code
stringlengths
20
4.93k
docstring
stringlengths
33
1.27k
source
stringclasses
3 values
def edit_profile(request): (form, handled) = _handle_profile(request, 'profile') if (handled and (not form.errors)): messages.success(request, 'Your attendee profile was updated.') return redirect('dashboard') data = {'form': form} return render(request, 'registrasion/profile_form.html', data)
View for editing an attendee's profile The user must be logged in to edit their profile. Returns: redirect or render: In the case of a ``POST`` request, it'll redirect to ``dashboard``, or otherwise, it will render ``registrasion/profile_form.html`` with data:: { "form": form, # Instance of ATTENDEE_PROFILE_FORM. }
codesearchnet
def _snapshot_tensor(self, tensor): snapshot_variable = self._create_or_get_tensor_values_cache(tensor.name, tensor.op.graph, tensor.shape.as_list(), tensor.dtype) return state_ops.assign(snapshot_variable, tensor).op
Creates a new tf.Variable and a new tf.Operation that assigns the value of the tensor to this variable. Args: tensor: tensor whose values will be stored in a new tf.Variable. Returns: An assignment operation.
github-repos
def past_stop_threshold(stop_threshold, eval_metric): if (stop_threshold is None): return False if (not isinstance(stop_threshold, numbers.Number)): raise ValueError('Threshold for checking stop conditions must be a number.') if (not isinstance(eval_metric, numbers.Number)): raise ValueError('Eval metric being checked against stop conditions must be a number.') if (eval_metric >= stop_threshold): tf.logging.info('Stop threshold of {} was passed with metric value {}.'.format(stop_threshold, eval_metric)) return True return False
Return a boolean representing whether a model should be stopped. Args: stop_threshold: float, the threshold above which a model should stop training. eval_metric: float, the current value of the relevant metric to check. Returns: True if training should stop, False otherwise. Raises: ValueError: if either stop_threshold or eval_metric is not a number
codesearchnet
def find_latest_change_point_index(metric_values: List[Union[float, int]]): change_points_indices = find_change_points(metric_values) change_points_indices = filter_change_points_by_median_threshold(metric_values, change_points_indices) if not change_points_indices: return None change_points_indices.sort() change_point_index = change_points_indices[-1] if is_edge_change_point(change_point_index, len(metric_values), constants._EDGE_SEGMENT_SIZE): logging.info('The change point %s is located at the edge of the data with an edge segment size of %s. This change point will be ignored for now, awaiting additional data. Should the change point persist after gathering more data, an alert will be raised.' % (change_point_index, constants._EDGE_SEGMENT_SIZE)) return None return change_point_index
Args: metric_values: Metric values used to run change point analysis. Returns: int: Right most change point index observed on metric_values.
github-repos
def open_connection(self, connection: str, configuration: Config, hostname: Optional[str]=None, username: Optional[str]=None, password: Optional[str]=None, port: Optional[int]=None, platform: Optional[str]=None, extras: Optional[Dict[(str, Any)]]=None, default_to_host_attributes: bool=True) -> ConnectionPlugin: if (connection in self.connections): raise ConnectionAlreadyOpen(connection) self.connections[connection] = self.connections.get_plugin(connection)() if default_to_host_attributes: conn_params = self.get_connection_parameters(connection) self.connections[connection].open(hostname=(hostname if (hostname is not None) else conn_params.hostname), username=(username if (username is not None) else conn_params.username), password=(password if (password is not None) else conn_params.password), port=(port if (port is not None) else conn_params.port), platform=(platform if (platform is not None) else conn_params.platform), extras=(extras if (extras is not None) else conn_params.extras), configuration=configuration) else: self.connections[connection].open(hostname=hostname, username=username, password=password, port=port, platform=platform, extras=extras, configuration=configuration) return self.connections[connection]
Open a new connection. If ``default_to_host_attributes`` is set to ``True`` arguments will default to host attributes if not specified. Raises: AttributeError: if it's unknown how to establish a connection for the given type Returns: An already established connection
codesearchnet
def __le__(self, other): if not isinstance(other, interface.DateTimeValues): raise ValueError('Other not an instance of DateTimeValues') return isinstance(other, Never)
Determines if the date time values are less than or equal to other. Args: other (DateTimeValues): date time values to compare against. Returns: bool: True if the date time values are greater than or equal to other. Raises: ValueError: if other is not an instance of DateTimeValues.
juraj-google-style
def parse(self, filename): filehandle = storage.open_vos_or_local(filename, "rb") assert filehandle is not None, "Failed to open file {} ".format(filename) filestr = filehandle.read() filehandle.close() assert filestr is not None, "File contents are None" observations = self._parse_observation_list(filestr) self._parse_observation_headers(filestr, observations) sys_header = self._parse_system_header(filestr) sources = self._parse_source_data(filestr, observations) return AstromData(observations, sys_header, sources, discovery_only=self.discovery_only)
Parses a file into an AstromData structure. Args: filename: str The name of the file whose contents will be parsed. Returns: data: AstromData The file contents extracted into a data structure for programmatic access.
juraj-google-style
def get_image_features(self, pixel_values: torch.FloatTensor, pixel_attention_mask: torch.LongTensor=None): batch_size, num_images, num_channels, height, width = pixel_values.shape pixel_values = pixel_values.view(batch_size * num_images, *pixel_values.shape[2:]) nb_values_per_image = pixel_values.shape[1:].numel() real_images_inds = (pixel_values == 0.0).sum(dim=(-1, -2, -3)) != nb_values_per_image if not any(real_images_inds): real_images_inds[0] = True pixel_values = pixel_values[real_images_inds].contiguous() if pixel_attention_mask is None: pixel_attention_mask = torch.ones(size=[pixel_values.shape[i] for i in (0, 2, 3)], dtype=torch.bool, device=pixel_values.device) else: pixel_attention_mask = pixel_attention_mask.view(batch_size * num_images, *pixel_attention_mask.shape[2:]) pixel_attention_mask = pixel_attention_mask[real_images_inds].contiguous() patch_size = self.config.vision_config.patch_size patches_subgrid = pixel_attention_mask.unfold(dimension=1, size=patch_size, step=patch_size) patches_subgrid = patches_subgrid.unfold(dimension=2, size=patch_size, step=patch_size) patch_attention_mask = (patches_subgrid.sum(dim=(-1, -2)) > 0).bool() image_hidden_states = self.vision_model(pixel_values=pixel_values, patch_attention_mask=patch_attention_mask) image_hidden_states = image_hidden_states.last_hidden_state image_hidden_states = self.connector(image_hidden_states) return image_hidden_states
Encodes images into continuous embeddings that can be forwarded to the language model. Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`): The tensors corresponding to the input images. pixel_attention_mask (`torch.LongTensor`, *optional*): The attention mask indicating padded regions in the image.
github-repos
def lex_index(n, k, lst): if (len(lst) != k): raise VisualizationError('list should have length k') comb = list(map((lambda x: ((n - 1) - x)), lst)) dualm = sum([n_choose_k(comb[((k - 1) - i)], (i + 1)) for i in range(k)]) return int(dualm)
Return the lex index of a combination.. Args: n (int): the total number of options . k (int): The number of elements. lst (list): list Returns: int: returns int index for lex order Raises: VisualizationError: if length of list is not equal to k
codesearchnet
def argsort2(indexable, key=None, reverse=False): if isinstance(indexable, dict): vk_iter = ((v, k) for (k, v) in indexable.items()) else: vk_iter = ((v, k) for (k, v) in enumerate(indexable)) if (key is None): indices = [k for (v, k) in sorted(vk_iter, reverse=reverse)] else: indices = [k for (v, k) in sorted(vk_iter, key=(lambda vk: key(vk[0])), reverse=reverse)] return indices
Returns the indices that would sort a indexable object. This is similar to np.argsort, but it is written in pure python and works on both lists and dictionaries. Args: indexable (list or dict): indexable to sort by Returns: list: indices: list of indices such that sorts the indexable Example: >>> # DISABLE_DOCTEST >>> import utool as ut >>> # argsort works on dicts >>> dict_ = indexable = {'a': 3, 'b': 2, 'c': 100} >>> indices = ut.argsort2(indexable) >>> assert list(ut.take(dict_, indices)) == sorted(dict_.values()) >>> # argsort works on lists >>> indexable = [100, 2, 432, 10] >>> indices = ut.argsort2(indexable) >>> assert list(ut.take(indexable, indices)) == sorted(indexable) >>> # argsort works on iterators >>> indexable = reversed(range(100)) >>> indices = ut.argsort2(indexable) >>> assert indices[0] == 99
codesearchnet
def _FindKeys(self, key, names, matches): for name, subkey in iter(key.items()): if name in names: matches.append((name, subkey)) if isinstance(subkey, dict): self._FindKeys(subkey, names, matches)
Searches the plist key hierarchy for keys with matching names. If a match is found a tuple of the key name and value is added to the matches list. Args: key (dict[str, object]): plist key. names (list[str]): names of the keys to match. matches (list[str]): keys with matching names.
