialects of a language may use different phonemes for the same word. A language may use different sets of symbols or different rules for distinct sets of vocabulary items, such as the Japanese hiragana and katakana syllabaries, or the various rules in English for spelling words from Latin and Greek, or the original Germanic vocabulary.
|
670
|
wiki20220301en000_2986
|
Alphabet
|
National languages sometimes elect to address the problem of dialects by simply associating the alphabet with the national standard. Some national languages like Finnish, Armenian, Turkish, Russian, Serbo-Croatian (Serbian, Croatian and Bosnian) and Bulgarian have a very regular spelling system with a nearly one-to-one correspondence between letters and phonemes. Strictly speaking, these national languages lack a word corresponding to the verb "to spell" (meaning to split a word into its letters), the closest match being a verb meaning to split a word into its syllables. Similarly, the Italian verb corresponding to 'spell (out)', compitare, is unknown to many Italians because spelling is usually trivial, as Italian spelling is highly phonemic. In standard Spanish, one can tell the pronunciation of a word from its spelling, but not vice versa, as certain phonemes can be represented in more than one way, but a given letter is consistently pronounced. French, with its silent letters and
|
Alphabet. National languages sometimes elect to address the problem of dialects by simply associating the alphabet with the national standard. Some national languages like Finnish, Armenian, Turkish, Russian, Serbo-Croatian (Serbian, Croatian and Bosnian) and Bulgarian have a very regular spelling system with a nearly one-to-one correspondence between letters and phonemes. Strictly speaking, these national languages lack a word corresponding to the verb "to spell" (meaning to split a word into its letters), the closest match being a verb meaning to split a word into its syllables. Similarly, the Italian verb corresponding to 'spell (out)', compitare, is unknown to many Italians because spelling is usually trivial, as Italian spelling is highly phonemic. In standard Spanish, one can tell the pronunciation of a word from its spelling, but not vice versa, as certain phonemes can be represented in more than one way, but a given letter is consistently pronounced. French, with its silent letters and
|
670
|
wiki20220301en000_2987
|
Alphabet
|
of a word from its spelling, but not vice versa, as certain phonemes can be represented in more than one way, but a given letter is consistently pronounced. French, with its silent letters and its heavy use of nasal vowels and elision, may seem to lack much correspondence between spelling and pronunciation, but its rules on pronunciation, though complex, are actually consistent and predictable with a fair degree of accuracy.
|
Alphabet. of a word from its spelling, but not vice versa, as certain phonemes can be represented in more than one way, but a given letter is consistently pronounced. French, with its silent letters and its heavy use of nasal vowels and elision, may seem to lack much correspondence between spelling and pronunciation, but its rules on pronunciation, though complex, are actually consistent and predictable with a fair degree of accuracy.
|
670
|
wiki20220301en000_2988
|
Alphabet
|
At the other extreme are languages such as English, where the pronunciations of many words simply have to be memorized as they do not correspond to the spelling in a consistent way. For English, this is partly because the Great Vowel Shift occurred after the orthography was established, and because English has acquired a large number of loanwords at different times, retaining their original spelling at varying levels. Even English has general, albeit complex, rules that predict pronunciation from spelling, and these rules are successful most of the time; rules to predict spelling from the pronunciation have a higher failure rate.
|
Alphabet. At the other extreme are languages such as English, where the pronunciations of many words simply have to be memorized as they do not correspond to the spelling in a consistent way. For English, this is partly because the Great Vowel Shift occurred after the orthography was established, and because English has acquired a large number of loanwords at different times, retaining their original spelling at varying levels. Even English has general, albeit complex, rules that predict pronunciation from spelling, and these rules are successful most of the time; rules to predict spelling from the pronunciation have a higher failure rate.
