code
stringlengths 20
4.93k
| docstring
stringlengths 33
1.27k
| source
stringclasses 3
values |
---|---|---|
def GetFileEntryByPathSpec(self, path_spec):
location = getattr(path_spec, 'location', None)
if (location is None or
not location.startswith(self.LOCATION_ROOT)):
return None
if len(location) == 1:
return cpio_file_entry.CPIOFileEntry(
self._resolver_context, self, path_spec, is_root=True,
is_virtual=True)
cpio_archive_file_entry = self._cpio_archive_file.GetFileEntryByPath(
location[1:])
if cpio_archive_file_entry is None:
return None
return cpio_file_entry.CPIOFileEntry(
self._resolver_context, self, path_spec,
cpio_archive_file_entry=cpio_archive_file_entry)
|
Retrieves a file entry for a path specification.
Args:
path_spec (PathSpec): a path specification.
Returns:
CPIOFileEntry: a file entry or None if not available.
|
juraj-google-style
|
def _set_mode(self, discover_mode, connect_mode):
payload = struct.pack("<BB", discover_mode, connect_mode)
response = self._send_command(6, 1, payload)
result, = unpack("<H", response.payload)
if result != 0:
return False, {'reason': 'Error code from BLED112 setting mode', 'code': result}
return True, None
|
Set the mode of the BLED112, used to enable and disable advertising
To enable advertising, use 4, 2.
To disable advertising use 0, 0.
Args:
discover_mode (int): The discoverability mode, 0 for off, 4 for on (user data)
connect_mode (int): The connectability mode, 0 for of, 2 for undirected connectable
|
juraj-google-style
|
def __init__(self, structure, element):
self.structure = structure
self.element = element
interstitial_finder = StructureMotifInterstitial(self.structure, self.element)
self.unique_defect_seq = []
pdc = PointDefectComparator()
for poss_site in interstitial_finder.enumerate_defectsites():
now_defect = Interstitial( self.structure, poss_site)
append_defect = True
for unique_defect in self.unique_defect_seq:
if pdc.are_equal( now_defect, unique_defect):
append_defect = False
if append_defect:
self.unique_defect_seq.append( now_defect)
self.count_def = 0
|
Initializes an Interstitial generator using structure motifs
Args:
structure (Structure): pymatgen structure object
element (str or Element or Specie): element for the interstitial
|
juraj-google-style
|
def _namespace_to_ord(namespace):
n = 0
for (i, c) in enumerate(namespace):
n += ((_LEX_DISTANCE[((MAX_NAMESPACE_LENGTH - i) - 1)] * NAMESPACE_CHARACTERS.index(c)) + 1)
return n
|
Converts a namespace string into an int representing its lexographic order.
>>> _namespace_to_ord('')
''
>>> _namespace_to_ord('_')
1
>>> _namespace_to_ord('__')
2
Args:
namespace: A namespace string.
Returns:
An int representing the lexographical order of the given namespace string.
|
codesearchnet
|
def smart_case(pred_fn_pairs, default=None, exclusive=False, name='smart_case'):
return control_flow_case._case_helper(smart_cond, pred_fn_pairs, default, exclusive, name, allow_python_preds=True)
|
Like tf.case, except attempts to statically evaluate predicates.
If any predicate in `pred_fn_pairs` is a bool or has a constant value, the
associated callable will be called or omitted depending on its value.
Otherwise this functions like tf.case.
Args:
pred_fn_pairs: Dict or list of pairs of a boolean scalar tensor and a
callable which returns a list of tensors.
default: Optional callable that returns a list of tensors.
exclusive: True iff at most one predicate is allowed to evaluate to `True`.
name: A name for this operation (optional).
Returns:
The tensors returned by the first pair whose predicate evaluated to True, or
those returned by `default` if none does.
Raises:
TypeError: If `pred_fn_pairs` is not a list/dictionary.
TypeError: If `pred_fn_pairs` is a list but does not contain 2-tuples.
TypeError: If `fns[i]` is not callable for any i, or `default` is not
callable.
|
github-repos
|
def cursor_event(self, x, y, dx, dy):
self.sys_camera.rot_state(x, y)
|
The standard mouse movement event method.
Can be overriden to add new functionality.
By default this feeds the system camera with new values.
Args:
x: The current mouse x position
y: The current mouse y position
dx: Delta x postion (x position difference from the previous event)
dy: Delta y postion (y position difference from the previous event)
|
juraj-google-style
|
def get_sid(principal):
if principal is None:
principal = 'NULL SID'
try:
sid = salt.utils.win_functions.get_sid_from_name(principal)
except CommandExecutionError:
sid = principal
try:
sid = win32security.ConvertStringSidToSid(sid)
except pywintypes.error:
log.exception('Invalid user/group or sid: %s', principal)
raise CommandExecutionError(
'Invalid user/group or sid: {0}'.format(principal))
except TypeError:
raise CommandExecutionError
return sid
|
Converts a username to a sid, or verifies a sid. Required for working with
the DACL.
Args:
principal(str):
The principal to lookup the sid. Can be a sid or a username.
Returns:
PySID Object: A sid
Usage:
.. code-block:: python
# Get a user's sid
salt.utils.win_dacl.get_sid('jsnuffy')
# Verify that the sid is valid
salt.utils.win_dacl.get_sid('S-1-5-32-544')
|
juraj-google-style
|
def list_physical_devices(self, device_type=None):
self._initialize_physical_devices()
if device_type is None:
return list(self._physical_devices)
return [d for d in self._physical_devices if d.device_type == device_type]
|
List local devices visible to the system.
This API allows a client to query the devices before they have been
initialized by the eager runtime. Additionally a user can filter by device
type, to get only CPUs or GPUs.
Args:
device_type: Optional device type to limit results to
Returns:
List of PhysicalDevice objects.
|
github-repos
|
def get_year_description(self):
def format_year(s):
regex = re.compile('^\\d+$')
if regex.match(s):
year_int = int(s)
if (year_int < 1900):
return year_int
return datetime.date(year_int, 1, 1).strftime('%Y')
else:
return s
return self.get_segment_description(self._expression_parts[6], '', (lambda s: format_year(s)), (lambda s: _(', every {0} years').format(s)), (lambda s: _(', {0} through {1}')), (lambda s: _(', only in {0}')))
|
Generates a description for only the YEAR portion of the expression
Returns:
The YEAR description
|
codesearchnet
|
def read(path, encoding="utf-8"):
try:
with io.open(path, encoding=encoding) as f:
return f.read()
except Exception as e:
logger.error("read: %s failed. Error: %s", path, e)
return ""
|
Read the content of the file.
Args:
path (str): Path to the file
encoding (str): File encoding. Default: utf-8
Returns:
str: File content or empty string if there was an error
|
juraj-google-style
|
def _audio_response_for_run(self, tensor_events, run, tag, sample):
response = []
index = 0
filtered_events = self._filter_by_sample(tensor_events, sample)
content_type = self._get_mime_type(run, tag)
for (index, tensor_event) in enumerate(filtered_events):
data = tensor_util.make_ndarray(tensor_event.tensor_proto)
label = data[(sample, 1)]
response.append({'wall_time': tensor_event.wall_time, 'step': tensor_event.step, 'label': plugin_util.markdown_to_safe_html(label), 'contentType': content_type, 'query': self._query_for_individual_audio(run, tag, sample, index)})
return response
|
Builds a JSON-serializable object with information about audio.
Args:
tensor_events: A list of image event_accumulator.TensorEvent objects.
run: The name of the run.
tag: The name of the tag the audio entries all belong to.
sample: The zero-indexed sample of the audio sample for which to
retrieve information. For instance, setting `sample` to `2` will
fetch information about only the third audio clip of each batch,
and steps with fewer than three audio clips will be omitted from
the results.
Returns:
A list of dictionaries containing the wall time, step, URL, width, and
height for each audio entry.
|
codesearchnet
|
def _cmd(self, command, uid=None):
if not uid:
uid = self.uid
self._client_send(json.dumps({'cmd': command, 'uid': uid}))
return self._client_receive()
|
Send a command to the server.
Args:
command: str, The name of the command to execute.
uid: int, the uid of the session to send the command to.
Returns:
The line that was written back.
|
juraj-google-style
|
def compute_values(edge_compatibility, v):
all_edge_values = tf.matmul(tf.to_float(edge_compatibility), v)
output = tf.reduce_sum(all_edge_values, axis=1)
return output
|
Compute values. If edge compatibilities is just adjacency, we get ggnn.
