Dataset Viewer
Auto-converted to Parquet
link
stringlengths
52
74
mainclass
stringclasses
7 values
subclass
stringlengths
8
30
/datasets?task_categories=task_categories%3Avisual-question-answering
Multimodal
Visual Question Answering
/datasets?task_categories=task_categories%3Adepth-estimation
Computer Vision
Depth Estimation
/datasets?task_categories=task_categories%3Aimage-classification
Computer Vision
Image Classification
/datasets?task_categories=task_categories%3Aobject-detection
Computer Vision
Object Detection
/datasets?task_categories=task_categories%3Aimage-segmentation
Computer Vision
Image Segmentation
/datasets?task_categories=task_categories%3Atext-to-image
Computer Vision
Text-to-Image
/datasets?task_categories=task_categories%3Aimage-to-text
Computer Vision
Image-to-Text
/datasets?task_categories=task_categories%3Aimage-to-image
Computer Vision
Image-to-Image
/datasets?task_categories=task_categories%3Aimage-to-video
Computer Vision
Image-to-Video
/datasets?task_categories=task_categories%3Aunconditional-image-generation
Computer Vision
Unconditional Image Generation
/datasets?task_categories=task_categories%3Avideo-classification
Computer Vision
Video Classification
/datasets?task_categories=task_categories%3Atext-to-video
Computer Vision
Text-to-Video
/datasets?task_categories=task_categories%3Azero-shot-image-classification
Computer Vision
Zero-Shot Image Classification
/datasets?task_categories=task_categories%3Amask-generation
Computer Vision
Mask Generation
/datasets?task_categories=task_categories%3Azero-shot-object-detection
Computer Vision
Zero-Shot Object Detection
/datasets?task_categories=task_categories%3Atext-to-3d
Computer Vision
Text-to-3D
/datasets?task_categories=task_categories%3Aimage-to-3d
Computer Vision
Image-to-3D
/datasets?task_categories=task_categories%3Aimage-feature-extraction
Computer Vision
Image Feature Extraction
/datasets?task_categories=task_categories%3Atext-classification
Natural Language Processing
Text Classification
/datasets?task_categories=task_categories%3Atoken-classification
Natural Language Processing
Token Classification
/datasets?task_categories=task_categories%3Atable-question-answering
Natural Language Processing
Table Question Answering
/datasets?task_categories=task_categories%3Aquestion-answering
Natural Language Processing
Question Answering
/datasets?task_categories=task_categories%3Azero-shot-classification
Natural Language Processing
Zero-Shot Classification
/datasets?task_categories=task_categories%3Atranslation
Natural Language Processing
Translation
/datasets?task_categories=task_categories%3Asummarization
Natural Language Processing
Summarization
/datasets?task_categories=task_categories%3Afeature-extraction
Natural Language Processing
Feature Extraction
/datasets?task_categories=task_categories%3Atext-generation
Natural Language Processing
Text Generation
/datasets?task_categories=task_categories%3Atext2text-generation
Natural Language Processing
Text2Text Generation
/datasets?task_categories=task_categories%3Afill-mask
Natural Language Processing
Fill-Mask
/datasets?task_categories=task_categories%3Asentence-similarity
Natural Language Processing
Sentence Similarity
/datasets?task_categories=task_categories%3Atable-to-text
Natural Language Processing
Table to Text
/datasets?task_categories=task_categories%3Amultiple-choice
Natural Language Processing
Multiple Choice
/datasets?task_categories=task_categories%3Atext-retrieval
Natural Language Processing
Text Retrieval
/datasets?task_categories=task_categories%3Atext-to-speech
Audio
Text-to-Speech
/datasets?task_categories=task_categories%3Atext-to-audio
Audio
Text-to-Audio
/datasets?task_categories=task_categories%3Aautomatic-speech-recognition
Audio
Automatic Speech Recognition
/datasets?task_categories=task_categories%3Aaudio-to-audio
Audio
Audio-to-Audio
/datasets?task_categories=task_categories%3Aaudio-classification
Audio
Audio Classification
/datasets?task_categories=task_categories%3Avoice-activity-detection
Audio
Voice Activity Detection
/datasets?task_categories=task_categories%3Atabular-classification
Tabular
Tabular Classification
/datasets?task_categories=task_categories%3Atabular-regression
Tabular
Tabular Regression
/datasets?task_categories=task_categories%3Atabular-to-text
Tabular
Tabular to Text
/datasets?task_categories=task_categories%3Atime-series-forecasting
Tabular
Time Series Forecasting
/datasets?task_categories=task_categories%3Areinforcement-learning
Reinforcement Learning
Reinforcement Learning
/datasets?task_categories=task_categories%3Arobotics
Reinforcement Learning
Robotics
/datasets?task_categories=task_categories%3Agraph-ml
Other
Graph Machine Learning

README

Introduction

This dataset contains the introductions of all model repositories from Hugging Face. It is designed for text classification tasks and aims to provide a rich and diverse collection of model descriptions for various natural language processing (NLP) applications.

Each introduction provides a concise overview of the model's purpose, architecture, and potential use cases. The dataset covers a wide range of models, including but not limited to language models, text classifiers, and generative models.

Usage

This dataset can be used for various text classification tasks, such as:

  • Model Category Classification: Classify models into different categories based on their introductions (e.g., language models, text classifiers, etc.).
  • Sentiment Analysis: Analyze the sentiment of the introductions to understand the tone and focus of the model descriptions.
  • Topic Modeling: Identify common topics and themes across different model introductions.

Preprocessing

Before using the dataset, it is recommended to perform the following preprocessing steps:

  1. Text Cleaning: Remove any HTML tags, special characters, or irrelevant content from the introductions.
  2. Tokenization: Split the text into individual tokens (words or subwords) for further analysis.
  3. Stop Words Removal: Remove common stop words that do not contribute significantly to the meaning of the text.
  4. Lemmatization/Stemming: Reduce words to their base or root form to normalize the text.

Model Training

You can use this dataset to train machine learning models for text classification tasks. Here is a basic example using Python and the scikit-learn library:

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import accuracy_score

# Load the dataset
data = pd.read_csv("dataset.csv")

# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(data["introduction"], data["category"], test_size=0.2, random_state=42)

# Vectorize the text data
vectorizer = TfidfVectorizer()
X_train_tfidf = vectorizer.fit_transform(X_train)
X_test_tfidf = vectorizer.transform(X_test)

# Train a Naive Bayes classifier
model = MultinomialNB()
model.fit(X_train_tfidf, y_train)

# Make predictions and evaluate the model
y_pred = model.predict(X_test_tfidf)
accuracy = accuracy_score(y_test, y_pred)
print(f"Model Accuracy: {accuracy:.2f}")

You can also refer to my blog.

License

This dataset is licensed under the [License Name]. You are free to use, modify, and distribute the dataset for research and educational purposes. For commercial use, please refer to the specific terms of the license.

Acknowledgments

We would like to thank the Hugging Face community for providing such a rich and diverse collection of models. This dataset would not have been possible without their contributions.

Contact

For any questions or feedback regarding this dataset, please leave a message or contact me at [https://github.com/XuMian-xm].


Downloads last month
21