juraj-google-style
def _expand_str_alias(path_cfg, alias_dict, overriding_kargs): new_path_cfg = alias_dict[path_cfg] new_overriding_kargs = dict(alias=path_cfg) new_overriding_kargs.update(overriding_kargs) return expand_path_cfg(new_path_cfg, alias_dict,new_overriding_kargs)
expand a path config given as a string Args: path_cfg (str): an alias alias_dict (dict): overriding_kargs (dict):
juraj-google-style
def _get_num_multimodal_tokens(self, image_sizes=None, **kwargs): vision_data = {} if image_sizes is not None: images_kwargs = AriaProcessorKwargs._defaults.get('images_kwargs', {}) images_kwargs.update(kwargs) max_size = images_kwargs.get('max_image_size', None) or self.image_processor.max_image_size num_image_patches = [self.image_processor.get_number_of_image_patches(*image_size, images_kwargs) for image_size in image_sizes] num_image_tokens = [self.size_conversion[max_size] * num_patches for num_patches in num_image_patches] vision_data.update({'num_image_tokens': num_image_tokens, 'num_image_patches': num_image_patches}) return MultiModalData(**vision_data)
Computes the number of placeholder tokens needed for multimodal inputs with the given sizes. Args: image_sizes (`List[List[int]]`, *optional*): The input sizes formatted as (height, width) per each image. Returns: `MultiModalData`: A `MultiModalData` object holding number of tokens per each of the provided input modalities, along with other useful data.
github-repos
def check_error_response(self, body, status): status_code = int(status.split(' ', 1)[0]) if (status_code >= 300): raise errors.BackendError(body, status)
Raise an exception if the response from the backend was an error. Args: body: A string containing the backend response body. status: A string containing the backend response status. Raises: BackendError if the response is an error.
codesearchnet
def hex_to_name(hexx): for n, h in defaults.COLOURS.items(): if (len(n) > 1) and (h == hexx.upper()): return n.lower() return None
Convert hex to a color name, using matplotlib's colour names. Args: hexx (str): A hexadecimal colour, starting with '#'. Returns: str: The name of the colour, or None if not found.
juraj-google-style
def _fetch_preprocessing_callback(fetch): if isinstance(fetch, ops.Operation): operation_fetches.append(fetch) return fetch elif isinstance(fetch, meta_graph_pb2.TensorInfo): tensor_infos.append(fetch) decoded = _get_element_from_tensor_info(fetch, self._func_graph) if tensor_util.is_tf_type(decoded) or isinstance(decoded, composite_tensor.CompositeTensor): tensor_fetches.append(decoded) else: operation_fetches.append(decoded) return decoded elif isinstance(fetch, (tensor_lib.Tensor, composite_tensor.CompositeTensor)): tensor_fetches.append(fetch) return fetch else: graph_element = self.graph.as_graph_element(fetch) return _fetch_preprocessing_callback(graph_element)
Extract out lists of ops, tensors, and tensor type info. Turns TensorInfos into Tensors in the original `fetches` structure. Also extracts ops from `fetches`. Args: fetch: The fetch to preprocess: Tensor, TensorInfo, or Operation, or string identifying a Tensor or Operation. Returns: `fetch` converted to a Tensor.
github-repos
def string_set(namespace: Union[Type, str], name: str) -> 'Metrics.DelegatingStringSet': namespace = Metrics.get_namespace(namespace) return Metrics.DelegatingStringSet(MetricName(namespace, name))
Obtains or creates a String set metric. String set metrics are restricted to string values. Args: namespace: A class or string that gives the namespace to a metric name: A string that gives a unique name to a metric Returns: A StringSet object.
github-repos
def set_colourtemp(self, colourtemp): if not 0 <= colourtemp <= 255: raise ValueError("The colour temperature needs to be between 0 and 255.") payload = self.generate_payload(SET, {self.DPS_INDEX_COLOURTEMP: colourtemp}) data = self._send_receive(payload) return data
Set the colour temperature of an rgb bulb. Args: colourtemp(int): Value for the colour temperature (0-255).
juraj-google-style
def resize_for_vision_encoder(self, image: np.ndarray, vision_encoder_max_size: int, resample: PILImageResampling=PILImageResampling.LANCZOS, data_format: Optional[Union[str, ChannelDimension]]=None, input_data_format: Optional[Union[str, ChannelDimension]]=None): height, width = get_image_size(image, channel_dim=input_data_format) aspect_ratio = width / height if width >= height: width = math.ceil(width / vision_encoder_max_size) * vision_encoder_max_size height = int(width / aspect_ratio) height = math.ceil(height / vision_encoder_max_size) * vision_encoder_max_size elif height > width: height = math.ceil(height / vision_encoder_max_size) * vision_encoder_max_size width = int(height * aspect_ratio) width = math.ceil(width / vision_encoder_max_size) * vision_encoder_max_size new_size = {'height': height, 'width': width} return self.resize(image, size=new_size, resample=resample, input_data_format=input_data_format, data_format=data_format)
Resize images to be multiples of `vision_encoder_max_size` while preserving the aspect ratio. Args: image (`np.ndarray`): Images to resize. vision_encoder_max_size (`int`): Maximum size of the output image. If the image is larger than this size, it will be split into patches of this size, and the original image will be concatenated with the patches, resized to max_size. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.LANCZOS`): Resampling filter to use when resizing the image. data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the output image. If not provided, it will be the same as the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred
github-repos
def update(self, properties=None, description=None): cv = ApplicationConfiguration._props(properties=properties, description=description) res = self.rest_client.session.patch(self.rest_self, headers={'Accept': 'application/json', 'Content-Type': 'application/json'}, json=cv) _handle_http_errors(res) self.json_rep = res.json() return self
Update this application configuration. To create or update a property provide its key-value pair in `properties`. To delete a property provide its key with the value ``None`` in properties. Args: properties (dict): Property values to be updated. If ``None`` the properties are unchanged. description (str): Description for the configuration. If ``None`` the description is unchanged. Returns: ApplicationConfiguration: self
codesearchnet
def _adjusted_script_code(self, script): script_code = ByteData() if (script[0] == (len(script) - 1)): return script script_code += VarInt(len(script)) script_code += script return script_code
Checks if the script code pased in to the sighash function is already length-prepended This will break if there's a redeem script that's just a pushdata That won't happen in practice Args: script (bytes): the spend script Returns: (bytes): the length-prepended script (if necessary)
codesearchnet
def add(self, data, name=None): if (name is None): n = len(self.data) while (('Series %d' % n) in self.data): n += 1 name = ('Series %d' % n) self.data[name] = data return name
Appends a new column of data to the data source. Args: data (seq) : new data to add name (str, optional) : column name to use. If not supplied, generate a name of the form "Series ####" Returns: str: the column name used
codesearchnet
def end_of_chunk(prev_tag, tag, prev_type, type_): chunk_end = False if (prev_tag == 'E'): chunk_end = True if (prev_tag == 'S'): chunk_end = True if ((prev_tag == 'B') and (tag == 'B')): chunk_end = True if ((prev_tag == 'B') and (tag == 'S')): chunk_end = True if ((prev_tag == 'B') and (tag == 'O')): chunk_end = True if ((prev_tag == 'I') and (tag == 'B')): chunk_end = True if ((prev_tag == 'I') and (tag == 'S')): chunk_end = True if ((prev_tag == 'I') and (tag == 'O')): chunk_end = True if ((prev_tag != 'O') and (prev_tag != '.') and (prev_type != type_)): chunk_end = True return chunk_end
Checks if a chunk ended between the previous and current word. Args: prev_tag: previous chunk tag. tag: current chunk tag. prev_type: previous type. type_: current type. Returns: chunk_end: boolean.