Args:
edge_compatibility: A tensor of shape [batch, num_transforms, length, depth]
v: A tensor of shape [batch, num_transforms, length, depth]
Returns:
output: A [batch, length, depth] tensor
|
codesearchnet
|
def configs_for_writer(writer=None, ppp_config_dir=None):
search_paths = (ppp_config_dir,) if ppp_config_dir else tuple()
if writer is not None:
if not isinstance(writer, (list, tuple)):
writer = [writer]
config_files = [w if w.endswith('.yaml') else w + '.yaml' for w in writer]
else:
writer_configs = glob_config(os.path.join('writers', '*.yaml'),
*search_paths)
config_files = set(writer_configs)
for config_file in config_files:
config_basename = os.path.basename(config_file)
writer_configs = config_search_paths(
os.path.join("writers", config_basename), *search_paths)
if not writer_configs:
LOG.warning("No writer configs found for '%s'", writer)
continue
yield writer_configs
|
Generator of writer configuration files for one or more writers
Args:
writer (Optional[str]): Yield configs only for this writer
ppp_config_dir (Optional[str]): Additional configuration directory
to search for writer configuration files.
Returns: Generator of lists of configuration files
|
juraj-google-style
|
def _override_helper(clazz_object, operator, func):
if operator not in Tensor.OVERLOADABLE_OPERATORS:
raise ValueError(f'Overriding {operator} is disallowed. Allowed operators are {Tensor.OVERLOADABLE_OPERATORS}.')
setattr(clazz_object, operator, func)
|
Overrides (string) operator on Tensors to call func.
Args:
clazz_object: the class to override for; either Tensor or SparseTensor.
operator: the string name of the operator to override.
func: the function that replaces the overridden operator.
Raises:
ValueError: If operator is not allowed to be overwritten.
|
github-repos
|
def configs_for_reader(reader=None, ppp_config_dir=None):
search_paths = (ppp_config_dir,) if ppp_config_dir else tuple()
if reader is not None:
if not isinstance(reader, (list, tuple)):
reader = [reader]
new_readers = []
for reader_name in reader:
if reader_name.endswith('.yaml') or reader_name not in OLD_READER_NAMES:
new_readers.append(reader_name)
continue
new_name = OLD_READER_NAMES[reader_name]
raise ValueError("Reader name '{}' has been deprecated, use '{}' instead.".format(reader_name, new_name))
reader = new_readers
config_files = [r if r.endswith('.yaml') else r + '.yaml' for r in reader]
else:
reader_configs = glob_config(os.path.join('readers', '*.yaml'),
*search_paths)
config_files = set(reader_configs)
for config_file in config_files:
config_basename = os.path.basename(config_file)
reader_configs = config_search_paths(
os.path.join("readers", config_basename), *search_paths)
if not reader_configs:
raise ValueError("No reader(s) named: {}".format(reader))
yield reader_configs
|
Generator of reader configuration files for one or more readers
Args:
reader (Optional[str]): Yield configs only for this reader
ppp_config_dir (Optional[str]): Additional configuration directory
to search for reader configuration files.
Returns: Generator of lists of configuration files
|
juraj-google-style
|
def AnalyzeFileObject(self, file_object):
tsk_image_object = tsk_image.TSKFileSystemImage(file_object)
try:
pytsk3.Volume_Info(tsk_image_object)
except IOError:
return None
return self.type_indicator
|
Retrieves the format specification.
Args:
file_object (FileIO): file-like object.
Returns:
str: type indicator if the file-like object contains a supported format
or None otherwise.
|
juraj-google-style
|
def restrict_bond_dict(self, bond_dict):
return {j: bond_dict[j] & set(self.index) for j in self.index}
|
Restrict a bond dictionary to self.
Args:
bond_dict (dict): Look into :meth:`~chemcoord.Cartesian.get_bonds`,
to see examples for a bond_dict.
Returns:
bond dictionary
|
juraj-google-style
|
def abs_path(rel_path):
return os.path.abspath(os.path.join(os.path.dirname(sys._getframe(1).f_code.co_filename), rel_path))
|
Convert a path that is relative to the module from which this function is called,
to an absolute path.
Args:
rel_path: str
Path relative to the location of the module file from which this function is called.
Returns:
str : Absolute path to the location specified by ``rel_path``.
|
codesearchnet
|
def get_error_name(error):
error_type = type(error)
if error_type.__module__ in ['__main__', 'builtins']:
return error_type.__name__
else:
return f'{error_type.__module__}.{error_type.__name__}'
|
Return canonical error name as string.
For builtin errors like ValueError or Exception, will return the bare
name, like ValueError or Exception.
For all other exceptions, will return modulename.errorname, such as
arbpackage.mod.myerror
Args:
error: Exception object.
Returns:
str. Canonical error name.
|
juraj-google-style
|
def ReadFile(filename, logger=None):
try:
encoding = file_resources.FileEncoding(filename)
with codecs.open(filename, mode='r', encoding=encoding) as fd:
lines = fd.readlines()
line_ending = file_resources.LineEnding(lines)
source = '\n'.join((line.rstrip('\r\n') for line in lines)) + '\n'
return (source, line_ending, encoding)
except IOError as e:
if logger:
logger(e)
e.args = (e.args[0], (filename, e.args[1][1], e.args[1][2], e.args[1][3]))
raise
except UnicodeDecodeError as e:
if logger:
logger('Could not parse %s! Consider excluding this file with --exclude.', filename)
logger(e)
e.args = (e.args[0], (filename, e.args[1][1], e.args[1][2], e.args[1][3]))
raise
|
Read the contents of the file.
An optional logger can be specified to emit messages to your favorite logging
stream. If specified, then no exception is raised. This is external so that it
can be used by third-party applications.
Arguments:
filename: (unicode) The name of the file.
logger: (function) A function or lambda that takes a string and emits it.
Returns:
The contents of filename.
Raises:
IOError: raised if there was an error reading the file.
|
github-repos
|
def gen_schedule(user, num_blocks=6, surrounding_blocks=None):
no_signup_today = None
schedule = []
if (surrounding_blocks is None):
surrounding_blocks = EighthBlock.objects.get_upcoming_blocks(num_blocks)
if (len(surrounding_blocks) == 0):
return (None, False)
signups = EighthSignup.objects.filter(user=user, scheduled_activity__block__in=surrounding_blocks).select_related('scheduled_activity', 'scheduled_activity__block', 'scheduled_activity__activity')
block_signup_map = {s.scheduled_activity.block.id: s.scheduled_activity for s in signups}
for b in surrounding_blocks:
current_sched_act = block_signup_map.get(b.id, None)
if current_sched_act:
current_signup = current_sched_act.title_with_flags
current_signup_cancelled = current_sched_act.cancelled
current_signup_sticky = current_sched_act.activity.sticky
rooms = current_sched_act.get_scheduled_rooms()
else:
current_signup = None
current_signup_cancelled = False
current_signup_sticky = False
rooms = None
flags = ('locked' if b.locked else 'open')
blk_today = b.is_today()
if (blk_today and (not current_signup)):
flags += ' warning'
if current_signup_cancelled:
flags += ' cancelled warning'
if current_signup_cancelled:
current_signup = current_signup.replace(' (Cancelled)', '')
info = {'id': b.id, 'block': b, 'block_letter': b.block_letter, 'current_signup': current_signup, 'current_signup_cancelled': current_signup_cancelled, 'current_signup_sticky': current_signup_sticky, 'locked': b.locked, 'date': b.date, 'flags': flags, 'is_today': blk_today, 'signup_time': b.signup_time, 'signup_time_future': b.signup_time_future, 'rooms': rooms}
schedule.append(info)
if (blk_today and (not current_signup)):
no_signup_today = True
return (schedule, no_signup_today)
|
Generate a list of information about a block and a student's current activity signup.
Returns:
schedule
no_signup_today
|
codesearchnet
|
def __init__(self, context):
self._db_connection_provider = context.db_connection_provider
self._multiplexer = context.multiplexer
|
Instantiates HistogramsPlugin via TensorBoard core.
Args:
context: A base_plugin.TBContext instance.
|
juraj-google-style
|
def dbr(self, value=None):
if (value is not None):
try:
value = float(value)
except ValueError:
raise ValueError('value {} need to be of type float for field `dbr`'.format(value))
self._dbr = value
|
Corresponds to IDD Field `dbr` Daily temperature range for hottest
month.
[defined as mean of the difference between daily maximum
and daily minimum dry-bulb temperatures for hottest month]
Args:
value (float): value for IDD Field `dbr`
Unit: C
if `value` is None it will not be checked against the
specification and is assumed to be a missing value
Raises:
ValueError: if `value` is not a valid value
|
codesearchnet
|
def __init__(self, context, name, task_id):
self.name = name
self.context = context
self.task_id = task_id
|
Initialize ChainOfTrust.
Args:
context (scriptworker.context.Context): the scriptworker context
name (str): the name of the task (e.g., signing)
task_id (str): the task_id of the task
|
juraj-google-style
|
def GetStringTypeSummary(obj, available_space, line_length):
if len(obj) + len(TWO_DOUBLE_QUOTES) <= available_space:
content = obj
else:
additional_len_needed = len(TWO_DOUBLE_QUOTES) + len(formatting.ELLIPSIS)
if available_space < additional_len_needed:
available_space = line_length
content = formatting.EllipsisTruncate(obj, available_space - len(TWO_DOUBLE_QUOTES), line_length)
return formatting.DoubleQuote(content)
|
Returns a custom summary for string type objects.
