link
stringlengths 52
74
| mainclass
stringclasses 7
values | subclass
stringlengths 8
30
|
---|---|---|
/datasets?task_categories=task_categories%3Avisual-question-answering | Multimodal | Visual Question Answering |
/datasets?task_categories=task_categories%3Adepth-estimation | Computer Vision | Depth Estimation |
/datasets?task_categories=task_categories%3Aimage-classification | Computer Vision | Image Classification |
/datasets?task_categories=task_categories%3Aobject-detection | Computer Vision | Object Detection |
/datasets?task_categories=task_categories%3Aimage-segmentation | Computer Vision | Image Segmentation |
/datasets?task_categories=task_categories%3Atext-to-image | Computer Vision | Text-to-Image |
/datasets?task_categories=task_categories%3Aimage-to-text | Computer Vision | Image-to-Text |
/datasets?task_categories=task_categories%3Aimage-to-image | Computer Vision | Image-to-Image |
/datasets?task_categories=task_categories%3Aimage-to-video | Computer Vision | Image-to-Video |
/datasets?task_categories=task_categories%3Aunconditional-image-generation | Computer Vision | Unconditional Image Generation |
/datasets?task_categories=task_categories%3Avideo-classification | Computer Vision | Video Classification |
/datasets?task_categories=task_categories%3Atext-to-video | Computer Vision | Text-to-Video |
/datasets?task_categories=task_categories%3Azero-shot-image-classification | Computer Vision | Zero-Shot Image Classification |
/datasets?task_categories=task_categories%3Amask-generation | Computer Vision | Mask Generation |
/datasets?task_categories=task_categories%3Azero-shot-object-detection | Computer Vision | Zero-Shot Object Detection |
/datasets?task_categories=task_categories%3Atext-to-3d | Computer Vision | Text-to-3D |
/datasets?task_categories=task_categories%3Aimage-to-3d | Computer Vision | Image-to-3D |
/datasets?task_categories=task_categories%3Aimage-feature-extraction | Computer Vision | Image Feature Extraction |
/datasets?task_categories=task_categories%3Atext-classification | Natural Language Processing | Text Classification |
/datasets?task_categories=task_categories%3Atoken-classification | Natural Language Processing | Token Classification |
/datasets?task_categories=task_categories%3Atable-question-answering | Natural Language Processing | Table Question Answering |
/datasets?task_categories=task_categories%3Aquestion-answering | Natural Language Processing | Question Answering |
/datasets?task_categories=task_categories%3Azero-shot-classification | Natural Language Processing | Zero-Shot Classification |
/datasets?task_categories=task_categories%3Atranslation | Natural Language Processing | Translation |
/datasets?task_categories=task_categories%3Asummarization | Natural Language Processing | Summarization |
/datasets?task_categories=task_categories%3Afeature-extraction | Natural Language Processing | Feature Extraction |
/datasets?task_categories=task_categories%3Atext-generation | Natural Language Processing | Text Generation |
/datasets?task_categories=task_categories%3Atext2text-generation | Natural Language Processing | Text2Text Generation |
/datasets?task_categories=task_categories%3Afill-mask | Natural Language Processing | Fill-Mask |
/datasets?task_categories=task_categories%3Asentence-similarity | Natural Language Processing | Sentence Similarity |
/datasets?task_categories=task_categories%3Atable-to-text | Natural Language Processing | Table to Text |
/datasets?task_categories=task_categories%3Amultiple-choice | Natural Language Processing | Multiple Choice |
/datasets?task_categories=task_categories%3Atext-retrieval | Natural Language Processing | Text Retrieval |
/datasets?task_categories=task_categories%3Atext-to-speech | Audio | Text-to-Speech |
/datasets?task_categories=task_categories%3Atext-to-audio | Audio | Text-to-Audio |
/datasets?task_categories=task_categories%3Aautomatic-speech-recognition | Audio | Automatic Speech Recognition |
/datasets?task_categories=task_categories%3Aaudio-to-audio | Audio | Audio-to-Audio |
/datasets?task_categories=task_categories%3Aaudio-classification | Audio | Audio Classification |
/datasets?task_categories=task_categories%3Avoice-activity-detection | Audio | Voice Activity Detection |
/datasets?task_categories=task_categories%3Atabular-classification | Tabular | Tabular Classification |
/datasets?task_categories=task_categories%3Atabular-regression | Tabular | Tabular Regression |
/datasets?task_categories=task_categories%3Atabular-to-text | Tabular | Tabular to Text |
/datasets?task_categories=task_categories%3Atime-series-forecasting | Tabular | Time Series Forecasting |
/datasets?task_categories=task_categories%3Areinforcement-learning | Reinforcement Learning | Reinforcement Learning |
/datasets?task_categories=task_categories%3Arobotics | Reinforcement Learning | Robotics |
/datasets?task_categories=task_categories%3Agraph-ml | Other | Graph Machine Learning |
README
Introduction
This dataset contains the introductions of all model repositories from Hugging Face. It is designed for text classification tasks and aims to provide a rich and diverse collection of model descriptions for various natural language processing (NLP) applications.
Each introduction provides a concise overview of the model's purpose, architecture, and potential use cases. The dataset covers a wide range of models, including but not limited to language models, text classifiers, and generative models.
Usage
This dataset can be used for various text classification tasks, such as:
- Model Category Classification: Classify models into different categories based on their introductions (e.g., language models, text classifiers, etc.).
- Sentiment Analysis: Analyze the sentiment of the introductions to understand the tone and focus of the model descriptions.
- Topic Modeling: Identify common topics and themes across different model introductions.
Preprocessing
Before using the dataset, it is recommended to perform the following preprocessing steps:
- Text Cleaning: Remove any HTML tags, special characters, or irrelevant content from the introductions.
- Tokenization: Split the text into individual tokens (words or subwords) for further analysis.
- Stop Words Removal: Remove common stop words that do not contribute significantly to the meaning of the text.
- Lemmatization/Stemming: Reduce words to their base or root form to normalize the text.
Model Training
You can use this dataset to train machine learning models for text classification tasks. Here is a basic example using Python and the scikit-learn library:
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import accuracy_score
# Load the dataset
data = pd.read_csv("dataset.csv")
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(data["introduction"], data["category"], test_size=0.2, random_state=42)
# Vectorize the text data
vectorizer = TfidfVectorizer()
X_train_tfidf = vectorizer.fit_transform(X_train)
X_test_tfidf = vectorizer.transform(X_test)
# Train a Naive Bayes classifier
model = MultinomialNB()
model.fit(X_train_tfidf, y_train)
# Make predictions and evaluate the model
y_pred = model.predict(X_test_tfidf)
accuracy = accuracy_score(y_test, y_pred)
print(f"Model Accuracy: {accuracy:.2f}")
You can also refer to my blog.
License
This dataset is licensed under the [License Name]. You are free to use, modify, and distribute the dataset for research and educational purposes. For commercial use, please refer to the specific terms of the license.
Acknowledgments
We would like to thank the Hugging Face community for providing such a rich and diverse collection of models. This dataset would not have been possible without their contributions.
Contact
For any questions or feedback regarding this dataset, please leave a message or contact me at [https://github.com/XuMian-xm].
- Downloads last month
- 21