codesearchnet
def dv(self, orb): orb = orb.copy(form='cartesian') if (self.frame == 'QSW'): mat = to_qsw(orb).T elif (self.frame == 'TNW'): mat = to_tnw(orb).T else: mat = np.identity(3) return (mat @ self._dv)
Computation of the velocity increment in the reference frame of the orbit Args: orb (Orbit): Return: numpy.array: Velocity increment, length 3
codesearchnet
def _prepare_for_training(self, job_name=None): super(Framework, self)._prepare_for_training(job_name=job_name) if self.source_dir and not self.source_dir.lower().startswith('s3: validate_source_dir(self.entry_point, self.source_dir) local_code = get_config_value('local.local_code', self.sagemaker_session.config) if self.sagemaker_session.local_mode and local_code: if self.source_dir is None: self.source_dir = os.path.dirname(self.entry_point) self.entry_point = os.path.basename(self.entry_point) code_dir = 'file: script = self.entry_point else: self.uploaded_code = self._stage_user_code_in_s3() code_dir = self.uploaded_code.s3_prefix script = self.uploaded_code.script_name self._hyperparameters[DIR_PARAM_NAME] = code_dir self._hyperparameters[SCRIPT_PARAM_NAME] = script self._hyperparameters[CLOUDWATCH_METRICS_PARAM_NAME] = self.enable_cloudwatch_metrics self._hyperparameters[CONTAINER_LOG_LEVEL_PARAM_NAME] = self.container_log_level self._hyperparameters[JOB_NAME_PARAM_NAME] = self._current_job_name self._hyperparameters[SAGEMAKER_REGION_PARAM_NAME] = self.sagemaker_session.boto_region_name
Set hyperparameters needed for training. This method will also validate ``source_dir``. Args: * job_name (str): Name of the training job to be created. If not specified, one is generated, using the base name given to the constructor if applicable.
juraj-google-style
def _ExtractJQuery(self, jquery_raw): data_part = '' if (not jquery_raw): return {} if ('[' in jquery_raw): (_, _, first_part) = jquery_raw.partition('[') (data_part, _, _) = first_part.partition(']') elif jquery_raw.startswith(' (_, _, first_part) = jquery_raw.partition('{') data_part = '{{{0:s}'.format(first_part) elif ('({' in jquery_raw): (_, _, first_part) = jquery_raw.partition('(') (data_part, _, _) = first_part.rpartition(')') if (not data_part): return {} try: data_dict = json.loads(data_part) except ValueError: return {} return data_dict
Extracts values from a JQuery string. Args: jquery_raw (str): JQuery string. Returns: dict[str, str]: extracted values.
codesearchnet
def extract_subtree(self, node): if not isinstance(node, Node): raise TypeError("node must be a Node") r = self.root; self.root = node; o = copy(self); self.root = r; return o
Return a copy of the subtree rooted at ``node`` Args: ``node`` (``Node``): The root of the desired subtree Returns: ``Tree``: A copy of the subtree rooted at ``node``
juraj-google-style
def get_thread(self, thread_key): uri = '/'.join([self.api_uri, self.threads_suffix, thread_key ]) return self._req('get', uri)
Gets a thread specified by thread_key Args: thread_key thread to get returns a thread dict
juraj-google-style
def _get_dataset_showcase_dict(self, showcase): if isinstance(showcase, hdx.data.showcase.Showcase) or isinstance(showcase, dict): if 'id' not in showcase: showcase = hdx.data.showcase.Showcase.read_from_hdx(showcase['name']) showcase = showcase['id'] elif not isinstance(showcase, str): raise HDXError('Type %s cannot be added as a showcase!' % type(showcase).__name__) if is_valid_uuid(showcase) is False: raise HDXError('%s is not a valid showcase id!' % showcase) return {'package_id': self.data['id'], 'showcase_id': showcase}
Get dataset showcase dict Args: showcase (Union[Showcase,Dict,str]): Either a showcase id or Showcase metadata from a Showcase object or dictionary Returns: dict: dataset showcase dict
juraj-google-style
def is50or60(msg, spd_ref, trk_ref, alt_ref): def vxy(v, angle): vx = (v * np.sin(np.radians(angle))) vy = (v * np.cos(np.radians(angle))) return (vx, vy) if (not (bds50.is50(msg) and bds60.is60(msg))): return None h50 = bds50.trk50(msg) v50 = bds50.gs50(msg) if ((h50 is None) or (v50 is None)): return 'BDS50,BDS60' h60 = bds60.hdg60(msg) m60 = bds60.mach60(msg) i60 = bds60.ias60(msg) if ((h60 is None) or ((m60 is None) and (i60 is None))): return 'BDS50,BDS60' m60 = (np.nan if (m60 is None) else m60) i60 = (np.nan if (i60 is None) else i60) XY5 = vxy((v50 * aero.kts), h50) XY6m = vxy(aero.mach2tas(m60, (alt_ref * aero.ft)), h60) XY6i = vxy(aero.cas2tas((i60 * aero.kts), (alt_ref * aero.ft)), h60) allbds = ['BDS50', 'BDS60', 'BDS60'] X = np.array([XY5, XY6m, XY6i]) Mu = np.array(vxy((spd_ref * aero.kts), trk_ref)) try: dist = np.linalg.norm((X - Mu), axis=1) BDS = allbds[np.nanargmin(dist)] except ValueError: return 'BDS50,BDS60' return BDS
Use reference ground speed and trk to determine BDS50 and DBS60. Args: msg (String): 28 bytes hexadecimal message string spd_ref (float): reference speed (ADS-B ground speed), kts trk_ref (float): reference track (ADS-B track angle), deg alt_ref (float): reference altitude (ADS-B altitude), ft Returns: String or None: BDS version, or possible versions, or None if nothing matches.
codesearchnet
def CompressedHistograms(self, run, tag): accumulator = self.GetAccumulator(run) return accumulator.CompressedHistograms(tag)
Retrieve the compressed histogram events associated with a run and tag. Args: run: A string name of the run for which values are retrieved. tag: A string name of the tag for which values are retrieved. Raises: KeyError: If the run is not found, or the tag is not available for the given run. Returns: An array of `event_accumulator.CompressedHistogramEvents`.
codesearchnet
def get_itasser_models(self, homology_raw_dir, custom_itasser_name_mapping=None, outdir=None, force_rerun=False): counter = 0 for g in tqdm(self.genes): if (custom_itasser_name_mapping and (g.id in custom_itasser_name_mapping)): hom_id = custom_itasser_name_mapping[g.id] if (not op.exists(op.join(homology_raw_dir, hom_id))): hom_id = g.id else: hom_id = g.id new_itasser_name = (hom_id + '_model1') orig_itasser_dir = op.join(homology_raw_dir, hom_id) try: itasser_prop = g.protein.load_itasser_folder(ident=hom_id, itasser_folder=orig_itasser_dir, organize=True, outdir=outdir, organize_name=new_itasser_name, force_rerun=force_rerun) except OSError: log.debug('{}: homology model folder unavailable'.format(g.id)) continue except IOError: log.debug('{}: homology model unavailable'.format(g.id)) continue if itasser_prop.structure_file: counter += 1 else: log.debug('{}: homology model file unavailable, perhaps modelling did not finish'.format(g.id)) log.info('Completed copying of {} I-TASSER models to GEM-PRO directory. See the "df_homology_models" attribute for a summary dataframe.'.format(counter))
Copy generated I-TASSER models from a directory to the GEM-PRO directory. Args: homology_raw_dir (str): Root directory of I-TASSER folders. custom_itasser_name_mapping (dict): Use this if your I-TASSER folder names differ from your model gene names. Input a dict of {model_gene: ITASSER_folder}. outdir (str): Path to output directory of downloaded files, must be set if GEM-PRO directories were not created initially force_rerun (bool): If homology files should be copied again even if they exist in the GEM-PRO directory
codesearchnet
def get_node(self, role: str, default=None) -> BioCNode: return next((node for node in self.nodes if node.role == role), default)
Get the first node with role Args: role: role default: node returned instead of raising StopIteration Returns: the first node with role
juraj-google-style
def create_from_binary(cls, mft_config, binary_data, entry_number): bin_view = memoryview(binary_data) entry = None if (bin_view[0:4] != b'\x00\x00\x00\x00'): try: header = MFTHeader.create_from_binary(mft_config.ignore_signature_check, bin_view[:MFTHeader.get_representation_size()]) except HeaderError as e: e.update_entry_number(entry_number) e.update_entry_binary(binary_data) raise entry = cls(header, _defaultdict(list)) if (header.mft_record != entry_number): _MOD_LOGGER.warning("The MFT entry number doesn't match. %d != %d", entry_number, header.mft_record) if (len(binary_data) != header.entry_alloc_len): _MOD_LOGGER.error('Expected MFT size is different than entry size.') raise EntryError(f'Expected MFT size ({len(binary_data)}) is different than entry size ({header.entry_alloc_len}).', binary_data, entry_number) if mft_config.apply_fixup_array: apply_fixup_array(bin_view, header.fx_offset, header.fx_count, header.entry_alloc_len) entry._load_attributes(mft_config, bin_view[header.first_attr_offset:]) bin_view.release() return entry
Creates a MFTEntry from a binary stream. It correctly process the binary data extracting the MFTHeader, all the attributes and the slack information from the binary stream. The binary data WILL be changed to apply the fixup array. Args: mft_config (:obj:`MFTConfig`) - An instance of MFTConfig, as this tells how the library will interpret data. binary_data (bytearray) - A binary stream with the data to extract. This has to be a writeable and support the memoryview call entry_number (int) - The entry number for this entry Returns: MFTEntry: If the object is empty, returns None, otherwise, new object MFTEntry
codesearchnet
def near(point, dist, points): for cmpt in points: if (haversine(point, cmpt) <= dist): return True return False
Determine if the given point is within dist of any of points. Args: point ((float,float)): A latitude, longitude float tuple. dist (int): A distance in mm ( base units ) points (list): A list of latitude, longitude float tuples to compare against.