This function constructs a summary for string type objects by double quoting
the string value. The double quoted string value will be potentially truncated
with ellipsis depending on whether it has enough space available to show the
full string value.
Args:
obj: The object to generate summary for.
available_space: Number of character spaces available.
line_length: The full width of the terminal, default is 80.
Returns:
A summary for the input object.
|
github-repos
|
def CredibleInterval(self, percentage=90):
prob = ((1 - (percentage / 100.0)) / 2)
interval = (self.Value(prob), self.Value((1 - prob)))
return interval
|
Computes the central credible interval.
If percentage=90, computes the 90% CI.
Args:
percentage: float between 0 and 100
Returns:
sequence of two floats, low and high
|
codesearchnet
|
def add_triple(self, p, o, auto_refresh=True):
self.rdf.graph.add((self.uri, p, self._handle_object(o)))
self._handle_triple_refresh(auto_refresh)
|
add triple by providing p,o, assumes s = subject
Args:
p (rdflib.term.URIRef): predicate
o (): object
auto_refresh (bool): whether or not to update object-like self.rdf.triples
Returns:
None: adds triple to self.rdf.graph
|
codesearchnet
|
def download_files_maybe_extract(urls, directory, check_files=[]):
check_files = [os.path.join(directory, f) for f in check_files]
if _check_download(*check_files):
return
for url in urls:
download_file_maybe_extract(url=url, directory=directory)
if (not _check_download(*check_files)):
raise ValueError('[DOWNLOAD FAILED] `*check_files` not found')
|
Download the files at ``urls`` to ``directory``. Extract to ``directory`` if tar or zip.
Args:
urls (str): Url of files.
directory (str): Directory to download to.
check_files (list of str): Check if these files exist, ensuring the download succeeded.
If these files exist before the download, the download is skipped.
Raises:
ValueError: Error if one of the ``check_files`` are not found following the download.
|
codesearchnet
|
def group_by_size(input_tensors, bytes_per_pack):
if bytes_per_pack == 0:
return [input_tensors]
packs = []
last_pack_size = 0
for value in input_tensors:
num_elements = value.shape.num_elements()
if num_elements is None:
logging.warning('not packing values due to the unknown or inconsistent shape of %s', value)
return [input_tensors]
size = num_elements * value.dtype.size
if not packs or last_pack_size > bytes_per_pack:
packs.append([])
last_pack_size = 0
packs[-1].append(value)
last_pack_size += size
return packs
|
Groups `input_tensors` into chunks of `bytes_per_pack`.
The method preserves the original order of `input_tensors`. The grouping is
best effort, each pack could have more or less bytes than `bytes_per_pack`.
It only groups values with known shape.
Args:
input_tensors: a list of Tensor.
bytes_per_pack: an integer.
Returns:
A list of packs of Tensor. All values are grouped into one pack if
`bytes_per_pack` is zero or any of the value has unknown shape.
|
github-repos
|
def convert_aspect_ratios_to_ids(aspect_ratios: List[List[Tuple[int, int]]], max_image_tiles: int) -> np.ndarray:
batch_size = len(aspect_ratios)
max_num_images = max([len(row) for row in aspect_ratios])
supported_aspect_ratios = get_all_supported_aspect_ratios(max_image_tiles)
aspect_ratios_ids = np.zeros((batch_size, max_num_images), dtype=np.int64)
for i, sample_aspect_ratios in enumerate(aspect_ratios):
for j, (num_tiles_h, num_tiles_w) in enumerate(sample_aspect_ratios):
aspect_ratios_ids[i, j] = supported_aspect_ratios.index((num_tiles_h, num_tiles_w)) + 1
return aspect_ratios_ids
|
Convert aspect ratio tuples to unique ids.
For batch padding we use 0, because there might be different number of images in each batch.
The aspect ratio ids start from 1, with 1 corresponding to the first supported aspect ratio.
Args:
aspect_ratios (`List[List[Tuple[int, int]]]`):
A list of aspect ratios for each image in the batch.
max_image_tiles (`int`):
The maximum number of tiles any image can be split into.
Returns:
`np.ndarray`:
The aspect ratios ids as a numpy array with shape (batch_size, max_num_images).
Each id corresponds to the index of the aspect ratio in the list of supported aspect ratios,
offset by 1 (so 0 can be used for padding).
|
github-repos
|
def get_lib():
import tensorflow as tf
return _os_path.join(_os_path.dirname(tf.__file__))
|
Get the directory containing the TensorFlow framework library.
Returns:
The directory as string.
|
github-repos
|
def List(self, device_path):
connection = self.protocol_handler.Open(self._handle, destination=b'sync:')
listing = self.filesync_handler.List(connection, device_path)
connection.Close()
return listing
|
Return a directory listing of the given path.
Args:
device_path: Directory to list.
|
juraj-google-style
|
def forward(self, raw_audio: torch.FloatTensor) -> Tuple[torch.Tensor, torch.Tensor]:
input_audio = raw_audio.permute(0, 2, 1).float()
latent_states = []
for level in range(self.levels):
encoder = self.encoders[level]
latent_state = encoder(input_audio)
latent_states.append(latent_state[-1])
_, music_tokens, commit_losses, _ = self.bottleneck(latent_states)
dequantised_states = []
for level in range(self.levels):
decoder = self.decoders[level]
dequantised_state = decoder(music_tokens[level:level + 1], all_levels=False)
dequantised_states.append(dequantised_state.permute(0, 2, 1))
commit_loss = sum(commit_losses)
loss = self.commit * commit_loss
return (dequantised_states, loss)
|
Forward pass of the VQ-VAE, encodes the `raw_audio` to latent states, which are then decoded for each level.
The commit loss, which ensure that the encoder's computed embeddings are close to the codebook vectors, is
computed.
Args:
raw_audio (`torch.FloatTensor`):
Audio input which will be encoded and decoded.
Returns:
`Tuple[torch.Tensor, torch.Tensor]`
Example:
```python
>>> from transformers import JukeboxVQVAE, set_seed
>>> import torch
>>> model = JukeboxVQVAE.from_pretrained("openai/jukebox-1b-lyrics").eval()
>>> set_seed(0)
>>> zs = [torch.randint(100, (4, 1))]
>>> model.decode(zs).shape
torch.Size([4, 8, 1])
```
|
github-repos
|
def make_multi_lagger(lags, groupby_kwargs=None):
laggers = [SingleLagger(l, groupby_kwargs=groupby_kwargs) for l in lags]
feature_union = FeatureUnion([
(repr(lagger), lagger) for lagger in laggers
])
return feature_union
|
Return a union of transformers that apply different lags
Args:
lags (Collection[int]): collection of lags to apply
groupby_kwargs (dict): keyword arguments to pd.DataFrame.groupby
|
juraj-google-style
|
def profile_df(df):
return IPython.core.display.HTML(pandas_profiling.ProfileReport(df).html.replace('bootstrap', 'nonexistent'))
|
Generate a profile of data in a dataframe.
Args:
df: the Pandas dataframe.
|
codesearchnet
|
def GenerateLibSig(short_name):
with _UTILITY_LOCK:
utilities_used = ', '.join([utility for utility in sorted(_utility_registry)])
_utility_registry.Clear()
if utilities_used:
return (' (%s, %s, %s, %s)' % (short_name, _COMMON_LIB_SIG, _PYTHON_VERSION, utilities_used))
else:
return (' (%s, %s, %s)' % (short_name, _COMMON_LIB_SIG, _PYTHON_VERSION))
|
Generates a library signature suitable for a user agent field.
Args:
short_name: The short, product-specific string name for the library.
Returns:
A library signature string to append to user-supplied user-agent value.
|
codesearchnet
|
def run(argv=None, save_main_session=True, test_pipeline=None) -> PipelineResult:
known_args, pipeline_args = parse_known_args(argv)
pipeline_options = PipelineOptions(pipeline_args)
pipeline_options.view_as(SetupOptions).save_main_session = save_main_session
model_handler = VertexAIModelHandlerJSON(endpoint_id=known_args.endpoint, project=known_args.project, location=known_args.location, experiment=known_args.experiment, network=known_args.vpc_network, private=known_args.private)
pipeline = test_pipeline
if not test_pipeline:
pipeline = beam.Pipeline(options=pipeline_options)
read_glob = pipeline | 'Get glob' >> beam.Create([known_args.input])
read_image_name = read_glob | 'Get Image Paths' >> fileio.MatchAll()
load_image = read_image_name | 'Read Image' >> beam.Map(lambda image_name: read_image(image_name.path))
preprocess = load_image | 'Preprocess Image' >> beam.MapTuple(lambda img_name, img: (img_name, preprocess_image(img)))
predictions = preprocess | 'RunInference' >> RunInference(KeyedModelHandler(model_handler))
process_output = predictions | 'Process Predictions' >> beam.ParDo(PostProcessor())
_ = process_output | 'WriteOutput' >> beam.io.WriteToText(known_args.output, shard_name_template='', append_trailing_newlines=True)
result = pipeline.run()
result.wait_until_finish()
return result
|
Args:
argv: Command line arguments defined for this example.
save_main_session: Used for internal testing.
test_pipeline: Used for internal testing.
|
github-repos
|
def _generate_response(self, response: dict, request: dict) -> dict:
response_template = deepcopy(self.response_template)
response_template['sessionAttributes']['sessionId'] = request['session']['sessionId']
for key, value in response_template.items():
if key not in response.keys():
response[key] = value
return response
|
Populates generated response with additional data conforming Alexa response specification.