|
670
|
wiki20220301en000_2989
|
Alphabet
|
Sometimes, countries have the written language undergo a spelling reform to realign the writing with the contemporary spoken language. These can range from simple spelling changes and word forms to switching the entire writing system itself, as when Turkey switched from the Arabic alphabet to a Latin-based Turkish alphabet, and as when Kazakh changes from an Arabic script to a Cyrillic script due to the Soviet Union's influence, and in 2021, having a transition to the Latin alphabet, just like Turkish. The Cyrillic script used to be official in Uzbekistan and Turkmenistan before they all switched to the Latin alphabets, including Uzbekistan that is having a reform of the alphabet to use diacritics on the letters that is marked by apostrophes and the letters that are digraphs. The standard system of symbols used by linguists to represent sounds in any language, independently of orthography, is called the International Phonetic Alphabet. See also
|
Alphabet. Sometimes, countries have the written language undergo a spelling reform to realign the writing with the contemporary spoken language. These can range from simple spelling changes and word forms to switching the entire writing system itself, as when Turkey switched from the Arabic alphabet to a Latin-based Turkish alphabet, and as when Kazakh changes from an Arabic script to a Cyrillic script due to the Soviet Union's influence, and in 2021, having a transition to the Latin alphabet, just like Turkish. The Cyrillic script used to be official in Uzbekistan and Turkmenistan before they all switched to the Latin alphabets, including Uzbekistan that is having a reform of the alphabet to use diacritics on the letters that is marked by apostrophes and the letters that are digraphs. The standard system of symbols used by linguists to represent sounds in any language, independently of orthography, is called the International Phonetic Alphabet. See also
|
670
|
wiki20220301en000_2990
|
Alphabet
|
The standard system of symbols used by linguists to represent sounds in any language, independently of orthography, is called the International Phonetic Alphabet. See also A Is For Aardvark Abecedarium Acrophony Akshara Alphabet book Alphabet effect Alphabet song Alphabetical order Butterfly Alphabet Character encoding Constructed script Cyrillic English alphabet Hangul ICAO (NATO) spelling alphabet Lipogram List of writing systems Pangram Thai script Thoth Transliteration Unicode References Bibliography Overview of modern and some ancient writing systems. Chapter 3 traces and summarizes the invention of alphabetic writing. Chapter 4 traces the invention of writing External links
|
Alphabet. The standard system of symbols used by linguists to represent sounds in any language, independently of orthography, is called the International Phonetic Alphabet. See also A Is For Aardvark Abecedarium Acrophony Akshara Alphabet book Alphabet effect Alphabet song Alphabetical order Butterfly Alphabet Character encoding Constructed script Cyrillic English alphabet Hangul ICAO (NATO) spelling alphabet Lipogram List of writing systems Pangram Thai script Thoth Transliteration Unicode References Bibliography Overview of modern and some ancient writing systems. Chapter 3 traces and summarizes the invention of alphabetic writing. Chapter 4 traces the invention of writing External links
|
670
|
wiki20220301en000_2991
|
Alphabet
|
External links The Origins of abc "Language, Writing and Alphabet: An Interview with Christophe Rico", Damqātum 3 (2007) Michael Everson's Alphabets of Europe Evolution of alphabets, animation by Prof. Robert Fradkin at the University of Maryland How the Alphabet Was Born from Hieroglyphs—Biblical Archaeology Review An Early Hellenic Alphabet Museum of the Alphabet The Alphabet, BBC Radio 4 discussion with Eleanor Robson, Alan Millard and Rosalind Thomas (In Our Time, 18 Dec. 2003) Orthography
|
Alphabet. External links The Origins of abc "Language, Writing and Alphabet: An Interview with Christophe Rico", Damqātum 3 (2007) Michael Everson's Alphabets of Europe Evolution of alphabets, animation by Prof. Robert Fradkin at the University of Maryland How the Alphabet Was Born from Hieroglyphs—Biblical Archaeology Review An Early Hellenic Alphabet Museum of the Alphabet The Alphabet, BBC Radio 4 discussion with Eleanor Robson, Alan Millard and Rosalind Thomas (In Our Time, 18 Dec. 2003) Orthography
|
670
|
wiki20220301en000_2992
|
Atomic number
|
The atomic number or proton number (symbol Z) of a chemical element is the number of protons found in the nucleus of every atom of that element. The atomic number uniquely identifies a chemical element. It is identical to the charge number of the nucleus. In an uncharged atom, the atomic number is also equal to the number of electrons. The sum of the atomic number Z and the number of neutrons N gives the mass number A of an atom. Since protons and neutrons have approximately the same mass (and the mass of the electrons is negligible for many purposes) and the mass defect of nucleon binding is always small compared to the nucleon mass, the atomic mass of any atom, when expressed in unified atomic mass units (making a quantity called the "relative isotopic mass"), is within 1% of the whole number A.