codesearchnet
def __init__(self, structure_matcher=StructureMatcher( comparator=ElementComparator()), symprec=None): self.symprec = symprec self.structure_list = defaultdict(list) if isinstance(structure_matcher, dict): self.structure_matcher = StructureMatcher.from_dict(structure_matcher) else: self.structure_matcher = structure_matcher
Remove duplicate structures based on the structure matcher and symmetry (if symprec is given). Args: structure_matcher: Provides a structure matcher to be used for structure comparison. symprec: The precision in the symmetry finder algorithm if None ( default value), no symmetry check is performed and only the structure matcher is used. A recommended value is 1e-5.
juraj-google-style
def setDocumentedBy(self, documented_pid, documenting_pid): self._check_initialized() documented_id = self.getObjectByPid(documented_pid) documenting_id = self.getObjectByPid(documenting_pid) self.add((documented_id, CITO.isDocumentedBy, documenting_id))
Add a CiTO, the Citation Typing Ontology, triple asserting that ``documented_pid`` isDocumentedBy ``documenting_pid``. Adds assertion: ``documented_pid cito:isDocumentedBy documenting_pid`` Args: documented_pid: str PID of a Science Object that is documented by ``documenting_pid``. documenting_pid: str PID of a Science Object that documents ``documented_pid``.
codesearchnet
def cp(src, dst): if isdir(src): if isdir(dst): rm(dst) shutil.copytree(src, dst) elif isfile(src): shutil.copy(src, dst) else: raise IOError("Source '{0}' not found".format(src))
Copy a file or directory. If source is a directory, this recursively copies the directory and its contents. If the destination is a directory, then this creates a copy of the source in the destination directory with the same basename. If the destination already exists, this will attempt to overwrite it. Arguments: src (string): path to the source file or directory. dst (string): path to the destination file or directory. Raises: IOError: if source does not exist.
codesearchnet
def weighted_average(input_tensor: torch.Tensor, weights: Optional[torch.Tensor]=None, dim=None) -> torch.Tensor: if weights is not None: weighted_tensor = torch.where(weights != 0, input_tensor * weights, torch.zeros_like(input_tensor)) sum_weights = torch.clamp(weights.sum(dim=dim) if dim else weights.sum(), min=1.0) return (weighted_tensor.sum(dim=dim) if dim else weighted_tensor.sum()) / sum_weights else: return input_tensor.mean(dim=dim)
Computes the weighted average of a given tensor across a given `dim`, masking values associated with weight zero, meaning instead of `nan * 0 = nan` you will get `0 * 0 = 0`. Args: input_tensor (`torch.FloatTensor`): Input tensor, of which the average must be computed. weights (`torch.FloatTensor`, *optional*): Weights tensor, of the same shape as `input_tensor`. dim (`int`, *optional*): The dim along which to average `input_tensor`. Returns: `torch.FloatTensor`: The tensor with values averaged along the specified `dim`.
github-repos
def transform_table(self, table, table_meta, missing=None): if (missing is None): missing = self.missing else: self.missing = missing warnings.warn(DEPRECATION_MESSAGE.format('transform_table'), DeprecationWarning) content = {} columns = [] table_name = table_meta['name'] for field in table_meta['fields']: column_name = field['name'] if (missing and table[column_name].isnull().any()): null_transformer = transformers.NullTransformer(field) clean_column = null_transformer.fit_transform(table[column_name]) null_name = ('?' + column_name) columns.append(null_name) content[null_name] = clean_column[null_name].values column = clean_column[column_name] else: column = table[column_name].to_frame() transformer = self.transformers[(table_name, column_name)] content[column_name] = transformer.transform(column)[column_name].values columns.append(column_name) return pd.DataFrame(content, columns=columns)
Apply the stored transformers to `table`. Args: table(pandas.DataFrame): Contents of the table to be transformed. table_meta(dict): Metadata for the given table. missing(bool): Wheter or not use NullTransformer to handle missing values. Returns: pandas.DataFrame: Transformed table.
codesearchnet
def sort_response(response: Dict[str, Any]) -> OrderedDict: root_order = ["jsonrpc", "result", "error", "id"] error_order = ["code", "message", "data"] req = OrderedDict(sorted(response.items(), key=lambda k: root_order.index(k[0]))) if "error" in response: req["error"] = OrderedDict( sorted(response["error"].items(), key=lambda k: error_order.index(k[0])) ) return req
Sort the keys in a JSON-RPC response object. This has no effect other than making it nicer to read. Useful in Python 3.5 only, dictionaries are already sorted in newer Python versions. Example:: >>> json.dumps(sort_response({'id': 2, 'result': 5, 'jsonrpc': '2.0'})) {"jsonrpc": "2.0", "result": 5, "id": 1} Args: response: Deserialized JSON-RPC response. Returns: The same response, sorted in an OrderedDict.
juraj-google-style
def forward(self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, causal_attention_mask: torch.Tensor, output_attentions: Optional[bool]=False) -> Tuple[torch.FloatTensor]: residual = hidden_states hidden_states = self.layer_norm1(hidden_states) hidden_states, attn_weights = self.self_attn(hidden_states=hidden_states, attention_mask=attention_mask, causal_attention_mask=causal_attention_mask, output_attentions=output_attentions) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.layer_norm2(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs
Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. `(config.encoder_attention_heads,)`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail.
github-repos
def job_monitor(job, interval=None, monitor_async=False, quiet=False, output=sys.stdout): if (interval is None): _interval_set = False interval = 2 else: _interval_set = True if _NOTEBOOK_ENV: if monitor_async: try: import ipywidgets as widgets except ImportError: raise ImportError('These functions need ipywidgets. Run "pip install ipywidgets" before.') from qiskit.tools.jupyter.jupyter_magics import _html_checker style = 'font-size:16px;' header = "<p style='{style}'>Job Status: %s </p>".format(style=style) status = widgets.HTML(value=(header % job.status().value)) display(status) thread = threading.Thread(target=_html_checker, args=(job, interval, status, header)) thread.start() else: _text_checker(job, interval, _interval_set, quiet=quiet, output=output) else: if monitor_async: raise QiskitError('monitor_async only available in Jupyter notebooks.') _text_checker(job, interval, _interval_set, quiet=quiet, output=output)
Monitor the status of a IBMQJob instance. Args: job (BaseJob): Job to monitor. interval (int): Time interval between status queries. monitor_async (bool): Monitor asyncronously (in Jupyter only). quiet (bool): If True, do not print status messages. output (file): The file like object to write status messages to. By default this is sys.stdout. Raises: QiskitError: When trying to run async outside of Jupyter ImportError: ipywidgets not available for notebook.
codesearchnet
def set_filename_and_line_from_caller(self, offset: int=0) -> int: retcode = self.SUCCESS frame = inspect.currentframe() if not frame: return self.FAILURE frame = cast(types.FrameType, frame) for _ in range(offset + 1): parent = frame.f_back if parent is None: retcode = self.HEURISTIC_USED break parent = cast(types.FrameType, parent) frame = parent self.filename = frame.f_code.co_filename self.lineno = cast(int, frame.f_lineno) return retcode
Set filename and line using the caller's stack frame. If the requested stack information is not available, a heuristic may be applied and self.HEURISTIC USED will be returned. If the heuristic fails then no change will be made to the filename and lineno members (None by default) and self.FAILURE will be returned. Args: offset: Integer. If 0, the caller's stack frame is used. If 1, the caller's caller's stack frame is used. Larger values are permissible but if out-of-range (larger than the number of stack frames available) the outermost stack frame will be used. Returns: TraceableObject.SUCCESS if appropriate stack information was found, TraceableObject.HEURISTIC_USED if the offset was larger than the stack, and TraceableObject.FAILURE if the stack was empty.
github-repos
def are_equal(self, mol1, mol2): b1 = set(self._get_bonds(mol1)) b2 = set(self._get_bonds(mol2)) return b1 == b2
Compare the bond table of the two molecules. Args: mol1: first molecule. pymatgen Molecule object. mol2: second moleculs. pymatgen Molecule objec.