Args:
response: Raw user input extracted from Alexa request.
request: Alexa request.
Returns:
response: Response conforming Alexa response specification.
|
juraj-google-style
|
def create_token_type_ids_from_sequences(self, token_ids_0: List[int], token_ids_1: Optional[List[int]]=None) -> List[int]:
sep = [self.sep_token_id]
cls = [self.cls_token_id]
question_suffix = [self.question_token_id] + [self.convert_tokens_to_ids('.')]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
if self.padding_side == 'right':
return len(cls + token_ids_0 + question_suffix + sep) * [0] + len(token_ids_1 + sep) * [1]
else:
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + question_suffix + sep) * [1]
|
Create the token type IDs corresponding to the sequences passed. [What are token type
IDs?](../glossary#token-type-ids)
Should be overridden in a subclass if the model has a special way of building those.
Args:
token_ids_0 (`List[int]`): The first tokenized sequence.
token_ids_1 (`List[int]`, *optional*): The second tokenized sequence.
Returns:
`List[int]`: The token type ids.
|
github-repos
|
def read_folder(directory):
res = []
for filename in os.listdir(directory):
with io.open(os.path.join(directory, filename), encoding="utf-8") as f:
content = f.read()
res.append(content)
return res
|
read text files in directory and returns them as array
Args:
directory: where the text files are
Returns:
Array of text
|
juraj-google-style
|
class VptqConfig(QuantizationConfigMixin):
def __init__(self, enable_proxy_error: bool=False, config_for_layers: Dict[str, Any]={}, shared_layer_config: Dict[str, Any]={}, modules_to_not_convert: Optional[List]=None, **kwargs):
self.quant_method = QuantizationMethod.VPTQ
self.enable_proxy_error = enable_proxy_error
self.config_for_layers: Dict[str, Any] = config_for_layers
self.shared_layer_config: Dict[str, Any] = shared_layer_config
self.modules_to_not_convert = modules_to_not_convert
self.post_init()
def post_init(self):
for layer_name, layer_param in self.config_for_layers.items():
VptqLayerConfig(**layer_param)
if self.enable_proxy_error is True:
raise ValueError('enable_proxy_error should always be False until we support training')
|
This is a wrapper class about `vptq` parameters.
Args:
enable_proxy_error (`bool`, *optional*, defaults to `False`): calculate proxy error for each layer
config_for_layers (`Dict`, *optional*, defaults to `{}`): quantization params for each layer
shared_layer_config (`Dict`, *optional*, defaults to `{}`): shared quantization params among layers
modules_to_not_convert (`list`, *optional*, default to `None`):
The list of modules to not quantize, useful for quantizing models that explicitly require to have
some modules left in their original precision (e.g. Whisper encoder, Llava encoder, Mixtral gate layers).
kwargs (`Dict[str, Any]`, *optional*):
Additional parameters from which to initialize the configuration object.
|
github-repos
|
def set_Tc(self, Tc, T=None):
if isinstance(Tc, Iterable):
if (len(Tc) == len(T)):
x = np.concatenate(([(- ttconf.BIG_NUMBER)], T, [ttconf.BIG_NUMBER]))
y = np.concatenate(([Tc[0]], Tc, [Tc[(- 1)]]))
self.Tc = interp1d(x, y)
else:
self.logger('need Tc values and Timepoints of equal length', 2, warn=True)
self.Tc = interp1d([(- ttconf.BIG_NUMBER), ttconf.BIG_NUMBER], [1e-05, 1e-05])
else:
self.Tc = interp1d([(- ttconf.BIG_NUMBER), ttconf.BIG_NUMBER], [(Tc + ttconf.TINY_NUMBER), (Tc + ttconf.TINY_NUMBER)])
self.calc_integral_merger_rate()
|
initialize the merger model with a coalescent time
Args:
- Tc: a float or an iterable, if iterable another argument T of same shape is required
- T: an array like of same shape as Tc that specifies the time pivots corresponding to Tc
Returns:
- None
|
codesearchnet
|
def post_transform(self, args):
args = args[1:] if args and args[0] == 'az' else args
post_transform_commands = []
for i, arg in enumerate(args):
if is_alias_command(['create'], args) and i > 0 and args[i - 1] in ['-c', '--command']:
post_transform_commands.append(arg)
else:
post_transform_commands.append(os.path.expandvars(arg))
AliasManager.write_alias_config_hash(self.alias_config_hash)
AliasManager.write_collided_alias(self.collided_alias)
return post_transform_commands
|
Inject environment variables, and write hash to alias hash file after transforming alias to commands.
Args:
args: A list of args to post-transform.
|
juraj-google-style
|
def readinto(self, b):
if not self._readable:
raise UnsupportedOperation('read')
with self._seek_lock:
seek = self._seek
queue = self._read_queue
if seek == 0:
self._preload_range()
size = len(b)
if size:
b_view = memoryview(b)
size_left = size
else:
b_view = b
size_left = -1
b_end = 0
buffer_size = self._buffer_size
while size_left > 0 or size_left == -1:
start = seek % buffer_size
queue_index = seek - start
try:
buffer = queue[queue_index]
except KeyError:
break
with handle_os_exceptions():
try:
queue[queue_index] = buffer = buffer.result()
except AttributeError:
pass
buffer_view = memoryview(buffer)
data_size = len(buffer)
if not data_size:
break
if size_left != -1:
end = start + size_left
else:
end = data_size - start
if end >= data_size:
end = data_size
del queue[queue_index]
index = queue_index + buffer_size * self._max_buffers
if index < self._size:
queue[index] = self._workers.submit(
self._read_range, index, index + buffer_size)
read_size = end - start
if size_left != -1:
size_left -= read_size
seek += read_size
b_start = b_end
b_end = b_start + read_size
b_view[b_start:b_end] = buffer_view[start:end]
self._seek = seek
self._raw.seek(seek)
return b_end
|
Read bytes into a pre-allocated, writable bytes-like object b,
and return the number of bytes read.
Args:
b (bytes-like object): buffer.
Returns:
int: number of bytes read
|
juraj-google-style
|
def _get_jwt_for_audience(self, audience):
(token, expiry) = self._cache.get(audience, (None, None))
if ((token is None) or (expiry < _helpers.utcnow())):
(token, expiry) = self._make_jwt_for_audience(audience)
self._cache[audience] = (token, expiry)
return token
|
Get a JWT For a given audience.
If there is already an existing, non-expired token in the cache for
the audience, that token is used. Otherwise, a new token will be
created.
Args:
audience (str): The intended audience.
Returns:
bytes: The encoded JWT.
|
codesearchnet
|
def transform_array_to_list(array):
if ((array.dtype.kind in ('u', 'i', 'f')) and (~ np.isfinite(array)).any()):
transformed = array.astype('object')
transformed[np.isnan(array)] = 'NaN'
transformed[np.isposinf(array)] = 'Infinity'
transformed[np.isneginf(array)] = '-Infinity'
return transformed.tolist()
elif ((array.dtype.kind == 'O') and pd and pd.isnull(array).any()):
transformed = array.astype('object')
transformed[pd.isnull(array)] = 'NaN'
return transformed.tolist()
return array.tolist()
|
Transforms a NumPy array into a list of values
Args:
array (np.nadarray) : the NumPy array series to transform
Returns:
list or dict
|
codesearchnet
|
def interp_color(a, b, f):
a_ = (a.redF(), a.greenF(), a.blueF())
b_ = (b.redF(), b.greenF(), b.blueF())
a_ = [(x * (1 - f)) for x in a_]
b_ = [(x * f) for x in b_]
c = [(x + y) for (x, y) in zip(a_, b_)]
return QtGui.QColor.fromRgbF(*c)
|
Interpolate between two colors.