|
Atomic number. The atomic number or proton number (symbol Z) of a chemical element is the number of protons found in the nucleus of every atom of that element. The atomic number uniquely identifies a chemical element. It is identical to the charge number of the nucleus. In an uncharged atom, the atomic number is also equal to the number of electrons. The sum of the atomic number Z and the number of neutrons N gives the mass number A of an atom. Since protons and neutrons have approximately the same mass (and the mass of the electrons is negligible for many purposes) and the mass defect of nucleon binding is always small compared to the nucleon mass, the atomic mass of any atom, when expressed in unified atomic mass units (making a quantity called the "relative isotopic mass"), is within 1% of the whole number A.
|
673
|
wiki20220301en000_2993
|
Atomic number
|
Atoms with the same atomic number but different neutron numbers, and hence different mass numbers, are known as isotopes. A little more than three-quarters of naturally occurring elements exist as a mixture of isotopes (see monoisotopic elements), and the average isotopic mass of an isotopic mixture for an element (called the relative atomic mass) in a defined environment on Earth, determines the element's standard atomic weight. Historically, it was these atomic weights of elements (in comparison to hydrogen) that were the quantities measurable by chemists in the 19th century.
|
Atomic number. Atoms with the same atomic number but different neutron numbers, and hence different mass numbers, are known as isotopes. A little more than three-quarters of naturally occurring elements exist as a mixture of isotopes (see monoisotopic elements), and the average isotopic mass of an isotopic mixture for an element (called the relative atomic mass) in a defined environment on Earth, determines the element's standard atomic weight. Historically, it was these atomic weights of elements (in comparison to hydrogen) that were the quantities measurable by chemists in the 19th century.
|
673
|
wiki20220301en000_2994
|
Atomic number
|
The conventional symbol Z comes from the German word 'number', which, before the modern synthesis of ideas from chemistry and physics, merely denoted an element's numerical place in the periodic table, whose order was then approximately, but not completely, consistent with the order of the elements by atomic weights. Only after 1915, with the suggestion and evidence that this Z number was also the nuclear charge and a physical characteristic of atoms, did the word (and its English equivalent atomic number) come into common use in this context. History The periodic table and a natural number for each element Loosely speaking, the existence or construction of a periodic table of elements creates an ordering of the elements, and so they can be numbered in order.
|
Atomic number. The conventional symbol Z comes from the German word 'number', which, before the modern synthesis of ideas from chemistry and physics, merely denoted an element's numerical place in the periodic table, whose order was then approximately, but not completely, consistent with the order of the elements by atomic weights. Only after 1915, with the suggestion and evidence that this Z number was also the nuclear charge and a physical characteristic of atoms, did the word (and its English equivalent atomic number) come into common use in this context. History The periodic table and a natural number for each element Loosely speaking, the existence or construction of a periodic table of elements creates an ordering of the elements, and so they can be numbered in order.
|
673
|
wiki20220301en000_2995
|
Atomic number
|
Loosely speaking, the existence or construction of a periodic table of elements creates an ordering of the elements, and so they can be numbered in order. Dmitri Mendeleev claimed that he arranged his first periodic tables (first published on March 6, 1869) in order of atomic weight ("Atomgewicht"). However, in consideration of the elements' observed chemical properties, he changed the order slightly and placed tellurium (atomic weight 127.6) ahead of iodine (atomic weight 126.9). This placement is consistent with the modern practice of ordering the elements by proton number, Z, but that number was not known or suspected at the time.
|
Atomic number. Loosely speaking, the existence or construction of a periodic table of elements creates an ordering of the elements, and so they can be numbered in order. Dmitri Mendeleev claimed that he arranged his first periodic tables (first published on March 6, 1869) in order of atomic weight ("Atomgewicht"). However, in consideration of the elements' observed chemical properties, he changed the order slightly and placed tellurium (atomic weight 127.6) ahead of iodine (atomic weight 126.9). This placement is consistent with the modern practice of ordering the elements by proton number, Z, but that number was not known or suspected at the time.
|
673
|
wiki20220301en000_2996
|
Atomic number
|
A simple numbering based on periodic table position was never entirely satisfactory, however. Besides the case of iodine and tellurium, later several other pairs of elements (such as argon and potassium, cobalt and nickel) were known to have nearly identical or reversed atomic weights, thus requiring their placement in the periodic table to be determined by their chemical properties. However the gradual identification of more and more chemically similar lanthanide elements, whose atomic number was not obvious, led to inconsistency and uncertainty in the periodic numbering of elements at least from lutetium (element 71) onward (hafnium was not known at this time).