juraj-google-style
def load_yaml_config(conf_file): global g_config with open(conf_file) as fp: g_config = util.yaml_load(fp) src_dir = get_path('src_dir', None) if src_dir is not None: sys.path.insert(0, src_dir) for cmd in get('commands', []): _import(cmd)
Load a YAML configuration. This will not update the configuration but replace it entirely. Args: conf_file (str): Path to the YAML config. This function will not check the file name or extension and will just crash if the given file does not exist or is not a valid YAML file.
juraj-google-style
def inspect_image(self, image): return self._result(self._get(self._url('/images/{0}/json', image)), True)
Get detailed information about an image. Similar to the ``docker inspect`` command, but only for images. Args: image (str): The image to inspect Returns: (dict): Similar to the output of ``docker inspect``, but as a single dict Raises: :py:class:`docker.errors.APIError` If the server returns an error.
codesearchnet
def initial_value(self): return self._initial_value
Returns the Tensor used as the initial value for the variable. Note that this is different from `initialized_value()` which runs the op that initializes the variable before returning its value. This method returns the tensor that is used by the op that initializes the variable. Returns: A `Tensor`.
github-repos
def __init__(self, choices=None, validator=None, **kwargs): self.choices = choices subvalidator = validator or String() self.validator = List(validator=subvalidator) for choice in self.choices: subvalidator.Validate(choice) super(MultiChoice, self).__init__(**kwargs)
Create a multichoice object and validate choices. Args: choices: list of available choices validator: validator to use for each of the list *items* the validator for the top level is a list. **kwargs: passed through to parent class.
juraj-google-style
def load_model_using_search_path( self, filename, model, search_path, is_main_model=False, encoding='utf8', add_to_local_models=True): if (model): self.update_model_in_repo_based_on_filename(model) for the_path in search_path: full_filename = join(the_path, filename) if exists(full_filename): the_metamodel = \ MetaModelProvider.get_metamodel(model, full_filename) return self.load_model(the_metamodel, full_filename, is_main_model, encoding=encoding, add_to_local_models=add_to_local_models) raise IOError( errno.ENOENT, os.strerror(errno.ENOENT), filename)
add a new model to all relevant objects Args: filename: models to be loaded model: model holding the loaded models in its _tx_model_repository field (may be None). search_path: list of search directories. Returns: the loaded model
juraj-google-style
def generate_func_call(name, args=None, kwargs=None): all_args = [] if args: all_args.extend(args) if kwargs: all_args.extend('{}={}'.format(k, v) for k, v in kwargs if v is not None) return '{}({})'.format(name, ', '.join(all_args))
Generates code to call a function. Args: name (str): The function name. args (list[str]): Each positional argument. kwargs (list[tuple]): Each tuple is (arg: str, value: str). If value is None, then the keyword argument is omitted. Otherwise, if the value is not a string, then str() is called on it. Returns: str: Code to call a function.
juraj-google-style
def metadata(self) -> Dict[str, Any]: return self._metadata
Metadata of this field. Metadata is defined as a dict type, so we can add multiple annotations to a field. userdata = field.metadata.get('userdata', None): Returns: Metadata of this field as a dict.
github-repos
def eval(x): return get_value(to_dense(x))
Evaluates the value of a variable. Args: x: A variable. Returns: A Numpy array. Examples: >>> kvar = tf.keras.backend.variable(np.array([[1, 2], [3, 4]]), ... dtype='float32') >>> tf.keras.backend.eval(kvar) array([[1., 2.], [3., 4.]], dtype=float32)
github-repos
def minimum(x1, x2, output_shape=None, name=None): output_shape = convert_to_shape(output_shape) with tf.name_scope(name, default_name='minimum'): (x1, x2) = binary_arguments_to_tensors(x1, x2) return MinMaxOperation(tf.minimum, x1, x2, output_shape=_infer_binary_broadcast_shape(x1.shape, x2.shape, output_shape)).outputs[0]
Binary minimum with broadcsting. Args: x1: a Tensor x2: a Tensor output_shape: an optional Shape name: an optional string Returns: a Tensor
codesearchnet
def compare_with_existing(self, region='us-east-1', onetime=False): pipelines = self.get_existing_pipelines() pipeline_id = None found = False for pipeline in pipelines: correct_app_and_region = (pipeline['application'] == self.app_name) and (region in pipeline['name']) if onetime: onetime_str = "(onetime-{})".format(self.environments[0]) if correct_app_and_region and onetime_str in pipeline['name']: found = True elif correct_app_and_region: found = True if found: self.log.info('Existing pipeline found - %s', pipeline['name']) pipeline_id = pipeline['id'] break else: self.log.info('No existing pipeline found') return pipeline_id
Compare desired pipeline with existing pipelines. Args: region (str): Region of desired pipeline. onetime (bool): Looks for different pipeline if Onetime Returns: str: pipeline_id if existing, empty string of not.
juraj-google-style
def _send_notification(self, handle, value): value_len = len(value) value = bytes(value) payload = struct.pack(('<BHB%ds' % value_len), 255, handle, value_len, value) response = self._send_command(2, 5, payload) (result,) = unpack('<H', response.payload) if (result != 0): return (False, {'reason': 'Error code from BLED112 notifying a value', 'code': result, 'handle': handle, 'value': value}) return (True, None)
Send a notification to all connected clients on a characteristic Args: handle (int): The handle we wish to notify on value (bytearray): The value we wish to send
codesearchnet
def GetMetadata(self, metadata_key='', recursive=True, timeout=None, retry=True): return self._HandleMetadataUpdate(metadata_key=metadata_key, recursive=recursive, wait=False, timeout=timeout, retry=retry)
Retrieve the contents of metadata server for a metadata key. Args: metadata_key: string, the metadata key to watch for changes. recursive: bool, True if we should recursively watch for metadata changes. timeout: int, timeout in seconds for returning metadata output. retry: bool, True if we should retry on failure. Returns: json, the deserialized contents of the metadata server or None if error.
codesearchnet
def __init__(self, name, pivot): super(XLACompileContext, self).__init__() self._name = name self._name_as_bytes = compat.as_bytes(name) self._unsupported_ops = [] self._pivot = pivot
Builds a new XLACompileContext. Args: name: a unique name for the context, used to populate the `_xla_compile_id` attribute. pivot: a pivot node. Nodes in the XLACompileContext that do not have any inputs will have a control dependency on the pivot node. This ensures that nodes are correctly included in any enclosing control flow contexts.
github-repos
def get_html_content(id_: str) -> str: try: node = nodes.Node.from_id(id_) return node.inner_html except Exception as e: epy.reraise(e, prefix='`ecolab.inspect` internal error. Please report an issue.\n')
Returns the inner content of the block id. Is called the first time a block is expanded. Args: id_: Id of the block to load Returns: The html to add.
github-repos
def remove(self, processor_identity): with self._condition: processor_types = self._identities.get(processor_identity) if (processor_types is None): LOGGER.warning('transaction processor with identity %s tried to unregister but was not registered', processor_identity) return for processor_type in processor_types: if (processor_type not in self._processors): LOGGER.warning('processor type %s not a known processor type but is associated with identity %s', processor_type, processor_identity) continue self._processors[processor_type].remove_processor(processor_identity=processor_identity) if (not self._processors[processor_type]): del self._processors[processor_type]
Removes all of the Processors for a particular transaction processor zeromq identity. Args: processor_identity (str): The zeromq identity of the transaction processor.
codesearchnet
def log_error(cls, msg): cls.error_logger.error(msg) cls.debug_logger.debug(msg)
Logs the provided error message to both the error logger and the debug logger logging instances. Args: msg: `str`. The error message to log.