Returns:
`QColor` object.
|
codesearchnet
|
def return_handler(self, call_node, function_nodes, saved_function_call_index, first_node):
if any((isinstance(node, YieldNode) for node in function_nodes)):
rhs_prefix = 'yld_'
elif any((isinstance(node, ConnectToExitNode) for node in function_nodes)):
rhs_prefix = 'ret_'
else:
return
LHS = ((CALL_IDENTIFIER + 'call_') + str(saved_function_call_index))
RHS = (rhs_prefix + get_call_names_as_string(call_node.func))
return_node = RestoreNode(((LHS + ' = ') + RHS), LHS, [RHS], line_number=call_node.lineno, path=self.filenames[(- 1)])
return_node.first_node = first_node
self.nodes[(- 1)].connect(return_node)
self.nodes.append(return_node)
|
Handle the return from a function during a function call.
Args:
call_node(ast.Call) : The node that calls the definition.
function_nodes(list[Node]): List of nodes of the function being called.
saved_function_call_index(int): Unique number for each call.
first_node(EntryOrExitNode or RestoreNode): Used to connect previous statements to this function.
|
codesearchnet
|
def add(self, files):
if (files.__class__.__name__ == 'str'):
self._files.append(files)
else:
self._files.extend(files)
|
Adds files to check.
Args:
files: List of files to check.
|
codesearchnet
|
def FromDictionary(cls, msg_dict):
level = msg_dict.get('level')
msg = msg_dict.get('message')
now = msg_dict.get('now_time')
created = msg_dict.get('created_time')
count = msg_dict.get('count', 1)
msg_id = msg_dict.get('id', 0)
new_msg = ServiceMessage(level, msg, msg_id, created, now)
if (count > 1):
new_msg.count = count
return new_msg
|
Create from a dictionary with kv pairs.
Args:
msg_dict (dict): A dictionary with information as created by to_dict()
Returns:
ServiceMessage: the converted message
|
codesearchnet
|
def check(self):
if (not isinstance(self.parsed_yaml, dict)):
msg = 'In {0}:\n'.format(self.sourcefile)
msg += 'Assistants and snippets must be Yaml mappings, not "{0}"!'.format(self.parsed_yaml)
raise exceptions.YamlTypeError(msg)
self._check_fullname(self.sourcefile)
self._check_description(self.sourcefile)
self._check_section_names(self.sourcefile)
self._check_project_type(self.sourcefile)
self._check_args(self.sourcefile)
self._check_files(self.sourcefile)
self._check_dependencies(self.sourcefile)
self._check_run(self.sourcefile)
|
Checks whether loaded yaml is well-formed according to syntax defined for
version 0.9.0 and later.
Raises:
YamlError: (containing a meaningful message) when the loaded Yaml
is not well formed
|
codesearchnet
|
def stack(xs, dim_name, axis=0, name=None):
ret = StackOperation(xs, dim_name, axis, name).outputs[0]
return ret
|
Stack multiple Tensors to make a new dimension.
Args:
xs: a list of Tensors with identical shapes.
dim_name: a string (name of the new dimension)
axis: an integer (index of the new dimension in the output shape)
name: an optional string
Returns:
a Tensor
|
juraj-google-style
|
def _send(self, email_message):
pre_send.send(self.__class__, message=email_message)
if (not email_message.recipients()):
return False
from_email = sanitize_address(email_message.from_email, email_message.encoding)
recipients = [sanitize_address(addr, email_message.encoding) for addr in email_message.recipients()]
message = email_message.message().as_bytes(linesep='\r\n')
try:
result = self.conn.send_raw_email(Source=from_email, Destinations=recipients, RawMessage={'Data': message})
message_id = result['MessageId']
post_send.send(self.__class__, message=email_message, message_id=message_id)
except ClientError:
if (not self.fail_silently):
raise
return False
return True
|
Sends an individual message via the Amazon SES HTTP API.
Args:
email_message: A single Django EmailMessage object.
Returns:
True if the EmailMessage was sent successfully, otherwise False.
Raises:
ClientError: An interaction with the Amazon SES HTTP API
failed.
|
codesearchnet
|
def __init__(self, location, resource_pool):
super(FileSystemPackageRepository, self).__init__(location, resource_pool)
global _settings
_settings = config.plugins.package_repository.filesystem
self.register_resource(FileSystemPackageFamilyResource)
self.register_resource(FileSystemPackageResource)
self.register_resource(FileSystemVariantResource)
self.register_resource(FileSystemCombinedPackageFamilyResource)
self.register_resource(FileSystemCombinedPackageResource)
self.register_resource(FileSystemCombinedVariantResource)
self.get_families = lru_cache(maxsize=None)(self._get_families)
self.get_family = lru_cache(maxsize=None)(self._get_family)
self.get_packages = lru_cache(maxsize=None)(self._get_packages)
self.get_variants = lru_cache(maxsize=None)(self._get_variants)
self.get_file = lru_cache(maxsize=None)(self._get_file)
|
Create a filesystem package repository.
Args:
location (str): Path containing the package repository.
|
juraj-google-style
|
def extraterrestrial_direct_normal_radiation(self, value=9999.0):
if value is not None:
try:
value = float(value)
except ValueError:
raise ValueError(
'value {} need to be of type float '
'for field `extraterrestrial_direct_normal_radiation`'.format(value))
if value < 0.0:
raise ValueError(
'value need to be greater or equal 0.0 '
'for field `extraterrestrial_direct_normal_radiation`')
self._extraterrestrial_direct_normal_radiation = value
|
Corresponds to IDD Field `extraterrestrial_direct_normal_radiation`
Args:
value (float): value for IDD Field `extraterrestrial_direct_normal_radiation`
Unit: Wh/m2
value >= 0.0
Missing value: 9999.0
if `value` is None it will not be checked against the
specification and is assumed to be a missing value
Raises:
ValueError: if `value` is not a valid value
|
juraj-google-style
|
def add(self, information, timeout=(- 1)):
return self._client.create(information, timeout=timeout)
|
Adds a data center resource based upon the attributes specified.
Args:
information: Data center information
timeout: Timeout in seconds. Wait for task completion by default. The timeout does not abort the operation
in OneView; it just stops waiting for its completion.
Returns:
dict: Added data center.
|
codesearchnet
|
def SetLines(self, lines):
(self._cli_lines, self._cli_cols) = TerminalSize()
if lines:
self._cli_lines = int(lines)
|
Set number of screen lines.
Args:
lines: An int, number of lines. If None, use terminal dimensions.
Raises:
ValueError, TypeError: Not a valid integer representation.
|
juraj-google-style
|
def calc_padding(fmt, align):
remain = (struct.calcsize(fmt) % align)
if (remain == 0):
return ''
return ('x' * (align - remain))
|
Calculate how many padding bytes needed for ``fmt`` to be aligned to
``align``.
Args:
fmt (str): :mod:`struct` format.
align (int): alignment (2, 4, 8, etc.)
Returns:
str: padding format (e.g., various number of 'x').
>>> calc_padding('b', 2)
'x'
>>> calc_padding('b', 3)
'xx'
|
codesearchnet
|
def run(self, dag):
for node in dag.threeQ_or_more_gates():
rule = node.op.definition
if (not rule):
raise QiskitError(('Cannot unroll all 3q or more gates. No rule to expand instruction %s.' % node.op.name))
decomposition = DAGCircuit()
decomposition.add_qreg(rule[0][1][0][0])
for inst in rule:
decomposition.apply_operation_back(*inst)
decomposition = self.run(decomposition)
dag.substitute_node_with_dag(node, decomposition)
return dag
|
Expand 3+ qubit gates using their decomposition rules.
Args:
dag(DAGCircuit): input dag
Returns:
DAGCircuit: output dag with maximum node degrees of 2
Raises:
QiskitError: if a 3q+ gate is not decomposable
|
codesearchnet
|
def write(self, auth, resource, value, options={}, defer=False):
return self._call('write', auth, [resource, value, options], defer)
|
Writes a single value to the resource specified.
Args:
auth: cik for authentication.
resource: resource to write to.
value: value to write
options: options.
|
juraj-google-style
|
class BatchFeature(BaseBatchFeature):
|
Holds the output of the image processor specific `__call__` methods.
This class is derived from a python dictionary and can be used as a dictionary.
Args:
data (`dict`):
Dictionary of lists/arrays/tensors returned by the __call__ method ('pixel_values', etc.).
tensor_type (`Union[None, str, TensorType]`, *optional*):
You can give a tensor_type here to convert the lists of integers in PyTorch/TensorFlow/Numpy Tensors at
initialization.
|
github-repos
|
def _force_edge_active(self, seqs: List[List[GridQubit]], edge: EDGE,
sample_bool: Callable[[], bool]
) -> List[List[GridQubit]]:
n0, n1 = edge
seqs = list(seqs)
i0, j0 = index_2d(seqs, n0)
i1, j1 = index_2d(seqs, n1)
s0 = seqs[i0]
s1 = seqs[i1]
if i0 != i1:
part = [s0[:j0], s0[j0 + 1:]], [s1[:j1], s1[j1 + 1:]]
del seqs[max(i0, i1)]
del seqs[min(i0, i1)]
c0 = 0 if not part[0][1] else 1 if not part[0][
0] else sample_bool()
if c0:
part[0][c0].reverse()
c1 = 0 if not part[1][1] else 1 if not part[1][
0] else sample_bool()
if not c1:
part[1][c1].reverse()
seqs.append(part[0][c0] + [n0, n1] + part[1][c1])
other = [1, 0]
seqs.append(part[0][other[c0]])
seqs.append(part[1][other[c1]])
else:
if j0 > j1:
j0, j1 = j1, j0
n0, n1 = n1, n0
head = s0[:j0]
inner = s0[j0 + 1:j1]
tail = s0[j1 + 1:]
del seqs[i0]
if sample_bool():
if sample_bool():
seqs.append(inner + [n1, n0] + head[::-1])
seqs.append(tail)
else:
seqs.append(tail[::-1] + [n1, n0] + inner)
seqs.append(head)
else:
seqs.append(head + [n0, n1] + tail)
seqs.append(inner)
return [e for e in seqs if e]
|
Move which forces given edge to appear on some sequence.