|
Atomic number. A simple numbering based on periodic table position was never entirely satisfactory, however. Besides the case of iodine and tellurium, later several other pairs of elements (such as argon and potassium, cobalt and nickel) were known to have nearly identical or reversed atomic weights, thus requiring their placement in the periodic table to be determined by their chemical properties. However the gradual identification of more and more chemically similar lanthanide elements, whose atomic number was not obvious, led to inconsistency and uncertainty in the periodic numbering of elements at least from lutetium (element 71) onward (hafnium was not known at this time).
|
673
|
wiki20220301en000_2997
|
Atomic number
|
The Rutherford-Bohr model and van den Broek In 1911, Ernest Rutherford gave a model of the atom in which a central nucleus held most of the atom's mass and a positive charge which, in units of the electron's charge, was to be approximately equal to half of the atom's atomic weight, expressed in numbers of hydrogen atoms. This central charge would thus be approximately half the atomic weight (though it was almost 25% different from the atomic number of gold , ), the single element from which Rutherford made his guess). Nevertheless, in spite of Rutherford's estimation that gold had a central charge of about 100 (but was element on the periodic table), a month after Rutherford's paper appeared, Antonius van den Broek first formally suggested that the central charge and number of electrons in an atom was exactly equal to its place in the periodic table (also known as element number, atomic number, and symbolized Z). This proved eventually to be the case. Moseley's 1913 experiment
|
Atomic number. The Rutherford-Bohr model and van den Broek In 1911, Ernest Rutherford gave a model of the atom in which a central nucleus held most of the atom's mass and a positive charge which, in units of the electron's charge, was to be approximately equal to half of the atom's atomic weight, expressed in numbers of hydrogen atoms. This central charge would thus be approximately half the atomic weight (though it was almost 25% different from the atomic number of gold , ), the single element from which Rutherford made his guess). Nevertheless, in spite of Rutherford's estimation that gold had a central charge of about 100 (but was element on the periodic table), a month after Rutherford's paper appeared, Antonius van den Broek first formally suggested that the central charge and number of electrons in an atom was exactly equal to its place in the periodic table (also known as element number, atomic number, and symbolized Z). This proved eventually to be the case. Moseley's 1913 experiment
|
673
|
wiki20220301en000_2998
|
Atomic number
|
Moseley's 1913 experiment The experimental position improved dramatically after research by Henry Moseley in 1913. Moseley, after discussions with Bohr who was at the same lab (and who had used Van den Broek's hypothesis in his Bohr model of the atom), decided to test Van den Broek's and Bohr's hypothesis directly, by seeing if spectral lines emitted from excited atoms fitted the Bohr theory's postulation that the frequency of the spectral lines be proportional to the square of Z.
|
Atomic number. Moseley's 1913 experiment The experimental position improved dramatically after research by Henry Moseley in 1913. Moseley, after discussions with Bohr who was at the same lab (and who had used Van den Broek's hypothesis in his Bohr model of the atom), decided to test Van den Broek's and Bohr's hypothesis directly, by seeing if spectral lines emitted from excited atoms fitted the Bohr theory's postulation that the frequency of the spectral lines be proportional to the square of Z.
|
673
|
wiki20220301en000_2999
|
Atomic number
|
To do this, Moseley measured the wavelengths of the innermost photon transitions (K and L lines) produced by the elements from aluminum (Z = 13) to gold (Z = 79) used as a series of movable anodic targets inside an x-ray tube. The square root of the frequency of these photons increased from one target to the next in an arithmetic progression. This led to the conclusion (Moseley's law) that the atomic number does closely correspond (with an offset of one unit for K-lines, in Moseley's work) to the calculated electric charge of the nucleus, i.e. the element number Z. Among other things, Moseley demonstrated that the lanthanide series (from lanthanum to lutetium inclusive) must have 15 members—no fewer and no more—which was far from obvious from known chemistry at that time.
|
Atomic number. To do this, Moseley measured the wavelengths of the innermost photon transitions (K and L lines) produced by the elements from aluminum (Z = 13) to gold (Z = 79) used as a series of movable anodic targets inside an x-ray tube. The square root of the frequency of these photons increased from one target to the next in an arithmetic progression. This led to the conclusion (Moseley's law) that the atomic number does closely correspond (with an offset of one unit for K-lines, in Moseley's work) to the calculated electric charge of the nucleus, i.e. the element number Z. Among other things, Moseley demonstrated that the lanthanide series (from lanthanum to lutetium inclusive) must have 15 members—no fewer and no more—which was far from obvious from known chemistry at that time.
|
673
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.