juraj-google-style
def dist_point_line(p, l1, l2): cross_prod = np.cross((l2 - l1), (p - l1)) return (np.linalg.norm(cross_prod) / np.linalg.norm((l2 - l1)))
compute the orthogonal distance between from the line that goes through the points l1, l2 and the point p Args: p, l1, l2 : iterable point indices 0, 1, 2 corresponding to cartesian coordinates
codesearchnet
def check_column(state, name, missing_msg=None, expand_msg=None): if (missing_msg is None): missing_msg = "We expected to find a column named `{{name}}` in the result of your query, but couldn't." if (expand_msg is None): expand_msg = 'Have another look at your query result. ' msg_kwargs = {'name': name} has_result(state) stu_res = state.student_result sol_res = state.solution_result if (name not in sol_res): raise BaseException(('name %s not in solution column names' % name)) if (name not in stu_res): _msg = state.build_message(missing_msg, fmt_kwargs=msg_kwargs) state.do_test(_msg) return state.to_child(append_message={'msg': expand_msg, 'kwargs': msg_kwargs}, student_result={name: stu_res[name]}, solution_result={name: sol_res[name]})
Zoom in on a particular column in the query result, by name. After zooming in on a column, which is represented as a single-column query result, you can use ``has_equal_value()`` to verify whether the column in the solution query result matches the column in student query result. Args: name: name of the column to zoom in on. missing_msg: if specified, this overrides the automatically generated feedback message in case the column is missing in the student query result. expand_msg: if specified, this overrides the automatically generated feedback message that is prepended to feedback messages that are thrown further in the SCT chain. :Example: Suppose we are testing the following SELECT statements * solution: ``SELECT artist_id as id, name FROM artists`` * student : ``SELECT artist_id, name FROM artists`` We can write the following SCTs: :: # fails, since no column named id in student result Ex().check_column('id') # passes, since a column named name is in student_result Ex().check_column('name')
codesearchnet
def setup_session(self, server, hooks, graph_default_context): if self.execution_type == "distributed": session_creator = tf.train.ChiefSessionCreator( scaffold=self.scaffold, master=server.target, config=self.session_config, checkpoint_dir=None, checkpoint_filename_with_path=None ) self.monitored_session = tf.train.MonitoredSession( session_creator=session_creator, hooks=hooks, stop_grace_period_secs=120 ) if self.tf_session_dump_dir != "": self.monitored_session = DumpingDebugWrapperSession(self.monitored_session, self.tf_session_dump_dir) else: self.monitored_session = tf.train.SingularMonitoredSession( hooks=hooks, scaffold=self.scaffold, master='', config=self.session_config, checkpoint_dir=None ) if graph_default_context: graph_default_context.__exit__(None, None, None) self.graph.finalize() self.monitored_session.__enter__() self.session = self.monitored_session._tf_sess()
Creates and then enters the session for this model (finalizes the graph). Args: server (tf.train.Server): The tf.train.Server object to connect to (None for single execution). hooks (list): A list of (saver, summary, etc..) hooks to be passed to the session. graph_default_context: The graph as_default() context that we are currently in.
juraj-google-style
def add_custom_column_spec(self, spec: ColumnSpec) -> 'ColumnSpecsBuilder': self._specs.append(spec) return self
Add a custom :class:`.ColumnSpec` to the builder. Use this method when you need complete control over the :class:`.ColumnSpec` , including custom value extraction and type handling. Args: spec: A :class:`.ColumnSpec` instance defining the column name, type, value extraction, and optional SQL type casting. Returns: Self for method chaining Examples: Custom text column from chunk metadata: >>> builder.add_custom_column_spec( ... ColumnSpec.text( ... name="source_and_id", ... value_fn=lambda chunk: ... f"{chunk.metadata.get('source')}_{chunk.id}" ... ) ... )
github-repos
def load(self, fobj, index=None): if index is None: index = self._get_tab_index() page = self.pages[index] if fobj is None: return if not isinstance(fobj, tuple(page.clss_load)): raise RuntimeError('Object to load must be in {0!s} (not a {1!s})'.format( [x.__name__ for x in page.clss_load], fobj.__class__.__name__)) page.editor.load(fobj) self._update_gui_text_tabs()
Loads given DataFile object. **tolerant with None** Args: fobj: object of one of accepted classes index: tab index to load fobj into. If not passed, loads into current tab
juraj-google-style
def horizontal_infrared_radiation_intensity(self, value=9999.0): if (value is not None): try: value = float(value) except ValueError: raise ValueError('value {} need to be of type float for field `horizontal_infrared_radiation_intensity`'.format(value)) if (value < 0.0): raise ValueError('value need to be greater or equal 0.0 for field `horizontal_infrared_radiation_intensity`') self._horizontal_infrared_radiation_intensity = value
Corresponds to IDD Field `horizontal_infrared_radiation_intensity` Args: value (float): value for IDD Field `horizontal_infrared_radiation_intensity` Unit: Wh/m2 value >= 0.0 Missing value: 9999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
codesearchnet
def run(self, circuit): name = circuit.name dag = circuit_to_dag(circuit) del circuit for passset in self.working_list: for pass_ in passset: dag = self._do_pass(pass_, dag, passset.options) circuit = dag_to_circuit(dag) circuit.name = name return circuit
Run all the passes on a QuantumCircuit Args: circuit (QuantumCircuit): circuit to transform via all the registered passes Returns: QuantumCircuit: Transformed circuit.
codesearchnet
def __init__(self, func, name=None, indexed=None, repeated=None, verbose_name=None): super(ComputedProperty, self).__init__(name=name, indexed=indexed, repeated=repeated, verbose_name=verbose_name) self._func = func
Constructor. Args: func: A function that takes one argument, the model instance, and returns a calculated value.
juraj-google-style
def modified_files(root, tracked_only=False, commit=None): assert os.path.isabs(root), ('Root has to be absolute, got: %s' % root) command = ['hg', 'status'] if commit: command.append(('--change=%s' % commit)) status_lines = subprocess.check_output(command).decode('utf-8').split(os.linesep) modes = ['M', 'A'] if (not tracked_only): modes.append('\\?') modes_str = '|'.join(modes) modified_file_status = utils.filter_lines(status_lines, ('(?P<mode>%s) (?P<filename>.+)' % modes_str), groups=('filename', 'mode')) return dict(((os.path.join(root, filename), mode) for (filename, mode) in modified_file_status))
Returns a list of files that has been modified since the last commit. Args: root: the root of the repository, it has to be an absolute path. tracked_only: exclude untracked files when True. commit: SHA1 of the commit. If None, it will get the modified files in the working copy. Returns: a dictionary with the modified files as keys, and additional information as value. In this case it adds the status returned by hg status.
codesearchnet
def parse_config_file(config_file, skip_unknown=False): for reader, existence_check in _FILE_READERS: if existence_check(config_file): with reader(config_file) as f: parse_config(f, skip_unknown=skip_unknown) return raise IOError('Unable to open file: {}'.format(config_file))
Parse a Gin config file. Args: config_file: The path to a Gin config file. skip_unknown: A boolean indicating whether unknown configurables and imports should be skipped instead of causing errors (alternatively a list of configurable names to skip if unknown). See `parse_config` for additional details. Raises: IOError: If `config_file` cannot be read using any register file reader.
juraj-google-style
def ParseOptions(self, options): self._ParseInformationalOptions(options) self._verbose = getattr(options, 'verbose', False) self._output_filename = getattr(options, 'write', None) argument_helper_names = ['process_resources', 'storage_file'] helpers_manager.ArgumentHelperManager.ParseOptions( options, self, names=argument_helper_names) if not self._storage_file_path: raise errors.BadConfigOption('Missing storage file option.') if not os.path.isfile(self._storage_file_path): raise errors.BadConfigOption( 'No such storage file: {0:s}.'.format(self._storage_file_path)) compare_storage_file_path = self.ParseStringOption( options, 'compare_storage_file') if compare_storage_file_path: if not os.path.isfile(compare_storage_file_path): raise errors.BadConfigOption( 'No such storage file: {0:s}.'.format(compare_storage_file_path)) self._compare_storage_file_path = compare_storage_file_path self.compare_storage_information = True self._output_format = self.ParseStringOption(options, 'output_format') if self._output_filename: if os.path.exists(self._output_filename): raise errors.BadConfigOption( 'Output file already exists: {0:s}.'.format(self._output_filename)) output_file_object = open(self._output_filename, 'wb') self._output_writer = tools.FileObjectOutputWriter(output_file_object) self._EnforceProcessMemoryLimit(self._process_memory_limit)
Parses the options. Args: options (argparse.Namespace): command line arguments. Raises: BadConfigOption: if the options are invalid.
juraj-google-style
def genome_name_from_fasta_path(fasta_path): filename = os.path.basename(fasta_path) return re.sub(r'(\.fa$)|(\.fas$)|(\.fasta$)|(\.fna$)|(\.\w{1,}$)', '', filename)
Extract genome name from fasta filename Get the filename without directory and remove the file extension. Example: With fasta file path ``/path/to/genome_1.fasta``:: fasta_path = '/path/to/genome_1.fasta' genome_name = genome_name_from_fasta_path(fasta_path) print(genome_name) # => "genome_1" Args: fasta_path (str): fasta file path Returns: str: genome name
juraj-google-style
async def remove(self, *, node_id: str, force: bool=False) -> Mapping[(str, Any)]: params = {'force': force} response = (await self.docker._query_json('nodes/{node_id}'.format(node_id=node_id), method='DELETE', params=params)) return response
Remove a node from a swarm. Args: node_id: The ID or name of the node
codesearchnet
def __init__(self, options): self._options = options self._tasks = {} self._task_lock = threading.RLock()
Constructor. Args: options (gax.BundleOptions): configures strategy this instance uses when executing bundled functions.