Args:
seqs: List of linear sequences covering chip.
edge: Edge to be activated.
sample_bool: Callable returning random bool.
Returns:
New list of linear sequences with given edge on some of the
sequences.
|
juraj-google-style
|
def make_bubble_surface(dims=DEFAULT_DIMS, repeat=3):
gradients = make_gradients(dims)
return (np.sin((((gradients[0] - 0.5) * repeat) * np.pi)) * np.sin((((gradients[1] - 0.5) * repeat) * np.pi)))
|
Makes a surface from the product of sine functions on each axis.
Args:
dims (pair): the dimensions of the surface to create
repeat (int): the frequency of the waves is set to ensure this many
repetitions of the function
Returns:
surface: A surface.
|
codesearchnet
|
def starts_with_prefix_in_list(text, prefixes):
for prefix in prefixes:
if text.startswith(prefix):
return True
return False
|
Return True if the given string starts with one of the prefixes in the given list, otherwise
return False.
Arguments:
text (str): Text to check for prefixes.
prefixes (list): List of prefixes to check for.
Returns:
bool: True if the given text starts with any of the given prefixes, otherwise False.
|
codesearchnet
|
def wait_for_registration(self, processor_type):
with self._condition:
self._condition.wait_for(lambda: (
processor_type in self
or self._cancelled_event.is_set()))
if self._cancelled_event.is_set():
raise WaitCancelledException()
|
Waits for a particular processor type to register or until
is_cancelled is True. is_cancelled cannot be part of this class
since we aren't cancelling all waiting for a processor_type,
but just this particular wait.
Args:
processor_type (ProcessorType): The family, and version of
the transaction processor.
Returns:
None
|
juraj-google-style
|
def list_group_maintainers(self, name):
self.project_service.set_auth(self._token_project)
return self.project_service.list_group_maintainers(name)
|
Get the maintainers of a group.
Args:
name (string): Name of group to query.
Returns:
(list[string]): List of maintainer names.
Raises:
requests.HTTPError on failure.
|
juraj-google-style
|
def paginator(limit, offset, record_count, base_uri, page_nav_tpl='&limit={}&offset={}'):
total_pages = int(math.ceil(record_count / limit))
next_cond = limit + offset <= record_count
prev_cond = offset >= limit
next_page = base_uri + page_nav_tpl.format(limit, offset + limit) if next_cond else None
prev_page = base_uri + page_nav_tpl.format(limit, offset - limit) if prev_cond else None
return OrderedDict([
('total_count', record_count),
('total_pages', total_pages),
('next_page', next_page),
('prev_page', prev_page)
])
|
Compute pagination info for collection filtering.
Args:
limit (int): Collection filter limit.
offset (int): Collection filter offset.
record_count (int): Collection filter total record count.
base_uri (str): Collection filter base uri (without limit, offset)
page_nav_tpl (str): Pagination template.
Returns:
A mapping of pagination info.
|
juraj-google-style
|
def list_hierarchy(class_name, bases):
class_list = [Uri(class_name)]
for base in bases:
if (base.__name__ not in IGNORE_CLASSES):
class_list.append(Uri(base.__name__))
return list([i for i in set(class_list)])
|
Creates a list of the class hierarchy
Args:
-----
class_name: name of the current class
bases: list/tuple of bases for the current class
|
codesearchnet
|
def annotate(self, gpl, annotation_column, gpl_on='ID', gsm_on='ID_REF', in_place=False):
if isinstance(gpl, GPL):
annotation_table = gpl.table
elif isinstance(gpl, DataFrame):
annotation_table = gpl
else:
raise TypeError('gpl should be a GPL object or a pandas.DataFrame')
annotated = self.table.merge(annotation_table[[gpl_on, annotation_column]], left_on=gsm_on, right_on=gpl_on)
del annotated[gpl_on]
if in_place:
self.table = annotated
return None
else:
return annotated
|
Annotate GSM with provided GPL
Args:
gpl (:obj:`pandas.DataFrame`): A Platform or DataFrame to annotate with
annotation_column (str`): Column in a table for annotation
gpl_on (:obj:`str`): Use this column in GSM to merge. Defaults to "ID".
gsm_on (:obj:`str`): Use this column in GPL to merge.
Defaults to "ID_REF".
in_place (:obj:`bool`): Substitute table in GSM by new annotated
table. Defaults to False.
Returns:
:obj:`pandas.DataFrame` or :obj:`None`: Annotated table or None
Raises:
TypeError: GPL should be GPL or pandas.DataFrame
|
codesearchnet
|
def getall(self, key, default=[]):
return self.data[key] if key in self.data else default
|
Return the list of all values for the specified key.
Arguments:
key (object): Key
default (list): Default value to return if the key does not
exist, defaults to ``[]``, i.e. an empty list.
Returns:
list: List of all values for the specified key if the key
exists, ``default`` otherwise.
|
juraj-google-style
|
def __init__(self, vendor=None, body=b''):
super().__init__()
self.vendor = vendor
self.body = body
|
Create instance attributes.
Args:
vendor (int): 32-bit vendor ID.
body (bytes): Vendor-defined body
|
juraj-google-style
|
def __init__(self, paginator, number, items):
self.paginator = paginator
self.number = number
self.number0 = number - 1
self.items = items
self.count = len(items)
self.total_items = paginator.total_items
self.items_per_page = paginator.items_per_page
self.total_pages = paginator.total_pages
self.page_range = paginator.page_range
self.start_page = paginator.start_page
self.last_page = paginator.last_page
|
Constructor.
Args:
paginator: The parent paginator object.
number: The number of this page (starting from 1).
items: A list of items to belong to this page.
|
juraj-google-style
|
def authorize(self, scheme, **params):
if (scheme not in self.schemes):
return False
for (field, value) in iteritems(params):
setattr(self, field, value)
if ((field in self.schemes[scheme][u'params'].keys()) and value):
self.schemes[scheme][u'params'][field] = value
return True
|
Store credentials required to satisfy a given auth scheme.
Args:
scheme (str): The name of the Authentication scheme.
**params: parameters for the specified scheme.
Returns:
True if parameters are set successfully (note that this doesn't mean
the credentials are valid)
False if the scheme specified is not supported
|
codesearchnet
|
def add_site(self, site):
start_angle = 0
radius = 0
total_occu = 0
for specie, occu in site.species.items():
radius += occu * (specie.ionic_radius
if isinstance(specie, Specie)
and specie.ionic_radius
else specie.average_ionic_radius)
total_occu += occu
vis_radius = 0.2 + 0.002 * radius
for specie, occu in site.species.items():
if not specie:
color = (1, 1, 1)
elif specie.symbol in self.el_color_mapping:
color = [i / 255 for i in self.el_color_mapping[specie.symbol]]
mapper = self.add_partial_sphere(site.coords, vis_radius, color,
start_angle, start_angle + 360 * occu)
self.mapper_map[mapper] = [site]
start_angle += 360 * occu
if total_occu < 1:
mapper = self.add_partial_sphere(site.coords, vis_radius, (1,1,1),
start_angle, start_angle + 360 * (1 - total_occu))
self.mapper_map[mapper] = [site]
|
Add a site to the render window. The site is displayed as a sphere, the
color of which is determined based on the element. Partially occupied
sites are displayed as a single element color, though the site info
still shows the partial occupancy.
Args:
site: Site to add.
|
juraj-google-style
|
def info_gen(self, code, message, compressed=False):
if ('COMPRESS=GZIP' in message):
return self.__info_gzip_gen()
if compressed:
return self.__info_yenczlib_gen()
return self.__info_plain_gen()
|
Dispatcher for the info generators.
Determines which __info_*_gen() should be used based on the supplied
parameters.
Args:
code: The status code for the command response.
message: The status message for the command reponse.
compressed: Force decompression. Useful for xz* commands.