juraj-google-style
def decompress_decoder_2d(x, hparams, name=None): return decompress_decoder(x, hparams, strides=(2, 2), kernel=(hparams.kernel_size, hparams.kernel_size), name=name)
Decoder that decompresses 2-D inputs by 2**num_compress_steps. Args: x: Tensor of shape [batch, compress_height, compress_width, channels]. hparams: HParams. name: string, variable scope. Returns: Tensor of shape [batch, height, width, hparams.hidden_size].
juraj-google-style
def _NormalizedVolumeIdentifiers( self, volume_system, volume_identifiers, prefix='v'): normalized_volume_identifiers = [] for volume_identifier in volume_identifiers: if isinstance(volume_identifier, int): volume_identifier = '{0:s}{1:d}'.format(prefix, volume_identifier) elif not volume_identifier.startswith(prefix): try: volume_identifier = int(volume_identifier, 10) volume_identifier = '{0:s}{1:d}'.format(prefix, volume_identifier) except (TypeError, ValueError): pass try: volume = volume_system.GetVolumeByIdentifier(volume_identifier) except KeyError: volume = None if not volume: raise errors.ScannerError( 'Volume missing for identifier: {0:s}.'.format(volume_identifier)) normalized_volume_identifiers.append(volume_identifier) return normalized_volume_identifiers
Normalizes volume identifiers. Args: volume_system (VolumeSystem): volume system. volume_identifiers (list[int|str]): allowed volume identifiers, formatted as an integer or string with prefix. prefix (Optional[str]): volume identifier prefix. Returns: list[str]: volume identifiers with prefix. Raises: ScannerError: if the volume identifier is not supported or no volume could be found that corresponds with the identifier.
juraj-google-style
def get_device_name(): return context().device_name
Get the device name for the current thread. Returns: The device name for the current thread.
github-repos
def extension_to_message(extension: message.Message, message_cls: Type[_T]) -> _T: msg = message_cls() add_extension_to_message(extension, msg) return msg
Serializes a provided FHIR extension into a message of type message_cls. This function is a convenience wrapper around add_extension_to_message. Args: extension: The FHIR extension to serialize. message_cls: The type of protobuf message to serialize extension to. Returns: A message of type message_cls.
github-repos
def GetMessages(self, formatter_mediator, event): if self.DATA_TYPE != event.data_type: raise errors.WrongFormatter('Unsupported data type: {0:s}.'.format( event.data_type)) event_values = event.CopyToDict() event = event_values.get('event', None) if event: event_values['event_map'] = self.EVENT_NAMES.get(event, 'Unknown') category = event_values.get('cat', None) if category: event_values['category_map'] = self.CATEGORY_NAMES.get( category, 'Unknown') action = event_values.get('action0', None) if action: event_values['action0_map'] = self.ACTION_0_NAMES.get(action, 'Unknown') action = event_values.get('action1', None) if action: event_values['action1_map'] = self.ACTION_1_2_NAMES.get( action, 'Unknown') action = event_values.get('action2', None) if action: event_values['action2_map'] = self.ACTION_1_2_NAMES.get( action, 'Unknown') return self._ConditionalFormatMessages(event_values)
Determines the formatted message strings for an event object. Args: formatter_mediator (FormatterMediator): mediates the interactions between formatters and other components, such as storage and Windows EventLog resources. event (EventObject): event. Returns: tuple(str, str): formatted message string and short message string. Raises: WrongFormatter: if the event object cannot be formatted by the formatter.
juraj-google-style
def convert_dict_to_compatible_tensor(values, targets): result = {} for (key, value) in sorted(values.items()): result[key] = _convert_to_compatible_tensor(value, targets[key], error_prefix=("Can't convert %r" % key)) return result
Converts dict `values` in tensors that are compatible with `targets`. Args: values: A dict to objects to convert with same keys as `targets`. targets: A dict returned by `parse_tensor_info_map`. Returns: A map with the same keys as `values` but values converted into Tensor/SparseTensors that can be fed into `protomap`. Raises: TypeError: If it fails to convert.
codesearchnet
def extract_report_spec(service, label_is_supported=label_descriptor.KnownLabels.is_supported, metric_is_supported=metric_descriptor.KnownMetrics.is_supported): resource_descs = service.monitoredResources labels_dict = {} logs = set() if service.logging: logs = _add_logging_destinations(service.logging.producerDestinations, resource_descs, service.logs, labels_dict, label_is_supported) metrics_dict = {} monitoring = service.monitoring if monitoring: for destinations in (monitoring.consumerDestinations, monitoring.producerDestinations): _add_monitoring_destinations(destinations, resource_descs, service.metrics, metrics_dict, metric_is_supported, labels_dict, label_is_supported) return (logs, metrics_dict.keys(), labels_dict.keys())
Obtains the used logs, metrics and labels from a service. label_is_supported and metric_is_supported are filter functions used to determine if label_descriptors or metric_descriptors found in the service are supported. Args: service (:class:`endpoints_management.gen.servicecontrol_v1_messages.Service`): a service instance label_is_supported (:func): determines if a given label is supported metric_is_supported (:func): determines if a given metric is supported Return: tuple: ( logs (set[string}), # the logs to report to metrics (list[string]), # the metrics to use labels (list[string]) # the labels to add )
codesearchnet
def remove_handler(self, name): index = None for (i, h) in enumerate(self.capture_handlers): if (h['name'] == name): index = i if (index is not None): self.capture_handlers[index]['logger'].close() del self.capture_handlers[index]
Remove a handler given a name Note, if multiple handlers have the same name the last matching instance in the handler list will be removed. Args: name: The name of the handler to remove
codesearchnet
def from_string(cls, string, format_=None, fps=None, **kwargs): fp = io.StringIO(string) return cls.from_file(fp, format_, fps=fps, **kwargs)
Load subtitle file from string. See :meth:`SSAFile.load()` for full description. Arguments: string (str): Subtitle file in a string. Note that the string must be Unicode (in Python 2). Returns: SSAFile Example: >>> text = ''' ... 1 ... 00:00:00,000 --> 00:00:05,000 ... An example SubRip file. ... ''' >>> subs = SSAFile.from_string(text)
codesearchnet
def get_block(self, parent, config='running_config'): try: parent = r'^%s$' % parent return self.node.section(parent, config=config) except TypeError: return None
Scans the config and returns a block of code Args: parent (str): The parent string to search the config for and return the block config (str): A text config string to be searched. Default is to search the running-config of the Node. Returns: A string object that represents the block from the config. If the parent string is not found, then this method will return None.
juraj-google-style
def _mark_func_graph_as_unsaveable(graph, learning_phase): if graph.building_function and is_placeholder(learning_phase): graph.mark_as_unsaveable('The keras learning phase placeholder was used inside a function. Exporting placeholders is not supported when saving out a SavedModel. Please call `tf.keras.backend.set_learning_phase(0)` in the function to set the learning phase to a constant value.')
Mark func graph as unsaveable due to use of symbolic keras learning phase. Functions that capture the symbolic learning phase cannot be exported to SavedModel. Mark the funcgraph as unsaveable, so that an error will be raised if it is exported. Args: graph: Graph or FuncGraph object. learning_phase: Learning phase placeholder or int defined in the graph.
github-repos
def convert_bbox_yolo_to_pascal(boxes: torch.Tensor, image_size: tuple[int, int]) -> torch.Tensor: boxes = center_to_corners_format(boxes) height, width = image_size boxes = boxes * torch.tensor([[width, height, width, height]]) return boxes
Convert bounding boxes from YOLO format (x_center, y_center, width, height) in range [0, 1] to Pascal VOC format (x_min, y_min, x_max, y_max) in absolute coordinates. Args: boxes (torch.Tensor): Bounding boxes in YOLO format image_size (Tuple[int, int]): Image size in format (height, width) Returns: torch.Tensor: Bounding boxes in Pascal VOC format (x_min, y_min, x_max, y_max)
github-repos
def _ReadFormatDataTypeDefinition(self, definitions_registry, definition_values, definition_name, is_member=False): if is_member: error_message = 'data type not supported as member' raise errors.DefinitionReaderError(definition_name, error_message) definition_object = self._ReadLayoutDataTypeDefinition(definitions_registry, definition_values, data_types.FormatDefinition, definition_name, self._SUPPORTED_DEFINITION_VALUES_FORMAT) definition_object.metadata = definition_values.get('metadata', {}) attributes = definition_values.get('attributes', None) if attributes: unsupported_attributes = set(attributes.keys()).difference(self._SUPPORTED_ATTRIBUTES_FORMAT) if unsupported_attributes: error_message = 'unsupported attributes: {0:s}'.format(', '.join(unsupported_attributes)) raise errors.DefinitionReaderError(definition_name, error_message) byte_order = attributes.get('byte_order', definitions.BYTE_ORDER_NATIVE) if (byte_order not in definitions.BYTE_ORDERS): error_message = 'unsupported byte-order attribute: {0!s}'.format(byte_order) raise errors.DefinitionReaderError(definition_name, error_message) definition_object.byte_order = byte_order return definition_object
Reads a format data type definition. Args: definitions_registry (DataTypeDefinitionsRegistry): data type definitions registry. definition_values (dict[str, object]): definition values. definition_name (str): name of the definition. is_member (Optional[bool]): True if the data type definition is a member data type definition. Returns: FormatDefinition: format definition. Raises: DefinitionReaderError: if the definitions values are missing or if the format is incorrect.