Returns:
An info generator.
|
codesearchnet
|
def fsync(self, file_des):
if 0 <= file_des < NR_STD_STREAMS:
self.filesystem.raise_os_error(errno.EINVAL)
file_object = self.filesystem.get_open_file(file_des)
if self.filesystem.is_windows_fs:
if (not hasattr(file_object, 'allow_update') or
not file_object.allow_update):
self.filesystem.raise_os_error(
errno.EBADF, file_object.file_path)
|
Perform fsync for a fake file (in other words, do nothing).
Args:
file_des: The file descriptor of the open file.
Raises:
OSError: file_des is an invalid file descriptor.
TypeError: file_des is not an integer.
|
juraj-google-style
|
def __call__(self, user_lo_config):
lo_config = {}
q_los = self.get_qubit_los(user_lo_config)
if q_los:
lo_config['qubit_lo_freq'] = q_los
m_los = self.get_meas_los(user_lo_config)
if m_los:
lo_config['meas_lo_freq'] = m_los
return self.qobj_model(**lo_config)
|
Return PulseQobjExperimentConfig
Args:
user_lo_config (LoConfig): A dictionary of LOs to format.
Returns:
PulseQobjExperimentConfig: qobj.
|
juraj-google-style
|
def tersoff_potential(self, structure):
bv = BVAnalyzer()
el = [site.specie.symbol for site in structure]
valences = bv.get_valences(structure)
el_val_dict = dict(zip(el, valences))
gin = 'species \n'
qerfstring = 'qerfc\n'
for key in el_val_dict.keys():
if ((key != 'O') and ((el_val_dict[key] % 1) != 0)):
raise SystemError('Oxide has mixed valence on metal')
specie_string = (((key + ' core ') + str(el_val_dict[key])) + '\n')
gin += specie_string
qerfstring += (((key + ' ') + key) + ' 0.6000 10.0000 \n')
gin += '
met_oxi_ters = TersoffPotential().data
for key in el_val_dict.keys():
if (key != 'O'):
metal = (((key + '(') + str(int(el_val_dict[key]))) + ')')
ters_pot_str = met_oxi_ters[metal]
gin += ters_pot_str
gin += qerfstring
return gin
|
Generate the species, tersoff potential lines for an oxide structure
Args:
structure: pymatgen.core.structure.Structure
|
codesearchnet
|
def __init__( self, initial_site ):
Atom.atom_number += 1
self.number = Atom.atom_number
self._site = initial_site
if self._site.occupation == 0:
self._site.occupation = self.number
self._site.is_occupied = True
self._site.atom = self
else:
raise ValueError( "This site is already occupied by atom {}".format( initial_site.occupation ) )
self.reset()
|
Initialise an Atom instance.
Args:
initial_site (Site): Lattice site initially occupied by this Atom.
Returns:
None
|
juraj-google-style
|
def ed25519_public_key_to_string(key):
return base64.b64encode(key.public_bytes(encoding=serialization.Encoding.Raw, format=serialization.PublicFormat.Raw), None).decode('utf-8')
|
Convert an ed25519 public key to a base64-encoded string.
Args:
key (Ed25519PublicKey): the key to write to the file.
Returns:
str: the key representation as a str
|
codesearchnet
|
def split(self, path):
return os.path.split(os.path.abspath(path))
|
Splits the given path into two parts.
Splits the path into a pair (head, tail) such that tail contains the last
component of the path and head contains everything up to that.
Args:
path: path as a string
Returns:
a pair of path components as strings.
|
github-repos
|
def raise_on_errors(errors, level=logging.CRITICAL):
if errors:
log.log(level, '\n'.join(errors))
raise CoTError('\n'.join(errors))
|
Raise a CoTError if errors.
Helper function because I had this code block everywhere.
Args:
errors (list): the error errors
level (int, optional): the log level to use. Defaults to logging.CRITICAL
Raises:
CoTError: if errors is non-empty
|
codesearchnet
|
def post_slack_message(message=None, channel=None, username=None, icon_emoji=None):
LOG.debug('Slack Channel: %s\nSlack Message: %s', channel, message)
slack = slacker.Slacker(SLACK_TOKEN)
try:
slack.chat.post_message(channel=channel, text=message, username=username, icon_emoji=icon_emoji)
LOG.info('Message posted to %s', channel)
except slacker.Error:
LOG.info('error posted message to %s', channel)
|
Format the message and post to the appropriate slack channel.
Args:
message (str): Message to post to slack
channel (str): Desired channel. Must start with #
|
codesearchnet
|
def ParseFileObject(self, parser_mediator, file_object):
filename = parser_mediator.GetFilename()
file_size = file_object.get_size()
if (file_size <= 0):
raise errors.UnableToParseFile('File size: {0:d} bytes is less equal 0.'.format(file_size))
if (file_size > 50000000):
raise errors.UnableToParseFile('File size: {0:d} bytes is larger than 50 MB.'.format(file_size))
top_level_object = self.GetTopLevel(file_object)
if (not top_level_object):
raise errors.UnableToParseFile('Unable to parse: {0:s} skipping.'.format(filename))
matching_plugin = None
for plugin in self._plugins:
try:
plugin.UpdateChainAndProcess(parser_mediator, plist_name=filename, top_level=top_level_object)
matching_plugin = plugin
except errors.WrongPlistPlugin as exception:
logger.debug('Wrong plugin: {0:s} for: {1:s}'.format(exception.args[0], exception.args[1]))
if ((not matching_plugin) and self._default_plugin):
self._default_plugin.UpdateChainAndProcess(parser_mediator, plist_name=filename, top_level=top_level_object)
|
Parses a plist file-like object.
Args:
parser_mediator (ParserMediator): mediates interactions between parsers
and other components, such as storage and dfvfs.
file_object (dfvfs.FileIO): a file-like object.
Raises:
UnableToParseFile: when the file cannot be parsed.
|
codesearchnet
|
def pnl_upsert(self, asset_manager_id, pnls):
self.logger.info('Upsert PnL for - Asset Manager: %s', asset_manager_id)
pnls = [pnls] if not isinstance(pnls, list) else pnls
json_pnls = [pnl.to_interface() for pnl in pnls]
url = '%s/pnls/%s' % (self.endpoint, asset_manager_id)
response = self.session.put(url, json=json_pnls)
if response.ok:
results = []
for pnl_result in response.json():
results.append(json_to_pnl(pnl_result))
self.logger.info('Upserted %s PnL records', len(results))
return results
else:
self.logger.error(response.text)
response.raise_for_status()
|
Upsert a list of pnls. Note: this performs a full update
of existing records with matching keys, so the passed in
pnl objects should be complete.
Args:
asset_manager_id (int): the id of the asset manager owning the pnl
pnls (list): list of pnl objects to upsert
|
juraj-google-style
|
def HasDataStream(self, name, case_sensitive=True):
if (not isinstance(name, py2to3.STRING_TYPES)):
raise ValueError('Name is not a string.')
name_lower = name.lower()
for data_stream in self._GetDataStreams():
if (data_stream.name == name):
return True
if ((not case_sensitive) and (data_stream.name.lower() == name_lower)):
return True
return False
|
Determines if the file entry has specific data stream.
Args:
name (str): name of the data stream.
case_sensitive (Optional[bool]): True if the name is case sensitive.
Returns:
bool: True if the file entry has the data stream.
Raises:
ValueError: if the name is not string.
|
codesearchnet
|
def get_firmware(self):
uri = '{}/firmware'.format(self.data['uri'])
return self._helper.do_get(uri)
|
Get the firmware inventory of a server.
Note:
This method is available for API version 300 or later.
Returns:
dict: Server Hardware firmware.
|
codesearchnet
|
def stop(name, file=sys.stderr):
if is_enabled():
elapsed = (time() - __TIMERS[name])
if (elapsed > 60):
elapsed_str = '{:.1f} m'.format((elapsed / 60))
elif (elapsed > 1):
elapsed_str = '{:.1f} s'.format(elapsed)
else:
elapsed_str = '{:.1f} ms'.format((elapsed * 1000))
del __TIMERS[name]
print('[prof]', name, elapsed_str, file=file)
return is_enabled()
|
Stop a profiling timer.
Arguments:
name (str): The name of the timer to stop. If no name is given, stop
the global anonymous timer.
Returns:
bool: Whether or not profiling is enabled.
Raises:
KeyError: If the named timer does not exist.
|
codesearchnet
|
def _ReadAttributeValueDateTime(self, attribute_values_data, record_offset, attribute_values_data_offset, attribute_value_offset):
if (attribute_value_offset == 0):
return None
data_type_map = self._GetDataTypeMap('keychain_date_time')
file_offset = ((record_offset + attribute_values_data_offset) + attribute_value_offset)
attribute_value_offset -= (attribute_values_data_offset + 1)
attribute_value_data = attribute_values_data[attribute_value_offset:]
try:
date_time_attribute_value = self._ReadStructureFromByteStream(attribute_value_data, file_offset, data_type_map)
except (ValueError, errors.ParseError) as exception:
raise errors.ParseError('Unable to map date time attribute value data at offset: 0x{0:08x} with error: {1!s}'.format(file_offset, exception))
return date_time_attribute_value.date_time.rstrip('\x00')
|
Reads a date time attribute value.