codesearchnet
def GetIndentLevel(line): indent = Match(r'^( *)\S', line) if indent: return len(indent.group(1)) else: return 0
Return the number of leading spaces in line. Args: line: A string to check. Returns: An integer count of leading spaces, possibly zero.
juraj-google-style
def add_payload(self, key, val, append=False): self._request.add_payload(key, val, append)
Add a key value pair to payload for this request. .. Note:: For ``_search`` you can pass a search argument. (e.g. _search?summary=1.1.1.1). Args: key (string): The payload key val (string): The payload value append (bool): Indicate whether the value should be appended
juraj-google-style
def to_dict(self): return dict(addr=self.addr, protocol=self.protocol, weight=self.weight, last_checked=self.last_checked)
convert detailed proxy info into a dict Returns: dict: A dict with four keys: ``addr``, ``protocol``, ``weight`` and ``last_checked``
codesearchnet
def add_redistribution(self, protocol, route_map_name=None): protocols = ['bgp', 'rip', 'static', 'connected'] if protocol not in protocols: raise ValueError('redistributed protocol must be' 'bgp, connected, rip or static') if route_map_name is None: cmd = 'redistribute {}'.format(protocol) else: cmd = 'redistribute {} route-map {}'.format(protocol, route_map_name) return self.configure_ospf(cmd)
Adds a protocol redistribution to OSPF Args: protocol (str): protocol to redistribute route_map_name (str): route-map to be used to filter the protocols Returns: bool: True if the command completes successfully Exception: ValueError: This will be raised if the protocol pass is not one of the following: [rip, bgp, static, connected]
juraj-google-style
def reorder(miz_file_path: typing.Union[str, Path], target_dir: typing.Union[str, Path], skip_options_file: bool, ): miz_file_path = Path(miz_file_path).absolute() if not miz_file_path.exists(): raise FileNotFoundError(miz_file_path) if not miz_file_path.is_file(): raise ValueError(f'not a file: {miz_file_path}') target_dir_path = Path(target_dir).absolute() if not target_dir_path.exists(): target_dir_path.mkdir(parents=True) else: if not target_dir_path.is_dir(): raise ValueError(f'not a directory: {target_dir_path}') LOGGER.debug('re-ordering miz file: %s', miz_file_path) LOGGER.debug('destination folder: %s', target_dir) LOGGER.debug('%s option file', "skipping" if skip_options_file else "including") if not target_dir_path.exists(): LOGGER.debug('creating directory %s', target_dir_path) target_dir_path.mkdir(exist_ok=True) Miz._do_reorder(miz_file_path, skip_options_file, target_dir_path)
Re-orders a miz file into a folder (flattened) Args: miz_file_path: source miz file target_dir: folder to flatten the content into skip_options_file: do not re-order option file
juraj-google-style
def get_interpolated_value(self, energy, integrated=False): inter = {} for spin in self.cohp: if not integrated: inter[spin] = get_linear_interpolated_value(self.energies, self.cohp[spin], energy) elif self.icohp is not None: inter[spin] = get_linear_interpolated_value(self.energies, self.icohp[spin], energy) else: raise ValueError("ICOHP is empty.") return inter
Returns the COHP for a particular energy. Args: energy: Energy to return the COHP value for.
juraj-google-style
def report_file(config, auth, report_id=None, name=None, timeout=60, chunksize=DBM_CHUNKSIZE): storage_path = report_fetch(config, auth, report_id, name, timeout) if storage_path == False: return (None, None) elif storage_path == True: return ('report_running.csv', None) else: filename = RE_FILENAME.search(storage_path).groups(0)[0] if chunksize: if config.verbose: print('REPORT FILE STREAM:', storage_path) return (filename, response_utf8_stream(urlopen(storage_path), chunksize)) else: if config.verbose: print('REPORT FILE SINGLE:', storage_path) return (filename, urlopen(storage_path).read().decode('UTF-8'))
Retrieves most recent DBM file by name or ID, if in progress, waits for it to complete. Timeout is in minutes ( retries will happen at 1 minute interval, default total time is 60 minutes ) If chunksize is set to None then the whole file is downloaded at once. Args: * auth: (string) Either user or service. * report_id: (int) ID of DCm report to fetch ( either or name ). * name: (string) Name of report to fetch ( either or report_id ). * timeout: (int) Minutes to wait for in progress report before giving up. * chunksize: (int) number of bytes to download at a time, for memory constrained systems. Returns: * (filename, iterator) if file exists and is ready to download in chunks. * (filename, file) if file exists and chunking is off. * ('report_running.csv', None) if report is in progress. * (None, None) if file does not exist.
github-repos
def market_exact(self, session, start_time: str, end_time: str) -> Session: if session not in self.exch: return SessNA ss = self.exch[session] same_day = ss[0] < ss[-1] if not start_time: s_time = ss[0] else: s_time = param.to_hour(start_time) if same_day: s_time = max(s_time, ss[0]) if not end_time: e_time = ss[-1] else: e_time = param.to_hour(end_time) if same_day: e_time = min(e_time, ss[-1]) if same_day and (s_time > e_time): return SessNA return Session(start_time=s_time, end_time=e_time)
Explicitly specify start time and end time Args: session: predefined session start_time: start time in terms of HHMM string end_time: end time in terms of HHMM string Returns: Session of start_time and end_time
juraj-google-style
def _GetFileByPath(self, key_path_upper): (key_path_prefix, registry_file) = self._GetCachedFileByPath(key_path_upper) if (not registry_file): for mapping in self._GetFileMappingsByPath(key_path_upper): try: registry_file = self._OpenFile(mapping.windows_path) except IOError: registry_file = None if (not registry_file): continue if (not key_path_prefix): key_path_prefix = mapping.key_path_prefix self.MapFile(key_path_prefix, registry_file) key_path_prefix = key_path_prefix.upper() break return (key_path_prefix, registry_file)
Retrieves a Windows Registry file for a specific path. Args: key_path_upper (str): Windows Registry key path, in upper case with a resolved root key alias. Returns: tuple: consists: str: upper case key path prefix WinRegistryFile: corresponding Windows Registry file or None if not available.
codesearchnet
def get_test_dataloader(self, test_dataset: Dataset) -> DataLoader: return self._get_dataloader(dataset=test_dataset, description='test', batch_size=self.args.eval_batch_size, sampler_fn=self._get_eval_sampler)
Returns the test [`~torch.utils.data.DataLoader`]. Subclass and override this method if you want to inject some custom behavior. Args: test_dataset (`torch.utils.data.Dataset`, *optional*): The test dataset to use. If it is a [`~datasets.Dataset`], columns not accepted by the `model.forward()` method are automatically removed. It must implement `__len__`.
github-repos
def create_nanopubs_fh(output_fn: str): (json_flag, jsonl_flag, yaml_flag) = (False, False, False) if output_fn: if re.search('gz$', output_fn): out_fh = gzip.open(output_fn, 'wt') else: out_fh = click.open_file(output_fn, mode='wt') if re.search('ya?ml', output_fn): yaml_flag = True elif (('jsonl' in output_fn) or ('-' == output_fn)): jsonl_flag = True elif ('json' in output_fn): json_flag = True else: out_fh = sys.stdout return (out_fh, yaml_flag, jsonl_flag, json_flag)
Create Nanopubs output filehandle \b If output fn is '-' will write JSONlines to STDOUT If output fn has *.gz, will written as a gzip file If output fn has *.jsonl*, will written as a JSONLines file IF output fn has *.json*, will be written as a JSON file If output fn has *.yaml* or *.yml*, will be written as a YAML file Args: output_fn: Name of output file Returns: (filehandle, yaml_flag, jsonl_flag, json_flag)
codesearchnet
def add_info_field(self, field): if field in self.info_dict: msg = "New info field [{}] already exists.".format(field) raise KeyError(msg) if "=" in field: key, value = field.split("=") self.info_dict[key] = value else: self.info_dict[field] = field self._join_info_fields()
Adds new info field (flag or key=value pair). Args: field: String flag (e.g. "SOMATIC") or key-value ("NEW_DP=42") Raises: KeyError: if info field already exists
juraj-google-style