Args:
attribute_values_data (bytes): attribute values data.
record_offset (int): offset of the record relative to the start of
the file.
attribute_values_data_offset (int): offset of the attribute values data
relative to the start of the record.
attribute_value_offset (int): offset of the attribute relative to
the start of the record.
Returns:
str: date and time values.
Raises:
ParseError: if the attribute value cannot be read.
|
codesearchnet
|
def get_current_state(self, clearConfig: bool = False):
json_state = self.download_configuration()
if "errorCode" in json_state:
LOGGER.error(
"Could not get the current configuration. Error: %s",
json_state["errorCode"],
)
return False
if clearConfig:
self.devices = []
self.clients = []
self.groups = []
self.rules = []
self.functionalHomes = []
js_home = json_state["home"]
self.from_json(js_home)
self._get_devices(json_state)
self._get_clients(json_state)
self._get_groups(json_state)
self._get_functionalHomes(js_home)
self._load_functionalChannels()
return True
|
downloads the current configuration and parses it into self
Args:
clearConfig(bool): if set to true, this function will remove all old objects
from self.devices, self.client, ... to have a fresh config instead of reparsing them
|
juraj-google-style
|
def GetBalance(self, wallet, address, as_string=False):
addr = PromptUtils.parse_param(address, wallet)
if isinstance(addr, UInt160):
addr = addr.Data
sb = ScriptBuilder()
sb.EmitAppCallWithOperationAndArgs(self.ScriptHash, 'balanceOf', [addr])
tx, fee, results, num_ops, engine_success = test_invoke(sb.ToArray(), wallet, [])
if engine_success:
try:
val = results[0].GetBigInteger()
precision_divisor = pow(10, self.decimals)
balance = Decimal(val) / Decimal(precision_divisor)
if as_string:
formatter_str = '.%sf' % self.decimals
balance_str = format(balance, formatter_str)
return balance_str
return balance
except Exception as e:
logger.error("could not get balance: %s " % e)
traceback.print_stack()
else:
addr_str = Crypto.ToAddress(UInt160(data=addr))
logger.error(
f"Could not get balance of address {addr_str} for token contract {self.ScriptHash}. VM execution failed. Make sure the contract exists on the network and that it adheres to the NEP-5 standard")
return 0
|
Get the token balance.
Args:
wallet (neo.Wallets.Wallet): a wallet instance.
address (str): public address of the account to get the token balance of.
as_string (bool): whether the return value should be a string. Default is False, returning an integer.
Returns:
int/str: token balance value as int (default), token balanace as string if `as_string` is set to True. 0 if balance retrieval failed.
|
juraj-google-style
|
def SetStorageWriter(self, storage_writer):
self._storage_writer = storage_writer
self._last_event_data_hash = None
self._last_event_data_identifier = None
|
Sets the storage writer.
Args:
storage_writer (StorageWriter): storage writer.
|
codesearchnet
|
def read_reply(self) -> Reply:
_logger.debug('Read reply')
reply = Reply()
while True:
line = (yield from self._connection.readline())
if (line[(- 1):] != b'\n'):
raise NetworkError('Connection closed.')
self._data_event_dispatcher.notify_read(line)
reply.parse(line)
if (reply.code is not None):
break
return reply
|
Read a reply from the stream.
Returns:
.ftp.request.Reply: The reply
Coroutine.
|
codesearchnet
|
def ChunkedAttentionSelector(x, params, selector=None, **kwargs):
del params, kwargs
selector = (selector or (lambda x: ([] if (x < 1) else [(x - 1)])))
(triples, masks) = zip(*x)
(queries, keys, values) = zip(*triples)
result = []
for i in range(len(x)):
selected = selector(i)
new_key_list = [keys[j] for j in selected]
new_key = np.concatenate((new_key_list + [keys[i]]), axis=1)
new_value = np.concatenate(([values[j] for j in selected] + [values[i]]), axis=1)
new_mask_shapes = [(1, queries[i].shape[1], key.shape[1]) for key in new_key_list]
cur_mask = masks[i]
new_mask_list = [np.ones(s, dtype=cur_mask.dtype) for s in new_mask_shapes]
new_mask = np.concatenate((new_mask_list + [cur_mask]), axis=2)
result.append(((queries[i], new_key, new_value), new_mask))
return tuple(result)
|
Select which chunks to attend to in chunked attention.
Args:
x: inputs, a list of elements of the form (q, k, v), mask for each chunk.
params: parameters (unused).
selector: a function from chunk_number -> list of chunk numbers that says
which other chunks should be appended to the given one (previous if None).
**kwargs: unused other arguments.
Returns:
a list of elements of the form (q, k', v'), mask' where k', v' and mask' are
concatenations of k, v and identity-extended masks from selected chunks.
|
codesearchnet
|
def query_parameter(binding_key):
pbk = ParsedBindingKey(binding_key)
if (pbk.config_key not in _CONFIG):
err_str = "Configurable '{}' has no bound parameters."
raise ValueError(err_str.format(pbk.given_selector))
if (pbk.arg_name not in _CONFIG[pbk.config_key]):
err_str = "Configurable '{}' has no value bound for parameter '{}'."
raise ValueError(err_str.format(pbk.given_selector, pbk.arg_name))
return _CONFIG[pbk.config_key][pbk.arg_name]
|
Returns the currently bound value to the specified `binding_key`.
The `binding_key` argument should look like
'maybe/some/scope/maybe.moduels.configurable_name.parameter_name'. Note that
this will not include default parameters.
Args:
binding_key: The parameter whose value should be set.
Returns:
The value bound to the configurable/parameter combination given in
`binding_key`.
Raises:
ValueError: If no function can be found matching the configurable name
specified by `biding_key`, or if the specified parameter name is
blacklisted or not in the function's whitelist (if present) or if there is
no value bound for the queried parameter or configurable.
|
codesearchnet
|
def char_matches(s1, s2, n=3):
return __matches(s1, s2, char_ngrams, n=n)
|
Character-level n-grams that match between two strings
Args:
s1: a string
s2: another string
n: an int for the n in n-gram
Returns:
set: the n-grams found in both strings
|
codesearchnet
|
def registration_backend(backend=None, namespace=None):
backend = backend or ORGS_REGISTRATION_BACKEND
class_module, class_name = backend.rsplit(".", 1)
mod = import_module(class_module)
return getattr(mod, class_name)(namespace=namespace)
|
Returns a specified registration backend
Args:
backend: dotted path to the registration backend class
namespace: URL namespace to use
Returns:
an instance of an RegistrationBackend
|
juraj-google-style
|
def build(self):
self._import_submodules()
module_text_map = {}
footer_text_map = {}
for dest_module, dest_name_to_imports in self._module_imports.items():
imports_list = [get_canonical_import(imports) for _, imports in dest_name_to_imports.items()]
if self._lazy_loading:
module_text_map[dest_module] = _LAZY_LOADING_MODULE_TEXT_TEMPLATE % '\n'.join(sorted(imports_list))
else:
module_text_map[dest_module] = '\n'.join(sorted(imports_list))
root_module_footer = ''
if not self._lazy_loading:
underscore_names_str = ', '.join(("'%s'" % name for name in sorted(self._underscore_names_in_root)))
root_module_footer = "\n_names_with_underscore = [%s]\n__all__ = [_s for _s in dir() if not _s.startswith('_')]\n__all__.extend([_s for _s in _names_with_underscore])\n" % underscore_names_str
if self._api_version == 1 or self._lazy_loading:
for dest_module, _ in self._module_imports.items():
deprecation = 'False'
has_lite = 'False'
if self._api_version == 1:
if not dest_module.startswith(_COMPAT_MODULE_PREFIX):
deprecation = 'True'
if not dest_module and 'lite' in self._module_imports and self._lazy_loading:
has_lite = 'True'
if self._lazy_loading:
public_apis_name = '_PUBLIC_APIS'
else:
public_apis_name = 'None'
footer_text_map[dest_module] = _DEPRECATION_FOOTER % (dest_module, public_apis_name, deprecation, has_lite)
return (module_text_map, footer_text_map, root_module_footer)
|
Get a map from destination module to __init__.py code for that module.
Returns:
A dictionary where
key: (string) destination module (for e.g. tf or tf.consts).
value: (string) text that should be in __init__.py files for
corresponding modules.
|
github-repos
|
def builtin_timescale(cls, name):
names = {'isc': TIMESCALE__ISC, 'usgs_isc': TIMESCALE__USGS_ISC, 'dnag': TIMESCALE__DNAG}
return cls.from_csv(text=names[name.lower()])
|
Generate a default timescale legend. No arguments.
Returns:
Legend: The timescale stored in `defaults.py`.
|
codesearchnet
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.